Astra Trident 23.04 documentation
Astra Trident

NetApp
November 14, 2025

This PDF was generated from https://docs.netapp.com/us-en/trident-2304/index.html on November 14,
2025. Always check docs.netapp.com for the latest.

Table of Contents

Astra Trident 23.04 documentation
Release notes

What's new
What's new in 23.04
Changes in 23.01.1
Changes in 23.01
Changes in 22.10
Changes in 22.07
Changes in 22.04
Changes in 22.01.1
Changes in 22.01.0
Changes in 21.10.1
Changes in 21.10.0
Known issues
Find more information

Earlier versions of documentation

Concepts

Learn about Astra Trident
Overview
Supported Kubernetes cluster architectures
What is Astra?
For more information
ONTARP drivers
Astra Control supported drivers
Astra Trident storage drivers for ONTAP
Provisioning
Storage class association
Volume creation
Volume snapshots
Learn about volume snapshot creation
Virtual pools
Learn about virtual pools
Volume access groups
Learn about volume access groups

Get started

Try it out
Learn about the Test Drive

Requirements
Critical information about Astra Trident 23.01
Supported frontends (orchestrators)
Supported backends (storage)
Feature requirements
Tested host operating systems

© 0O N N NO O OO b W WNDNMNDN -

RS N N N N N N VNN N N — N U N NSO N U\ U \ U, R, N, N N, N N N L N L .
© 0 O N~NSNNNNOOOORADNMDOWWNNMNMDS IO IO 3Oo

Host configuration
Storage system configuration
Astra Trident ports
Container images and corresponding Kubernetes versions
Install Astra Trident
Learn about Astra Trident installation
Install using Trident operator
Install using tridentctl
What's next?
Step 1: Create a backend
Step 2: Create a storage class
Step 3: Provision your first volume
Step 4: Mount the volumes in a pod
Manage Astra Trident
Upgrade Astra Trident
Upgrade Astra Trident
Upgrade with the operator
Upgrade with tridentctl
Uninstall Astra Trident
Uninstall by using Helm
Uninstall by using the Trident operator
Uninstall by using tridentctl
Downgrade Astra Trident
When to downgrade
When not to downgrade
Downgrade process when Astra Trident is installed by using the operator
Downgrade process when Astra Trident is installed by using tridentctl
Use Astra Trident
Prepare the worker node
Selecting the right tools
Node service discovery
NFS volumes
iISCSI volumes
Configure backends
Configure backends
Azure NetApp Files
Configure a Cloud Volumes Service for Google Cloud backend
Configure a NetApp HCI or SolidFire backend
ONTAP SAN drivers
ONTAP NAS drivers
Amazon FSx for NetApp ONTAP
Create backends with kubect1
TridentBackendConfig
Steps overview
Step 1: Create a Kubernetes Secret

19
19
19
19
22
22
26
50
55
55
56
58
59
61
61
61
63
71

74
74
75
76

76
76
76
76
78
80
80
80
80
80
81
84
84
85
96
112
119
140
169
180

180

182
182

Step 2: Create the TridentBackendConfig CR
Step 3: Verify the status of the TridentBackendConfig CR
(Optional) Step 4: Get more details
Perform backend management with kubectl
Delete a backend
View the existing backends
Update a backend
Perform backend management with tridentctl
Create a backend
Delete a backend
View the existing backends
Update a backend
Identify the storage classes that use a backend
Move between backend management options
Options for managing backends
Manage tridentctl backends using TridentBackendConfig
Manage TridentBackendConfig backends using tridentctl
Manage storage classes
Design a storage class
Create a storage class
Delete a storage class
View the existing storage classes
Set a default storage class
Identify the backend for a storage class
Perform volume operations
Use CSI Topology
Work with snapshots
Expand volumes
Import volumes
Share an NFS volume across namespaces
Features
Quick start
Configure the source and destination namespaces
Delete a shared volume
Use tridentctl get to query subordinate volumes
Limitations
For more information
Monitor Astra Trident
Overview
Step 1: Define a Prometheus target
Step 2: Create a Prometheus ServiceMonitor
Step 3: Query Trident metrics with PromQL
Learn about Astra Trident AutoSupport telemetry
Disable Astra Trident metrics

184
184

185
187
187
187
187
188

188
188
189
189
189
189
189
190
194
196
196
196
196
197
197
198
198
198
205
209
216
224
224
225
226
227
227

228
228
228
228
229
229
229
231
231

Astra Trident for Docker 233

Prerequisites for deployment 233
Verify the requirements 233
Deploy Astra Trident 236
Docker managed plugin method (version 1.13/17.03 and later) 236
Traditional method (version 1.12 or earlier) 238
Start Astra Trident at system startup 239
Upgrade or uninstall Astra Trident 240
Upgrade 240
Uninstall 242
Work with volumes 242
Create a volume 242
Remove a volume 243
Clone a volume 243
Access externally created volumes 244
Driver-specific volume options 244
Collect logs 250
Collect logs for troubleshooting 250
General troubleshooting tips 250
Manage multiple Astra Trident instances 251
Steps for Docker managed plugin (version 1.13/17.03 or later) 251
Steps for traditional (version 1.12 or earlier) 251
Storage configuration options 252
Global configuration options 252
ONTAP configuration 253
Element software configuration 258
Known issues and limitations 260
Upgrading Trident Docker Volume Plugin to 20.10 and later from older versions results in upgrade
failure with the no such file or directory error. 260
Volume names must be a minimum of 2 characters in length. 261
Docker Swarm has certain behaviors that prevent Astra Trident from supporting it with every storage
and driver combination. 261
If a FlexGroup is being provisioned, ONTAP does not provision a second FlexGroup if the second
FlexGroup has one or more aggregates in common with the FlexGroup being provisioned. 261
Frequently asked questions 262
General questions 262
How frequently is Astra Trident released? 262
Does Astra Trident support all the features that are released in a particular version of Kubernetes? 262
Does Astra Trident have any dependencies on other NetApp products for its functioning? 262
How can | obtain complete Astra Trident configuration details? 262
Can | obtain metrics on how storage is provisioned by Astra Trident? 262
Does the user experience change when using Astra Trident as a CSl Provisioner? 262
Install and use Astra Trident on a Kubernetes cluster 262
What are the supported versions of etcd? 262

Does Astra Trident support an offline install from a private registry? 262

Can |l install Astra Trident be remotely? 263

Can | configure High Availability with Astra Trident? 263
Does Astra Trident need access to the kube-system namespace? 263
What are the roles and privileges used by Astra Trident? 263
Can | locally generate the exact manifest files Astra Trident uses for installation? 263
Can | share the same ONTAP backend SVM for two separate Astra Trident instances for two separate
Kubernetes clusters? 263
Is it possible to install Astra Trident under ContainerLinux (formerly CoreOS)? 263
Can | use Astra Trident with NetApp Cloud Volumes ONTAP? 263
Does Astra Trident work with Cloud Volumes Services? 263
Troubleshooting and support 264
Does NetApp support Astra Trident? 264
How do | raise a support case? 264
How do | generate a support log bundle? 264
What do | do if | need to raise a request for a new feature? 264
Where do | raise a defect? 264
What happens if | have quick question on Astra Trident that | need clarification on? Is there a
community or a forum? 264
My storage system’s password has changed and Astra Trident no longer works, how do | recover? 264
Astra Trident cannot find my Kubernetes node. How do | fix this? 264
If the Trident pod is destroyed, will | lose the data? 265
Upgrade Astra Trident 265
Can | upgrade from a older version directly to a newer version (skipping a few versions)? 265
Is it possible to downgrade Trident to a previous release? 265
Manage backends and volumes 265
Do | need to define both Management and Data LIFs in an ONTAP backend definition file? 265
Can Astra Trident configure CHAP for ONTAP backends? 265
How do | manage export policies with Astra Trident? 265
Can we specify a port in the DataLIF? 265
Can IPv6 addresses be used for the Management and Data LIFs? 266
Is it possible to update the Management LIF on the backend? 266
Is it possible to update the Data LIF on the backend? 266
Can | create multiple backends in Astra Trident for Kubernetes? 266
How does Astra Trident store backend credentials? 266
How does Astra Trident select a specific backend? 266
How do | ensure that Astra Trident will not provision from a specific backend? 266
If there are multiple backends of the same kind, how does Astra Trident select which backend to use? 266
Does Astra Trident support bi-directional CHAP with Element/SolidFire? 266
How does Astra Trident deploy Qtrees on an ONTAP volume? How many Qtrees can be deployed on
a single volume? 267
How can | set Unix permissions for volumes provisioned on ONTAP NAS? 267
How can | configure an explicit set of ONTAP NFS mount options while provisioning a volume? 267
How do | set the provisioned volumes to a specific export policy? 267
How do | set volume encryption through Astra Trident with ONTAP? 267

What is the best way to implement QoS for ONTAP through Astra Trident? 267

How do | specify thin or thick provisioning through Astra Trident?
How do | make sure that the volumes being used are not deleted even if | accidentally delete the
PVC?
Can | grow NFS PVCs that were created by Astra Trident?
If I have a volume that was created outside Astra Trident can | import it into Astra Trident?
Can | import a volume while it is in SnapMirror Data Protection (DP) or offline mode?
Can | expand iSCSI PVCs that were created by Astra Trident?
How is resource quota translated to a NetApp cluster?
Can | create Volume Snapshots using Astra Trident?
What are the drivers that support Astra Trident volume snapshots?
How do | take a snapshot backup of a volume provisioned by Astra Trident with ONTAP?
Can | set a snapshot reserve percentage for a volume provisioned through Astra Trident?
Can | directly access the volume snapshot directory and copy files?
Can | set up SnapMirror for volumes through Astra Trident?
How do | restore Persistent Volumes to a specific ONTAP snapshot?
Can Trident provision volumes on SVMs that have a Load-Sharing Mirror configured?
How can | separate out storage class usage for each customer/tenant?
Support
Troubleshooting
General troubleshooting
Troubleshooting an unsuccessful Trident deployment using the operator
Troubleshooting an unsuccessful Trident deployment using tridentctl
Best practices and recommendations
Deployment
Deploy to a dedicated namespace
Use quotas and range limits to control storage consumption
Storage configuration
Platform overview
ONTAP and Cloud Volumes ONTAP best practices
SolidFire best practices
Where to find more information?
Integrate Astra Trident
Driver selection and deployment
Storage class design
Virtual pool design
Volume operations
Deploy OpenShift services
Metrics service
Data protection and disaster recovery
Astra Trident replication and recovery
SVM replication and recovery
Volume replication and recovery
Snapshot data protection
Astra Control Center application replication
Security

267

267
268
268
268
268
268
268
268
268
269
269
269
269
269
269
270
271
271
272
274

276
276
276
276
276
276
276
281
282
283
283
286
287
288
290
291
293
293
293
294
295
295
295

Security 295

Linux Unified Key Setup (LUKS) 296
Reference 302
Astra Trident ports 302
Astra Trident ports 302
Astra Trident REST API 302
When to use the REST API 302
Using REST API 302
Command-line options 303
Logging 303
Kubernetes 303
Docker 303
REST 303
NetApp products integrated with Kubernetes 304
Astra 304
ONTAP 304
Cloud Volumes ONTAP 304
Amazon FSx for NetApp ONTAP 304
Element software 305
NetApp HCI 305
Azure NetApp Files 305
Cloud Volumes Service for Google Cloud 305
Kubernetes and Trident objects 305
How do the objects interact with one another? 305
Kubernetes PersistentVolumeClaim objects 306
Kubernetes PersistentVolume objects 308
Kubernetes StorageClass objects 308
Kubernetes VolumeSnapshotClass objects 311
Kubernetes volumeSnapshot objects 312
Kubernetes VolumeSnapshotContent objects 312
Kubernetes CustomResourceDefinition objects 313
Trident StorageClass objects 313
Trident backend objects 313
Trident StoragePool objects 314
Trident Volume objects 314
Trident Snapshot objects 315
Astra Trident ResourceQuota object 316
tridentctl commands and options 317
Available commands and options 317
create 318
delete 319
get 319

images 319

import volume
install

logs

send
uninstall
update
upgrade

version

Pod Security Standards (PSS) and Security Context Constraints (SCC)
Required Kubernetes Security Context and Related Fields
Pod Security Standards (PSS)
Pod Security Policies (PSP)
Security Context Constraints (SCC)

Legal notices

Copyright

Trademarks

Patents

Privacy policy

Open source

320
320
321
321
321
322
322
322

322
323
323
324
325
327
327
327
327
327
327

Astra Trident 23.04 documentation

Release notes

What’s new

Release Notes provide information about new features, enhancements, and bug fixes in
the latest version of Astra Trident.

The tridentctl binary for Linux that is provided in the installer zip file is the tested and
supported version. Be aware that the macos binary provided in the /extras part of the zip file
is not tested or supported.

What’s new in 23.04

Force volume detach for ONTAP-SAN-* volumes is supported only with Kubernetes versions
with the Non-Graceful Node Shutdown feature gate enabled. Force detach must be enabled at
install time using the -—enable-force-detach Trident installer flag.

Fixes

* Fixed Trident Operator to use IPv6 localhost for installation when specified in spec.

* Fixed Trident Operator cluster role permissions to be in sync with the bundle permissions (Issue #799).
* Fixed issue with attaching raw block volume on multiple nodes in RWX mode.

* Fixed FlexGroup cloning support and volume import for SMB volumes.

* Fixed issue where Trident controller could not shut down immediately (Issue #811).

» Added fix to list all igroup names associated with a specified LUN provisioned with ontap-san-* drivers.
» Added a fix to allow external processes to run to completion.

* Fixed compilation error for s390 architecture (Issue #537).

* Fixed incorrect logging level during volume mount operations (Issue #781).

* Fixed potential type assertion error (Issue #802).

Enhancements

* Kubernetes:
o Added support for Kubernetes 1.27.
> Added support for importing LUKS volumes.
> Added support for ReadWriteOncePod PVC access mode.

> Added support for force detach for ONTAP-SAN-* volumes during Non-Graceful Node Shutdown
scenarios.

o All ONTAP-SAN-* volumes will now use per-node igroups. LUNs will only be mapped to igroups while
actively published to those nodes to improve our security posture. Existing volumes will be
opportunistically switched to the new igroup scheme when Trident determines it is safe to do so without
impacting active workloads (Issue #758).

° Improved Trident security by cleaning up unused Trident-managed igroups from ONTAP-SAN-*
backends.

https://github.com/NetApp/trident/issues/799
https://github.com/NetApp/trident/issues/811
https://github.com/NetApp/trident/issues/537
https://github.com/NetApp/trident/issues/781
https://github.com/NetApp/trident/issues/802
https://github.com/NetApp/trident/issues/758

* Added support for SMB volumes with Amazon FSx to the ontap-nas-economy and ontap-nas-flexgroup
storage drivers.

» Added support for SMB shares with the ontap-nas, ontap-nas-economy and ontap-nas-flexgroup storage
drivers.

» Added support for arm64 nodes (Issue #732).
* Improved Trident shutdown procedure by deactivating API servers first (Issue #811).

» Added cross-platform build support for Windows and arm64 hosts to Makefile; see BUILD.md.

Deprecations

Kubernetes: Backend-scoped igroups will no longer be created when configuring ontap-san and ontap-san-
economy drivers (Issue #758).

Changes in 23.01.1

Fixes

 Fixed Trident Operator to use IPv6 localhost for installation when specified in spec.

 Fixed Trident Operator cluster role permissions to be in sync with the bundle permissions Issue #799.
» Added a fix to allow external processes to run to completion.

 Fixed issue with attaching raw block volume on multiple nodes in RWX mode.

* Fixed FlexGroup cloning support and volume import for SMB volumes.

Changes in 23.01

@ Kubernetes 1.27 is now supported in Trident. Please upgrade Astra Trident prior to upgrading
Kubernetes.

Fixes

» Kubernetes: Added options to exclude Pod Security Policy creation to fix Trident installations via Helm
(Issues #783, #794).

Enhancements
Kubernetes
» Added support for Kubernetes 1.26.
* Improved overall Trident RBAC resource utilization (Issue #757).
» Added automation to detect and fix broken or stale iSCSI sessions on host nodes.
* Added support for expanding LUKS encrypted volumes.

» Kubernetes: Added credential rotation support for LUKS encrypted volumes.

Astra Trident
» Added support for SMB volumes with Amazon FSx for ONTAP to the ontap-nas storage driver.

