Perform volume operations
Astra Trident

NetApp
November 14, 2025

This PDF was generated from https://docs.netapp.com/us-en/trident-2301/trident-use/csi-topology.html on
November 14, 2025. Always check docs.netapp.com for the latest.

Table of Contents

Perform volume operations

Use CSI Topology
Step 1: Create a topology-aware backend
Step 2: Define StorageClasses that are topology aware
Step 3: Create and use a PVC
Update backends to include supportedTopologies
Find more information

Work with snapshots
Step 1: Create a VolumeSnapshotClass
Step 2: Create a snapshot of an existing PVC
Step 3: Create PVCs from VolumeSnapshots
Deploying a volume snapshot controller
Related links

Expand volumes
Expand an iSCSI volume
Expand an NFS volume

Import volumes
Drivers that support volume import
Why should | import volumes?
How does the import work?
ontap-nas and ontap-nas-flexgroup imports
ontap-san import
element import
gcp-cvs import

azure-netapp-files import

© 0 0 0 0 U AN =~

N DN DA A A =
- O O © © O NN -~ -~ O

N N N DN
A A WODN

Perform volume operations

Learn about the features Astra Trident provides for managing your volumes.

* Use CSI Topology
* Work with snapshots
* Expand volumes

* Import volumes

Use CSI Topology

Astra Trident can selectively create and attach volumes to nodes present in a Kubernetes cluster by making
use of the CSI Topology feature. Using the CSI Topology feature, access to volumes can be limited to a subset
of nodes, based on regions and availability zones. Cloud providers today enable Kubernetes administrators to
spawn nodes that are zone based. Nodes can be located in different availability zones within a region, or
across various regions. To facilitate the provisioning of volumes for workloads in a multi-zone architecture,

Astra Trident uses CSI Topology.
Learn more about the CSI Topology feature here.

Kubernetes provides two unique volume binding modes:

* With VvolumeBindingMode set to Immediate, Astra Trident creates the volume without any topology
awareness. Volume binding and dynamic provisioning are handled when the PVC is created. This is the
default volumeBindingMode and is suited for clusters that do not enforce topology constraints. Persistent
Volumes are created without having any dependency on the requesting pod’s scheduling requirements.

* With VolumeBindingMode set to WaitForFirstConsumer, the creation and binding of a Persistent
Volume for a PVC is delayed until a pod that uses the PVC is scheduled and created. This way, volumes
are created to meet the scheduling constraints that are enforced by topology requirements.

@ The WaitForFirstConsumer binding mode does not require topology labels. This can be
used independent of the CSI Topology feature.

What you’ll need
To make use of CSI Topology, you need the following:

* A Kubernetes cluster running a supported Kubernetes version

https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://docs.netapp.com/us-en/trident-2301/trident-get-started/requirements.html

kubectl version

Client Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"1el1le4a2108024935ecfcb2912226cedeafd99df",
GitTreeState:"clean", BuildDate:"2020-10-14T12:50:192",
GoVersion:"gol.15.2", Compiler:"gc", Platform:"linux/amdoc4"}
Server Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"1elled4a2108024935ecfcb2912226cedeafd99df"”,
GitTreeState:"clean", BuildDate:"2020-10-14T12:41:492",
GoVersion:"gol.15.2", Compiler:"gc", Platform:"linux/amd64"}

* Nodes in the cluster should have labels that introduce topology awareness
(topology.kubernetes.io/region and topology.kubernetes.io/zone). These labels should
be present on nodes in the cluster before Astra Trident is installed for Astra Trident to be topology
aware.

kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{ .metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"
[nodel,
{"beta.kubernetes.io/arch":"amd64", "beta.kubernetes.io/o0os":"1linux", "kube

rnetes.io/arch":"amdo64", "kubernetes.io/hostname" :"nodel", "kubernetes.io/
os":"linux", "node-

role.kubernetes.io/master":"", "topology.kubernetes.io/region":"us-
eastl","topology.kubernetes.io/zone":"us-eastl-a"}]

[node2,

{"beta.kubernetes.io/arch":"amde64", "beta.kubernetes.io/0s":"1linux", "kube
rnetes.io/arch":"amd64", "kubernetes.io/hostname" :"node2", "kubernetes.io/
os":"linux", "node-

role.kubernetes.io/worker":"", "topology.kubernetes.io/region":"us-
eastl","topology.kubernetes.io/zone" :"us-eastl-b"}]

