Manage Astra Trident
Astra Trident

NetApp
November 14, 2025

This PDF was generated from https://docs.netapp.com/us-en/trident-2301/trident-managing-k8s/upgrade-
trident.html on November 14, 2025. Always check docs.netapp.com for the latest.

Table of Contents

Manage Astra Trident

Upgrade Astra Trident
Upgrade Astra Trident
Upgrade with the operator
Upgrade with tridentctl

Uninstall Astra Trident
Uninstall by using Helm
Uninstall by using the Trident operator
Uninstall by using tridentctl

Downgrade Astra Trident
When to downgrade
When not to downgrade
Downgrade process when Astra Trident is installed by using the operator
Downgrade process when Astra Trident is installed by using tridentctl

N = —a

10
14
14
15
16

16
16
16
16
18

Manage Astra Trident
Upgrade Astra Trident

Upgrade Astra Trident

Astra Trident follows a quarterly release cadence, delivering four major releases every
calendar year. Each new release builds on top of the previous releases, providing new
features and performance enhancements as well as bug fixes and improvements. We
encourage you to upgrade at least once a year to take advantage of the new features in
Astra Trident.

Select a version

Astra Trident versions follow a date-based YY .MM naming convention, where "YY" is the last two digits of the
year and "MM" is the month. Dot releases follow a Yy .MM. X convention, where "X" is the patch level. You will
select the version to upgrade to based on the version you are upgrading from.

* You can perform a direct upgrade to any target release that is within a four-release window of your installed
version. For example, you can upgrade to 23.01 from 22.01 (including any dot releases, such as 22.01.1)
directly.

« If you have an earlier release, you should perform a multi-step upgrade using the documentation of the
respective release for specific instructions. This requires you to first upgrade to the most recent release
that fits your four-release window. For example, if you are running 18.07 and want to upgrade to the 20.07
release, then follow the multi-step upgrade process as given below:

1. First upgrade from 18.07 to 19.07.
2. Then upgrade from 19.07 to 20.07.

* All upgrades for versions 19.04 and earlier require the migration of Astra Trident metadata
from it own etcd to CRD objects. Ensure you check the documentation of the release to
understand how the upgrade works.

* When upgrading, it is important you provide parameter.fsType in StorageClasses
@ used by Astra Trident. You can delete and re-create StorageClasses without disrupting
pre-existing volumes. This is a requirement for enforcing security contexts for SAN
volumes. The sample input directory contains examples, such as storage-class-
basic.yaml.templ and storage-class-bronze-default.yaml. For more
information, see Known Issues.

Select an upgrade option

There are two options to upgrade Astra Trident. Generally, you will use the same option you used for the initial
installation, however you can move between installation methods.

* Upgrade using the Trident operator

* Upgrade using tridentctl

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://github.com/NetApp/trident/tree/master/trident-installer/sample-input
https://github.com/NetApp/trident/blob/master/trident-installer/sample-input/storage-class-samples/storage-class-basic.yaml.templ
https://github.com/NetApp/trident/blob/master/trident-installer/sample-input/storage-class-samples/storage-class-basic.yaml.templ
https://github.com/NetApp/trident/blob/master/trident-installer/sample-input/storage-class-samples/storage-class-bronze-default.yaml
https://docs.netapp.com/us-en/trident-2301/trident-rn.html
https://docs.netapp.com/us-en/trident-2301/trident-get-started/kubernetes-deploy.html#moving-between-installation-methods

CSI Volume Snapshots is now a feature that is GA, beginning with Kubernetes 1.20. When
upgrading Astra Trident, all previous alpha snapshot CRs and CRDs (Volume Snapshot

@ Classes, Volume Snapshots and Volume Snapshot Contents) must be removed before the
upgrade is performed. Refer to this blog to understand the steps involved in migrating alpha
snapshots to the beta/GA spec.