» Added support for NTFS permissions when using SMB volumes.

« Added support for storage pools for GCP volumes with CVS service level.

https://github.com/NetApp/trident/issues/732
https://github.com/NetApp/trident/issues/811
https://github.com/NetApp/trident/issues/758
https://github.com/NetApp/trident/issues/799
https://github.com/NetApp/trident/issues/794
https://github.com/NetApp/trident/issues/757

« Added support for optional use of flexgroupAggregateList when creating FlexGroups with the ontap-nas-
flexgroup storage driver.

* Improved performance for the ontap-nas-economy storage driver when managing multiple FlexVols.
» Enabled dataLIF updates for all ONTAP NAS storage drivers.

* Updated the Trident Deployment and DaemonSet naming convention to reflect the host node OS.

Deprecations

* Kubernetes: Updated minimum supported Kubernetes to 1.21.

* Data LIFs should no longer be specified when configuring ontap-san or ontap-san—-economy drivers.

Changes in 22.10

You must read the following critical information before upgrading to Astra Trident 22.10.

Critical information about Astra Trident 22.10

* Kubernetes 1.25 is now supported in Trident. You must upgrade Astra Trident to 22.10 prior
to upgrading to Kubernetes 1.25.

« Astra Trident now strictly enforces the use of multipathing configuration in SAN
@ environments, with a recommended value of find multipaths: no in multipath.conf file.

Use of non-multipathing configuration or use of find multipaths: yes or
find multipaths: smart value in multipath.conf file will result in mount failures. Trident
has recommended the use of find multipaths: no since the 21.07 release.

Fixes

* Fixed issue specific to ONTAP backend created using credentials field failing to come online during
22.07.0 upgrade (Issue #759).

* Docker: Fixed an issue causing the Docker volume plugin to fail to start in some environments (Issue #548
and Issue #760).

» Fixed SLM issue specific to ONTAP SAN backends to ensure only subset of data LIFs belonging to
reporting nodes are published.

* Fixed performance issue where unnecessary scans for iISCSI LUNs happened when attaching a volume.

* Removed granular retries within the Astra Trident iSCSI workflow to fail fast and reduce external retry
intervals.

* Fixed issue where an error was returned when flushing an iSCSI device when the corresponding multipath
device was already flushed.

Enhancements

* Kubernetes:

> Added support for Kubernetes 1.25. You must upgrade Astra Trident to 22.10 prior to upgrading to
Kubernetes 1.25.

o Added a separate ServiceAccount, ClusterRole, and ClusterRoleBinding for the Trident Deployment
and DaemonSet to allow future permissions enhancements.

https://github.com/NetApp/trident/issues/759
https://github.com/NetApp/trident/issues/548
https://github.com/NetApp/trident/issues/760

o Added support for cross-namespace volume sharing.
* All Trident ontap-* storage drivers now work with the ONTAP REST API.

* Added new operator yaml (bundle post 1 25.yaml) withouta PodSecurityPolicy to support
Kubernetes 1.25.

* Added support for LUKS-encrypted volumes for ontap-san and ontap-san-economy storage drivers.
» Added support for Windows Server 2019 nodes.
* Added support for SMB volumes on Windows nodes through the azure-netapp-files storage driver.

» Automatic MetroCluster switchover detection for ONTAP drivers is now generally available.

Deprecations
* Kubernetes: Updated minimum supported Kubernetes to 1.20.
* Removed Astra Data Store (ADS) driver.

* Removed support for yes and smart options for find multipaths when configuring worker node
multipathing for iSCSI.

Changes in 22.07

Fixes

Kubernetes
* Fixed issue to handle boolean and number values for node selector when configuring Trident with Helm or
the Trident Operator. (GitHub issue #700)
* Fixed issue in handling errors from non-CHAP path, so that kubelet will retry if it fails. GitHub issue #736)

Enhancements

* Transition from k8s.gcr.io to registry.k8s.io as default registry for CSl images

» ONTAP-SAN volumes will now use per-node igroups and only map LUNs to igroups while actively
published to those nodes to improve our security posture. Existing volumes will be opportunistically
switched to the new igroup scheme when Astra Trident determines it is safe to do so without impacting
active workloads.

* Included a ResourceQuota with Trident installations to ensure Trident DaemonSet is scheduled when
PriorityClass consumption is limited by default.

» Added support for Network Features to ANF driver. (GitHub issue #717)

» Added tech preview automatic MetroCluster switchover detection to ONTAP drivers. (GitHub issue #228)

Deprecations

* Kubernetes: Updated minimum supported Kubernetes to 1.19.

» Backend config no longer allows multiple authentication types in single config.
Removals

* AWS CVS driver (deprecated since 22.04) has been removed.

https://docs.netapp.com/us-en/trident/trident-use/volume-share.html
https://docs.netapp.com/us-en/trident/trident-reco/security-luks.html
https://docs.netapp.com/us-en/trident/trident-use/anf.html
https://github.com/NetApp/trident/issues/700
https://github.com/NetApp/trident/issues/736
https://github.com/NetApp/trident/issues/717
https://github.com/NetApp/trident/issues/228

* Kubernetes

o Removed unnecessary SYS_ADMIN capability from node pods.
° Reduces nodeprep down to simple host info and active service discovery to do a best-effort
confirmation that NFS/iSCSI services are available on worker nodes.

Documentation

A new Pod Security Standards (PSS) section has been added detailing permissions enabled by Astra Trident
on installation.

Changes in 22.04

NetApp is continually improving and enhancing its products and services. Here are some of the latest features
in Astra Trident. For previous releases, see Earlier versions of documentation.

@ If you are upgrading from any previous Trident release and use Azure NetApp Files, the
location config parameter is now a mandatory, singleton field.

Fixes

* Improved parsing of iSCSI initiator names. (GitHub issue #681)

* Fixed issue where CSI storage class parameters weren’t allowed. (GitHub issue #598)
* Fixed duplicate key declaration in Trident CRD. (GitHub issue #671)

* Fixed inaccurate CS| Snapshot logs. (GitHub issue #629))

* Fixed issue with unpublishing volumes on deleted nodes. (GitHub issue #691)

« Added handling of filesystem inconsistencies on block devices. (GitHub issue #656)

* Fixed issue pulling auto-support images when setting the imageRegistry flag during installation. (GitHub
issue #715)

* Fixed issue where ANF driver failed to clone a volume with multiple export rules.

Enhancements

* Inbound connections to Trident’s secure endpoints now require a minimum of TLS 1.3. (GitHub issue #698)
» Trident now adds HSTS headers to responses from its secure endpoints.
« Trident now attempts to enable the Azure NetApp Files unix permissions feature automatically.

» Kubernetes: Trident daemonset now runs at system-node-critical priority class. (GitHub issue #694)

Removals

E-Series driver (disabled since 20.07) has been removed.

Changes in 22.01.1

Fixes

* Fixed issue with unpublishing volumes on deleted nodes. (GitHub issue #691)

* Fixed panic when accessing nil fields for aggregate space in ONTAP API responses.

https://docs.netapp.com/us-en/trident/trident-reference/pod-security.html
https://docs.netapp.com/us-en/trident/earlier-versions.html
https://github.com/NetApp/trident/issues/681
https://github.com/NetApp/trident/issues/598
https://github.com/NetApp/trident/issues/671
https://github.com/NetApp/trident/issues/629
https://github.com/NetApp/trident/issues/691
https://github.com/NetApp/trident/issues/656
https://github.com/NetApp/trident/issues/715
https://github.com/NetApp/trident/issues/715
https://github.com/NetApp/trident/issues/698
https://github.com/NetApp/trident/issues/694
https://github.com/NetApp/trident/issues/691

Changes in 22.01.0

Fixes

* Kubernetes: Increase node registration backoff retry time for large clusters.
* Fixed issue where azure-netapp-files driver could be confused by multiple resources with the same name.
* ONTAP SAN IPv6 Data LIFs now work if specified with brackets.

* Fixed issue where attempting to import an already imported volume returns EOF leaving PVC in pending
state. (GitHub issue #489)

* Fixed issue when Astra Trident performance slows down when > 32 snapshots are created on a SolidFire
volume.

* Replaced SHA-1 with SHA-256 in SSL certificate creation.
» Fixed ANF driver to allow duplicate resource names and limit operations to a single location.

» Fixed ANF driver to allow duplicate resource names and limit operations to a single location.

Enhancements

* Kubernetes enhancements:
o Added support for Kubernetes 1.23.

> Add scheduling options for Trident pods when installed via Trident Operator or Helm. (GitHub issue
#651)

* Allow cross-region volumes in GCP driver. (GitHub issue #633)
» Added support for 'unixPermissions' option to ANF volumes. (GitHub issue #666)
Deprecations

Trident REST interface can listen and serve only at 127.0.0.1 or [::1] addresses

Changes in 21.10.1

The v21.10.0 release has an issue that can put the Trident controller into a CrashLoopBackOff
@ state when a node is removed and then added back to the Kubernetes cluster. This issue is
fixed in v21.10.1 (GitHub issue 669).

Fixes

* Fixed potential race condition when importing a volume on a GCP CVS backend resulting in failure to
import.

* Fixed an issue that can put the Trident controller into a CrashLoopBackOff state when a node is removed
and then added back to the Kubernetes cluster (GitHub issue 669).

* Fixed issue where SVMs were no longer discovered if no SVM name was specified (GitHub issue 612).

Changes in 21.10.0

Fixes

* Fixed issue where clones of XFS volumes could not be mounted on the same node as the source volume

https://github.com/NetApp/trident/issues/489
https://github.com/NetApp/trident/issues/651
https://github.com/NetApp/trident/issues/651
https://github.com/NetApp/trident/issues/633
https://github.com/NetApp/trident/issues/666

(GitHub issue 514).
* Fixed issue where Astra Trident logged a fatal error on shutdown (GitHub issue 597).
* Kubernetes-related fixes:

° Return a volume’s used space as the minimum restoreSize when creating snapshots with ontap-nas
and ontap-nas-flexgroup drivers (GitHub issue 645).

° Fixed issue where Failed to expand filesystem error was logged after volume resize (GitHub
issue 560).

° Fixed issue where a pod could get stuck in Terminating state (GitHub issue 572).

° Fixed the case where an ontap-san-economy FlexVol might be full of snapshot LUNs (GitHub issue
533).

> Fixed custom YAML installer issue with different image (GitHub issue 613).
> Fixed snapshot size calculation (GitHub issue 611).

> Fixed issue where all Astra Trident installers could identify plain Kubernetes as OpenShift (GitHub
issue 639).

o Fixed the Trident operator to stop reconciliation if the Kubernetes API server is unreachable (GitHub
issue 599).

Enhancements

* Added support for unixPermissions option to GCP-CVS Performance volumes.
» Added support for scale-optimized CVS volumes in GCP in the range 600 GiB to 1 TiB.
» Kubernetes-related enhancements:
o Added support for Kubernetes 1.22.
o Enabled the Trident operator and Helm chart to work with Kubernetes 1.22 (GitHub issue 628).

° Added operator image to tridentctl images command (GitHub issue 570).

Experimental enhancements

* Added support for volume replication in the ontap-san driver.

* Added tech preview REST support for the ontap-nas-flexgroup, ontap-san, and ontap-nas-
economy drivers.

Known issues

Known issues identify problems that might prevent you from using the product successfully.

* When upgrading a Kubernetes cluster from 1.24 to 1.25 or later that has Astra Trident installed, you must
update values.yaml to set excludePodSecurityPolicy to true or add --set
excludePodSecurityPolicy=true tothe helm upgrade command before you can upgrade the
cluster.

* Astra Trident now enforces a blank £sType (£sType="") for volumes that do not have the fsType
specified in their StorageClass. When working with Kubernetes 1.17 or later, Trident supports providing a
blank £sType for NFS volumes. For iSCSI volumes, you are required to set the £sType on your
StorageClass when enforcing an £sGroup using a Security Context.

When using a backend across multiple Astra Trident instances, each backend configuration file should
have a different storagePrefix value for ONTAP backends or use a different TenantName for SolidFire
backends. Astra Trident cannot detect volumes that other instances of Astra Trident have created.
Attempting to create an existing volume on either ONTAP or SolidFire backends succeeds, because Astra
Trident treats volume creation as an idempotent operation. If storagePrefix or TenantName do not
differ, there might be name collisions for volumes created on the same backend.

When installing Astra Trident (using tridentctl or the Trident Operator) and using tridentctl to
manage Astra Trident, you should ensure the KUBECONFIG environment variable is set. This is necessary
to indicate the Kubernetes cluster that tridentctl should work against. When working with multiple
Kubernetes environments, you should ensure that the KUBECONFIG file is sourced accurately.

To perform online space reclamation for iISCSI PVs, the underlying OS on the worker node might require
mount options to be passed to the volume. This is true for RHEL/RedHat CoreOS instances, which require
the discard mount option; ensure that the discard mountOption is included in your StorageClass to
support online block discard.

If you have more than one instance of Astra Trident per Kubernetes cluster, Astra Trident cannot
communicate with other instances and cannot discover other volumes that they have created, which leads
to unexpected and incorrect behavior if more than one instance runs within a cluster. There should be only
one instance of Astra Trident per Kubernetes cluster.

If Astra Trident-based StorageClass objects are deleted from Kubernetes while Astra Trident is offline,
Astra Trident does not remove the corresponding storage classes from its database when it comes back
online. You should delete these storage classes using tridentctl or the REST API.

If a user deletes a PV provisioned by Astra Trident before deleting the corresponding PVC, Astra Trident
does not automatically delete the backing volume. You should remove the volume via tridentctl or the
REST API.

ONTAP cannot concurrently provision more than one FlexGroup at a time unless the set of aggregates are
unigque to each provisioning request.

When using Astra Trident over IPv6, you should specify managementLIF and dataLIF in the backend
definition within square brackets. For example, [£d20:8ble:b258:2000:f816:3eff:feec:0].

@ You cannot specify dataLIF on an ONTAP SAN backend. Astra Trident discovers all
available iISCSI LIFs and uses them to establish the multipath session.

If using the solidfire-san driver with OpenShift 4.5, ensure that the underlying worker nodes use MD5
as the CHAP authentication algorithm. Secure FIPS-compliant CHAP algorithms SHA1, SHA-256, and
SHAS3-256 are available with Element 12.7.

Find more information

Astra Trident GitHub
Astra Trident blogs

Earlier versions of documentation

If you aren’t running Astra Trident 23.04, the documentation for previous releases is
available based on the Astra Trident Release and Support Lifecycle.

Astra Trident 23.01

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://github.com/NetApp/trident
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://mysupport.netapp.com/site/info/trident-support
https://docs.netapp.com/us-en/trident-2301/index.html

* Astra Trident 22.10
 Astra Trident 22.07
 Astra Trident 22.04
+ Astra Trident 22.01

10

https://docs.netapp.com/us-en/trident-2210/index.html
https://docs.netapp.com/us-en/trident-2207/index.html
https://docs.netapp.com/us-en/trident-2204/index.html
https://docs.netapp.com/us-en/trident-2201/index.html

Concepts

Learn about Astra Trident

Astra Trident is a fully supported open source project maintained by NetApp as part of the
Astra product family. It has been designed to help you meet your containerized
applications’ persistence demands using industry-standard interfaces, such as the
Container Storage Interface (CSl).

Overview

Astra Trident deploys in Kubernetes clusters as pods and provides dynamic storage orchestration services for
your Kubernetes workloads. It enables your containerized applications to quickly and easily consume
persistent storage from NetApp’s broad portfolio that includes ONTAP (AFF/FAS/Select/Cloud/Amazon FSx for
NetApp ONTAP), Element software (NetApp HCI/SolidFire), as well as the Azure NetApp Files service, and
Cloud Volumes Service on Google Cloud.

Astra Trident is also a foundational technology for NetApp’s Astra, which addresses your data protection,

disaster recovery, portability, and migration use cases for Kubernetes workloads leveraging NetApp’s industry-
leading data management technology for snapshots, backups, replication, and cloning.

Supported Kubernetes cluster architectures

Astra Trident is supported with the following Kubernetes architectures:

Kubernetes cluster architectures Supported Default install
Single master, compute Yes Yes
Multiple master, compute Yes Yes
Master, etcd, compute Yes Yes
Master, infrastructure, compute Yes Yes

What is Astra?

