Use Astra Trident
Astra Trident

NetApp
November 14, 2025

This PDF was generated from https://docs.netapp.com/us-en/trident-2301/trident-use/worker-node-
prep.html on November 14, 2025. Always check docs.netapp.com for the latest.

Table of Contents

Use Astra Trident 1
Prepare the worker node 1
Selecting the right tools 1
Node service discovery 1
NFS volumes 1
iISCSI volumes 2
Configure backends 5
Azure NetApp Files 6
Configure a Cloud Volumes Service for Google Cloud backend 17
Configure a NetApp HCI or SolidFire backend 33
Configure a backend with ONTAP SAN drivers 40
Configure an ONTAP NAS backend 61
Amazon FSx for NetApp ONTAP 87
Create backends with kubect1 99
TridentBackendConfig 99
Steps overview 101
Step 1: Create a Kubernetes Secret 101
Step 2: Create the TridentBackendConfig CR 102
Step 3: Verify the status of the TridentBackendConfig CR 103
(Optional) Step 4: Get more details 104
Perform backend management with kubectl 106
Delete a backend 106
View the existing backends 106
Update a backend 106
Perform backend management with tridentctl 107
Create a backend 107
Delete a backend 107
View the existing backends 108
Update a backend 108
Identify the storage classes that use a backend 108
Move between backend management options 108
Manage tridentctl backends using TridentBackendConfig 109
Manage TridentBackendConfig backends using tridentctl 113
Manage storage classes 115
Design a storage class 115
Create a storage class 115
Delete a storage class 115
View the existing storage classes 116
Set a default storage class 116
Identify the backend for a storage class 117
Perform volume operations 117

Use CSI Topology 117

Work with snapshots 125

Expand volumes 129
Import volumes 136
Share an NFS volume across namespaces 142
Features 142
Quick start 143
Configure the source and destination namespaces 144
Delete a shared volume 145
Use tridentctl get to query subordinate volumes 145
Limitations 146
For more information 146
Monitor Astra Trident 146
Step 1: Define a Prometheus target 147
Step 2: Create a Prometheus ServiceMonitor 147
Step 3: Query Trident metrics with PromQL 147
Learn about Astra Trident AutoSupport telemetry 148

Disable Astra Trident metrics 149

Use Astra Trident

Prepare the worker node

All worker nodes in the Kubernetes cluster must be able to mount the volumes you have
provisioned for your pods. To prepare the worker nodes, you must install NFS or iSCSI
tools based on your driver selection.

Selecting the right tools

If you are using a combination of drivers, you should install NFS and iSCSI tools.

NFS tools

Install the NFS tools if you are using: ontap-nas, ontap-nas-economy, ontap-nas-flexgroup, azure-
netapp-files, gcp-cvs

iSCSI tools

Install the iISCSI tools if you are using: ontap-san, ontap-san-economy, solidfire-san

@ Recent versions of RedHat CoreOS have NFS and iSCSI installed by default.

Node service discovery

Astra Trident attempts to automatically detect if the node can run iISCSI or NFS services.

Node service discovery identifies discovered services but does not guarantee services are
properly configured. Conversely, the absence of a discovered service does not guarantee the
volume mount will fail.

Review events
Astra Trident creates events for the node to identify the discovered services. To review these events, run:

kubectl get event -A --field-selector involvedObject.name=<Kubernetes node

name>

Review discovered services

Astra Trident identifies services enabled for each node on the Trident node CR. To view the discovered
services, run:

tridentctl get node -o wide -n <Trident namespace>

NFS volumes

Install the NFS tools using the commands for your operating system. Ensure the NFS service is started up
during boot time.

RHEL 8+

sudo yum install -y nfs-utils

Ubuntu

sudo apt-get install -y nfs-common

@ Reboot your worker nodes after installing the NFS tools to prevent failure when attaching
volumes to containers.

iSCSI volumes

Astra Trident can automatically establish an iSCSI session, scan LUNs, and discover multipath devices, format
them, and mount them to a pod.

iSCSI self-healing capabilities

For ONTAP systems, Astra Trident runs iSCSI self-healing every five minutes to:

1. Identify the desired iSCSI session state and the current iISCSI session state.

2. Compare the desired state to the current state to identify needed repairs. Astra Trident determines repair
priorities and when to preempt repairs.

3. Perform repairs required to return the current iSCSI session state to the desired iSCSI session state.

Logs of self-healing activity are located in the trident-main container on the respective
Daemonset pod. To view logs, you must have set debug to "true" during Astra Trident
installation.

Astra Trident iSCSI self-healing capabilities can help prevent:

« Stale or unhealthy iSCSI sessions that could occur after a network connectivity issue. In the case of a stale
session, Astra Trident waits seven minutes before logging out to reestablish the connection with a portal.

For example, if CHAP secrets were rotated on the storage controller and the network loses
connectivity, the old (stale) CHAP secrets could persist. Self-healing can recognize this and
automatically reestablish the session to apply the updated CHAP secrets.

* Missing iSCSI sessions
* Missing LUNs

Install the iSCSI tools
Install the iISCSI tools using the commands for your operating system.

Before you begin
» Each node in the Kubernetes cluster must have a unique IQN. This is a necessary prerequisite.

* If using RHCOS version 4.5 or later, or other RHEL-compatible Linux distribution, with the solidfire-
san driver and Element OS 12.5 or earlier, ensure that the CHAP authentication algorithm is set to MD5 in
/etc/iscsi/iscsid.conf. Secure FIPS-compliant CHAP algorithms SHA1, SHA-256, and SHA3-256
are available with Element 12.7.

sudo sed -i 's/”\(node.session.auth.chap algs\).*/\1 = MD5/'
/etc/iscsi/iscsid.conf

* When using worker nodes that run RHEL/RedHat CoreOS with iISCSI PVs, specify the discard
mountOption in the StorageClass to perform inline space reclamation. See RedHat’'s documentation.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems

RHEL 8+
1. Install the following system packages:

sudo yum install -y lsscsi iscsi-initiator-utils sg3 utils device-
mapper-multipath

2. Check that iscsi-initiator-utils version is 6.2.0.874-2.el7 or later:
rpm —-gq iscsi-initiator-utils
3. Set scanning to manual:

sudo sed -i 's/"\ (node.session.scan\).*/\1 = manual/'
/etc/iscsi/iscsid.conf

4. Enable multipathing:
sudo mpathconf --enable --with multipathd y --find multipaths n
(:) Ensure etc/multipath.conf contains find multipaths no under defaults.
5. Ensure that iscsid and multipathd are running:
sudo systemctl enable --now iscsid multipathd
6. Enable and start iscsi:

sudo systemctl enable --now iscsi

Ubuntu
1. Install the following system packages:

sudo apt-get install -y open-iscsi lsscsi sg3-utils multipath-tools
scsitools

2. Check that open-iscsi version is 2.0.874-5ubuntu2.10 or later (for bionic) or 2.0.874-7.1ubuntu6.1 or
later (for focal):

dpkg -1 open-iscsi
3. Set scanning to manual:

sudo sed -1 's/”\ (node.session.scan\).*/\1 = manual/'

/etc/iscsi/iscsid.conf
4. Enable multipathing:

sudo tee /etc/multipath.conf <<-'EOF
defaults {
user friendly names yes
find multipaths no
}
EQOF
sudo systemctl enable --now multipath-tools.service
sudo service multipath-tools restart

(:) Ensure etc/multipath.conf contains find multipaths no under defaults.

5. Ensure that open-iscsi and multipath-tools are enabled and running:

sudo systemctl status multipath-tools
sudo systemctl enable --now open-iscsi.service
sudo systemctl status open-iscsi

For Ubuntu 18.04, you must discover target ports with i scsiadm before starting
@ open-iscsi for the iISCSI daemon to start. You can alternatively modify the iscsi
service to start i scsid automatically.

@ Reboot your worker nodes after installing the iISCSI tools to prevent failure when attaching
volumes to containers.

Configure backends

A backend defines the relationship between Astra Trident and a storage system. It tells
Astra Trident how to communicate with that storage system and how Astra Trident should
provision volumes from it.

Astra Trident automatically offers up storage pools from backends that match the requirements defined by a
storage class. Learn how to configure the backend for your storage system.

* Configure an Azure NetApp Files backend

» Configure a Cloud Volumes Service for Google Cloud Platform backend
« Configure a NetApp HCI or SolidFire backend

+ Configure a backend with ONTAP or Cloud Volumes ONTAP NAS drivers
+ Configure a backend with ONTAP or Cloud Volumes ONTAP SAN drivers
* Use Astra Trident with Amazon FSx for NetApp ONTAP

Azure NetApp Files

Configure an Azure NetApp Files backend

You can configure Azure NetApp Files (ANF) as the backend for Astra Trident. You can attach NFS and SMB
volumes using an ANF backend.
* Preparation

» Configuration options and examples

Considerations

* The Azure NetApp Files service does not support volumes smaller than 100 GB. Astra Trident
automatically creates 100-GB volumes if a smaller volume is requested.

* Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

 Astra Trident does not support Windows ARM architecture.

Prepare to configure an Azure NetApp Files backend

Before you can configure your Azure NetApp Files backend, you need to ensure the
following requirements are met.

If you are using Azure NetApp Files for the first time or in a new location, some initial
(D configuration is required to set up Azure NetApp files and create an NFS volume. Refer to
Azure: Set up Azure NetApp Files and create an NFS volume.

Prerequisites for NFS and SMB volumes

To configure and use an Azure NetApp Files backend, you need the following:

* A capacity pool. Refer to Microsoft: Create a capacity pool for Azure NetApp Files.
» A subnet delegated to Azure NetApp Files. Refer to Microsoft: Delegate a subnet to Azure NetApp Files.

* subscriptionID from an Azure subscription with Azure NetApp Files enabled.

* tenantID, clientID, and clientSecret from an App Registration in Azure Active Directory with
sufficient permissions to the Azure NetApp Files service. The App Registration should use either:

o The Owner or Contributor role predefined by Azure.

° A custom Contributor role at the subscription level (assignableScopes) with the following
permissions that are limited to only what Astra Trident requires. After creating the custom role, assign
the role using the Azure portal.

https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://azure.microsoft.com/en-us/services/netapp/
https://learn.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-set-up-capacity-pool
https://learn.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://learn.microsoft.com/en-us/azure/role-based-access-control/custom-roles-portal
https://learn.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal
https://learn.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal

"id": "/subscriptions/<subscription-
id>/providers/Microsoft.Authorization/roleDefinitions/<role-
definition-id>",

"properties™: {

"roleName": "custom-role-with-limited-perms",
"description": "custom role providing limited permissions",
"assignableScopes": [

"/subscriptions/<subscription-id>"
1,
"permissions": [

{

"actions": |

"Microsoft.NetApp/netAppAccounts/capacityPools/read",

"Microsoft.NetApp/netAppAccounts/capacityPools/write",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/read",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/write",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/delete",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/read

"
14

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/writ

e"’

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/dele
te" ,

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/rea
d"’

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/wri
te" ,

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/del
ete",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/Get
Metadata/action",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/MountTargets/r

ead",
"Microsoft.Network/virtualNetworks/read",
"Microsoft.Network/virtualNetworks/subnets/read",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrations
/read",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrations

/write",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrations
/delete",
"Microsoft.Features/features/read",
"Microsoft.Features/operations/read",
"Microsoft.Features/providers/features/read",

"Microsoft.Features/providers/features/register/action",
"Microsoft.Features/providers/features/unregister/action",

"Microsoft.Features/subscriptionFeatureRegistrations/read"

1
"notActions": [],
"dataActions": [],

"notDataActions": []

* The Azure location that contains at least one delegated subnet. As of Trident 22.01, the 1ocation
parameter is a required field at the top level of the backend configuration file. Location values specified in
virtual pools are ignored.

Additional requirements for SMB volumes

To create an SMB volume, you must have:
+ Active Directory configured and connected to Azure NetApp Files. Refer to Microsoft: Create and manage
Active Directory connections for Azure NetApp Files.

* A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows
Server 2019. Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

At least one Astra Trident secret containing your Active Directory credentials so Azure NetApp Files can
authenticate to Active Directory. To generate secret smbcreds:

https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet
https://learn.microsoft.com/en-us/azure/azure-netapp-files/create-active-directory-connections
https://learn.microsoft.com/en-us/azure/azure-netapp-files/create-active-directory-connections

kubectl create secret generic smbcreds --from-literal username=user
-—-from-literal password='password'

* A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or
GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

Azure NetApp Files backend configuration options and examples

Learn about NFS and SMB backend configuration options for ANF and review configuration examples.
Astra Trident uses your backend configuration (subnet, virtual network, service level, and location), to create

ANF volumes on capacity pools that are available in the requested location and match the requested service
level and subnet.

@ Astra Trident does not support Manual QoS capacity pools.

Backend configuration options

ANF backends provide these configuration options.

Parameter Description Default
version Always 1
storageDriverName Name of the storage driver "azure-netapp-files"
backendName Custom name or the storage Driver name +"_" + random
backend characters
subscriptionID The subscription ID from your
Azure subscription
tenantID The tenant ID from an App
Registration
clientID The client ID from an App
Registration
clientSecret The client secret from an App
Registration
serviceLevel One of Standard, Premium, or " (random)
Ultra
location Name of the Azure location where
the new volumes will be created
resourceGroups List of resource groups for filtering "[]" (no filter)
discovered resources
netappAccounts List of NetApp accounts for filtering "[]" (no filter)
discovered resources
capacityPools List of capacity pools for filtering "" (no filter, random)

discovered resources

https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md

Parameter Description Default

virtualNetwork Name of a virtual network with a
delegated subnet

subnet Name of a subnet delegated to
Microsoft.Netapp/volumes

networkFeatures Set of VNet features for a volume,
may be Basic or Standard.

Network Features is not available in
all regions and might have to be
enabled in a subscription.
Specifying networkFeatures
when the functionality is not
enabled causes volume
provisioning to fail.

nfsMountOptions Fine-grained control of NFS mount "nfsvers=3"
options.

Ignored for SMB volumes.

To mount volumes using NFS
version 4.1, include nfsvers=4 in
the comma-delimited mount options
list to choose NFS v4.1.

Mount options set in a storage
class definition override mount
options set in backend
configuration.

limitVolumeSize Fail provisioning if the requested "" (not enforced by default)
volume size is above this value

debugTraceFlags Debug flags to use when null
troubleshooting. Example,
\{"api": false, "method":
true, "discovery": true}.
Do not use this unless you are
troubleshooting and require a
detailed log dump.

nasType Configure NFS or SMB volumes nfs
creation.

Options are nfs, smb or null.

Setting to null defaults to NFS
volumes.

@ For more information on Network Features, refer to Configure network features for an Azure
NetApp Files volume.

10

https://docs.microsoft.com/en-us/azure/azure-netapp-files/configure-network-features
https://docs.microsoft.com/en-us/azure/azure-netapp-files/configure-network-features

Required permissions and resources

If you receive a “No capacity pools found” error when creating a PVC, it is likely your app registration doesn't
have the required permissions and resources (subnet, virtual network, capacity pool) associated. If debug is
enabled, Astra Trident will log the Azure resources discovered when the backend is created. Verify an
appropriate role is being used.

The values for resourceGroups, netappAccounts, capacityPools, virtualNetwork, and subnet
can be specified using short or fully-qualified names. Fully-qualified names are recommended in most
situations as short names can match multiple resources with the same name.

The resourceGroups, netappAccounts, and capacityPools values are filters that restrict the set of
discovered resources to those available to this storage backend and may be specified in any combination.
Fully-qualified names follow this format:

Type Format

Resource group <resource group>

NetApp account <resource group>/<netapp account>

Capacity pool <resource group>/<netapp account>/<capacity pool>
Virtual network <resource group>/<virtual network>

Subnet <resource group>/<virtual network>/<subnet>

Volume provisioning

You can control default volume provisioning by specifying the following options in a special section of the
configuration file. Refer to Example configurations for details.

Parameter Description Default

exportRule Export rules for new volumes. "0.0.0.0/0"

exportRule must be a comma-
separated list of any combination of
IPv4 addresses or IPv4 subnets in
CIDR notation.

Ignored for SMB volumes.

snapshotDir Controls visibility of the .snapshot "false"
directory
size The default size of new volumes "100G"
unixPermissions The unix permissions of new " (preview feature, requires
volumes (4 octal digits). whitelisting in subscription)

Ignored for SMB volumes.

Example configurations

11

Example 1: Minimal configuration

This is the absolute minimum backend configuration. With this configuration, Astra Trident discovers all of
your NetApp accounts, capacity pools, and subnets delegated to ANF in the configured location, and
places new volumes on one of those pools and subnets randomly. Because nasType is omitted, the nfs
default applies and the backend will provision for NFS volumes.

This configuration is ideal when you are just getting started with ANF and trying things out, but in practice
you are going to want to provide additional scoping for the volumes you provision.

version: 1

storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721add45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865ee56ct
clientID: dd043f63-bf8e-fake-8076-8de9%1e5713aa
clientSecret: SECRET

location: eastus

Example 2: Specific service level configuration with capacity pool filters

12

This backend configuration places volumes in Azure’s eastus location in an Ultra capacity pool. Astra
Trident automatically discovers all of the subnets delegated to ANF in that location and places a new
volume on one of them randomly.

version: 1

storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721ladd45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865eebo6ct
clientID: dd043f63-bf8e-fake-8076-8de91le5713aa
clientSecret: SECRET

location: eastus

servicelevel: Ultra

capacityPools:

- application-group-1/account-1/ultra-1

- application-group-1/account-1/ultra-2

Example 3: Advanced configuration

This backend configuration further reduces the scope of volume placement to a single subnet, and also
modifies some volume provisioning defaults.

version: 1
storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721add45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865eeb6ct
clientID: dd043f63-bf8e-fake-8076-8de9%1le5713aa
clientSecret: SECRET
location: eastus
servicelevel: Ultra
capacityPools:
- application-group-1/account-1/ultra-1
- application-group-1/account-1/ultra-2
virtualNetwork: my-virtual-network
subnet: my-subnet
networkFeatures: Standard
nfsMountOptions: vers=3,proto=tcp,timeo=600
limitVolumeSize: 500Gi
defaults:
exportRule: 10.0.0.0/24,10.0.1.0/24,10.0.2.100
snapshotDir: 'true'
size: 200Gi

unixPermissions: '0777"'

Example 4: Virtual pool configuration

This backend configuration defines multiple storage pools in a single file. This is useful when you have

multiple capacity pools supporting different service levels and you want to create storage classes in
Kubernetes that represent those. Virtual pool labels were used to differentiate the pools based on
performance.

version: 1
storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721ladd45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865ee56ct
clientID: dd043f63-bf8e-fake-8076-8de9%1e5713aa
clientSecret: SECRET
location: eastus
resourceGroups:
- application-group-1
networkFeatures: Basic
nfsMountOptions: vers=3,proto=tcp,timeo=600
labels:
cloud: azure
storage:
- labels:
performance: gold
servicelevel: Ultra
capacityPools:
- ultra-1
- ultra-2
networkFeatures: Standard
- labels:
performance: silver
servicelevel: Premium
capacityPools:
- premium-1
- labels:
performance: bronze
servicelevel: Standard
capacityPools:
- standard-1
- standard-2

Storage Class definitions

The following StorageClass definitions refer to the storage pools above.

14

Example definitions using parameter.selector field

Using parameter.selector you can specify for each StorageClass the virtual pool that is used to host a
volume. The volume will have the aspects defined in the chosen pool.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: gold
provisioner: csi.trident.netapp.io
parameters:

selector: "performance=gold"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: silver
provisioner: csi.trident.netapp.io
parameters:

selector: "performance=silver"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: bronze
provisioner: csi.trident.netapp.io
parameters:

selector: "performance=bronze"

allowVolumeExpansion: true

Example definitions for SMB volumes

Using nasType, node-stage-secret-name, and node-stage-secret-namespace, You can specify an
SMB volume and provide the required Active Directory credentials.

15

Example 1: Basic configuration on default namespace

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: anf-sc-smb
provisioner: csi.trident.netapp.io
parameters:
backendType: "azure-netapp-files"
trident.netapp.io/nasType: "smb"

csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

csi.storage.k8s.io/node-stage-secret-namespace:

Example 2: Using different secrets per namespace

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: anf-sc-smb
provisioner: csi.trident.netapp.io
parameters:
backendType: "azure-netapp-files"
trident.netapp.io/nasType: "smb"

"default"

csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

csi.storage.k8s.io/node-stage-secret-namespace:

Example 3: Using different secrets per volume

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: anf-sc-smb
provisioner: csi.trident.netapp.io
parameters:
backendType: "azure-netapp-files"
trident.netapp.io/nasType: "smb"

$S{pvc.namespace}

csi.storage.k8s.io/node-stage-secret-name: ${pvc.name}

csi.storage.k8s.io/node-stage-secret—-namespace:

16

S{pvc.namespace}

@ nasType: smb filters for pools which support SMB volumes. nasType: ‘nfs ornasType:
“null filters for NFS pools.

Create the backend

After you create the backend configuration file, run the following command:
tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to
determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Configure a Cloud Volumes Service for Google Cloud backend

Learn how to configure NetApp Cloud Volumes Service for Google Cloud as the backend
for your Astra Trident installation using the sample configurations provided.

Learn about Astra Trident support for Cloud Volumes Service for Google Cloud

Astra Trident can create Cloud Volumes Service volumes in one of two service types:

» CVS-Performance: The default Astra Trident service type. This performance-optimized service type is best
suited for production workloads that value performance. The CVS-Performance service type is a hardware
option supporting volumes with a minimum 100 GiB size. You can choose one of three service levels:

° standard
° premium
° extreme

* CVS: The CVS service type provides high zonal availability with limited to moderate performance levels.
The CVS service type is a software option that uses storage pools to support volumes as small as 1 GiB.
The storage pool can contain up to 50 volumes where all volumes share the capacity and performance of
the pool. You can choose one of two service levels:

° standardsw
° zoneredundantstandardsw

What you’ll need
To configure and use the Cloud Volumes Service for Google Cloud backend, you need the following:

» A Google Cloud account configured with NetApp Cloud Volumes Service
* Project number of your Google Cloud account

* Google Cloud service account with the netappcloudvolumes.admin role

17

https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-types
https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-levels#service_levels_for_the_cvs-performance_service_type
https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-levels#service_levels_for_the_cvs_service_type
https://cloud.netapp.com/cloud-volumes-service-for-gcp?utm_source=NetAppTrident_ReadTheDocs&utm_campaign=Trident

* API key file for your Cloud Volumes Service account

Backend configuration options

Each backend provisions volumes in a single Google Cloud region. To create volumes in other regions, you
can define additional backends.

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver "gcp-cvs"

backendName Custom name or the storage Driver name +"_" + part of API key
backend

storageClass Optional parameter used to specify

the CVS service type.

Use software to select the CVS
service type. Otherwise, Astra
Trident assumes CVS-Performance
service type (hardware).

storagePools CVS service type only. Optional
parameter used to specify storage
pools for volume creation.

projectNumber Google Cloud account project
number. The value is found on the
Google Cloud portal home page.

hostProjectNumber Required if using a shared VPC
network. In this scenario,
projectNumber is the service
project, and hostProjectNumber
is the host project.

apiRegion The Google Cloud region where
Astra Trident creates Cloud
Volumes Service volumes. When
creating cross-region Kubernetes
clusters, volumes created in an
apiRegion can be used in
workloads scheduled on nodes
across multiple Google Cloud
regions.