Changes to the operator

The 21.01 release of Astra Trident introduces some key architectural changes to the operator, namely the
following:

* The operator is now cluster-scoped. Previous instances of the Trident operator (versions 20.04 through
20.10) were namespace-scoped. An operator that is cluster-scoped is advantageous for the following
reasons:

o Resource accountability: The operator now manages resources associated with an Astra Trident
installation at the cluster level. As part of installing Astra Trident, the operator creates and maintains
several resources by using ownerReferences. Maintaining ownerReferences on cluster-scoped
resources can throw up errors on certain Kubernetes distributors such as OpenShift. This is mitigated
with a cluster-scoped operator. For auto-healing and patching Trident resources, this is an essential
requirement.

o

Cleaning up during uninstallation: A complete removal of Astra Trident would require all associated
resources to be deleted. A namespace-scoped operator might experience issues with the removal of
cluster-scoped resources (such as the clusterRole, ClusterRoleBinding and PodSecurityPolicy) and
lead to an incomplete clean-up. A cluster-scoped operator eliminates this issue. Users can completely
uninstall Astra Trident and install afresh if needed.

* TridentProvisioner is now replaced with TridentOrchestrator as the Custom Resource used to
install and manage Astra Trident. In addition, a new field is introduced to the TridentOrchestrator
spec. Users can specify that the namespace Trident must be installed/upgraded from using the
spec.namespace field. You can take a look at an example here.

Upgrade with the operator
You can easily upgrade an existing Astra Trident installation using the operator.

Before you begin
To upgrade using the operator, the following conditions should be met:

* You must have a CSl-based Astra Trident installation. All releases from 19.07 on are CSl-based. You can
examine the pods in your Trident namespace to verify.

° Pod naming in versions earlier than 23.01 follows a trident-csi-* convention.

° Pod naming in 23.01 and later uses: trident-controller-<generated id> forthe controller
pod; trident-node-<operating system>-<generated id> for the node pods; trident-
operator-<generated id> for the operator pod.

* If you have uninstalled CSI Trident and the metadata from the installation persists, you can upgrade by
using the operator.

» Only one Astra Trident installation should exist across all the namespaces in a given Kubernetes cluster.
* You should be using a Kubernetes cluster running a supported Kubernetes version.

* If alpha snapshot CRDs are present, you should remove them with tridentctl obliviate alpha-

https://netapp.io/2020/01/30/alpha-to-beta-snapshots/
https://github.com/NetApp/trident/blob/stable/v21.01/deploy/crds/tridentorchestrator_cr.yaml
https://docs.netapp.com/us-en/trident-2301/trident-get-started/requirements.html

snapshot-crd. This deletes the CRDs for the alpha snapshot spec. For existing snapshots that should
be deleted/migrated, see this blog.

* When upgrading Trident using the operator on OpenShift Container Platform, you should
upgrade to Trident 21.01.1 or later. The Trident operator released with 21.01.0 contains a
@ known issue that has been fixed in 21.01.1. For more details, see the issue details on
GitHub.

* Do not use the operator to upgrade Trident if you are using an etcd-based Trident release
(19.04 or earlier).

Upgrade a cluster-scoped Trident operator installation

Follow these steps to upgrade a cluster-scoped Trident operator installation. All Astra Trident versions 21.01
and above use a cluster-scoped operator.

Steps
1. Verify your Astra Trident version:

./tridentctl -n trident version

2. Delete the Trident operator that was used to install the current Astra Trident instance. For example, if you
are upgrading from 22.01, run the following command:

kubectl delete -f 22.01/trident-installer/deploy/bundle.yaml -n trident

3. If you customized your initial installation using TridentOrchestrator attributes, you can edit the
TridentOrchestrator object to modify the installation parameters. This might include changes made to
specify mirrored Trident and CSI image registries for offline mode, enable debug logs, or specify image pull
secrets.

4. Install Astra Trident using the correct bundle YAML file for your environment and Astra Trident version. For
example, if you are installing Astra Trident 23.01 for Kubernetes 1.26, run the following command:

kubectl create -f 23.01.1/trident-installer/deploy/bundle post 1 25.yaml
-n trident

Trident provides a bundle file that can be used to install the operator and create associated
objects for your Kubernetes version.
o For clusters running Kubernetes 1.24 or lower, use bundle_pre_1_25.yaml.

o For clusters running Kubernetes 1.25 or higher, use bundle post 1 25.yaml.