Astra makes it easier for enterprises to manage, protect, and move their data-rich containerized workloads
running on Kubernetes within and across public clouds and on-premises. Astra provisions and provides
persistent container storage using Astra Trident from NetApp’s proven and expansive storage portfolio in the
public cloud and on-premises. It also offers a rich set of advanced application-aware data management
functionality, such as snapshot, backup and restore, activity logs, and active cloning for data protection,
disaster/data recovery, data audit, and migration use-cases for Kubernetes workloads.

You can sign up for a free trial on the Astra page.

For more information

* NetApp Astra product family

11

https://docs.netapp.com/us-en/astra-family/intro-family.html
https://docs.netapp.com/us-en/astra-family/intro-family.html

« Astra Control Service documentation
« Astra Control Center documentation

< Astra AP| documentation

ONTAP drivers

Astra Trident provides five unigue ONTAP storage drivers for communicating with ONTAP
clusters.

Astra Control supported drivers

Astra Control provides seamless protection, disaster recovery, and mobility (moving volumes between
Kubernetes clusters) for volumes created with the ontap-nas, ontap-nas-flexgroup, and ontap-san
drivers. See Astra Control replication prerequisites for details.

* You must use ontap-nas for production workloads that require data protection, disaster
recovery, and mobility.

* Use ontap-san—-economy when anticipated volume usage is expected to be much higher
@ than what ONTAP supports.

* Use ontap-nas—-economy only where anticipated volume usage is expected to be much
higher than what ONTAP supports, and the ontap-san-economy driver cannot be used.

* Do not use use ontap-nas—-economny if you anticipate the need for data protection,
disaster recovery, or mobility.

Astra Trident storage drivers for ONTAP
Astra Trident provides the following storage drivers to communicate with the ONTAP cluster. Supported access

modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWrite OncePod
(RWOP).

Driver Protocol volumeMod Access modes File systems supported
e supported
ontap-nas NFS Filesystem RWO, ROX, RWX, RWOP " nfs, smb
SMB
ontap-nas-economy NFS Filesystem RWO, ROX, RWX, RWOP ™, nfs, smb
SMB
ontap-nas-flexgroup NFS Filesystem RWO, ROX, RWX, RWOP ", nfs, smb
SMB
ontap-san iISCSI Block RWO, ROX, RWX, RWOP No filesystem; raw block
device

12

https://docs.netapp.com/us-en/astra/get-started/intro.html
https://docs.netapp.com/us-en/astra-control-center/index.html
https://docs.netapp.com/us-en/astra-automation/get-started/before_get_started.html
https://docs.netapp.com/us-en/astra-control-center/use/replicate_snapmirror.html#replication-prerequisites

Driver Protocol volumeMod Access modes File systems supported
e supported

ontap-san iSCSI Filesystem RWO, ROX, RWOP xfs, ext3, extd

RWX is not available in
Filesystem volume mode.

ontap-san-economy iISCSI Block RWO, ROX, RWX, RWOP No filesystem; raw block
device
ontap-san-economy iISCSI Filesystem RWO, ROX, RWOP xfs, ext3, ext4d

RWX is not available in
Filesystem volume mode.

ONTAP backends can be authenticated by using login credentials for a security role

@ (username/password) or the private key and the certificate that is installed on the ONTAP
cluster. You can update existing backends to move from one authentication mode to the other
with tridentctl update backend.

Provisioning

Provisioning in Astra Trident has two primary phases. The first phase associates a
storage class with the set of suitable backend storage pools and occurs as a necessary
preparation before provisioning. The second phase includes the volume creation itself
and requires choosing a storage pool from those associated with the pending volume’s
storage class.

Storage class association

Associating backend storage pools with a storage class relies on both the storage class’s requested attributes
and its storagePools, additionalStoragePools, and excludeStoragePools lists. When you create a
storage class, Trident compares the attributes and pools offered by each of its backends to those requested by
the storage class. If a storage pool’s attributes and name match all of the requested attributes and pool names,
Astra Trident adds that storage pool to the set of suitable storage pools for that storage class. In addition, Astra
Trident adds all storage pools listed in the additionalStoragePools list to that set, even if their attributes
do not fulfill all or any of the storage class’s requested attributes. You should use the excludeStoragePools
list to override and remove storage pools from use for a storage class. Astra Trident performs a similar process
every time you add a new backend, checking whether its storage pools satisfy those of the existing storage
classes and removing any that have been marked as excluded.

Volume creation

Astra Trident then uses the associations between storage classes and storage pools to determine where to
provision volumes. When you create a volume, Astra Trident first gets the set of storage pools for that volume’s
storage class, and, if you specify a protocol for the volume, Astra Trident removes those storage pools that
cannot provide the requested protocol (for example, a NetApp HCI/SolidFire backend cannot provide a file-
based volume while an ONTAP NAS backend cannot provide a block-based volume). Astra Trident randomizes
the order of this resulting set, to facilitate an even distribution of volumes, and then iterates through it,

13

attempting to provision the volume on each storage pool in turn. If it succeeds on one, it returns successfully,
logging any failures encountered in the process. Astra Trident returns a failure only if it fails to provision on all
the storage pools available for the requested storage class and protocol.

Volume snapshots

Learn more about how Astra Trident handles the creation of volume snapshots for its
drivers.

Learn about volume snapshot creation

* For the ontap—-nas, ontap-san, gcp-cvs, and azure-netapp-£files drivers, each Persistent Volume
(PV) maps to a FlexVol. As a result, volume snapshots are created as NetApp snapshots. NetApp’s
snapshot technology delivers more stability, scalability, recoverability, and performance than competing
snapshot technologies. These snapshot copies are extremely efficient both in the time needed to create
them and in storage space.

* For the ontap-nas-flexgroup driver, each Persistent Volume (PV) maps to a FlexGroup. As a result,
volume snapshots are created as NetApp FlexGroup snapshots. NetApp’s snapshot technology delivers
more stability, scalability, recoverability, and performance than competing snapshot technologies. These
snapshot copies are extremely efficient both in the time needed to create them and in storage space.

* For the ontap-san-economy driver, PVs map to LUNs created on shared FlexVols. VolumeSnapshots of
PVs are achieved by performing FlexClones of the associated LUN. ONTAP’s FlexClone technology makes
it possible to create copies of even the largest datasets almost instantaneously. Copies share data blocks
with their parents, consuming no storage except what is required for metadata.

* For the solidfire-san driver, each PV maps to a LUN created on the NetApp Element software/NetApp
HCI cluster. VolumeSnapshots are represented by Element snapshots of the underlying LUN. These
snapshots are point-in-time copies and only take up a small amount of system resources and space.

* When working with the ontap-nas and ontap-san drivers, ONTAP snapshots are point-in-time copies of
the FlexVol and consume space on the FlexVol itself. This can result in the amount of writable space in the
volume to reduce with time as snapshots are created/scheduled. One simple way of addressing this is to
grow the volume by resizing through Kubernetes. Another option is to delete snapshots that are no longer
required. When a VolumeSnapshot created through Kubernetes is deleted, Astra Trident will delete the
associated ONTAP snapshot. ONTAP snapshots that were not created through Kubernetes can also be
deleted.

With Astra Trident, you can use VolumeSnapshots to create new PVs from them. Creating PVs from these
snapshots is performed by using the FlexClone technology for supported ONTAP and CVS backends. When
creating a PV from a snapshot, the backing volume is a FlexClone of the snapshot’s parent volume. The
solidfire-san driver uses Element software volume clones to create PVs from snapshots. Here it creates a
clone from the Element snapshot.

Virtual pools

Virtual pools provide a layer of abstraction between Astra Trident storage backends and
Kubernetes storageClasses. They allow an administrator to define aspects, such as
location, performance, and protection for each backend in a common, backend-agnostic
way without making a StorageClass specify which physical backend, backend pool, or
backend type to use to meet desired criteria.

14

Learn about virtual pools

The storage administrator can define virtual pools on any of the Astra Trident backends in a JSON or YAML
definition file.

. e
Premium =
- Standard Storage Classes
Extra Protect
- iz
| |
|I |

Virtual Storage Pools

|Abstraction layer)

Multiple Backend Types

AWS Region 1 ANF Region 1

Any aspect specified outside the virtual pools list is global to the backend and will apply to all the virtual pools,
while each virtual pool might specify one or more aspects individually (overriding any backend-global aspects).

» When defining virtual pools, do not attempt to rearrange the order of existing virtual pools in
@ a backend definition.

» We advise against modifying attributes for an existing virtual pool. You should define a new
virtual pool to make changes.

Most aspects are specified in backend-specific terms. Crucially, the aspect values are not exposed outside the
backend’s driver and are not available for matching in StorageClasses. Instead, the administrator defines
one or more labels for each virtual pool. Each label is a key:value pair, and labels might be common across
unigue backends. Like aspects, labels can be specified per-pool or global to the backend. Unlike aspects,
which have predefined names and values, the administrator has full discretion to define label keys and values
as needed. For convenience, storage administrators can define labels per virtual pool and group volumes by
label.

A storageClass identifies which virtual pool to use by referencing the labels within a selector parameter.
Virtual pool selectors support the following operators:

Operator Example A pool’s label value must:

= performance=premium Match

15

Operator Example A pool’s label value must:

1= performance!=extreme Not match

in location in (east, west) Be in the set of values
notin performance notin (silver, bronze) Not be in the set of values
<key> protection Exist with any value
I<key> Iprotection Not exist

Volume access groups

Learn more about how Astra Trident uses volume access groups.

Ignore this section if you are using CHAP, which is recommended to simplify management and

@ avoid the scaling limit described below. In addition, if you are using Astra Trident in CSI mode,
you can ignore this section. Astra Trident uses CHAP when installed as an enhanced CSI
provisioner.

Learn about volume access groups

Astra Trident can use volume access groups to control access to the volumes that it provisions. If CHAP is
disabled, it expects to find an access group called trident unless you specify one or more access group IDs
in the configuration.

While Astra Trident associates new volumes with the configured access group(s), it does not create or
otherwise manage access groups themselves. The access group(s) must exist before the storage backend is
added to Astra Trident, and they need to contain the iSCSI IQNs from every node in the Kubernetes cluster
that could potentially mount the volumes provisioned by that backend. In most installations, that includes every
worker node in the cluster.

For Kubernetes clusters with more than 64 nodes, you should use multiple access groups. Each access group
may contain up to 64 IQNs, and each volume can belong to four access groups. With the maximum four
access groups configured, any node in a cluster up to 256 nodes in size will be able to access any volume. For
latest limits on volume access groups, see here.

If you're modifying the configuration from one that is using the default t rident access group to one that uses
others as well, include the ID for the trident access group in the list.

16

https://docs.netapp.com/us-en/element-software/concepts/concept_solidfire_concepts_volume_access_groups.html
https://docs.netapp.com/us-en/element-software/concepts/concept_solidfire_concepts_volume_access_groups.html

Get started

Try it out
NetApp provides a ready-to-use lab image that you can request through NetApp Test

Drive.

Learn about the Test Drive

The Test Drive provides you with a sandbox environment that comes with a three-node Kubernetes cluster and
Astra Trident installed and configured. It is a great way to familiarize yourself with Astra Trident and explore its
features.

Another option is to see the kubeadm Install Guide provided by Kubernetes.

You should not use the Kubernetes cluster that you build using these instructions in production.
Use the production deployment guides provided by your distribution for creating clusters that are
production ready.

If this is the first time you're using Kubernetes, familiarize yourself with the concepts and tools here.

Requirements

Before installing Astra Trident you should review these general system requirements.
Specific backends might have additional requirements.

Critical information about Astra Trident 23.01

You must read the following critical information about Astra Trident.

Critical information about Astra Trident

* Kubernetes 1.27 is now supported in Trident. Upgrade Trident prior to upgrading Kubernetes.

« Astra Trident strictly enforces the use of multipathing configuration in SAN environments, with a
recommended value of find multipaths: no in multipath.conf file.

Use of non-multipathing configuration or use of find multipaths: yesor find multipaths:
smart value in multipath.conf file will result in mount failures. Trident has recommended the use of
find multipaths: no since the 21.07 release.

Supported frontends (orchestrators)

Astra Trident supports multiple container engines and orchestrators, including the following:

* Anthos On-Prem (VMware) and Anthos on bare metal 1.12
* Kubernetes 1.21 - 1.27

* Mirantis Kubernetes Engine 3.5

17

https://www.netapp.com/us/try-and-buy/test-drive/index.aspx
https://www.netapp.com/us/try-and-buy/test-drive/index.aspx
https://kubernetes.io/docs/setup/independent/install-kubeadm/
https://kubernetes.io/docs/home/

* OpenShift4.9 -4.12
The Trident operator is supported with these releases:

* Anthos On-Prem (VMware) and Anthos on bare metal 1.12
* Kubernetes 1.21 - 1.27
* OpenShift4.9 -4.12
Astra Trident also works with a host of other fully-managed and self-managed Kubernetes offerings, including

Google Kubernetes Engine (GKE), Amazon Elastic Kubernetes Services (EKS), Azure Kubernetes Service
(AKS), Rancher, and VMWare Tanzu Portfolio.

@ Before upgrading a Kubernetes cluster from 1.24 to 1.25 or later that has Astra Trident installed,
see Upgrade a Helm-based operator installation.

Supported backends (storage)

To use Astra Trident, you need one or more of the following supported backends:

* Amazon FSx for NetApp ONTAP

* Azure NetApp Files

» Cloud Volumes ONTAP

 Cloud Volumes Service for GCP

* FAS/AFF/Select 9.5 or later

* NetApp All SAN Array (ASA)

* NetApp HCI/Element software 11 or above

Feature requirements

The table below summarizes the features available with this release of Astra Trident and the versions of
Kubernetes it supports.

Feature Kubernetes version Feature gates required?
CSI Trident 1.21-1.27 No
Volume Snapshots 1.21-1.27 No
PVC from Volume Snapshots 1.21-1.27 No
iISCSI PV resize 1.21-1.27 No
ONTAP Bidirectional CHAP 1.21-1.27 No
Dynamic Export Policies 1.21-1.27 No
Trident Operator 1.21-1.27 No

18

Feature Kubernetes version Feature gates required?

CSI Topology 1.21-1.27 No

Tested host operating systems

Though Astra Trident does not officially support specific operating systems, the following are known to work:

» RedHat CoreOS (RHCOS) versions as supported by OpenShift Container Platform (AMD64 and ARM64)
* RHEL 8+ (AMD64 and ARM64)
* Ubuntu 22.04 or later (AMD64 and ARM64)

* Windows Server 2019 (AMD64)
By default, Astra Trident runs in a container and will, therefore, run on any Linux worker. However, those
workers need to be able to mount the volumes that Astra Trident provides using the standard NFS client or
iISCSI initiator, depending on the backends you are using.

The tridentctl utility also runs on any of these distributions of Linux.

Host configuration

All worker nodes in the Kubernetes cluster must be able to mount the volumes you have provisioned for your
pods. To prepare the worker nodes, you must install NFS or iSCSI tools based on your driver selection.

Prepare the worker node

Storage system configuration
Astra Trident might require changes to a storage system before a backend configuration can use it.

Configure backends

Astra Trident ports

Astra Trident requires access to specific ports for communication.

Astra Trident ports

Container images and corresponding Kubernetes versions

For air-gapped installations, the following list is a reference of container images needed to install Astra Trident.
Use the tridentctl images command to verify the list of needed container images.