Cross-region traffic incurs an
additional cost.

18

Parameter

apiKey

proxyURL

nfsMountOptions

limitVolumeSize

servicelLevel

network

debugTraceFlags

Description Default

API key for the Google Cloud
service account with the
netappcloudvolumes.admin
role.

It includes the JSON-formatted
contents of a Google Cloud service
account’s private key file (copied
verbatim into the backend
configuration file).

Proxy URL if proxy server required
to connect to CVS account. The
proxy server can either be an HTTP
proxy or an HTTPS proxy.

For an HTTPS proxy, certificate
validation is skipped to allow the
usage of self-signed certificates in
the proxy server.

Proxy servers with authentication
enabled are not supported.

Fine-grained control of NFS mount "nfsvers=3"
options.

Fail provisioning if the requested
volume size is above this value.

(not enforced by default)

The CVS-Performance or CVS CVS-Performance default is
service level for new volumes. "standard".
CVS-Performance values are CVS default is "standardsw".

standard, premium, OF extreme.

CVS values are standardsw or
zoneredundantstandardsw.

Google Cloud network used for “default”
Cloud Volumes Service volumes.

Debug flags to use when null
troubleshooting. Example,
\{"api":false,

"method" :true}.

Do not use this unless you are
troubleshooting and require a
detailed log dump.

19

Parameter

allowedTopologies

Volume provisioning options

Description Default

To enable cross-region access,
your StorageClass definition for
allowedTopologies must
include all regions.

For example:

- key:
topology.kubernetes.io/reg
ion

values:

- us-eastl

- europe-westl

You can control default volume provisioning in the defaults section of the configuration file.

Parameter

exportRule

snapshotDir

snapshotReserve

size

Description Default

The export rules for new volumes. "0.0.0.0/0"
Must be a comma-separated list of

any combination of IPv4 addresses

or IPv4 subnets in CIDR notation.

Access to the . snapshot directory "“false”

Percentage of volume reserved for " (accept CVS default of 0)
snapshots

The size of new volumes. CVS-Performance service type
defaults to "100GiB".

CVS-Performance minimum is 100

GiB. CVS service type does not set a
default but requires a 1 GiB
CVS minimum is 1 GiB. minimum.

CVS-Performance service type examples

The following examples provide sample configurations for the CVS-Performance service type.

20

Example 1: Minimal configuration

This is the minimum backend configuration using default CVS-Performance service type with the default
"standard" service level.

version: 1

storageDriverName: gcp-cvs

projectNumber: '012345678901"

apiRegion: us-west2

apiKey:
type: service account
project id: my-gcp-project
private key id: "<id value>"
private key: |

znHczZsrrtHisIsAbOguSaPIKeyAZNChRAGz1zZE4jK3b1l/qp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZ2E4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3bl/gqp8BR4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNChRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
XsYgogyxy4zg701lwWgLwGa==

client email: cloudvolumes-admin-sal@my-gcp-
project.iam.gserviceaccount.com
client id: '123456789012345678901"

22

auth uri: https://accounts.google.com/o/oauth2/auth

token uri: https://ocauth2.googleapis.com/token

auth provider x509 cert url:
https://www.googleapis.com/oauth2/vl/certs

client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—admin-
sa%$40my-gcp-project.iam.gserviceaccount.com

Example 2: Service level configuration

This sample illustrates backend configuration options, including service level, and volume defaults.

version: 1

storageDriverName: gcp-cvs
projectNumber: '012345678901"
apiRegion: us-west2

apiKey:

type: service account

project id: my-gcp-project
private key id: "<id value>"

private key: |

znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507]Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y%m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8BR4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
XsYgbgyxy4zq701lwWgLwGa==

client email: cloudvolumes-admin-sal@my-gcp-

project.iam.gserviceaccount.com
client id: '123456789012345678901"
auth uri: https://accounts.google.com/o/ocauth2/auth

23

24

token uri: https://oauth2.googleapis.com/token

auth provider x509 cert url:
https://www.googleapis.com/ocauth2/vl/certs

client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—-admin-
sa%$40my-gcp-project.iam.gserviceaccount.com
proxyURL: http://proxy-server-hostname/
nfsMountOptions: vers=3,proto=tcp,timeo=600
limitVolumeSize: 10Ti
servicelevel: premium
defaults:

snapshotDir: 'true'

snapshotReserve: '5'

exportRule: 10.0.0.0/24,10.0.1.0/24,10.0.2.100

size: 5Ti

Example 3: Virtual pool configuration

This sample uses storage to configure virtual pools and the StorageClasses that refer back to them.
Refer to Storage class definitions to see how the storage classes were defined.

Here, specific defaults are set for all virtual pools, which set the snapshotReserve at 5% and the
exportRule to 0.0.0.0/0. The virtual pools are defined in the storage section. Each individual virtual
pool defines its own serviceLevel, and some pools overwrite the default values. Virtual pool labels
were used to differentiate the pools based on performance and protection.

version: 1
storageDriverName: gcp-cvs
projectNumber: '012345678901"
apiRegion: us-west2
apiKey:
type: service account
project id: my-gcp-project
private key id: "<id value>"

private key: |

znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jJK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jJK3bl/gqp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507]Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y%m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gp8B4Kws8zX507Y9m
XsYgbgyxy4zq701lwWgLwGa==

client email: cloudvolumes-admin-sa@my-gcp-
project.iam.gserviceaccount.com
client id: '123456789012345678901"
auth uri: https://accounts.google.com/o/ocauth2/auth
token uri: https://oauth2.googleapis.com/token
auth provider x509 cert url:
https://www.googleapis.com/ocauth2/vl/certs
client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—admin-
sa%$40my-gcp-project.iam.gserviceaccount.com
nfsMountOptions: vers=3,proto=tcp,timeo=600
defaults:
snapshotReserve: '5'
exportRule: 0.0.0.0/0
labels:
cloud: gcp
region: us-west2
storage:
- labels:
performance: extreme
protection: extra
servicelevel: extreme
defaults:
snapshotDir: 'true'
snapshotReserve: '10'
exportRule: 10.0.0.0/24
- labels:
performance: extreme
protection: standard
servicelevel: extreme
- labels:
performance: premium
protection: extra
servicelevel: premium
defaults:
snapshotDir: 'true'
snapshotReserve: '10'
- labels:
performance: premium
protection: standard
servicelevel: premium
- labels:
performance: standard
servicelevel: standard

Storage class definitions

The following StorageClass definitions apply to the virtual pool configuration example. Using
parameters.selector, you can specify for each StorageClass the virtual pool used to host a volume. The
volume will have the aspects defined in the chosen pool.

27

Storage class example

28

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs—-extreme-extra-protection
provisioner: netapp.io/trident
parameters:
selector: "performance=extreme; protection=extra"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-extreme-standard-protection
provisioner: netapp.io/trident
parameters:
selector: "performance=premium; protection=standard"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-premium-extra-protection
provisioner: netapp.io/trident
parameters:
selector: "performance=premium; protection=extra"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-premium
provisioner: netapp.io/trident
parameters:
selector: "performance=premium; protection=standard"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-standard
provisioner: netapp.io/trident
parameters:
selector: "performance=standard"
allowVolumeExpansion: true

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: cvs-extra-protection
provisioner: netapp.io/trident
parameters:

selector: "protection=extra"
allowVolumeExpansion: true

* The first StorageClass (cvs-extreme-extra-protection) maps to the first virtual pool. This is the only
pool offering extreme performance with a snapshot reserve of 10%.

* The last StorageClass (cvs-extra-protection) calls out any storage pool which provides a snapshot
reserve of 10%. Astra Trident decides which virtual pool is selected and ensures that the snapshot reserve
requirement is met.

CVS service type examples

The following examples provide sample configurations for the CVS service type.

29

Example 1: Minimum configuration

This is the minimum backend configuration using storageClass to specify the CVS service type and
default standardsw service level.

version: 1
storageDriverName: gcp-cvs
projectNumber: '012345678901"
storageClass: software
apiRegion: us-eastd
apiKey:
type: service account
project id: my-gcp-project
private key id: "<id value>"
private key: |

znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNChRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jJK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
XsYgoegyxy4zg701lwWgLwGa==

client email: cloudvolumes-admin-sal@my-gcp-
project.iam.gserviceaccount.com

30

client id: '123456789012345678901"

auth uri: https://accounts.google.com/o/ocauth2/auth

token uri: https://oauth2.googleapis.com/token

auth provider x509 cert url:
https://www.googleapis.com/ocauth2/v1/certs

client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—admin-
sa%$40my-gcp-project.iam.gserviceaccount.com

servicelevel: standardsw

31

Example 2: Storage pool configuration

32

This sample backend configuration uses storagePools to configure a storage pool.

version: 1

storageDriverName: gcp-cvs

backendName: gcp-std-so-with-pool
projectNumber: '531265380079"'
apiRegion: europe-westl

apiKey:

type: service account

project id: cloud-native-data
private key id: "<id value>"
private key: |-

MITEvAIBADANBgkghkiG9wOBAQEFAASCBKYwggSiAgEAAOIBAQDaT+0Oui9FBAW1 9
L1AGEkrYU5xd9K5N105JMkIFNDSwCD+Nv+jdl1Gvt FRLaLKSRvXyF5wzvztmODNS+
qtScpQ+5cFpQkuGtvIUI+N6qtuVYYO3b504Kp5CtqVPICgMIakK2j8pZTIgqUiMum/
5/Y90TbZrjAHSMgIm2nHzFgq2X0rgVMaHghI 6ATm4 DOuWx8XGWKTGIP1c0gPgqdlgsS
LLaWOH4VIZQZCAYyWSIUp9CAMwgHgdGOuhFNfCgMmED6PRUVVLsLvcg86X+QSWRIk
ETgE1j/sGCenPF7ti1DhGBFafd9hPnxg9PZY29ArEZwY9G/ZjZQXTWPgsOVvxiNR
DxZRC3GXAgMBAAECggEACN5¢c59bG/qnVEVI1CwMAa1M5M22z09JFh1L11jKwnt NP
Vilw2eTW2+UE7HbJru/S7KQgASDNn9kvCrakEahPRuddUMrDOvG4kT1/IODV6uFuk
Y0sZfbgd4iMUQ21smvGsqFzwloYWS5qzO1lW83ivXH/HW/1igkmY2eW+EPRS/hwSSu
SscR+SoJI7PBOBWSJh1V4yqYf3veD/D95el12CVHIRCkL85DKumeZ+yHENpiXGZAE
£8xSs4a500Pm6NHhevCw2a/UQ95/foXNUR450HtbjieJo50+FF6EYZQGEU2ZHZ08
37FBKuaJkdGWoxgaI9TL7agkGkFMF4F2qv0ZM+vy8QKBgQD40oVuOkIJDI1IhkTHP86W
esFlwlkpWyJRIZATLIOG/rVpslnX+XdDgOWQf4umdLNauS5hYEHILUGZSGs1Xk3/B
NHwWR60OXFugEKNi1u83d0zS1HhTy7PZp0Zdj5a/vVvQfPDMz 70vsgLRA7YCAbdzuQO0
+Ahg0ZtwvgOHQO64hdWO0ukpYRRWKBgQODgyHj 98ogswoYula+pPlySOpPwlLmjwKyNm
/HayzCp+Qjiyy7Tzg8AUqlH10u83XbV428jvg7kDhO7PCCKFg+mMmfgHmTpb0Mag
KpKnZg4ipsgPlyHNNEoRmcailXbwIhCLewMgMrggUiLOmCw4PscL5nK+4GKu2XE1
JLgIWAZFMOKBgFHKQIXXRAJ1kR3XpGHOGN890pZ0kCVSrgjubalef/5KY1FCt8ew
F/+aIxM21QSvmWQYOvVCnhuY/F2GFaQ7d0om3decuwI0CX/xy7PjHMkLXa2uazs4
WR17sLduj62RgGXRLX0c0QkwBiNFyHbRcpdkZJIQuibYMhBa+757SxT4BtACGAWMWT
UucocRXzZm/pdvz9wteNH3YDWnJILMxml1KCO6gMXbBoYrliY4sm3ywJWMC+1Cd/H8A
Gecxd/xVu5SmA2L2N3KMql82zhz8Th0G5DwKyDRJIGOQ0Q4 6yuNXOoYE] Lo4W] yk8Me
+t1Q8iK98EOUMZnhTgfSpSNE1bz2AgnzQ3MNIuECgYAqdvdVPnKGEvdtZ2DjyMoJd
E89UIC41W]jICGmHsd8W65+3X0RWMzKMT6aZc5tK9J5dHVMWIETnbM+1TImdBBEFga
NWOC6£f3r2xbGXHhaWS1l+nobpTuvlo56ZRIVvVk71FMsiddzMuHH8pxfgNJemwA4P
ThDHCejv035NNVE6KyoO0tA==

client email: cloudvolumes-admin-sa@cloud-native-

data.iam.gserviceaccount.com
client id: '107071413297115343396"

auth uri: https://accounts.google.com/o/ocauth2/auth
token uri: https://oauth2.googleapis.com/token
auth provider x509 cert url:
https://www.googleapis.com/oauth2/vl/certs
client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—admin-
sa%$40cloud-native-data.iam.gserviceaccount.com
storageClass: software
zone: europe-westl-b
network: default
storagePools:
- 1bc7£380-3314-6005-45e9-c7dc8c2d7509
servicelevel: Standardsw

What’s next?

After you create the backend configuration file, run the following command:
tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to
determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Configure a NetApp HCI or SolidFire backend
Learn about how to create and use an Element backend with your Astra Trident installation.

What you’ll need
* A supported storage system that runs Element software.

» Credentials to a NetApp HCI/SolidFire cluster admin or tenant user that can manage volumes.
« All of your Kubernetes worker nodes should have the appropriate iSCSI tools installed. See worker node
preparation information.
What you need to know

The solidfire-san storage driver supports both volume modes: file and block. For the Filesystem
volumeMode, Astra Trident creates a volume and creates a filesystem. The filesystem type is specified by the
StorageClass.

33

Driver

solidfire-san

solidfire-san

solidfire-san

solidfire-san

Protocol

iSCSI

iSCSI

iSCSI

iSCSI

VolumeMode

Block

Block

Filesystem

Filesystem

Access modes
supported

RWO,ROX,RWX

RWO,ROX,RWX

RWO,ROX

RWO,ROX

File systems
supported

No Filesystem. Raw
block device.

No Filesystem. Raw
block device.

xfs, ext3, ext4

xfs, ext3, ext4d

Astra Trident uses CHAP when functioning as an enhanced CSI Provisioner. If you’re using

®

CHAP (which is the default for CSl), no further preparation is required. It is recommended to

explicitly set the UseCHAP option to use CHAP with non-CSI Trident. Otherwise, see here.

O

If neither AccessGroups or UseCHAP are set, one of the following rules applies:

* If the default trident access group is detected, access groups are used.

Volume access groups are only supported by the conventional, non-CSI framework for Astra
Trident. When configured to work in CSI mode, Astra Trident uses CHAP.

* If no access group is detected and Kubernetes version is 1.7 or later, then CHAP is used.

Backend configuration options

See the following table for the backend configuration options:

Parameter

version

storageDriverName

backendName

Endpoint

SVIP

labels

TenantName

InitiatorIFace

34

Description

Name of the storage driver

Custom name or the storage
backend

Default
Always 1

Always “solidfire-san”

“solidfire_” + storage (iSCSI) IP

address

MVIP for the SolidFire cluster with

tenant credentials

Storage (iISCSI) IP address and

port

Set of arbitrary JSON-formatted

labels to apply on volumes.

Tenant name to use (created if not

found)

Restrict iSCSI traffic to a specific

host interface

“default”

https://docs.netapp.com/us-en/trident-2301/trident-concepts/vol-access-groups.html

Parameter Description Default

UseCHAP Use CHAP to authenticate iSCSI true

AccessGroups List of Access Group IDs to use Finds the ID of an access group

named “trident”

Types QoS specifications

limitVolumeSize Fail provisioning if requested “” (not enforced by default)
volume size is above this value

debugTraceFlags Debug flags to use when null
troubleshooting. Example,
{“api”:false, “method”:true}

@ Do not use debugTraceFlags unless you are troubleshooting and require a detailed log dump.

Example 1: Backend configuration for solidfire-san driver with three volume types

This example shows a backend file using CHAP authentication and modeling three volume types with specific
QoS guarantees. Most likely you would then define storage classes to consume each of these using the 10PS

storage class parameter.

35

version: 1
storageDriverName: solidfire-san
Endpoint: https://<user>:<password>@<mvip>/json-rpc/8.0
SVIP: "<svip>:3260"
TenantName: "<tenant>"
labels:
k8scluster: devl
backend: devl-element-cluster
UseCHAP: true
Types:
- Type: Bronze
Qos:
minIOPS: 1000
maxIOPS: 2000
burstIOPS: 4000
- Type: Silver
Qos:
minIOPS: 4000
maxIOPS: 6000
burstIOPS: 8000
- Type: Gold
Qos:
minIOPS: 6000
maxIOPS: 8000
burstIOPS: 10000

Example 2: Backend and storage class configuration for solidfire-san driver with virtual pools

This example shows the backend definition file configured with virtual pools along with StorageClasses that
refer back to them.

Astra Trident copies labels present on a storage pool to the backend storage LUN at provisioning. For
convenience, storage administrators can define labels per virtual pool and group volumes by label.

In the sample backend definition file shown below, specific defaults are set for all storage pools, which set the
type at Silver. The virtual pools are defined in the storage section. In this example, some of the storage pool
sets their own type, and some pools overwrite the default values set above.

version: 1

storageDriverName: solidfire-san

Endpoint: https://<user>:<password>@<mvip>/json-rpc/8.0
SVIP: "<svip>:3260"

TenantName: "<tenant>"

UseCHAP: true

36

Types:
- Type: Bronze
Qos:
minIOPS: 1000
maxIOPS: 2000
burstIOPS: 4000
- Type: Silver
Qos:
minIOPS: 4000
maxIOPS: 6000
burstIOPS: 8000
- Type: Gold
Qos:
minIOPS: 6000
maxIOPS: 8000
burstIOPS: 10000
type: Silver
labels:
store: solidfire
k8scluster: dev-l-cluster
region: us-east-1

storage:

- labels:
performance: gold
cost: '4'

zone: us-east-la
type: Gold

- labels:
performance: silver
cost: '3"

zone: us-east-1b
type: Silver

- labels:
performance: bronze
cost: '2'"

zone: us-east-1c
type: Bronze

- labels:
performance: silver
cost: '1"

zone: us-east-1d

The following StorageClass definitions refer to the above virtual pools. Using the parameters.selector
field, each StorageClass calls out which virtual pool(s) can be used to host a volume. The volume will have the
aspects defined in the chosen virtual pool.

37

The first StorageClass (solidfire-gold-four) will map to the first virtual pool. This is the only pool offering
gold performance with a Vvolume Type QoS of Gold. The last StorageClass (solidfire-silver) calls out
any storage pool which offers a silver performance. Astra Trident will decide which virtual pool is selected and

will ensure the storage requirement is met.

38

apiVersion:

storage.k8s.io/vl

kind: StorageClass

metadata:

name: solidfire-gold-four

provisioner:
parameters:
selector:

csi.trident.netapp.io

"performance=gold; cost=4"

fsType: "ext4d"

apiVersion:

storage.k8s.io/vl1

kind: StorageClass

metadata:

name: solidfire-silver-three

provisioner:
parameters:
selector:

csi.trident.netapp.io

"performance=silver; cost=3"

fsType: "ext4d"

apiVersion:

storage.k8s.io/vl

kind: StorageClass

metadata:

name: solidfire-bronze-two

provisioner:
parameters:
selector:

csi.trident.netapp.io

"performance=bronze; cost=2"

fsType: "ext4d"

apiVersion:

storage.k8s.io/vl

kind: StorageClass

metadata:

name: solidfire-silver-one

provisioner:
parameters:
selector:

csi.trident.netapp.io

"performance=silver; cost=1"

fsType: "extd"

apiVersion:

storage.k8s.io/vl

kind: StorageClass

metadata:

name: solidfire-silver

provisioner:
parameters:
selector:

csi.trident.netapp.io

"performance=silver"

fsType: "ext4d"

39

Find more information

* Volume access groups

Configure a backend with ONTAP SAN drivers
Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP SAN drivers.

* Preparation

» Configuration and examples

Astra Control provides seamless protection, disaster recovery, and mobility (moving volumes
between Kubernetes clusters) for volumes created with the ontap-nas, ontap-nas-
flexgroup, and ontap-san drivers. See Astra Control replication prerequisites for details.

* You must use ontap-nas for production workloads that require data protection, disaster
recovery, and mobility.

@ * Use ontap-san-economy when anticipated volume usage is expected to be much higher
than what ONTAP supports.

* Use ontap-nas-economy only where anticipated volume usage is expected to be much
higher than what ONTAP supports, and the ontap-san-economy driver cannot be used.

* Do not use use ontap-nas-economy if you anticipate the need for data protection,
disaster recovery, or mobility.

User permissions

Astra Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster
user or a vsadmin SVM user, or a user with a different name that has the same role. For Amazon FSx for
NetApp ONTAP deployments, Astra Trident expects to be run as either an ONTAP or SVM administrator, using
the cluster £sxadmin user or a vsadmin SVM user, or a user with a different name that has the same role.
The £sxadmin user is a limited replacement for the cluster admin user.

If you use the 1imitAggregateUsage parameter, cluster admin permissions are required.

@ When using Amazon FSx for NetApp ONTAP with Astra Trident, the 1imitAggregateUsage
parameter will not work with the vsadmin and fsxadmin user accounts. The configuration
operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don’t
recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,
making upgrades difficult and error-prone.

Prepare to configure backend with ONTAP SAN drivers

Learn about how to prepare to configure an ONTAP backend with ONTAP SAN drivers. For all ONTAP
backends, Astra Trident requires at least one aggregate assigned to the SVM.

Remember that you can also run more than one driver, and create storage classes that point to one or the
other. For example, you could configure a san-dev class that uses the ontap-san driver and a san-

default class that uses the ontap-san-economy one.

All your Kubernetes worker nodes must have the appropriate iSCSI tools installed. See here for more details.

40

https://docs.netapp.com/us-en/trident-2301/trident-concepts/vol-access-groups.html
https://docs.netapp.com/us-en/astra-control-center/use/replicate_snapmirror.html#replication-prerequisites

Authentication

Astra Trident offers two modes of authenticating an ONTAP backend.

 Credential-based: The username and password to an ONTAP user with the required permissions. It is
recommended to use a pre-defined security login role, such as admin or vsadmin to ensure maximum
compatibility with ONTAP versions.

« Certificate-based: Astra Trident can also communicate with an ONTAP cluster using a certificate installed
on the backend. Here, the backend definition must contain Base64-encoded values of the client certificate,
key, and the trusted CA certificate if used (recommended).

You can update existing backends to move between credential-based and certificate-based methods. However,
only one authentication method is supported at a time. To switch to a different authentication method, you must
remove the existing method from the backend configuration.

@ If you attempt to provide both credentials and certificates, backend creation will fail with an
error that more than one authentication method was provided in the configuration file.