Results

The Trident operator will identify an existing Astra Trident installation and upgrade it to the same version as the
operator.

https://netapp.io/2020/01/30/alpha-to-beta-snapshots/
https://github.com/NetApp/trident/issues/517
https://github.com/NetApp/trident/issues/517
https://github.com/NetApp/trident/tree/stable/v23.01/deploy/bundle_pre_1_25.yaml
https://github.com/NetApp/trident/tree/stable/v23.01/deploy/bundle_post_1_25.yaml

Upgrade a namespace-scoped operator installation

Follow these steps to upgrade from an instance of Astra Trident installed using the namespace-scoped
operator (versions 20.07 through 20.10).

Steps

1. Verify the status of the existing Trident installation. To do this, check the Status of TridentProvisioner.
The status should be Installed.

kubectl describe tprov trident -n trident | grep Message: -A 3
Message: Trident installed

Status: Installed

Version: v20.10.1

@ If status shows Updating, ensure you resolve it before proceeding. For a list of possible
status values, see here.

2. Create the TridentOrchestrator CRD by using the manifest provided with the Trident installer.

Download the release required [23.01.1]

mkdir 23.01.1

cd 23.01.1

wget
https://github.com/NetApp/trident/releases/download/v23.01.1/trident-
installer-23.01.1.tar.gz

tar -xf trident-installer-23.01.1.tar.gz

cd trident-installer

kubectl create -f

deploy/crds/trident.netapp.io tridentorchestrators crd postl.l6.yaml

3. Delete the namespace-scoped operator by using its manifest. To complete this step, you need the bundle
YAML file used to deploy the namespace-scoped operator from
https://github.com/NetApp/trident/tree/stable/vXX.XX/deploy/BUNDLE. YAML where
vXX.XxXis the version number and BUNDLE . YAML is the bundle YAML file name.

You should make the necessary changes to the Trident install parameters (for example,
changing the values for tridentImage, autosupportImage, private image repository,

(D and providing imagePullSecrets) after deleting the namespace-scoped operator and
before installing the cluster-scoped operator. For a complete list of parameters that can be
updated, refer to the configuration options.

https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy-operator.html
https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-customize-deploy.html#configuration-options

#Ensure you are in the right directory
pwd
/root/20.10.1/trident-installer

#Delete the namespace-scoped operator

kubectl delete -f deploy/<BUNDLE.YAML> -n trident

serviceaccount "trident-operator" deleted
clusterrole.rbac.authorization.k8s.io "trident-operator" deleted
clusterrolebinding.rbac.authorization.k8s.io "trident-operator" deleted
deployment.apps "trident-operator" deleted

podsecuritypolicy.policy "tridentoperatorpods" deleted

#Confirm the Trident operator was removed
kubectl get all -n trident

NAME READY STATUS RESTARTS AGE
pod/trident-csi-68d979fb85-dsrmn 6/6 Running 12 99d
pod/trident-csi-8jfhf 2/2 Running 6 105d
pod/trident-csi-jtnjz 2/2 Running 6 105d
pod/trident-csi-lcxvh 2/2 Running 8 105d
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S)
AGE

service/trident-csi ClusterIP 10.108.174.125 <none>
34571/TCP, 9220/TCP 105d

NAME DESIRED CURRENT READY UP-TO-DATE
AVAILABLE NODE SELECTOR AGE
daemonset.apps/trident-csi 3 3 3 3 3
kubernetes.io/arch=amdé64, kubernetes.io/os=1linux 105d

NAME READY UP-TO-DATE AVATLABLE AGE
deployment.apps/trident-csi 1/1 1 1 105d

NAME DESTIRED CURRENT READY AGE
replicaset.apps/trident-csi-68d979fb85 1 1 1

105d

At this stage, the trident-operator-xxxxxxxxxx-xxxxx pod is deleted.

4. (Optional) If the install parameters need to be modified, update the TridentProvisioner spec. These
could be changes such as modifying the private image registry to pull container images from, enabling
debug logs, or specifying image pull secrets.

kubectl patch tprov <trident-provisioner-name> -n <trident-namespace>

-—type=merge -p '{"spec":{"debug":true}}'

5. Install the Trident operator.

®

®

Installing the cluster-scoped operator initiates the migration of TridentProvisioner
objects to TridentOrchestrator objects, deletes TridentProvisioner objects and
the tridentprovisioner CRD, and upgrades Astra Trident to the version of the cluster-
scoped operator being used. In the example that follows, Trident is upgraded to 23.01.1.