19

Kubernetes version

v1.21.0

v1.22.0

v1.23.0

20

Container image

+ docker.io/netapp/trident:23.04.0

* docker.io/netapp/trident-autosupport:23.04

* registry.k8s.io/sig-storage/csi-provisioner:v3.4.1
* registry.k8s.io/sig-storage/csi-attacher:v4.2.0

* registry.k8s.io/sig-storage/csi-resizer:v1.7.0

* registry.k8s.io/sig-storage/csi-snapshotter:v6.2.1

* registry.k8s.io/sig-storage/csi-node-driver-
registrar:v2.7.0

+ docker.io/netapp/trident-operator:23.04.0
(optional)

« docker.io/netapp/trident:23.04.0

+ docker.io/netapp/trident-autosupport:23.04

* registry.k8s.io/sig-storage/csi-provisioner:v3.4.1
* registry.k8s.io/sig-storage/csi-attacher:v4.2.0

* registry.k8s.io/sig-storage/csi-resizer:v1.7.0

* registry.k8s.io/sig-storage/csi-snapshotter:v6.2.1

* registry.k8s.io/sig-storage/csi-node-driver-
registrar:v2.7.0

« docker.io/netapp/trident-operator:23.04.0
(optional)

» docker.io/netapp/trident:23.04.0

* docker.io/netapp/trident-autosupport:23.04

* registry.k8s.io/sig-storage/csi-provisioner:v3.4.1
* registry.k8s.io/sig-storage/csi-attacher:v4.2.0

* registry.k8s.io/sig-storage/csi-resizer:v1.7.0

* registry.k8s.io/sig-storage/csi-snapshotter:v6.2.1

* registry.k8s.io/sig-storage/csi-node-driver-
registrar:v2.7.0

+ docker.io/netapp/trident-operator:23.04.0
(optional)

Kubernetes version

v1.24.0

v1.25.0

v1.26.0

Container image

+ docker.io/netapp/trident:23.04.0

* docker.io/netapp/trident-autosupport:23.04

* registry.k8s.io/sig-storage/csi-provisioner:v3.4.1
* registry.k8s.io/sig-storage/csi-attacher:v4.2.0

* registry.k8s.io/sig-storage/csi-resizer:v1.7.0

* registry.k8s.io/sig-storage/csi-snapshotter:v6.2.1

* registry.k8s.io/sig-storage/csi-node-driver-
registrar:v2.7.0

+ docker.io/netapp/trident-operator:23.04.0
(optional)

« docker.io/netapp/trident:23.04.0

+ docker.io/netapp/trident-autosupport:23.04

* registry.k8s.io/sig-storage/csi-provisioner:v3.4.1
* registry.k8s.io/sig-storage/csi-attacher:v4.2.0

* registry.k8s.io/sig-storage/csi-resizer:v1.7.0

* registry.k8s.io/sig-storage/csi-snapshotter:v6.2.1

* registry.k8s.io/sig-storage/csi-node-driver-
registrar:v2.7.0

« docker.io/netapp/trident-operator:23.04.0
(optional)

» docker.io/netapp/trident:23.04.0

* docker.io/netapp/trident-autosupport:23.04

* registry.k8s.io/sig-storage/csi-provisioner:v3.4.1
* registry.k8s.io/sig-storage/csi-attacher:v4.2.0

* registry.k8s.io/sig-storage/csi-resizer:v1.7.0

* registry.k8s.io/sig-storage/csi-snapshotter:v6.2.1

* registry.k8s.io/sig-storage/csi-node-driver-
registrar:v2.7.0

+ docker.io/netapp/trident-operator:23.04.0
(optional)

21

Kubernetes version Container image
v1.27.0 + docker.io/netapp/trident:23.04.0
* docker.io/netapp/trident-autosupport:23.04
* registry.k8s.io/sig-storage/csi-provisioner:v3.4.1
* registry.k8s.io/sig-storage/csi-attacher:v4.2.0
* registry.k8s.io/sig-storage/csi-resizer:v1.7.0
* registry.k8s.io/sig-storage/csi-snapshotter:v6.2.1

* registry.k8s.io/sig-storage/csi-node-driver-
registrar:v2.7.0

+ docker.io/netapp/trident-operator:23.04.0
(optional)

On Kubernetes version 1.21 and above, use the validated registry.k8s.gcr.io/sig-
storage/csi-snapshotter:v6.x image only if the v1 version is serving the

(D volumesnapshots.snapshot.storage.k8s.gcr.io CRD. If the vlbetal version is
serving the CRD with/without the v1 version, use the validated registry.k8s.gcr.io/sig-
storage/csi-snapshotter:v3.x image.

Install Astra Trident

Learn about Astra Trident installation

To ensure Astra Trident can be installed in a wide variety of environments and
organizations, NetApp offers multiple installation options. You can install Astra Trident
using the Trident operator (manually or using Helm) or with tridentctl. This topic
provides important information for selecting the right installation process for you.

Critical information about Astra Trident 23.04

You must read the following critical information about Astra Trident.

Critical information about Astra Trident

* Kubernetes 1.27 is now supported in Trident. Upgrade Trident prior to upgrading Kubernetes.

« Astra Trident strictly enforces the use of multipathing configuration in SAN environments, with a
recommended value of find multipaths: no in multipath.conf file.

Use of non-multipathing configuration or use of find multipaths: yesor find multipaths:

smart value in multipath.conf file will result in mount failures. Trident has recommended the use of
find multipaths: no since the 21.07 release.

Before you begin

Regardless of your installation path, you must have:

22

* Full privileges to a supported Kubernetes cluster running a supported version of Kubernetes and feature
requirements enabled. Review the requirements for details.

* Access to a supported NetApp storage system.

» Capability to mount volumes from all of the Kubernetes worker nodes.

* ALinux host with kubect1 (or oc, if you are using OpenShift) installed and configured to manage the
Kubernetes cluster that you want to use.

* The KUBECONFIG environment variable set to point to your Kubernetes cluster configuration.

* If you are using Kubernetes with Docker Enterprise, follow their steps to enable CLI access.
If you have not familiarized yourself with the basic concepts, now is a great time to do that.

Choose your installation method

Select the installation method that’s right for you. You should also review the considerations for moving
between methods before making your decision.

Using the Trident operator

Whether deploying manually or using Helm, the Trident operator is a great way to simplify installation and

dynamically manage Astra Trident resources. You can even customize your Trident operator deployment using

the attributes in the TridentOrchestrator custom resource (CR).
The benefits of using the Trident operator include:

Astra Trident object creation

The Trident operator automatically creates the following objects for your Kubernetes version.

« ServiceAccount for the operator
* ClusterRole and ClusterRoleBinding to the ServiceAccount
 Dedicated PodSecurityPolicy (for Kubernetes 1.25 and earlier)

* The operator itself

Self-healing capability

The operator monitors Astra Trident installation and actively takes measures to address issues, such as
when the deployment is deleted or if it is accidentally modified. A trident-operator-<generated-
id> pod is created that associates a TridentOrchestrator CR with an Astra Trident installation. This
ensures there is only one instance of Astra Trident in the cluster and controls its setup, making sure the
installation is idempotent. When changes are made to the installation (such as, deleting the deployment
or node daemonset), the operator identifies them and fixes them individually.

23

https://docs.docker.com/ee/ucp/user-access/cli/

Easy updates to existing installations

You can easily update an existing deployment with the operator. You only need to edit the
TridentOrchestrator CR to make updates to an installation.

For example, consider a scenario where you need to enable Astra Trident to generate debug logs. To do
this, patch your TridentOrchestrator to set spec.debug to true:

kubectl patch torc <trident-orchestrator-name> -n trident --type=merge
-p '{"spec":{"debug":true}}'

After TridentOrchestrator is updated, the operator processes the updates and patches the existing
installation. This might triggers the creation of new pods to modify the installation accordingly.

Automatic Kubernetes upgrade handling

When the Kubernetes version of the cluster is upgraded to a supported version, the operator updates an
existing Astra Trident installation automatically and changes it to ensure that it meets the requirements of
the Kubernetes version.

If the cluster is upgraded to an unsupported version, the operator prevents installing Astra
@ Trident. If Astra Trident has already been installed with the operator, a warning is displayed
to indicate that Astra Trident is installed on an unsupported Kubernetes version.

Kubernetes cluster management using NetApp Console

With Astra Trident using NetApp Console, you can upgrade to the latest version of Astra Trident, add and
manage storage classes and connect them to Working Environments, and back up persistent volumes
using Cloud Backup Service. The Console supports Astra Trident deployment using the Trident operator,
either manually or using Helm.

Using tridentctl

If you have an existing deployment that must be upgraded or if you are looking to highly customize your
deployment, you should consider installing using tridentctl. This is the conventional method of deploying
Astra Trident.

You can customize your tridentctl installation to generate the manifests for Trident resources. This
includes the deployment, daemonset, service account, and the cluster role that Astra Trident creates as part of
its installation.

Beginning with the 22.04 release, AES keys will no longer be regenerated every time Astra

Trident is installed. With this release, Astra Trident will install a new secret object that persists
@ across installations. This means, tridentctl in 22.04 can uninstall previous versions of

Trident, but earlier versions cannot uninstall 22.04 installations.

Select the appropriate installation method.

24

Choose your installation mode

Determine your deployment process based on the installation mode (Standard, Offline, or Remote) required by
your organization.

Standard installation

This is the easiest way to install Astra Trident and works for most environments that do not impose
network restrictions. Standard installation mode uses default registries to store required Trident
(docker.io)and CSl (registry.k8s.1io0)images.

When you use standard mode, the Astra Trident installer:

* Fetches the container images over the Internet

* Creates a deployment or node daemonset, which spins up Astra Trident pods on all the eligible nodes
in the Kubernetes cluster

Offline installation

Offline installation mode might be required in an air-gapped or secure location. In this scenario, you can
create a single private, mirrored registry or two mirrored registries to store required Trident and CSI
images.

@ Regardless of your registry configuration, CSl images must reside in one registry.

Remote installation
Here is a high-level overview of the remote installation process:

* Deploy the appropriate version of kubect1 on the remote machine from where you want to deploy
Astra Trident.

* Copy the configuration files from the Kubernetes cluster and set the KUBECONFIG environment
variable on the remote machine.

* Initiate a kubectl get nodes command to verify that you can connect to the required Kubernetes
cluster.

« Complete the deployment from the remote machine by using the standard installation steps.

Select the process based on your method and mode

After you’ve made your decisions, select the appropriate process.

Method Installation mode

Trident operator (manually) Standard installation

Offline installation

Trident operator (Helm) Standard installation

Offline installation

25

kubernetes-deploy-operator.html
kubernetes-deploy-helm.html

Method Installation mode

tridentctl Standard or offline installation

Moving between installation methods

You can decide to change your installation method. Before doing so, consider the following:

» Always use the same method for installing and uninstalling Astra Trident. If you have deployed with
tridentctl, you should use the appropriate version of the tridentctl binary to uninstall Astra Trident.
Similarly, if you are deploying with the operator, you should edit the TridentOrchestrator CR and set
spec.uninstall=true to uninstall Astra Trident.

* If you have an operator-based deployment that you want to remove and use instead tridentctl to
deploy Astra Trident, you should first edit TridentOrchestrator and set spec.uninstall=true to
uninstall Astra Trident. Then delete TridentOrchestrator and the operator deployment. You can then
install using tridentctl.

* If you have a manual operator-based deployment, and you want to use Helm-based Trident operator
deployment, you should manually uninstall the operator first, and then perform the Helm install. This
enables Helm to deploy the Trident operator with the required labels and annotations. If you do not do this,
your Helm-based Trident operator deployment will fail with label validation error and annotation validation
error. If you have a tridentctl-based deployment, you can use Helm-based deployment without running
into issues.

Other known configuration options

When installing Astra Trident on VMWare Tanzu Portfolio products:

* The cluster must support privileged workloads.

* The --kubelet-dir flag should be set to the location of kubelet directory. By default, this is
/var/vcap/data/kubelet.

Specifying the kubelet location using --kubelet-dir is known to work for Trident Operator, Helm, and

tridentctl deployments.

Install using Trident operator

Manually deploy the Trident operator (Standard mode)

You can manually deploy the Trident operator to install Astra Trident. This process
applies to installations where the container images required by Astra Trident are not
stored in a private registry. If you do have a private image registry, use the process for
offline deployment.

Critical information about Astra Trident 23.04

You must read the following critical information about Astra Trident.

26

kubernetes-deploy-tridentctl.html

Critical information about Astra Trident

* Kubernetes 1.27 is now supported in Trident. Upgrade Trident prior to upgrading Kubernetes.

+ Astra Trident strictly enforces the use of multipathing configuration in SAN environments, with a
recommended value of find multipaths: no in multipath.conf file.

Use of non-multipathing configuration or use of find multipaths: yesor find multipaths:
smart value in multipath.conf file will result in mount failures. Trident has recommended the use of
find multipaths: no since the 21.07 release.

Manually deploy the Trident operator and install Trident

Review the installation overview to ensure you’'ve met installation prerequisites and selected the correct
installation option for your environment.

Before you begin

Before you begin installation, log in to the Linux host and verify it is managing a working, supported
Kubernetes cluster and that you have the necessary privileges.

With OpenShift, use oc instead of kubect1 in all of the examples that follow, and log in as
system:admin first by running oc login -u system:admin oroc login -u kube-
admin.

1. Verify your Kubernetes version:

kubectl version

2. Verify cluster administrator privileges:

kubectl auth can-i '*' '*' —--all-namespaces

3. Verify you can launch a pod that uses an image from Docker Hub and reach your storage system over
the pod network:

kubectl run -i --tty ping --image=busybox --restart=Never --rm -- \
ping <management IP>

Step 1: Download the Trident installer package

The Astra Trident installer package contains everything you need to deploy the Trident operator and install
Astra Trident. Download and extract the latest version of the Trident installer from the Assets section on
GitHub.

27

https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest

wget https://github.com/NetApp/trident/releases/download/v23.04.0/trident-
installer-23.04.0.tar.gz

tar -xf trident-installer-23.04.0.tar.gz

cd trident-installer

Step 2: Create the TridentOrchestrator CRD

Create the TridentOrchestrator Custom Resource Definition (CRD). You will create a
TridentOrchestrator Custom Resources later. Use the appropriate CRD YAML version in deploy/crds
to create the TridentOrchestrator CRD.

kubectl create -f
deploy/crds/trident.netapp.io tridentorchestrators crd postl.l6.yaml

Step 3: Deploy the Trident operator

The Astra Trident installer provides a bundle file that can be used to install the operator and create associated
objects. The bundle file is an easy way to deploy the operator and install Astra Trident using a default
configuration.

* For clusters running Kubernetes 1.24 or earlier, use bundle pre 1 25.yaml.

* For clusters running Kubernetes 1.25 or later, use bundle post 1 25.yaml.

Before you begin

* By default, the Trident installer deploys the operator in the trident namespace. If the trident
namespace does not exist, create it using:

kubectl apply -f deploy/namespace.yaml

* To deploy the operator in a namespace other than the trident namespace, update
serviceaccount.yaml, clusterrolebinding.yaml and operator.yaml and generate your
bundle file using the kustomization.yaml.

1. Create the kustomization.yaml using the following command where <bundle> is
bundle pre 1 25o0rbundle post 1 25 based on your Kubernetes version.

cp kustomization <bundle>.yaml kustomization.yaml

2. Compile the bundle using using the following command where <bundle> is bundle pre 1 25 or
bundle post 1 25 based on your Kubernetes version.

kubectl kustomize deploy/ > deploy/<bundle>.yaml

28

Steps
1. Create the resources and deploy the operator:

kubectl create -f deploy/<bundle>.yaml
2. Verify the operator, deployment, and replicasets were created.

kubectl get all -n <operator-namespace>

@ There should only be one instance of the operator in a Kubernetes cluster. Do not create
multiple deployments of the Trident operator.

Step 4: Create the TridentOrchestrator and install Trident

You can now create the TridentOrchestrator and install Astra Trident. Optionally, you can customize your
Trident installation using the attributes in the TridentOrchestrator spec.

29

kubectl create -f deploy/crds/tridentorchestrator cr.yaml
tridentorchestrator.trident.netapp.io/trident created

kubectl describe torc trident

Name : trident
Namespace:
Labels: <none>

Annotations: <none>
API Version: trident.netapp.io/vl

Kind: TridentOrchestrator
Spec:
Debug: true
Namespace: trident
Status:
Current Installation Params:
IPv6: false

Autosupport Hostname:

Autosupport Image: netapp/trident-autosupport:23.04
Autosupport Proxy:

Autosupport Serial Number:

Debug: true

Image Pull Secrets:

Image Registry:

k8sTimeout: 30
Kubelet Dir: /var/lib/kubelet
Log Format: text
Silence Autosupport: false
Trident Image: netapp/trident:23.04.0
Message: Trident installed Namespace:
trident
Status: Installed
Version: v23.04.0
Events:
Type Reason Age From Message —---——- —————-— ———— ——m= === Normal

Installing 74s trident-operator.netapp.io Installing Trident Normal
Installed 67s trident-operator.netapp.io Trident installed

Verify the installation

There are several ways to verify your installation.

Using TridentOrchestrator status

The status of TridentOrchestrator indicates if the installation was successful and displays the version of

30

Trident installed. During the installation, the status of TridentOrchestrator changes from Installingto
Installed. If you observe the Failed status and the operator is unable to recover by itself, check the logs.