Enable credential-based authentication

Astra Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the
ONTAP backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin.
This ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by
future Astra Trident releases. A custom security login role can be created and used with Astra Trident, but is
not recommended.

A sample backend definition will look like this:

41

YAML

version: 1

backendName: ExampleBackend
storageDriverName: ontap-san
managementLIF: 10.0.0.1

svm: svm_nfs

username: vsadmin

password: password

JSON

"version": 1,

"backendName": "ExampleBackend",
"storageDriverName": "ontap-san",
"managementLIF": "10.0.0.1",
"svm": "svm nfs",

"username": "vsadmin",
"password": "password"

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the
backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The
creation or update of a backend is the only step that requires knowledge of the credentials. As such, it is an
admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based Authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three
parameters are required in the backend definition.
« clientCertificate: Base64-encoded value of client certificate.
« clientPrivateKey: Base64-encoded value of associated private key.
« trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter
must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to
authenticate as.

openssl req -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key
-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=admin"

42

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage
administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-
name> -vserver <vserver-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled
true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-

name> -vserver <vserver-name>
security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name admin -application ontapi
—authentication-method cert
security login create -user-or-group-name admin -application http

—authentication-method cert

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>
with Management LIF IP and SVM name.

curl -X POST -Lk https://<ONTAP-Management-
LIF>/servlets/netapp.servlets.admin.XMLrequest filer --key k8senv.key
--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp
xmlns="http://www.netapp.com/filer/admin" version="1.21"
vfiler="<vserver—-name>"><vserver-get></vserver—-get></netapp>"'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert baseb64
base64 -w 0 k8senv.key >> key base64
base64 -w 0 trustedca.pem >> trustedca baset4

7. Create backend using the values obtained from the previous step.

43

cat cert-backend.json

{

"version": 1,

"storageDriverName": "ontap-san",

"backendName": "SanBackend",

"managementLIF": "1.2.3.4",

"svm": "vserver test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",
"clientPrivateKey": "LSOtFaKE...0VaLuESOtLSOK",
"trustedCACertificate": "QNFinfO...SigOyN",
"storagePrefix": "myPrefix "

}

tridentctl create backend -f cert-backend.json -n trident

femsmmmmmm== R fes==s=ssssscscscssossssssssssssss=sa==
from e fr e +

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

I S e e e e e
e fremmmeme== iF

| SanBackend | ontap-san | 586blcd5-8cf8-428d-a76c-2872713612cl |
online | 0 |

fessmmmmeme== frememesessess==== fessssssssssssesessaososssssssssss o=
f=mm==== fememema== +

Update authentication methods or rotate credentials

You can update an existing backend to use a different authentication method or to rotate their credentials. This
works both ways: backends that make use of username/password can be updated to use certificates;
backends that utilize certificates can be updated to username/password based. To do this, you must remove
the existing authentication method and add the new authentication method. Then use the updated
backend.json file containing the required parameters to execute tridentctl backend update.

44

cat cert-backend-updated.json

{

"version": 1,
"storageDriverName": "ontap-san",
"backendName": "SanBackend",
"managementLIF": "1.2.3.4",
"svm": "vserver test",
"username": "vsadmin",
"password": "password",
"storagePrefix": "myPrefix "

}

#Update backend with tridentctl
tridentctl update backend SanBackend -f cert-backend-updated.json -n
trident

e fom e o
e fremmmeme== W+

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

R femsmemessess==== fesssssmes s e s ss s osessssss s ess
fmmm==== femememm== 4

| SanBackend | ontap-san | 586blcd5-8cf8-428d-a76c-2872713612cl |
online | 9 |

femmmmmmmma== R fessssssssssssesessosssssasssssssasaaaa
e e 1

When rotating passwords, the storage administrator must first update the password for the user

(D on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates
can be added to the user. The backend is then updated to use the new certificate, following
which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume
connections made after. A successful backend update indicates that Astra Trident can communicate with the
ONTAP backend and handle future volume operations.

Specify igroups

Astra Trident uses igroups to control access to the volumes (LUNSs) that it provisions. Administrators have two
options when it comes to specifying igroups for backends:

* Astra Trident can automatically create and manage an igroup per backend. If igroupName is not included
in the backend definition, Astra Trident creates an igroup named trident-<backend-UUID> on the
SVM. This will ensure each backend has a dedicated igroup and handle the automated addition/deletion of
Kubernetes node IQNs.

« Alternatively, pre-created igroups can also be provided in a backend definition. This can be done using the
igroupName config parameter. Astra Trident will add/delete Kubernetes node IQNs to the pre-existing
igroup.

45

For backends that have igroupName defined, the igroupName can be deleted with a tridentctl
backend update to have Astra Trident auto-handle igroups. This will not disrupt access to volumes that are
already attached to workloads. Future connections will be handled using the igroup Astra Trident created.

Dedicating an igroup for each unique instance of Astra Trident is a best practice that is beneficial
for the Kubernetes admin as well as the storage admin. CSI Trident automates the addition and
removal of cluster node IQNs to the igroup, greatly simplifying its management. When using the
same SVM across Kubernetes environments (and Astra Trident installations), using a dedicated

(D igroup ensures that changes made to one Kubernetes cluster don’t influence igroups associated
with another. In addition, it is also important to ensure each node in the Kubernetes cluster has a
unique IQN. As mentioned above, Astra Trident automatically handles the addition and removal
of IQNs. Reusing IQNs across hosts can lead to undesirable scenarios where hosts get
mistaken for one another and access to LUNs is denied.

If Astra Trident is configured to function as a CSI Provisioner, Kubernetes node IQNs are automatically added
to/removed from the igroup. When nodes are added to a Kubernetes cluster, trident-csi DaemonSet
deploys a pod (trident-csi-xxxxx in versions prior to 23.01 or trident-node<operating system>-
xxxx in 23.01 and later) on the newly added nodes and registers the new nodes it can attach volumes to.
Node IQNs are also added to the backend’s igroup. A similar set of steps handle the removal of IQNs when
node(s) are cordoned, drained, and deleted from Kubernetes.

If Astra Trident does not run as a CSI Provisioner, the igroup must be manually updated to contain the iISCSI
IQNs from every worker node in the Kubernetes cluster. IQNs of nodes that join the Kubernetes cluster will
need to be added to the igroup. Similarly, IQNs of nodes that are removed from the Kubernetes cluster must be
removed from the igroup.

Authenticate connections with bidirectional CHAP

Astra Trident can authenticate iISCSI sessions with bidirectional CHAP for the ontap-san and ontap-san-
economy drivers. This requires enabling the useCHAP option in your backend definition. When set to true,
Astra Trident configures the SVM'’s default initiator security to bidirectional CHAP and set the username and
secrets from the backend file. NetApp recommends using bidirectional CHAP to authenticate connections. See
the following sample configuration:

version: 1

storageDriverName: ontap-san
backendName: ontap san chap
managementLIF: 192.168.0.135

svm: ontap iscsi svm

useCHAP: true

username: vsadmin

password: password

igroupName: trident
chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz

46

@ The useCHAP parameter is a Boolean option that can be configured only once. It is set to false
by default. After you set it to true, you cannot set it to false.

In addition to useCHAP=true, the chapInitiatorSecret, chapTargetInitiatorSecret,
chapTargetUsername, and chapUsername fields must be included in the backend definition. The secrets
can be changed after a backend is created by running tridentctl update.

How it works

By setting useCHAP to true, the storage administrator instructs Astra Trident to configure CHAP on the storage
backend. This includes the following:

« Setting up CHAP on the SVM:

o If the SVM'’s default initiator security type is none (set by default) and there are no pre-existing LUNs
already present in the volume, Astra Trident will set the default security type to CHAP and proceed to
configuring the CHAP initiator and target username and secrets.

o |f the SVM contains LUNSs, Astra Trident will not enable CHAP on the SVM. This ensures that access to
LUNSs that are already present on the SVM isn’t restricted.

» Configuring the CHAP initiator and target username and secrets; these options must be specified in the
backend configuration (as shown above).

* Managing the addition of initiators to the igroupName given in the backend. If unspecified, this defaults to
trident.

After the backend is created, Astra Trident creates a corresponding tridentbackend CRD and stores the
CHAP secrets and usernames as Kubernetes secrets. All PVs that are created by Astra Trident on this
backend will be mounted and attached over CHAP.

Rotate credentials and update backends

You can update the CHAP credentials by updating the CHAP parameters in the backend. json file. This will
require updating the CHAP secrets and using the tridentctl update command to reflect these changes.

When updating the CHAP secrets for a backend, you must use tridentctl to update the
backend. Do not update the credentials on the storage cluster through the CLI/ONTAP Ul as
Astra Trident will not be able to pick up these changes.

47

cat backend-san.json

"version": 1,
"storageDriverName": "ontap-san",
"backendName": "ontap san chap",
"managementLIF": "192.168.0.135",
"svm" :
"useCHAP": true,

"username": "vsadmin",

"ontap iscsi svm",

"password": "password",

"igroupName": "trident",

"chapInitiatorSecret": "cl9gxUpDaTeD",
"chapTargetInitiatorSecret": "rgxigXgkeUpDaTeD",
"chapTargetUsername": "iJF4heBRTOTCwxyz",
"chapUsername": "uh2aNCLSd6cNwxyz",

./tridentctl update backend ontap san chap -f backend-san.json -n trident

- o +

| NAME | STORAGE DRIVER | UulbD

STATE | VOLUMES |

e —— e — e
f——— R +

| ontap san chap | ontap-san | aad458f3b-ad2d-4378-8a33-1a472ffbeb5c |
online | T

e e e
- e it +

Existing connections will remain unaffected; they will continue to remain active if the credentials are updated by
Astra Trident on the SVM. New connections will use the updated credentials and existing connections continue
to remain active. Disconnecting and reconnecting old PVs will result in them using the updated credentials.

ONTAP SAN configuration options and examples

Learn about how to create and use ONTAP SAN drivers with your Astra Trident installation. This section
provides backend configuration examples and details about how to map backends to StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

48

Parameter

storageDriverName

backendName

managementLIF

dataLlIF

useCHAP

chapInitiatorSecret

labels

chapTargetInitiatorSecret

Description Default

LI

“ontap-nas”, “ontap-nas-economy”,
“ontap-nas-flexgroup”, “ontap-san”,

“ontap-san-economy”

Name of the storage driver

Custom name or the storage
backend

Driver name + “_” + dataLIF

IP address of a cluster or SVM
management LIF

“10.0.0.17, “[2001:1234:abcd::fefe]”

For seamless MetroCluster
switchover, you must specify an
SVM management LIF.

A fully-qualified domain name
(FQDN) can be specified.

Can be set to use IPv6 addresses if
Astra Trident was installed using
the -—use-ipvé6 flag. IPv6
addresses must be defined in
square brackets, such as
[28e8:d9fb:a825:b7bf:69a8:d02f:9e
7b:3555].

IP address of protocol LIF. Derived by the SVM
Do not specify for iSCSI. Astra

Trident uses ONTAP Selective LUN

Map to discover the iSCI LIFs

needed to establish a multi path

session. Awarning is generated if

dataLIF is explicitly defined.

Use CHAP to authenticate iSCSI
for ONTAP SAN drivers [Boolean].

false

Set to true for Astra Trident to
configure and use bidirectional
CHAP as the default authentication
for the SVM given in the backend.
Refer to Prepare to configure
backend with ONTAP SAN drivers
for details.

“w

CHAP initiator secret. Required if
useCHAP=true

Set of arbitrary JSON-formatted
labels to apply on volumes

@

CHAP target initiator secret.
Required if useCHAP=true

49

https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html
https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html

Parameter

chapUsername

chapTargetUsername

clientCertificate

clientPrivateKey

trustedCACertificate

username

password

svm

igroupName

storagePrefix

limitAggregateUsage

50

Description

Inbound username. Required if
useCHAP=true

Target username. Required if
useCHAP=true

Base64-encoded value of client
certificate. Used for certificate-
based auth

Base64-encoded value of client
private key. Used for certificate-
based auth

Baseb64-encoded value of trusted
CA certificate. Optional. Used for
certificate-based authentication.

Username needed to communicate
with the ONTAP cluster. Used for
credential-based authentication.

Password needed to communicate
with the ONTAP cluster. Used for
credential-based authentication.

Storage virtual machine to use

Name of the igroup for SAN
volumes to use. Refer to Details
about igroupName for more
information.

Prefix used when provisioning new
volumes in the SVM.

Cannot be modified later. To update
this parameter, you will need to
create a new backend.

Fail provisioning if usage is above
this percentage.

If you are using an Amazon FSx for
NetApp ONTAP backend, do not
specify 1imitAggregateUsage
The provided fsxadmin and
vsadmin do not contain the
permissions required to retrieve
aggregate usage and limit it using
Astra Trident.

Default

@

@

@

@

“

@

Derived if an SVM
managementLIF is specified

“trident-<backend-UUID>"

“trident”

11

(not enforced by default)

Parameter

limitVolumeSize

lunsPerFlexvol

debugTraceFlags

useREST

Details about igroupName

Description

Fail provisioning if requested
volume size is above this value.

Also restricts the maximum size of
the volumes it manages for qtrees
and LUNs.

Maximum LUNSs per Flexvol, must
be in range [50, 200]

Debug flags to use when
troubleshooting. Example,
{“api”:false, “method”:true}

Do not use unless you are
troubleshooting and require a
detailed log dump.

Boolean parameter to use ONTAP
REST APIs. Tech preview

useREST is provided as a tech
preview that is recommended for
test environments and not for

production workloads. When set to
true, Astra Trident will use ONTAP

REST APIs to communicate with
the backend. This feature requires
ONTAP 9.11.1 and later. In

addition, the ONTAP login role used

must have access to the ontap
application. This is satisfied by the
pre-defined vsadmin and
cluster-admin roles.

useREST is not supported with
MetroCluster.

Default

@

(not enforced by default)

“100”

null

false

igroupName can be set to an igroup that is already created on the ONTAP cluster. If unspecified, Astra Trident
automatically creates an igroup named trident-<backend-UUID>.

If providing a pre-defined igroupName, we recommend using one igroup per Kubernetes cluster, if the SVM is
to be shared between environments. This is necessary for Astra Trident to automatically maintain IQN

additions and deletions.

* igroupName can be updated to point to a new igroup that is created and managed on the SVM outside of

Astra Trident.

* igroupName can be omitted. In this case, Astra Trident will create and manage an igroup named
trident-<backend-UUID> automatically.

51

In both cases, volume attachments will continue to be accessible. Future volume attachments will use the
updated igroup. This update does not disrupt access to volumes present on the backend.

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an
example, see the configuration examples below.

Parameter
spaceAllocation

spaceReserve

snapshotPolicy

gosPolicy

adaptiveQosPolicy

snapshotReserve

splitOnClone

encryption

52

Description
Space-allocation for LUNs

Space reservation mode; “none”
(thin) or “volume” (thick)

Snapshot policy to use

QoS policy group to assign for
volumes created. Choose one of

gosPolicy or adaptiveQosPolicy per

storage pool/backend.

Using QoS policy groups with Astra
Trident requires ONTAP 9.8 or later.
We recommend using a non-shared

QoS policy group and ensuring the
policy group is applied to each
constituent individually. A shared
QoS policy group will enforce the
ceiling for the total throughput of all
workloads.

Adaptive QoS policy group to
assign for volumes created.
Choose one of qosPolicy or
adaptiveQosPolicy per storage
pool/backend

Percentage of volume reserved for
snapshots “0”

Split a clone from its parent upon
creation

Enable NetApp Volume Encryption
(NVE) on the new volume; defaults
to false. NVE must be licensed
and enabled on the cluster to use
this option.

If NAE is enabled on the backend,
any volume provisioned in Astra
Trident will be NAE enabled.

For more information, refer to: How

Astra Trident works with NVE and
NAE.

Default
“true”

unoneu

unoneu

13

11

If snapshotPolicy is “none”, else

w

“false’

“false’

https://docs.netapp.com/us-en/trident-2301/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2301/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2301/trident-reco/security-reco.html

Parameter Description Default

luksEncryption Enable LUKS encryption. Referto ™
Use Linux Unified Key Setup
(LUKS).
securityStyle Security style for new volumes unix
tieringPolicy Tiering policy to use “none” “snapshot-only” for pre-ONTAP 9.5

SVM-DR configuration

Volume provisioning examples

Here’s an example with defaults defined:

version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
svm: trident svm
username: admin
password: password
labels:
k8scluster: dev2
backend: dev2-sanbackend
storagePrefix: alternate-trident
igroupName: custom
debugTraceFlags:
api: false
method: true
defaults:
spaceReserve: volume
gosPolicy: standard
spaceAllocation: 'false'
snapshotPolicy: default
snapshotReserve: '10'

For all volumes created using the ontap-san driver, Astra Trident adds an extra 10 percent
capacity to the FlexVol to accommodate the LUN metadata. The LUN will be provisioned with

(D the exact size that the user requests in the PVC. Astra Trident adds 10 percent to the FlexVol
(shows as Available size in ONTAP). Users will now get the amount of usable capacity they
requested. This change also prevents LUNs from becoming read-only unless the available
space is fully utilized. This does not apply to ontap-san-economy.

For backends that define snapshotReserve, Astra Trident calculates the size of volumes as follows:

53

https://docs.netapp.com/us-en/trident-2301/trident-reco/security-luks.html
https://docs.netapp.com/us-en/trident-2301/trident-reco/security-luks.html

Total volume size = [(PVC requested size) / (1 - (snapshotReserve
percentage) / 100)] * 1.1

The 1.1 is the extra 10 percent Astra Trident adds to the FlexVol to accommodate the LUN metadata. For
snapshotReserve = 5%, and PVC request = 5GiB, the total volume size is 5.79GiB and the available size is
5.5GiB. The volume show command should show results similar to this example:

Aggregate State i Available Used%

_pvc_89flcl56_3801_4ded_9f9d_034d54c39514

online RW 18GB
_pvc_ed2ec6fe_3baa_4af6_996d_134adbbbBetd

online RW 5.79GB 5.58GB
_pvec_eB8372153_9ad9_474a_951a_0Bael5elc@ba

online RW 1GB 511.B8MB

3 entries were displayed.

Currently, resizing is the only way to use the new calculation for an existing volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest
way to define a backend.

@ If you are using Amazon FSx on NetApp ONTAP with Astra Trident, the recommendation is to
specify DNS names for LIFs instead of IP addresses.

ontap-san driver with certificate-based authentication

This is a minimal backend configuration example. clientCertificate, clientPrivateKey, and
trustedCACertificate (optional, if using trusted CA) are populated in backend. json and take the
base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

version: 1

storageDriverName: ontap-san

backendName: DefaultSANBackend

managementLIF: 10.0.0.1

svm: svm_iscsi

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz

igroupName: trident

clientCertificate: ZXROZXJwYXB...ICMgJd3BhcGVyc2
clientPrivateKey: vciwKIyAgZG...0cnksIGR1c2NyaX
trustedCACertificate: zcyBbaG...b3Igb3dulIGNsYXNz

54

ontap-san driver with bidirectional CHAP

This is a minimal backend configuration example. This basic configuration creates an ontap-san backend
with useCHAP set to true.

version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
svm: svm iscsi
labels:

k8scluster: test-cluster-1

backend: testclusterl-sanbackend
useCHAP: true
chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz
igroupName: trident
username: vsadmin

password: password

ontap-san-economy driver

version: 1

storageDriverName: ontap-san-economy
managementLIF: 10.0.0.1

svm: svm_iscsi eco

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz
igroupName: trident

username: vsadmin

password: password

Examples of backends with virtual pools

In the sample backend definition file shown below, specific defaults are set for all storage pools, such as
spaceReserve at none, spaceAllocation at false, and encryption at false. The virtual pools are defined
in the storage section.

Astra Trident sets provisioning labels in the “Comments” field. Comments are set on the FlexVol. Astra Trident
copies all labels present on a virtual pool to the storage volume at provisioning. For convenience, storage

55

administrators can define labels per virtual pool and group volumes by label.

In this example, some of the storage pool sets their own spaceReserve, spaceAllocation, and
encryption values, and some pools overwrite the default values set above.

56

version: 1

storageDriverName: ontap-san
managementLIF: 10.0.0.1

svm: svm iscsi

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkeslIpwxyz
chapTargetUsername: 1JF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz
igroupName: trident

username: vsadmin

password: password

defaults:
spaceAllocation: 'false'
encryption: 'false'

qgosPolicy: standard
labels:
store: san_store
kubernetes-cluster: prod-cluster-1
region: us east 1
storage:
- labels:
protection: gold
creditpoints: '40000'
zone: us_east la
defaults:
spaceAllocation: 'true'
encryption: 'true'
adaptiveQosPolicy: adaptive-extreme
- labels:
protection: silver
creditpoints: '20000"
zone: us_east 1b

defaults:
spaceAllocation: 'false'
encryption: 'true'

gosPolicy: premium
- labels:
protection: bronze
creditpoints: '5000'
zone: us_east lc
defaults:
spaceAllocation: 'true'

encryption: 'false'

Here is an iISCSI example for the ontap-san-economy driver:

version: 1

storageDriverName: ontap-san—-economy
managementLIF: 10.0.0.1

svm: svm _1iscsi eco

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz
igroupName: trident

username: vsadmin

password: password

defaults:
spaceAllocation: 'false'
encryption: 'false'
labels:

store: san_economy store
region: us east 1
storage:
- labels:
app: oracledb
cost: '30'
zone: us_east la
defaults:
spaceAllocation: 'true'
encryption: 'true'
- labels:
app: postgresdb
cost: '20'
zone: us_east 1b
defaults:
spaceAllocation: 'false'
encryption: 'true'
- labels:
app: mysqgldb
cost: '10"
zone: us_east lc
defaults:
spaceAllocation: 'true'
encryption: 'false'

58

Map backends to StorageClasses

The following StorageClass definitions refer to the above virtual pools. Using the parameters.selector
field, each StorageClass calls out which virtual pool(s) can be used to host a volume. The volume will have the
aspects defined in the chosen virtual pool.

* The first StorageClass (protection-gold) will map to the first, second virtual pool in the ontap-nas-
flexgroup backend and the first virtual pool in the ontap-san backend. These are the only pool offering
gold level protection.

* The second StorageClass (protection-not-gold) will map to the third, fourth virtual pool in ontap-
nas-flexgroup backend and the second, third virtual pool in ontap-san backend. These are the only
pools offering protection level other than gold.

* The third StorageClass (app-mysqgldb) will map to the fourth virtual pool in ontap-nas backend and the
third virtual pool in ontap-san-economy backend. These are the only pools offering storage pool
configuration for mysqldb type app.

* The fourth StorageClass (protection-silver-creditpoints-20k) will map to the third virtual pool in
ontap-nas-flexgroup backend and the second virtual pool in ontap-san backend. These are the only
pools offering gold-level protection at 20000 creditpoints.

* The fifth StorageClass (creditpoints-5k) will map to the second virtual pool in ontap-nas-economy
backend and the third virtual pool in ontap-san backend. These are the only pool offerings at 5000
creditpoints.

Astra Trident will decide which virtual pool is selected and will ensure the storage requirement is met.