Upgrading Astra Trident using the Trident operator results in the migration of
tridentProvisioner toa tridentOrchestrator object with the same name. This is
automatically handled by the operator. The upgrade will also have Astra Trident installed in
the same namespace as before.

#Ensure you are in the correct directory
pwd
/root/23.01.1/trident-installer

#Install the cluster-scoped operator in the **same namespace**
kubectl create -f deploy/<BUNDLE.YAML>
serviceaccount/trident-operator created
clusterrole.rbac.authorization.k8s.io/trident-operator created
clusterrolebinding.rbac.authorization.k8s.io/trident-operator created
deployment.apps/trident-operator created
podsecuritypolicy.policy/tridentoperatorpods created

#A11l tridentProvisioners will be removed, including the CRD itself
kubectl get tprov -n trident

Error from server (NotFound): Unable to list "trident.netapp.io/vl,
Resource=tridentprovisioners": the server could not find the requested
resource (get tridentprovisioners.trident.netapp.io)

#tridentProvisioners are replaced by tridentOrchestrator
kubectl get torc

NAME AGE

trident 13s

#Examine Trident pods in the namespace
kubectl get pods -n trident

NAME READY STATUS RESTARTS
AGE

trident-controller-79df798bdc-m79dc 6/6 Running 0

Ilm4dls

trident-node-linux-xrst8 2/2 Running 0

Im4dls

trident-operator-5574dbbc68-nthjv 1/1 Running 0

1Im52s

#Confirm Trident has been updated to the desired version
kubectl describe torc trident | grep Message -A 3

Message: Trident installed

Namespace: trident

Status: Installed

Version: v23.01.1

@ The trident-controller and pod names reflect the naming convention introduced in
23.01.

Upgrade a Helm-based operator installation

Perform the following steps to upgrade a Helm-based operator installation.

When upgrading a Kubernetes cluster from 1.24 to 1.25 or later that has Astra Trident installed,

(D you must update values.yaml to set excludePodSecurityPolicy to true oradd --set
excludePodSecurityPolicy=true tothe helm upgrade command before you can
upgrade the cluster.

Steps
1. Download the latest Astra Trident release.

2. Use the helm upgrade command where trident-operator-23.01.1.tgz reflects the version that
you want to upgrade to.

helm upgrade <name> trident-operator-23.01.1.tgz

If you set any non-default options during the initial installation (such as specifying private,
mirrored registries for Trident and CSl images), use --set to ensure those options are
included in the upgrade command, otherwise the values will reset to default.

@ For example, to change the default value of tridentDebug, run the following command:

helm upgrade <name> trident-operator-23.01l.l-custom.tgz --set
tridentDebug=true

3. Run helm 1list to verify that the chart and app version have both been upgraded. Run tridentctl
logs to review any debug messages.

Results

The Trident operator will identify an existing Astra Trident installation and upgrade it to the same version as the
operator.

Upgrade from a non-operator installation
You can upgrade to the latest release of the Trident operator from a tridentctl installation.

Steps
1. Download the latest Astra Trident release.

Download the release required [23.01.1]

mkdir 23.01.1

cd 23.01.1

wget
https://github.com/NetApp/trident/releases/download/v22.01.1/trident-
installer-23.01.1.tar.gz

tar -xf trident-installer-23.01.1.tar.gz

cd trident-installer

2. Create the tridentorchestrator CRD from the manifest.

kubectl create -f
deploy/crds/trident.netapp.io tridentorchestrators crd postl.l6.yaml

3. Deploy the operator.

#Install the cluster-scoped operator in the **same namespace**
kubectl create -f deploy/<BUNDLE.YAML>
serviceaccount/trident-operator created
clusterrole.rbac.authorization.k8s.io/trident-operator created
clusterrolebinding.rbac.authorization.k8s.io/trident-operator created
deployment.apps/trident-operator created
podsecuritypolicy.policy/tridentoperatorpods created

#Examine the pods in the Trident namespace

NAME READY STATUS RESTARTS AGE

trident-controller-79df798bdc-m79dc 6/6 Running 0 150d
trident-node-linux-xrst8 2/2 Running 0 150d
trident-operator-5574dbbc68-nthijv 1/1 Running 0 1m30s