Status

Installing

Installed

Uninstalling

Uninstalled

Failed

Updating

Error

Using pod creation status

Description

The operator is installing Astra Trident using this
TridentOrchestrator CR.

Astra Trident has successfully installed.

The operator is uninstalling Astra Trident, because
spec.uninstall=true.

Astra Trident is uninstalled.

The operator could not install, patch, update or
uninstall

Astra Trident; the operator will automatically try to
recover from this state. If this state persists you will
require troubleshooting.

The operator is updating an existing installation.

The TridentOrchestrator is not used. Another
one already
exists.

You can confirm if the Astra Trident installation completed by reviewing the status of the created pods:

kubectl get pods -n trident

NAME

AGE
trident-controller-7d466bf5c7-v4cpw
Im

trident-node-linux-mr6zc

Im

trident-node-linux-xrp7w

Im

trident-node-linux-zh2jt

Im
trident-operator-766f7b8658-1dzsv
3m

Using tridentctl

READY STATUS RESTARTS
6/6 Running 0
2/2 Running 0
2/2 Running 0
2/2 Running 0
1/1 Running 0

You can use tridentctl to check the version of Astra Trident installed.

31

./tridentctl -n trident version

o — o —— +

| SERVER VERSION | CLIENT VERSION |

o —— o +

| 23.04.0 | 23.04.0 |

fomm - fmm e +
What’s next

Now you can create create a backend and storage class, provision a volume, and mount the volume in a pod.

Manually deploy the Trident operator (Offline mode)

You can manually deploy the Trident operator to install Astra Trident. This process
applies to installations where the container images required by Astra Trident are stored in
a private registry. If you do not have a private image registry, use the process for standard
deployment.

Critical information about Astra Trident 23.04

You must read the following critical information about Astra Trident.

Critical information about Astra Trident

* Kubernetes 1.27 is now supported in Trident. Upgrade Trident prior to upgrading Kubernetes.

 Astra Trident strictly enforces the use of multipathing configuration in SAN environments, with a
recommended value of find multipaths: no in multipath.conf file.

Use of non-multipathing configuration or use of find multipaths: yesor find multipaths:
smart value in multipath.conf file will result in mount failures. Trident has recommended the use of
find multipaths: no since the 21.07 release.

Manually deploy the Trident operator and install Trident

Review the installation overview to ensure you've met installation prerequisites and selected the correct
installation option for your environment.

Before you begin

Log in to the Linux host and verify it is managing a working and supported Kubernetes cluster and that you
have the necessary privileges.

With OpenShift, use oc instead of kubectl in all of the examples that follow, and log in as
system:admin first by running oc login -u system:admin oroc login -u kube-
admin.

32

1. Verify your Kubernetes version:

kubectl version

2. Verify cluster administrator privileges:

kubectl auth can-i '"*' '*' —--all-namespaces

3. Verify you can launch a pod that uses an image from Docker Hub and reach your storage system over
the pod network:

kubectl run -i --tty ping --image=busybox --restart=Never --rm -- \
ping <management IP>

Step 1: Download the Trident installer package

The Astra Trident installer package contains everything you need to deploy the Trident operator and install
Astra Trident. Download and extract the latest version of the Trident installer from the Assets section on
GitHub.

wget https://github.com/NetApp/trident/releases/download/v23.04.0/trident-
installer-23.04.0.tar.gz

tar -xf trident-installer-23.04.0.tar.gz

cd trident-installer

Step 2: Create the TridentOrchestrator CRD

Create the TridentOrchestrator Custom Resource Definition (CRD). You will create a
TridentOrchestrator Custom Resources later. Use the appropriate CRD YAML version in deploy/crds
to create the TridentOrchestrator CRD:

kubectl create -f deploy/crds/<VERSION>.yaml

Step 3: Update the registry location in the operator

In /deploy/operator.yaml, update image: docker.io/netapp/trident-operator:23.04.0t0
reflect the location of your image registry. Your Trident and CSl images can be located in one registry or
different registries, but all CSl images must be located in the same registry. For example:

* image: <your-registry>/trident-operator:23.04.0 if yourimages are all located in one
registry.

33

https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest

* image: <your-registry>/netapp/trident-operator:23.04.0 if your Tridentimage is located in
a different registry from your CSI images.

Step 4: Deploy the Trident operator

The Astra Trident installer provides a bundle file that can be used to install the operator and create associated
objects. The bundle file is an easy way to deploy the operator and install Astra Trident using a default
configuration.

* For clusters running Kubernetes 1.24 or earlier, use bundle pre 1 25.yaml.

* For clusters running Kubernetes 1.25 or later, use bundle post 1 25.yaml.

Before you begin

* By default, the Trident installer deploys the operator in the trident namespace. If the trident
namespace does not exist, create it using:

kubectl apply -f deploy/namespace.yaml

* To deploy the operator in a namespace other than the trident namespace, update
serviceaccount.yaml, clusterrolebinding.yaml and operator.yaml and generate your
bundle file using the kustomization.yaml.

1. Create the kustomization.yaml using the following command where <bundle> is
bundle pre 1 25o0rbundle post 1 25 based on your Kubernetes version.

cp kustomization <bundle>.yaml kustomization.yaml

2. Compile the bundle using using the following command where <bundle> is bundle pre 1 25 or
bundle post 1 25 based on your Kubernetes version.

kubectl kustomize deploy/ > deploy/<bundle>.yaml

Steps
1. Create the resources and deploy the operator:

kubectl kustomize deploy/ > deploy/<bundle>.yaml
2. Verify the operator, deployment, and replicasets were created.

kubectl get all -n <operator-namespace>

(D There should only be one instance of the operator in a Kubernetes cluster. Do not create
multiple deployments of the Trident operator.

34

Step 5: Update the image registry location in the TridentOrchestrator

Your Trident and CSI images can be located in one registry or different registries, but all CSI images must be

located in the same registry. Update deploy/crds/tridentorchestrator cr.yaml to add the additional

location specs based on your registry configuration.

Images in one registry

imageRegistry: "<your-registry>"
autosupportImage: "<your-registry>/trident-autosupport:23.04"
tridentImage: "<your-registry>/trident:23.04.0"

Images in different registries

You must append sig-storage to the imageRegistry to use different registry locations.

imageRegistry: "<your-registry>/sig-storage"
autosupportImage: "<your-registry>/netapp/trident-autosupport:23.04"
tridentImage: "<your-registry>/netapp/trident:23.04.0"

Step 6: Create the TridentOrchestrator and install Trident

You can now create the TridentOrchestrator and install Astra Trident. Optionally, you can further
customize your Trident installation using the attributes in the TridentOrchestrator spec. The following
example shows an installation where Trident and CSI images are located in different registries.

35

36

kubectl create -f deploy/crds/tridentorchestrator cr.yaml
tridentorchestrator.trident.netapp.io/trident created

kubectl describe torc trident

Name : trident
Namespace:
Labels: <none>

Annotations: <none>
API Version: trident.netapp.io/vl
Kind: TridentOrchestrator

Spec:
Autosupport Image: <your-registry>/netapp/trident-autosupport:23.04
Debug: true

Image Registry: <your-registry>/sig-storage
Namespace: trident
Trident Image: <your-registry>/netapp/trident:23.04.0
Status:
Current Installation Params:
IPv6: false

Autosupport Hostname:

Autosupport Image: <your-registry>/netapp/trident-
autosupport:23.04

Autosupport Proxy:

Autosupport Serial Number:

Debug: true
Http Request Timeout: 90s
Image Pull Secrets:
Image Registry: <your-registry>/sig-storage
k8sTimeout: 30
Kubelet Dir: /var/lib/kubelet
Log Format: text
Probe Port: 17546
Silence Autosupport: false
Trident Image: <your-registry>/netapp/trident:23.04.0
Message: Trident installed
Namespace: trident
Status: Installed
Version: v23.04.0
Events:
Type Reason Age From Message —-—--——- —-—————-— ———— ——m= === Normal

Installing 74s trident-operator.netapp.io Installing Trident Normal
Installed 67s trident-operator.netapp.io Trident installed

Verify the installation

There are several ways to verify your installation.

Using TridentOrchestrator status

The status of TridentOrchestrator indicates if the installation was successful and displays the version of
Trident installed. During the installation, the status of TridentOrchestrator changes from Installingto
Installed. If you observe the Failed status and the operator is unable to recover by itself, check the logs.

Status

Installing

Installed

Uninstalling

Uninstalled

Failed

Updating

Error

Using pod creation status

Description

The operator is installing Astra Trident using this
TridentOrchestrator CR.

Astra Trident has successfully installed.

The operator is uninstalling Astra Trident, because
spec.uninstall=true.

Astra Trident is uninstalled.

The operator could not install, patch, update or
uninstall

Astra Trident; the operator will automatically try to
recover from this state. If this state persists you will
require troubleshooting.

The operator is updating an existing installation.

The TridentOrchestrator is not used. Another
one already
exists.

You can confirm if the Astra Trident installation completed by reviewing the status of the created pods:

kubectl get pods -n trident

NAME

AGE
trident-controller-7d466bf5c7-v4cpw
Im

trident-node-linux-mr6zc

Im

trident-node-linux-xrp7w

Im

trident-node-linux-zh2jt

Im
trident-operator-766f7b8658-1dzsv
3m

READY STATUS RESTARTS
6/6 Running 0
2/2 Running 0
2/2 Running 0
2/2 Running 0
1/1 Running 0

37

Using tridentctl

You can use tridentctl to check the version of Astra Trident installed.

./tridentctl -n trident version

fomm - e ittt +
| SERVER VERSION | CLIENT VERSION |
fom - fom e —— +
| 23.04.0 | 23.04.0 |
Fom - fom +
What’s next

Now you can create create a backend and storage class, provision a volume, and mount the volume in a pod.

Deploy Trident operator using Helm (Standard mode)

You can deploy the Trident operator and install Astra Trident using Helm. This process
applies to installations where the container images required by Astra Trident are not
stored in a private registry. If you do have a private image registry, use the process for
offline deployment.

Critical information about Astra Trident 23.04
You must read the following critical information about Astra Trident.
Critical information about Astra Trident

» Kubernetes 1.27 is now supported in Trident. Upgrade Trident prior to upgrading Kubernetes.

« Astra Trident strictly enforces the use of multipathing configuration in SAN environments, with a
recommended value of find multipaths: no in multipath.conf file.

Use of non-multipathing configuration or use of find multipaths: yesor find multipaths:
smart value in multipath.conf file will result in mount failures. Trident has recommended the use of
find multipaths: no since the 21.07 release.

Deploy the Trident operator and install Astra Trident using Helm

Using the Trident Helm Chart you can deploy the Trident operator and install Trident in one step.

Review the installation overview to ensure you've met installation prerequisites and selected the correct
installation option for your environment.

Before you begin
In addition to the deployment prerequisites you need Helm version 3.

Steps

38

https://artifacthub.io/packages/helm/netapp-trident/trident-operator
https://v3.helm.sh/

1. Add the Astra Trident Helm repository:

helm repo add netapp-trident https://netapp.github.io/trident-helm-chart

2. Use helm install and specify a name for your deployment as in the following example where 23.04.0
is the version of Astra Trident you are installing.

helm install <name> netapp-trident/trident-operator --version 23.04.0

--create-namespace --namespace <trident-namespace>
@ If you already created a namespace for Trident, the --create-namespace parameter will
not create an additional namespace.

You can use helm 1ist to review installation details such as name, namespace, chart, status, app version,
and revision number.

Pass configuration data during install

There are two ways to pass configuration data during the install:

Option Description

--values (or -f) Specify a YAML file with overrides. This can be
specified multiple times and the rightmost file will take
precedence.

--set Specify overrides on the command line.

For example, to change the default value of debug, run the following --set command where 23.04.0 is the
version of Astra Trident you are installing:

helm install <name> netapp-trident/trident-operator --version 23.04.0
-—-create-namespace --namespace --set tridentDebug=true

Configuration options

This table and the values.yaml file, which is part of the Helm chart, provide the list of keys and their default
values.

Option Description Default
nodeSelector Node labels for pod assignment
podAnnotations Pod annotations
deploymentAnnotations Deployment annotations

39

Option

tolerations

affinity
tridentControllerPluginNod

eSelector

tridentControllerPluginTol
erations

tridentNodePluginNodeSelec
tor

tridentNodePluginToleratio
ns

imageRegistry

imagePullPolicy

imagePullSecrets

kubeletDir

operatorLogLevel

operatorDebug

operatorImage

operatorImageTag

tridentIPv6

tridentK8sTimeout

40

Description
Tolerations for pod assignment
Affinity for pod assignment

Additional node selectors for pods.
Refer to Understanding controller
pods and node pods for details.

Overrides Kubernetes tolerations

for pods. Refer to Understanding

controller pods and node pods for
details.

Additional node selectors for pods.
Refer to Understanding controller
pods and node pods for details.

Overrides Kubernetes tolerations

for pods. Refer to Understanding

controller pods and node pods for
details.

Identifies the registry for the
trident-operator, trident,
and other images. Leave empty to
accept the default.

Sets the image pull policy for the
trident-operator.

Sets the image pull secrets for the
trident-operator, trident,
and other images.

Allows overriding the host location
of kubelet’s internal state.

Allows the log level of the Trident
operator to be set to: trace,
debug, info, warn, error, Or
fatal.

Allows the log level of the Trident
operator to be set to debug.

Allows the complete override of the
image for trident-operator.

Allows overriding the tag of the
trident-operator image.

Allows enabling Astra Trident to
work in IPv6 clusters.

Overrides the default 30-second
timeout for most Kubernetes API
operations (if non-zero, in
seconds).

Default

IfNotPresent

"fvar/lib/kubelet™

"info"

true

false

0

Option

tridentHttpRequestTimeout

tridentSilenceAutosupport

tridentAutosupportImageTag

tridentAutosupportProxy

tridentLogFormat

tridentDisableAuditLog

tridentLogLevel

tridentDebug

tridentLogWorkflows

tridentLoglLayers

tridentImage

tridentImageTag

tridentProbePort

windows

enableForceDetach

excludePodSecurityPolicy

Description

Overrides the default 90-second

timeout for the HTTP requests, with
0s being an infinite duration for the

timeout. Negative values are not
allowed.

Allows disabling Astra Trident
periodic AutoSupport reporting.

Allows overriding the tag of the
image for Astra Trident
AutoSupport container.

Allows Astra Trident AutoSupport
container to phone home via an
HTTP proxy.

Sets the Astra Trident logging
format (text or json).

Disables Astra Trident audit logger.

Allows the log level of Astra Trident
to be set to: trace, debug, info,

warn, error, or fatal.

Allows the log level of Astra Trident

to be set to debug.

Allows specific Astra Trident
workflows to be enabled for trace
logging or log suppression.

Allows specific Astra Trident layers

to be enabled for trace logging or
log suppression.

Allows the complete override of the

image for Astra Trident.

Allows overriding the tag of the
image for Astra Trident.

Allows overriding the default port
used for Kubernetes
liveness/readiness probes.

Allows Astra Trident to be installed

on Windows worker node.

Allows enabling the force detach
feature.

Excludes the operator pod security

policy from creation.

Default

"905"

false

<version>

"text"

true

"info"

false

false

false

false

41

Understanding controller pods and node pods

Astra Trident runs as a single controller pod, plus a node pod on each worker node in the cluster. The node
pod must be running on any host where you want to potentially mount an Astra Trident volume.

Kubernetes node selectors and tolerations and taints are used to constrain a pod to run on a specific or
preferred node. Using the ControllerPlugin’ and NodePlugin, you can specify constraints and overrides.

* The controller plugin handles volume provisioning and management, such as snapshots and resizing.
* The node plugin handles attaching the storage to the node.
What’s next

Now you can create create a backend and storage class, provision a volume, and mount the volume in a pod.

Deploy Trident operator using Helm (Offline mode)

You can deploy the Trident operator and install Astra Trident using Helm. This process
applies to installations where the container images required by Astra Trident are stored in
a private registry. If you do not have a private image registry, use the process for standard
deployment.

Critical information about Astra Trident 23.04

You must read the following critical information about Astra Trident.
Critical information about Astra Trident

* Kubernetes 1.27 is now supported in Trident. Upgrade Trident prior to upgrading Kubernetes.

 Astra Trident strictly enforces the use of multipathing configuration in SAN environments, with a
recommended value of find multipaths: no in multipath.conf file.