[node3,

{"beta.kubernetes.io/arch":"amd64", "beta.kubernetes.io/o0os":"1linux", "kube
rnetes.io/arch":"amd64", "kubernetes.io/hostname" :"node3", "kubernetes.io/
os":"linux", "node-

role.kubernetes.io/worker":"", "topology.kubernetes.io/region":"us-
eastl", "topology.kubernetes.io/zone":"us-eastl-c"}]

Step 1: Create a topology-aware backend

Astra Trident storage backends can be designed to selectively provision volumes based on availability zones.
Each backend can carry an optional supportedTopologies block that represents a list of zones and regions
that must be supported. For StorageClasses that make use of such a backend, a volume would only be
created if requested by an application that is scheduled in a supported region/zone.

Here is an example backend definition:

YAML

version: 1

storageDriverName: ontap-san

backendName: san-backend-us-eastl

managementLIF: 192.168.27.5

svm: iscsi svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-eastl
topology.kubernetes.io/zone: us-eastl-a

- topology.kubernetes.io/region: us-eastl

topology.kubernetes.io/zone: us-eastl-Db

JSON
{
"version": 1,
"storageDriverName": "ontap-san",
"backendName": "san-backend-us-eastl",
"managementLIF": "192.168.27.5",
"svm": "iscsi svm",
"username": "admin",
"password": "password",
"supportedTopologies™": [
{"topology.kubernetes.io/region": "us-eastl",
"topology.kubernetes.io/zone": "us-eastl-a"},
{"topology.kubernetes.io/region": "us-eastl",
"topology.kubernetes.io/zone": "us-eastl-b"}

]
}

supportedTopologies is used to provide a list of regions and zones per backend. These

@ regions and zones represent the list of permissible values that can be provided in a
StorageClass. For StorageClasses that contain a subset of the regions and zones provided in a
backend, Astra Trident will create a volume on the backend.

You can define supportedTopologies per storage pool as well. See the following example:

version: 1
storageDriverName:
backendName:
managementLIF:
svm: nfs svm
username: admin
password: password
supportedTopologies:
- topology.kubernetes.
topology.kubernetes.
- topology.kubernetes.
topology.kubernetes.
storage:
- labels:

workload: production

region: Iowa-DC
Iowa-DC-A
supportedTopologies:

zone:

- topology.kubernetes.
topology.kubernetes.

- labels:
workload: dev
region: Iowa-DC
Iowa-DC-B
supportedTopologies:

zone:

- topology.kubernetes

topology.kubernetes.

In this example, the region and zone labels stand for the location of the storage pool.
topology.kubernetes.io/region and topology.kubernetes.io/zone dictate where the storage

pools can be consumed from.

Step 2: Define StorageClasses that are topology aware

Based on the topology labels that are provided to the nodes in the cluster, StorageClasses can be defined to
contain topology information. This will determine the storage pools that serve as candidates for PVC requests
made, and the subset of nodes that can make use of the volumes provisioned by Trident.

See the following example:

io/zone:

io/zone:

ontap-nas
nas-backend-us-centrall
172.16.238.5

io/region: us-centrall

us—-centrall-a

io/region: us-centrall

us-centrall-b

io/region: us-centrall

io/zone: us-centrall-a

.1o0/region: us-centrall

io/zone: us-centrall-b

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: netapp-san-us-eastl
provisioner: csi.trident.netapp.io
volumeBindingMode: WaitForFirstConsumer
allowedTopologies:
- matchLabelExpressions:
- key: topology.kubernetes.io/zone
values:
- us-eastl-a
- us-eastl-b
- key: topology.kubernetes.io/region
values:
- us-eastl
parameters:
fsType: "ext4d"

In the StorageClass definition provided above, volumeBindingMode is set to WaitForFirstConsumer.
PVCs that are requested with this StorageClass will not be acted upon until they are referenced in a pod. And,
allowedTopologies provides the zones and region to be used. The netapp-san-us-eastl1 StorageClass
will create PVCs on the san-backend-us-east1 backend defined above.

Step 3: Create and use a PVC

With the StorageClass created and mapped to a backend, you can now create PVCs.

