
Use Astra Trident

Astra Trident
NetApp
February 12, 2024

This PDF was generated from https://docs.netapp.com/us-en/trident-2210/trident-use/worker-node-
prep.html on February 12, 2024. Always check docs.netapp.com for the latest.



Table of Contents

Use Astra Trident . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Prepare the worker node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Configure backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Create backends with kubectl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77

Perform backend management with kubectl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

Perform backend management with tridentctl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

Move between backend management options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86

Manage storage classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93

Perform volume operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95

Share an NFS volume across namespaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120

Monitor Astra Trident . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124



Use Astra Trident

Prepare the worker node

All of the worker nodes in the Kubernetes cluster need to be able to mount the volumes that you have

provisioned for your pods. If you are using the ontap-nas, ontap-nas-economy, or ontap-nas-

flexgroup driver for one of your backends, your worker nodes need the NFS tools. Otherwise they require

the iSCSI tools.

Recent versions of RedHat CoreOS have both NFS and iSCSI installed by default.

You should always reboot your worker nodes after installing the NFS or iSCSI tools, or else

attaching volumes to containers might fail.

Node service discovery

Beginning in 22.07, Astra Trident attempts to automatically detect if the node is capable of running iSCSI or

NFS services. Astra Trident creates events for the node to identify the services discovered. You can review

these events using the command:

kubectl get event -A --field-selector involvedObject.name=<Kubernetes node

name>

Trident also identifies services enabled for each node on the Trident node CR. To view the discovered services,

use the command:

tridentctl get node -o wide -n <Trident namespace>

Node service discovery identifies discovered services but does not guarantee services are

properly configured. Conversely, the absence of a discovered service does not guarantee the

volume mount will fail.

NFS volumes

Protocol Operating system Commands

NFS RHEL/CentOS 7 sudo yum install -y nfs-

utils

NFS Ubuntu sudo apt-get install -y

nfs-common

You should ensure that the NFS service is started up during boot time.

1



iSCSI volumes

Consider the following when using iSCSI volumes:

• Each node in the Kubernetes cluster must have a unique IQN. This is a necessary prerequisite.

• If using RHCOS version 4.5 or later, or other RHEL-compatible Linux distribution, with the solidfire-

san driver and Element OS 12.5 or earlier, ensure that the CHAP authentication algorithm is set to MD5 in

/etc/iscsi/iscsid.conf. Secure FIPS-compliant CHAP algorithms SHA1, SHA-256, and SHA3-256

are available with Element 12.7.

sudo sed -i 's/^\(node.session.auth.chap_algs\).*/\1 = MD5/'

/etc/iscsi/iscsid.conf

• When using worker nodes that run RHEL/RedHat CoreOS with iSCSI PVs, make sure to specify the

discard mountOption in the StorageClass to perform inline space reclamation. See RedHat’s

documentation.

2

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems


Protocol Operating system Commands

iSCSI RHEL/CentOS 1. Install the following system

packages:

sudo yum install -y

lsscsi iscsi-initiator-

utils sg3_utils device-

mapper-multipath

2. Check that iscsi-initiator-utils

version is 6.2.0.874-2.el7 or

later:

rpm -q iscsi-initiator-

utils

3. Set scanning to manual:

sudo sed -i

's/^\(node.session.scan

\).*/\1 = manual/'

/etc/iscsi/iscsid.conf

4. Enable multipathing:

sudo mpathconf --enable

--with_multipathd y

--find_multipaths n

Ensure

etc/multipat

h.conf contains

find_multipa

ths no under

defaults.

5. Ensure that iscsid and

multipathd are running:

sudo systemctl enable

--now iscsid multipathd

6. Enable and start iscsi:

sudo systemctl enable

--now iscsi

3



Protocol Operating system Commands

iSCSI Ubuntu 1. Install the following system

packages:

sudo apt-get install -y

open-iscsi lsscsi sg3-

utils multipath-tools

scsitools

2. Check that open-iscsi version is

2.0.874-5ubuntu2.10 or later

(for bionic) or 2.0.874-

7.1ubuntu6.1 or later (for focal):

dpkg -l open-iscsi

3. Set scanning to manual:

sudo sed -i

's/^\(node.session.scan

\).*/\1 = manual/'

/etc/iscsi/iscsid.conf

4. Enable multipathing:

sudo tee

/etc/multipath.conf <

←'EOF'

defaults {

user_friendly_names yes

find_multipaths no

}

EOF

sudo systemctl enable

--now multipath-

tools.service

sudo service multipath-

tools restart

Ensure

etc/multipat

h.conf contains

find_multipa

ths no under

defaults.

5. Ensure that open-iscsi and

multipath-tools are

enabled and running:

sudo systemctl status

multipath-tools

sudo systemctl enable

--now open-

iscsi.service4



sudo systemctl status

open-iscsi

For Ubuntu 18.04, you must discover target ports with iscsiadm before starting open-iscsi

for the iSCSI daemon to start. You can alternatively modify the iscsi service to start iscsid

automatically.

Configure backends

A backend defines the relationship between Astra Trident and a storage system. It tells Astra Trident how to

communicate with that storage system and how Astra Trident should provision volumes from it. Astra Trident

will automatically offer up storage pools from backends that together match the requirements defined by a

storage class. Learn more about configuring the backend based on the type of storage system you have.

• Configure an Azure NetApp Files backend

• Configure a Cloud Volumes Service for Google Cloud Platform backend

• Configure a NetApp HCI or SolidFire backend

• Configure a backend with ONTAP or Cloud Volumes ONTAP NAS drivers

• Configure a backend with ONTAP or Cloud Volumes ONTAP SAN drivers

• Use Astra Trident with Amazon FSx for NetApp ONTAP

Configure an Azure NetApp Files backend

You can configure Azure NetApp Files (ANF) as the backend for Astra Trident. You can attach NAS and SMB

volumes using an ANF backend.

• Preparation

• Configuration options and examples

Considerations

• The Azure NetApp Files service does not support volumes smaller than 100 GB. Astra Trident

automatically creates 100-GB volumes if a smaller volume is requested.

• Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

• Astra Trident does not support Windows ARM architecture.

Prepare to configure an Azure NetApp Files backend

Before you can configure your ANF backend, you need to ensure the following requirements are met.

If you are using Azure NetApp Files for the first time or in a new location, some initial configuration is required.

• To set up Azure NetApp files and create an NFS volume, refer to Azure: Set up Azure NetApp Files and

create an NFS volume.

• To configure Azure NetApp Files and add an SMB volume, refer to: Azure: Create an SMB volume for

Azure NetApp Files.

Requirements

To configure and use an Azure NetApp Files backend, you need the following:

• subscriptionID from an Azure subscription with Azure NetApp Files enabled.

5

https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-create-volumes-smb
https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-create-volumes-smb
https://azure.microsoft.com/en-us/services/netapp/


• tenantID, clientID, and clientSecret from an App Registration in Azure Active Directory with

sufficient permissions to the Azure NetApp Files service. The App Registration should use either:

◦ The Owner or Contributor role predefined by Azure

◦ A custom Contributor role at the subscription level (assignableScopes) with the following

permissions that are limited to only what Astra Trident requires. After creating the custom role, assign

the role using the Azure portal.

{

    "id": "/subscriptions/<subscription-

id>/providers/Microsoft.Authorization/roleDefinitions/<role-

definition-id>",

    "properties": {

        "roleName": "custom-role-with-limited-perms",

        "description": "custom role providing limited permissions",

        "assignableScopes": [

            "/subscriptions/<subscription-id>"

        ],

        "permissions": [

            {

                "actions": [

 

"Microsoft.NetApp/netAppAccounts/capacityPools/read",

 

"Microsoft.NetApp/netAppAccounts/capacityPools/write",

 

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/read",

 

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/write",

 

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/delete",

 

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/read

",

 

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/writ

e",

 

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/dele

te",

 

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/rea

d",

 

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/wri

te",

 

6

https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://learn.microsoft.com/en-us/azure/role-based-access-control/custom-roles-portal
https://learn.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal
https://learn.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal


"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/del

ete",

 

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/Get

Metadata/action",

 

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/MountTargets/r

ead",

                    "Microsoft.Network/virtualNetworks/read",

                    "Microsoft.Network/virtualNetworks/subnets/read",

 

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrations

/read",

 

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrations

/write",

 

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrations

/delete",

                    "Microsoft.Features/features/read",

                    "Microsoft.Features/operations/read",

                    "Microsoft.Features/providers/features/read",

 

"Microsoft.Features/providers/features/register/action",

 

"Microsoft.Features/providers/features/unregister/action",

 

"Microsoft.Features/subscriptionFeatureRegistrations/read"

                ],

                "notActions": [],

                "dataActions": [],

                "notDataActions": []

            }

        ]

    }

}

• The Azure location that contains at least one delegated subnet. As of Trident 22.01, the location

parameter is a required field at the top level of the backend configuration file. Location values specified in

virtual pools are ignored.

Additional requirements for SMB volumes

• A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows

Server 2019. Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

• At least one Astra Trident secret containing your Active Directory credentials so ANF can authenticate to

Active Directory. To generate secret smbcreds:

7

https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet


kubectl create secret generic smbcreds --from-literal username=user

--from-literal password='pw'

• A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or

GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

Azure NetApp Files backend configuration options and examples

Learn about NFS and SMB backend configuration options for ANF and review configuration examples.

Astra Trident uses your backend configuration (subnet, virtual network, service level, and location), to create

ANF volumes on capacity pools that are available in the requested location and match the requested service

level and subnet.

Astra Trident does not support Manual QoS capacity pools.

Backend configuration options

ANF backends provide these configuration options.

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver "azure-netapp-files"

backendName Custom name or the storage

backend

Driver name + "_" + random

characters

subscriptionID The subscription ID from your

Azure subscription

tenantID The tenant ID from an App

Registration

clientID The client ID from an App

Registration

clientSecret The client secret from an App

Registration

serviceLevel One of Standard, Premium, or

Ultra

"" (random)

location Name of the Azure location where

the new volumes will be created

resourceGroups List of resource groups for filtering

discovered resources

"[]" (no filter)

netappAccounts List of NetApp accounts for filtering

discovered resources

"[]" (no filter)

capacityPools List of capacity pools for filtering

discovered resources

"[]" (no filter, random)

8

https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md


Parameter Description Default

virtualNetwork Name of a virtual network with a

delegated subnet

""

subnet Name of a subnet delegated to

Microsoft.Netapp/volumes

""

networkFeatures Set of VNet features for a volume,

may be Basic or Standard.

Network Features is not available in

all regions and might have to be

enabled in a subscription.

Specifying networkFeatures

when the functionality is not

enabled causes volume

provisioning to fail.

""

nfsMountOptions Fine-grained control of NFS mount

options.

Ignored for SMB volumes.

To mount volumes using NFS

version 4.1, include nfsvers=4 in

the comma-delimited mount options

list to choose NFS v4.1.

Mount options set in a storage

class definition override mount

options set in backend

configuration.

"nfsvers=3"

limitVolumeSize Fail provisioning if the requested

volume size is above this value

"" (not enforced by default)

debugTraceFlags Debug flags to use when

troubleshooting. Example,

\{"api": false, "method":

true, "discovery": true}.

Do not use this unless you are

troubleshooting and require a

detailed log dump.

null

nasType Configure NFS or SMB volumes

creation.

Options are nfs, smb or null.

Setting to null defaults to NFS

volumes.

nfs

For more information on Network Features, refer to Configure network features for an Azure

NetApp Files volume.

9

https://docs.microsoft.com/en-us/azure/azure-netapp-files/configure-network-features
https://docs.microsoft.com/en-us/azure/azure-netapp-files/configure-network-features


Required permissions and resources

If you receive a “No capacity pools found” error when creating a PVC, it is likely your app registration doesn’t

have the required permissions and resources (subnet, virtual network, capacity pool) associated. If debug is

enabled, Astra Trident will log the Azure resources discovered when the backend is created. Verify an

appropriate role is being used.

The values for resourceGroups, netappAccounts, capacityPools, virtualNetwork, and subnet

can be specified using short or fully-qualified names. Fully-qualified names are recommended in most

situations as short names can match multiple resources with the same name.

The resourceGroups, netappAccounts, and capacityPools values are filters that restrict the set of

discovered resources to those available to this storage backend and may be specified in any combination.

Fully-qualified names follow this format:

Type Format

Resource group <resource group>

NetApp account <resource group>/<netapp account>

Capacity pool <resource group>/<netapp account>/<capacity pool>

Virtual network <resource group>/<virtual network>

Subnet <resource group>/<virtual network>/<subnet>

Volume provisioning

You can control default volume provisioning by specifying the following options in a special section of the

configuration file. Refer to Example configurations for details.

Parameter Description Default

exportRule Export rules for new volumes.

exportRule must be a comma-

separated list of any combination of

IPv4 addresses or IPv4 subnets in

CIDR notation.

Ignored for SMB volumes.

"0.0.0.0/0"

snapshotDir Controls visibility of the .snapshot

directory

"false"

size The default size of new volumes "100G"

unixPermissions The unix permissions of new

volumes (4 octal digits).

Ignored for SMB volumes.

"" (preview feature, requires

whitelisting in subscription)

10



For all volumes created on an ANF backend, Astra Trident copies the labels present on a

storage pool to the storage volume at the time it is provisioned. Storage administrators can

define labels per storage pool and group all volumes created in a storage pool. This is a

convenient way to differentiate volumes based on a set of customizable labels that are provided

in the backend configuration.

Example configurations

Example 1: Minimal configuration

This is the absolute minimum backend configuration. With this configuration, Astra Trident discovers all of

your NetApp accounts, capacity pools, and subnets delegated to ANF in the configured location, and

places new volumes on one of those pools and subnets randomly. Because nasType is omitted, the nfs

default applies and the backend will provision for NFS volumes.

This configuration is ideal when you are just getting started with ANF and trying things out, but in practice

you are going to want to provide additional scoping for the volumes you provision.

{

    "version": 1,

    "storageDriverName": "azure-netapp-files",

    "subscriptionID": "9f87c765-4774-fake-ae98-a721add45451",

    "tenantID": "68e4f836-edc1-fake-bff9-b2d865ee56cf",

    "clientID": "dd043f63-bf8e-fake-8076-8de91e5713aa",

    "clientSecret": "SECRET",

    "location": "eastus"

}

11



Example 2: Specific service level configuration with capacity pool filters

This backend configuration places volumes in Azure’s eastus location in an Ultra capacity pool. Astra

Trident automatically discovers all of the subnets delegated to ANF in that location and places a new

volume on one of them randomly.

    {

        "version": 1,

        "storageDriverName": "azure-netapp-files",

        "subscriptionID": "9f87c765-4774-fake-ae98-a721add45451",

        "tenantID": "68e4f836-edc1-fake-bff9-b2d865ee56cf",

        "clientID": "dd043f63-bf8e-fake-8076-8de91e5713aa",

        "clientSecret": "SECRET",

        "location": "eastus",

        "serviceLevel": "Ultra",

        "capacityPools": [

            "application-group-1/account-1/ultra-1",

            "application-group-1/account-1/ultra-2"

],

    }

12



Example 3: Advanced configuration

This backend configuration further reduces the scope of volume placement to a single subnet, and also

modifies some volume provisioning defaults.

    {

        "version": 1,

        "storageDriverName": "azure-netapp-files",

        "subscriptionID": "9f87c765-4774-fake-ae98-a721add45451",

        "tenantID": "68e4f836-edc1-fake-bff9-b2d865ee56cf",

        "clientID": "dd043f63-bf8e-fake-8076-8de91e5713aa",

        "clientSecret": "SECRET",

        "location": "eastus",

        "serviceLevel": "Ultra",

        "capacityPools": [

            "application-group-1/account-1/ultra-1",

            "application-group-1/account-1/ultra-2"

],

        "virtualNetwork": "my-virtual-network",

        "subnet": "my-subnet",

        "networkFeatures": "Standard",

        "nfsMountOptions": "vers=3,proto=tcp,timeo=600",

        "limitVolumeSize": "500Gi",

        "defaults": {

            "exportRule": "10.0.0.0/24,10.0.1.0/24,10.0.2.100",

            "snapshotDir": "true",

            "size": "200Gi",

            "unixPermissions": "0777"

        }

    }

13



Example 4: Virtual storage pool configuration

This backend configuration defines multiple storage pools in a single file. This is useful when you have

multiple capacity pools supporting different service levels and you want to create storage classes in

Kubernetes that represent those.

14



    {

        "version": 1,

        "storageDriverName": "azure-netapp-files",

        "subscriptionID": "9f87c765-4774-fake-ae98-a721add45451",

        "tenantID": "68e4f836-edc1-fake-bff9-b2d865ee56cf",

        "clientID": "dd043f63-bf8e-fake-8076-8de91e5713aa",

        "clientSecret": "SECRET",

        "location": "eastus",

        "resourceGroups": ["application-group-1"],

        "networkFeatures": "Basic",

        "nfsMountOptions": "vers=3,proto=tcp,timeo=600",

        "labels": {

            "cloud": "azure"

        },

        "location": "eastus",

        "storage": [

            {

                "labels": {

                    "performance": "gold"

                },

                "serviceLevel": "Ultra",

                "capacityPools": ["ultra-1", "ultra-2"],

                "networkFeatures": "Standard"

            },

            {

                "labels": {

                    "performance": "silver"

                },

                "serviceLevel": "Premium",

                "capacityPools": ["premium-1"]

            },

            {

                "labels": {

                    "performance": "bronze"

                },

                "serviceLevel": "Standard",

                "capacityPools": ["standard-1", "standard-2"]

            }

        ]

    }

15



Storage Class definitions

The following StorageClass definitions refer to the storage pools above.

Example definitions using parameter.selector field

Using parameter.selector you can specify for each StorageClass the virtual pool that is used to host a

volume. The volume will have the aspects defined in the chosen pool.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: gold

provisioner: csi.trident.netapp.io

parameters:

  selector: "performance=gold"

allowVolumeExpansion: true

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: silver

provisioner: csi.trident.netapp.io

parameters:

  selector: "performance=silver"

allowVolumeExpansion: true

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: bronze

provisioner: csi.trident.netapp.io

parameters:

  selector: "performance=bronze"

allowVolumeExpansion: true

Example definitions for SMB volumes

Using nasType, node-stage-secret-name, and node-stage-secret-namespace, you can specify an

SMB volume and provide the required Active Directory credentials.

16



Example 1: Basic configuration on default namespace

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: anf-sc-smb

provisioner: csi.trident.netapp.io

parameters:

  backendType: "azure-netapp-files"

  trident.netapp.io/nasType: "smb"

  csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

  csi.storage.k8s.io/node-stage-secret-namespace: "default"

Example 2: Using different secrets per namespace

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: anf-sc-smb

provisioner: csi.trident.netapp.io

parameters:

  backendType: "azure-netapp-files"

  trident.netapp.io/nasType: "smb"

  csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

  csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

Example 3: Using different secrets per volume

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: anf-sc-smb

provisioner: csi.trident.netapp.io

parameters:

  backendType: "azure-netapp-files"

  trident.netapp.io/nasType: "smb"

  csi.storage.k8s.io/node-stage-secret-name: ${pvc.name}

  csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

17



nasType: "smb" filters for pools which support SMB volumes. nasType: "nfs"` or

nasType: "null" filters for NFS pools.

Create the backend

After you create the backend configuration file, run the following command:

tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to

determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Configure a CVS for GCP backend

Learn how to configure NetApp Cloud Volumes Service (CVS) for Google Cloud Platform

(GCP) as the backend for your Astra Trident installation using the sample configurations

provided.

Learn about Astra Trident support for CVS for GCP

Astra Trident supports volumes with the default CVS service type on GCP. Astra Trident does not support CVS

volumes less than 100 GiB regardless of the minimum allowed by the CVS service type. Therefore, Trident

automatically creates a 100 GiB volume if the requested volume is smaller than the minimum size.

What you’ll need

To configure and use the Cloud Volumes Service for Google Cloud backend, you need the following:

• A Google Cloud account configured with NetApp CVS

• Project number of your Google Cloud account

• Google Cloud service account with the netappcloudvolumes.admin role

• API key file for your CVS service account

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver "gcp-cvs"

backendName Custom name or the storage

backend

Driver name + "_" + part of API key

18

https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-types
https://cloud.netapp.com/cloud-volumes-service-for-gcp?utm_source=NetAppTrident_ReadTheDocs&utm_campaign=Trident


Parameter Description Default

storageClass Type of storage. Choose from

hardware (performance

optimized) or software (CVS

service type)

projectNumber Google Cloud account project

number. The value is found on the

Google Cloud portal’s Home page.

apiRegion CVS account region. It is the region

where the backend will provision

the volumes.

apiKey API key for the Google Cloud

service account with the

netappcloudvolumes.admin

role. It includes the JSON-formatted

contents of a Google Cloud service

account’s private key file (copied

verbatim into the backend

configuration file).

proxyURL Proxy URL if proxy server required

to connect to CVS Account. The

proxy server can either be an HTTP

proxy or an HTTPS proxy. For an

HTTPS proxy, certificate validation

is skipped to allow the usage of

self-signed certificates in the proxy

server. Proxy servers with

authentication enabled are not

supported.

nfsMountOptions Fine-grained control of NFS mount

options.