Use of non-multipathing configuration or use of find multipaths: yesor find multipaths:
smart value in multipath.conf file will result in mount failures. Trident has recommended the use of
find multipaths: no since the 21.07 release.

Deploy the Trident operator and install Astra Trident using Helm

Using the Trident Helm Chart you can deploy the Trident operator and install Trident in one step.

Review the installation overview to ensure you’ve met installation prerequisites and selected the correct
installation option for your environment.

Before you begin
In addition to the deployment prerequisites you need Helm version 3.

Steps
1. Add the Astra Trident Helm repository:

42

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://artifacthub.io/packages/helm/netapp-trident/trident-operator
https://v3.helm.sh/

helm repo add netapp-trident https://netapp.github.io/trident-helm-chart

2. Use helm install and specify a name for your deployment and image registry location. Your Trident
and CSl images can be located in one registry or different registries, but all CSl images must be located in
the same registry. In the examples, 23.04. 0 is the version of Astra Trident you are installing.

Images in one registry

helm install <name> netapp-trident/trident-operator —--version
23.04.0 --set imageRegistry=<your-registry> --create-namespace
--namespace <trident-namespace>

Images in different registries

You must append sig-storage to the imageRegistry to use different registry locations.

helm install <name> netapp-trident/trident-operator --version
23.04.0 --set imageRegistry=<your-registry>/sig-storage --set
operatorImage=<your-registry>/netapp/trident-operator:23.04.0 --set
tridentAutosupportImage=<your-registry>/netapp/trident-
autosupport:23.04 --set tridentImage=<your-
registry>/netapp/trident:23.04.0 --create-namespace --namespace
<trident-namespace>

@ If you already created a namespace for Trident, the --create-namespace parameter will
not create an additional namespace.

You can use helm list to review installation details such as name, namespace, chart, status, app version,
and revision number.

Pass configuration data during install

There are two ways to pass configuration data during the install:

Option Description

--values (or -f) Specify a YAML file with overrides. This can be
specified multiple times and the rightmost file will take
precedence.

--set Specify overrides on the command line.

For example, to change the default value of debug, run the following --set command where 23.04.0 is the
version of Astra Trident you are installing:

43

helm install <name> netapp-trident/trident-operator --version 23.04.0
--create-namespace --namespace --set tridentDebug=true

Configuration options

This table and the values. yaml file, which is part of the Helm chart, provide the list of keys and their default
values.

Option Description Default
nodeSelector Node labels for pod assignment
podAnnotations Pod annotations
deploymentAnnotations Deployment annotations

tolerations Tolerations for pod assignment

affinity Affinity for pod assignment

tridentControllerPluginNod Additional node selectors for pods.
eSelector Refer to Understanding controller
pods and node pods for details.

tridentControllerPluginTol Overrides Kubernetes tolerations

erations for pods. Refer to Understanding
controller pods and node pods for
details.

tridentNodePluginNodeSelec Additional node selectors for pods.
tor Refer to Understanding controller
pods and node pods for details.

tridentNodePluginToleratio Overrides Kubernetes tolerations

ns for pods. Refer to Understanding
controller pods and node pods for
details.

imageRegistry Identifies the registry for the

trident-operator, trident,
and other images. Leave empty to
accept the default.

imagePullPolicy Sets the image pull policy for the IfNotPresent
trident-operator.

imagePullSecrets Sets the image pull secrets for the
trident-operator, trident,
and other images.

kubeletDir Allows overriding the host location "/var/lib/kubelet™
of kubelet’s internal state.

operatorLogLevel Allows the |Og level of the Trident "info"
operator to be set to: trace,
debug, info, warn, error, or
fatal.

44

Option

operatorDebug

operatorImage

operatorImageTag

tridentIPvo

tridentK8sTimeout

tridentHttpRequestTimeout

tridentSilenceAutosupport

tridentAutosupportImageTag

tridentAutosupportProxy

tridentLogFormat

tridentDisableAuditLog

tridentLogLevel

tridentDebug

tridentLogWorkflows

tridentLogLayers

tridentImage

tridentImageTag

Description

Allows the log level of the Trident
operator to be set to debug.

Allows the complete override of the
image for trident-operator.

Allows overriding the tag of the
trident-operator image.

Allows enabling Astra Trident to
work in IPv6 clusters.

Overrides the default 30-second
timeout for most Kubernetes API
operations (if non-zero, in
seconds).

Overrides the default 90-second
timeout for the HTTP requests, with
0s being an infinite duration for the
timeout. Negative values are not
allowed.

Allows disabling Astra Trident
periodic AutoSupport reporting.

Allows overriding the tag of the
image for Astra Trident
AutoSupport container.

Allows Astra Trident AutoSupport
container to phone home via an
HTTP proxy.

Sets the Astra Trident logging
format (text or json).

Disables Astra Trident audit logger.

Allows the log level of Astra Trident
to be set to: trace, debug, info,
warn, error, or fatal.

Allows the log level of Astra Trident
to be set to debug.

Allows specific Astra Trident
workflows to be enabled for trace
logging or log suppression.

Allows specific Astra Trident layers
to be enabled for trace logging or
log suppression.

Allows the complete override of the
image for Astra Trident.

Allows overriding the tag of the
image for Astra Trident.

Default

true

false

"9OS"

false

<version>

"text"

true

"info"

false

45

Option Description Default

tridentProbePort Allows overriding the default port
used for Kubernetes
liveness/readiness probes.

windows Allows Astra Trident to be installed false
on Windows worker node.

enableForceDetach Allows enabling the force detach false
feature.

excludePodSecurityPolicy Excludes the operator pod security false
policy from creation.
Understanding controller pods and node pods

Astra Trident runs as a single controller pod, plus a node pod on each worker node in the cluster. The node
pod must be running on any host where you want to potentially mount an Astra Trident volume.

Kubernetes node selectors and tolerations and taints are used to constrain a pod to run on a specific or
preferred node. Using the ControllerPlugin® and NodePlugin, you can specify constraints and overrides.

» The controller plugin handles volume provisioning and management, such as snapshots and resizing.

* The node plugin handles attaching the storage to the node.

What’s next

Now you can create create a backend and storage class, provision a volume, and mount the volume in a pod.

Customize Trident operator installation

The Trident operator allows you to customize Astra Trident installation using the attributes
in the TridentOrchestrator spec. If you want to customize the installation beyond
what TridentOrchestrator arguments allow, consider using tridentctl to
generate custom YAML manifests to modify as needed.

Understanding controller pods and node pods

Astra Trident runs as a single controller pod, plus a node pod on each worker node in the cluster. The node
pod must be running on any host where you want to potentially mount an Astra Trident volume.

Kubernetes node selectors and tolerations and taints are used to constrain a pod to run on a specific or
preferred node. Using the ControllerPlugin® and NodePlugin, you can specify constraints and overrides.

» The controller plugin handles volume provisioning and management, such as snapshots and resizing.

* The node plugin handles attaching the storage to the node.

Configuration options

46

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

spec.namespace is specified in TridentOrchestrator to signify the namespace where
@ Astra Trident is installed. This parameter cannot be updated after Astra Trident is installed.

Attempting to do so causes the TridentOrchestrator status to change to Failed. Astra

Trident is not intended to be migrated across namespaces.

This table details TridentOrchestrator attributes.

Parameter

namespace

debug

enableForceDetach

windows

uselIPvo6

k8sTimeout

silenceAutosupport

autosupportImage

autosupportProxy

uninstall

logFormat

tridentImage

Description

Namespace to install Astra Trident
in

Default

"default"

Enable debugging for Astra Trident false

ontap-san and ontap-san-
economy only.

Works with Kubernetes Non-
Graceful Node Shutdown (NGNS)
to grant cluster administrators
ability to safely migrate workloads
with mounted volumes to new
nodes should a node become
unhealthy.

This is an experimental feature in

23.04. Refer to Details about force
detach for important details.

Setting to true enables installation

on Windows worker nodes.
Install Astra Trident over IPv6
Timeout for Kubernetes operations

Don’'t send autosupport bundles to
NetApp
automatically

The container image for
Autosupport Telemetry

The address/port of a proxy for
sending Autosupport
Telemetry

A flag used to uninstall Astra
Trident

Astra Trident logging format to be
used [text,json]

Astra Trident image to install

false

false

false
30sec
false

"netapp/trident-autosupport:23.07"

"http://proxy.example.com:8888"

false

lltextll

"netapp/trident:23.07"

47

Parameter Description Default

imageRegistry Path to internal registry, of the "k8s.gcr.io/sig-storage" (k8s 1.19+)
format or "quay.io/k8scsi"
<registry

FQDN> [:port] [/subpath]

kubeletDir Path to the kubelet directory on the "/var/lib/kubelet"
host

wipeout Alist of resources to delete to
perform a complete removal of
Astra Trident

imagePullSecrets Secrets to pull images from an
internal registry

imagePullPolicy Sets the image pull policy for the IfNotPresent
the Trident operator. Valid values
are:

Always to always pull the image.

IfNotPresent to pull the image
only if it does not already exist on
the node.

Never to never pull the image.

controllerPluginNodeSelect Additional node selectors for pods. No default; optional
or Follows same format as
pod.spec.nodeSelector.

controllerPluginToleration Overrides Kubernetes tolerations No default; optional
s for pods. Follows the same format
as pod.spec.Tolerations.

nodePluginNodeSelector Additional node selectors for pods. No default; optional
Follows same format as
pod.spec.nodeSelector.

nodePluginTolerations Overrides Kubernetes tolerations ~ No default; optional
for pods. Follows the same format
as pod.spec.Tolerations.

@ For more information on formatting pod parameters, see Assigning Pods to Nodes.

Details about force detach

Force detach is available for ontap-san and ontap-san-economy only. Before enabling force detach, non-
graceful node shutdown (NGNS) must be enabled on the Kubernetes cluster. For more information, refer to
Kubernetes: Non Graceful node shutdown.

Because Astra Trident relies on Kubernetes NGNS, do not remove out-of-service taints
from an unhealthy node until all non-tolerable workloads are rescheduled. Recklessly applying
or removing the taint can jeopardize backend data protection.

48

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/architecture/nodes/#non-graceful-node-shutdown

When the Kubernetes cluster administrator has applied the node . kubernetes.io/out-of-
service=nodeshutdown:NoExecute taint to the node and enableForceDetach is set to true, Astra
Trident will determine the node status and:

1. Cease backend I/O access for volumes mounted to that node.

2. Mark the Astra Trident node object as di rty (not safe for new publications).

The Trident controller will reject new publish volume requests until the node is re-qualified
@ (after having been marked as dirty) by the Trident node pod. Any workloads scheduled

with a mounted PVC (even after the cluster node is healthy and ready) will be not be

accepted until Astra Trident can verify the node clean (safe for new publications).

When node health is restored and the taint is removed, Astra Trident will:

1. Identify and clean stale published paths on the node.

2. If the node is in a cleanable state (the out-of-service taint has been removed and the node is in Ready
state) and all stale, published paths are clean, Astra Trident will readmit the node as clean and allow new
published volumes to the node.

Sample configurations

You can use the attributes mentioned above when defining TridentOrchestrator to customize your
installation.

Example 1: Basic custom configuration

This is an example for a basic custom configuration.

cat deploy/crds/tridentorchestrator cr imagepullsecrets.yaml
apiVersion: trident.netapp.io/vl
kind: TridentOrchestrator
metadata:
name: trident
spec:
debug: true
namespace: trident
imagePullSecrets:
- thisisasecret

49

Example 2: Deploy with node selectors

This example illustrates how Trident can be deployed with node selectors:

apiVersion: trident.netapp.io/vl
kind: TridentOrchestrator
metadata:
name: trident
spec:
debug: true
namespace: trident
controllerPluginNodeSelector:
nodetype: master
nodePluginNodeSelector:
storage: netapp

Example 3: Deploy on Windows worker nodes

This example illustrates deployment on a Windows worker node.

cat deploy/crds/tridentorchestrator cr.yaml
apiVersion: trident.netapp.io/vl
kind: TridentOrchestrator
metadata:
name: trident
spec:
debug: true
namespace: trident

windows: true

Install using tridentctl

Install using tridentctl

You can install Astra Trident using tridentctl. This process applies to installations
where the container images required by Astra Trident are stored either in a private
registry or not. To customize your tridentctl deployment, refer to Customize tridentctl
deployment.

Critical information about Astra Trident 23.04

You must read the following critical information about Astra Trident.

50

Critical information about Astra Trident

* Kubernetes 1.27 is now supported in Trident. Upgrade Trident prior to upgrading Kubernetes.

+ Astra Trident strictly enforces the use of multipathing configuration in SAN environments, with a
recommended value of find multipaths: no in multipath.conf file.

Use of non-multipathing configuration or use of find multipaths: yesor find multipaths:
smart value in multipath.conf file will result in mount failures. Trident has recommended the use of
find multipaths: no since the 21.07 release.

Install Astra Trident using tridentctl

Review the installation overview to ensure you’ve met installation prerequisites and selected the correct
installation option for your environment.

Before you begin

Before you begin installation, log in to the Linux host and verify it is managing a working, supported
Kubernetes cluster and that you have the necessary privileges.

With OpenShift, use oc instead of kubect1 in all of the examples that follow, and log in as
system:admin first by running oc login -u system:adminoroc login -u kube-
admin.

1. Verify your Kubernetes version:

kubectl version

2. Verify cluster administrator privileges:

kubectl auth can-i '"*' '*' —--agll-namespaces

3. Verify you can launch a pod that uses an image from Docker Hub and reach your storage system over
the pod network:

kubectl run -i --tty ping --image=busybox --restart=Never --rm —-- \
ping <management IP>

Step 1: Download the Trident installer package

The Astra Trident installer package creates a Trident pod, configures the CRD objects that are used to
maintain its state, and initializes the CSlI sidecars to perform actions such as provisioning and attaching
volumes to the cluster hosts. Download and extract the latest version of the Trident installer from the Assets
section on GitHub. Update <trident-installer-XX.XX.X.tar.gz> in the example with your selected Astra Trident

51

https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest

version.

wget https://github.com/NetApp/trident/releases/download/v23.04.0/trident-
installer-23.04.0.tar.gz

tar -xf trident-installer-23.04.0.tar.gz
cd trident-installer

Step 2: Install Astra Trident

Install Astra Trident in the desired namespace by executing the tridentctl install command. You can
add additional arguments to specify image registry location.

Standard mode

./tridentctl install -n trident

Images in one registry

./tridentctl install -n trident --image-registry <your-registry>
--—autosupport-image <your-registry>/trident-autosupport:23.04 --trident
-image <your-registry>/trident:23.04.0

Images in different registries

You must append sig-storage to the imageRegistry to use different registry locations.

./tridentctl install -n trident --image-registry <your-registry>/sig-
storage --autosupport-image <your-registry>/netapp/trident-
autosupport:23.04 --trident-image <your-
registry>/netapp/trident:23.04.0

Your installation status should look something like this.

52

INFO Starting Trident installation. namespace=trident
INFO Created service account.

INFO Created cluster role.

INFO Created cluster role binding.

INFO Added finalizers to custom resource definitions.

INFO Created Trident service.

INFO Created Trident secret.

INFO Created Trident deployment.

INFO Created Trident daemonset.

INFO Waiting for Trident pod to start.

INFO Trident pod started. namespace=trident
pod=trident-controller-679648bd45-cv2mx

INFO Waiting for Trident REST interface.

INFO Trident REST interface is up. version=23.04.0
INFO Trident installation succeeded.

Verify the installation

You can verify your installation using pod creation status or tridentctl.

Using pod creation status

You can confirm if the Astra Trident installation completed by reviewing the status of the created pods:

kubectl get pods -n trident

NAME READY STATUS RESTARTS AGE
trident-controller-679648bd45-cv2mx 6/6 Running 0 5m29s
trident-node-linux-vgc8n 2/2 Running 0 5m29s

If the installer does not complete successfully or trident-controller-<generated id>

@ (trident-csi-<generated id> in versions prior to 23.01) does not have a Running status,

the platform was not installed. Use -d to turn on debug mode and troubleshoot the issue.

Using tridentctl

You can use tridentctl to check the version of Astra Trident installed.