See the example spec below:

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-san
spec:
accessModes:

- ReadWriteOnce
resources:

requests:

storage: 300Mi

storageClassName: netapp-san-us-eastl

Creating a PVC using this manifest would result in the following:

kubectl create -f pvc.yaml
persistentvolumeclaim/pvc-san created
kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

AGE

pvc-san Pending netapp-san-us-eastl

2s

kubectl describe pvc

Name: pvc-san

Namespace: default

StorageClass: netapp-san-us-eastl

Status: Pending

Volume:

Labels: <none>

Annotations: <none>

Finalizers: [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode: Filesystem

Mounted By: <none>

Events:
Type Reason Age From Message
Normal WaitForFirstConsumer ©6s persistentvolume-controller waiting

for first consumer to be created before binding

For Trident to create a volume and bind it to the PVC, use the PVC in a pod. See the following example:

apiVersion: vl
kind: Pod
metadata:
name: app-pod-1
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: topology.kubernetes.io/region
operator: In
values:
- us-eastl
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
preference:
matchExpressions:
- key: topology.kubernetes.io/zone
operator: In
values:
- us-eastl-a
- us-eastl-b
securityContext:
runAsUser: 1000
runAsGroup: 3000
fsGroup: 2000
volumes:
- name: voll
persistentVolumeClaim:
claimName: pvc-san
containers:
- name: sec-ctx-demo
image: busybox
command: ["sh", "-c", "sleep 1h"]
volumeMounts:
- name: voll
mountPath: /data/demo
securityContext:
allowPrivilegeEscalation: false

This podSpec instructs Kubernetes to schedule the pod on nodes that are present in the us-east1 region,
and choose from any node that is present in the us-eastl-a or us-eastl-b zones.

See the following output:

kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES

app-pod-1 1/1 Running 0 19s 192.168.25.131 node?2
<none> <none>

kubectl get pvc -o wide

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE VOLUMEMODE

pvc-san Bound pvc-ecblela0-840c-463b-8b65-b3d033e2e62b 300Mi
RWO netapp-san-us-eastl 48s Filesystem

Update backends to include supportedTopologies

Pre-existing backends can be updated to include a list of supportedTopologies using tridentctl
backend update. This will not affect volumes that have already been provisioned, and will only be used for
subsequent PVCs.

Find more information

* Manage resources for containers
* nodeSelector
+ Affinity and anti-affinity

* Taints and Tolerations

Work with snapshots

You can create Kubernetes VolumeSnapshots (volume snapshot) of Persistent Volumes
(PVs) to maintain point-in-time copies of Astra Trident volumes. Additionally, you can
create a new volume, also known as a clone, from an existing volume snapshot. Volume
snapshot is supported by ontap-nas, ontap-nas-flexgroup, ontap-san, ontap-
san-economy, solidfire-san, gcp-cvs, and azure-netapp-files drivers.

Before you begin

You must have an external snapshot controller and Custom Resource Definitions (CRDs). This is the
responsibility of the Kubernetes orchestrator (for example: Kubeadm, GKE, OpensShift).

If your Kubernetes distribution does not include the snapshot controller and CRDs, refer to Deploying a volume
shapshot controller.

(D Don’t create a snapshot controller if creating on-demand volume snapshots in a GKE
environment. GKE uses a built-in, hidden snapshot controller.

Step 1: Create a VolumeSnapshotClass

This example creates a volume snapshot class.

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

cat snap-sc.yaml
apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshotClass
metadata:
name: csi-snapclass
driver: csi.trident.netapp.io

deletionPolicy: Delete

The driver points to Astra Trident’s CSl driver. deletionPolicy can be Delete or Retain. When set to
Retain, the underlying physical snapshot on the storage cluster is retained even when the VvolumeSnapshot
object is deleted.

For more information, refer to VvolumeSnapshotClass.

Step 2: Create a snapshot of an existing PVC

This example creates a snapshot of an existing PVC.

cat snap.yaml
apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshot
metadata:
name: pvcl-snap
spec:
volumeSnapshotClassName: csi-snapclass
source:

persistentVolumeClaimName: pvcl

In this example, the snapshot is created for a PVC named pvcl and the name of the snapshot is set to pvcl-
snap.

kubectl create -f snap.yaml

volumesnapshot.snapshot.storage.k8s.io/pvcl-snap created

kubectl get volumesnapshots
NAME AGE
pvcl-snap 50s

This created a VolumeSnapshot object. A VolumeSnapshot is analogous to a PVC and is associated with a
VolumeSnapshotContent object that represents the actual snapshot.