"nfsvers=3"

limitVolumeSize Fail provisioning if the requested

volume size is above this value

"" (not enforced by default)

serviceLevel The CVS service level for new

volumes. The values are

"standard", "premium", and

"extreme".

"standard"

network GCP network used for CVS

volumes

“default”

debugTraceFlags Debug flags to use when

troubleshooting. Example,

\{"api":false,

"method":true}. Do not use this

unless you are troubleshooting and

require a detailed log dump.

null

If using a shared VPC network, both projectNumber and hostProjectNumber must be specified. In that

case, projectNumber is the service project, and hostProjectNumber is the host project.

19



The apiRegion represents the GCP region where Astra Trident creates CVS volumes. When creating cross-

region Kubernetes clusters, CVS volumes created in an apiRegion can be used in workloads scheduled on

nodes across multiple GCP regions. Be aware that cross-region traffic incurs an additional cost.

• To enable cross-region access, your StorageClass definition for allowedTopologies

must include all regions. For example:

- key: topology.kubernetes.io/region

  values:

  - us-east1

  - europe-west1

• storageClass is an optional parameter that you can use to select the desired CVS service

type. You can choose from the base CVS service type (storageClass=software) or the

CVS-Performance service type (storageClass=hardware), which Trident uses by

default. Make sure you specify an apiRegion that provides the respective CVS

storageClass in your backend definition.

Astra Trident’s integration with the base CVS service type on Google Cloud is a beta feature,

not meant for production workloads. Trident is fully supported with the CVS-Performance

service type and uses it by default.

Each backend provisions volumes in a single Google Cloud region. To create volumes in other regions, you

can define additional backends.

You can control how each volume is provisioned by default by specifying the following options in a special

section of the configuration file. See the configuration examples below.

Parameter Description Default

exportRule The export rule(s) for new volumes "0.0.0.0/0"

snapshotDir Access to the .snapshot directory "false"

snapshotReserve Percentage of volume reserved for

snapshots

"" (accept CVS default of 0)

size The size of new volumes "100Gi"

The exportRule value must be a comma-separated list of any combination of IPv4 addresses or IPv4

subnets in CIDR notation.

For all the volumes created on a CVS Google Cloud backend, Trident copies all the labels

present on a storage pool to the storage volume at the time it is provisioned. Storage

administrators can define labels per storage pool and group all the volumes created in a storage

pool. This provides a convenient way of differentiating volumes based on a set of customizable

labels that are provided in the backend configuration.

Example 1: Minimal configuration

This is the absolute minimum backend configuration.

20

https://cloud.google.com/solutions/partners/netapp-cloud-volumes/service-types?hl=en_US
https://cloud.google.com/solutions/partners/netapp-cloud-volumes/service-types?hl=en_US


{

    "version": 1,

    "storageDriverName": "gcp-cvs",

    "projectNumber": "012345678901",

    "apiRegion": "us-west2",

    "apiKey": {

        "type": "service_account",

        "project_id": "my-gcp-project",

        "private_key_id": "1234567890123456789012345678901234567890",

        "private_key": "-----BEGIN PRIVATE KEY-----

\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZ

srrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisI

sAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSa

PIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZN

chRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlz

ZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl

/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kw

s8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY

9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHc

zZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHi

sIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOgu

SaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyA

ZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz

lzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3

bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4

Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5o

jY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nzn

HczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrt

HisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbO

guSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKe

yAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRA

GzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4j

K3bl/qp8B4Kws8zX5ojY9m\nXsYg6gyxy4zq7OlwWgLwGa==\n-----END PRIVATE

KEY-----\n",

        "client_email": "cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com",

        "client_id": "123456789012345678901",

        "auth_uri": "https://accounts.google.com/o/oauth2/auth",

        "token_uri": "https://oauth2.googleapis.com/token",

        "auth_provider_x509_cert_url":

"https://www.googleapis.com/oauth2/v1/certs",

        "client_x509_cert_url":

"https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com"

    }

21



}

Example 2: Base CVS service type configuration

This example shows a backend definition that uses the base CVS service type, which is meant for general-

purpose workloads and provides light/moderate performance, coupled with high zonal availability.

{

    "version": 1,

    "storageDriverName": "gcp-cvs",

    "projectNumber": "012345678901",

    "storageClass": "software",

    "apiRegion": "us-east4",

    "apiKey": {

        "type": "service_account",

        "project_id": "my-gcp-project",

        "private_key_id": "1234567890123456789012345678901234567890",

        "private_key": "-----BEGIN PRIVATE KEY-----

\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZ

srrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisI

sAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSa

PIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZN

chRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlz

ZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl

/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kw

s8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY

9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHc

zZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHi

sIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOgu

SaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyA

ZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz

lzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3

bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4

Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5o

jY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nzn

HczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrt

HisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbO

guSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKe

yAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRA

GzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4j

K3bl/qp8B4Kws8zX5ojY9m\nXsYg6gyxy4zq7OlwWgLwGa==\n-----END PRIVATE

KEY-----\n",

        "client_email": "cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com",

        "client_id": "123456789012345678901",

        "auth_uri": "https://accounts.google.com/o/oauth2/auth",

22



        "token_uri": "https://oauth2.googleapis.com/token",

        "auth_provider_x509_cert_url":

"https://www.googleapis.com/oauth2/v1/certs",

        "client_x509_cert_url":

"https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com"

    }

}

Example 3: Single service level configuration

This example shows a backend file that applies the same aspects to all Astra Trident-created storage in the

Google Cloud us-west2 region. This example also shows the usage of proxyURL in the backend configuration

file.

{

    "version": 1,

    "storageDriverName": "gcp-cvs",

    "projectNumber": "012345678901",

    "apiRegion": "us-west2",

    "apiKey": {

        "type": "service_account",

        "project_id": "my-gcp-project",

        "private_key_id": "1234567890123456789012345678901234567890",

        "private_key": "-----BEGIN PRIVATE KEY-----

\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZ

srrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisI

sAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSa

PIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZN

chRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlz

ZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl

/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kw

s8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY

9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHc

zZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHi

sIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOgu

SaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyA

ZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz

lzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3

bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4

Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5o

jY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nzn

HczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrt

HisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbO

guSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKe

yAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRA

23



GzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4j

K3bl/qp8B4Kws8zX5ojY9m\nXsYg6gyxy4zq7OlwWgLwGa==\n-----END PRIVATE

KEY-----\n",

        "client_email": "cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com",

        "client_id": "123456789012345678901",

        "auth_uri": "https://accounts.google.com/o/oauth2/auth",

        "token_uri": "https://oauth2.googleapis.com/token",

        "auth_provider_x509_cert_url":

"https://www.googleapis.com/oauth2/v1/certs",

        "client_x509_cert_url":

"https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com"

    },

    "proxyURL": "http://proxy-server-hostname/",

    "nfsMountOptions": "vers=3,proto=tcp,timeo=600",

    "limitVolumeSize": "10Ti",

    "serviceLevel": "premium",

    "defaults": {

        "snapshotDir": "true",

        "snapshotReserve": "5",

        "exportRule": "10.0.0.0/24,10.0.1.0/24,10.0.2.100",

        "size": "5Ti"

    }

}

Example 4: Virtual storage pool configuration

This example shows the backend definition file configured with virtual storage pools along with

StorageClasses that refer back to them.

In the sample backend definition file shown below, specific defaults are set for all storage pools, which set the

snapshotReserve at 5% and the exportRule to 0.0.0.0/0. The virtual storage pools are defined in the

storage section. In this example, each individual storage pool sets its own serviceLevel, and some pools

overwrite the default values.

{

    "version": 1,

    "storageDriverName": "gcp-cvs",

    "projectNumber": "012345678901",

    "apiRegion": "us-west2",

    "apiKey": {

        "type": "service_account",

        "project_id": "my-gcp-project",

        "private_key_id": "1234567890123456789012345678901234567890",

        "private_key": "-----BEGIN PRIVATE KEY-----

24



\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZ

srrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisI

sAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSa

PIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZN

chRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlz

ZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl

/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kw

s8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY

9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHc

zZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHi

sIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOgu

SaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyA

ZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz

lzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3

bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4

Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5o

jY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nzn

HczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrt

HisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbO

guSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKe

yAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRA

GzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\nznHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4j

K3bl/qp8B4Kws8zX5ojY9m\nXsYg6gyxy4zq7OlwWgLwGa==\n-----END PRIVATE

KEY-----\n",

        "client_email": "cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com",

        "client_id": "123456789012345678901",

        "auth_uri": "https://accounts.google.com/o/oauth2/auth",

        "token_uri": "https://oauth2.googleapis.com/token",

        "auth_provider_x509_cert_url":

"https://www.googleapis.com/oauth2/v1/certs",

        "client_x509_cert_url":

"https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com"

    },

    "nfsMountOptions": "vers=3,proto=tcp,timeo=600",

    "defaults": {

        "snapshotReserve": "5",

        "exportRule": "0.0.0.0/0"

    },

    "labels": {

        "cloud": "gcp"

    },

    "region": "us-west2",

25



    "storage": [

        {

            "labels": {

                "performance": "extreme",

                "protection": "extra"

            },

            "serviceLevel": "extreme",

            "defaults": {

                "snapshotDir": "true",

                "snapshotReserve": "10",

                "exportRule": "10.0.0.0/24"

            }

        },

        {

            "labels": {

                "performance": "extreme",

                "protection": "standard"

            },

            "serviceLevel": "extreme"

        },

        {

            "labels": {

                "performance": "premium",

                "protection": "extra"

            },

            "serviceLevel": "premium",

            "defaults": {

                "snapshotDir": "true",

                "snapshotReserve": "10"

            }

        },

        {

            "labels": {

                "performance": "premium",

                "protection": "standard"

            },

            "serviceLevel": "premium"

        },

        {

            "labels": {

                "performance": "standard"

            },

            "serviceLevel": "standard"

26



        }

    ]

}

The following StorageClass definitions refer to the storage pools above. By using the parameters.selector

field, you can specify for each StorageClass the virtual pool that is used to host a volume. The volume will

have the aspects defined in the chosen pool.

The first StorageClass (cvs-extreme-extra-protection) maps to the first virtual storage pool. This is the

only pool offering extreme performance with a snapshot reserve of 10%. The last StorageClass (cvs-extra-

protection) calls out any storage pool which provides a snapshot reserve of 10%. Astra Trident decides

which virtual storage pool is selected and ensures that the snapshot reserve requirement is met.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: cvs-extreme-extra-protection

provisioner: netapp.io/trident

parameters:

  selector: "performance=extreme; protection=extra"

allowVolumeExpansion: true

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: cvs-extreme-standard-protection

provisioner: netapp.io/trident

parameters:

  selector: "performance=premium; protection=standard"

allowVolumeExpansion: true

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: cvs-premium-extra-protection

provisioner: netapp.io/trident

parameters:

  selector: "performance=premium; protection=extra"

allowVolumeExpansion: true

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: cvs-premium

provisioner: netapp.io/trident

parameters:

27



  selector: "performance=premium; protection=standard"

allowVolumeExpansion: true

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: cvs-standard

provisioner: netapp.io/trident

parameters:

  selector: "performance=standard"

allowVolumeExpansion: true

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: cvs-extra-protection

provisioner: netapp.io/trident

parameters:

  selector: "protection=extra"

allowVolumeExpansion: true

What’s next?

After you create the backend configuration file, run the following command:

tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to

determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Configure a NetApp HCI or SolidFire backend

Learn about how to create and use an Element backend with your Astra Trident installation.

What you’ll need

• A supported storage system that runs Element software.

• Credentials to a NetApp HCI/SolidFire cluster admin or tenant user that can manage volumes.

• All of your Kubernetes worker nodes should have the appropriate iSCSI tools installed. See worker node

preparation information.

What you need to know

28



The solidfire-san storage driver supports both volume modes: file and block. For the Filesystem

volumeMode, Astra Trident creates a volume and creates a filesystem. The filesystem type is specified by the

StorageClass.

Driver Protocol VolumeMode Access modes

supported

File systems

supported

solidfire-san iSCSI Block RWO,ROX,RWX No Filesystem. Raw

block device.

solidfire-san iSCSI Block RWO,ROX,RWX No Filesystem. Raw

block device.

solidfire-san iSCSI Filesystem RWO,ROX xfs, ext3, ext4

solidfire-san iSCSI Filesystem RWO,ROX xfs, ext3, ext4

Astra Trident uses CHAP when functioning as an enhanced CSI Provisioner. If you’re using

CHAP (which is the default for CSI), no further preparation is required. It is recommended to

explicitly set the UseCHAP option to use CHAP with non-CSI Trident. Otherwise, see here.

Volume access groups are only supported by the conventional, non-CSI framework for Astra

Trident. When configured to work in CSI mode, Astra Trident uses CHAP.

If neither AccessGroups or UseCHAP are set, one of the following rules applies:

• If the default trident access group is detected, access groups are used.

• If no access group is detected and Kubernetes version is 1.7 or later, then CHAP is used.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver Always “solidfire-san”

backendName Custom name or the storage

backend

“solidfire_” + storage (iSCSI) IP

address

Endpoint MVIP for the SolidFire cluster with

tenant credentials

SVIP Storage (iSCSI) IP address and

port

labels Set of arbitrary JSON-formatted

labels to apply on volumes.

“”

29

https://docs.netapp.com/us-en/trident-2210/trident-concepts/vol-access-groups.html


Parameter Description Default

TenantName Tenant name to use (created if not

found)

InitiatorIFace Restrict iSCSI traffic to a specific

host interface

“default”

UseCHAP Use CHAP to authenticate iSCSI true

AccessGroups List of Access Group IDs to use Finds the ID of an access group

named “trident”

Types QoS specifications

limitVolumeSize Fail provisioning if requested

volume size is above this value

“” (not enforced by default)

debugTraceFlags Debug flags to use when

troubleshooting. Example,

{“api”:false, “method”:true}

null

Do not use debugTraceFlags unless you are troubleshooting and require a detailed log dump.

For all volumes created, Astra Trident will copy all labels present on a storage pool to the

backing storage LUN at the time it is provisioned. Storage administrators can define labels per

storage pool and group all volumes created in a storage pool. This provides a convenient way of

differentiating volumes based on a set of customizable labels that are provided in the backend

configuration.

Example 1: Backend configuration for solidfire-san driver with three volume types

This example shows a backend file using CHAP authentication and modeling three volume types with specific

QoS guarantees. Most likely you would then define storage classes to consume each of these using the IOPS

storage class parameter.

{

    "version": 1,

    "storageDriverName": "solidfire-san",

    "Endpoint": "https://<user>:<password>@<mvip>/json-rpc/8.0",

    "SVIP": "<svip>:3260",

    "TenantName": "<tenant>",

    "labels": {"k8scluster": "dev1", "backend": "dev1-element-cluster"},

    "UseCHAP": true,

    "Types": [{"Type": "Bronze", "Qos": {"minIOPS": 1000, "maxIOPS": 2000,

"burstIOPS": 4000}},

              {"Type": "Silver", "Qos": {"minIOPS": 4000, "maxIOPS": 6000,

"burstIOPS": 8000}},

              {"Type": "Gold", "Qos": {"minIOPS": 6000, "maxIOPS": 8000,

"burstIOPS": 10000}}]

}

30



Example 2: Backend and storage class configuration for solidfire-san driver with virtual storage
pools

This example shows the backend definition file configured with virtual storage pools along with StorageClasses

that refer back to them.

In the sample backend definition file shown below, specific defaults are set for all storage pools, which set the

type at Silver. The virtual storage pools are defined in the storage section. In this example, some of the

storage pool sets their own type, and some pools overwrite the default values set above.

31



{

    "version": 1,

    "storageDriverName": "solidfire-san",

    "Endpoint": "https://<user>:<password>@<mvip>/json-rpc/8.0",

    "SVIP": "<svip>:3260",

    "TenantName": "<tenant>",

    "UseCHAP": true,

    "Types": [{"Type": "Bronze", "Qos": {"minIOPS": 1000, "maxIOPS": 2000,

"burstIOPS": 4000}},

              {"Type": "Silver", "Qos": {"minIOPS": 4000, "maxIOPS": 6000,

"burstIOPS": 8000}},

              {"Type": "Gold", "Qos": {"minIOPS": 6000, "maxIOPS": 8000,

"burstIOPS": 10000}}],

    "type": "Silver",

    "labels":{"store":"solidfire", "k8scluster": "dev-1-cluster"},

    "region": "us-east-1",

    "storage": [

        {

            "labels":{"performance":"gold", "cost":"4"},

            "zone":"us-east-1a",

            "type":"Gold"

        },

        {

            "labels":{"performance":"silver", "cost":"3"},

            "zone":"us-east-1b",

            "type":"Silver"

        },

        {

            "labels":{"performance":"bronze", "cost":"2"},

            "zone":"us-east-1c",

            "type":"Bronze"

        },

        {

            "labels":{"performance":"silver", "cost":"1"},

            "zone":"us-east-1d"

        }

    ]

}

The following StorageClass definitions refer to the above virtual storage pools. Using the

parameters.selector field, each StorageClass calls out which virtual pool(s) can be used to host a

volume. The volume will have the aspects defined in the chosen virtual pool.

The first StorageClass (solidfire-gold-four) will map to the first virtual storage pool. This is the only pool

32



offering gold performance with a Volume Type QoS of Gold. The last StorageClass (solidfire-silver)

calls out any storage pool which offers a silver performance. Astra Trident will decide which virtual storage pool

is selected and will ensure the storage requirement is met.

33



apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: solidfire-gold-four

provisioner: csi.trident.netapp.io

parameters:

  selector: "performance=gold; cost=4"

  fsType: "ext4"

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: solidfire-silver-three

provisioner: csi.trident.netapp.io

parameters:

  selector: "performance=silver; cost=3"

  fsType: "ext4"

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: solidfire-bronze-two

provisioner: csi.trident.netapp.io

parameters:

  selector: "performance=bronze; cost=2"

  fsType: "ext4"

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: solidfire-silver-one

provisioner: csi.trident.netapp.io

parameters:

  selector: "performance=silver; cost=1"

  fsType: "ext4"

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: solidfire-silver

provisioner: csi.trident.netapp.io

parameters:

  selector: "performance=silver"

  fsType: "ext4"

34



Find more information

• Volume access groups

Configure a backend with ONTAP SAN drivers

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP SAN drivers.

• Preparation

• Configuration and examples

User permissions

Astra Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster

user or a vsadmin SVM user, or a user with a different name that has the same role. For Amazon FSx for

NetApp ONTAP deployments, Astra Trident expects to be run as either an ONTAP or SVM administrator, using

the cluster fsxadmin user or a vsadmin SVM user, or a user with a different name that has the same role.

The fsxadmin user is a limited replacement for the cluster admin user.

If you use the limitAggregateUsage parameter, cluster admin permissions are required.

When using Amazon FSx for NetApp ONTAP with Astra Trident, the limitAggregateUsage

parameter will not work with the vsadmin and fsxadmin user accounts. The configuration

operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don’t

recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,

making upgrades difficult and error-prone.

Prepare to configure backend with ONTAP SAN drivers

Learn about how to prepare to configure an ONTAP backend with ONTAP SAN drivers. For all ONTAP

backends, Astra Trident requires at least one aggregate assigned to the SVM.

Remember that you can also run more than one driver, and create storage classes that point to one or the

other. For example, you could configure a san-dev class that uses the ontap-san driver and a san-

default class that uses the ontap-san-economy one.

All your Kubernetes worker nodes must have the appropriate iSCSI tools installed. See here for more details.

Authentication

Astra Trident offers two modes of authenticating an ONTAP backend.

• Credential-based: The username and password to an ONTAP user with the required permissions. It is

recommended to use a pre-defined security login role, such as admin or vsadmin to ensure maximum

compatibility with ONTAP versions.

• Certificate-based: Astra Trident can also communicate with an ONTAP cluster using a certificate installed

on the backend. Here, the backend definition must contain Base64-encoded values of the client certificate,

key, and the trusted CA certificate if used (recommended).

You can update existing backends to move between credential-based and certificate-based methods. However,

only one authentication method is supported at a time. To switch to a different authentication method, you must

remove the existing method from the backend configuration.

35

https://docs.netapp.com/us-en/trident-2210/trident-concepts/vol-access-groups.html


If you attempt to provide both credentials and certificates, backend creation will fail with an

error that more than one authentication method was provided in the configuration file.

Enable credential-based authentication

Astra Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the

ONTAP backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin.

This ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by

future Astra Trident releases. A custom security login role can be created and used with Astra Trident, but is

not recommended.

A sample backend definition will look like this:

{

  "version": 1,

  "backendName": "ExampleBackend",

  "storageDriverName": "ontap-san",

  "managementLIF": "10.0.0.1",

  "dataLIF": "10.0.0.2",

  "svm": "svm_nfs",

  "username": "vsadmin",

  "password": "secret",

}

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the

backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The

creation/updation of a backend is the only step that requires knowledge of the credentials. As such, it is an

admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based Authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three

parameters are required in the backend definition.

• clientCertificate: Base64-encoded value of client certificate.

• clientPrivateKey: Base64-encoded value of associated private key.

• trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter

must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to

authenticate as.

openssl req -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key

-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=admin"

36



2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage

administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-

name> -vserver <vserver-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled

true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-

name> -vserver <vserver-name>

security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name admin -application ontapi

-authentication-method cert

security login create -user-or-group-name admin -application http

-authentication-method cert

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>

with Management LIF IP and SVM name.

curl -X POST -Lk https://<ONTAP-Management-

LIF>/servlets/netapp.servlets.admin.XMLrequest_filer --key k8senv.key

--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp

xmlns="http://www.netapp.com/filer/admin" version="1.21"

vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert_base64

base64 -w 0 k8senv.key >> key_base64

base64 -w 0 trustedca.pem >> trustedca_base64

7. Create backend using the values obtained from the previous step.

37



cat cert-backend.json

{

"version": 1,

"storageDriverName": "ontap-san",

"backendName": "SanBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver_test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",

"clientPrivateKey": "LS0tFaKE...0VaLuES0tLS0K",

"trustedCACertificate": "QNFinfO...SiqOyN",

"storagePrefix": "myPrefix_"

}

tridentctl create backend -f cert-backend.json -n trident

+------------+----------------+--------------------------------------

+--------+---------+

|    NAME    | STORAGE DRIVER |                 UUID                 |

STATE  | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| SanBackend | ontap-san      | 586b1cd5-8cf8-428d-a76c-2872713612c1 |

online |       0 |

+------------+----------------+--------------------------------------

+--------+---------+

Update authentication methods or rotate credentials

You can update an existing backend to use a different authentication method or to rotate their credentials. This

works both ways: backends that make use of username/password can be updated to use certificates;

backends that utilize certificates can be updated to username/password based. To do this, you must remove

the existing authentication method and add the new authentication method. Then use the updated

backend.json file containing the required parameters to execute tridentctl backend update.

38



cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-san",

"backendName": "SanBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver_test",

"username": "vsadmin",

"password": "secret",

"storagePrefix": "myPrefix_"

}

#Update backend with tridentctl

tridentctl update backend SanBackend -f cert-backend-updated.json -n

trident

+------------+----------------+--------------------------------------

+--------+---------+

|    NAME    | STORAGE DRIVER |                 UUID                 |

STATE  | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| SanBackend | ontap-san      | 586b1cd5-8cf8-428d-a76c-2872713612c1 |

online |       9 |

+------------+----------------+--------------------------------------

+--------+---------+

When rotating passwords, the storage administrator must first update the password for the user

on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates

can be added to the user. The backend is then updated to use the new certificate, following

which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume

connections made after. A successful backend update indicates that Astra Trident can communicate with the

ONTAP backend and handle future volume operations.

Specify igroups

Astra Trident uses igroups to control access to the volumes (LUNs) that it provisions. Administrators have two

options when it comes to specifying igroups for backends:

• Astra Trident can automatically create and manage an igroup per backend. If igroupName is not included

in the backend definition, Astra Trident creates an igroup named trident-<backend-UUID> on the

SVM. This will ensure each backend has a dedicated igroup and handle the automated addition/deletion of

Kubernetes node IQNs.

• Alternatively, pre-created igroups can also be provided in a backend definition. This can be done using the

igroupName config parameter. Astra Trident will add/delete Kubernetes node IQNs to the pre-existing

39



igroup.

For backends that have igroupName defined, the igroupName can be deleted with a tridentctl

backend update to have Astra Trident auto-handle igroups. This will not disrupt access to volumes that are

already attached to workloads. Future connections will be handled using the igroup Astra Trident created.

Dedicating an igroup for each unique instance of Astra Trident is a best practice that is beneficial

for the Kubernetes admin as well as the storage admin. CSI Trident automates the addition and

removal of cluster node IQNs to the igroup, greatly simplifying its management. When using the

same SVM across Kubernetes environments (and Astra Trident installations), using a dedicated

igroup ensures that changes made to one Kubernetes cluster don’t influence igroups associated

with another. In addition, it is also important to ensure each node in the Kubernetes cluster has a

unique IQN. As mentioned above, Astra Trident automatically handles the addition and removal

of IQNs. Reusing IQNs across hosts can lead to undesirable scenarios where hosts get

mistaken for one another and access to LUNs is denied.

If Astra Trident is configured to function as a CSI Provisioner, Kubernetes node IQNs are automatically added

to/removed from the igroup. When nodes are added to a Kubernetes cluster, trident-csi DaemonSet

deploys a pod (trident-csi-xxxxx) on the newly added nodes and registers the new nodes it can attach

volumes to. Node IQNs are also added to the backend’s igroup. A similar set of steps handle the removal of

IQNs when node(s) are cordoned, drained, and deleted from Kubernetes.

If Astra Trident does not run as a CSI Provisioner, the igroup must be manually updated to contain the iSCSI

IQNs from every worker node in the Kubernetes cluster. IQNs of nodes that join the Kubernetes cluster will

need to be added to the igroup. Similarly, IQNs of nodes that are removed from the Kubernetes cluster must be

removed from the igroup.

Authenticate connections with bidirectional CHAP

Astra Trident can authenticate iSCSI sessions with bidirectional CHAP for the ontap-san and ontap-san-

economy drivers. This requires enabling the useCHAP option in your backend definition. When set to true,

Astra Trident configures the SVM’s default initiator security to bidirectional CHAP and set the username and

secrets from the backend file. NetApp recommends using bidirectional CHAP to authenticate connections.

See the following sample configuration:

{

    "version": 1,

    "storageDriverName": "ontap-san",

    "backendName": "ontap_san_chap",

    "managementLIF": "192.168.0.135",

    "svm": "ontap_iscsi_svm",

    "useCHAP": true,

    "username": "vsadmin",

    "password": "FaKePaSsWoRd",

    "igroupName": "trident",

    "chapInitiatorSecret": "cl9qxIm36DKyawxy",

    "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",

    "chapTargetUsername": "iJF4heBRT0TCwxyz",

    "chapUsername": "uh2aNCLSd6cNwxyz",

}

40



The useCHAP parameter is a Boolean option that can be configured only once. It is set to false

by default. After you set it to true, you cannot set it to false.

In addition to useCHAP=true, the chapInitiatorSecret, chapTargetInitiatorSecret,

chapTargetUsername, and chapUsername fields must be included in the backend definition. The secrets

can be changed after a backend is created by running tridentctl update.

How it works

By setting useCHAP to true, the storage administrator instructs Astra Trident to configure CHAP on the storage

backend. This includes the following:

• Setting up CHAP on the SVM:

◦ If the SVM’s default initiator security type is none (set by default) and there are no pre-existing LUNs

already present in the volume, Astra Trident will set the default security type to CHAP and proceed to

configuring the CHAP initiator and target username and secrets.

◦ If the SVM contains LUNs, Astra Trident will not enable CHAP on the SVM. This ensures that access to

LUNs that are already present on the SVM isn’t restricted.

• Configuring the CHAP initiator and target username and secrets; these options must be specified in the

backend configuration (as shown above).

• Managing the addition of inititators to the igroupName given in the backend. If unspecified, this defaults to

trident.

After the backend is created, Astra Trident creates a corresponding tridentbackend CRD and stores the

CHAP secrets and usernames as Kubernetes secrets. All PVs that are created by Astra Trident on this

backend will be mounted and attached over CHAP.

Rotate credentials and update backends

You can update the CHAP credentials by updating the CHAP parameters in the backend.json file. This will

require updating the CHAP secrets and using the tridentctl update command to reflect these changes.

When updating the CHAP secrets for a backend, you must use tridentctl to update the

backend. Do not update the credentials on the storage cluster through the CLI/ONTAP UI as

Astra Trident will not be able to pick up these changes.

41



cat backend-san.json

{

    "version": 1,

    "storageDriverName": "ontap-san",

    "backendName": "ontap_san_chap",

    "managementLIF": "192.168.0.135",

    "svm": "ontap_iscsi_svm",

    "useCHAP": true,

    "username": "vsadmin",

    "password": "FaKePaSsWoRd",

    "igroupName": "trident",

    "chapInitiatorSecret": "cl9qxUpDaTeD",

    "chapTargetInitiatorSecret": "rqxigXgkeUpDaTeD",

    "chapTargetUsername": "iJF4heBRT0TCwxyz",

    "chapUsername": "uh2aNCLSd6cNwxyz",

}

./tridentctl update backend ontap_san_chap -f backend-san.json -n trident

+----------------+----------------+--------------------------------------

+--------+---------+

|   NAME         | STORAGE DRIVER |                 UUID                 |

STATE  | VOLUMES |

+----------------+----------------+--------------------------------------

+--------+---------+

| ontap_san_chap | ontap-san      | aa458f3b-ad2d-4378-8a33-1a472ffbeb5c |

online |       7 |

+----------------+----------------+--------------------------------------

+--------+---------+

Existing connections will remain unaffected; they will continue to remain active if the credentials are updated by

Astra Trident on the SVM. New connections will use the updated credentials and existing connections continue

to remain active. Disconnecting and reconnecting old PVs will result in them using the updated credentials.

ONTAP SAN configuration options and examples

Learn about how to create and use ONTAP SAN drivers with your Astra Trident installation. This section

provides backend configuration examples and details about how to map backends to StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

42



Parameter Description Default

storageDriverName Name of the storage driver “ontap-nas”, “ontap-nas-economy”,

“ontap-nas-flexgroup”, “ontap-san”,

“ontap-san-economy”

backendName Custom name or the storage

backend

Driver name + “_” + dataLIF

managementLIF IP address of a cluster or SVM

management LIF

For seamless MetroCluster

switchover, you must specify an

SVM management LIF.

“10.0.0.1”, “[2001:1234:abcd::fefe]”

dataLIF IP address of protocol LIF. Use

square brackets for IPv6. Cannot

be updated after you set it

Derived by the SVM unless

specified

useCHAP Use CHAP to authenticate iSCSI

for ONTAP SAN drivers [Boolean]

false

chapInitiatorSecret CHAP initiator secret. Required if

useCHAP=true

“”

labels Set of arbitrary JSON-formatted

labels to apply on volumes

“”

chapTargetInitiatorSecret CHAP target initiator secret.

Required if useCHAP=true

“”

chapUsername Inbound username. Required if

useCHAP=true

“”

chapTargetUsername Target username. Required if

useCHAP=true

“”

clientCertificate Base64-encoded value of client

certificate. Used for certificate-

based auth

“”

clientPrivateKey Base64-encoded value of client

private key. Used for certificate-

based auth

“”

trustedCACertificate Base64-encoded value of trusted

CA certificate. Optional. Used for

certificate-based auth

“”

username Username to connect to the

cluster/SVM. Used for credential-

based auth

“”

password Password to connect to the

cluster/SVM. Used for credential-

based auth

“”

svm Storage virtual machine to use Derived if an SVM

managementLIF is specified

43



Parameter Description Default

igroupName Name of the igroup for SAN

volumes to use

“trident-<backend-UUID>”

storagePrefix Prefix used when provisioning new

volumes in the SVM. Cannot be

updated after you set it

“trident”

limitAggregateUsage Fail provisioning if usage is above

this percentage. Does not apply to

Amazon FSx for ONTAP

“” (not enforced by default)

limitVolumeSize Fail provisioning if requested

volume size is above this value.

“” (not enforced by default)

lunsPerFlexvol Maximum LUNs per Flexvol, must

be in range [50, 200]

“100”

debugTraceFlags Debug flags to use when

troubleshooting. Example,

{“api”:false, “method”:true}

null

useREST Boolean parameter to use ONTAP

REST APIs. Tech preview

Not supported with MetroCluster.

false

useREST considerations

• useREST is provided as a tech preview that is recommended for test environments and not

for production workloads. When set to true, Astra Trident will use ONTAP REST APIs to

communicate with the backend. This feature requires ONTAP 9.10 and later. In addition, the

ONTAP login role used must have access to the ontap application. This is satisfied by the

pre-defined vsadmin and cluster-admin roles.

• useREST is not supported with MetroCluster.

To communicate with the ONTAP cluster, you should provide the authentication parameters. This could be the

username/password to a security login or an installed certificate.

If you are using an Amazon FSx for NetApp ONTAP backend, do not specify the

limitAggregateUsage parameter. The fsxadmin and vsadmin roles provided by Amazon

FSx for NetApp ONTAP do not contain the required access permissions to retrieve aggregate

usage and limit it through Astra Trident.

Do not use debugTraceFlags unless you are troubleshooting and require a detailed log dump.

For the ontap-san drivers, the default is to use all data LIF IPs from the SVM and to use iSCSI multipath.

Specifying an IP address for the dataLIF for the ontap-san drivers forces them to disable multipath and use

only the specified address.

When creating a backend, remember that dataLIF and storagePrefix cannot be modified

after creation. To update these parameters, you will need to create a new backend.

44



igroupName can be set to an igroup that is already created on the ONTAP cluster. If unspecified, Astra Trident

automatically creates an igroup named trident-<backend-UUID>. If providing a pre-defined igroupName,

NetApp recommends using an igroup per Kubernetes cluster, if the SVM is to be shared between

environments. This is necessary for Astra Trident to maintain IQN additions/deletions automatically.

Backends can also have igroups updated after creation:

• igroupName can be updated to point to a new igroup that is created and managed on the SVM outside of

Astra Trident.

• igroupName can be omitted. In this case, Astra Trident will create and manage a trident-<backend-UUID>

igroup automatically.

In both cases, volume attachments will continue to be accessible. Future volume attachments will use the

updated igroup. This update does not disrupt access to volumes present on the backend.

A fully-qualified domain name (FQDN) can be specified for the managementLIF option.

managementLIF for all ONTAP drivers can also be set to IPv6 addresses. Make sure to install Trident with the

--use-ipv6 flag. Care must be taken to define managementLIF IPv6 address within square brackets.

When using IPv6 addresses, make sure managementLIF and dataLIF (if included in your

backend definition) are defined within square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555]. If dataLIF is not provided, Astra Trident will fetch

the IPv6 data LIFs from the SVM.

To enable the ontap-san drivers to use CHAP, set the useCHAP parameter to true in your backend definition.

Astra Trident will then configure and use bidirectional CHAP as the default authentication for the SVM given in

the backend. See here to learn about how it works.

For the ontap-san-economy driver, the limitVolumeSize option will also restrict the maximum size of the

volumes it manages for qtrees and LUNs.

Astra Trident sets provisioning labels in the “Comments” field of all volumes created using the

ontap-san driver. For each volume created, the “Comments” field on the FlexVol will be

populated with all labels present on the storage pool it is placed in. Storage administrators can

define labels per storage pool and group all volumes created in a storage pool. This provides a

convenient way of differentiating volumes based on a set of customizable labels that are

provided in the backend configuration.

Backend configuration options for provisioning volumes

You can control how each volume is provisioned by default using these options in a special section of the

configuration. For an example, see the configuration examples below.

Parameter Description Default

spaceAllocation Space-allocation for LUNs “true”

spaceReserve Space reservation mode; “none”

(thin) or “volume” (thick)

“none”

snapshotPolicy Snapshot policy to use “none”

45



Parameter Description Default

qosPolicy QoS policy group to assign for

volumes created. Choose one of

qosPolicy or adaptiveQosPolicy per

storage pool/backend

“”

adaptiveQosPolicy Adaptive QoS policy group to

assign for volumes created.

Choose one of qosPolicy or

adaptiveQosPolicy per storage

pool/backend

“”

snapshotReserve Percentage of volume reserved for

snapshots “0”
If snapshotPolicy is “none”, else

“”

splitOnClone Split a clone from its parent upon

creation

“false”

splitOnClone Split a clone from its parent upon

creation

“false”

encryption Enable NetApp Volume Encryption

(NVE) on the new volume; defaults

to false. NVE must be licensed

and enabled on the cluster to use

this option.

If NAE is enabled on the backend,

any volume provisioned in Astra

Trident will be NAE enabled.

For more information, refer to: How

Astra Trident works with NVE and

NAE.

“false”

luksEncryption Enable LUKS encryption. Refer to

Use Linux Unified Key Setup

(LUKS).

""

securityStyle Security style for new volumes “unix”

tieringPolicy Tiering policy to use “none” “snapshot-only” for pre-ONTAP 9.5

SVM-DR configuration

Using QoS policy groups with Astra Trident requires ONTAP 9.8 or later. It is recommended to

use a non-shared QoS policy group and ensure the policy group is applied to each constituent

individually. A shared QoS policy group will enforce the ceiling for the total throughput of all

workloads.

Here’s an example with defaults defined:

46

https://docs.netapp.com/us-en/trident-2210/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2210/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2210/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2210/trident-reco/security-reco.html#Use-Linux-Unified-Key-Setup-(LUKS)
https://docs.netapp.com/us-en/trident-2210/trident-reco/security-reco.html#Use-Linux-Unified-Key-Setup-(LUKS)


{

 "version": 1,

 "storageDriverName": "ontap-san",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "trident_svm",

 "username": "admin",

 "password": "password",

 "labels": {"k8scluster": "dev2", "backend": "dev2-sanbackend"},

 "storagePrefix": "alternate-trident",

 "igroupName": "custom",

 "debugTraceFlags": {"api":false, "method":true},

 "defaults": {

     "spaceReserve": "volume",

     "qosPolicy": "standard",

     "spaceAllocation": "false",

     "snapshotPolicy": "default",

     "snapshotReserve": "10"

 }

}

For all volumes created using the ontap-san driver, Astra Trident adds an extra 10 percent

capacity to the FlexVol to accommodate the LUN metadata. The LUN will be provisioned with

the exact size that the user requests in the PVC. Astra Trident adds 10 percent to the FlexVol

(shows as Available size in ONTAP). Users will now get the amount of usable capacity they

requested. This change also prevents LUNs from becoming read-only unless the available

space is fully utilized. This does not apply to ontap-san-economy.

For backends that define snapshotReserve, Astra Trident calculates the size of volumes as follows:

Total volume size = [(PVC requested size) / (1 - (snapshotReserve

percentage) / 100)] * 1.1

The 1.1 is the extra 10 percent Astra Trident adds to the FlexVol to accommodate the LUN metadata. For

snapshotReserve = 5%, and PVC request = 5GiB, the total volume size is 5.79GiB and the available size is

5.5GiB. The volume show command should show results similar to this example:

47



Currently, resizing is the only way to use the new calculation for an existing volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest

way to define a backend.

If you are using Amazon FSx on NetApp ONTAP with Astra Trident, the recommendation is to

specify DNS names for LIFs instead of IP addresses.

ontap-san driver with certificate-based authentication

This is a minimal backend configuration example. clientCertificate, clientPrivateKey, and

trustedCACertificate (optional, if using trusted CA) are populated in backend.json and take the

base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

{

    "version": 1,

    "storageDriverName": "ontap-san",

    "backendName": "DefaultSANBackend",

    "managementLIF": "10.0.0.1",

    "dataLIF": "10.0.0.3",

    "svm": "svm_iscsi",

    "useCHAP": true,

    "chapInitiatorSecret": "cl9qxIm36DKyawxy",

    "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",

    "chapTargetUsername": "iJF4heBRT0TCwxyz",

    "chapUsername": "uh2aNCLSd6cNwxyz",

    "igroupName": "trident",

    "clientCertificate": "ZXR0ZXJwYXB...ICMgJ3BhcGVyc2",

    "clientPrivateKey": "vciwKIyAgZG...0cnksIGRlc2NyaX",

    "trustedCACertificate": "zcyBbaG...b3Igb3duIGNsYXNz"

}

ontap-san driver with bidirectional CHAP

This is a minimal backend configuration example. This basic configuration creates an ontap-san backend

with useCHAP set to true.

48



{

    "version": 1,

    "storageDriverName": "ontap-san",

    "managementLIF": "10.0.0.1",

    "dataLIF": "10.0.0.3",

    "svm": "svm_iscsi",

    "labels": {"k8scluster": "test-cluster-1", "backend": "testcluster1-

sanbackend"},

    "useCHAP": true,

    "chapInitiatorSecret": "cl9qxIm36DKyawxy",

    "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",

    "chapTargetUsername": "iJF4heBRT0TCwxyz",

    "chapUsername": "uh2aNCLSd6cNwxyz",

    "igroupName": "trident",

    "username": "vsadmin",

    "password": "secret"

}

ontap-san-economy driver

{

    "version": 1,

    "storageDriverName": "ontap-san-economy",

    "managementLIF": "10.0.0.1",

    "svm": "svm_iscsi_eco",

    "useCHAP": true,

    "chapInitiatorSecret": "cl9qxIm36DKyawxy",

    "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",

    "chapTargetUsername": "iJF4heBRT0TCwxyz",

    "chapUsername": "uh2aNCLSd6cNwxyz",

    "igroupName": "trident",

    "username": "vsadmin",

    "password": "secret"

}

Examples of backends with virtual storage pools

In the sample backend definition file shown below, specific defaults are set for all storage pools, such as

spaceReserve at none, spaceAllocation at false, and encryption at false. The virtual storage pools are

defined in the storage section.

In this example, some of the storage pool sets their own spaceReserve, spaceAllocation, and

encryption values, and some pools overwrite the default values set above.