53

./tridentctl -n trident version

o fmm e +
| SERVER VERSION | CLIENT VERSION |
fom e frmmm e +
| 23.04.0 | 23.04.0 |
Fom e oo +

Sample configurations

Example 1: Enable Astra Trident to run on Windows nodes

To enable Astra Trident to run on Windows nodes:

tridentctl install --windows -n trident

Example 2: Enable force detach

For more information about force detach, refer to Customize Trident operator installation.

tridentctl install --enable-force-detach=true -n trident

What’s next

Now you can create create a backend and storage class, provision a volume, and mount the volume in a pod.

Customize tridentctl installation

You can use the Astra Trident installer to customize installation.

Learn about the installer

The Astra Trident installer enables you to customize attributes. For example, if you have copied the Trident
image to a private repository, you can specify the image name by using --trident-image. If you have
copied the Trident image as well as the needed CSI sidecar images to a private repository, it might be
preferable to specify the location of that repository by using the --image-registry switch, which takes the
form <registry FQDN>[:port].

If you are using a distribution of Kubernetes, where kubelet keeps its data on a path other than the usual
/var/lib/kubelet, you can specify the alternate path by using --kubelet-dir.

If you need to customize the installation beyond what the installer’s arguments allow, you can also customize

the deployment files. Using the -—generate-custom-yaml parameter creates the following YAML files in the
installer’s setup directory:

54

https://docs.netapp.com/us-en/trident-2304/trident-get-started/..trident-get-started/kubernetes-customize-deploy.html

* trident-clusterrolebinding.yaml
* trident-deployment.yaml

* trident-crds.yaml

* trident-clusterrole.yaml

* trident-daemonset.yaml

* trident-service.yaml

* trident-namespace.yaml

* trident-serviceaccount.yaml

* trident-resourcequota.yaml

After you have generated these files, you can modify them according to your needs and then use --use
-custom-yaml to install your custom deployment.

./tridentctl install -n trident --use-custom-yaml

What’s next?

After you install Astra Trident, you can proceed with creating a backend, creating a
storage class, provisioning a volume, and mounting the volume in a pod.
Step 1: Create a backend

You can now go ahead and create a backend that will be used by Astra Trident to provision volumes. To do
this, create a backend. json file that contains the necessary parameters. Sample configuration files for
different backend types can be found in the sample-input directory.

See here for more details about how to configure the file for your backend type.

cp sample-input/<backend template>.json backend.json
vi backend.json

55

./tridentctl -n trident create backend -f backend.json

froscscssss==== frosssssassmssme=s frommoeesosscs s e e m s e e e e
fe======s e F

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

foss=ms=m===== foss============= fEmsmesessososssssssssssscsessososs====
s e +

| nas-backend | ontap-nas | 98el9b74-aec7-4a3d-8dcf-128e5033b214 |
online | 0 |

fomm - fomm e o -
T e I+

If the creation fails, something was wrong with the backend configuration. You can view the logs to determine
the cause by running the following command:

./tridentctl -n trident logs

After you address the problem, simply go back to the beginning of this step and try again. For more
troubleshooting tips, see the troubleshooting section.

Step 2: Create a storage class

Kubernetes users provision volumes by using persistent volume claims (PVCs) that specify a storage class by
name. The details are hidden from the users, but a storage class identifies the provisioner that is used for that
class (in this case, Trident), and what that class means to the provisioner.

Create a storage class Kubernetes users will specify when they want a volume. The configuration of the class
needs to model the backend that you created in the previous step, so that Astra Trident will use it to provision
new volumes.

The simplest storage class to start with is one based on the sample-input/storage-class-
csi.yaml.templ file that comes with the installer, replacing BACKEND TYPE with the storage driver name.

56

https://kubernetes.io/docs/concepts/storage/storage-classes/

./tridentctl -n trident get backend

e o T bt
o F—————— +

| NAME | STORAGE DRIVER | UulbD

STATE | VOLUMES |

o —— o T et it
- F—m————— +

| nas-backend | ontap-nas | 98el9b74-aec7-4a3d-8dcf-128e5033b214 |
online | 0 |

o —— e it PP T ittt
- F—————— +

cp sample-input/storage-class-csi.yaml.templ sample-input/storage-class-
basic-csi.yaml

Modify = BACKEND TYPE with the storage driver field above (e.g.,
ontap-nas)
vi sample-input/storage-class-basic-csi.yaml

This is a Kubernetes object, so you use kubectl to create it in Kubernetes.

kubectl create -f sample-input/storage-class-basic-csi.yaml

You should now see a basic-csi storage class in both Kubernetes and Astra Trident, and Astra Trident should
have discovered the pools on the backend.

57

kubectl get sc basic-csi
NAME PROVISIONER AGE

basic-csi csi.trident.netapp.io 15h

./tridentctl -n trident get storageclass basic-csi -o json

{

"items": [
{
"Config": {
"version": "1V,
"name": "basic-csi",
"attributes": {
"backendType": "ontap-nas"
by
"storagePools": null,

"additionalStoragePools": null
by
"storage": {
"ontapnas 10.0.0.1": [
"aggrl",
"aggrz",
"aggr3",
"aggrd"

Step 3: Provision your first volume

Now you are ready to dynamically provision your first volume. This is done by creating a Kubernetes persistent
volume claim (PVC) object.

Create a PVC for a volume that uses the storage class that you just created.

See sample-input/pvc-basic-csi.yaml for an example. Make sure the storage class name matches the
one that you created.

58

https://kubernetes.io/docs/concepts/storage/persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes

kubectl create -f sample-input/pvc-basic-csi.yaml

kubectl get pvc —--watch

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

basic Pending

basic 1s

basic Pending pvc-3acb0dlc-blae-11e9-8d9f-5254004dfdb7 0

basic 5s

basic Bound pvc-3acb0dlc-blae-11e9-8d9£f-5254004dfdb7 1G1i

RWO basic s

Step 4: Mount the volumes in a pod

Now let us mount the volume. We will launch an nginx pod that mounts the PV under
/usr/share/nginx/html.

cat << EOF > task-pv-pod.yaml
kind: Pod
apiVersion: vl
metadata:
name: task-pv-pod
spec:
volumes:
- name: task-pv-storage
persistentVolumeClaim:
claimName: basic
containers:
- name: task-pv-container
image: nginx
ports:
- containerPort: 80
name: "http-server"
volumeMounts:
- mountPath: "/usr/share/nginx/html"
name: task-pv-storage
EQOF
kubectl create -f task-pv-pod.yaml

Wait for the pod to start
kubectl get pod --watch

Verify that the volume is mounted on /usr/share/nginx/html
kubectl exec -it task-pv-pod -- df -h /usr/share/nginx/html

Delete the pod
kubectl delete pod task-pv-pod

At this point, the pod (application) no longer exists but the volume is still there. You can use it from another pod
if you want to.
To delete the volume, delete the claim:

kubectl delete pvc basic

You can now do additional tasks, such as the following:

+ Configure additional backends.

» Create additional storage classes.

60

Manage Astra Trident
Upgrade Astra Trident

Upgrade Astra Trident

Astra Trident follows a quarterly release cadence, delivering four major releases every
calendar year. Each new release builds on top of the previous releases, providing new
features and performance enhancements as well as bug fixes and improvements. We
encourage you to upgrade at least once a year to take advantage of the new features in
Astra Trident.

Considerations before upgrading

When upgrading to the latest release of Astra Trident, consider the following:

» There should be only one Astra Trident instance installed across all the namespaces in a given Kubernetes
cluster.

« Starting with Trident 20.01, only the beta release of volume snapshots is supported. Kubernetes
administrators should take care to safely back up or convert the alpha snapshot objects to beta to retain
the legacy alpha snapshots.

o CSI Volume Snapshots is now a feature that is GA, beginning with Kubernetes 1.20. Before upgrading,
you should remove alpha snapshot CRDs using tridentctl obliviate alpha-snapshot-crd
to delete the CRDs for the alpha snapshot spec.

o The beta release of volume snapshots introduces a modified set of CRDs and a snapshot controller,
both of which should be set up before upgrading Astra Trident.

o For details, refer to What You Need To Know Before Upgrading Your Kubernetes Cluster.

 All upgrades from versions 19.04 and earlier require the migration of Astra Trident metadata from it own
etcd to CRD objects. Ensure you check the documentation specific to your Astra Trident release to
understand how the upgrade works.

* When upgrading, it is important you provide parameter. fsType in StorageClasses used by Astra
Trident. You can delete and re-create StorageClasses without disrupting pre-existing volumes.

> This is a requirement for enforcing security contexts for SAN volumes.

° The sample input directory contains examples, such as storage-class-basic.yaml.templ and
storage-class-bronze-default.yaml. For more information, see Known Issues.

Step 1: Select a version

Astra Trident versions follow a date-based YY .MM naming convention, where "YY" is the last two digits of the
year and "MM" is the month. Dot releases follow a YY.MM. X convention, where "X" is the patch level. You will
select the version to upgrade to based on the version you are upgrading from.

* You can perform a direct upgrade to any target release that is within a four-release window of your installed
version. For example, you can upgrade to 23.04 from 22.04 (including any dot releases, such as 22.04.1)
directly.

* If you have an earlier release, you should perform a multi-step upgrade using the documentation of the
respective release for specific instructions. This requires you to first upgrade to the most recent release

61

https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://netapp.io/2020/01/30/alpha-to-beta-snapshots/
https://docs.netapp.com/us-en/trident/earlier-versions.html
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://github.com/NetApp/trident/tree/master/trident-installer/sample-input
https://github.com/NetApp/trident/blob/master/trident-installer/sample-input/storage-class-samples/storage-class-basic.yaml.templ
https://github.com/NetApp/trident/blob/master/trident-installer/sample-input/storage-class-samples/storage-class-bronze-default.yaml

that fits your four-release window. For example, if you are running 18.07 and want to upgrade to the 20.07
release, then follow the multi-step upgrade process as given below:

1. First upgrade from 18.07 to 19.07.
2. Then upgrade from 19.07 to 20.07.

When upgrading using the Trident operator on OpenShift Container Platform, you should
upgrade to Trident 21.01.1 or later. The Trident operator released with 21.01.0 contains a known
issue that has been fixed in 21.01.1. For more details, see the issue details on GitHub.

Step 2: Determine the original installation method

Generally, you should upgrade using the same method you used for the initial installation, however you can
move between installation methods.

To determine which version you used to originally install Astra Trident:

1. Use kubectl get pods - trident to examine the pods.
° If there is no operator pod, Astra Trident was installed using tridentctl.

o If there is an operator pod, Astra Trident was installed using the Trident operator either manually or
using Helm.

2. If there is an operator pod, use kubectl describe tproc trident to determine if Astra Trident was
installed using Helm.

o If there is a Helm label, Astra Trident was installed using Helm.

o If there is no Helm label, Astra Trident was installed manually using the Trident operator.

Step 3: Select an upgrade method

There are two methods to upgrade Astra Trident.

When to upgrade using the operator

You can upgrade using the Trident operator if:

* You originally installed Astra Trident using the operator or using tridentctl.
* You uninstalled CSI Trident and the metadata from the installation persists.

* You have a CSl-based Astra Trident installation. All releases from 19.07 on are CSl-based. You can
examine the pods in your Trident namespace to verify your version.

° Pod naming in versions earlier than 23.01 uses: trident-csi-*

> Pod naming in 23.01 and later uses:
" trident-controller-<generated id> forthe controller pod
* trident-node-<operating system>-<generated id> for the node pods
" trident-operator-<generated id> forthe operator pod

@ Do not use the operator to upgrade Trident if you are using an etcd-based Trident release
(19.04 or earlier).

62

https://github.com/NetApp/trident/issues/517

When to upgrade using tridentctl

You can upgrade using tridentctl if you originally installed Astra Trident using “tridenctl’.

tridentctl is the conventional method of installing Astra Trident and provides the most options for those
requiring complex customization. For more details, refer to Choose your installation method.

Changes to the operator

The 21.01 release of Astra Trident introduced architectural changes to the operator:

» The operator is now cluster-scoped. Previous instances of the Trident operator (versions 20.04 through
20.10) were namespace-scoped. An operator that is cluster-scoped is advantageous for the following
reasons:

> Resource accountability: The operator now manages resources associated with an Astra Trident
installation at the cluster level. As part of installing Astra Trident, the operator creates and maintains
several resources by using ownerReferences. Maintaining ownerReferences on cluster-scoped
resources can throw up errors on certain Kubernetes distributors such as OpenShift. This is mitigated
with a cluster-scoped operator. For auto-healing and patching Trident resources, this is an essential
requirement.

> Cleaning up during uninstallation: A complete removal of Astra Trident would require all associated
resources to be deleted. A namespace-scoped operator might experience issues with the removal of
cluster-scoped resources (such as the clusterRole, ClusterRoleBinding and PodSecurityPolicy) and
lead to an incomplete clean-up. A cluster-scoped operator eliminates this issue. Users can completely
uninstall Astra Trident and install afresh if needed.

* TridentProvisioner is now replaced with TridentOrchestrator as the Custom Resource used to
install and manage Astra Trident. In addition, a new field is introduced to the TridentOrchestrator
spec. Users can specify that the namespace Trident must be installed/upgraded from using the
spec.namespace field. You can take a look at an example here.

Upgrade with the operator

You can easily upgrade an existing Astra Trident installation using the operator either
manually or using Helm.

Upgrade using the Trident operator

Generally, you should upgrade Astra Trident using the same method that was used to originally install it.
Review Select an upgrade method before attempting to upgrade with the Trident operator.

When upgrading from an instance of Astra Trident installed using the namespace-scoped
operator (versions 20.07 through 20.10), the Trident operator automatically:

* Migrates tridentProvisioner to a tridentOrchestrator object with the same

@ name,

* Deletes TridentProvisioner objects and the tridentprovisioner CRD
» Upgrades Astra Trident to the version of the cluster-scoped operator being used

* Install Astra Trident same namespace where it was originally installed

63

https://docs.netapp.com/us-en/trident-2304/trident-managing-k8s/..trident-get-started/kubernetes-deploy.html#choose-your-installation-method
https://github.com/NetApp/trident/blob/stable/v21.01/deploy/crds/tridentorchestrator_cr.yaml

Upgrade a cluster-scoped Trident operator installation

You can upgrade a cluster-scoped Trident operator installation. All Astra Trident versions 21.01 and above use
a cluster-scoped operator.

Before you begin
Ensure you are using a Kubernetes cluster running a supported Kubernetes version.

Steps
1. Verify your Astra Trident version:

./tridentctl -n trident version

2. Delete the Trident operator that was used to install the current Astra Trident instance. For example, if you
are upgrading from 22.01, run the following command:

kubectl delete -f 22.01/trident-installer/deploy/bundle.yaml -n trident

3. If you customized your initial installation using TridentOrchestrator attributes, you can edit the
TridentOrchestrator object to modify the installation parameters. This might include changes made to
specify mirrored Trident and CSI image registries for offline mode, enable debug logs, or specify image pull
secrets.

4. Install Astra Trident using the correct bundle YAML file for your environment and Astra Trident version. For
example, if you are installing Astra Trident 23.04 for Kubernetes 1.27, run the following command:

kubectl create -f 23.04.0/trident-installer/deploy/bundle post 1 25.yaml
-n trident

Trident provides a bundle file that can be used to install the operator and create associated
objects for your Kubernetes version.

o For clusters running Kubernetes 1.24 or earlier, use bundle_pre 1 25.yaml.

o For clusters running Kubernetes 1.25 or later, use bundle_post_1_25.yaml.

Results

The Trident operator will identify an existing Astra Trident installation and upgrade it to the same version as the
operator.

Upgrade a namespace-scoped operator installation

You can upgrade from an instance of Astra Trident installed using the namespace-scoped operator (versions
20.07 through 20.10) to a cluster-scoped operator installation.

Before you begin

You need the bundle YAML file used to deploy the namespace-scoped operator from
https://github.com/NetApp/trident/tree/stable/vXX.XX/deploy/BUNDLE.YAML where

64

https://github.com/NetApp/trident/tree/stable/v23.04/deploy/bundle_pre_1_25.yaml
https://github.com/NetApp/trident/tree/stable/v23.04/deploy/bundle_post_1_25.yaml

vXX. XX is the version number and BUNDLE . YAML is the bundle YAML file name.

Steps

1. Verify the TridentProvisioner status of the existing Trident installation is ITnstalled.

kubectl describe tprov trident -n trident | grep Message: -A 3

Message: Trident installed
Status: Installed
Version: v20.10.1

@ If status shows Updating, ensure you resolve it before proceeding. For a list of possible
status values, see here.