It is possible to identify the VolumeSnapshotContent object for the pvcl-snap VolumeSnapshot by
describing it.

https://docs.netapp.com/us-en/trident-2301/trident-reference/objects.html#kubernetes-volumesnapshotclass-objects

kubectl describe volumesnapshots pvcl-snap
Name : pvcl-snap

Namespace: default

Spec:
Snapshot Class Name: pvcl-snap
Snapshot Content Name: snapcontent-e8d8alca-9826-11e9-9807-525400f3f660
Source:
API Group:
Kind: PersistentVolumeClaim
Name: pvcl
Status:
Creation Time: 2019-06-26T15:27:297
Ready To Use: true
Restore Size: 3Gi

The Snapshot Content Name identifies the VolumeSnapshotContent object which serves this snapshot.
The Ready To Use parameter indicates that the Snapshot can be used to create a new PVC.

Step 3: Create PVCs from VolumeSnapshots

This example creates a PVC using a snapshot:

cat pvc-from-snap.yaml
apiVersion: vl
kind: PersistentVolumeClaim
metadata:

name: pvc-from-snap
spec:

accessModes:

- ReadWriteOnce
storageClassName: golden
resources:

requests:

storage: 3Gi
dataSource:

name: pvcl-snap

kind: VolumeSnapshot

apiGroup: snapshot.storage.k8s.io

10

dataSource shows that the PVC must be created using a VolumeSnapshot named pvcl-snap as the
source of the data. This instructs Astra Trident to create a PVC from the snapshot. After the PVC is created, it
can be attached to a pod and used just like any other PVC.

When deleting a Persistent Volume with associated snapshots, the corresponding Trident
volume is updated to a “Deleting state”. For the Astra Trident volume to be deleted, the
snapshots of the volume should be removed.

Deploying a volume snapshot controller

If your Kubernetes distribution does not include the snapshot controller and CRDs, you can deploy them as
follows.

Steps
1. Create volume snapshot CRDs.

cat snapshot-setup.sh

#!/bin/bash

Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshotclasses.yaml
kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshotcontents.yam
1

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshots.yaml

2. Create the snapshot controller in the desired namespace. Edit the YAML manifests below to modify
namespace.

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-
controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-
controller/setup-snapshot-controller.yaml

Related links

* Volume snapshots

* VolumeSnapshotClass

11

https://docs.netapp.com/us-en/trident-2301/trident-concepts/snapshots.html
https://docs.netapp.com/us-en/trident-2301/trident-reference/objects.html

Expand volumes

Astra Trident provides Kubernetes users the ability to expand their volumes after they are created. Find
information about the configurations required to expand iISCSI and NFS volumes.

Expand an iSCSI volume

You can expand an iSCSI Persistent Volume (PV) by using the CSI provisioner.

(:) iSCSI volume expansion is supported by the ontap-san, ontap-san-economy, solidfire-
san drivers and requires Kubernetes 1.16 and later.

Overview
Expanding an iSCSI PV includes the following steps:

* Editing the StorageClass definition to set the allowvolumeExpansion field to true.

* Editing the PVC definition and updating the spec.resources.requests.storage to reflect the newly
desired size, which must be greater than the original size.

« Attaching the PV must be attached to a pod for it to be resized. There are two scenarios when resizing an
iISCSI PV:

o If the PV is attached to a pod, Astra Trident expands the volume on the storage backend, rescans the
device, and resizes the filesystem.

o When attempting to resize an unattached PV, Astra Trident expands the volume on the storage
backend. After the PVC is bound to a pod, Trident rescans the device and resizes the filesystem.
Kubernetes then updates the PVC size after the expand operation has successfully completed.

The example below shows how expanding iISCSI PVs work.

Step 1: Configure the StorageClass to support volume expansion

cat storageclass-ontapsan.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontap-san
provisioner: csi.trident.netapp.io
parameters:

backendType: "ontap-san"
allowVolumeExpansion: True

For an already existing StorageClass, edit it to include the allowVolumeExpansion parameter.