49



{

    "version": 1,

    "storageDriverName": "ontap-san",

    "managementLIF": "10.0.0.1",

    "dataLIF": "10.0.0.3",

    "svm": "svm_iscsi",

    "useCHAP": true,

    "chapInitiatorSecret": "cl9qxIm36DKyawxy",

    "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",

    "chapTargetUsername": "iJF4heBRT0TCwxyz",

    "chapUsername": "uh2aNCLSd6cNwxyz",

    "igroupName": "trident",

    "username": "vsadmin",

    "password": "secret",

    "defaults": {

          "spaceAllocation": "false",

          "encryption": "false",

          "qosPolicy": "standard"

    },

    "labels":{"store": "san_store", "kubernetes-cluster": "prod-cluster-

1"},

    "region": "us_east_1",

    "storage": [

        {

            "labels":{"protection":"gold", "creditpoints":"40000"},

            "zone":"us_east_1a",

            "defaults": {

                "spaceAllocation": "true",

                "encryption": "true",

                "adaptiveQosPolicy": "adaptive-extreme"

            }

        },

        {

            "labels":{"protection":"silver", "creditpoints":"20000"},

            "zone":"us_east_1b",

            "defaults": {

                "spaceAllocation": "false",

                "encryption": "true",

                "qosPolicy": "premium"

            }

        },

        {

            "labels":{"protection":"bronze", "creditpoints":"5000"},

            "zone":"us_east_1c",

            "defaults": {

50



                "spaceAllocation": "true",

                "encryption": "false"

            }

        }

    ]

}

Here is an iSCSI example for the ontap-san-economy driver:

{

    "version": 1,

    "storageDriverName": "ontap-san-economy",

    "managementLIF": "10.0.0.1",

    "svm": "svm_iscsi_eco",

    "useCHAP": true,

    "chapInitiatorSecret": "cl9qxIm36DKyawxy",

    "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",

    "chapTargetUsername": "iJF4heBRT0TCwxyz",

    "chapUsername": "uh2aNCLSd6cNwxyz",

    "igroupName": "trident",

    "username": "vsadmin",

    "password": "secret",

    "defaults": {

          "spaceAllocation": "false",

          "encryption": "false"

    },

    "labels":{"store":"san_economy_store"},

    "region": "us_east_1",

    "storage": [

        {

            "labels":{"app":"oracledb", "cost":"30"},

            "zone":"us_east_1a",

            "defaults": {

                "spaceAllocation": "true",

                "encryption": "true"

            }

        },

        {

            "labels":{"app":"postgresdb", "cost":"20"},

            "zone":"us_east_1b",

            "defaults": {

                "spaceAllocation": "false",

                "encryption": "true"

            }

51



        },

        {

            "labels":{"app":"mysqldb", "cost":"10"},

            "zone":"us_east_1c",

            "defaults": {

                "spaceAllocation": "true",

                "encryption": "false"

            }

        }

    ]

}

Map backends to StorageClasses

The following StorageClass definitions refer to the above virtual storage pools. Using the

parameters.selector field, each StorageClass calls out which virtual pool(s) can be used to host a

volume. The volume will have the aspects defined in the chosen virtual pool.

• The first StorageClass (protection-gold) will map to the first, second virtual storage pool in the

ontap-nas-flexgroup backend and the first virtual storage pool in the ontap-san backend. These are

the only pool offering gold level protection.

• The second StorageClass (protection-not-gold) will map to the third, fourth virtual storage pool in

ontap-nas-flexgroup backend and the second, third virtual storage pool in ontap-san backend.

These are the only pools offering protection level other than gold.

• The third StorageClass (app-mysqldb) will map to the fourth virtual storage pool in ontap-nas backend

and the third virtual storage pool in ontap-san-economy backend. These are the only pools offering

storage pool configuration for mysqldb type app.

• The fourth StorageClass (protection-silver-creditpoints-20k) will map to the third virtual

storage pool in ontap-nas-flexgroup backend and the second virtual storage pool in ontap-san

backend. These are the only pools offering gold-level protection at 20000 creditpoints.

• The fifth StorageClass (creditpoints-5k) will map to the second virtual storage pool in ontap-nas-

economy backend and the third virtual storage pool in ontap-san backend. These are the only pool

offerings at 5000 creditpoints.

Astra Trident will decide which virtual storage pool is selected and will ensure the storage requirement is met.

52



apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: protection-gold

provisioner: netapp.io/trident

parameters:

  selector: "protection=gold"

  fsType: "ext4"

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: protection-not-gold

provisioner: netapp.io/trident

parameters:

  selector: "protection!=gold"

  fsType: "ext4"

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: app-mysqldb

provisioner: netapp.io/trident

parameters:

  selector: "app=mysqldb"

  fsType: "ext4"

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: protection-silver-creditpoints-20k

provisioner: netapp.io/trident

parameters:

  selector: "protection=silver; creditpoints=20000"

  fsType: "ext4"

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: creditpoints-5k

provisioner: netapp.io/trident

parameters:

  selector: "creditpoints=5000"

  fsType: "ext4"

53



Configure an ONTAP NAS backend

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP NAS drivers.

• Preparation

• Configuration and examples

Customers must use the ontap-nas driver for production workloads that require data

protection, disaster recovery, and mobility. Astra Control provides seamless protection, disaster

recovery, and mobility for volumes created with the ontap-nas driver. The ontap-nas-

economy driver should be used only in limited use cases where anticipated volume usage is

expected to be much higher than what ONTAP supports, with no anticipated data protection,

disaster recovery, or mobility (moving volumes between Kubernetes clusters) requirements.

User permissions

Astra Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster

user or a vsadmin SVM user, or a user with a different name that has the same role. For Amazon FSx for

NetApp ONTAP deployments, Astra Trident expects to be run as either an ONTAP or SVM administrator, using

the cluster fsxadmin user or a vsadmin SVM user, or a user with a different name that has the same role.

The fsxadmin user is a limited replacement for the cluster admin user.

If you use the limitAggregateUsage parameter, cluster admin permissions are required.

When using Amazon FSx for NetApp ONTAP with Astra Trident, the limitAggregateUsage

parameter will not work with the vsadmin and fsxadmin user accounts. The configuration

operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don’t

recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,

making upgrades difficult and error-prone.

Prepare to configure a backend with ONTAP NAS drivers

Learn about how to prepare to configure an ONTAP backend with ONTAP NAS drivers. For all ONTAP

backends, Astra Trident requires at least one aggregate assigned to the SVM.

For all ONTAP backends, Astra Trident requires at least one aggregate assigned to the SVM.

Remember that you can also run more than one driver, and create storage classes that point to one or the

other. For example, you could configure a Gold class that uses the ontap-nas driver and a Bronze class that

uses the ontap-nas-economy one.

All your Kubernetes worker nodes must have the appropriate NFS tools installed. See here for more details.

Authentication

Astra Trident offers two modes of authenticating an ONTAP backend.

• Credential-based: The username and password to an ONTAP user with the required permissions. It is

recommended to use a pre-defined security login role, such as admin or vsadmin to ensure maximum

compatibility with ONTAP versions.

• Certificate-based: Astra Trident can also communicate with an ONTAP cluster using a certificate installed

54



on the backend. Here, the backend definition must contain Base64-encoded values of the client certificate,

key, and the trusted CA certificate if used (recommended).

You can update existing backends to move between credential-based and certificate-based methods. However,

only one authentication method is supported at a time. To switch to a different authentication method, you must

remove the existing method from the backend configuration.

If you attempt to provide both credentials and certificates, backend creation will fail with an

error that more than one authentication method was provided in the configuration file.

Enable credential-based authentication

Astra Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the

ONTAP backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin.

This ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by

future Astra Trident releases. A custom security login role can be created and used with Astra Trident, but is

not recommended.

A sample backend definition will look like this:

{

  "version": 1,

  "backendName": "ExampleBackend",

  "storageDriverName": "ontap-nas",

  "managementLIF": "10.0.0.1",

  "dataLIF": "10.0.0.2",

  "svm": "svm_nfs",

  "username": "vsadmin",

  "password": "secret"

}

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the

backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The

creation/updation of a backend is the only step that requires knowledge of the credentials. As such, it is an

admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based Authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three

parameters are required in the backend definition.

• clientCertificate: Base64-encoded value of client certificate.

• clientPrivateKey: Base64-encoded value of associated private key.

• trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter

must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

55



1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to

authenticate as.

openssl req -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key

-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=vsadmin"

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage

administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-

name> -vserver <vserver-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled

true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-

name> -vserver <vserver-name>

security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name vsadmin -application ontapi

-authentication-method cert -vserver <vserver-name>

security login create -user-or-group-name vsadmin -application http

-authentication-method cert -vserver <vserver-name>

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>

with Management LIF IP and SVM name. You must ensure the LIF has its service policy set to default-

data-management.

curl -X POST -Lk https://<ONTAP-Management-

LIF>/servlets/netapp.servlets.admin.XMLrequest_filer --key k8senv.key

--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp

xmlns="http://www.netapp.com/filer/admin" version="1.21"

vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>'

6. Encode certificate, key and trusted CA certificate with Base64.

56



base64 -w 0 k8senv.pem >> cert_base64

base64 -w 0 k8senv.key >> key_base64

base64 -w 0 trustedca.pem >> trustedca_base64

7. Create backend using the values obtained from the previous step.

cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "NasBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver_test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",

"clientPrivateKey": "LS0tFaKE...0VaLuES0tLS0K",

"storagePrefix": "myPrefix_"

}

#Update backend with tridentctl

tridentctl update backend NasBackend -f cert-backend-updated.json -n

trident

+------------+----------------+--------------------------------------

+--------+---------+

|    NAME    | STORAGE DRIVER |                 UUID                 |

STATE  | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| NasBackend | ontap-nas      | 98e19b74-aec7-4a3d-8dcf-128e5033b214 |

online |       9 |

+------------+----------------+--------------------------------------

+--------+---------+

Update authentication methods or rotate credentials

You can update an existing backend to use a different authentication method or to rotate their credentials. This

works both ways: backends that make use of username/password can be updated to use certificates;

backends that utilize certificates can be updated to username/password based. To do this, you must remove

the existing authentication method and add the new authentication method. Then use the updated

backend.json file containing the required parameters to execute tridentctl backend update.

57



cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "NasBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver_test",

"username": "vsadmin",

"password": "secret",

"storagePrefix": "myPrefix_"

}

#Update backend with tridentctl

tridentctl update backend NasBackend -f cert-backend-updated.json -n

trident

+------------+----------------+--------------------------------------

+--------+---------+

|    NAME    | STORAGE DRIVER |                 UUID                 |

STATE  | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| NasBackend | ontap-nas      | 98e19b74-aec7-4a3d-8dcf-128e5033b214 |

online |       9 |

+------------+----------------+--------------------------------------

+--------+---------+

When rotating passwords, the storage administrator must first update the password for the user

on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates

can be added to the user. The backend is then updated to use the new certificate, following

which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume

connections made after. A successful backend update indicates that Astra Trident can communicate with the

ONTAP backend and handle future volume operations.

Manage NFS export policies

Astra Trident uses NFS export policies to control access to the volumes that it provisions.

Astra Trident provides two options when working with export policies:

• Astra Trident can dynamically manage the export policy itself; in this mode of operation, the storage

administrator specifies a list of CIDR blocks that represent admissible IP addresses. Astra Trident adds

node IPs that fall in these ranges to the export policy automatically. Alternatively, when no CIDRs are

specified, any global-scoped unicast IP found on the nodes will be added to the export policy.

• Storage administrators can create an export policy and add rules manually. Astra Trident uses the default

58



export policy unless a different export policy name is specified in the configuration.

Dynamically manage export policies

The 20.04 release of CSI Trident provides the ability to dynamically manage export policies for ONTAP

backends. This provides the storage administrator the ability to specify a permissible address space for worker

node IPs, rather than defining explicit rules manually. It greatly simplifies export policy management;

modifications to the export policy no longer require manual intervention on the storage cluster. Moreover, this

helps restrict access to the storage cluster only to worker nodes that have IPs in the range specified,

supporting a finegrained and automated managment.

The dynamic management of export policies is only available for CSI Trident. It is important to

ensure that the worker nodes are not being NATed.

Example

There are two configuration options that must be used. Here’s an example backend definition:

{

    "version": 1,

    "storageDriverName": "ontap-nas",

    "backendName": "ontap_nas_auto_export,

    "managementLIF": "192.168.0.135",

    "svm": "svm1",

    "username": "vsadmin",

    "password": "FaKePaSsWoRd",

    "autoExportCIDRs": ["192.168.0.0/24"],

    "autoExportPolicy": true

}

When using this feature, you must ensure that the root junction in your SVM has a precreated

export policy with an export rule that permits the node CIDR block (such as the default export

policy). Always follow NetApp’s recommended best practice of dedicating a SVM for Astra

Trident.

Here is an explanation of how this feature works using the example above:

• autoExportPolicy is set to true. This indicates that Astra Trident will create an export policy for the

svm1 SVM and handle the addition and deletion of rules using autoExportCIDRs address blocks. For

example, a backend with UUID 403b5326-8482-40db-96d0-d83fb3f4daec and autoExportPolicy set to

true creates an export policy named trident-403b5326-8482-40db-96d0-d83fb3f4daec on the

SVM.

• autoExportCIDRs contains a list of address blocks. This field is optional and it defaults to ["0.0.0.0/0",

"::/0"]. If not defined, Astra Trident adds all globally-scoped unicast addresses found on the worker nodes.

In this example, the 192.168.0.0/24 address space is provided. This indicates that Kubernetes node IPs

that fall within this address range will be added to the export policy that Astra Trident creates. When Astra

Trident registers a node it runs on, it retrieves the IP addresses of the node and checks them against the

address blocks provided in autoExportCIDRs. After filtering the IPs, Astra Trident creates export policy rules

59



for the client IPs it discovers, with one rule for each node it identifies.

You can update autoExportPolicy and autoExportCIDRs for backends after you create them. You can

append new CIDRs for a backend that is automatically managed or delete existing CIDRs. Exercise care when

deleting CIDRs to ensure that existing connections are not dropped. You can also choose to disable

autoExportPolicy for a backend and fall back to a manually created export policy. This will require setting

the exportPolicy parameter in your backend config.

After Astra Trident creates or updates a backend, you can check the backend using tridentctl or the

corresponding tridentbackend CRD:

./tridentctl get backends ontap_nas_auto_export -n trident -o yaml

items:

- backendUUID: 403b5326-8482-40db-96d0-d83fb3f4daec

  config:

    aggregate: ""

    autoExportCIDRs:

    - 192.168.0.0/24

    autoExportPolicy: true

    backendName: ontap_nas_auto_export

    chapInitiatorSecret: ""

    chapTargetInitiatorSecret: ""

    chapTargetUsername: ""

    chapUsername: ""

    dataLIF: 192.168.0.135

    debug: false

    debugTraceFlags: null

    defaults:

      encryption: "false"

      exportPolicy: <automatic>

      fileSystemType: ext4

As nodes are added to a Kubernetes cluster and registered with the Astra Trident controller, export policies of

existing backends are updated (provided they fall in the address range specified in autoExportCIDRs for the

backend).

When a node is removed, Astra Trident checks all backends that are online to remove the access rule for the

node. By removing this node IP from the export policies of managed backends, Astra Trident prevents rogue

mounts, unless this IP is reused by a new node in the cluster.

For previously existing backends, updating the backend with tridentctl update backend will ensure that

Astra Trident manages the export policies automatically. This will create a new export policy named after the

backend’s UUID and volumes that are present on the backend will use the newly created export policy when

they are mounted again.

Deleting a backend with auto-managed export policies will delete the dynamically created export

policy. If the backend is re-created, it is treated as a new backend and will result in the creation

of a new export policy.

60



If the IP address of a live node is updated, you must restart the Astra Trident pod on the node. Astra Trident

will then update the export policy for backends it manages to reflect this IP change.

ONTAP NAS configuration options and examples

Learn about how to create and use ONTAP NAS drivers with your Astra Trident installation. This section

provides backend configuration examples and details about how to map backends to StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver “ontap-nas”, “ontap-nas-economy”,

“ontap-nas-flexgroup”, “ontap-san”,

“ontap-san-economy”

backendName Custom name or the storage

backend

Driver name + “_” + dataLIF

managementLIF IP address of a cluster or SVM

management LIF

For seamless MetroCluster

switchover, you must specify an

SVM management LIF.

“10.0.0.1”, “[2001:1234:abcd::fefe]”

dataLIF IP address of protocol LIF. Use

square brackets for IPv6. Cannot

be updated after you set it

Derived by the SVM unless

specified

autoExportPolicy Enable automatic export policy

creation and updating [Boolean]

false

autoExportCIDRs List of CIDRs to filter Kubernetes’

node IPs against when

autoExportPolicy is enabled

[“0.0.0.0/0”, “::/0”]`

labels Set of arbitrary JSON-formatted

labels to apply on volumes

“”

clientCertificate Base64-encoded value of client

certificate. Used for certificate-

based auth

“”

clientPrivateKey Base64-encoded value of client

private key. Used for certificate-

based auth

“”

trustedCACertificate Base64-encoded value of trusted

CA certificate. Optional. Used for

certificate-based auth

“”

username Username to connect to the

cluster/SVM. Used for credential-

based auth

61



Parameter Description Default

password Password to connect to the

cluster/SVM. Used for credential-

based auth

svm Storage virtual machine to use Derived if an SVM

managementLIF is specified

igroupName Name of the igroup for SAN

volumes to use

“trident-<backend-UUID>”

storagePrefix Prefix used when provisioning new

volumes in the SVM. Cannot be

updated after you set it

“trident”

limitAggregateUsage Fail provisioning if usage is above

this percentage. Does not apply to

Amazon FSx for ONTAP

“” (not enforced by default)

limitVolumeSize Fail provisioning if requested

volume size is above this value.

“” (not enforced by default)

lunsPerFlexvol Maximum LUNs per Flexvol, must

be in range [50, 200]

“100”

debugTraceFlags Debug flags to use when

troubleshooting. Example,

{“api”:false, “method”:true}

null

nfsMountOptions Comma-separated list of NFS

mount options

“”

qtreesPerFlexvol Maximum Qtrees per FlexVol, must

be in range [50, 300]

“200”

useREST Boolean parameter to use ONTAP

REST APIs. Tech preview

Not supported with MetroCluster.

false

useREST considerations

• useREST is provided as a tech preview that is recommended for test environments and not

for production workloads. When set to true, Astra Trident will use ONTAP REST APIs to

communicate with the backend. This feature requires ONTAP 9.10 and later. In addition, the

ONTAP login role used must have access to the ontap application. This is satisfied by the

pre-defined vsadmin and cluster-admin roles.

• useREST is not supported with MetroCluster.

To communicate with the ONTAP cluster, you should provide the authentication parameters. This could be the

username/password to a security login or an installed certificate.

If you are using an Amazon FSx for NetApp ONTAP backend, do not specify the

limitAggregateUsage parameter. The fsxadmin and vsadmin roles provided by Amazon

FSx for NetApp ONTAP do not contain the required access permissions to retrieve aggregate

usage and limit it through Astra Trident.

62



Do not use debugTraceFlags unless you are troubleshooting and require a detailed log dump.

When creating a backend, remember that the dataLIF and storagePrefix cannot be

modified after creation. To update these parameters, you will need to create a new backend.

A fully-qualified domain name (FQDN) can be specified for the managementLIF option. A FQDN may also be

specified for the dataLIF option, in which case the FQDN will be used for the NFS mount operations. This

way you can create a round-robin DNS to load-balance across multiple data LIFs.

managementLIF for all ONTAP drivers can also be set to IPv6 addresses. Make sure to install Astra Trident

with the --use-ipv6 flag. Care must be taken to define the managementLIF IPv6 address within square

brackets.

When using IPv6 addresses, make sure managementLIF and dataLIF (if included in your

backend definition) are defined within square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555]. If dataLIF is not provided, Astra Trident will fetch

the IPv6 data LIFs from the SVM.

Using the autoExportPolicy and autoExportCIDRs options, CSI Trident can manage export policies

automatically. This is supported for all ontap-nas-* drivers.

For the ontap-nas-economy driver, the limitVolumeSize option will also restrict the maximum size of the

volumes it manages for qtrees and LUNs, and the qtreesPerFlexvol option allows customizing the

maximum number of qtrees per FlexVol.

The nfsMountOptions parameter can be used to specify mount options. The mount options for Kubernetes

persistent volumes are normally specified in storage classes, but if no mount options are specified in a storage

class, Astra Trident will fall back to using the mount options specified in the storage backend’s configuration

file. If no mount options are specified in either the storage class or the configuration file, then Astra Trident will

not set any mount options on an associated persistent volume.

Astra Trident sets provisioning labels in the “Comments” field of all volumes created using

ontap-nas and ontap-nas-flexgroup. Based on the driver used, the comments are set on

the FlexVol (ontap-nas) or FlexGroup (ontap-nas-flexgroup). Astra Trident will copy all

labels present on a storage pool to the storage volume at the time it is provisioned. Storage

administrators can define labels per storage pool and group all volumes created in a storage

pool. This provides a convenient way of differentiating volumes based on a set of customizable

labels that are provided in the backend configuration.

Backend configuration options for provisioning volumes

You can control how each volume is provisioned by default using these options in a special section of the

configuration. For an example, see the configuration examples below.

Parameter Description Default

spaceAllocation Space-allocation for LUNs “true”

spaceReserve Space reservation mode; “none”

(thin) or “volume” (thick)

“none”

snapshotPolicy Snapshot policy to use “none”

63



Parameter Description Default

qosPolicy QoS policy group to assign for

volumes created. Choose one of

qosPolicy or adaptiveQosPolicy per

storage pool/backend

“”

adaptiveQosPolicy Adaptive QoS policy group to

assign for volumes created.