59

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-gold
provisioner: netapp.io/trident
parameters:
selector: "protection=gold"
fsType: "ext4d"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-not-gold
provisioner: netapp.io/trident
parameters:
selector: "protection!=gold"
fsType: "ext4d"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: app-mysqgldb
provisioner: netapp.io/trident
parameters:
selector: "app=mysqgldb"
fsType: "ext4d"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: protection-silver-creditpoints-20k

provisioner: netapp.io/trident
parameters:
selector: "protection=silver;
fsType: "extd"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: creditpoints-5k
provisioner: netapp.io/trident
parameters:
selector: "creditpoints=5000"
fsType: "ext4d"

60

creditpoints=20000"

Configure an ONTAP NAS backend

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP NAS drivers.

* Preparation

+ Configuration and examples

Astra Control provides seamless protection, disaster recovery, and mobility (moving volumes
between Kubernetes clusters) for volumes created with the ontap-nas, ontap-nas-
flexgroup, and ontap-san drivers. See Astra Control replication prerequisites for details.

* You must use ontap-nas for production workloads that require data protection, disaster
recovery, and mobility.

@ * Use ontap-san-economy when anticipated volume usage is expected to be much higher
than what ONTAP supports.

* Use ontap-nas-economy only where anticipated volume usage is expected to be much
higher than what ONTAP supports, and the ontap-san-economy driver cannot be used.

* Do not use use ontap-nas—-economy if you anticipate the need for data protection,
disaster recovery, or mobility.

User permissions

Astra Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster
user or a vsadmin SVM user, or a user with a different name that has the same role. For Amazon FSx for
NetApp ONTAP deployments, Astra Trident expects to be run as either an ONTAP or SVM administrator, using
the cluster fsxadmin user or a vsadmin SVM user, or a user with a different name that has the same role.
The f£sxadmin user is a limited replacement for the cluster admin user.

If you use the 1imitAggregateUsage parameter, cluster admin permissions are required.

@ When using Amazon FSx for NetApp ONTAP with Astra Trident, the 1imitAggregateUsage
parameter will not work with the vsadmin and fsxadmin user accounts. The configuration
operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don’t
recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,
making upgrades difficult and error-prone.

Prepare to configure a backend with ONTAP NAS drivers

Learn about how to prepare to configure an ONTAP backend with ONTAP NAS drivers. For all ONTAP
backends, Astra Trident requires at least one aggregate assigned to the SVM.

For all ONTAP backends, Astra Trident requires at least one aggregate assigned to the SVM.

Remember that you can also run more than one driver, and create storage classes that point to one or the
other. For example, you could configure a Gold class that uses the ontap-nas driver and a Bronze class that
uses the ontap-nas—-economy one.

All your Kubernetes worker nodes must have the appropriate NFS tools installed. See here for more details.

61

https://docs.netapp.com/us-en/astra-control-center/use/replicate_snapmirror.html#replication-prerequisites

Authentication

Astra Trident offers two modes of authenticating an ONTAP backend.

 Credential-based: The username and password to an ONTAP user with the required permissions. It is
recommended to use a pre-defined security login role, such as admin or vsadmin to ensure maximum
compatibility with ONTAP versions.

« Certificate-based: Astra Trident can also communicate with an ONTAP cluster using a certificate installed
on the backend. Here, the backend definition must contain Base64-encoded values of the client certificate,
key, and the trusted CA certificate if used (recommended).

You can update existing backends to move between credential-based and certificate-based methods. However,
only one authentication method is supported at a time. To switch to a different authentication method, you must
remove the existing method from the backend configuration.

@ If you attempt to provide both credentials and certificates, backend creation will fail with an
error that more than one authentication method was provided in the configuration file.

Enable credential-based authentication

Astra Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the
ONTAP backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin.
This ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by
future Astra Trident releases. A custom security login role can be created and used with Astra Trident, but is
not recommended.

A sample backend definition will look like this:

62

YAML

version: 1

backendName: ExampleBackend
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2

svm: svm nfs

username: vsadmin

password: password

JSON

"version": 1,

"backendName": "ExampleBackend",
"storageDriverName": "ontap-nas",
"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.2",

"svm": "svm nfs",

"username": "vsadmin",

"password": "password"

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the
backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The
creation/updation of a backend is the only step that requires knowledge of the credentials. As such, it is an
admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based Authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three
parameters are required in the backend definition.
« clientCertificate: Base64-encoded value of client certificate.
« clientPrivateKey: Base64-encoded value of associated private key.
« trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter
must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to
authenticate as.

63

openssl reqg -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key
-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=vsadmin"

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage
administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-
name> -vserver <vserver—-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled
true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-
name> -vserver <vserver—-name>
security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name vsadmin -application ontapi
—authentication-method cert -vserver <vserver-name>
security login create -user-or-group-name vsadmin -application http

—authentication-method cert -vserver <vserver-name>

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>
with Management LIF IP and SVM name. You must ensure the LIF has its service policy set to default-
data-management.

curl -X POST -Lk https://<ONTAP-Management-
LIF>/servlets/netapp.servlets.admin.XMLrequest filer --key k8senv.key
--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp
xmlns="http://www.netapp.com/filer/admin" version="1.21"
vfiler="<vserver-name>"><vserver-get></vserver—-get></netapp>"'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert baseb64
base64 -w 0 k8senv.key >> key base64
base64 -w 0 trustedca.pem >> trustedca baset4

64

7. Create backend using the values obtained from the previous step.

cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "NasBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",
"clientPrivateKey": "LSOtFaKE...O0VaLuESOtLSOK",
"storagePrefix": "myPrefix "

}

#Update backend with tridentctl
tridentctl update backend NasBackend -f cert-backend-updated.json -n

trident

o e Rt bt
o to——————— +

| NAME | STORAGE DRIVER | UulbD

STATE | VOLUMES |

o —— o ettt b L e PP
- F—m +

| NasBackend | ontap-nas | 98el9%b74-aec7-4a3d-8dcf-128e5033b214 |
online | 9 |

e —— - Bt it e e P
o F——— +

Update authentication methods or rotate credentials

You can update an existing backend to use a different authentication method or to rotate their credentials. This
works both ways: backends that make use of username/password can be updated to use certificates;
backends that utilize certificates can be updated to username/password based. To do this, you must remove
the existing authentication method and add the new authentication method. Then use the updated
backend.json file containing the required parameters to execute tridentctl update backend.

65

cat cert-backend-updated.json
{

"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "NasBackend",
"managementLIF": "1.2.3.4",
"dataLIF": "1.2.3.8",

"svm": "vserver test",
"username": "vsadmin",
"password": "password",
"storagePrefix": "myPrefix "

}

#Update backend with tridentctl
tridentctl update backend NasBackend -f cert-backend-updated.json -n
trident

Pommmmmmmmm== Fommmemcemmes=e== B e
Fommmmmoe e +

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

Fommmmmmmomo= S e e Fommmmmmmmesrrrrrrrre e reme s e mmm o
Fommmmme Pommmmmme= +

| NasBackend | ontap-nas | 98el9b74-aec7/-4a3d-8dcf-128e5033b214 |
online | 9 |

P e Fommmmememesesesese s s s s e eses
o= Fommmemm== +

When rotating passwords, the storage administrator must first update the password for the user

@ on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates
can be added to the user. The backend is then updated to use the new certificate, following
which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume
connections made after. A successful backend update indicates that Astra Trident can communicate with the
ONTAP backend and handle future volume operations.

Manage NFS export policies

Astra Trident uses NFS export policies to control access to the volumes that it provisions.

Astra Trident provides two options when working with export policies:

 Astra Trident can dynamically manage the export policy itself; in this mode of operation, the storage
administrator specifies a list of CIDR blocks that represent admissible IP addresses. Astra Trident adds
node IPs that fall in these ranges to the export policy automatically. Alternatively, when no CIDRs are
specified, any global-scoped unicast IP found on the nodes will be added to the export policy.

» Storage administrators can create an export policy and add rules manually. Astra Trident uses the default

66

export policy unless a different export policy name is specified in the configuration.

Dynamically manage export policies

The 20.04 release of CSI Trident provides the ability to dynamically manage export policies for ONTAP
backends. This provides the storage administrator the ability to specify a permissible address space for worker
node IPs, rather than defining explicit rules manually. It greatly simplifies export policy management;
modifications to the export policy no longer require manual intervention on the storage cluster. Moreover, this
helps restrict access to the storage cluster only to worker nodes that have IPs in the range specified,
supporting a fine-grained and automated management.

@ The dynamic management of export policies is only available for CSI Trident. It is important to
ensure that the worker nodes are not being NATed.

Example

There are two configuration options that must be used. Here’s an example backend definition:

version: 1

storageDriverName: ontap-nas
backendName: ontap nas auto export
managementLIF: 192.168.0.135

svm: svml

username: vsadmin

password: password
autoExportCIDRs:

- 192.168.0.0/24

autoExportPolicy: true

When using this feature, you must ensure that the root junction in your SVM has a previously

(D created export policy with an export rule that permits the node CIDR block (such as the default
export policy). Always follow NetApp’s recommended best practice of dedicating a SVM for
Astra Trident.

Here is an explanation of how this feature works using the example above:

* autoExportPolicy is setto true. This indicates that Astra Trident will create an export policy for the
svml SVM and handle the addition and deletion of rules using autoExportCIDRs address blocks. For
example, a backend with UUID 403b5326-8482-40db-96d0-d83fb3f4daec and autoExportPolicy set to
true creates an export policy named trident-403b5326-8482-40db-96d0-d83fb3f4daec on the
SVM.

* autoExportCIDRs contains a list of address blocks. This field is optional and it defaults to ["0.0.0.0/0",
"::/0"]. If not defined, Astra Trident adds all globally-scoped unicast addresses found on the worker nodes.

In this example, the 192.168.0.0/24 address space is provided. This indicates that Kubernetes node IPs
that fall within this address range will be added to the export policy that Astra Trident creates. When Astra
Trident registers a node it runs on, it retrieves the IP addresses of the node and checks them against the
address blocks provided in autoExportCIDRs. After filtering the IPs, Astra Trident creates export policy rules

67

for the client IPs it discovers, with one rule for each node it identifies.

You can update autoExportPolicy and autoExportCIDRs for backends after you create them. You can
append new CIDRs for a backend that is automatically managed or delete existing CIDRs. Exercise care when
deleting CIDRs to ensure that existing connections are not dropped. You can also choose to disable
autoExportPolicy for a backend and fall back to a manually created export policy. This will require setting
the exportPolicy parameter in your backend config.

After Astra Trident creates or updates a backend, you can check the backend using tridentctl or the
corresponding tridentbackend CRD:

./tridentctl get backends ontap nas auto export -n trident -o yaml
items:
- backendUUID: 403b5326-8482-40db-96d0-d83fb3f4daec
config:
aggregate: ""
autoExportCIDRs:
- 192.168.0.0/24
autoExportPolicy: true
backendName: ontap nas auto export
chapInitiatorSecret: ""
chapTargetInitiatorSecret: ""
chapTargetUsername: ""
chapUsername: ""
dataLIF: 192.168.0.135
debug: false
debugTraceFlags: null
defaults:
encryption: "false"
exportPolicy: <automatic>
fileSystemType: ext4

As nodes are added to a Kubernetes cluster and registered with the Astra Trident controller, export policies of
existing backends are updated (provided they fall in the address range specified in autoExportCIDRs for the
backend).

When a node is removed, Astra Trident checks all backends that are online to remove the access rule for the
node. By removing this node IP from the export policies of managed backends, Astra Trident prevents rogue
mounts, unless this IP is reused by a new node in the cluster.

For previously existing backends, updating the backend with tridentctl update backend will ensure that
Astra Trident manages the export policies automatically. This will create a new export policy named after the
backend’s UUID and volumes that are present on the backend will use the newly created export policy when
they are mounted again.

Deleting a backend with auto-managed export policies will delete the dynamically created export
@ policy. If the backend is re-created, it is treated as a new backend and will result in the creation
of a new export policy.

68

If the IP address of a live node is updated, you must restart the Astra Trident pod on the node. Astra Trident
will then update the export policy for backends it manages to reflect this IP change.

ONTAP NAS configuration options and examples

Learn about how to create and use ONTAP NAS drivers with your Astra Trident installation. This section
provides backend configuration examples and details about how to map backends to StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description

version

storageDriverName Name of the storage driver

backendName Custom name or the storage
backend
managementLIF IP address of a cluster or SVM

management LIF

For seamless MetroCluster
switchover, you must specify an
SVM management LIF.

A fully-qualified domain name
(FQDN) can be specified.

Can be set to use IPv6 addresses if
Astra Trident was installed using

the -—use-ipvé6 flag. IPv6
addresses must be defined in
square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e

7b:3555].

Default
Always 1

LI

“ontap-nas”, “ontap-nas-economy”,

[T

“ontap-nas-flexgroup”, “ontap-san”,
“ontap-san-economy”
Driver name + “_” + dataLIF

“10.0.0.17, “[2001:1234:abcd::fefe]”

69

Parameter

dataLlIF

autoExportPolicy

autoExportCIDRs

labels

clientCertificate

clientPrivateKey

70

Description

IP address of protocol LIF.

We recommend specifying
dataLIF. If not provided, Astra
Trident fetches data LIFs from the
SVM. You can specify a fully-
qualified domain name (FQDN) to
be used for the NFS mount
operations, allowing you to create a
round-robin DNS to load-balance
across multiple data LIFs.

Can be changed after initial setting.
Refer to Update dataLIF after
initial configuration.

Can be set to use IPv6 addresses if
Astra Trident was installed using
the -—use-ipvé flag. IPv6
addresses must be defined in
square brackets, such as
[28e8:d9fb:a825:b7bf:69a8:d02f:9e
7b:3555].

Enable automatic export policy
creation and updating [Boolean].

Using the autoExportPolicy
and autoExportCIDRs options,
Astra Trident can manage export
policies automatically.

List of CIDRs to filter Kubernetes’
node IPs against when
autoExportPolicy is enabled.

Using the autoExportPolicy
and autoExportCIDRs options,
Astra Trident can manage export
policies automatically.

Set of arbitrary JSON-formatted
labels to apply on volumes

Base64-encoded value of client
certificate. Used for certificate-
based auth

Base64-encoded value of client
private key. Used for certificate-
based auth

Default

Specified address or derived from
SVM, if not specified (not

recommended)
false
[“0.0.0.0/0”, “:/0”T

@

@

@

Parameter

trustedCACertificate

username

password

svm

storagePrefix

limitAggregateUsage

limitVolumeSize

limitVolumeSize

lunsPerFlexvol

debugTraceFlags

Description

Base64-encoded value of trusted
CA certificate. Optional. Used for
certificate-based auth

Username to connect to the
cluster/SVM. Used for credential-
based auth

Password to connect to the
cluster/SVM. Used for credential-
based auth

Storage virtual machine to use

Prefix used when provisioning new
volumes in the SVM. Cannot be
updated after you set it

Fail provisioning if usage is above
this percentage.

Does not apply to Amazon FSx
for ONTAP

Fail provisioning if requested
volume size is above this value.

Fail provisioning if requested
volume size is above this value.

Also restricts the maximum size of
the volumes it manages for qtrees
and LUNs, and the

gtreesPerFlexvol option allows

customizing the maximum number
of gtrees per FlexVol.

Maximum LUNSs per Flexvol, must
be in range [50, 200]

Debug flags to use when
troubleshooting. Example,
{“api”:false, “method”:true}

Do not use debugTraceFlags

unless you are troubleshooting and

require a detailed log dump.

Default

@

Derived if an SVM
managementLIF is specified

“trident”

(not enforced by default)

“w

(not enforced by default)

(not enforced by default)

“100”

null

71

Parameter Description Default

@

nfsMountOptions Comma-separated list of NFS
mount options.

The mount options for Kubernetes-
persistent volumes are normally
specified in storage classes, but if
no mount options are specified in a
storage class, Astra Trident will fall
back to using the mount options
specified in the storage backend’s
configuration file.

If no mount options are specified in
the storage class or the
configuration file, Astra Trident will
not set any mount options on an
associated persistent volume.

gtreesPerFlexvol Maximum Qtrees per FlexVol, must “200”
be in range [50, 300]

useREST Boolean parameter to use ONTAP false
REST APIs. Tech preview

useREST is provided as a tech
preview that is recommended for
test environments and not for
production workloads. When set to
true, Astra Trident will use ONTAP
REST APIs to communicate with
the backend. This feature requires
ONTAP 9.11.1 and later. In
addition, the ONTAP login role used
must have access to the ontap
application. This is satisfied by the
pre-defined vsadmin and
cluster-admin roles.

useREST is not supported with
MetroCluster.

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an
example, see the configuration examples below.

Parameter Description Default
spaceAllocation Space-allocation for LUNs “true”
spaceReserve Space reservation mode; “none” “none”

(thin) or “volume” (thick)

72

Parameter
snapshotPolicy

gosPolicy

adaptiveQosPolicy

snapshotReserve

splitOnClone

encryption

tieringPolicy

unixPermissions

snapshotDir

exportPolicy

securityStyle

Description
Snapshot policy to use

QoS policy group to assign for
volumes created. Choose one of
gosPolicy or adaptiveQosPolicy per
storage pool/backend

Adaptive QoS policy group to
assign for volumes created.
Choose one of qosPolicy or
adaptiveQosPolicy per storage
pool/backend.

Not supported by ontap-nas-
economy.

Percentage of volume reserved for
snapshots “0”

Split a clone from its parent upon
creation

Enable NetApp Volume Encryption
(NVE) on the new volume; defaults
to false. NVE must be licensed
and enabled on the cluster to use
this option.

If NAE is enabled on the backend,
any volume provisioned in Astra
Trident will be NAE enabled.

For more information, refer to: How
Astra Trident works with NVE and
NAE.

Tiering policy to use “none”

Mode for new volumes

Controls visibility of the
.snapshot directory

Export policy to use

Security style for new volumes.

NFS supports mixed and unix
security styles.

SMB supports mixed and ntfs
security styles.

Default

“none”

@

If snapshotPolicy is “none”, else

13

“false”

“false”

“snapshot-only” for pre-ONTAP 9.5
SVM-DR configuration

“777” for NFS volumes; empty (not
applicable) for SMB volumes

“false”

“default”

NFS default is unix.

SMB default is ntfs.

73

https://docs.netapp.com/us-en/trident-2301/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2301/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2301/trident-reco/security-reco.html

Using QoS policy groups with Astra Trident requires ONTAP 9.8 or later. It is recommended to

@ use a non-shared QoS policy group and ensure the policy group is applied to each constituent
individually. A shared QoS policy group will enforce the ceiling for the total throughput of all
workloads.

Volume provisioning examples

Here’s an example with defaults defined:

version: 1
storageDriverName: ontap-nas
backendName: customBackendName
managementLIF: 10.0.0.1
datalLIF: 10.0.0.2
labels:
k8scluster: devl
backend: devl-nasbackend
svm: trident svm
username: cluster-admin
password: password
limitAggregateUsage: 80%
limitVolumeSize: 50Gi
nfsMountOptions: nfsvers=4
debugTraceFlags:
api: false
method: true
defaults:
spaceReserve: volume
gosPolicy: premium
exportPolicy: myk8scluster
snapshotPolicy: default
snapshotReserve: '10'

For ontap-nas and ontap-nas-flexgroups, Astra Trident now uses a new calculation to ensure that the
FlexVol is sized correctly with the snapshotReserve percentage and PVC. When the user requests a PVC,
Astra Trident creates the original FlexVol with more space by using the new calculation. This calculation
ensures that the user receives the writable space they requested for in the PVC, and not lesser space than
what they requested. Before v21.07, when the user requests a PVC (for example, 5GiB), with the
snapshotReserve to 50 percent, they get only 2.5GiB of writeable space. This is because what the user
requested for is the whole volume and snapshotReserve is a percentage of that. With Trident 21.07, what
the user requests for is the writeable space and Astra Trident defines the snapshotReserve number as the
percentage of the whole volume. This does not apply to ontap-nas-economy. See the following example to
see how this works:

The calculation is as follows:

74

Total volume size = (PVC requested size) / (1 - (snapshotReserve

percentage) / 100)

For snapshotReserve = 50%, and PVC request = 5GiB, the total volume size is 2/.5 = 10GiB and the available
size is 5GiB, which is what the user requested in the PVC request. The volume show command should show
results similar to this example:

Vserver Volume Aggregate t ype Size Available Used%

_pvec_89f1cl156_3801_4ded4 _9f9d_034d54c395T4
online RW 18GB

_pvc_eB372153_9ad9_474a_95la_@8ael5elc@ba
online RW

2 entries were displayed.

Existing backends from previous installs will provision volumes as explained above when upgrading Astra
Trident. For volumes that you created before upgrading, you should resize their volumes for the change to be
observed. For example, a 2GiB PVC with snapshotReserve=50 earlier resulted in a volume that provides
1GiB of writable space. Resizing the volume to 3GiB, for example, provides the application with 3GiB of
writable space on a 6 GiB volume.

Examples

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest
way to define a backend.

@ If you are using Amazon FSx on NetApp ONTAP with Trident, the recommendation is to specify
DNS names for LIFs instead of IP addresses.

Default options on ontap-nas-economy

version: 1

storageDriverName: ontap-nas—-economy
managementLIF: 10.0.0.1

datalLIF: 10.0.0.2

svm: svm nfs

username: vsadmin

password: password

75

Certificate-based authentication

This is a minimal backend configuration example. clientCertificate, clientPrivateKey, and
trustedCACertificate (optional, if using trusted CA) are populated in backend. json and take the
base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

version: 1

backendName: DefaultNASBackend
storageDriverName: ontap-nas

managementLIF: 10.0.0.1

datalLIF: 10.0.0.15

svm: nfs svm

clientCertificate: ZXROZXJwYXB...ICMgJd3BhcGVyc2
clientPrivateKey: vciwKIyAgZG...0cnksIGR1c2NyaX
trustedCACertificate: zcyBbaG...b3Igb3dulIGNsYXNz
storagePrefix: myPrefix

76

Auto export policy

These examples show you how you can instruct Astra Trident to use dynamic export policies to create
and manage the export policy automatically. This works the same for the ontap-nas-economy and
ontap-nas-flexgroup drivers.

ontap-nas driver

version: 1
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2
svm: svm nfs
labels:
k8scluster: test-cluster-east-la
backend: testl-nasbackend
autoExportPolicy: true
autoExportCIDRs:
- 10.0.0.0/24
username: admin
password: password

nfsMountOptions: nfsvers=4

ontap-nas-flexgroup driver

version: 1

storageDriverName: ontap-nas-flexgroup

managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

labels:
k8scluster: test-cluster-east-1b
backend: testl-ontap-cluster

svm: svm nfs

username: vsadmin

password: password

77

Using IPv6 addresses

This example shows managementLIF using an IPv6 address.

version: 1
storageDriverName: ontap-nas
backendName: nas ipv6 backend
managementLIF: "[5c5d:5edf:8f:7657:bef8:109b:1b41:d491]"
labels:
k8scluster: test-cluster-east-la
backend: testl-ontap-ipv6
svm: nas_ipv6_ svm
username: vsadmin

password: password

ontap-nas-economy driver

version: 1

storageDriverName: ontap-nas-economy
managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm nfs

username: vsadmin

password: password

ontap-nas driver for Amazon FSx for ONTAP using SMB volumes

version: 1

backendName: SMBBackend

storageDriverName: ontap-nas

managementLIF: example.mgmt.fgdn.aws.com
nasType: smb

datalLIF: 10.0.0.15

svm: nfs svm

clientCertificate: ZXR0OZXJwYXB...ICMgJd3BhcGVyc2
clientPrivateKey: vciwKIyAgZG...0cnksIGR1c2NyaX
trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz
storagePrefix: myPrefix

78

Examples of backends with virtual pools

In the sample backend definition file shown below, specific defaults are set for all storage pools, such as
spaceReserve at none, spaceAllocation at false, and encryption at false. The virtual pools are defined
in the storage section.