Step 2: Create a PVC with the StorageClass you created

12

cat pvc-ontapsan.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: san-—-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: ontap-san

Astra Trident creates a Persistent Volume (PV) and associates it with this Persistent Volume Claim (PVC).

kubectl get pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82£2885db671 1Gi

RWO ontap-san 8s

kubectl get pv

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-8a814d62-bd58-4253-b0d1-82£2885db671 1G1i RWO

Delete Bound default/san-pvc ontap-san 10s

Step 3: Define a pod that attaches the PVC

In this example, a pod is created that uses the san-pvc.

kubectl get pod
NAME READY STATUS RESTARTS AGE
ubuntu-pod 1/1 Running 0 65s

kubectl describe pvc san-pvc

Name : san—-pvc

Namespace: default

StorageClass: ontap-san

Status: Bound

Volume: pvc-8a814d62-bd58-4253-b0d1-82£2885db671
Labels: <none>

Annotations: pv.kubernetes.io/bind-completed: yes

pv.kubernetes.io/bound-by-controller: yes
volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers: [kubernetes.io/pvc—protection]
Capacity: 1G1i

Access Modes: RWO

VolumeMode: Filesystem

Mounted By: ubuntu-pod

Step 4: Expand the PV

To resize the PV that has been created from 1Gi to 2Gi, edit the PVC definition and update the
spec.resources.requests.storage to 2Gi.

14

kubectl edit pvc san-pvc

Please edit the object below. Lines beginning with a '#' will be
ignored,

and an empty file will abort the edit. If an error occurs while saving
this file will be

reopened with the relevant failures.

#

apiVersion: vl

kind: PersistentVolumeClaim

metadata:
annotations:
pv.kubernetes.io/bind-completed: "yes"
pv.kubernetes.io/bound-by-controller: "yes"

volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
creationTimestamp: "2019-10-10T17:32:292"
finalizers:
- kubernetes.io/pvc-protection
name: san-pvc
namespace: default
resourceVersion: "16609"
selflLink: /api/vl/namespaces/default/persistentvolumeclaims/san-pvc
uid: 8a814d62-bd58-4253-b0d1-82£2885db671

spec:

accessModes:
- ReadWriteOnce
resources:

requests:

storage: 2Gi

Step 5: Validate the expansion

You can validate the expansion worked correctly by checking the size of the PVC, PV, and the Astra Trident
volume:

kubectl get pvc san-pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82£2885db671 2Gi

RWO ontap-san 1lm

kubectl get pv

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-8a814d62-bd58-4253-b0d1-82£2885db671 2G1 RWO

Delete Bound default/san-pvc ontap-san 12m

tridentctl get volumes -n trident

fos=s=ss=s=ssscsessssssssosossssss=s=sssa=s fememe==== e

e L T s frommmem e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

o o e e o o e o o e e o o 5 D) e e i e e frommmom e e

fremmmm=a==s frememsesessss s s s m s s e o s = = e fremememm=s I
| pvc-8a814d62-bd58-4253-b0d1-82£2885db671 | 2.0 GiB | ontap-san |
block | a%7bfff-0505-4e31-b6c5-59£492e02d33 | online | true |

fomssssess s s s s o s e o s sss s osss fremmmemm=s frememesmeeeeaaa=

fem======== e Bt fmm====== fememe==== 4

Expand an NFS volume

Astra Trident supports volume expansion for NFS PVs provisioned on ontap-nas, ontap-nas-economy,
ontap-nas-flexgroup, gcp-cvs, and azure-netapp-£files backends.

Step 1: Configure the StorageClass to support volume expansion

To resize an NFS PV, the admin first needs to configure the storage class to allow volume expansion by setting
the allowVolumeExpansion field to true:

cat storageclass-ontapnas.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontapnas
provisioner: csi.trident.netapp.io
parameters:

backendType: ontap-nas
allowVolumeExpansion: true

If you have already created a storage class without this option, you can simply edit the existing storage class
by using kubectl edit storageclass to allow volume expansion.

16

Step 2: Create a PVC with the StorageClass you created

cat pvc-ontapnas.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: ontapnas20mb
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 20Mi
storageClassName: ontapnas

Astra Trident should create a 20MiB NFS PV for this PVC:

kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20M1i
RWO ontapnas 9s

kubectl get pv pvc-08£3d561-b199-11e9-8d9£-5254004dfdb7

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON
AGE

pvc-08£3d561-b199-11e9-8d9£f-5254004d£fdb7 20M1i RWO

Delete Bound default/ontapnas20mb ontapnas

2mé2s

Step 3: Expand the PV

To resize the newly created 20MiB PV to 1GiB, edit the PVC and set spec.resources.requests.storage
to 1GB:

17

kubectl edit pvc ontapnas20mb

Please edit the object below. Lines beginning with a '#' will be
ignored,

and an empty file will abort the edit. If an error occurs while saving
this file will be

reopened with the relevant failures.