Choose one of qosPolicy or

adaptiveQosPolicy per storage

pool/backend.

Not supported by ontap-nas-

economy.

“”

snapshotReserve Percentage of volume reserved for

snapshots “0”
If snapshotPolicy is “none”, else

“”

splitOnClone Split a clone from its parent upon

creation

“false”

encryption Enable NetApp Volume Encryption

(NVE) on the new volume; defaults

to false. NVE must be licensed

and enabled on the cluster to use

this option.

If NAE is enabled on the backend,

any volume provisioned in Astra

Trident will be NAE enabled.

For more information, refer to: How

Astra Trident works with NVE and

NAE.

“false”

securityStyle Security style for new volumes “unix”

tieringPolicy Tiering policy to use “none” “snapshot-only” for pre-ONTAP 9.5

SVM-DR configuration

unixPermissions Mode for new volumes “777”

snapshotDir Controls visibility of the

.snapshot directory

“false”

exportPolicy Export policy to use “default”

securityStyle Security style for new volumes “unix”

Using QoS policy groups with Astra Trident requires ONTAP 9.8 or later. It is recommended to

use a non-shared QoS policy group and ensure the policy group is applied to each constituent

individually. A shared QoS policy group will enforce the ceiling for the total throughput of all

workloads.

Here’s an example with defaults defined:

64

https://docs.netapp.com/us-en/trident-2210/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2210/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2210/trident-reco/security-reco.html


{

  "version": 1,

  "storageDriverName": "ontap-nas",

  "backendName": "customBackendName",

  "managementLIF": "10.0.0.1",

  "dataLIF": "10.0.0.2",

  "labels": {"k8scluster": "dev1", "backend": "dev1-nasbackend"},

  "svm": "trident_svm",

  "username": "cluster-admin",

  "password": "password",

  "limitAggregateUsage": "80%",

  "limitVolumeSize": "50Gi",

  "nfsMountOptions": "nfsvers=4",

  "debugTraceFlags": {"api":false, "method":true},

  "defaults": {

    "spaceReserve": "volume",

    "qosPolicy": "premium",

    "exportPolicy": "myk8scluster",

    "snapshotPolicy": "default",

    "snapshotReserve": "10"

  }

}

For ontap-nas and ontap-nas-flexgroups, Astra Trident now uses a new calculation to ensure that the

FlexVol is sized correctly with the snapshotReserve percentage and PVC. When the user requests a PVC,

Astra Trident creates the original FlexVol with more space by using the new calculation. This calculation

ensures that the user receives the writable space they requested for in the PVC, and not lesser space than

what they requested. Before v21.07, when the user requests a PVC (for example, 5GiB), with the

snapshotReserve to 50 percent, they get only 2.5GiB of writeable space. This is because what the user

requested for is the whole volume and snapshotReserve is a percentage of that. With Trident 21.07, what

the user requests for is the writeable space and Astra Trident defines the snapshotReserve number as the

percentage of the whole volume. This does not apply to ontap-nas-economy. See the following example to

see how this works:

The calculation is as follows:

Total volume size = (PVC requested size) / (1 - (snapshotReserve

percentage) / 100)

For snapshotReserve = 50%, and PVC request = 5GiB, the total volume size is 2/.5 = 10GiB and the available

size is 5GiB, which is what the user requested in the PVC request. The volume show command should show

results similar to this example:

65



Existing backends from previous installs will provision volumes as explained above when upgrading Astra

Trident. For volumes that you created before upgrading, you should resize their volumes for the change to be

observed. For example, a 2GiB PVC with snapshotReserve=50 earlier resulted in a volume that provides

1GiB of writable space. Resizing the volume to 3GiB, for example, provides the application with 3GiB of

writable space on a 6 GiB volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest

way to define a backend.

If you are using Amazon FSx on NetApp ONTAP with Trident, the recommendation is to specify

DNS names for LIFs instead of IP addresses.

ontap-nas driver with certificate-based authentication

This is a minimal backend configuration example. clientCertificate, clientPrivateKey, and

trustedCACertificate (optional, if using trusted CA) are populated in backend.json and take the

base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

{

  "version": 1,

  "backendName": "DefaultNASBackend",

  "storageDriverName": "ontap-nas",

  "managementLIF": "10.0.0.1",

  "dataLIF": "10.0.0.15",

  "svm": "nfs_svm",

  "clientCertificate": "ZXR0ZXJwYXB...ICMgJ3BhcGVyc2",

  "clientPrivateKey": "vciwKIyAgZG...0cnksIGRlc2NyaX",

  "trustedCACertificate": "zcyBbaG...b3Igb3duIGNsYXNz",

  "storagePrefix": "myPrefix_"

}

ontap-nas driver with auto export policy

This example shows you how you can instruct Astra Trident to use dynamic export policies to create and

manage the export policy automatically. This works the same for the ontap-nas-economy and ontap-nas-

flexgroup drivers.

66



{

    "version": 1,

    "storageDriverName": "ontap-nas",

    "managementLIF": "10.0.0.1",

    "dataLIF": "10.0.0.2",

    "svm": "svm_nfs",

    "labels": {"k8scluster": "test-cluster-east-1a", "backend": "test1-

nasbackend"},

    "autoExportPolicy": true,

    "autoExportCIDRs": ["10.0.0.0/24"],

    "username": "admin",

    "password": "secret",

    "nfsMountOptions": "nfsvers=4",

}

ontap-nas-flexgroup driver

{

    "version": 1,

    "storageDriverName": "ontap-nas-flexgroup",

    "managementLIF": "10.0.0.1",

    "dataLIF": "10.0.0.2",

    "labels": {"k8scluster": "test-cluster-east-1b", "backend": "test1-

ontap-cluster"},

    "svm": "svm_nfs",

    "username": "vsadmin",

    "password": "secret",

}

ontap-nas driver with IPv6

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "nas_ipv6_backend",

 "managementLIF": "[5c5d:5edf:8f:7657:bef8:109b:1b41:d491]",

 "labels": {"k8scluster": "test-cluster-east-1a", "backend": "test1-ontap-

ipv6"},

 "svm": "nas_ipv6_svm",

 "username": "vsadmin",

 "password": "netapp123"

}

67



ontap-nas-economy driver

{

    "version": 1,

    "storageDriverName": "ontap-nas-economy",

    "managementLIF": "10.0.0.1",

    "dataLIF": "10.0.0.2",

    "svm": "svm_nfs",

    "username": "vsadmin",

    "password": "secret"

}

Examples of backends with virtual storage pools

In the sample backend definition file shown below, specific defaults are set for all storage pools, such as

spaceReserve at none, spaceAllocation at false, and encryption at false. The virtual storage pools are

defined in the storage section.

In this example, some of the storage pool sets their own spaceReserve, spaceAllocation, and

encryption values, and some pools overwrite the default values set above.

ontap-nas driver

{

    {

    "version": 1,

    "storageDriverName": "ontap-nas",

    "managementLIF": "10.0.0.1",

    "dataLIF": "10.0.0.2",

    "svm": "svm_nfs",

    "username": "admin",

    "password": "secret",

    "nfsMountOptions": "nfsvers=4",

    "defaults": {

          "spaceReserve": "none",

          "encryption": "false",

          "qosPolicy": "standard"

    },

    "labels":{"store":"nas_store", "k8scluster": "prod-cluster-1"},

    "region": "us_east_1",

    "storage": [

        {

            "labels":{"app":"msoffice", "cost":"100"},

            "zone":"us_east_1a",

            "defaults": {

68



                "spaceReserve": "volume",

                "encryption": "true",

                "unixPermissions": "0755",

                "adaptiveQosPolicy": "adaptive-premium"

            }

        },

        {

            "labels":{"app":"slack", "cost":"75"},

            "zone":"us_east_1b",

            "defaults": {

                "spaceReserve": "none",

                "encryption": "true",

                "unixPermissions": "0755"

            }

        },

        {

            "labels":{"app":"wordpress", "cost":"50"},

            "zone":"us_east_1c",

            "defaults": {

                "spaceReserve": "none",

                "encryption": "true",

                "unixPermissions": "0775"

            }

        },

        {

            "labels":{"app":"mysqldb", "cost":"25"},

            "zone":"us_east_1d",

            "defaults": {

                "spaceReserve": "volume",

                "encryption": "false",

                "unixPermissions": "0775"

            }

        }

    ]

}

ontap-nas-flexgroup driver

{

    "version": 1,

    "storageDriverName": "ontap-nas-flexgroup",

    "managementLIF": "10.0.0.1",

    "dataLIF": "10.0.0.2",

    "svm": "svm_nfs",

    "username": "vsadmin",

69



    "password": "secret",

    "defaults": {

          "spaceReserve": "none",

          "encryption": "false"

    },

    "labels":{"store":"flexgroup_store", "k8scluster": "prod-cluster-1"},

    "region": "us_east_1",

    "storage": [

        {

            "labels":{"protection":"gold", "creditpoints":"50000"},

            "zone":"us_east_1a",

            "defaults": {

                "spaceReserve": "volume",

                "encryption": "true",

                "unixPermissions": "0755"

            }

        },

        {

            "labels":{"protection":"gold", "creditpoints":"30000"},

            "zone":"us_east_1b",

            "defaults": {

                "spaceReserve": "none",

                "encryption": "true",

                "unixPermissions": "0755"

            }

        },

        {

            "labels":{"protection":"silver", "creditpoints":"20000"},

            "zone":"us_east_1c",

            "defaults": {

                "spaceReserve": "none",

                "encryption": "true",

                "unixPermissions": "0775"

            }

        },

        {

            "labels":{"protection":"bronze", "creditpoints":"10000"},

            "zone":"us_east_1d",

            "defaults": {

                "spaceReserve": "volume",

                "encryption": "false",

                "unixPermissions": "0775"

            }

        }

    ]

70



}

ontap-nas-economy driver

{

    "version": 1,

    "storageDriverName": "ontap-nas-economy",

    "managementLIF": "10.0.0.1",

    "dataLIF": "10.0.0.2",

    "svm": "svm_nfs",

    "username": "vsadmin",

    "password": "secret",

    "defaults": {

          "spaceReserve": "none",

          "encryption": "false"

    },

    "labels":{"store":"nas_economy_store"},

    "region": "us_east_1",

    "storage": [

        {

            "labels":{"department":"finance", "creditpoints":"6000"},

            "zone":"us_east_1a",

            "defaults": {

                "spaceReserve": "volume",

                "encryption": "true",

                "unixPermissions": "0755"

            }

        },

        {

            "labels":{"department":"legal", "creditpoints":"5000"},

            "zone":"us_east_1b",

            "defaults": {

                "spaceReserve": "none",

                "encryption": "true",

                "unixPermissions": "0755"

            }

        },

        {

            "labels":{"department":"engineering", "creditpoints":"3000"},

            "zone":"us_east_1c",

            "defaults": {

                "spaceReserve": "none",

                "encryption": "true",

                "unixPermissions": "0775"

71



            }

        },

        {

            "labels":{"department":"humanresource",

"creditpoints":"2000"},

            "zone":"us_east_1d",

            "defaults": {

                "spaceReserve": "volume",

                "encryption": "false",

                "unixPermissions": "0775"

            }

        }

    ]

}

Map backends to StorageClasses

The following StorageClass definitions refer to the above virtual storage pools. Using the

parameters.selector field, each StorageClass calls out which virtual pool(s) can be used to host a

volume. The volume will have the aspects defined in the chosen virtual pool.

• The first StorageClass (protection-gold) will map to the first, second virtual storage pool in the

ontap-nas-flexgroup backend and the first virtual storage pool in the ontap-san backend. These are

the only pool offering gold level protection.

• The second StorageClass (protection-not-gold) will map to the third, fourth virtual storage pool in

ontap-nas-flexgroup backend and the second, third virtual storage pool in ontap-san backend.

These are the only pools offering protection level other than gold.

• The third StorageClass (app-mysqldb) will map to the fourth virtual storage pool in ontap-nas backend

and the third virtual storage pool in ontap-san-economy backend. These are the only pools offering

storage pool configuration for mysqldb type app.

• The fourth StorageClass (protection-silver-creditpoints-20k) will map to the third virtual

storage pool in ontap-nas-flexgroup backend and the second virtual storage pool in ontap-san

backend. These are the only pools offering gold-level protection at 20000 creditpoints.

• The fifth StorageClass (creditpoints-5k) will map to the second virtual storage pool in ontap-nas-

economy backend and the third virtual storage pool in ontap-san backend. These are the only pool

offerings at 5000 creditpoints.

Astra Trident will decide which virtual storage pool is selected and will ensure the storage requirement is met.

72



apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: protection-gold

provisioner: netapp.io/trident

parameters:

  selector: "protection=gold"

  fsType: "ext4"

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: protection-not-gold

provisioner: netapp.io/trident

parameters:

  selector: "protection!=gold"

  fsType: "ext4"

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: app-mysqldb

provisioner: netapp.io/trident

parameters:

  selector: "app=mysqldb"

  fsType: "ext4"

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: protection-silver-creditpoints-20k

provisioner: netapp.io/trident

parameters:

  selector: "protection=silver; creditpoints=20000"

  fsType: "ext4"

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: creditpoints-5k

provisioner: netapp.io/trident

parameters:

  selector: "creditpoints=5000"

  fsType: "ext4"

73



Use Astra Trident with Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP, is a fully managed AWS service that enables customers to launch and run

file systems powered by NetApp’s ONTAP storage operating system. Amazon FSx for NetApp ONTAP enables

you to leverage NetApp features, performance, and administrative capabilities you are familiar with, while

taking advantage of the simplicity, agility, security, and scalability of storing data on AWS. FSx supports many

of ONTAP’s file system features and administration APIs.

A file system is the primary resource in Amazon FSx, analogous to an ONTAP cluster on premises. Within

each SVM you can create one or multiple volumes, which are data containers that store the files and folders in

your file system. With Amazon FSx for NetApp ONTAP, Data ONTAP will be provided as a managed file

system in the cloud. The new file system type is called NetApp ONTAP.

Using Astra Trident with Amazon FSx for NetApp ONTAP, you can ensure Kubernetes clusters running in

Amazon Elastic Kubernetes Service (EKS) can provision block and file persistent volumes backed by ONTAP.

Creating your Amazon FSx for ONTAP file system

Volumes created on Amazon FSx filesystems that have automatic backups enabled cannot be

deleted by Trident. To delete PVCs, you need to manually delete the PV and the FSx for ONTAP

volume.

To prevent this issue:

• Do not use Quick create to create the FSx for ONTAP file system. The quick create

workflow enables automatic backups and does not provide an opt-out option.

• When using Standard create, disable automatic backup. Disabling automatic backups

allows Trident to successfully delete a volume without further manual intervention.

Learn about Astra Trident

If you are new to Astra Trident, familiarize yourself by using the links provided below:

• FAQs

• Requirements for using Astra Trident

• Deploy Astra Trident

• Best practices for configuring ONTAP, Cloud Volumes ONTAP, and Amazon FSx for NetApp ONTAP

• Integrate Astra Trident

• ONTAP SAN backend configuration

74

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://docs.netapp.com/us-en/trident-2210/faq.html
https://docs.netapp.com/us-en/trident-2210/trident-get-started/requirements.html
https://docs.netapp.com/us-en/trident-2210/trident-get-started/kubernetes-deploy.html
https://docs.netapp.com/us-en/trident-2210/trident-reco/storage-config-best-practices.html
https://docs.netapp.com/us-en/trident-2210/trident-reco/integrate-trident.html#ontap


• ONTAP NAS backend configuration

Learn more about driver capabilities here.

Amazon FSx for NetApp ONTAP uses FabricPool to manage storage tiers. It enables you to store data in a tier,

based on whether the data is frequently accessed.

Astra Trident expects to be run as a vsadmin SVM user or as a user with a different name that has the same

role. Amazon FSx for NetApp ONTAP has an fsxadmin user that is a limited replacement of the ONTAP

admin cluster user. It is not recommended to use the fsxadmin user, with Trident, as a vsadmin SVM user

has access to more Astra Trident capabilities.

Drivers

You can integrate Astra Trident with Amazon FSx for NetApp ONTAP by using the following drivers:

• ontap-san: Each PV provisioned is a LUN within its own Amazon FSx for NetApp ONTAP volume.

• ontap-san-economy: Each PV provisioned is a LUN with a configurable number of LUNs per Amazon

FSx for NetApp ONTAP volume.

• ontap-nas: Each PV provisioned is a full Amazon FSx for NetApp ONTAP volume.

• ontap-nas-economy: Each PV provisioned is a qtree, with a configurable number of qtrees per Amazon

FSx for NetApp ONTAP volume.

• ontap-nas-flexgroup: Each PV provisioned is a full Amazon FSx for NetApp ONTAP FlexGroup

volume.

Authentication

Astra Trident offers two modes of authentication:

• Certificate-based: Astra Trident will communicate with the SVM on your FSx file system using a certificate

installed on your SVM.

• Credential-based: You can use the fsxadmin user for your file system or the vsadmin user configured for

your SVM.

We strongly recommend using the vsadmin user instead of the fsxadmin to configure

your backend. Astra Trident will communicate with the FSx file system using this username

and password.

You can update existing backends to move between credential-based and certificate-based methods. However,

only one authentication method is supported at a time. To switch to a different authentication method, you must

remove the existing method from the backend configuration.

If you attempt to provide both credentials and certificates, backend creation will fail with an

error that more than one authentication method was provided in the configuration file.

To learn more about authentication, see these links:

• ONTAP NAS

• ONTAP SAN

75

https://docs.netapp.com/us-en/trident-2210/trident-concepts/ontap-drivers.html
https://docs.netapp.com/ontap-9/topic/com.netapp.doc.dot-mgng-stor-tier-fp/GUID-5A78F93F-7539-4840-AB0B-4A6E3252CF84.html


Deploy and configure Astra Trident on EKS with Amazon FSx for NetApp ONTAP

What you’ll need

• An existing Amazon EKS cluster or self-managed Kubernetes cluster with kubectl installed.

• An existing Amazon FSx for NetApp ONTAP file system and storage virtual machine (SVM) that is

reachable from your cluster’s worker nodes.

• Worker nodes that are prepared for NFS and/or iSCSI.

Ensure that you follow the node preparation steps required for Amazon Linux and Ubuntu

Amazon Machine Images (AMIs) depending on your EKS AMI type.

For other Astra Trident requirements, see here.

Steps

1. Deploy Astra Trident using one of the deployment methods.

2. Configure Astra Trident as follows:

a. Collect your SVM’s management LIF DNS name. For example, by using the AWS CLI, find the

DNSName entry under Endpoints → Management after running the following command:

aws fsx describe-storage-virtual-machines --region <file system

region>

3. Create and install certificates for authentication. If you are using an ontap-san backend, see here. If you

are using an ontap-nas backend, see here.

You can log in to your file system (for example to install certificates) using SSH from

anywhere that can reach your file system. Use the fsxadmin user, the password you

configured when you created your file system, and the management DNS name from aws

fsx describe-file-systems.

4. Create a backend file using your certificates and the DNS name of your management LIF, as shown in the

sample below:

{

  "version": 1,

  "storageDriverName": "ontap-san",

  "backendName": "customBackendName",

  "managementLIF": "svm-XXXXXXXXXXXXXXXXX.fs-XXXXXXXXXXXXXXXXX.fsx.us-

east-2.aws.internal",

  "svm": "svm01",

  "clientCertificate": "ZXR0ZXJwYXB...ICMgJ3BhcGVyc2",

  "clientPrivateKey": "vciwKIyAgZG...0cnksIGRlc2NyaX",

  "trustedCACertificate": "zcyBbaG...b3Igb3duIGNsYXNz",

 }

76

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.netapp.com/us-en/trident-2210/trident-get-started/requirements.html
https://docs.netapp.com/us-en/trident-2210/trident-get-started/kubernetes-deploy.html


For information about creating backends, see these links:

• Configure a backend with ONTAP NAS drivers

• Configure a backend with ONTAP SAN drivers

Do not specify dataLIF for the ontap-san and ontap-san-economy drivers to allow Astra

Trident to use multipath.

The limitAggregateUsage parameter will not work with the vsadmin and fsxadmin user

accounts. The configuration operation will fail if you specify this parameter.

After deployment, perform the steps to create a storage class, provision a volume, and mount the volume in a

pod.

Find more information

• Amazon FSx for NetApp ONTAP documentation

• Blog post on Amazon FSx for NetApp ONTAP

Create backends with kubectl

A backend defines the relationship between Astra Trident and a storage system. It tells Astra Trident how to

communicate with that storage system and how Astra Trident should provision volumes from it. After Astra

Trident is installed, the next step is to create a backend. The TridentBackendConfig Custom Resource

Definition (CRD) enables you to create and manage Trident backends directly through the Kubernetes

interface. You can do this by using kubectl or the equivalent CLI tool for your Kubernetes distribution.

TridentBackendConfig

TridentBackendConfig (tbc, tbconfig, tbackendconfig) is a frontend, namespaced CRD that

enables you to manage Astra Trident backends using kubectl. Kubernetes and storage admins can now

create and manage backends directly through the Kubernetes CLI without requiring a dedicated command-line

utility (tridentctl).