Astra Trident sets provisioning labels in the “Comments” field. Comments are set on FlexVol for ontap-nas or
FlexGroup for ontap-nas-flexgroup. Astra Trident copies all labels present on a virtual pool to the storage
volume at provisioning. For convenience, storage administrators can define labels per virtual pool and group
volumes by label.

In this example, some of the storage pool sets their own spaceReserve, spaceAllocation, and
encryption values, and some pools overwrite the default values set above.

79

ontap-nas driver

version: 1
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2
svm: svm nfs
username: admin
password: password
nfsMountOptions: nfsvers=4
defaults:
spaceReserve: none
encryption: 'false'
gosPolicy: standard
labels:
store: nas store
k8scluster: prod-cluster-1
region: us east 1
storage:
- labels:
app: msoffice
cost: '100"
zone: us_east la
defaults:
spaceReserve: volume
encryption: 'true'
unixPermissions: '0755"
adaptiveQosPolicy: adaptive-premium
- labels:
app: slack
cost: '75'
zone: us_east 1b
defaults:
spaceReserve: none
encryption: 'true'
unixPermissions: '0755'
- labels:
app: wordpress
cost: '50"
zone: us_east lc
defaults:
spaceReserve: none
encryption: 'true'

unixPermissions: '0775"

80

labels:
app: mysqgldb

cost: '25"
zone: us_east 1d
defaults:
spaceReserve: volume
encryption: 'false'
unixPermissions: '0775'

81

ontap-nas-flexgroup driver

version: 1
storageDriverName: ontap-nas-flexgroup
managementLIF: 10.0.0.1
datalIF: 10.0.0.2
svm: svm nfs
username: vsadmin
password: password
defaults:
spaceReserve: none
encryption: 'false'
labels:
store: flexgroup store
k8scluster: prod-cluster-1
region: us east 1
storage:
- labels:
protection: gold
creditpoints: '50000"
zone: us_east la
defaults:

spaceReserve: volume

encryption: 'true'
unixPermissions: '0755"
- labels:

protection: gold

creditpoints: '30000"'
zone: us_east 1b
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0755"
- labels:

protection: silver

creditpoints: '20000'
zone: us_east lc
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0775"
- labels:

protection: bronze
creditpoints: '10000"

82

zone: us_east 1d

defaults:
spaceReserve: volume
encryption: 'false'

unixPermissions: '0775"

83

ontap-nas—-economy driver

version: 1
storageDriverName:
managementLIF: 10
dataLIF: 10.0.0.2
svm: svm nfs
username: vsadmin
password: password
defaults:
spaceReserve:
encryption:
labels:
store:

region: us east 1

ontap-nas—-economy

0,01

none

'false'

nas_economy_store

storage:

- labels:
department: finance
creditpoints: '6000'

zone: us_east la

defaults:
spaceReserve: volume
encryption: 'true'
unixPermissions: '0755'
- labels:
department: legal
creditpoints: '5000'

zone: us_east 1b

defaults:
spaceReserve: none
encryption: 'true'
unixPermissions: '0755'
- labels:
department: engineering
creditpoints: '3000'

zone: us_east lc

defaults:
spaceReserve: none
encryption: 'true'
unixPermissions: '0775'
- labels:
department: humanresource
creditpoints: '2000'

zone: us_east 1d

84

defaults:
spaceReserve: volume
encryption: 'false'
unixPermissions: '0775'

Update dataLIF after initial configuration

You can change the data LIF after initial configuration by running the following command to provide the new
backend JSON file with updated data LIF.

tridentctl update backend <backend-name> -f <path-to-backend-json-file-
with-updated-dataLIF>

@ If PVCs are attached to one or multiple pods, you must bring down all corresponding pods and
then bring them back up in order to for the new data LIF to take effect.

Map backends to StorageClasses

The following StorageClass definitions refer to the above virtual pools. Using the parameters.selector
field, each StorageClass calls out which virtual pool(s) can be used to host a volume. The volume will have the
aspects defined in the chosen virtual pool.

* The first StorageClass (protection-gold) will map to the first, second virtual pool in the ontap-nas-
flexgroup backend and the first virtual pool in the ontap-san backend. These are the only pool offering
gold level protection.

* The second StorageClass (protection-not-gold) will map to the third, fourth virtual pool in ontap-
nas-flexgroup backend and the second, third virtual pool in ontap-san backend. These are the only
pools offering protection level other than gold.

* The third StorageClass (app-mysgldb) will map to the fourth virtual pool in ontap-nas backend and the
third virtual pool in ontap-san-economy backend. These are the only pools offering storage pool
configuration for mysqldb type app.

* The fourth StorageClass (protection-silver-creditpoints-20k) will map to the third virtual pool in
ontap-nas-flexgroup backend and the second virtual pool in ontap-san backend. These are the only
pools offering gold-level protection at 20000 creditpoints.

* The fifth StorageClass (creditpoints-5k) will map to the second virtual pool in ontap-nas-economy
backend and the third virtual pool in ontap-san backend. These are the only pool offerings at 5000
creditpoints.

Astra Trident will decide which virtual pool is selected and will ensure the storage requirement is met.

85

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-gold
provisioner: netapp.io/trident
parameters:
selector: "protection=gold"
fsType: "ext4d"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-not-gold
provisioner: netapp.io/trident
parameters:
selector: "protection!=gold"
fsType: "ext4d"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: app-mysqgldb
provisioner: netapp.io/trident
parameters:
selector: "app=mysqgldb"
fsType: "ext4d"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: protection-silver-creditpoints-20k

provisioner: netapp.io/trident
parameters:
selector: "protection=silver;
fsType: "extd"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: creditpoints-5k
provisioner: netapp.io/trident
parameters:
selector: "creditpoints=5000"
fsType: "ext4d"

86

creditpoints=20000"

Amazon FSx for NetApp ONTAP

Use Astra Trident with Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP is a fully managed AWS service that enables customers
to launch and run file systems powered by the NetApp ONTAP storage operating system.
FSx for ONTAP enables you to leverage NetApp features, performance, and
administrative capabilities you are familiar with, while taking advantage of the simplicity,
agility, security, and scalability of storing data on AWS. FSx for ONTAP supports ONTAP
file system features and administration APIs.

A file system is the primary resource in Amazon FSx, analogous to an ONTAP cluster on premises. Within
each SVM you can create one or multiple volumes, which are data containers that store the files and folders in
your file system. With Amazon FSx for NetApp ONTAP, Data ONTAP will be provided as a managed file
system in the cloud. The new file system type is called NetApp ONTAP.

Using Astra Trident with Amazon FSx for NetApp ONTAP, you can ensure Kubernetes clusters running in
Amazon Elastic Kubernetes Service (EKS) can provision block and file persistent volumes backed by ONTAP.

Amazon FSx for NetApp ONTAP uses FabricPool to manage storage tiers. It enables you to store data in a tier,
based on whether the data is frequently accessed.

Considerations

* SMB volumes:
° SMB volumes are supported using the ontap-nas driver only.
o Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.
o Astra Trident does not support Windows ARM architecture.

* Volumes created on Amazon FSx file systems that have automatic backups enabled cannot be deleted by
Trident. To delete PVCs, you need to manually delete the PV and the FSx for ONTAP volume. To prevent
this issue:

> Do not use Quick create to create the FSx for ONTAP file system. The quick create workflow enables
automatic backups and does not provide an opt-out option.

> When using Standard create, disable automatic backup. Disabling automatic backups allows Trident
to successfully delete a volume without further manual intervention.

v Backup and maintenance - optional

Daily automatic backup Info
Amazon F5x can protect your data through daily backups

Enabled
© Disabled

87

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://docs.netapp.com/us-en/ontap/fabricpool/index.html

Drivers

You can integrate Astra Trident with Amazon FSx for NetApp ONTAP using the following drivers:

* ontap-san: Each PV provisioned is a LUN within its own Amazon FSx for NetApp ONTAP volume.

* ontap-san-economy: Each PV provisioned is a LUN with a configurable number of LUNs per Amazon
FSx for NetApp ONTAP volume.

* ontap-nas: Each PV provisioned is a full Amazon FSx for NetApp ONTAP volume.

* ontap-nas-economy: Each PV provisioned is a qtree, with a configurable number of gtrees per Amazon
FSx for NetApp ONTAP volume.

* ontap-nas-flexgroup: Each PV provisioned is a full Amazon FSx for NetApp ONTAP FlexGroup
volume.

For driver details, see ONTAP drivers.

Authentication

Astra Trident offers two modes of authentication.

« Certificate-based: Astra Trident will communicate with the SVM on your FSx file system using a certificate
installed on your SVM.

* Credential-based: You can use the fsxadmin user for your file system or the vsadmin user configured for
your SVM.

Astra Trident expects to be run as a vsadmin SVM user or as a user with a different name

@ that has the same role. Amazon FSx for NetApp ONTAP has an fsxadmin user thatis a
limited replacement of the ONTAP admin cluster user. We strongly recommend using
vsadmin with Astra Trident.

You can update backends to move between credential-based and certificate-based methods. However, if you
attempt to provide credentials and certificates, backend creation will fail. To switch to a different
authentication method, you must remove the existing method from the backend configuration.

For details on enabling authentication, refer to the authentication for your driver type:

« ONTAP NAS authentication
« ONTAP SAN authentication

Find more information

* Amazon FSx for NetApp ONTAP documentation
* Blog post on Amazon FSx for NetApp ONTAP

Integrate Amazon FSx for NetApp ONTAP

You can integrate your Amazon FSx for NetApp ONTAP file system with Astra Trident to
ensure Kubernetes clusters running in Amazon Elastic Kubernetes Service (EKS) can
provision block and file persistent volumes backed by ONTAP.

Before you begin

88

https://docs.netapp.com/us-en/trident-2301/trident-concepts/ontap-drivers.html
https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://www.netapp.com/blog/amazon-fsx-for-netapp-ontap/

In addition to Astra Trident requirements, to integrate FSx for ONTAP with Astra Trident, you need:

* An existing Amazon EKS cluster or self-managed Kubernetes cluster with kubect1 installed.

* An existing Amazon FSx for NetApp ONTAP file system and storage virtual machine (SVM) that is
reachable from your cluster’s worker nodes.

» Worker nodes that are prepared for NFS or iSCSI.

@ Ensure you follow the node preparation steps required for Amazon Linux and Ubuntu
Amazon Machine Images (AMIs) depending on your EKS AMI type.

Additional requirements for SMB volumes

* A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows
Server 2019. Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

At least one Astra Trident secret containing your Active Directory credentials. To generate secret
smbcreds:

kubectl create secret generic smbcreds --from-literal username=user

-—-from-literal password='password'

* A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or
GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

ONTAP SAN and NAS driver integration

@ If you are configuring for SMB volumes, you must read Prepare to provision SMB volumes
before creating the backend.

Steps
1. Deploy Astra Trident using one of the deployment methods.

2. Collect your SVM management LIF DNS name. For example, using the AWS CLI, find the DNSName entry
under Endpoints — Management after running the following command:

aws fsx describe-storage-virtual-machines --region <file system region>

3. Create and install certificates for NAS backend authentication or SAN backend authentication.

You can log in to your file system (for example to install certificates) using SSH from
anywhere that can reach your file system. Use the fsxadmin user, the password you

@ configured when you created your file system, and the management DNS name from aws
fsx describe-file-systems.

4. Create a backend file using your certificates and the DNS name of your management LIF, as shown in the
sample below:

89

https://docs.netapp.com/us-en/trident-2301/trident-get-started/requirements.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md
https://docs.netapp.com/us-en/trident-2301/trident-get-started/kubernetes-deploy.html

YAML

version: 1

storageDriverName: ontap-san

backendName: customBackendName

managementLIF: svm—XXXXXXXXXXXXXXKXXX .L5—XXXXXXXXXXXKXXXXKXX . fsx.us~—
east-2.aws.internal

svm: svm01l

clientCertificate: ZXR0OZXJwYXB...ICMgJd3BhcGVyc2

clientPrivateKey: vciwKIyAgZG...0cnksIGR1c2NyaX
trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz

JSON

{
"version": 1,
"storageDriverName": "ontap-san",
"backendName": "customBackendName",
"managementLIF": "svm-XXXXXXXXXXXXXXXXX.fs-

XX XKXXKXXKXXKXXKXXXXXX . fsx.us—-east-2.aws.internal",
"svm": "svmO1l",
"clientCertificate": "ZXROZXJIJwYXB...ICMgJ3BhcGVyc2",
"clientPrivateKey": "vciwKIyAgZG...OcnksIGR1lc2NyaX",
"trustedCACertificate": "zcyBbaG...b3Igb3duIGNsYXNz"

For information about creating backends, see these links:

o Configure a backend with ONTAP NAS drivers
o Configure a backend with ONTAP SAN drivers

Results

After deployment, you can create a storage class, provision a volume, and mount the volume in a pod.

Prepare to provision SMB volumes

You can provision SMB volumes using the ontap-nas driver. Before you complete ONTAP SAN and NAS
driver integration complete the following steps.
Steps

1. Create SMB shares. You can create the SMB admin shares in one of two ways either using the Microsoft
Management Console Shared Folders snap-in or using the ONTAP CLI. To create the SMB shares using
the ONTAP CLI:

a. If necessary, create the directory path structure for the share.

90

https://docs.netapp.com/us-en/trident-2301/trident-get-started/kubernetes-postdeployment.html
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console

The vserver cifs share create command checks the path specified in the -path option during
share creation. If the specified path does not exist, the command fails.

b. Create an SMB share associated with the specified SVM:

vserver cifs share create -vserver vserver name -share-name

share name -path path
[other attributes]

[-share-properties share properties,...]

[-comment text]

c. Verify that the share was created:

vserver cifs share show -share-name share name

@ Refer to Create an SMB share for full details.

2. When creating the backend, you must configure the following to specify SMB volumes. For all FSx for
ONTAP backend configuration options, refer to FSx for ONTAP configuration options and examples.

Parameter

smbShare

nasType

securityStyle

unixPermissions

Description

Name of the SMB share created
using Shared Folder Microsoft
Management Console. For
example "smb-share".

Required for SMB volumes.

Must set to smb. If null, defaults
to nfs.

Security style for new volumes.

Must be set to ntfs or mixed
for SMB volumes.

Mode for new volumes. Must be
left empty for SMB volumes.

FSx for ONTAP configuration options and examples

Example

smb-share

smb

ntfs or mixed for SMB volumes

Learn about backend configuration options for Amazon FSx for ONTAP. This section
provides backend configuration examples.

Backend configuration options

See the following table for the backend configuration options:

Parameter

version

Description

Example

Always 1

91

https://docs.netapp.com/us-en/ontap/smb-config/create-share-task.html

Parameter

storageDriverName

backendName

managementLIF

92

Description Example

LI

Name of the storage driver “ontap-nas”, “ontap-nas-economy”,

“ontap-nas-flexgroup”, “ontap-san”,
“ontap-san-economy”

Custom name or the storage Driver name + “_” + dataLIF
backend
IP address of a cluster or SVM “10.0.0.17, “[2001:1234:abcd::fefe]”

management LIF

For seamless MetroCluster
switchover, you must specify an
SVM management LIF.

A fully-qualified domain name
(FQDN) can be specified.

Can be set to use IPv6 addresses if
Astra Trident was installed using
the -—use-ipvé6 flag. IPv6
addresses must be defined in
square brackets, such as
[28e8:d9fb:a825:b7bf:69a8:d02f:9e
7b:3555].

Parameter

dataLlIF

autoExportPolicy

autoExportCIDRs

labels

Description

IP address of protocol LIF.

ONTAP NAS drivers: We
recommend specifying dataLIF. If
not provided, Astra Trident fetches
data LIFs from the SVM. You can
specify a fully-qualified domain
name (FQDN) to be used for the
NFS mount operations, allowing
you to create a round-robin DNS to
load-balance across multiple data
LIFs. Can be changed after initial
setting. Refer to Update dataLIF
after initial configuration.

ONTAP SAN drivers: Do not
specify for iSCSI. Astra Trident
uses ONTAP Selective LUN Map to
discover the iSCI LIFs needed to
establish a multi path session. A
warning is generated if dataLIF is
explicitly defined.

Can be set to use IPv6 addresses if
Astra Trident was installed using
the -—use-ipvé6 flag. IPv6
addresses must be defined in
square brackets, such as
[28e8:d9fb:a825:b7bf:69a8:d02f:9e
7b:3555].

Enable automatic export policy
creation and updating [Boolean].

Using the autoExportPolicy
and autoExportCIDRs options,
Astra Trident can manage export
policies automatically.

List of CIDRs to filter Kubernetes’
node IPs against when
autoExportPolicy is enabled.

Using the autoExportPolicy
and autoExportCIDRs options,
Astra Trident can manage export
policies automatically.

Set of arbitrary JSON-formatted
labels to apply on volumes

Example

"false"

"[*0.0.0.0/07, “::/0™]"

93

Parameter Description Example

clientCertificate Base64-encoded value of client
certificate. Used for certificate-
based auth

clientPrivateKey Base64-encoded value of client
private key. Used for certificate-
based auth

trustedCACertificate Base64-encoded value of trusted
CA certificate. Optional. Used for
certificate-based authentication.

username Username to connect to the cluster
or SVM. Used for credential-based
authentication. For example,
vsadmin.

password Password to connect to the cluster
or SVM. Used for credential-based
authentication.

svm Storage virtual machine to use Derived if an SVM managementLIF
is specified.

igroupName Name of the igroup for SAN “trident-<backend-UUID>"
volumes to use. Refer to Details
about igroupName.

storagePrefix Prefix used when provisioning new “trident”
volumes in the SVM.

Cannot be modified after creation.
To update this parameter, you will
need to create a new backend.

limitAggregateUsage Do not specify for Amazon FSx Do not use.
for NetApp ONTAP.

The provided fsxadmin and
vsadmin do not contain the
permissions required to retrieve
aggregate usage and limit it using
Astra Trident.

@

limitVolumeSize Fail provisioning if requested (not enforced by default)

volume size is above this value.

Also restricts the maximum size of
the volumes it manages for qtrees
and LUNs, and the
gtreesPerFlexvol option allows
customizing the maximum number
of gtrees per FlexVol.

94

Parameter Description Example

lunsPerFlexvol Maximum LUNSs per Flexvol, must "100"
be in range [50, 200].

SAN only.

debugTraceFlags Debug flags to use when null
troubleshooting. Example,
{“api”:false, “method”:true}

Do not use debugTraceFlags
unless you are troubleshooting and
require a detailed log dump.

nfsMountOptions Comma-separated list of NFS
mount options.

The mount options for Kubernetes-
persistent volumes are normally
specified in storage classes, but if
no mount options are specified in a
storage class, Astra Trident will fall
back to using the mount options
specified in the storage backend’s
configuration file.

If no mount options are specified in
the storage class or the
configuration file, Astra Trident will
not set any mount options on an
associated persistent volume.

nasType Configure NFS or SMB volumes nfs

creation.
Options are nfs, smb, or null.

Must set to smb for SMB
volumes. Setting to null defaults to
NFS volumes.

gtreesPerFlexvol Maximum Qtrees per FlexVol, must "200"
be in range [50, 300]

smbShare Name of the SMB share created "smb-share"
using Shared Folder Microsoft
Management Console.

Required for SMB volumes.

Parameter Description Example

useREST Boolean parameter to use ONTAP "false"
REST APIs. Tech preview

useREST is provided as a tech
preview that is recommended for
test environments and not for
production workloads. When set to
true, Astra Trident will use ONTAP
REST APIs to communicate with
the backend.

This feature requires ONTAP 9.11.1
and later. In addition, the ONTAP
login role used must have access to
the ontap application. This is
satisfied by the pre-defined
vsadmin and cluster-admin
roles.

Details about igroupName

igroupName can be set to an igroup that is already created on the ONTAP cluster. If unspecified, Astra Trident
automatically creates an igroup named trident-<backend-UUID>.

If providing a pre-defined igroupName, we recommend using one igroup per Kubernetes cluster, if the SVM is
to be shared between environments. This is necessary for Astra Trident to automatically maintain IQN
additions and deletions.

* igroupName can be updated to point to a new igroup that is created and managed on the SVM outside of
Astra Trident.

* igroupName can be omitted. In this case, Astra Trident will create and manage an igroup named
trident-<backend-UUID> automatically.

In both cases, volume attachments will continue to be accessible. Future volume attachments will use the
updated igroup. This update does not disrupt access to volumes present on the backend.

Update datalLIF after initial configuration

You can change the data LIF after initial configuration by running the following command to provide the new
backend JSON file with updated data LIF.

tridentctl update backend <backend-name> -f <path-to-backend-json-file-
with-updated-dataLIF>

@ If PVCs are attached to one or multiple pods, you must bring down all corresponding pods and
then bring them back up in order to for the new data LIF to take effect.

96

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an

example, see the configuration examples below.

Parameter
spaceAllocation

spaceReserve

snapshotPolicy

gosPolicy

adaptiveQosPolicy

snapshotReserve

splitOnClone

Description Default
Space-allocation for LUNs “true”
Space reservation mode; “none” “none”

(thin) or “volume” (thick)

Snapshot policy to use “none”

w

QoS policy group to assign for
volumes created. Choose one of
gosPolicy or adaptiveQosPolicy per
storage pool or backend.

Using QoS policy groups with Astra
Trident requires ONTAP 9.8 or later.

We recommend using a nhon-shared
QoS policy group and ensuring the
policy group is applied to each
constituent individually. A shared
QoS policy group will enforce the
ceiling for the total throughput of all
workloads.

@

Adaptive QoS policy group to
assign for volumes created.
Choose one of qosPolicy or
adaptiveQosPolicy per storage pool
or backend.

Not supported by ontap-nas-
economy.

Percentage of volume reserved for If snapshotPolicy is “none”, else

snapshots “0”

Split a clone from its parent upon “false”
creation

97

Parameter

encryption

luksEncryption

tieringPolicy

unixPermissions

securityStyle

Example

Description

Enable NetApp Volume Encryption
(NVE) on the new volume; defaults
to false. NVE must be licensed
and enabled on the cluster to use
this option.

If NAE is enabled on the backend,
any volume provisioned in Astra
Trident will be NAE enabled.

For more information, refer to: How
Astra Trident works with NVE and
NAE.

Enable LUKS encryption. Refer to
Use Linux Unified Key Setup
(LUKS).

SAN only.

Tiering policy to use “none”

Mode for new volumes.

Leave empty for SMB volumes.

Security style for new volumes.

NFS supports mixed and unix
security styles.

SMB supports mixed and ntfs
security styles.

Default

“false”

“snapshot-only” for pre-ONTAP 9.5
SVM-DR configuration

NFS default is unix.

SMB default is ntfs.