4. Create a TridentOrchestrator CR for installing Astra Trident.

#Create a tridentOrchestrator to initiate a Trident install
cat deploy/crds/tridentorchestrator cr.yaml
apiVersion: trident.netapp.io/vl
kind: TridentOrchestrator
metadata:
name: trident
spec:
debug: true
namespace: trident

kubectl create -f deploy/crds/tridentorchestrator cr.yaml

#Examine the pods in the Trident namespace

NAME READY STATUS RESTARTS AGE
trident-csi-79d£f798bdc-m79dc 6/6 Running 0 Im
trident-csi-xrst8 2/2 Running 0 1m
trident-operator-5574dbbc68-nthijv 1/1 Running 0 5mdls

#Confirm Trident was upgraded to the desired version
kubectl describe torc trident | grep Message -A 3

Message: Trident installed
Namespace: trident
Status: Installed
Version: v23.01.1

Results

The existing backends and PVCs are automatically available.

Upgrade with tridentctl

You can easily upgrade an existing Astra Trident installation using tridentctl.

Considerations before upgrading

When upgrading to the latest release of Astra Trident, consider the following:

« Starting with Trident 20.01, only the beta release of volume snapshots is supported. Kubernetes
administrators should take care to safely back up or convert the alpha snapshot objects to beta to retain
the legacy alpha snapshots.

* The beta release of volume snapshots introduces a modified set of CRDs and a snapshot controller, both
of which should be set up before installing Astra Trident. This blog discusses the steps involved in
migrating alpha volume snapshots to the beta format.

* Uninstalling and reinstalling Astra Trident acts as an upgrade. When you uninstall Trident, the Persistent
Volume Claim (PVC) and Persistent Volume (PV) used by the Astra Trident deployment are not deleted.
PVs that have already been provisioned will remain available while Astra Trident is offline, and Astra
Trident will provision volumes for any PVCs that are created in the interim once it is back online.

10

https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://netapp.io/2020/01/30/alpha-to-beta-snapshots/

@ When upgrading Astra Trident, do not interrupt the upgrade process. Ensure that the installer
runs to completion.

Next steps after upgrade

To make use of the rich set of features that are available in newer Trident releases (such as, On-Demand
Volume Snapshots), you can upgrade the volumes by using the tridentctl upgrade command.

If there are legacy volumes, you should upgrade them from a NFS/iSCSI type to the CSl type to be able to use
the complete set of new features in Astra Trident. A legacy PV that has been provisioned by Trident supports
the traditional set of features.

Consider the following when deciding to upgrade volumes to the CSlI type:

* You might not need to upgrade all the volumes. Previously created volumes will continue to be accessible
and function normally.

* APV can be mounted as part of a deployment/StatefulSet when upgrading. It is not required to bring down
the deployment/StatefulSet.

* You cannot attach a PV to a standalone pod when upgrading. You should shut down the pod before
upgrading the volume.

* You can upgrade only a volume that is bound to a PVC. Volumes that are not bound to PVCs should be
removed and imported before upgrading.

Volume upgrade example

Here is an example that shows how a volume upgrade is performed.

1. Run kubectl get pv to list the PVs.

kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY
STATUS CLAIM STORAGECLASS REASON AGE
default-pvc-1-a8475 1073741824 RWO Delete
Bound default/pve-1 standard 19h
default-pvc-2-a8486 1073741824 RWO Delete
Bound default/pvc-2 standard 19h
default-pvc-3-a849e 1073741824 RWO Delete
Bound default/pvc-3 standard 19h
default-pvc-4-a84de 1073741824 RWO Delete
Bound default/pvc-4 standard 19h
trident 2Gi RWO Retain
Bound trident/trident 19h

There are currently four PVs that have been created by Trident 20.07, using the netapp.io/trident
provisioner.

2. Run kubectl describe pv to getthe details of the PV.

11

kubectl describe pv default-pvc-2-a8486

Name: default-pvc-2-a8486
Labels: <none>
Annotations: pv.kubernetes.io/provisioned-by: netapp.io/trident
volume.beta.kubernetes.io/storage-class: standard
Finalizers: [kubernetes.io/pv-protection]
StorageClass: standard
Status: Bound
Claim: default/pvec-2
Reclaim Policy: Delete
Access Modes: RWO
VolumeMode: Filesystem
Capacity: 1073741824
Node Affinity: <none>
Message:
sSource:
Type: NFS (an NFS mount that lasts the lifetime of a pod)
Server: 10.XX.XX.XX
Path: /trid 1907 alpha default pvc 2 a8486
ReadOnly: false

The PV was created by using the netapp.io/trident provisioner and is of the type NFS. To support all
the new features provided by Astra Trident, this PV should be upgraded to the CSI type.