Upon the creation of a TridentBackendConfig object, the following happens:

• A backend is created automatically by Astra Trident based on the configuration you provide. This is

represented internally as a TridentBackend (tbe, tridentbackend) CR.

• The TridentBackendConfig is uniquely bound to a TridentBackend that was created by Astra

Trident.

Each TridentBackendConfig maintains a one-to-one mapping with a TridentBackend. The former is the

interface provided to the user to design and configure backends; the latter is how Trident represents the actual

backend object.

TridentBackend CRs are created automatically by Astra Trident. You should not modify

them. If you want to make updates to backends, do this by modifying the

TridentBackendConfig object.

77

https://docs.netapp.com/us-en/trident-2210/trident-get-started/kubernetes-postdeployment.html
https://docs.netapp.com/us-en/trident-2210/trident-get-started/kubernetes-postdeployment.html
https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://www.netapp.com/blog/amazon-fsx-for-netapp-ontap/


See the following example for the format of the TridentBackendConfig CR:

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  name: backend-tbc-ontap-san

spec:

  version: 1

  backendName: ontap-san-backend

  storageDriverName: ontap-san

  managementLIF: 10.0.0.1

  dataLIF: 10.0.0.2

  svm: trident_svm

  credentials:

    name: backend-tbc-ontap-san-secret

You can also take a look at the examples in the trident-installer directory for sample configurations for the

desired storage platform/service.

The spec takes backend-specific configuration parameters. In this example, the backend uses the ontap-

san storage driver and uses the configuration parameters that are tabulated here. For the list of configuration

options for your desired storage driver, see the backend configuration information for your storage driver.

The spec section also includes credentials and deletionPolicy fields, which are newly introduced in

the TridentBackendConfig CR:

• credentials: This parameter is a required field and contains the credentials used to authenticate with

the storage system/service. This is set to a user-created Kubernetes Secret. The credentials cannot be

passed in plain text and will result in an error.

• deletionPolicy: This field defines what should happen when the TridentBackendConfig is deleted.

It can take one of two possible values:

◦ delete: This results in the deletion of both TridentBackendConfig CR and the associated

backend. This is the default value.

◦ retain: When a TridentBackendConfig CR is deleted, the backend definition will still be present

and can be managed with tridentctl. Setting the deletion policy to retain lets users downgrade to

an earlier release (pre-21.04) and retain the created backends. The value for this field can be updated

after a TridentBackendConfig is created.

The name of a backend is set using spec.backendName. If unspecified, the name of the

backend is set to the name of the TridentBackendConfig object (metadata.name). It is

recommended to explicitly set backend names using spec.backendName.

78

https://github.com/NetApp/trident/tree/stable/v21.07/trident-installer/sample-input/backends-samples


Backends that were created with tridentctl do not have an associated

TridentBackendConfig object. You can choose to manage such backends with kubectl by

creating a TridentBackendConfig CR. Care must be taken to specify identical config

parameters (such as spec.backendName, spec.storagePrefix,

spec.storageDriverName, and so on). Astra Trident will automatically bind the newly-

created TridentBackendConfig with the pre-existing backend.

Steps overview

To create a new backend by using kubectl, you should do the following:

1. Create a Kubernetes Secret. The secret contains the credentials Astra Trident needs to communicate with

the storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and

references the secret created in the previous step.

After you create a backend, you can observe its status by using kubectl get tbc <tbc-name> -n

<trident-namespace> and gather additional details.

Step 1: Create a Kubernetes Secret

Create a Secret that contains the access credentials for the backend. This is unique to each storage

service/platform. Here’s an example:

kubectl -n trident create -f backend-tbc-ontap-san-secret.yaml

apiVersion: v1

kind: Secret

metadata:

  name: backend-tbc-ontap-san-secret

type: Opaque

stringData:

  username: cluster-admin

  password: t@Ax@7q(>

This table summarizes the fields that must be included in the Secret for each storage platform:

Storage platform Secret Fields

description

Secret Fields description

Azure NetApp Files clientID The client ID from an app

registration

Cloud Volumes Service for GCP private_key_id ID of the private key. Part of API

key for GCP Service Account with

CVS admin role

79

https://kubernetes.io/docs/concepts/configuration/secret/


Storage platform Secret Fields

description

Secret Fields description

Cloud Volumes Service for GCP private_key Private key. Part of API key for

GCP Service Account with CVS

admin role

Element (NetApp HCI/SolidFire) Endpoint MVIP for the SolidFire cluster with

tenant credentials

ONTAP username Username to connect to the

cluster/SVM. Used for credential-

based authentication

ONTAP password Password to connect to the

cluster/SVM. Used for credential-

based authentication

ONTAP clientPrivateKey Base64-encoded value of client

private key. Used for certificate-

based authentication

ONTAP chapUsername Inbound username. Required if

useCHAP=true. For ontap-san

and ontap-san-economy

ONTAP chapInitiatorSecret CHAP initiator secret. Required if

useCHAP=true. For ontap-san

and ontap-san-economy

ONTAP chapTargetUsername Target username. Required if

useCHAP=true. For ontap-san

and ontap-san-economy

ONTAP chapTargetInitiatorSecret CHAP target initiator secret.

Required if useCHAP=true. For

ontap-san and ontap-san-

economy

The Secret created in this step will be referenced in the spec.credentials field of the

TridentBackendConfig object that is created in the next step.

Step 2: Create the TridentBackendConfig CR

You are now ready to create your TridentBackendConfig CR. In this example, a backend that uses the

ontap-san driver is created by using the TridentBackendConfig object shown below:

80



kubectl -n trident create -f backend-tbc-ontap-san.yaml

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  name: backend-tbc-ontap-san

spec:

  version: 1

  backendName: ontap-san-backend

  storageDriverName: ontap-san

  managementLIF: 10.0.0.1

  dataLIF: 10.0.0.2

  svm: trident_svm

  credentials:

    name: backend-tbc-ontap-san-secret

Step 3: Verify the status of the TridentBackendConfig CR

Now that you created the TridentBackendConfig CR, you can verify the status. See the following example:

kubectl -n trident get tbc backend-tbc-ontap-san

NAME                    BACKEND NAME          BACKEND UUID

PHASE   STATUS

backend-tbc-ontap-san   ontap-san-backend     8d24fce7-6f60-4d4a-8ef6-

bab2699e6ab8   Bound   Success

A backend was successfully created and bound to the TridentBackendConfig CR.

Phase can take one of the following values:

• Bound: The TridentBackendConfig CR is associated with a backend, and that backend contains

configRef set to the TridentBackendConfig CR’s uid.

• Unbound: Represented using "". The TridentBackendConfig object is not bound to a backend. All

newly created TridentBackendConfig CRs are in this phase by default. After the phase changes, it

cannot revert to Unbound again.

• Deleting: The TridentBackendConfig CR’s deletionPolicy was set to delete. When the

TridentBackendConfig CR is deleted, it transitions to the Deleting state.

◦ If no persistent volume claims (PVCs) exist on the backend, deleting the TridentBackendConfig

will result in Astra Trident deleting the backend as well as the TridentBackendConfig CR.

◦ If one or more PVCs are present on the backend, it goes to a deleting state. The

TridentBackendConfig CR subsequently also enters deleting phase. The backend and

TridentBackendConfig are deleted only after all PVCs are deleted.

81



• Lost: The backend associated with the TridentBackendConfig CR was accidentally or deliberately

deleted and the TridentBackendConfig CR still has a reference to the deleted backend. The

TridentBackendConfig CR can still be deleted irrespective of the deletionPolicy value.

• Unknown: Astra Trident is unable to determine the state or existence of the backend associated with the

TridentBackendConfig CR. For example, if the API server is not responding or if the

tridentbackends.trident.netapp.io CRD is missing. This might require the user’s intervention.

At this stage, a backend is successfully created! There are several operations that can additionally be handled,

such as backend updates and backend deletions.

(Optional) Step 4: Get more details

You can run the following command to get more information about your backend:

kubectl -n trident get tbc backend-tbc-ontap-san -o wide

NAME                    BACKEND NAME        BACKEND UUID

PHASE   STATUS    STORAGE DRIVER   DELETION POLICY

backend-tbc-ontap-san   ontap-san-backend   8d24fce7-6f60-4d4a-8ef6-

bab2699e6ab8   Bound   Success   ontap-san        delete

In addition, you can also obtain a YAML/JSON dump of TridentBackendConfig.

kubectl -n trident get tbc backend-tbc-ontap-san -o yaml

82



apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  creationTimestamp: "2021-04-21T20:45:11Z"

  finalizers:

  - trident.netapp.io

  generation: 1

  name: backend-tbc-ontap-san

  namespace: trident

  resourceVersion: "947143"

  uid: 35b9d777-109f-43d5-8077-c74a4559d09c

spec:

  backendName: ontap-san-backend

  credentials:

    name: backend-tbc-ontap-san-secret

  managementLIF: 10.0.0.1

  dataLIF: 10.0.0.2

  storageDriverName: ontap-san

  svm: trident_svm

  version: 1

status:

  backendInfo:

    backendName: ontap-san-backend

    backendUUID: 8d24fce7-6f60-4d4a-8ef6-bab2699e6ab8

  deletionPolicy: delete

  lastOperationStatus: Success

  message: Backend 'ontap-san-backend' created

  phase: Bound

backendInfo contains the backendName and the backendUUID of the backend that got created in

response to the TridentBackendConfig CR. The lastOperationStatus field represents the status of

the last operation of the TridentBackendConfig CR, which can be user-triggered (for example, user

changed something in spec) or triggered by Astra Trident (for example, during Astra Trident restarts). It can

either be Success or Failed. phase represents the status of the relation between the

TridentBackendConfig CR and the backend. In the example above, phase has the value Bound, which

means that the TridentBackendConfig CR is associated with the backend.

You can run the kubectl -n trident describe tbc <tbc-cr-name> command to get details of the

event logs.

You cannot update or delete a backend which contains an associated

TridentBackendConfig object using tridentctl. To understand the steps involved in

switching between tridentctl and TridentBackendConfig, see here.

83



Perform backend management with kubectl

Learn about how to perform backend management operations by using kubectl.

Delete a backend

By deleting a TridentBackendConfig, you instruct Astra Trident to delete/retain backends (based on

deletionPolicy). To delete a backend, ensure that deletionPolicy is set to delete. To delete just the

TridentBackendConfig, ensure that deletionPolicy is set to retain. This will ensure the backend is still

present and can be managed by using tridentctl.

Run the following command:

kubectl delete tbc <tbc-name> -n trident

Astra Trident does not delete the Kubernetes Secrets that were in use by TridentBackendConfig. The

Kubernetes user is responsible for cleaning up secrets. Care must be taken when deleting secrets. You should

delete secrets only if they are not in use by the backends.

View the existing backends

Run the following command:

kubectl get tbc -n trident

You can also run tridentctl get backend -n trident or tridentctl get backend -o yaml -n

trident to obtain a list of all backends that exist. This list will also include backends that were created with

tridentctl.

Update a backend

There can be multiple reasons to update a backend:

• Credentials to the storage system have changed. To update credentials, the Kubernetes Secret that is used

in the TridentBackendConfig object must be updated. Astra Trident will automatically update the

backend with the latest credentials provided. Run the following command to update the Kubernetes Secret:

kubectl apply -f <updated-secret-file.yaml> -n trident

• Parameters (such as the name of the ONTAP SVM being used) need to be updated.

In this case, TridentBackendConfig objects can be updated directly through Kubernetes.

kubectl apply -f <updated-backend-file.yaml>

Alternatively, make changes to the existing TridentBackendConfig CR by running the following command:

84



kubectl edit tbc <tbc-name> -n trident

If a backend update fails, the backend continues to remain in its last known configuration. You can view the

logs to determine the cause by running kubectl get tbc <tbc-name> -o yaml -n trident or

kubectl describe tbc <tbc-name> -n trident.

After you identify and correct the problem with the configuration file, you can re-run the update command.

Perform backend management with tridentctl

Learn about how to perform backend management operations by using tridentctl.

Create a backend

After you create a backend configuration file, run the following command:

tridentctl create backend -f <backend-file> -n trident

If backend creation fails, something was wrong with the backend configuration. You can view the logs to

determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the create command

again.

Delete a backend

To delete a backend from Astra Trident, do the following:

1. Retrieve the backend name:

tridentctl get backend -n trident

2. Delete the backend:

tridentctl delete backend <backend-name> -n trident

If Astra Trident has provisioned volumes and snapshots from this backend that still exist,

deleting the backend prevents new volumes from being provisioned by it. The backend will

continue to exist in a “Deleting” state and Trident will continue to manage those volumes and

snapshots until they are deleted.

85



View the existing backends

To view the backends that Trident knows about, do the following:

• To get a summary, run the following command:

tridentctl get backend -n trident

• To get all the details, run the following command:

tridentctl get backend -o json -n trident

Update a backend

After you create a new backend configuration file, run the following command:

tridentctl update backend <backend-name> -f <backend-file> -n trident

If backend update fails, something was wrong with the backend configuration or you attempted an invalid

update. You can view the logs to determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the update command

again.

Identify the storage classes that use a backend

This is an example of the kind of questions you can answer with the JSON that tridentctl outputs for

backend objects. This uses the jq utility, which you need to install.

tridentctl get backend -o json | jq '[.items[] | {backend: .name,

storageClasses: [.storage[].storageClasses]|unique}]'

This also applies for backends that were created by using TridentBackendConfig.

Move between backend management options

Learn about the different ways of managing backends in Astra Trident. With the introduction of

TridentBackendConfig, administrators now have two unique ways of managing backends. This poses the

following questions:

• Can backends created using tridentctl be managed with TridentBackendConfig?

86



• Can backends created using TridentBackendConfig be managed using tridentctl?

Manage tridentctl backends using TridentBackendConfig

This section covers the steps required to manage backends that were created using tridentctl directly

through the Kubernetes interface by creating TridentBackendConfig objects.

This will apply to the following scenarios:

• Pre-existing backends, that don’t have a TridentBackendConfig because they were created with

tridentctl.

• New backends that were created with tridentctl, while other TridentBackendConfig objects exist.

In both scenarios, backends will continue to be present, with Astra Trident scheduling volumes and operating

on them. Administrators have one of two choices here:

• Continue using tridentctl to manage backends that were created using it.

• Bind backends created using tridentctl to a new TridentBackendConfig object. Doing so would

mean the backends will be managed using kubectl and not tridentctl.

To manage a pre-existing backend using kubectl, you will need to create a TridentBackendConfig that

binds to the existing backend. Here is an overview of how that works:

1. Create a Kubernetes Secret. The secret contains the credentials Astra Trident needs to communicate with

the storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and

references the secret created in the previous step. Care must be taken to specify identical config

parameters (such as spec.backendName, spec.storagePrefix, spec.storageDriverName, and

so on). spec.backendName must be set to the name of the existing backend.

Step 0: Identify the backend

To create a TridentBackendConfig that binds to an existing backend, you will need to obtain the backend’s

configuration. In this example, let us assume a backend was created using the following JSON definition:

tridentctl get backend ontap-nas-backend -n trident

+---------------------+----------------

+--------------------------------------+--------+---------+

|          NAME       | STORAGE DRIVER |                 UUID

| STATE  | VOLUMES |

+---------------------+----------------

+--------------------------------------+--------+---------+

| ontap-nas-backend   | ontap-nas      | 52f2eb10-e4c6-4160-99fc-

96b3be5ab5d7 | online |      25 |

+---------------------+----------------

+--------------------------------------+--------+---------+

cat ontap-nas-backend.json

87



{

    "version": 1,

    "storageDriverName": "ontap-nas",

    "managementLIF": "10.10.10.1",

    "dataLIF": "10.10.10.2",

    "backendName": "ontap-nas-backend",

    "svm": "trident_svm",

    "username": "cluster-admin",

    "password": "admin-password",

    "defaults": {

        "spaceReserve": "none",

        "encryption": "false"

    },

    "labels":{"store":"nas_store"},

    "region": "us_east_1",

    "storage": [

        {

            "labels":{"app":"msoffice", "cost":"100"},

            "zone":"us_east_1a",

            "defaults": {

                "spaceReserve": "volume",

                "encryption": "true",

                "unixPermissions": "0755"

            }

        },

        {

            "labels":{"app":"mysqldb", "cost":"25"},

            "zone":"us_east_1d",

            "defaults": {

                "spaceReserve": "volume",

                "encryption": "false",

                "unixPermissions": "0775"

            }

        }

    ]

}

Step 1: Create a Kubernetes Secret

Create a Secret that contains the credentials for the backend, as shown in this example:

88



cat tbc-ontap-nas-backend-secret.yaml

apiVersion: v1

kind: Secret

metadata:

  name: ontap-nas-backend-secret

type: Opaque

stringData:

  username: cluster-admin

  passWord: admin-password

kubectl create -f tbc-ontap-nas-backend-secret.yaml -n trident

secret/backend-tbc-ontap-san-secret created

Step 2: Create a TridentBackendConfig CR

The next step is to create a TridentBackendConfig CR that will automatically bind to the pre-existing

ontap-nas-backend (as in this example). Ensure the following requirements are met:

• The same backend name is defined in spec.backendName.

• Configuration parameters are identical to the original backend.

• Virtual Storage Pools (if present) must retain the same order as in the original backend.

• Credentials are provided through a Kubernetes Secret and not in plain text.

In this case, the TridentBackendConfig will look like this:

89



cat backend-tbc-ontap-nas.yaml

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  name: tbc-ontap-nas-backend

spec:

  version: 1

  storageDriverName: ontap-nas

  managementLIF: 10.10.10.1

  dataLIF: 10.10.10.2

  backendName: ontap-nas-backend

  svm: trident_svm

  credentials:

    name: mysecret

  defaults:

    spaceReserve: none

    encryption: 'false'

  labels:

    store: nas_store

  region: us_east_1

  storage:

  - labels:

      app: msoffice

      cost: '100'

    zone: us_east_1a

    defaults:

      spaceReserve: volume

      encryption: 'true'

      unixPermissions: '0755'

  - labels:

      app: mysqldb

      cost: '25'

    zone: us_east_1d

    defaults:

      spaceReserve: volume

      encryption: 'false'

      unixPermissions: '0775'

kubectl create -f backend-tbc-ontap-nas.yaml -n trident

tridentbackendconfig.trident.netapp.io/tbc-ontap-nas-backend created

Step 3: Verify the status of the TridentBackendConfig CR

After the TridentBackendConfig has been created, its phase must be Bound. It should also reflect the

same backend name and UUID as that of the existing backend.

90



kubectl -n trident get tbc tbc-ontap-nas-backend -n trident

NAME                   BACKEND NAME          BACKEND UUID

PHASE   STATUS

tbc-ontap-nas-backend  ontap-nas-backend     52f2eb10-e4c6-4160-99fc-

96b3be5ab5d7   Bound   Success

#confirm that no new backends were created (i.e., TridentBackendConfig did

not end up creating a new backend)

tridentctl get backend -n trident

+---------------------+----------------

+--------------------------------------+--------+---------+

|          NAME       | STORAGE DRIVER |                 UUID

| STATE  | VOLUMES |

+---------------------+----------------

+--------------------------------------+--------+---------+

| ontap-nas-backend   | ontap-nas      | 52f2eb10-e4c6-4160-99fc-

96b3be5ab5d7 | online |      25 |

+---------------------+----------------

+--------------------------------------+--------+---------+

The backend will now be completely managed using the tbc-ontap-nas-backend

TridentBackendConfig object.

Manage TridentBackendConfig backends using tridentctl

tridentctl can be used to list backends that were created using TridentBackendConfig. In addition,

administrators can also choose to completely manage such backends through tridentctl by deleting

TridentBackendConfig and making sure spec.deletionPolicy is set to retain.

Step 0: Identify the backend

For example, let us assume the following backend was created using TridentBackendConfig:

91



kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME                    BACKEND NAME        BACKEND UUID

PHASE   STATUS    STORAGE DRIVER   DELETION POLICY

backend-tbc-ontap-san   ontap-san-backend   81abcb27-ea63-49bb-b606-

0a5315ac5f82   Bound   Success   ontap-san        delete

tridentctl get backend ontap-san-backend -n trident

+-------------------+----------------

+--------------------------------------+--------+---------+

|       NAME        | STORAGE DRIVER |                 UUID

| STATE  | VOLUMES |

+-------------------+----------------

+--------------------------------------+--------+---------+

| ontap-san-backend | ontap-san      | 81abcb27-ea63-49bb-b606-

0a5315ac5f82 | online |      33 |

+-------------------+----------------

+--------------------------------------+--------+---------+

From the output, it is seen that TridentBackendConfig was created successfully and is bound to a

backend [observe the backend’s UUID].

Step 1: Confirm deletionPolicy is set to retain

Let us take a look at the value of deletionPolicy. This needs to be set to retain. This will ensure that

when a TridentBackendConfig CR is deleted, the backend definition will still be present and can be

managed with tridentctl.