Using nasType, node-stage-secret-name, and node-stage-secret-namespace, You can specify an
SMB volume and provide the required Active Directory credentials. SMB volumes are supported using the

ontap-nas driver only

98

https://docs.netapp.com/us-en/trident-2301/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2301/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2301/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2301/trident-reco/security-reco.html#Use-Linux-Unified-Key-Setup-(LUKS)
https://docs.netapp.com/us-en/trident-2301/trident-reco/security-reco.html#Use-Linux-Unified-Key-Setup-(LUKS)

apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata:
name: nas—-smb-sc

provisioner: csi.trident.netapp.io

parameters:
backendType: "ontap-nas"
trident.netapp.io/nasType: "smb"
csi.storage.k8s.io/node-stage-secret-name: "smbcreds"
csi.storage.k8s.io/node-stage-secret-namespace: "default"

Create backends with kubectl

A backend defines the relationship between Astra Trident and a storage system. It tells Astra Trident how to
communicate with that storage system and how Astra Trident should provision volumes from it. After Astra
Trident is installed, the next step is to create a backend. The TridentBackendConfig Custom Resource
Definition (CRD) enables you to create and manage Trident backends directly through the Kubernetes
interface. You can do this by using kubect1 or the equivalent CLI tool for your Kubernetes distribution.

TridentBackendConfig

TridentBackendConfig (tbc, tbconfig, tbackendconfig)is a frontend, namespaced CRD that
enables you to manage Astra Trident backends using kubect1. Kubernetes and storage admins can now
create and manage backends directly through the Kubernetes CLI without requiring a dedicated command-line
utility (tridentctl).

Upon the creation of a TridentBackendConfig object, the following happens:

» A backend is created automatically by Astra Trident based on the configuration you provide. This is
represented internally as a TridentBackend (tbe, tridentbackend) CR.

* The TridentBackendConfig is uniquely bound to a TridentBackend that was created by Astra
Trident.

Each TridentBackendConfig maintains a one-to-one mapping with a TridentBackend. The former is the
interface provided to the user to design and configure backends; the latter is how Trident represents the actual
backend object.

TridentBackend CRs are created automatically by Astra Trident. You should not modify
them. If you want to make updates to backends, do this by modifying the
TridentBackendConfig object.

See the following example for the format of the TridentBackendConfig CR:

99

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:

name: backend-tbc-ontap-san
spec:

version: 1

backendName: ontap-san-backend

storageDriverName: ontap-san

managementLIF: 10.0.0.1

datalLIF: 10.0.0.2

svm: trident svm

credentials:

name: backend-tbc-ontap-san-secret

You can also take a look at the examples in the trident-installer directory for sample configurations for the
desired storage platform/service.

The spec takes backend-specific configuration parameters. In this example, the backend uses the ontap-
san storage driver and uses the configuration parameters that are tabulated here. For the list of configuration
options for your desired storage driver, see the backend configuration information for your storage driver.

The spec section also includes credentials and deletionPolicy fields, which are newly introduced in
the TridentBackendConfig CR:

* credentials: This parameter is a required field and contains the credentials used to authenticate with
the storage system/service. This is set to a user-created Kubernetes Secret. The credentials cannot be
passed in plain text and will result in an error.

* deletionPolicy: This field defines what should happen when the TridentBackendConfig is deleted.
It can take one of two possible values:

° delete: This results in the deletion of both TridentBackendConfig CR and the associated
backend. This is the default value.

° retain: When a TridentBackendConfig CR is deleted, the backend definition will still be present
and can be managed with tridentctl. Setting the deletion policy to retain lets users downgrade to
an earlier release (pre-21.04) and retain the created backends. The value for this field can be updated
after a TridentBackendConfig is created.

The name of a backend is set using spec.backendName. If unspecified, the name of the
(D backend is set to the name of the TridentBackendConfig object (metadata.name). It is
recommended to explicitly set backend names using spec.backendName.

Backends that were created with tridentctl do not have an associated
TridentBackendConfig object. You can choose to manage such backends with kubect1 by

creating a TridentBackendConfig CR. Care must be taken to specify identical config
parameters (such as spec.backendName, spec.storagePrefix
spec.storageDriverName, and so on). Astra Trident will automatically bind the newly-
created TridentBackendConfig with the pre-existing backend.

100

https://github.com/NetApp/trident/tree/stable/v21.07/trident-installer/sample-input/backends-samples

Steps overview
To create a new backend by using kubect1, you should do the following:

1. Create a Kubernetes Secret. The secret contains the credentials Astra Trident needs to communicate with
the storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and
references the secret created in the previous step.

After you create a backend, you can observe its status by using kubectl get tbc <tbc-name> -n
<trident-namespace> and gather additional details.

Step 1: Create a Kubernetes Secret

Create a Secret that contains the access credentials for the backend. This is unique to each storage
service/platform. Here’s an example:

kubectl -n trident create -f backend-tbc-ontap-san-secret.yaml
apiVersion: vl
kind: Secret
metadata:
name: backend-tbc-ontap-san-secret
type: Opaque
stringData:
username: cluster-admin

password: password

This table summarizes the fields that must be included in the Secret for each storage platform:

Storage platform Secret Fields Secret Fields description
description
Azure NetApp Files clientlD The client ID from an app

registration

Cloud Volumes Service for GCP private_key id ID of the private key. Part of API
key for GCP Service Account with
CVS admin role

Cloud Volumes Service for GCP private_key Private key. Part of API key for
GCP Service Account with CVS
admin role

Element (NetApp HCI/SolidFire) Endpoint MVIP for the SolidFire cluster with

tenant credentials

101

https://kubernetes.io/docs/concepts/configuration/secret/

Storage platform Secret Fields
description

ONTAP

ONTAP

ONTAP

ONTAP

ONTAP

ONTAP

ONTAP

Secret

username

password

clientPrivateKey

chapUsername

chaplnitiatorSecret

chapTargetUsername

chapTargetlnitiatorSecret

Fields description

Username to connect to the
cluster/SVM. Used for credential-
based authentication

Password to connect to the
cluster/SVM. Used for credential-
based authentication

Base64-encoded value of client
private key. Used for certificate-
based authentication

Inbound username. Required if
useCHAP=true. For ontap-san
and ontap-san-economy

CHAP initiator secret. Required if
useCHAP=true. For ontap-san
and ontap-san-economy

Target username. Required if
useCHAP=true. For ontap-san
and ontap-san-economy

CHAP target initiator secret.
Required if useCHAP=true. For
ontap-san and ontap-san-
economy

The Secret created in this step will be referenced in the spec.credentials field of the

TridentBackendConfig object that is created in the next step.

Step 2: Create the TridentBackendConfig CR

You are now ready to create your TridentBackendConfig CR. In this example, a backend that uses the
ontap-san driver is created by using the TridentBackendConfig object shown below:

kubectl -n trident create -f backend-tbc-ontap-san.yaml

102

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:

name: backend-tbc-ontap-san
spec:

version: 1

backendName: ontap-san-backend

storageDriverName: ontap-san

managementLIF: 10.0.0.1

datalLIF: 10.0.0.2

svm: trident svm

credentials:

name: backend-tbc-ontap-san-secret

Step 3: Verify the status of the TridentBackendConfig CR

Now that you created the TridentBackendConfig CR, you can verify the status. See the following example:

kubectl -n trident get tbc backend-tbc-ontap-san

NAME BACKEND NAME BACKEND UUID
PHASE STATUS
backend-tbc-ontap-san ontap-san-backend 8d24fce7-6£f60-4d4a-8ef6-

bab2699%e6ab8 Bound Success

A backend was successfully created and bound to the TridentBackendConfig CR.
Phase can take one of the following values:

* Bound: The TridentBackendConfig CR is associated with a backend, and that backend contains
configRef settothe TridentBackendConfig CR’s uid.

* Unbound: Represented using "". The TridentBackendConfig object is not bound to a backend. All
newly created TridentBackendConfig CRs are in this phase by default. After the phase changes, it
cannot revert to Unbound again.

* Deleting: The TridentBackendConfig CR’s deletionPolicy was set to delete. When the
TridentBackendConfig CRis deleted, it transitions to the Deleting state.

° If no persistent volume claims (PVCs) exist on the backend, deleting the TridentBackendConfig
will result in Astra Trident deleting the backend as well as the TridentBackendConfig CR.

o If one or more PVCs are present on the backend, it goes to a deleting state. The
TridentBackendConfig CR subsequently also enters deleting phase. The backend and
TridentBackendConfig are deleted only after all PVCs are deleted.

* Lost: The backend associated with the TridentBackendConfig CR was accidentally or deliberately
deleted and the TridentBackendConfig CR still has a reference to the deleted backend. The
TridentBackendConfig CR can still be deleted irrespective of the deletionPolicy value.

103

* Unknown: Astra Trident is unable to determine the state or existence of the backend associated with the
TridentBackendConfig CR. For example, if the API server is not responding or if the
tridentbackends.trident.netapp.io CRD is missing. This might require the user’s intervention.

At this stage, a backend is successfully created! There are several operations that can additionally be handled,
such as backend updates and backend deletions.

(Optional) Step 4: Get more details

You can run the following command to get more information about your backend:

kubectl -n trident get tbc backend-tbc-ontap-san -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8d24fce7-6f60-4d4a-8efb6-
bab2699e6ab8 Bound Success ontap-san delete

In addition, you can also obtain a YAML/JSON dump of TridentBackendConfig.

kubectl -n trident get tbc backend-tbc-ontap-san -o yaml

104

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
creationTimestamp: "2021-04-21T20:45:112Z"
finalizers:
- trident.netapp.io
generation: 1
name: backend-tbc-ontap-san
namespace: trident

resourceVersion: "947143"
uid: 35b9d777-109f-43d5-8077-c74a4559d09c
spec:

backendName: ontap-san-backend
credentials:
name: backend-tbc-ontap-san-secret
managementLIF: 10.0.0.1
datalLIF: 10.0.0.2
storageDriverName: ontap-san
svm: trident svm
version: 1
status:
backendInfo:
backendName: ontap-san-backend
backendUUID: 8d24fce7-6f60-4d4a-8ef6-bab2699e6ab8
deletionPolicy: delete
lastOperationStatus: Success
message: Backend 'ontap-san-backend' created
phase: Bound

backendInfo contains the backendName and the backendUUID of the backend that got created in
response to the TridentBackendConfig CR. The lastOperationStatus field represents the status of
the last operation of the TridentBackendConfig CR, which can be user-triggered (for example, user
changed something in spec) or triggered by Astra Trident (for example, during Astra Trident restarts). It can
either be Success or Failed. phase represents the status of the relation between the
TridentBackendConfig CR and the backend. In the example above, phase has the value Bound, which
means that the TridentBackendConfig CR is associated with the backend.

You can run the kubectl -n trident describe tbc <tbc-cr-name> command to get details of the
event logs.

You cannot update or delete a backend which contains an associated
TridentBackendConfig object using tridentctl. To understand the steps involved in
switching between tridentctl and TridentBackendConfig, see here.

105

Perform backend management with kubectl

Learn about how to perform backend management operations by using kubectl.

Delete a backend
By deleting a TridentBackendConfig, you instruct Astra Trident to delete/retain backends (based on
deletionPolicy). To delete a backend, ensure that deletionPolicy is set to delete. To delete just the

TridentBackendConfig, ensure that deletionPolicy is set to retain. This will ensure the backend is still
present and can be managed by using tridentctl.

Run the following command:

kubectl delete tbc <tbc-name> -n trident

Astra Trident does not delete the Kubernetes Secrets that were in use by TridentBackendConfig. The
Kubernetes user is responsible for cleaning up secrets. Care must be taken when deleting secrets. You should
delete secrets only if they are not in use by the backends.

View the existing backends

Run the following command:

kubectl get tbc -n trident

You can also run tridentctl get backend -n trident or tridentctl get backend -o yaml -n
trident to obtain a list of all backends that exist. This list will also include backends that were created with
tridentctl.

Update a backend
There can be multiple reasons to update a backend:

» Credentials to the storage system have changed. To update credentials, the Kubernetes Secret that is used
in the TridentBackendConfig object must be updated. Astra Trident will automatically update the
backend with the latest credentials provided. Run the following command to update the Kubernetes Secret:

kubectl apply -f <updated-secret-file.yaml> -n trident

* Parameters (such as the name of the ONTAP SVM being used) need to be updated.
In this case, TridentBackendConfig objects can be updated directly through Kubernetes.

kubectl apply -f <updated-backend-file.yaml>

Alternatively, make changes to the existing TridentBackendConfig CR by running the following command:

106

kubectl edit tbc <tbc-name> -n trident

If a backend update fails, the backend continues to remain in its last known configuration. You can view the
logs to determine the cause by running kubectl get tbc <tbc-name> -o yaml -n trident or
kubectl describe tbc <tbc-name> -n trident.

After you identify and correct the problem with the configuration file, you can re-run the update command.

Perform backend management with tridentctl

Learn about how to perform backend management operations by using tridentctl.

Create a backend

After you create a backend configuration file, run the following command:
tridentctl create backend -f <backend-file> -n trident

If backend creation fails, something was wrong with the backend configuration. You can view the logs to
determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the create command
again.

Delete a backend

To delete a backend from Astra Trident, do the following:

1. Retrieve the backend name:
tridentctl get backend -n trident
2. Delete the backend:

tridentctl delete backend <backend-name> -n trident

If Astra Trident has provisioned volumes and snapshots from this backend that still exist,

(D deleting the backend prevents new volumes from being provisioned by it. The backend will
continue to exist in a “Deleting” state and Trident will continue to manage those volumes and
snapshots until they are deleted.

107

View the existing backends

To view the backends that Trident knows about, do the following:

* To get a summary, run the following command:
tridentctl get backend -n trident
* To get all the details, run the following command:
tridentctl get backend -o json -n trident
Update a backend
After you create a new backend configuration file, run the following command:
tridentctl update backend <backend-name> -f <backend-file> -n trident

If backend update fails, something was wrong with the backend configuration or you attempted an invalid
update. You can view the logs to determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the update command
again.

Identify the storage classes that use a backend

This is an example of the kind of questions you can answer with the JSON that tridentctl outputs for
backend objects. This uses the jq utility, which you need to install.

tridentctl get backend -o json | Jjg '[.items[] | {backend: .name,
storageClasses: [.storage[].storageClasses] |unique}]’

This also applies for backends that were created by using TridentBackendConfig.

Move between backend management options

Learn about the different ways of managing backends in Astra Trident. With the introduction of
TridentBackendConfig, administrators now have two unique ways of managing backends. This poses the
following questions:

* Can backends created using tridentctl be managed with TridentBackendConfig?

108

* Can backends created using TridentBackendConfig be managed using tridentctl1?

Manage tridentctl backends using TridentBackendConfig

This section covers the steps required to manage backends that were created using tridentct1 directly
through the Kubernetes interface by creating TridentBackendConfig objects.

This will apply to the following scenarios:

* Pre-existing backends, that don’t have a TridentBackendConfig because they were created with

tridentctl.

* New backends that were created with tridentctl, while other TridentBackendConfig objects exist.
In both scenarios, backends will continue to be present, with Astra Trident scheduling volumes and operating
on them. Administrators have one of two choices here:

* Continue using tridentctl to manage backends that were created using it.

* Bind backends created using tridentctl to a new TridentBackendConfig object. Doing so would

mean the backends will be managed using kubectl and not tridentctl.

To manage a pre-existing backend using kubect1, you will need to create a TridentBackendConfig that
binds to the existing backend. Here is an overview of how that works:

1. Create a Kubernetes Secret. The secret contains the credentials Astra Trident needs to communicate with
the storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and
references the secret created in the previous step. Care must be taken to specify identical config
parameters (such as spec.backendName, spec.storagePrefix, spec.storageDriverName, and
S0 on). spec.backendName must be set to the name of the existing backend.

Step 0: Identify the backend

To create a TridentBackendConfig that binds to an existing backend, you will need to obtain the backend
configuration. In this example, let us assume a backend was created using the following JSON definition:

tridentctl get backend ontap-nas-backend -n trident

Fommmmmmememsmesememe= fommmmmmmmemem===
Fommmmmmemoososorrenesmemememeoememmm o S Fomomomom= +

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

Fommmmmmmmensneosomoos Fommmmmmomoommmms
et it Fom—————— fom - +

| ontap-nas-backend | ontap-nas | 52f2ebl0-ed4c6-4160-99fc-
96b3be5ab5d7 | online | 25 |

e et e e Fom e
Fommmmmeemssesesess s s s e o= Fommmmmm== +

cat ontap-nas-backend. json

109

"version": 1,

"storageDriverName": "ontap-nas",
"managementLIF": "10.10.10.1",
"dataLIF": "10.10.10.2",
"backendName": "ontap-nas-backend",
"svm": "trident svm",

"username": "cluster-admin",

word": in- word",
"password": "admin-password"

"defaults": {
"spaceReserve": "none",
"encryption": "false"

by

"labels":{"store":"nas store"},
"region": "us east 1",
"storage": [

{
"labels":{"app":"msoffice", "cost":"100"},
"zone":"us east la",
"defaults": {
"spaceReserve": "volume",
"encryption": "true",

"unixPermissions": "0755"

"labels":{"app":"mysgldb", "cost":"25"},
"zone":"us east 1d",
"defaults": {

"spaceReserve": "volume",
"encryption": "false",
"unixPermissions™: "0775"

Step 1: Create a Kubernetes Secret

Create a Secret that contains the credentials for the backend, as shown in this example:

110

cat tbc-ontap-nas-backend-secret.yaml

apiVersion: vl
kind: Secret
metadata:
name: ontap-nas-backend-secret
type: Opaque
stringData:
username: cluster-admin

password: admin-password

kubectl create -f tbc-ontap-nas-backend-secret.yaml -n trident
secret/backend-tbc-ontap-san-secret created

Step 2: Create a TridentBackendConfig CR

The next step is to create a TridentBackendConfig CR that will automatically bind to the pre-existing
ontap-nas-backend (as in this example). Ensure the following requirements are met:

* The same backend name is defined in spec.backendName.

« Configuration parameters are identical to the original backend.

* Virtual pools (if present) must retain the same order as in the original backend.

» Credentials are provided through a Kubernetes Secret and not in plain text.

In this case, the TridentBackendConfig will look like this:

1M

cat backend-tbc-ontap-nas.yaml
apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: tbc-ontap-nas-backend
spec:
version: 1
storageDriverName: ontap-nas
managementLIF: 10.10.10.1
datalLIF: 10.10.10.2
backendName: ontap-nas-backend
svm: trident svm
credentials:
name: mysecret
defaults:
spaceReserve: none
encryption: 'false'
labels:
store: nas_ store
region: us east 1
storage:
- labels:
app: msoffice
cost: '100"
zone: us_east la
defaults:
spaceReserve: volume
encryption: 'true'
unixPermissions: '0755'
- labels:
app: mysqgldb
cost: '25"
zone: us_east 1d
defaults:
spaceReserve: volume
encryption: 'false'

unixPermissions: '0775"

kubectl create -f backend-tbc-ontap-nas.yaml -n trident
tridentbackendconfig.trident.netapp.io/tbc-ontap-nas-backend created

Step 3: Verify the status of the TridentBackendConfig CR

After the TridentBackendConfig has been created, its phase must be Bound. It should also reflect the
same backend name and UUID as that of the existing backend.

112

kubectl -n trident get tbc tbc-ontap-nas-backend -n trident

NAME BACKEND NAME BACKEND UUID
PHASE STATUS
tbc-ontap-nas-backend ontap-nas-backend 52f2ebl10-e4c6-4160-99fc-

96b3beb5ab5d7 Bound Success

#confirm that no new backends were created (i.e., TridentBackendConfig did
not end up creating a new backend)
tridentctl get backend -n trident

fmm e fom e

Rt ettt F—————— o — +

| NAME | STORAGE DRIVER | UuID

| STATE | VOLUMES |

et e T o

e - e b +

| ontap-nas-backend | ontap-nas | 52f2ebl0-ed4c6-4160-99fc—-
96b3bebab5d7 | online | 25 |

e o
e - +————— +

The backend will now be completely managed using the tbc-ontap-nas-backend
TridentBackendConfig object.

Manage TridentBackendConfig backends using tridentctl
tridentctl can be used to list backends that were created using TridentBackendConfig. In addition,

administrators can also choose to completely manage such backends through tridentctl by deleting
TridentBackendConfig and making sure spec.deletionPolicy is setto retain

Step 0: Identify the backend

For example, let us assume the following backend was created using TridentBackendConfig:

113

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8labcb27-ea63-49bb-b606-
0a5315ach5£f82 Bound Success ontap-san delete

tridentctl get backend ontap-san-backend -n trident

P memssesem== P m===
R Fommomome Fomomomom= +

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

Fommmmmmmmemeoeoeoos Fommmmmmomeomomm=
et Fom—————— fom——————— +

| ontap-san-backend | ontap-san | 8labcb27-ea63-49%bb-b606-
0a5315ac5f82 | online | 33 |

Fommmmcmemcmsosmsmss Fommmmmmsmemsmse=
B e o= Pommmmmm== +

From the output, it is seen that TridentBackendConfig was created successfully and is bound to a
backend [observe the backend’s UUID].

Step 1: Confirm deletionPolicy is setto retain

Let us take a look at the value of deletionPolicy. This needs to be set to retain. This will ensure that
when a TridentBackendConfig CR is deleted, the backend definition will still be present and can be
managed with tridentctl.

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8labcb27-ea63-49bb-b606-
0a5315ac5£82 Bound Success ontap-san delete

Patch value of deletionPolicy to retain
kubectl patch tbc backend-tbc-ontap-san --type=merge -p
"{"spec":{"deletionPolicy":"retain"}}' -n trident

tridentbackendconfig.trident.netapp.io/backend-tbc-ontap-san patched

#Confirm the value of deletionPolicy

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8labcb27-ea63-49bb-b606-
0ab5315ac5f82 Bound Success ontap-san retain

114

(D Do not proceed to the next step unless deletionPolicy is setto retain.

Step 2: Delete the TridentBackendConfig CR

The final step is to delete the TridentBackendConfig CR. After confirming the deletionPolicy is set to
retain, you can go ahead with the deletion:

kubectl delete tbc backend-tbc-ontap-san -n trident
tridentbackendconfig.trident.netapp.io "backend-tbc-ontap-san" deleted

tridentctl get backend ontap-san-backend -n trident

fomm e fom -

Rt bt PP t——————— Fo———— +

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

o o

e it ettt PP +—————— o +

| ontap-san-backend | ontap-san | 8labcb27-ea63-49bb-b606-
0a5315ac5f82 | online | 33 |

o o

Rt et ettt et - +—————— +

Upon the deletion of the TridentBackendConfig object, Astra Trident simply removes it without actually
deleting the backend itself.

Manage storage classes

Find information about creating a storage class, deleting a storage class, and viewing existing storage classes.

Design a storage class

See here for more information on what storage classes are and how you configure them.

Create a storage class

After you have a storage class file, run the following command:

kubectl create -f <storage-class-file>

<storage-class-file> should be replaced with your storage class file name.

Delete a storage class

To delete a storage class from Kubernetes, run the following command:

115

https://docs.netapp.com/us-en/trident-2301/trident-reference/objects.html

kubectl delete storageclass <storage-class>

<storage-class> should be replaced with your storage class.