#

apiVersion: vl

kind: PersistentVolumeClaim

metadata:
annotations:
pv.kubernetes.io/bind-completed: "yes"
pv.kubernetes.io/bound-by-controller: "yes"

volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
creationTimestamp: 2018-08-21T18:26:447%
finalizers:
- kubernetes.io/pvc-protection
name: ontapnas20mb
namespace: default
resourceVersion: "1958015"
selflLink: /api/vl/namespaces/default/persistentvolumeclaims/ontapnas20mb
uid: clbd7fab5-a56f-11e8-b8d7-fal63e59%eaab

spec:

accessModes:
- ReadWriteOnce
resources:

requests:

storage: 1Gi

Step 4: Validate the expansion

You can validate the resize worked correctly by checking the size of the PVC, PV, and the Astra Trident
volume:

18

kubectl get pvc ontapnas20mb

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08£f3d561-b199-11e9-8d9£f-5254004dfdb7 1G1i
RWO ontapnas 4médds

kubectl get pv pvc-08£3d561-b199-11e9-8d9£-5254004dfdb7

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON
AGE

pvc-08£3d561-0199-11e9-8d9£f-5254004dfdb7 1Gi RWO

Delete Bound default/ontapnas20mb ontapnas

5m35s

tridentctl get volume pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

o e Fomm -
fom - o fom - fom—m————— +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

- fomm—————— fom -
fom - o fomm - fomm - +
| pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7 | 1.0 GiB | ontapnas |
file | cS5abf6ad-b052-423b-80d4-8fb491alda22 | online | true |

et ittt L fommm - fom e
fom - oo fom - e +

Import volumes

You can import existing storage volumes as a Kubernetes PV using tridentctl import.

Drivers that support volume import

This table depicts the drivers that support importing volumes and the release they were introduced in.

Driver Release
ontap-nas 19.04
ontap-nas-flexgroup 19.04
solidfire-san 19.04
azure-netapp-files 19.04
gep=Ccvs 19.04

19

Driver Release

ontap-san 19.04

Why should | import volumes?

There are several use cases for importing a volume into Trident:

» Containerizing an application and reusing its existing data set
» Using a clone of a data set for an ephemeral application
* Rebuilding a failed Kubernetes cluster

» Migrating application data during disaster recovery

How does the import work?

The Persistent Volume Claim (PVC) file is used by the volume import process to create the PVC. At a
minimum, the PVC file should include the name, namespace, accessModes, and storageClassName fields as
shown in the following example.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: my claim
namespace: my namespace
spec:
accessModes:
- ReadWriteOnce
storageClassName: my storage class

The tridentctl clientis used to import an existing storage volume. Trident imports the volume by persisting
volume metadata and creating the PVC and PV.

tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-file>

To import a storage volume, specify the name of the Astra Trident backend containing the volume, as well as
the name that uniquely identifies the volume on the storage (for example: ONTAP FlexVol, Element Volume,
CVS Volume path). The storage volume must allow read/write access and be accessible by the specified Astra
Trident backend. The - £ string argument is required and specifies the path to the YAML or JSON PVC file.

When Astra Trident receives the import volume request, the existing volume size is determined and set in the
PVC. After the volume is imported by the storage driver, the PV is created with a ClaimRef to the PVC. The
reclaim policy is initially set to retain in the PV. After Kubernetes successfully binds the PVC and PV, the
reclaim policy is updated to match the reclaim policy of the Storage Class. If the reclaim policy of the Storage
Class is delete, the storage volume will be deleted when the PV is deleted.

When a volume is imported with the -—-no-manage argument, Trident does not perform any additional

20

operations on the PVC or PV for the lifecycle of the objects. Because Trident ignores PV and PVC events for
--no-manage oObjects, the storage volume is not deleted when the PV is deleted. Other operations such as
volume clone and volume resize are also ignored. This option is useful if you want to use Kubernetes for
containerized workloads but otherwise want to manage the lifecycle of the storage volume outside of
Kubernetes.

An annotation is added to the PVC and PV that serves a dual purpose of indicating that the volume was
imported and if the PVC and PV are managed. This annotation should not be modified or removed.