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME                    BACKEND NAME        BACKEND UUID

PHASE   STATUS    STORAGE DRIVER   DELETION POLICY

backend-tbc-ontap-san   ontap-san-backend   81abcb27-ea63-49bb-b606-

0a5315ac5f82   Bound   Success   ontap-san        delete

# Patch value of deletionPolicy to retain

kubectl patch tbc backend-tbc-ontap-san --type=merge -p

'{"spec":{"deletionPolicy":"retain"}}' -n trident

tridentbackendconfig.trident.netapp.io/backend-tbc-ontap-san patched

#Confirm the value of deletionPolicy

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME                    BACKEND NAME        BACKEND UUID

PHASE   STATUS    STORAGE DRIVER   DELETION POLICY

backend-tbc-ontap-san   ontap-san-backend   81abcb27-ea63-49bb-b606-

0a5315ac5f82   Bound   Success   ontap-san        retain

92



Do not proceed to the next step unless deletionPolicy is set to retain.

Step 2: Delete the TridentBackendConfig CR

The final step is to delete the TridentBackendConfig CR. After confirming the deletionPolicy is set to

retain, you can go ahead with the deletion:

kubectl delete tbc backend-tbc-ontap-san -n trident

tridentbackendconfig.trident.netapp.io "backend-tbc-ontap-san" deleted

tridentctl get backend ontap-san-backend -n trident

+-------------------+----------------

+--------------------------------------+--------+---------+

|       NAME        | STORAGE DRIVER |                 UUID

| STATE  | VOLUMES |

+-------------------+----------------

+--------------------------------------+--------+---------+

| ontap-san-backend | ontap-san      | 81abcb27-ea63-49bb-b606-

0a5315ac5f82 | online |      33 |

+-------------------+----------------

+--------------------------------------+--------+---------+

Upon the deletion of the TridentBackendConfig object, Astra Trident simply removes it without actually

deleting the backend itself.

Manage storage classes

Find information about creating a storage class, deleting a storage class, and viewing existing storage classes.

Design a storage class

See here for more information on what storage classes are and how you configure them.

Create a storage class

After you have a storage class file, run the following command:

kubectl create -f <storage-class-file>

<storage-class-file> should be replaced with your storage class file name.

Delete a storage class

To delete a storage class from Kubernetes, run the following command:

93

https://docs.netapp.com/us-en/trident-2210/trident-reference/objects.html


kubectl delete storageclass <storage-class>

<storage-class> should be replaced with your storage class.

Any persistent volumes that were created through this storage class will remain untouched, and Astra Trident

will continue to manage them.

Astra Trident enforces a blank fsType for the volumes it creates. For iSCSI backends, it is

recommended to enforce parameters.fsType in the StorageClass. You should delete

esixting StorageClasses and re-create them with parameters.fsType specified.

View the existing storage classes

• To view existing Kubernetes storage classes, run the following command:

kubectl get storageclass

• To view Kubernetes storage class detail, run the following command:

kubectl get storageclass <storage-class> -o json

• To view Astra Trident’s synchronized storage classes, run the following command:

tridentctl get storageclass

• To view Astra Trident’s synchronized storage class detail, run the following command:

tridentctl get storageclass <storage-class> -o json

Set a default storage class

Kubernetes 1.6 added the ability to set a default storage class. This is the storage class that will be used to

provision a Persistent Volume if a user does not specify one in a Persistent Volume Claim (PVC).

• Define a default storage class by setting the annotation storageclass.kubernetes.io/is-

default-class to true in the storage class definition. According to the specification, any other value or

absence of the annotation is interpreted as false.

• You can configure an existing storage class to be the default storage class by using the following

command:

kubectl patch storageclass <storage-class-name> -p '{"metadata":

{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

94



• Similarly, you can remove the default storage class annotation by using the following command:

kubectl patch storageclass <storage-class-name> -p '{"metadata":

{"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}}'

There are also examples in the Trident installer bundle that include this annotation.

You should only have one default storage class in your cluster at any given time. Kubernetes

does not technically prevent you from having more than one, but it will behave as if there is no

default storage class at all.

Identify the backend for a storage class

This is an example of the kind of questions you can answer with the JSON that tridentctl outputs for Astra

Trident backend objects. This uses the jq utility, which you may need to install first.

tridentctl get storageclass -o json | jq  '[.items[] | {storageClass:

.Config.name, backends: [.storage]|unique}]'

Perform volume operations

Learn about the features Astra Trident provides for managing your volumes.

• Use CSI Topology

• Work with snapshots

• Expand volumes

• Import volumes

Use CSI Topology

Astra Trident can selectively create and attach volumes to nodes present in a Kubernetes cluster by making

use of the CSI Topology feature. Using the CSI Topology feature, access to volumes can be limited to a subset

of nodes, based on regions and availability zones. Cloud providers today enable Kubernetes administrators to

spawn nodes that are zone based. Nodes can be located in different availability zones within a region, or

across various regions. To facilitate the provisioning of volumes for workloads in a multi-zone architecture,

Astra Trident uses CSI Topology.

Learn more about the CSI Topology feature here.

Kubernetes provides two unique volume binding modes:

• With VolumeBindingMode set to Immediate, Astra Trident creates the volume without any topology

awareness. Volume binding and dynamic provisioning are handled when the PVC is created. This is the

default VolumeBindingMode and is suited for clusters that do not enforce topology constraints. Persistent

Volumes are created without having any dependency on the requesting pod’s scheduling requirements.

• With VolumeBindingMode set to WaitForFirstConsumer, the creation and binding of a Persistent

95

https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/


Volume for a PVC is delayed until a pod that uses the PVC is scheduled and created. This way, volumes

are created to meet the scheduling constraints that are enforced by topology requirements.

The WaitForFirstConsumer binding mode does not require topology labels. This can be

used independent of the CSI Topology feature.

What you’ll need

To make use of CSI Topology, you need the following:

• A Kubernetes cluster running a supported Kubernetes version

kubectl version

Client Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:50:19Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

Server Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:41:49Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

• Nodes in the cluster should have labels that introduce topology awareness

(topology.kubernetes.io/region and topology.kubernetes.io/zone). These labels should

be present on nodes in the cluster before Astra Trident is installed for Astra Trident to be topology

aware.

96

https://docs.netapp.com/us-en/trident-2210/trident-get-started/requirements.html


kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{.metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"

[node1,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node1","kubernetes.io/

os":"linux","node-

role.kubernetes.io/master":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-a"}]

[node2,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node2","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-b"}]

[node3,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node3","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-c"}]

Step 1: Create a topology-aware backend

Astra Trident storage backends can be designed to selectively provision volumes based on availability zones.

Each backend can carry an optional supportedTopologies block that represents a list of zones and regions

that must be supported. For StorageClasses that make use of such a backend, a volume would only be

created if requested by an application that is scheduled in a supported region/zone.

Here is what an example backend definition looks like:

97



{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "san-backend-us-east1",

 "managementLIF": "192.168.27.5",

 "svm": "iscsi_svm",

 "username": "admin",

 "password": "xxxxxxxxxxxx",

 "supportedTopologies": [

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-a"},

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-b"}

]

}

supportedTopologies is used to provide a list of regions and zones per backend. These

regions and zones represent the list of permissible values that can be provided in a

StorageClass. For StorageClasses that contain a subset of the regions and zones provided in a

backend, Astra Trident will create a volume on the backend.

You can define supportedTopologies per storage pool as well. See the following example:

98



{"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "nas-backend-us-central1",

"managementLIF": "172.16.238.5",

"svm": "nfs_svm",

"username": "admin",

"password": "Netapp123",

"supportedTopologies": [

      {"topology.kubernetes.io/region": "us-central1",

"topology.kubernetes.io/zone": "us-central1-a"},

      {"topology.kubernetes.io/region": "us-central1",

"topology.kubernetes.io/zone": "us-central1-b"}

    ]

"storage": [

   {

       "labels": {"workload":"production"},

        "region": "Iowa-DC",

        "zone": "Iowa-DC-A",

        "supportedTopologies": [

            {"topology.kubernetes.io/region": "us-central1",

"topology.kubernetes.io/zone": "us-central1-a"}

        ]

    },

    {

        "labels": {"workload":"dev"},

         "region": "Iowa-DC",

         "zone": "Iowa-DC-B",

         "supportedTopologies": [

             {"topology.kubernetes.io/region": "us-central1",

"topology.kubernetes.io/zone": "us-central1-b"}

         ]

     }

]

}

In this example, the region and zone labels stand for the location of the storage pool.

topology.kubernetes.io/region and topology.kubernetes.io/zone dictate where the storage

pools can be consumed from.

Step 2: Define StorageClasses that are topology aware

Based on the topology labels that are provided to the nodes in the cluster, StorageClasses can be defined to

contain topology information. This will determine the storage pools that serve as candidates for PVC requests

made, and the subset of nodes that can make use of the volumes provisioned by Trident.

See the following example:

99



apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

name: netapp-san-us-east1

provisioner: csi.trident.netapp.io

volumeBindingMode: WaitForFirstConsumer

allowedTopologies:

- matchLabelExpressions:

- key: topology.kubernetes.io/zone

  values:

  - us-east1-a

  - us-east1-b

- key: topology.kubernetes.io/region

  values:

  - us-east1

parameters:

  fsType: "ext4"

In the StorageClass definition provided above, volumeBindingMode is set to WaitForFirstConsumer.

PVCs that are requested with this StorageClass will not be acted upon until they are referenced in a pod. And,

allowedTopologies provides the zones and region to be used. The netapp-san-us-east1 StorageClass

will create PVCs on the san-backend-us-east1 backend defined above.

Step 3: Create and use a PVC

With the StorageClass created and mapped to a backend, you can now create PVCs.

See the example spec below:

---

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san

spec:

accessModes:

  - ReadWriteOnce

resources:

  requests:

    storage: 300Mi

storageClassName: netapp-san-us-east1

Creating a PVC using this manifest would result in the following:

100



kubectl create -f pvc.yaml

persistentvolumeclaim/pvc-san created

kubectl get pvc

NAME      STATUS    VOLUME   CAPACITY   ACCESS MODES   STORAGECLASS

AGE

pvc-san   Pending                                      netapp-san-us-east1

2s

kubectl describe pvc

Name:          pvc-san

Namespace:     default

StorageClass:  netapp-san-us-east1

Status:        Pending

Volume:

Labels:        <none>

Annotations:   <none>

Finalizers:    [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode:    Filesystem

Mounted By:    <none>

Events:

  Type    Reason                Age   From                         Message

  ----    ------                ----  ----                         -------

  Normal  WaitForFirstConsumer  6s    persistentvolume-controller  waiting

for first consumer to be created before binding

For Trident to create a volume and bind it to the PVC, use the PVC in a pod. See the following example:

101



apiVersion: v1

kind: Pod

metadata:

  name: app-pod-1

spec:

  affinity:

    nodeAffinity:

      requiredDuringSchedulingIgnoredDuringExecution:

        nodeSelectorTerms:

        - matchExpressions:

          - key: topology.kubernetes.io/region

            operator: In

            values:

            - us-east1

      preferredDuringSchedulingIgnoredDuringExecution:

      - weight: 1

        preference:

          matchExpressions:

          - key: topology.kubernetes.io/zone

            operator: In

            values:

            - us-east1-a

            - us-east1-b

  securityContext:

    runAsUser: 1000

    runAsGroup: 3000

    fsGroup: 2000

  volumes:

  - name: vol1

    persistentVolumeClaim:

      claimName: pvc-san

  containers:

  - name: sec-ctx-demo

    image: busybox

    command: [ "sh", "-c", "sleep 1h" ]

    volumeMounts:

    - name: vol1

      mountPath: /data/demo

    securityContext:

      allowPrivilegeEscalation: false

This podSpec instructs Kubernetes to schedule the pod on nodes that are present in the us-east1 region,

and choose from any node that is present in the us-east1-a or us-east1-b zones.

See the following output:

102



kubectl get pods -o wide

NAME        READY   STATUS    RESTARTS   AGE   IP               NODE

NOMINATED NODE   READINESS GATES

app-pod-1   1/1     Running   0          19s   192.168.25.131   node2

<none>           <none>

kubectl get pvc -o wide

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS          AGE   VOLUMEMODE

pvc-san   Bound    pvc-ecb1e1a0-840c-463b-8b65-b3d033e2e62b   300Mi

RWO            netapp-san-us-east1   48s   Filesystem

Update backends to include supportedTopologies

Pre-existing backends can be updated to include a list of supportedTopologies using tridentctl

backend update. This will not affect volumes that have already been provisioned, and will only be used for

subsequent PVCs.

Find more information

• Manage resources for containers

• nodeSelector

• Affinity and anti-affinity

• Taints and Tolerations

Work with snapshots

You can create Kubernetes VolumeSnapshots (volume snapshot) of Persistent Volumes

(PVs) to maintain point-in-time copies of Astra Trident volumes. Additionally, you can

create a new volume, also known as a clone, from an existing volume snapshot. Volume

snapshot is supported by ontap-nas, ontap-san, ontap-san-economy,

solidfire-san, gcp-cvs, and azure-netapp-files drivers.

Before you begin

You must have an external snapshot controller and Custom Resource Definitions (CRDs). This is the

responsibility of the Kubernetes orchestrator (for example: Kubeadm, GKE, OpenShift).

If your Kubernetes distribution does not include the snapshot controller and CRDs, refer to Deploying a volume

snapshot controller.

Don’t create a snapshot controller if creating on-demand volume snapshots in a GKE

environment. GKE uses a built-in, hidden snapshot controller.

Step 1: Create a VolumeSnapshotClass

This example creates a volume snapshot class.

103

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/


cat snap-sc.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

  name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

The driver points to Astra Trident’s CSI driver. deletionPolicy can be Delete or Retain. When set to

Retain, the underlying physical snapshot on the storage cluster is retained even when the VolumeSnapshot

object is deleted.

For more information, refer to VolumeSnapshotClass.

Step 2: Create a snapshot of an existing PVC

This example creates a snapshot of an existing PVC.

cat snap.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

  name: pvc1-snap

spec:

  volumeSnapshotClassName: csi-snapclass

  source:

    persistentVolumeClaimName: pvc1

In this example, the snapshot is created for a PVC named pvc1 and the name of the snapshot is set to pvc1-

snap.

kubectl create -f snap.yaml

volumesnapshot.snapshot.storage.k8s.io/pvc1-snap created

kubectl get volumesnapshots

NAME                   AGE

pvc1-snap              50s

This created a VolumeSnapshot object. A VolumeSnapshot is analogous to a PVC and is associated with a

VolumeSnapshotContent object that represents the actual snapshot.

It is possible to identify the VolumeSnapshotContent object for the pvc1-snap VolumeSnapshot by

describing it.

104

https://docs.netapp.com/us-en/trident-2210/trident-reference/objects.html#kubernetes-volumesnapshotclass-objects


kubectl describe volumesnapshots pvc1-snap

Name:         pvc1-snap

Namespace:    default

.

.

.

Spec:

  Snapshot Class Name:    pvc1-snap

  Snapshot Content Name:  snapcontent-e8d8a0ca-9826-11e9-9807-525400f3f660

  Source:

    API Group:

    Kind:       PersistentVolumeClaim

    Name:       pvc1

Status:

  Creation Time:  2019-06-26T15:27:29Z

  Ready To Use:   true

  Restore Size:   3Gi

.

.

The Snapshot Content Name identifies the VolumeSnapshotContent object which serves this snapshot.

The Ready To Use parameter indicates that the Snapshot can be used to create a new PVC.

Step 3: Create PVCs from VolumeSnapshots

This example creates a PVC using a snapshot:

cat pvc-from-snap.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  name: pvc-from-snap

spec:

  accessModes:

    - ReadWriteOnce

  storageClassName: golden

  resources:

    requests:

      storage: 3Gi

  dataSource:

    name: pvc1-snap

    kind: VolumeSnapshot

    apiGroup: snapshot.storage.k8s.io

dataSource shows that the PVC must be created using a VolumeSnapshot named pvc1-snap as the

105



source of the data. This instructs Astra Trident to create a PVC from the snapshot. After the PVC is created, it

can be attached to a pod and used just like any other PVC.

When deleting a Persistent Volume with associated snapshots, the corresponding Trident

volume is updated to a “Deleting state”. For the Astra Trident volume to be deleted, the

snapshots of the volume should be removed.

Deploying a volume snapshot controller

If your Kubernetes distribution does not include the snapshot controller and CRDs, you can deploy them as

follows.

Steps

1. Create volume snapshot CRDs.

cat snapshot-setup.sh

#!/bin/bash

# Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents.yam

l

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml

2. Create the snapshot controller in the desired namespace. Edit the YAML manifests below to modify

namespace.

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

Related links

• Volume snapshots

• VolumeSnapshotClass

106

https://docs.netapp.com/us-en/trident-2210/trident-concepts/snapshots.html
https://docs.netapp.com/us-en/trident-2210/trident-reference/objects.html


Expand volumes

Astra Trident provides Kubernetes users the ability to expand their volumes after they are created. Find

information about the configurations required to expand iSCSI and NFS volumes.

Expand an iSCSI volume

You can expand an iSCSI Persistent Volume (PV) by using the CSI provisioner.

iSCSI volume expansion is supported by the ontap-san, ontap-san-economy, solidfire-

san drivers and requires Kubernetes 1.16 and later.

Overview

Expanding an iSCSI PV includes the following steps:

• Editing the StorageClass definition to set the allowVolumeExpansion field to true.

• Editing the PVC definition and updating the spec.resources.requests.storage to reflect the newly

desired size, which must be greater than the original size.

• Attaching the PV must be attached to a pod for it to be resized. There are two scenarios when resizing an

iSCSI PV:

◦ If the PV is attached to a pod, Astra Trident expands the volume on the storage backend, rescans the

device, and resizes the filesystem.

◦ When attempting to resize an unattached PV, Astra Trident expands the volume on the storage

backend. After the PVC is bound to a pod, Trident rescans the device and resizes the filesystem.

Kubernetes then updates the PVC size after the expand operation has successfully completed.

The example below shows how expanding iSCSI PVs work.

Step 1: Configure the StorageClass to support volume expansion

cat storageclass-ontapsan.yaml

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontap-san

provisioner: csi.trident.netapp.io

parameters:

  backendType: "ontap-san"

allowVolumeExpansion: True

For an already existing StorageClass, edit it to include the allowVolumeExpansion parameter.

Step 2: Create a PVC with the StorageClass you created

107



cat pvc-ontapsan.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: san-pvc

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

  storageClassName: ontap-san

Astra Trident creates a Persistent Volume (PV) and associates it with this Persistent Volume Claim (PVC).

kubectl get pvc

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS   AGE

san-pvc   Bound    pvc-8a814d62-bd58-4253-b0d1-82f2885db671   1Gi

RWO            ontap-san      8s

kubectl get pv

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM             STORAGECLASS   REASON   AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671   1Gi        RWO

Delete           Bound    default/san-pvc   ontap-san               10s

Step 3: Define a pod that attaches the PVC

In this example, a pod is created that uses the san-pvc.

108



 kubectl get pod

NAME         READY   STATUS    RESTARTS   AGE

centos-pod   1/1     Running   0          65s

 kubectl describe pvc san-pvc

Name:          san-pvc

Namespace:     default

StorageClass:  ontap-san

Status:        Bound

Volume:        pvc-8a814d62-bd58-4253-b0d1-82f2885db671

Labels:        <none>

Annotations:   pv.kubernetes.io/bind-completed: yes

               pv.kubernetes.io/bound-by-controller: yes

               volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers:    [kubernetes.io/pvc-protection]

Capacity:      1Gi

Access Modes:  RWO

VolumeMode:    Filesystem

Mounted By:    centos-pod

Step 4: Expand the PV

To resize the PV that has been created from 1Gi to 2Gi, edit the PVC definition and update the

spec.resources.requests.storage to 2Gi.

109



kubectl edit pvc san-pvc

# Please edit the object below. Lines beginning with a '#' will be

ignored,

# and an empty file will abort the edit. If an error occurs while saving

this file will be

# reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  annotations:

    pv.kubernetes.io/bind-completed: "yes"

    pv.kubernetes.io/bound-by-controller: "yes"

    volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

  creationTimestamp: "2019-10-10T17:32:29Z"

  finalizers:

  - kubernetes.io/pvc-protection

  name: san-pvc

  namespace: default

  resourceVersion: "16609"

  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/san-pvc

  uid: 8a814d62-bd58-4253-b0d1-82f2885db671

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 2Gi

 ...

Step 5: Validate the expansion

You can validate the expansion worked correctly by checking the size of the PVC, PV, and the Astra Trident

volume:

110



kubectl get pvc san-pvc

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS   AGE

san-pvc   Bound    pvc-8a814d62-bd58-4253-b0d1-82f2885db671   2Gi

RWO            ontap-san      11m

kubectl get pv

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM             STORAGECLASS   REASON   AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671   2Gi        RWO

Delete           Bound    default/san-pvc   ontap-san               12m

tridentctl get volumes -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-8a814d62-bd58-4253-b0d1-82f2885db671 | 2.0 GiB | ontap-san     |

block    | a9b7bfff-0505-4e31-b6c5-59f492e02d33 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

Expand an NFS volume

Astra Trident supports volume expansion for NFS PVs provisioned on ontap-nas, ontap-nas-economy,

ontap-nas-flexgroup, gcp-cvs, and azure-netapp-files backends.

Step 1: Configure the StorageClass to support volume expansion

To resize an NFS PV, the admin first needs to configure the storage class to allow volume expansion by setting

the allowVolumeExpansion field to true:

cat storageclass-ontapnas.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontapnas

provisioner: csi.trident.netapp.io

parameters:

  backendType: ontap-nas

allowVolumeExpansion: true

If you have already created a storage class without this option, you can simply edit the existing storage class

by using kubectl edit storageclass to allow volume expansion.