Any persistent volumes that were created through this storage class will remain untouched, and Astra Trident
will continue to manage them.

Astra Trident enforces a blank £sType for the volumes it creates. For iSCSI backends, it is
recommended to enforce parameters. fsType in the StorageClass. You should delete
existing StorageClasses and re-create them with parameters. £sType specified.

View the existing storage classes

» To view existing Kubernetes storage classes, run the following command:

kubectl get storageclass

 To view Kubernetes storage class detail, run the following command:

kubectl get storageclass <storage-class> -o json

» To view Astra Trident’s synchronized storage classes, run the following command:
tridentctl get storageclass

» To view Astra Trident’s synchronized storage class detail, run the following command:

tridentctl get storageclass <storage-class> -o json

Set a default storage class

Kubernetes 1.6 added the ability to set a default storage class. This is the storage class that will be used to
provision a Persistent Volume if a user does not specify one in a Persistent Volume Claim (PVC).

* Define a default storage class by setting the annotation storageclass. kubernetes.io/is-
default-class to true in the storage class definition. According to the specification, any other value or
absence of the annotation is interpreted as false.

* You can configure an existing storage class to be the default storage class by using the following
command:

kubectl patch storageclass <storage-class-name> -p '{'"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}"'

116

« Similarly, you can remove the default storage class annotation by using the following command:

kubectl patch storageclass <storage-class-name> -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}}"'

There are also examples in the Trident installer bundle that include this annotation.

You should only have one default storage class in your cluster at any given time. Kubernetes
@ does not technically prevent you from having more than one, but it will behave as if there is no
default storage class at all.

Identify the backend for a storage class

This is an example of the kind of questions you can answer with the JSON that tridentctl outputs for Astra
Trident backend objects. This uses the g utility, which you may need to install first.

tridentctl get storageclass -o json | jgq '[.items[] | {storageClass:
.Config.name, backends: [.storage]|unique}]'

Perform volume operations
Learn about the features Astra Trident provides for managing your volumes.

* Use CSI Topology
* Work with snapshots
* Expand volumes

* Import volumes

Use CSI Topology

Astra Trident can selectively create and attach volumes to nodes present in a Kubernetes cluster by making
use of the CSI Topology feature. Using the CSI Topology feature, access to volumes can be limited to a subset
of nodes, based on regions and availability zones. Cloud providers today enable Kubernetes administrators to
spawn nodes that are zone based. Nodes can be located in different availability zones within a region, or
across various regions. To facilitate the provisioning of volumes for workloads in a multi-zone architecture,
Astra Trident uses CSI Topology.

Learn more about the CSI Topology feature here.

Kubernetes provides two unique volume binding modes:

* With VolumeBindingMode set to Immediate, Astra Trident creates the volume without any topology
awareness. Volume binding and dynamic provisioning are handled when the PVC is created. This is the
default volumeBindingMode and is suited for clusters that do not enforce topology constraints. Persistent
Volumes are created without having any dependency on the requesting pod’s scheduling requirements.

* With VolumeBindingMode set to WaitForFirstConsumer, the creation and binding of a Persistent

117

https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/

Volume for a PVC is delayed until a pod that uses the PVC is scheduled and created. This way, volumes
are created to meet the scheduling constraints that are enforced by topology requirements.

(D The WaitForFirstConsumer binding mode does not require topology labels. This can be

used independent of the CSI Topology feature.

What you’ll need

To make use of CSI Topology, you need the following:

118

A Kubernetes cluster running a supported Kubernetes version

kubectl version

Client Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"1el1e4a2108024935ecfcb2912226cedeafd99df",
GitTreeState:"clean", BuildDate:"2020-10-14T12:50:192",
GoVersion:"gol.15.2", Compiler:"gc", Platform:"linux/amd64"}
Server Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"1elled4a2108024935ecfcb2912226cedeafd99dft",
GitTreeState:"clean", BuildDate:"2020-10-14T12:41:492",
GoVersion:"gol.15.2", Compiler:"gc", Platform:"linux/amd64"}

Nodes in the cluster should have labels that introduce topology awareness
(topology.kubernetes.io/region and topology.kubernetes.io/zone). These labels should
be present on nodes in the cluster before Astra Trident is installed for Astra Trident to be topology
aware.

https://docs.netapp.com/us-en/trident-2301/trident-get-started/requirements.html

kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{.metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"
[nodel,
{"beta.kubernetes.io/arch":"amd64", "beta.kubernetes.io/o0os":"1linux", "kube

rnetes.io/arch":"amd64", "kubernetes.io/hostname":"nodel", "kubernetes.io/
os":"linux", "node-
role.kubernetes.io/master":"", "topology. kubernetes.io/region":"us-
eastl", "topology.kubernetes.io/zone":"us-eastl-a"}]

[node?2,

{"beta.kubernetes.io/arch":"amd64", "beta.kubernetes.io/o0os":"1linux", "kube
rnetes.io/arch":"amd64", "kubernetes.io/hostname" :"node2", "kubernetes.io/
os":"linux", "node-

role.kubernetes.io/worker":"", "topology.kubernetes.io/region":"us-
eastl", "topology.kubernetes.io/zone" :"us-eastl-b"}]

[node3,

{"beta.kubernetes.io/arch":"amdo64", "beta.kubernetes.io/os":"1linux", "kube
rnetes.io/arch":"amd64", "kubernetes.io/hostname" :"node3", "kubernetes.io/
os":"linux", "node-
role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-
eastl", "topology.kubernetes.io/zone":"us-eastl-c"}]

Step 1: Create a topology-aware backend

Astra Trident storage backends can be designed to selectively provision volumes based on availability zones.
Each backend can carry an optional supportedTopologies block that represents a list of zones and regions
that must be supported. For StorageClasses that make use of such a backend, a volume would only be
created if requested by an application that is scheduled in a supported region/zone.

Here is an example backend definition:

119

YAML

version: 1

storageDriverName: ontap-san

backendName: san-backend-us-eastl

managementLIF: 192.168.27.5

svm: iscsi svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-eastl
topology.kubernetes.io/zone: us-eastl-a

- topology.kubernetes.io/region: us-eastl
topology.kubernetes.io/zone: us-eastl-Db

JSON
{
"version": 1,
"storageDriverName": "ontap-san",
"backendName": "san-backend-us-eastl",
"managementLIF": "192.168.27.5",
"svm": "iscsi svm",
"username": "admin",
"password": "password",
"supportedTopologies™: [
{"topology.kubernetes.io/region": "us-eastl",
"topology.kubernetes.io/zone": "us-eastl-a"},
{"topology.kubernetes.io/region": "us-eastl",
"topology.kubernetes.io/zone": "us-eastl-b"}

]
}

supportedTopologies is used to provide a list of regions and zones per backend. These

@ regions and zones represent the list of permissible values that can be provided in a
StorageClass. For StorageClasses that contain a subset of the regions and zones provided in a
backend, Astra Trident will create a volume on the backend.

You can define supportedTopologies per storage pool as well. See the following example:

120

version: 1

storageDriverName: ontap-nas

backendName: nas-backend-us-centrall

managementLIF: 172.16.

svm: nfs svm
username: admin
password: password
supportedTopologies:
- topology.kubernetes

topology.kubernetes.
- topology.kubernetes.
topology.kubernetes.

storage:
- labels:

238.5

.1o0/region: us-centrall

io/zone: us-centrall-a
io/region: us-centrall
io/zone: us-centrall-b

workload: production

region: Iowa-DC
zone: Iowa-DC-A

supportedTopologies:
- topology.kubernetes.
topology.kubernetes.io/zone: us-centrall-a

- labels:
workload: dev
region: Iowa-DC
zone: Iowa-DC-B

supportedTopologies:
- topology.kubernetes.
topology.kubernetes.io/zone: us-centrall-b

In this example, the region and zone labels stand for the location of the storage pool.
topology.kubernetes.io/region and topology.kubernetes.io/zone dictate where the storage

pools can be consumed from.

Step 2: Define StorageClasses that are topology aware

io/region: us-centrall

io/region: us-centrall

Based on the topology labels that are provided to the nodes in the cluster, StorageClasses can be defined to
contain topology information. This will determine the storage pools that serve as candidates for PVC requests

made, and the subset of nodes that can make use of the volumes provisioned by Trident.

See the following example:

121

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: netapp-san-us-eastl
provisioner: csi.trident.netapp.io
volumeBindingMode: WaitForFirstConsumer
allowedTopologies:
- matchLabelExpressions:
- key: topology.kubernetes.io/zone
values:
- us-eastl-a
- us-eastl-b
- key: topology.kubernetes.io/region
values:
- us-eastl
parameters:
fsType: "ext4d"

In the StorageClass definition provided above, volumeBindingMode is set to WaitForFirstConsumer.
PVCs that are requested with this StorageClass will not be acted upon until they are referenced in a pod. And,
allowedTopologies provides the zones and region to be used. The netapp-san-us-eastl1 StorageClass
will create PVCs on the san-backend-us-east1 backend defined above.

Step 3: Create and use a PVC

With the StorageClass created and mapped to a backend, you can now create PVCs.

See the example spec below:

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-san
spec:
accessModes:

- ReadWriteOnce
resources:

requests:

storage: 300Mi

storageClassName: netapp-san-us-eastl

Creating a PVC using this manifest would result in the following:

122

kubectl create -f pvc.yaml
persistentvolumeclaim/pvc-san created
kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

AGE

pvc-san Pending netapp-san-us-eastl

2s

kubectl describe pvc

Name: pvc-san

Namespace: default

StorageClass: netapp-san-us-eastl

Status: Pending

Volume:

Labels: <none>

Annotations: <none>

Finalizers: [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode: Filesystem

Mounted By: <none>

Events:
Type Reason Age From Message
Normal WaitForFirstConsumer ©6s persistentvolume-controller waiting

for first consumer to be created before binding

For Trident to create a volume and bind it to the PVC, use the PVC in a pod. See the following example:

123

apiVersion: vl
kind: Pod
metadata:
name: app-pod-1
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: topology.kubernetes.io/region
operator: In
values:
- us-eastl
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
preference:
matchExpressions:
- key: topology.kubernetes.io/zone
operator: In
values:
- us-eastl-a
- us-eastl-b
securityContext:
runAsUser: 1000
runAsGroup: 3000
fsGroup: 2000
volumes:
- name: voll
persistentVolumeClaim:
claimName: pvc-san
containers:
- name: sec-ctx-demo
image: busybox
command: ["sh", "-c", "sleep 1h"]
volumeMounts:
- name: voll
mountPath: /data/demo
securityContext:
allowPrivilegeEscalation: false

This podSpec instructs Kubernetes to schedule the pod on nodes that are present in the us-east1 region,
and choose from any node that is present in the us-eastl-a or us-eastl-b zones.

See the following output:

124

kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES

app-pod-1 1/1 Running 0 19s 192.168.25.131 node?2
<none> <none>

kubectl get pvc -o wide

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE VOLUMEMODE

pvc-san Bound pvc-ecblelal0-840c-463b-8b65-b3d033e2e62b 300Mi
RWO netapp-san-us-eastl 48s Filesystem

Update backends to include supportedTopologies

Pre-existing backends can be updated to include a list of supportedTopologies using tridentctl
backend update. This will not affect volumes that have already been provisioned, and will only be used for
subsequent PVCs.

Find more information

* Manage resources for containers
* nodeSelector
« Affinity and anti-affinity

¢ Taints and Tolerations

Work with snapshots

You can create Kubernetes VolumeSnapshots (volume snapshot) of Persistent Volumes
(PVs) to maintain point-in-time copies of Astra Trident volumes. Additionally, you can
create a new volume, also known as a clone, from an existing volume snapshot. Volume
snapshot is supported by ontap-nas, ontap-nas-flexgroup, ontap-san, ontap-
san-economy, solidfire-san, gcp-cvs, and azure-netapp-£files drivers.

Before you begin

You must have an external snapshot controller and Custom Resource Definitions (CRDs). This is the
responsibility of the Kubernetes orchestrator (for example: Kubeadm, GKE, OpenShift).

If your Kubernetes distribution does not include the snapshot controller and CRDs, refer to Deploying a volume
snapshot controller.

@ Don’t create a snapshot controller if creating on-demand volume snapshots in a GKE
environment. GKE uses a built-in, hidden snapshot controller.

Step 1: Create a VolumeSnapshotClass

This example creates a volume snapshot class.

125

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

cat snap-sc.yaml
apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshotClass
metadata:
name: csi-snapclass
driver: csi.trident.netapp.io

deletionPolicy: Delete

The driver points to Astra Trident’s CSl driver. deletionPolicy can be Delete or Retain. When set to
Retain, the underlying physical snapshot on the storage cluster is retained even when the VvolumeSnapshot
object is deleted.

For more information, refer to VvolumeSnapshotClass.

Step 2: Create a snapshot of an existing PVC

This example creates a snapshot of an existing PVC.

cat snap.yaml
apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshot
metadata:
name: pvcl-snap
spec:
volumeSnapshotClassName: csi-snapclass
source:

persistentVolumeClaimName: pvcl

In this example, the snapshot is created for a PVC named pvcl and the name of the snapshot is set to pvcl-
snap.

kubectl create -f snap.yaml
volumesnapshot.snapshot.storage.k8s.io/pvcl-snap created

kubectl get volumesnapshots
NAME AGE
pvcl-snap 50s

This created a VolumeSnapshot object. A VolumeSnapshot is analogous to a PVC and is associated with a
VolumeSnapshotContent object that represents the actual snapshot.

It is possible to identify the VolumeSnapshotContent object for the pvcl-snap VolumeSnapshot by
describing it.

126

https://docs.netapp.com/us-en/trident-2301/trident-reference/objects.html#kubernetes-volumesnapshotclass-objects

kubectl describe volumesnapshots pvcl-snap
Name : pvcl-snap

Namespace: default

Spec:
Snapshot Class Name: pvcl-snap
Snapshot Content Name: snapcontent-e8d8alca-9826-11e9-9807-525400f3f660
Source:
API Group:
Kind: PersistentVolumeClaim
Name: pvcl
Status:
Creation Time: 2019-06-26T15:27:297
Ready To Use: true
Restore Size: 3Gi

The Snapshot Content Name identifies the VolumeSnapshotContent object which serves this snapshot.
The Ready To Use parameter indicates that the Snapshot can be used to create a new PVC.

Step 3: Create PVCs from VolumeSnapshots

This example creates a PVC using a snapshot:

cat pvc-from-snap.yaml
apiVersion: vl
kind: PersistentVolumeClaim
metadata:

name: pvc-from-snap
spec:

accessModes:

- ReadWriteOnce
storageClassName: golden
resources:

requests:

storage: 3Gi
dataSource:

name: pvcl-snap

kind: VolumeSnapshot

apiGroup: snapshot.storage.k8s.io

dataSource shows that the PVC must be created using a VolumeSnapshot named pvcl-snap as the

127

source of the data. This instructs Astra Trident to create a PVC from the snapshot. After the PVC is created, it
can be attached to a pod and used just like any other PVC.

When deleting a Persistent Volume with associated snapshots, the corresponding Trident
volume is updated to a “Deleting state”. For the Astra Trident volume to be deleted, the
snapshots of the volume should be removed.

Deploying a volume snapshot controller

If your Kubernetes distribution does not include the snapshot controller and CRDs, you can deploy them as
follows.

Steps

1. Create volume snapshot CRDs.

cat snapshot-setup.sh

#!/bin/bash

Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshotclasses.yaml
kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshotcontents.yam
1

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshots.yaml

2. Create the snapshot controller in the desired namespace. Edit the YAML manifests below to modify

namespace.

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-
controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-
controller/setup-snapshot-controller.yaml

Related links

* Volume snapshots

* VolumeSnapshotClass

128

https://docs.netapp.com/us-en/trident-2301/trident-concepts/snapshots.html
https://docs.netapp.com/us-en/trident-2301/trident-reference/objects.html

Expand volumes

Astra Trident provides Kubernetes users the ability to expand their volumes after they are created. Find
information about the configurations required to expand iISCSI and NFS volumes.

Expand an iSCSI volume

You can expand an iSCSI Persistent Volume (PV) by using the CSI provisioner.

(:) iSCSI volume expansion is supported by the ontap-san, ontap-san-economy, solidfire-
san drivers and requires Kubernetes 1.16 and later.

Overview
Expanding an iSCSI PV includes the following steps:

* Editing the StorageClass definition to set the allowvVolumeExpansion field to true.

* Editing the PVC definition and updating the spec.resources.requests.storage to reflect the newly
desired size, which must be greater than the original size.

« Attaching the PV must be attached to a pod for it to be resized. There are two scenarios when resizing an
iISCSI PV:

o If the PV is attached to a pod, Astra Trident expands the volume on the storage backend, rescans the
device, and resizes the filesystem.

o When attempting to resize an unattached PV, Astra Trident expands the volume on the storage
backend. After the PVC is bound to a pod, Trident rescans the device and resizes the filesystem.
Kubernetes then updates the PVC size after the expand operation has successfully completed.

The example below shows how expanding iISCSI PVs work.

Step 1: Configure the StorageClass to support volume expansion

cat storageclass-ontapsan.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontap-san
provisioner: csi.trident.netapp.io
parameters:

backendType: "ontap-san"
allowVolumeExpansion: True

For an already existing StorageClass, edit it to include the allowVolumeExpansion parameter.

Step 2: Create a PVC with the StorageClass you created

129

cat pvc-ontapsan.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: san-—-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: ontap-san

Astra Trident creates a Persistent Volume (PV) and associates it with this Persistent Volume Claim (PVC).

kubectl get pvc
NAME STATUS VOLUME
ACCESS MODES STORAGECLASS AGE

CAPACITY

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82£2885db671 1Gi

RWO ontap-san 8s

kubectl get pv

NAME

RECLAIM POLICY STATUS CLAIM
pvc-8a814d62-bd58-4253-b0d1-82£f2885db671
Delete Bound default/san-pvc

Step 3: Define a pod that attaches the PVC

In this example, a pod is created that uses the san-pvc.

130

CAPACITY ACCESS MODES
STORAGECLASS REASON AGE
1G1i RWO

ontap-san 10s

kubectl get pod
NAME READY STATUS RESTARTS AGE
ubuntu-pod 1/1 Running 0 65s

kubectl describe pvc san-pvc

Name : san—-pvc

Namespace: default

StorageClass: ontap-san

Status: Bound

Volume: pvc-8a814d62-bd58-4253-b0d1-82£2885db671
Labels: <none>

Annotations: pv.kubernetes.io/bind-completed: yes

pv.kubernetes.io/bound-by-controller: yes
volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers: [kubernetes.io/pvc—protection]
Capacity: 1G1i

Access Modes: RWO

VolumeMode: Filesystem

Mounted By: ubuntu-pod

Step 4: Expand the PV

To resize the PV that has been created from 1Gi to 2Gi, edit the PVC definition and update the
spec.resources.requests.storage to 2Gi.

131

kubectl edit pvc san-pvc

Please edit the object below. Lines beginning with a '#' will be
ignored,

and an empty file will abort the edit. If an error occurs while saving
this file will be

reopened with the relevant failures.

#

apiVersion: vl

kind: PersistentVolumeClaim

metadata:
annotations:
pv.kubernetes.io/bind-completed: "yes"
pv.kubernetes.io/bound-by-controller: "yes"

volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
creationTimestamp: "2019-10-10T17:32:292"
finalizers:
- kubernetes.io/pvc-protection
name: san-pvc
namespace: default
resourceVersion: "16609"
selflLink: /api/vl/namespaces/default/persistentvolumeclaims/san-pvc
uid: 8a814d62-bd58-4253-b0d1-82£2885db671

spec:

accessModes:
- ReadWriteOnce
resources:

requests:

storage: 2Gi

Step 5: Validate the expansion

You can validate the expansion worked correctly by checking the size of the PVC, PV, and the Astra Trident
volume:

132

kubectl get pvc san-pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82£2885db671 2Gi

RWO ontap-san 1lm

kubectl get pv

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-8a814d62-bd58-4253-b0d1-82£2885db671 2G1 RWO

Delete Bound default/san-pvc ontap-san 12m

tridentctl get volumes -n trident

fos=s=ss=s=ssscsessssssssosossssss=s=sssa=s fememe==== e

e L T s frommmem e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

o o e e o o e o o e e o o 5 D) e e i e e frommmom e e

fremmmm=a==s frememsesessss s s s m s s e o s = = e fremememm=s I
| pvc-8a814d62-bd58-4253-b0d1-82£2885db671 | 2.0 GiB | ontap-san |
block | a%7bfff-0505-4e31-b6c5-59£492e02d33 | online | true |

fomssssess s s s s o s e o s sss s osss fremmmemm=s frememesmeeeeaaa=

fem======== e Bt fmm====== fememe==== 4

Expand an NFS volume

Astra Trident supports volume expansion for NFS PVs provisioned on ontap-nas, ontap-nas-economy,

ontap-nas-flexgroup, gcp-cvs, and azure-netapp-files backends.

Step 1: Configure the StorageClass to support volume expansion

To resize an NFS PV, the admin first needs to configure the storage class to allow volume expansion by setting

the allowVolumeExpansion field to true:

cat storageclass-ontapnas.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontapnas
provisioner: csi.trident.netapp.io
parameters:

backendType: ontap-nas
allowVolumeExpansion: true

If you have already created a storage class without this option, you can simply edit the existing storage class

by using kubectl edit storageclass to allow volume expansion.

133

Step 2: Create a PVC with the StorageClass you created

cat pvc-ontapnas.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: ontapnas20mb
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 20Mi
storageClassName: ontapnas

Astra Trident should create a 20MiB NFS PV for this PVC:

kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08£f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi

RWO ontapnas 9s

kubectl get pv pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLATIM STORAGECLASS REASON
AGE

pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7 20Mi RWO

Delete Bound default/ontapnas20mb ontapnas

2mé2s

Step 3: Expand the PV

To resize the newly created 20MiB PV to 1GiB, edit the PVC and set spec.resources.requests.storage
to 1GB:

134

kubectl edit pvc ontapnas20mb

Please edit the object below. Lines beginning with a '#' will be
ignored,

and an empty file will abort the edit. If an error occurs while saving
this file will be

reopened with the relevant failures.

#

apiVersion: vl

kind: PersistentVolumeClaim

metadata:
annotations:
pv.kubernetes.io/bind-completed: "yes"
pv.kubernetes.io/bound-by-controller: "yes"

volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
creationTimestamp: 2018-08-21T18:26:447%
finalizers:
- kubernetes.io/pvc-protection
name: ontapnas20mb
namespace: default
resourceVersion: "1958015"
selflLink: /api/vl/namespaces/default/persistentvolumeclaims/ontapnas20mb
uid: clbd7fab5-a56f-11e8-b8d7-fal63e59%eaab

spec:

accessModes:
- ReadWriteOnce
resources:

requests:

storage: 1Gi

Step 4: Validate the expansion

You can validate the resize worked correctly by checking the size of the PVC, PV, and the Astra Trident
volume:

135

kubectl get pvc ontapnas20mb

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08£f3d561-b199-11e9-8d9£f-5254004dfdb7 1G1i
RWO ontapnas 4médds

kubectl get pv pvc-08£3d561-b199-11e9-8d9£-5254004dfdb7

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON
AGE

pvc-08£3d561-0199-11e9-8d9£f-5254004dfdb7 1Gi RWO

Delete Bound default/ontapnas20mb ontapnas

5m35s

tridentctl get volume pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

o e Fomm -
fom - o fom - fom—m————— +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

- fomm—————— fom -
fom - o fomm - fomm - +
| pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7 | 1.0 GiB | ontapnas |
file | cS5abf6ad-b052-423b-80d4-8fb491alda22 | online | true |

et ittt L fommm - fom e
fom - oo fom - e +

Import volumes

You can import existing storage volumes as a Kubernetes PV using tridentctl import.