3. Run the tridentctl upgrade volume <name-of-trident-volume> command to upgrade a
legacy Astra Trident volume to the CSI spec.

12

./tridentctl get volumes -n trident

PROTOCOL |

| default-pvc-2-a8486 | 1.0 GiB |
b052-423b-80d4-8fb491alda?22 | online |
| default-pvc-3-a849e | 1.0 GiB |
b052-423b-80d4-8fb491alda22 |
| default-pvc-1-a8475 | 1.0 GiB |
b052-423b-80d4-8fb491aldaz22 |
| default-pvc-4-a84de | 1.0 GiB |
b052-423b-80d4-8fb491aldaz22 |

standard |
true |
standard |
online | true |
standard |
online | true |
standard |

online | true |

Fommmmmmecemsmeseseme= P Fommmmmmemememe= Pommmmmmm==
Fommmmmmmmesrrrrrrrre e reme s e mmm o Frommmmom= Fommmommm= +
| NAME | SIZE | STORAGE CLASS | PROTOCOL |
BACKEND UUID | STATE | MANAGED |
Fommmmmmmmrmemeoeosoes Fommmomom= Fommmmmcmmeocosafoonoomomos
Fommmmememesesesese s s s s e eses e +
| default-pvc-2-a8486 | 1.0 GiB | standard | file |
b052-423b-80d4-8fb491ald4a22 | online | true |
ittt Fommmmmm== fommmmmmememem= Pommmmmmm==
Bt e e o= Fommmmmm== +

4. Run a kubectl describe pv to verify that the volume is a CSI volume.

cba6bfoad-

cbaocfoad-

cbaofoad-

cba6bfoad-

cbaobfoad-

13

kubectl describe pv default-pvc-2-a8486

Name: default-pvc-2-a8486
Labels: <none>
Annotations: pv.kubernetes.io/provisioned-by: csi.trident.netapp.io
volume.beta.kubernetes.io/storage-class: standard
Finalizers: [kubernetes.io/pv-protection]
StorageClass: standard
Status: Bound
Claim: default/pvc-2
Reclaim Policy: Delete
Access Modes: RWO
VolumeMode: Filesystem
Capacity: 1073741824
Node Affinity: <none>
Message:
Source:
Type: CSI (a Container Storage Interface (CSI) volume
source)
Driver: csi.trident.netapp.io
VolumeHandle: default-pvc-2-a8486
ReadOnly: false
VolumeAttributes: backendUUID=c5a6f6a4-b052-423b-80d4~-
8fb491alda22

internalName=trid 1907 alpha default pvc 2 a8486

Events:

name=default-pvc-2-a8486
protocol=file
<none>

In this manner, you can upgrade volumes of the NFS/iSCSI type that were created by Astra Trident to the
CSl type, on a per-volume basis.

Uninstall Astra Trident

Depending on how Astra Trident is installed, there are multiple options to uninstall it.

Uninstall by using Helm

If you installed Astra Trident by using Helm, you can uninstall it by using helm uninstall.

14

#List the Helm release corresponding to the Astra Trident install.
helm 1ls -n trident

NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION

trident trident 1 2021-04-20
00:26:42.417764794 +0000 UTC deployed trident-operator-21.07.1
21.07.1

#Uninstall Helm release to remove Trident
helm uninstall trident -n trident
release "trident" uninstalled

Uninstall by using the Trident operator

If you installed Astra Trident by using the operator, you can uninstall it by doing one of the following:

* Edit TridentOrchestrator to set the uninstall flag: You can edit TridentOrchestrator and set
spec.uninstall=true. Edit the TridentOrchestrator CR and set the uninstall flag as shown
below:

kubectl patch torc <trident-orchestrator-name> --type=merge -p
"{"spec":{"uninstall":true}}'

When the uninstall flag is set to true, the Trident operator uninstalls Trident, but does not remove the
TridentOrchestrator itself. You should clean up the TridentOrchestrator and create a new one if you want to
install Trident again.