111



Step 2: Create a PVC with the StorageClass you created

cat pvc-ontapnas.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: ontapnas20mb

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 20Mi

  storageClassName: ontapnas

Astra Trident should create a 20MiB NFS PV for this PVC:

kubectl get pvc

NAME           STATUS   VOLUME

CAPACITY     ACCESS MODES   STORAGECLASS    AGE

ontapnas20mb   Bound    pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   20Mi

RWO            ontapnas        9s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM                  STORAGECLASS    REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   20Mi       RWO

Delete           Bound    default/ontapnas20mb   ontapnas

2m42s

Step 3: Expand the PV

To resize the newly created 20MiB PV to 1GiB, edit the PVC and set spec.resources.requests.storage

to 1GB:

112



kubectl edit pvc ontapnas20mb

# Please edit the object below. Lines beginning with a '#' will be

ignored,

# and an empty file will abort the edit. If an error occurs while saving

this file will be

# reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  annotations:

    pv.kubernetes.io/bind-completed: "yes"

    pv.kubernetes.io/bound-by-controller: "yes"

    volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

  creationTimestamp: 2018-08-21T18:26:44Z

  finalizers:

  - kubernetes.io/pvc-protection

  name: ontapnas20mb

  namespace: default

  resourceVersion: "1958015"

  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/ontapnas20mb

  uid: c1bd7fa5-a56f-11e8-b8d7-fa163e59eaab

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

...

Step 4: Validate the expansion

You can validate the resize worked correctly by checking the size of the PVC, PV, and the Astra Trident

volume:

113



kubectl get pvc ontapnas20mb

NAME           STATUS   VOLUME

CAPACITY   ACCESS MODES   STORAGECLASS    AGE

ontapnas20mb   Bound    pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   1Gi

RWO            ontapnas        4m44s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM                  STORAGECLASS    REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   1Gi        RWO

Delete           Bound    default/ontapnas20mb   ontapnas

5m35s

tridentctl get volume pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 | 1.0 GiB | ontapnas      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

Import volumes

You can import existing storage volumes as a Kubernetes PV using tridentctl import.

Drivers that support volume import

This table depicts the drivers that support importing volumes and the release they were introduced in.

Driver Release

ontap-nas 19.04

ontap-nas-flexgroup 19.04

solidfire-san 19.04

azure-netapp-files 19.04

gcp-cvs 19.04

114



Driver Release

ontap-san 19.04

Why should I import volumes?

There are several use cases for importing a volume into Trident:

• Containerizing an application and reusing its existing data set

• Using a clone of a data set for an ephemeral application

• Rebuilding a failed Kubernetes cluster

• Migrating application data during disaster recovery

How does the import work?

The Persistent Volume Claim (PVC) file is used by the volume import process to create the PVC. At a

minimum, the PVC file should include the name, namespace, accessModes, and storageClassName fields as

shown in the following example.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: my_claim

  namespace: my_namespace

spec:

  accessModes:

    - ReadWriteOnce

  storageClassName: my_storage_class

The tridentctl client is used to import an existing storage volume. Trident imports the volume by persisting

volume metadata and creating the PVC and PV.

tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-file>

To import a storage volume, specify the name of the Astra Trident backend containing the volume, as well as

the name that uniquely identifies the volume on the storage (for example: ONTAP FlexVol, Element Volume,

CVS Volume path). The storage volume must allow read/write access and be accessible by the specified Astra

Trident backend. The -f string argument is required and specifies the path to the YAML or JSON PVC file.

When Astra Trident receives the import volume request, the existing volume size is determined and set in the

PVC. After the volume is imported by the storage driver, the PV is created with a ClaimRef to the PVC. The

reclaim policy is initially set to retain in the PV. After Kubernetes successfully binds the PVC and PV, the

reclaim policy is updated to match the reclaim policy of the Storage Class. If the reclaim policy of the Storage

Class is delete, the storage volume will be deleted when the PV is deleted.

When a volume is imported with the --no-manage argument, Trident does not perform any additional

operations on the PVC or PV for the lifecycle of the objects. Because Trident ignores PV and PVC events for

115



--no-manage objects, the storage volume is not deleted when the PV is deleted. Other operations such as

volume clone and volume resize are also ignored. This option is useful if you want to use Kubernetes for

containerized workloads but otherwise want to manage the lifecycle of the storage volume outside of

Kubernetes.

An annotation is added to the PVC and PV that serves a dual purpose of indicating that the volume was

imported and if the PVC and PV are managed. This annotation should not be modified or removed.

Trident 19.07 and later handle the attachment of PVs and mounts the volume as part of importing it. For

imports using earlier versions of Astra Trident, there will not be any operations in the data path and the volume

import will not verify if the volume can be mounted. If a mistake is made with volume import (for example, the

StorageClass is incorrect), you can recover by changing the reclaim policy on the PV to retain, deleting the

PVC and PV, and retrying the volume import command.

ontap-nas and ontap-nas-flexgroup imports

Each volume created with the ontap-nas driver is a FlexVol on the ONTAP cluster. Importing FlexVols with

the ontap-nas driver works the same. A FlexVol that already exists on an ONTAP cluster can be imported as

a ontap-nas PVC. Similarly, FlexGroup vols can be imported as ontap-nas-flexgroup PVCs.

An ONTAP volume must be of type rw to be imported by Trident. If a volume is of type dp, it is a

SnapMirror destination volume; you should break the mirror relationship before importing the

volume into Trident.

The ontap-nas driver cannot import and manage qtrees. The ontap-nas and ontap-nas-

flexgroup drivers do not allow duplicate volume names.

For example, to import a volume named managed_volume on a backend named ontap_nas, use the

following command:

tridentctl import volume ontap_nas managed_volume -f <path-to-pvc-file>

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

To import a volume named unmanaged_volume (on the ontap_nas backend), which Trident will not

manage, use the following command:

116



tridentctl import volume nas_blog unmanaged_volume -f <path-to-pvc-file>

--no-manage

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-df07d542-afbc-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | false   |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

When using the --no-manage argument, Trident does not rename the volume or validate if the volume was

mounted. The volume import operation fails if the volume was not mounted manually.

A previously existing bug with importing volumes with custom UnixPermissions has been fixed.

You can specify unixPermissions in your PVC definition or backend configuration, and instruct

Astra Trident to import the volume accordingly.

ontap-san import

Astra Trident can also import ONTAP SAN FlexVols that contain a single LUN. This is consistent with the

ontap-san driver, which creates a FlexVol for each PVC and a LUN within the FlexVol. You can use the

tridentctl import command in the same way as in other cases:

• Include the name of the ontap-san backend.

• Provide the name of the FlexVol that needs to be imported. Remember, this FlexVol contains only one LUN

that must be imported.

• Provide the path of the PVC definition that must be used with the -f flag.

• Choose between having the PVC managed or unmanaged. By default, Trident will manage the PVC and

rename the FlexVol and LUN on the backend. To import as an unmanaged volume, pass the --no

-manage flag.

When importing an unmanaged ontap-san volume, you should make sure that the LUN in the

FlexVol is named lun0 and is mapped to an igroup with the desired initiators. Astra Trident

automatically handles this for a managed import.

Astra Trident will then import the FlexVol and associate it with the PVC definition. Astra Trident also renames

the FlexVol to the pvc-<uuid> format and the LUN within the FlexVol to lun0.

It is recommended to import volumes that do not have existing active connections. If you are

looking to import an actively used volume, clone the volume first and then do the import.

117



Example

To import the ontap-san-managed FlexVol that is present on the ontap_san_default backend, run the

tridentctl import command as:

tridentctl import volume ontapsan_san_default ontap-san-managed -f pvc-

basic-import.yaml -n trident -d

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-d6ee4f54-4e40-4454-92fd-d00fc228d74a | 20 MiB | basic         |

block    | cd394786-ddd5-4470-adc3-10c5ce4ca757 | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

An ONTAP volume must be of type rw to be imported by Astra Trident. If a volume is of type dp,

it is a SnapMirror destination volume; you should break the mirror relationship before importing

the volume into Astra Trident.

element import

You can import NetApp Element software/NetApp HCI volumes to your Kubernetes cluster with Trident. You

need the name of your Astra Trident backend, and the unique name of the volume and the PVC file as the

arguments for the tridentctl import command.

tridentctl import volume element_default element-managed -f pvc-basic-

import.yaml -n trident -d

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-970ce1ca-2096-4ecd-8545-ac7edc24a8fe | 10 GiB | basic-element |

block    | d3ba047a-ea0b-43f9-9c42-e38e58301c49 | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

118



The Element driver supports duplicate volume names. If there are duplicate volume names,

Trident’s volume import process returns an error. As a workaround, clone the volume and

provide a unique volume name. Then import the cloned volume.

gcp-cvs import

To import a volume backed by the NetApp Cloud Volumes Service in GCP, identify the volume

by its volume path instead of its name.

To import an gcp-cvs volume on the backend called gcpcvs_YEppr with the volume path of adroit-

jolly-swift, use the following command:

tridentctl import volume gcpcvs_YEppr adroit-jolly-swift -f <path-to-pvc-

file> -n trident

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-a46ccab7-44aa-4433-94b1-e47fc8c0fa55 | 93 GiB | gcp-storage   | file

| e1a6e65b-299e-4568-ad05-4f0a105c888f | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

The volume path is the portion of the volume’s export path after the :/. For example, if the export

path is 10.0.0.1:/adroit-jolly-swift, the volume path is adroit-jolly-swift.

azure-netapp-files import

To import an azure-netapp-files volume on the backend called azurenetappfiles_40517 with the

volume path importvol1, run the following command:

119



tridentctl import volume azurenetappfiles_40517 importvol1 -f <path-to-

pvc-file> -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-0ee95d60-fd5c-448d-b505-b72901b3a4ab | 100 GiB | anf-storage   |

file     | 1c01274f-d94b-44a3-98a3-04c953c9a51e | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

The volume path for the ANF volume is present in the mount path after the :/. For example, if the

mount path is 10.0.0.2:/importvol1, the volume path is importvol1.

Share an NFS volume across namespaces

Using Astra Trident, you can create a volume in a primary namespace and share it in one

or more secondary namespaces.

Features

The Astra TridentVolumeReference CR allows you to securely share ReadWriteMany (RWX) NFS volumes

across one or more Kubernetes namespaces. This Kubernetes-native solution has the following benefits:

• Multiple levels of access control to ensure security

• Works with all Trident NFS volume drivers

• No reliance on tridentctl or any other non-native Kubernetes feature

This diagram illustrates NFS volume sharing across two Kubernetes namespaces.

120



Quick start

You can set up NFS volume sharing in just a few steps.

 Configure source PVC to share the volume

The source namespace owner grants permission to access the data in the source PVC.

 Grant permission to create a CR in the destination namespace

The cluster administrator grants permission to the owner of the destination namespace to create the

TridentVolumeReference CR.

 Create TridentVolumeReference in the destination namespace

The owner of the destination namespace creates the TridentVolumeReference CR to refer to the source PVC.

 Create the subordinate PVC in the destination namespace

The owner of the destination namespace creates the subordinate PVC to use the data source from the source

PVC.

121



Configure the source and destination namespaces

To ensure security, cross namespace sharing requires collaboration and action by the source namespace

owner, cluster administrator, and destination namespace owner. The user role is designated in each step.

Steps

1. Source namespace owner: Create the PVC (pvc1) in the source namespace that grants permission to

share with the destination namespace (namespace2) using the shareToNamespace annotation.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: pvc1

  namespace: namespace1

  annotations:

    trident.netapp.io/shareToNamespace: namespace2

spec:

  accessModes:

    - ReadWriteMany

  storageClassName: trident-csi

  resources:

    requests:

      storage: 100Gi

Astra Trident creates the PV and its backend NFS storage volume.

◦ You can share the PVC to multiple namespaces using a comma-delimited list. For

example, trident.netapp.io/shareToNamespace:

namespace2,namespace3,namespace4.

◦ You can share to all namespaces using *. For example,

trident.netapp.io/shareToNamespace: *

◦ You can update the PVC to include the shareToNamespace annotation at any time.

2. Cluster admin: Create the custom role and kubeconfig to grant permission to the destination namespace

owner to create the TridentVolumeReference CR in the destination namespace.

3. Destination namespace owner: Create a TridentVolumeReference CR in the destination namespace that

refers to the source namespace pvc1.

122



apiVersion: trident.netapp.io/v1

kind: TridentVolumeReference

metadata:

  name: my-first-tvr

  namespace: namespace2

spec:

  pvcName: pvc1

  pvcNamespace: namespace1

4. Destination namespace owner: Create a PVC (pvc2) in destination namespace (namespace2) using

the shareFromPVC annotation to designate the source PVC.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  annotations:

    trident.netapp.io/shareFromPVC: namespace1/pvc1

  name: pvc2

  namespace: namespace2

spec:

  accessModes:

    - ReadWriteMany

  storageClassName: trident-csi

  resources:

    requests:

      storage: 100Gi

The size of the destination PVC must be less than or equal than the source PVC.

Results

Astra Trident reads the shareFromPVC annotation on the destination PVC and creates the destination PV as a

subordinate volume with no storage resource of its own that points to the source PV and shares the source PV

storage resource. The destination PVC and PV appear bound as normal.

Delete a shared volume

You can delete a volume that is shared across multiple namespaces. Astra Trident will remove access to the

volume on the source namespace and maintain access for other namespaces that share the volume. When all

namespaces that reference the volume are removed, Astra Trident deletes the volume.

Use tridentctl get to query subordinate volumes

Using the tridentctl utility, you can run the get command to get subordinate volumes. For more

information, refer to tridentctl commands and options.

123

https://docs.netapp.com/us-en/trident-2210/trident-reference/tridentctl.html
https://docs.netapp.com/us-en/trident-2210/trident-reference/tridentctl.html


Usage:

  tridentctl get [option]

Flags:

• `-h, --help: Help for volumes.

• --parentOfSubordinate string: Limit query to subordinate source volume.

• --subordinateOf string: Limit query to subordinates of volume.

Limitations

• Astra Trident cannot prevent destination namespaces from writing to the shared volume. You should use

file locking or other processes to prevent overwriting shared volume data.

• You cannot revoke access to the source PVC by removing the shareToNamespace or

shareFromNamepace annotations or deleting the TridentVolumeReference CR. To revoke access,

you must delete the subordinate PVC.

• Snapshots, clones, and mirroring are not possible on subordinate volumes.

For more information

To learn more about cross-namespace volume access:

• Visit Sharing volumes between namespaces: Say hello to cross-namespace volume access.

• Watch the demo on NetAppTV.

Monitor Astra Trident

Astra Trident provides a set of Prometheus metrics endpoints that you can use to monitor Astra Trident’s

performance.

The metrics provided by Astra Trident enable you to do the following:

• Keep tabs on Astra Trident’s health and configuration. You can examine how successful operations are and

if it can communicate with the backends as expected.

• Examine backend usage information and understand how many volumes are provisioned on a backend

and the amount of space consumed, and so on.

• Maintain a mapping of the amount of volumes provisioned on available backends.

• Track performance. You can take a look at how long it takes for Astra Trident to communicate to backends

and perform operations.

By default, Trident’s metrics are exposed on the target port 8001 at the /metrics endpoint.

These metrics are enabled by default when Trident is installed.

What you’ll need

• A Kubernetes cluster with Astra Trident installed.

• A Prometheus instance. This can be a containerized Prometheus deployment or you can choose to run

124

https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
http://netapp.tv/cloud/details/29594?playlist_id=81&mcid=63262890210074608700682715883688763007
https://github.com/prometheus-operator/prometheus-operator


Prometheus as a native application.

Step 1: Define a Prometheus target

You should define a Prometheus target to gather the metrics and obtain information about the backends Astra

Trident manages, the volumes it creates, and so on. This blog explains how you can use Prometheus and

Grafana with Astra Trident to retrieve metrics. The blog explains how you can run Prometheus as an operator

in your Kubernetes cluster and the creation of a ServiceMonitor to obtain Astra Trident’s metrics.

Step 2: Create a Prometheus ServiceMonitor

To consume the Trident metrics, you should create a Prometheus ServiceMonitor that watches the trident-

csi service and listens on the metrics port. A sample ServiceMonitor looks like this:

apiVersion: monitoring.coreos.com/v1

kind: ServiceMonitor

metadata:

  name: trident-sm

  namespace: monitoring

  labels:

      release: prom-operator

  spec:

    jobLabel: trident

    selector:

      matchLabels:

        app: controller.csi.trident.netapp.io

    namespaceSelector:

      matchNames:

      - trident

    endpoints:

    - port: metrics

      interval: 15s

This ServiceMonitor definition retrieves metrics returned by the trident-csi service and specifically looks

for the metrics endpoint of the service. As a result, Prometheus is now configured to understand Astra

Trident’s

metrics.

In addition to metrics available directly from Astra Trident, kubelet exposes many kubelet_volume_* metrics

via it’s own metrics endpoint. Kubelet can provide information about the volumes that are attached, and pods

and other internal operations it handles. See here.

Step 3: Query Trident metrics with PromQL

PromQL is good for creating expressions that return time-series or tabular data.

Here are some PromQL queries that you can use:

125

https://prometheus.io/download/
https://netapp.io/2020/02/20/prometheus-and-trident/
https://kubernetes.io/docs/concepts/cluster-administration/monitoring/


Get Trident health information

• Percentage of HTTP 2XX responses from Astra Trident

(sum (trident_rest_ops_seconds_total_count{status_code=~"2.."} OR on()

vector(0)) / sum (trident_rest_ops_seconds_total_count)) * 100

• Percentage of REST responses from Astra Trident via status code

(sum (trident_rest_ops_seconds_total_count) by (status_code)  / scalar

(sum (trident_rest_ops_seconds_total_count))) * 100

• Average duration in ms of operations performed by Astra Trident

sum by (operation)

(trident_operation_duration_milliseconds_sum{success="true"}) / sum by

(operation)

(trident_operation_duration_milliseconds_count{success="true"})

Get Astra Trident usage information

• Average volume size

trident_volume_allocated_bytes/trident_volume_count

• Total volume space provisioned by each backend

sum (trident_volume_allocated_bytes) by (backend_uuid)

Get individual volume usage

This is enabled only if kubelet metrics are also gathered.

• Percentage of used space for each volume

kubelet_volume_stats_used_bytes / kubelet_volume_stats_capacity_bytes *

100

Learn about Astra Trident AutoSupport telemetry

By default, Astra Trident sends Prometheus metrics and basic backend information to NetApp on a daily

cadence.

126



• To stop Astra Trident from sending Prometheus metrics and basic backend information to NetApp, pass the

--silence-autosupport flag during Astra Trident installation.

• Astra Trident can also send container logs to NetApp Support on-demand via tridentctl send

autosupport. You will need to trigger Astra Trident to upload it’s logs. Before you submit logs, you should

accept NetApp’s

privacy policy.

• Unless specified, Astra Trident fetches the logs from the past 24 hours.

• You can specify the log retention timeframe with the --since flag. For example: tridentctl send

autosupport --since=1h. This information is collected and sent via a trident-autosupport

container

that is installed alongside Astra Trident. You can obtain the container image at Trident AutoSupport.

• Trident AutoSupport does not gather or transmit Personally Identifiable Information (PII) or Personal

Information. It comes with a EULA that is not applicable to the Trident container image itself. You can learn

more about NetApp’s commitment to data security and trust here.

An example payload sent by Astra Trident looks like this:

{

  "items": [

    {

      "backendUUID": "ff3852e1-18a5-4df4-b2d3-f59f829627ed",

      "protocol": "file",

      "config": {

        "version": 1,

        "storageDriverName": "ontap-nas",

        "debug": false,

        "debugTraceFlags": null,

        "disableDelete": false,

        "serialNumbers": [

          "nwkvzfanek_SN"

        ],

        "limitVolumeSize": ""

      },

      "state": "online",

      "online": true

    }

  ]

}

• The AutoSupport messages are sent to NetApp’s AutoSupport endpoint. If you are using a private registry

to store container images, you can use the --image-registry flag.

• You can also configure proxy URLs by generating the installation YAML files. This can be done by using

tridentctl install --generate-custom-yaml to create the YAML files and adding the --proxy

-url argument for the trident-autosupport container in trident-deployment.yaml.

127

https://www.netapp.com/company/legal/privacy-policy/
https://hub.docker.com/r/netapp/trident-autosupport
https://www.netapp.com/us/media/enduser-license-agreement-worldwide.pdf
https://www.netapp.com/us/company/trust-center/index.aspx


Disable Astra Trident metrics

To disable metrics from being reported, you should generate custom YAMLs (using the --generate-custom

-yaml flag) and edit them to remove the --metrics flag from being invoked for the trident-main

container.

128



Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

129

http://www.netapp.com/TM

	Use Astra Trident : Astra Trident
	Table of Contents
	Use Astra Trident
	Prepare the worker node
	Configure backends
	Create backends with kubectl
	Perform backend management with kubectl
	Perform backend management with tridentctl
	Move between backend management options
	Manage storage classes
	Perform volume operations
	Share an NFS volume across namespaces
	Monitor Astra Trident