Drivers that support volume import

This table depicts the drivers that support importing volumes and the release they were introduced in.

Driver Release
ontap-nas 19.04
ontap-nas-flexgroup 19.04
solidfire-san 19.04
azure-netapp-files 19.04
gcp-cvs 19.04

136

Driver Release

ontap-san 19.04

Why should | import volumes?

There are several use cases for importing a volume into Trident:

» Containerizing an application and reusing its existing data set
* Using a clone of a data set for an ephemeral application
* Rebuilding a failed Kubernetes cluster

« Migrating application data during disaster recovery

How does the import work?

The Persistent Volume Claim (PVC) file is used by the volume import process to create the PVC. At a
minimum, the PVC file should include the name, namespace, accessModes, and storageClassName fields as
shown in the following example.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: my claim
namespace: my namespace
spec:
accessModes:
- ReadWriteOnce
storageClassName: my storage class

The tridentctl clientis used to import an existing storage volume. Trident imports the volume by persisting
volume metadata and creating the PVC and PV.

tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-file>

To import a storage volume, specify the name of the Astra Trident backend containing the volume, as well as
the name that uniquely identifies the volume on the storage (for example: ONTAP FlexVol, Element Volume,
CVS Volume path). The storage volume must allow read/write access and be accessible by the specified Astra
Trident backend. The - £ string argument is required and specifies the path to the YAML or JSON PVC file.

When Astra Trident receives the import volume request, the existing volume size is determined and set in the
PVC. After the volume is imported by the storage driver, the PV is created with a ClaimRef to the PVC. The
reclaim policy is initially set to retain in the PV. After Kubernetes successfully binds the PVC and PV, the
reclaim policy is updated to match the reclaim policy of the Storage Class. If the reclaim policy of the Storage
Class is delete, the storage volume will be deleted when the PV is deleted.

When a volume is imported with the -—-no-manage argument, Trident does not perform any additional
operations on the PVC or PV for the lifecycle of the objects. Because Trident ignores PV and PVC events for

137

--no-manage oObjects, the storage volume is not deleted when the PV is deleted. Other operations such as
volume clone and volume resize are also ignored. This option is useful if you want to use Kubernetes for
containerized workloads but otherwise want to manage the lifecycle of the storage volume outside of
Kubernetes.

An annotation is added to the PVC and PV that serves a dual purpose of indicating that the volume was
imported and if the PVC and PV are managed. This annotation should not be modified or removed.

Trident 19.07 and later handle the attachment of PVs and mounts the volume as part of importing it. For
imports using earlier versions of Astra Trident, there will not be any operations in the data path and the volume
import will not verify if the volume can be mounted. If a mistake is made with volume import (for example, the
StorageClass is incorrect), you can recover by changing the reclaim policy on the PV to retain, deleting the
PVC and PV, and retrying the volume import command.

ontap-nas and ontap-nas-flexgroup imports

Each volume created with the ontap-nas driver is a FlexVol on the ONTAP cluster. Importing FlexVols with
the ontap-nas driver works the same. A FlexVol that already exists on an ONTAP cluster can be imported as
a ontap-nas PVC. Similarly, FlexGroup vols can be imported as ontap-nas-flexgroup PVCs.

An ONTAP volume must be of type rw to be imported by Trident. If a volume is of type dp, itis a
@ SnapMirror destination volume; you should break the mirror relationship before importing the
volume into Trident.

@ The ontap-nas driver cannot import and manage qtrees. The ontap-nas and ontap-nas-
flexgroup drivers do not allow duplicate volume names.

For example, to import a volume named managed volume on a backend named ontap nas, use the
following command:

tridentctl import volume ontap nas managed volume -f <path-to-pvc-file>

fos=========sscsessssssssososss=s=========c frE=mmeme=s R L
fmmmmmmmaaa e fmmmmmaae fommmemaae +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

e fommmemaae fommmmm s
fressmmsamms emmmemesses o s e e e s n e s e e e == T e I+
| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |
file | cba6f6ad-b052-423b-80d4-8fb491ald4a22 | online | true |

frossssses s m oo e s e o s e e s e e pemmmmmeme ==
fe=m======a fEmsmesessesossssssssssssssessososs==== f======== fmmmmeme=s F

To import a volume named unmanaged volume (on the ontap nas backend), which Trident will not
manage, use the following command:

138

tridentctl import volume nas blog unmanaged volume -f <path-to-pvc-file>
--no-manage

fos=ssss=s=ssscsessssssssosossssssss==ssa=s fememe===s e
e e e e e e e e e e fro— e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

e e e e e e e e) fro— e s e
frems=m=m==s e ittt R remmmeme== +F
| pvc-df07d542-afbc-11e9-8d9£-5254004dfdb7 | 1.0 GiB | standard

file | c5a6f6ad4-b052-423b-80d4-8fb491ald4a22 | online | false |
fossssssssss s e se s s oses oo sssssss s s e fremmmmmeee e
femm======a femessesessss s e e se s e eessssaa s femm==== femememm== 4

When using the -—no-manage argument, Trident does not rename the volume or validate if the volume was
mounted. The volume import operation fails if the volume was not mounted manually.

A previously existing bug with importing volumes with custom UnixPermissions has been fixed.
(D You can specify unixPermissions in your PVC definition or backend configuration, and instruct
Astra Trident to import the volume accordingly.

ontap-san import

Astra Trident can also import ONTAP SAN FlexVols that contain a single LUN. This is consistent with the
ontap-san driver, which creates a FlexVol for each PVC and a LUN within the FlexVol. You can use the
tridentctl import command in the same way as in other cases:

* Include the name of the ontap-san backend.

* Provide the name of the FlexVol that needs to be imported. Remember, this FlexVol contains only one LUN
that must be imported.

* Provide the path of the PVC definition that must be used with the -£ flag.

» Choose between having the PVC managed or unmanaged. By default, Trident will manage the PVC and
rename the FlexVol and LUN on the backend. To import as an unmanaged volume, pass the --no
-manage flag.

When importing an unmanaged ontap-san volume, you should make sure that the LUN in the
@ FlexVol is named 1un0 and is mapped to an igroup with the desired initiators. Astra Trident
automatically handles this for a managed import.

Astra Trident will then import the FlexVol and associate it with the PVC definition. Astra Trident also renames
the FlexVol to the pvc-<uuid> format and the LUN within the FlexVol to 1uno0.

It is recommended to import volumes that do not have existing active connections. If you are
looking to import an actively used volume, clone the volume first and then do the import.

139

Example

To import the ontap-san-managed FlexVol that is present on the ontap san default backend, run the
tridentctl import command as:

tridentctl import volume ontapsan san default ontap-san-managed -f pvc-
basic-import.yaml -n trident -d

e SLEEEEattatt et o= o memem=
Fommemmomo= B e Fommeomo= e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
Fommemmcmmererrrrrrrrrre s re e e em o Fommmmom= Fommemmmemeomoee
Fommmmmmm== et Pommmmm== o= +
| pvc-d6eedf54-4e40-4454-92£d-d00fc228d74a | 20 MiB | basic |
block | cd394786-ddd5-4470-adc3-10c5ced4ca’757 | online | true |
R e e it fommmmmmememem=
Fommmomomme L e e e Fomomomoe e et +

An ONTAP volume must be of type rw to be imported by Astra Trident. If a volume is of type dp,
@ it is @ SnapMirror destination volume; you should break the mirror relationship before importing
the volume into Astra Trident.

element import

You can import NetApp Element software/NetApp HCI volumes to your Kubernetes cluster with Trident. You
need the name of your Astra Trident backend, and the unique name of the volume and the PVC file as the
arguments for the tridentctl import command.

tridentctl import volume element default element-managed -f pvc-basic-
import.yaml -n trident -d

i e et EEEES e Fommmmmcememeoes
Pommmmmmm== ettt P o= +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
T Emattett P Fommmmmmememem==
Fommmmmmm== L et Fommmmm== o= +
| pvc-970celca-2096-4ecd-8545-ac7/edc24a8fe | 10 GiB | basic-element |
block | d3bal47a-ealb-43£9-9¢c42-e38e58301c49 | online | true |

o e e mesesese s s s s s e s e i fommmmemememem=
Fommmmmomo= o memeressrrrrrrrrssercreeee e me s Fommmomoe e +

140

The Element driver supports duplicate volume names. If there are duplicate volume names,
Trident’s volume import process returns an error. As a workaround, clone the volume and
provide a unique volume name. Then import the cloned volume.

gcp-cvs import

To import a volume backed by the NetApp Cloud Volumes Service in GCP, identify the volume
by its volume path instead of its name.

To import an gcp-cvs volume on the backend called gcpcvs YEppr with the volume path of adroit-
jolly-swift, use the following command:

tridentctl import volume gcpcvs YEppr adroit-jolly-swift -f <path-to-pvc-
file> -n trident

- fom fom -
fomm - o fommm - fommm - +

| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

o fomm - Fomm e

fom - et e et T e fom - e +

| pvc-ad6ccab7-44aa-4433-94bl-ed47£fc8c0fa55 | 93 GiB | gcp-storage | file
| €la6e65b-299e-4568-ad05-4£0a105c888f | online | true |
- fom—————— Fom e

fom - e i it e L fomm - fom - +

@ The volume path is the portion of the volume’s export path after the :/. For example, if the export
pathis 10.0.0.1:/adroit-jolly-swift, the volume path is adroit-jolly-swift.

azure-netapp-files import

To import an azure-netapp-£files volume on the backend called azurenetappfiles 40517 with the
volume path importvoll, run the following command:

141

tridentctl import volume azurenetappfiles 40517 importvoll -f <path-to-
pvc-file> -n trident

fos=ssss=s=ssscsessssssssosossssssss==ssa=s fememe===s e
e e e e e e e e e e fro— e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

e e e e e e e e) fro— e s e
frems=m=m==s e ittt R remmmeme== +F
| pvc-0ee95d60-£d5¢c-448d-b505-b72901b3ad4ab | 100 GiB | anf-storage |
file | 1c01274£-d94b-44a3-98a3-04c953c9%a5le | online | true |
fossssssssss s e se s s oses oo sssssss s s e fremmmmmeee e
femm======a femessesessss s e e se s e eessssaa s femm==== femememm== 4

(D The volume path for the ANF volume is present in the mount path after the :/. For example, if the
mount pathis 10.0.0.2:/importvoll, the volume path is importvoll.

Share an NFS volume across namespaces

Using Astra Trident, you can create a volume in a primary namespace and share it in one
or more secondary namespaces.

Features

The Astra TridentVolumeReference CR allows you to securely share ReadWriteMany (RWX) NFS volumes
across one or more Kubernetes namespaces. This Kubernetes-native solution has the following benefits:

* Multiple levels of access control to ensure security
» Works with all Trident NFS volume drivers

* No reliance on tridentctl or any other non-native Kubernetes feature

This diagram illustrates NFS volume sharing across two Kubernetes namespaces.

142

................. : Primary PV Secondary PV

npl"il'l'"lar}f" o . a = :,’

R D T T e 0

¢ Trident
namespace

TVol €—p» TVol

1
1
]
1
1
primary secondary |
1
:
1
1

.......................

TridentVolumeReference

primary/pvci

O [
H

Slorage = tt-cecemecsecosno-e
Volume

Quick start

You can set up NFS volume sharing in just a few steps.

Configure source PVC to share the volume
The source namespace owner grants permission to access the data in the source PVC.

Grant permission to create a CR in the destination namespace

The cluster administrator grants permission to the owner of the destination namespace to create the
TridentVolumeReference CR.

Create TridentVolumeReference in the destination namespace
The owner of the destination namespace creates the TridentVolumeReference CR to refer to the source PVC.

Create the subordinate PVC in the destination namespace

The owner of the destination namespace creates the subordinate PVC to use the data source from the source
PVC.

143

Configure the source and destination namespaces

To ensure security, cross namespace sharing requires collaboration and action by the source namespace
owner, cluster administrator, and destination namespace owner. The user role is designated in each step.

Steps

1. Source namespace owner: Create the PVC (pvc1) in the source namespace that grants permission to
share with the destination namespace (namespace?2) using the shareToNamespace annotation.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvcl
namespace: namespacel
annotations:

trident.netapp.io/shareToNamespace: namespace?

spec:
accessModes:

- ReadWriteMany
storageClassName: trident-csi
resources:

requests:

storage: 100Gi

Astra Trident creates the PV and its backend NFS storage volume.

> You can share the PVC to multiple namespaces using a comma-delimited list. For
example, trident.netapp.io/shareToNamespace:
namespace?2, namespace3, namespaced.

@ ° You can share to all namespaces using *. For example,
trident.netapp.io/shareToNamespace: *

° You can update the PVC to include the shareToNamespace annotation at any time.

2. Cluster admin: Create the custom role and kubeconfig to grant permission to the destination namespace
owner to create the TridentVolumeReference CR in the destination namespace.

3. Destination namespace owner: Create a TridentVolumeReference CR in the destination namespace that
refers to the source namespace pvcl.

144

apiVersion: trident.netapp.io/vl
kind: TridentVolumeReference
metadata:

name: my-first-tvr

namespace: namespace?2
spec:

pvcName: pvcl

pvcNamespace: namespacel

4. Destination namespace owner: Create a PVC (pvc2) in destination namespace (namespace?2) using
the shareFromPVC annotation to designate the source PVC.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:

annotations:

trident.netapp.io/shareFromPVC: namespacel/pvcl
name: pvc2
namespace: namespace2

spec:
accessModes:

- ReadWriteMany
storageClassName: trident-csi
resources:

requests:

storage: 100Gi

@ The size of the destination PVC must be less than or equal than the source PVC.

Results

Astra Trident reads the shareFromPVC annotation on the destination PVC and creates the destination PV as a
subordinate volume with no storage resource of its own that points to the source PV and shares the source PV
storage resource. The destination PVC and PV appear bound as normal.

Delete a shared volume

You can delete a volume that is shared across multiple namespaces. Astra Trident will remove access to the
volume on the source namespace and maintain access for other namespaces that share the volume. When all
namespaces that reference the volume are removed, Astra Trident deletes the volume.

Use tridentctl get to query subordinate volumes

Using the tridentctl utility, you can run the get command to get subordinate volumes. For more
information, refer to tridentctl commands and options.

145

https://docs.netapp.com/us-en/trident-2301/trident-reference/tridentctl.html
https://docs.netapp.com/us-en/trident-2301/trident-reference/tridentctl.html

Usage:
tridentctl get [option]

Flags:

* *-h, --help: Help for volumes.
* —-parentOfSubordinate string: Limit query to subordinate source volume.

* ——subordinateOf string: Limit query to subordinates of volume.

Limitations

 Astra Trident cannot prevent destination namespaces from writing to the shared volume. You should use
file locking or other processes to prevent overwriting shared volume data.

* You cannot revoke access to the source PVC by removing the shareToNamespace or
shareFromNamespace annotations or deleting the TridentvVolumeReference CR. To revoke access,
you must delete the subordinate PVC.

» Snapshots, clones, and mirroring are not possible on subordinate volumes.

For more information
To learn more about cross-namespace volume access:

+ Visit Sharing volumes between namespaces: Say hello to cross-namespace volume access.

* Watch the demo on NetAppTV.

Monitor Astra Trident

Astra Trident provides a set of Prometheus metrics endpoints that you can use to monitor Astra Trident’s
performance.

The metrics provided by Astra Trident enable you to do the following:
» Keep tabs on Astra Trident’s health and configuration. You can examine how successful operations are and

if it can communicate with the backends as expected.

» Examine backend usage information and understand how many volumes are provisioned on a backend
and the amount of space consumed, and so on.

* Maintain a mapping of the amount of volumes provisioned on available backends.

» Track performance. You can take a look at how long it takes for Astra Trident to communicate to backends
and perform operations.

@ By default, Trident’'s metrics are exposed on the target port 8001 at the /metrics endpoint.
These metrics are enabled by default when Trident is installed.

What you’ll need
* A Kubernetes cluster with Astra Trident installed.

* A Prometheus instance. This can be a containerized Prometheus deployment or you can choose to run

146

https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products
https://github.com/prometheus-operator/prometheus-operator

Prometheus as a native application.

Step 1: Define a Prometheus target

You should define a Prometheus target to gather the metrics and obtain information about the backends Astra
Trident manages, the volumes it creates, and so on. This blog explains how you can use Prometheus and
Grafana with Astra Trident to retrieve metrics. The blog explains how you can run Prometheus as an operator
in your Kubernetes cluster and the creation of a ServiceMonitor to obtain Astra Trident’s metrics.

Step 2: Create a Prometheus ServiceMonitor

To consume the Trident metrics, you should create a Prometheus ServiceMonitor that watches the trident-
csi service and listens on the metrics port. A sample ServiceMonitor looks like this:

apiVersion: monitoring.coreos.com/v1l
kind: ServiceMonitor
metadata:

name: trident-sm

namespace: monitoring

labels:

release: prom-operator

spec:
jobLabel: trident
selector:
matchLabels:

app: controller.csi.trident.netapp.io
namespaceSelector:
matchNames:
- trident
endpoints:
- port: metrics
interval: 15s

This ServiceMonitor definition retrieves metrics returned by the trident-csi service and specifically looks
for the metrics endpoint of the service. As a result, Prometheus is now configured to understand Astra
Trident’s

metrics.

In addition to metrics available directly from Astra Trident, kubelet exposes many kubelet volume * metrics

via it's own metrics endpoint. Kubelet can provide information about the volumes that are attached, and pods
and other internal operations it handles. See here.

Step 3: Query Trident metrics with PromQL

PromQL is good for creating expressions that return time-series or tabular data.

Here are some PromQL queries that you can use:

147

https://prometheus.io/download/
https://netapp.io/2020/02/20/prometheus-and-trident/
https://kubernetes.io/docs/concepts/cluster-administration/monitoring/

Get Trident health information

* Percentage of HTTP 2XX responses from Astra Trident

(sum (trident rest ops seconds_ total count{status code=~"2.."} OR on()
vector (0)) / sum (trident rest ops seconds total count)) * 100

* Percentage of REST responses from Astra Trident via status code

(sum (trident rest ops seconds total count) by (status code) / scalar
(sum (trident rest ops seconds total count))) * 100

« Average duration in ms of operations performed by Astra Trident

sum by (operation)

(trident operation duration milliseconds sum{success="true"}) / sum by
(operation)

(trident operation duration milliseconds count{success="true"})

Get Astra Trident usage information

* Average volume size
trident volume allocated bytes/trident volume count
» Total volume space provisioned by each backend

sum (trident volume allocated bytes) by (backend uuid)

Get individual volume usage

@ This is enabled only if kubelet metrics are also gathered.

* Percentage of used space for each volume

kubelet volume stats used bytes / kubelet volume stats capacity bytes *
100

Learn about Astra Trident AutoSupport telemetry

By default, Astra Trident sends Prometheus metrics and basic backend information to NetApp on a daily
cadence.

148

* To stop Astra Trident from sending Prometheus metrics and basic backend information to NetApp, pass the
--silence-autosupport flag during Astra Trident installation.

* Astra Trident can also send container logs to NetApp Support on-demand via tridentctl send
autosupport. You will need to trigger Astra Trident to upload it's logs. Before you submit logs, you should
accept NetApp’s
privacy policy.

* Unless specified, Astra Trident fetches the logs from the past 24 hours.

* You can specify the log retention time frame with the --since flag. For example: tridentctl send
autosupport --since=1h. This information is collected and sent via a trident-autosupport
container
that is installed alongside Astra Trident. You can obtain the container image at Trident AutoSupport.

 Trident AutoSupport does not gather or transmit Personally Identifiable Information (PIl) or Personal
Information. It comes with a EULA that is not applicable to the Trident container image itself. You can learn
more about NetApp’s commitment to data security and trust here.

An example payload sent by Astra Trident looks like this:

items:
- backendUUID: ff3852el-18a5-4df4-b2d3-£f59£829627ed
protocol: file
config:
version: 1
storageDriverName: ontap-nas
debug: false
debugTraceFlags:
disableDelete: false
serialNumbers:
- nwkvzfanek SN
limitVolumeSize: "'
state: online

online: true

* The AutoSupport messages are sent to NetApp’s AutoSupport endpoint. If you are using a private registry
to store container images, you can use the --image-registry flag.

* You can also configure proxy URLs by generating the installation YAML files. This can be done by using
tridentctl install --generate-custom-yaml to create the YAML files and adding the --proxy
-url argument for the trident-autosupport containerin trident-deployment.yaml.

Disable Astra Trident metrics
To disable metrics from being reported, you should generate custom YAMLs (using the --generate-custom

-yaml flag) and edit them to remove the --metrics flag from being invoked for the trident-main
container.

149

https://www.netapp.com/company/legal/privacy-policy/
https://hub.docker.com/r/netapp/trident-autosupport
https://www.netapp.com/us/media/enduser-license-agreement-worldwide.pdf
https://www.netapp.com/pdf.html?item=/media/14114-enduserlicenseagreementworldwidepdf.pdf

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

150

http://www.netapp.com/TM

	Use Astra Trident : Astra Trident
	Table of Contents
	Use Astra Trident
	Prepare the worker node
	Selecting the right tools
	Node service discovery
	NFS volumes
	iSCSI volumes

	Configure backends
	Azure NetApp Files
	Configure a Cloud Volumes Service for Google Cloud backend
	Configure a NetApp HCI or SolidFire backend
	Configure a backend with ONTAP SAN drivers
	Configure an ONTAP NAS backend
	Amazon FSx for NetApp ONTAP

	Create backends with kubectl
	TridentBackendConfig
	Steps overview
	Step 1: Create a Kubernetes Secret
	Step 2: Create the TridentBackendConfig CR
	Step 3: Verify the status of the TridentBackendConfig CR
	(Optional) Step 4: Get more details

	Perform backend management with kubectl
	Delete a backend
	View the existing backends
	Update a backend

	Perform backend management with tridentctl
	Create a backend
	Delete a backend
	View the existing backends
	Update a backend
	Identify the storage classes that use a backend

	Move between backend management options
	Manage tridentctl backends using TridentBackendConfig
	Manage TridentBackendConfig backends using tridentctl

	Manage storage classes
	Design a storage class
	Create a storage class
	Delete a storage class
	View the existing storage classes
	Set a default storage class
	Identify the backend for a storage class

	Perform volume operations
	Use CSI Topology
	Work with snapshots
	Expand volumes
	Import volumes

	Share an NFS volume across namespaces
	Features
	Quick start
	Configure the source and destination namespaces
	Delete a shared volume
	Use tridentctl get to query subordinate volumes
	Limitations
	For more information

	Monitor Astra Trident
	Step 1: Define a Prometheus target
	Step 2: Create a Prometheus ServiceMonitor
	Step 3: Query Trident metrics with PromQL
	Learn about Astra Trident AutoSupport telemetry
	Disable Astra Trident metrics