Trident 19.07 and later handle the attachment of PVs and mounts the volume as part of importing it. For
imports using earlier versions of Astra Trident, there will not be any operations in the data path and the volume
import will not verify if the volume can be mounted. If a mistake is made with volume import (for example, the
StorageClass is incorrect), you can recover by changing the reclaim policy on the PV to retain, deleting the
PVC and PV, and retrying the volume import command.

ontap-nas and ontap-nas-flexgroup imports

Each volume created with the ontap-nas driver is a FlexVol on the ONTAP cluster. Importing FlexVols with
the ontap-nas driver works the same. A FlexVol that already exists on an ONTAP cluster can be imported as
a ontap-nas PVC. Similarly, FlexGroup vols can be imported as ontap-nas-flexgroup PVCs.

An ONTAP volume must be of type rw to be imported by Trident. If a volume is of type dp, itis a
(D SnapMirror destination volume; you should break the mirror relationship before importing the
volume into Trident.

(D The ontap-nas driver cannot import and manage qtrees. The ontap-nas and ontap-nas-
flexgroup drivers do not allow duplicate volume names.

For example, to import a volume named managed volume on a backend named ontap nas, use the
following command:

tridentctl import volume ontap nas managed volume -f <path-to-pvc-file>

e fomm - e ettt
fomm o o fomm - fomm - +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

o e fom e
R o R fom————— - +
| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |
file | c5a6f6a4-b052-423b-80d4-8fb491alda22 | online | true |

T T e Fmm e
fomm o fomm - tomm - +

To import a volume named unmanaged_volume (on the ontap nas backend), which Trident will not
manage, use the following command:

21

tridentctl import volume nas blog unmanaged volume -f <path-to-pvc-file>
--no-manage

fos=ssss=s=ssscsessssssssosossssssss==ssa=s fememe===s e
e e e e e e e e e e fro— e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

e e e e e e e e) fro— e s e
frems=m=m==s e ittt R remmmeme== +F
| pvc-df07d542-afbc-11e9-8d9£-5254004dfdb7 | 1.0 GiB | standard

file | c5a6f6ad4-b052-423b-80d4-8fb491ald4a22 | online | false |
fossssssssss s e se s s oses oo sssssss s s e fremmmmmeee e
femm======a femessesessss s e e se s e eessssaa s femm==== femememm== 4

When using the -—no-manage argument, Trident does not rename the volume or validate if the volume was
mounted. The volume import operation fails if the volume was not mounted manually.

A previously existing bug with importing volumes with custom UnixPermissions has been fixed.
(D You can specify unixPermissions in your PVC definition or backend configuration, and instruct
Astra Trident to import the volume accordingly.

ontap-san import

Astra Trident can also import ONTAP SAN FlexVols that contain a single LUN. This is consistent with the
ontap-san driver, which creates a FlexVol for each PVC and a LUN within the FlexVol. You can use the
tridentctl import command in the same way as in other cases:

* Include the name of the ontap-san backend.

* Provide the name of the FlexVol that needs to be imported. Remember, this FlexVol contains only one LUN
that must be imported.

* Provide the path of the PVC definition that must be used with the - £ flag.

* Choose between having the PVC managed or unmanaged. By default, Trident will manage the PVC and
rename the FlexVol and LUN on the backend. To import as an unmanaged volume, pass the --no
-manage flag.

When importing an unmanaged ontap-san volume, you should make sure that the LUN in the
@ FlexVol is named 1un0 and is mapped to an igroup with the desired initiators. Astra Trident
automatically handles this for a managed import.

Astra Trident will then import the FlexVol and associate it with the PVC definition. Astra Trident also renames
the FlexVol to the pvc-<uuid> format and the LUN within the FlexVol to 1uno0.

It is recommended to import volumes that do not have existing active connections. If you are
looking to import an actively used volume, clone the volume first and then do the import.

22

Example
To import the ontap-san-managed FlexVol that is present on the ontap san_default backend, run the

tridentctl import command as:

tridentctl import volume ontapsan san default ontap-san-managed -f pvc-
basic-import.yaml -n trident -d

e o o
o o - o +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
e ettt L L L L e e e o e —
e e - e +
| pvc-doeedf54-4e40-4454-92fd-d00fc228d74a | 20 MiB | basic |
block | ¢cd394786-ddd5-4470-adc3-10c5cedca’757 | online | true |

o e et fomm -
t——— o - o +

An ONTAP volume must be of type rw to be imported by Astra Trident. If a volume is of type dp,
@ it is @ SnapMirror destination volume; you should break the mirror relationship before importing
the volume into Astra Trident.