* Delete TridentOrchestrator: By removing the TridentOrchestrator CR that was used to deploy
Astra Trident, you instruct the operator to uninstall Trident. The operator processes the removal of
TridentOrchestrator and proceeds to remove the Astra Trident deployment and daemonset, deleting
the Trident pods it had created as part of the installation.

To completely remove Astra Trident (including the CRDs it creates) and effectively wipe the slate clean, you
can edit TridentOrchestrator to pass the wipeout option. See the following example:

kubectl patch torc <trident-orchestrator-name> --type=merge -p
"{"spec":{"wipeout":["crds"],"uninstall":true}}"

This uninstalls Astra Trident completely and clears all metadata related to the backends and volumes it
manages. Subsequent installations are treated as fresh installations.

You should only consider wiping out the CRDs when performing a complete uninstallation. This
cannot be undone. Do not wipe out the CRDs unless you are looking to start over and
create a fresh Astra Trident installation.

15

Uninstall by using tridentctl

Run the uninstall command in tridentctl as follows to removes all of the resources associated with
Astra Trident except for the CRDs and related objects, thereby making it easy to run the installer again to
update to a more recent version.

./tridentctl uninstall -n <namespace>

To perform a complete removal of Astra Trident, you should remove the finalizers for the CRDs created by
Astra Trident and delete the CRDs.

Downgrade Astra Trident

Learn about the steps involved in downgrading to an earlier version of Astra Trident.

When to downgrade
You might consider downgrading for various reasons, such as the following:

» Contingency planning

* Immediate fix for bugs observed as a result of an upgrade

» Dependency issues, unsuccessful and incomplete upgrades
You should consider a downgrade when moving to a Astra Trident release that uses CRDs. Because Astra
Trident uses CRDs for maintaining state, all storage entities created (backends, storage classes, PV, and
volume snapshots) have associated CRD objects instead of data written into the trident PV (used by the

earlier installed version of Astra Trident). Newly created PVs, backends, and storage classes are all maintained
as CRD objects.

Only attempt downgrade for a version of Astra Trident that runs using CRDs (19.07 and later). This ensures
operations performed on the current Astra Trident release are visible after the downgrade occurs.

When not to downgrade

You should not downgrade to a release of Trident that uses etcd to maintain state (19.04 and earlier). All
operations performed with the current Astra Trident release are not reflected after the downgrade. Newly
created PVs are not usable when moving back to an earlier version. Changes made to objects such as
backends, PVs, storage classes, and volume snapshots (created/updated/deleted) are not visible to Astra
Trident when moving back to an earlier version. Going back to an earlier version does not disrupt access for
PVs that were already created by using the older release, unless they have been upgraded.

Downgrade process when Astra Trident is installed by using the operator

For installations done using the Trident Operator, the downgrade process is different and does not require the
use of tridentctl.

For installations done using the Trident operator, Astra Trident can be downgraded to either of the following:

» Aversion that is installed using the namespace-scoped operator (20.07 - 20.10).

16

« Aversion that is installed using the cluster-scoped operator (21.01 and later).

Downgrade to cluster-scoped operator

To downgrade Astra Trident to a release that uses the cluster-scoped operator, follow the steps mentioned
below.

Steps
1. Uninstall Astra Trident. Do not delete the CRDs unless you want to completely remove an existing
installation.

2. The Trident operator can be deleted by using the operator manifest associated with your version of Trident.
For example, https://github.com/NetApp/trident/tree/stable/vXX.XX
/deploy/bundle.yaml where vXX. XX is the version number (for example v22.10) and bundle. yaml
is the bundle YAML file name.

3. Continue downgrading by installing the desired version of Astra Trident. Follow the documentation for the
desired release.

Downgrade to namespace-scoped operator

This section summarizes the steps involved in downgrading to an Astra Trident release that falls in the range
20.07 through 20.10, which will be installed using the namespace-scoped operator.

Steps

1. Uninstall Astra Trident. Do not wipeout the CRDs unless you want to completely remove an existing
installation.
Make sure the tridentorchestrator is deleted.

#Check to see if there are any tridentorchestrators present
kubectl get torc
NAME AGE
trident 20h

#Looks like there is a tridentorchestrator that needs deleting
kubectl delete torc trident
tridentorchestrator.trident.netapp.io "trident" deleted

2. The Trident operator can be deleted by using the operator manifest associated with your version of Trident.
For example, https://github.com/NetApp/trident/tree/stable/vXX.XX
/deploy/bundle.yaml where vxX. XX is the version number (for example v22.10) and bundle. yaml
is the bundle YAML file name.

3. Delete the tridentorchestrator CRD.

17

#Check to see if " tridentorchestrators.trident.netapp.io” CRD is
present and delete it.

kubectl get crd tridentorchestrators.trident.netapp.io

NAME CREATED AT
tridentorchestrators.trident.netapp.io 2021-01-21T21:11:37%

kubectl delete crd tridentorchestrators.trident.netapp.io

customresourcedefinition.apiextensions.k8s.io
"tridentorchestrators.trident.netapp.io" deleted

Astra Trident has been uninstalled.

4. Continue downgrading by installing the desired version. Follow the documentation for the desired release.

Downgrade by using Helm

To downgrade, use the helm rollback command. See the following example:

helm rollback trident [revision #]

Downgrade process when Astra Trident is installed by using tridentctl

If you installed Astra Trident by using tridentctl, the downgrade process involves the following steps. This
sequence walks you through the downgrade process to move from Astra Trident 21.07 to 20.07.

(D Before beginning the downgrade, you should take a snapshot of your Kubernetes cluster’s
etcd. This enables you to back up the current state of Astra Trident’'s CRDs.

Steps

1. Make sure that Trident is installed by using tridentctl. If you are unsure about how Astra Trident is
installed, run this simple test:

a. List the pods present in the Trident namespace.

b. Identify the version of Astra Trident running in your cluster. You can either use tridentctl or take a
look at the image used in the Trident pods.

C. If you do not see a tridentOrchestrator, (or)a tridentprovisioner, (or) a pod named
trident-operator-xxxxxxxxxx-xxxxx, Astra Trident is installed with tridentctl.

2. Uninstall Astra Trident with the existing tridentct1 binary. In this case, you will uninstall with the 21.07
binary.

18

tridentctl version -n trident

fom e o +
| SERVER VERSION | CLIENT VERSION |
Fom e o m e +
| 21.07.0 | 21.07.0 |
fom e oo +

tridentctl uninstall

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

Deleted
Deleted
Deleted
Deleted
Deleted
Deleted
Deleted
Deleted

Trident
Trident
Trident
Trident
cluster
cluster

service

-n trident
deployment.
daemonset.
service.
secret.

role binding.
role.
account.

pod security policy.

podSecurityPolicy=tridentpods

INFO The uninstaller did not delete Trident's namespace in case it is

going to be reused.

INFO Trident uninstallation succeeded.

3. After this is complete, obtain the Trident binary for the desired version (in this example, 20.07), and use it
to install Astra Trident. You can generate custom YAMLs for a customized installation if needed.

cd 20.07/trident-installer/
./tridentctl install -n trident-ns
INFO Created installer service account.

serviceaccount=trident-installer

INFO Created installer cluster role.

installer

clusterrole=trident-

INFO Created installer cluster role binding.

clusterrolebinding=trident-installer

INFO Created installer configmap.

installer

configmap=trident-

INFO Deleted installer cluster role binding.
INFO Deleted installer cluster role.
INFO Deleted installer service account.

The downgrade process is complete.

19

https://docs.netapp.com/us-en/trident-2301/trident-get-started/kubernetes-customize-deploy-tridentctl.html

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

20

http://www.netapp.com/TM

	Manage Astra Trident : Astra Trident
	Table of Contents
	Manage Astra Trident
	Upgrade Astra Trident
	Upgrade Astra Trident
	Upgrade with the operator
	Upgrade with tridentctl

	Uninstall Astra Trident
	Uninstall by using Helm
	Uninstall by using the Trident operator
	Uninstall by using tridentctl

	Downgrade Astra Trident
	When to downgrade
	When not to downgrade
	Downgrade process when Astra Trident is installed by using the operator
	Downgrade process when Astra Trident is installed by using tridentctl