element import

You can import NetApp Element software/NetApp HCI volumes to your Kubernetes cluster with Trident. You
need the name of your Astra Trident backend, and the unique name of the volume and the PVC file as the
arguments for the tridentctl import command.

tridentctl import volume element default element-managed -f pvc-basic-
import.yaml -n trident -d

e et rommmmom= o memeo=s
Fommmmmmm== e Fommmmm== o= +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
Fommmmmmemsmssesese s s s s s e e i Fommmmmmemememe=
Fommmommmme Fommmmemeressrereemenessssoesen oo moms Fomommmme Frommmmomos +
| pvc-970celca-2096-4ecd-8545-ac7edc24a8fe | 10 GiB | basic-element |
block | d3bal47a-ealb-43£9-9¢c42-e38e58301c49 | online | true |
e L L Fommmmom= Fommmmmmemoomo=e
et ettt Fommmmmos Fosommmmes +

23

The Element driver supports duplicate volume names. If there are duplicate volume names,
Trident’s volume import process returns an error. As a workaround, clone the volume and
provide a unique volume name. Then import the cloned volume.

gcp-cvs import

To import a volume backed by the NetApp Cloud Volumes Service in GCP, identify the volume
by its volume path instead of its name.

To import an gcp-cvs volume on the backend called gcpcvs YEppr with the volume path of adroit-
jolly-swift, use the following command:

tridentctl import volume gcpcvs YEppr adroit-jolly-swift -f <path-to-pvc-
file> -n trident

Fommmmmmrmererrrrrrrrr e e e e e EEEES e Fommmmmcememeoes
Fommmmmmm== e Fommmmm== P +

| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
Fommmmememsmsseseses s s e e P Fommmmmmememem==
Fommmmmmm== L it Fommmmm== o= +

| pvc-adbccab7-44aa-4433-94bl-e47£c8c0fad5 | 93 GiB | gcp-storage | file
| elabe65b-299e-4568-ad05-4£0a105c888f | online | true |
Fommmmmmmmsmoososorreromemememe oo me oo S Fommmmmmomoomoms
Fommmmmomo= o memeressrrrrrrrrssercreeee e me s Fommmomoe e +

(D The volume path is the portion of the volume’s export path after the :/. For example, if the export
pathis 10.0.0.1:/adroit-jolly-swift, the volume path is adroit-jolly-swift.

azure—-netapp-files import

To import an azure-netapp-files volume on the backend called azurenetappfiles 40517 with the
volume path importvoll, run the following command:

24

tridentctl import volume azurenetappfiles 40517 importvoll -f <path-to-
pvc-file> -n trident

fos=ssss=s=ssscsessssssssosossssssss==ssa=s fememe===s e
e e e e e e e e e e fro— e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

e e e e e e e e) fro— e s e
frems=m=m==s fremeoeesessssse e s e s s s o s R fremememm=s I
| pvc-0ee95d60-£d5¢c-448d-b505-b72901b3ad4ab | 100 GiB | anf-storage |
file | 1c01274£-d94b-44a3-98a3-04c953c9%a5le | online | true |
fossssssssss s e se s s oses oo sssssss s s e fememesmmeeeaa=
femm======a femessesessss s e e se s e eessssaa s femm==== femememm== 4

@ The volume path for the ANF volume is present in the mount path after the :/. For example, if the
mount pathis 10.0.0.2:/importvoll, the volume path is importvoll.

25

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

26

http://www.netapp.com/TM

	Perform volume operations : Astra Trident
	Table of Contents
	Perform volume operations
	Use CSI Topology
	Step 1: Create a topology-aware backend
	Step 2: Define StorageClasses that are topology aware
	Step 3: Create and use a PVC
	Update backends to include supportedTopologies
	Find more information

	Work with snapshots
	Step 1: Create a VolumeSnapshotClass
	Step 2: Create a snapshot of an existing PVC
	Step 3: Create PVCs from VolumeSnapshots
	Deploying a volume snapshot controller
	Related links

	Expand volumes
	Expand an iSCSI volume
	Expand an NFS volume

	Import volumes
	Drivers that support volume import
	Why should I import volumes?
	How does the import work?
	ontap-nas and ontap-nas-flexgroup imports
	ontap-san import
	element import
	gcp-cvs import
	azure-netapp-files import