2. Create the TridentOrchestrator CRD by using the manifest provided with the Trident installer.

Download the release required [23.04.0]

mkdir 23.04.0

cd 23.04.0

wget
https://github.com/NetApp/trident/releases/download/v23.04.0/trident-
installer-23.04.0.tar.gz

tar -xf trident-installer-23.04.0.tar.gz

cd trident-installer

kubectl create -f

deploy/crds/trident.netapp.io tridentorchestrators crd postl.l6.yaml

3. Delete the namespace-scoped operator by using its manifest.

a. Ensure you are in the right directory.

pwd
/root/20.10.1/trident-installer

b. Delete the namespace-scoped operator.

https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy-operator.html

kubectl delete -f deploy/<BUNDLE.YAML> -n trident

serviceaccount "trident-operator" deleted
clusterrole.rbac.authorization.k8s.io "trident-operator" deleted
clusterrolebinding.rbac.authorization.k8s.io "trident-operator"
deleted

deployment.apps "trident-operator" deleted
podsecuritypolicy.policy "tridentoperatorpods" deleted

c¢. Confirm the Trident operator was removed.

kubectl get all -n trident

NAME READY STATUS RESTARTS AGE

pod/trident-csi-68d979fb85-dsrmn 6/6 Running 12 99d

pod/trident-csi-8jfhf 2/2 Running 6 105d
pod/trident-csi-jtnjz 2/2 Running 6 105d
pod/trident-csi-lcxvh 2/2 Running 8 105d
NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT (S) AGE

service/trident-csi ClusterIP 10.108.174.125 <none>
34571/TCP, 9220/TCP 105d

NAME DESIRED CURRENT READY UP-TO-DATE
AVAILABLE NODE SELECTOR AGE
daemonset.apps/trident-csi 3 3 3 3

3 kubernetes.io/arch=amdé64, kubernetes.io/os=1linux 105d
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/trident-csi 1/1 1 1 105d
NAME DESIRED CURRENT READY
AGE

replicaset.apps/trident-csi-68d979fb85 1 1 1

105d

4. (Optional) If the install parameters need to be modified, update the TridentProvisioner spec. This can
include changes such as changing: the values for tridentImage, autosupportImage, private image
repository, and providing imagePullSecrets) after deleting the namespace-scoped operator and before
installing the cluster-scoped operator. For a complete list of parameters that can be updated, refer to the
configuration options.

66

https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-customize-deploy.html#configuration-options

kubectl patch tprov <trident-provisioner-name> -n <trident-namespace>

-—type=merge -p '{"spec":{"debug":true}}'

5. Install the Trident cluster-scoped operator.

a. Ensure you are in the correct directory.

pwd
/root/23.04.0/trident-installer

b. Install the cluster-scoped operator in the same namespace.

Trident provides a bundle file that can be used to install the operator and create
associated objects for your Kubernetes version.

= For clusters running Kubernetes 1.24 or earlier, use bundle_pre_1_25.yaml.

= For clusters running Kubernetes 1.25 or later, use bundle post 1 25.yaml.

kubectl create -f deploy/<BUNDLE.YAML>

serviceaccount/trident-operator created
clusterrole.rbac.authorization.k8s.io/trident-operator created
clusterrolebinding.rbac.authorization.k8s.io/trident-operator created
deployment.apps/trident-operator created
podsecuritypolicy.policy/tridentoperatorpods created

#A11l tridentProvisioners will be removed, including the CRD itself
kubectl get tprov -n trident

Error from server (NotFound): Unable to list "trident.netapp.io/vl,
Resource=tridentprovisioners": the server could not find the
requested resource (get tridentprovisioners.trident.netapp.io)

ftridentProvisioners are replaced by tridentOrchestrator
kubectl get torc

NAME AGE

trident 13s

C. Examine the Trident pods in the namespace. The trident-controller and pod names reflect the
naming convention introduced in 23.01.

https://github.com/NetApp/trident/tree/stable/v23.04/deploy/bundle_pre_1_25.yaml
https://github.com/NetApp/trident/tree/stable/v23.04/deploy/bundle_post_1_25.yaml

kubectl get pods -n trident

NAME READY STATUS RESTARTS
AGE

trident-controller-79df798bdc-m79dc 6/6 Running 0

Im4dls

trident-node-linux-xrst8 2/2 Running 0

Imdls

trident-operator-5574dbbc68-nthjv 1/1 Running 0

1Im52s

d. Confirm Trident has been updated to the intended version.

kubectl describe torc trident | grep Message -A 3

Message: Trident installed
Namespace: trident

Status: Installed
Version: v23.04.0

Upgrade a Helm-based operator installation

Perform the following steps to upgrade a Helm-based operator installation.

When upgrading a Kubernetes cluster from 1.24 to 1.25 or later that has Astra Trident installed,

(D you must update values.yaml to set excludePodSecurityPolicy to true or add --set
excludePodSecurityPolicy=true tothe helm upgrade command before you can
upgrade the cluster.

Steps
1. Download the latest Astra Trident release.

2. Use the helm upgrade command where trident-operator-23.04.0.tgz reflects the version that
you want to upgrade to.

helm upgrade <name> trident-operator-23.04.0.tgz

68

If you set any non-default options during the initial installation (such as specifying private,
mirrored registries for Trident and CSI images), use —-set to ensure those options are
included in the upgrade command, otherwise the values will reset to default.

(D For example, to change the default value of tridentDebug, run the following command:

helm upgrade <name> trident-operator-23.04.0-custom.tgz --set
tridentDebug=true

3. Run helm 1list to verify that the chart and app version have both been upgraded. Run tridentctl
logs to review any debug messages.

Results

The Trident operator will identify an existing Astra Trident installation and upgrade it to the same version as the
operator.

Upgrade from a non-operator installation

You can upgrade to the latest release of the Trident operator from a tridentctl installation.

Steps
1. Download the latest Astra Trident release.

Download the release required [23.04.0]

mkdir 23.04.0

cd 23.04.0

wget
https://github.com/NetApp/trident/releases/download/v22.01.1/trident-
installer-23.04.0.tar.gz

tar -xf trident-installer-23.04.0.tar.gz

cd trident-installer

2. Create the tridentorchestrator CRD from the manifest.

kubectl create -f
deploy/crds/trident.netapp.io tridentorchestrators crd postl.l6.yaml

3. Deploy the cluster-scoped operator in the same namespace.

69

kubectl create -f deploy/<BUNDLE.YAML>

serviceaccount/trident-operator created

clusterrole.rbac.authorization.k8s.io/trident-operator created

clusterrolebinding.rbac.authorization.k8s.io/trident-operator created

deployment.apps/trident-operator created
podsecuritypolicy.policy/tridentoperatorpods created

#Examine the pods in the Trident namespace

NAME READY STATUS RESTARTS
trident-controller-79df798bdc-m79dc 6/6 Running 0
trident-node-linux-xrst8 2/2 Running 0
trident-operator-5574dbbc68-nthijv 1/1 Running 0

4. Create a TridentOrchestrator CR for installing Astra Trident.

cat deploy/crds/tridentorchestrator cr.yaml
apiVersion: trident.netapp.io/vl
kind: TridentOrchestrator
metadata:
name: trident
spec:
debug: true
namespace: trident

kubectl create -f deploy/crds/tridentorchestrator cr.yaml

#Examine the pods in the Trident namespace

NAME READY STATUS RESTARTS
trident-csi-79d£f798bdc-m79dc 6/6 Running 0
trident-csi-xrst8 2/2 Running 0
trident-operator-5574dbbc68-nthijv 1/1 Running 0

5. Confirm Trident was upgraded to the intended version.

kubectl describe torc trident | grep Message -A 3

Message: Trident installed
Namespace: trident
Status: Installed
Version: v23.04.0

Results

70

AGE
150d
150d
1m30s

AGE
Im
Im
5m4dls

The existing backends and PVCs are automatically available.

Upgrade with tridentctl

You can easily upgrade an existing Astra Trident installation using tridentctl.

Upgrade Astra Trident using tridentctl

Uninstalling and reinstalling Astra Trident acts as an upgrade. When you uninstall Trident, the Persistent
Volume Claim (PVC) and Persistent Volume (PV) used by the Astra Trident deployment are not deleted. PVs
that have already been provisioned will remain available while Astra Trident is offline, and Astra Trident will
provision volumes for any PVCs that are created in the interim once it is back online.

Before you begin

Review Select an upgrade method before upgrading using tridentctl.

Steps

1. Run the uninstall command in tridentctl to remove all of the resources associated with Astra Trident
except for the CRDs and related objects.

./tridentctl uninstall -n <namespace>

2. Reinstall Astra Trident. Refer to Install Astra Trident using tridentctl.

@ Do not interrupt the upgrade process. Ensure the installer runs to completion.

Upgrade volumes using tridentctl

After upgrade, you can make use of the rich set of features that are available in newer Trident releases (such
as, On-Demand Volume Snapshots), you can upgrade the volumes using the tridentctl upgrade
command.

If there are legacy volumes, you should upgrade them from a NFS or iSCSI type to the CSl type to use the
complete set of new features in Astra Trident. A legacy PV that has been provisioned by Trident supports the
traditional set of features.

Before you begin
Consider the following before deciding to upgrade volumes to the CSlI type:

* You might not need to upgrade all the volumes. Previously created volumes will continue to be accessible
and function normally.

« APV can be mounted as part of a deployment/StatefulSet when upgrading. It is not required to bring down
the deployment/StatefulSet.

* You cannot attach a PV to a standalone pod when upgrading. You should shut down the pod before
upgrading the volume.

* You can upgrade only a volume that is bound to a PVC. Volumes that are not bound to PVCs should be
removed and imported before upgrading.

Steps

71

https://docs.netapp.com/us-en/trident-2304/trident-managing-k8s/..trident-get-started/kubernetes-deploy-tridentctl.html

1. Run kubectl get pv to list the PVs.

kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY
STATUS CLAIM STORAGECLASS REASON AGE
default-pvc-1-a8475 1073741824 RWO Delete
Bound default/pvc-1 standard 19h
default-pvc-2-a8486 1073741824 RWO Delete
Bound default/pvc-2 standard 19h
default-pvc-3-a849e 1073741824 RWO Delete
Bound default/pvec-3 standard 19h
default-pvc-4-a84de 1073741824 RWO Delete
Bound default/pvc-4 standard 19h
trident 2Gi RWO Retain
Bound trident/trident 19h

There are currently four PVs that have been created by Trident 20.07, using the netapp.io/trident
provisioner.

2. Run kubectl describe pv to get the details of the PV.

kubectl describe pv default-pvc-2-a8486

Name :
Labels:
Annotations:

Finalizers:
StorageClass:
Status:
Claim:

Reclaim Policy:

Access Modes:
VolumeMode:
Capacity:
Node Affinity:
Message:
Source:
Type:
Server:
Path:
ReadOnly:

default-pvc-2-a8486

<none>

pv.kubernetes.io/provisioned-by: netapp.io/trident
volume.beta.kubernetes.io/storage-class: standard
[kubernetes.io/pv-protection]

standard

Bound

default/pvc-2

Delete

RWO

Filesystem

1073741824

<none>

NFS (an NFS mount that lasts the lifetime of a pod)
10.xXxX.XX.XX

/trid 1907 alpha default pvc 2 a8486

false

The PV was created by using the netapp.io/trident provisioner and is of the type NFS. To support all
the new features provided by Astra Trident, this PV should be upgraded to the CSI type.

72

3. Runthe tridentctl upgrade volume <name-of-trident-volume>command to upgrade a
legacy Astra Trident volume to the CSI spec.

./tridentctl get volumes -n trident

e +——— e ———— t———

it ettt e L e e e P e e o o +

| NAME | SIZE | STORAGE CLASS | PROTOCOL |

BACKEND UUID | STATE | MANAGED |

e o e
e o —— +

| default-pvc-2-a8486 | 1.0 GiB | standard | file | cba6foad-
b052-423b-80d4-8fb491ald4a?22 | online | true |

| default-pvc-3-a849%9e | 1.0 GiB | standard | file | cSa6foad-
b052-423b-80d4-8fb491ald4a22 | online | true |

| default-pvc-1-a8475 | 1.0 GiB | standard | file | cSa6foad-
b052-423b-80d4-8fb491ald4a?22 | online | true |

| default-pvc-4-a84de | 1.0 GiB | standard | file | cba6foad-
b052-423b-80d4-8fb491ald4a?22 | online | true |
o - R et

e e o — +

o fomm fom e fom -
- tomm - fom - +

| NAME | SIZE | STORAGE CLASS | PROTOCOL |

BACKEND UUID | STATE | MANAGED |

fom e e pommm -
- fom—————— fom - +

| default-pvc-2-a8486 | 1.0 GiB | standard | file | cba6f6aid-
b052-423b-80d4-8fb491ald4a22 | online | true |
o fom - fom e fomm -

e fomm - fomm e +

4. Run a kubectl describe pv to verify that the volume is a CSl volume.

73

kubectl describe pv default-pvc-2-a8486

Name: default-pvc-2-a8486
Labels: <none>
Annotations: pv.kubernetes.io/provisioned-by: csi.trident.netapp.io
volume.beta.kubernetes.io/storage-class: standard
Finalizers: [kubernetes.io/pv-protection]
StorageClass: standard
Status: Bound
Claim: default/pvc-2
Reclaim Policy: Delete
Access Modes: RWO
VolumeMode: Filesystem
Capacity: 1073741824
Node Affinity: <none>
Message:
Source:
Type: CSI (a Container Storage Interface (CSI) volume
source)
Driver: csi.trident.netapp.io
VolumeHandle: default-pvc-2-a8486
ReadOnly: false
VolumeAttributes: backendUUID=c5a6f6a4-b052-423b-80d4~-
8fb491alda22

internalName=trid 1907 alpha default pvc 2 a8486

Events:

name=default-pvc-2-a8486
protocol=file
<none>

Uninstall Astra Trident

Depending on how Astra Trident is installed, there are multiple options to uninstall it.

Uninstall by using Helm

If you installed Astra Trident by using Helm, you can uninstall it by using helm uninstall.

74

#List the Helm release corresponding to the Astra Trident install.
helm 1ls -n trident

NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION

trident trident 1 2021-04-20
00:26:42.417764794 +0000 UTC deployed trident-operator-21.07.1
21.07.1

#Uninstall Helm release to remove Trident
helm uninstall trident -n trident
release "trident" uninstalled

Uninstall by using the Trident operator

If you installed Astra Trident by using the operator, you can uninstall it by doing one of the following:

* Edit TridentOrchestrator to set the uninstall flag: You can edit TridentOrchestrator and set
spec.uninstall=true. Edit the TridentOrchestrator CR and set the uninstall flag as shown
below:

kubectl patch torc <trident-orchestrator-name> --type=merge -p
"{"spec":{"uninstall":true}}'

When the uninstall flag is set to true, the Trident operator uninstalls Trident, but does not remove the
TridentOrchestrator itself. You should clean up the TridentOrchestrator and create a new one if you want to
install Trident again.

* Delete TridentOrchestrator: By removing the TridentOrchestrator CR that was used to deploy
Astra Trident, you instruct the operator to uninstall Trident. The operator processes the removal of
TridentOrchestrator and proceeds to remove the Astra Trident deployment and daemonset, deleting
the Trident pods it had created as part of the installation.

To completely remove Astra Trident (including the CRDs it creates) and effectively wipe the slate clean, you
can edit TridentOrchestrator to pass the wipeout option. See the following example:

kubectl patch torc <trident-orchestrator-name> --type=merge -p
"{"spec":{"wipeout":["crds"],"uninstall":true}}"

This uninstalls Astra Trident completely and clears all metadata related to the backends and volumes it
manages. Subsequent installations are treated as fresh installations.

You should only consider wiping out the CRDs when performing a complete uninstallation. This
cannot be undone. Do not wipe out the CRDs unless you are looking to start over and
create a fresh Astra Trident installation.

75

Uninstall by using tridentctl

Run the uninstall command in tridentctl as follows to removes all of the resources associated with
Astra Trident except for the CRDs and related objects, thereby making it easy to run the installer again to
update to a more recent version.

./tridentctl uninstall -n <namespace>

To perform a complete removal of Astra Trident, you should remove the finalizers for the CRDs created by
Astra Trident and delete the CRDs.

Downgrade Astra Trident

Learn about the steps involved in downgrading to an earlier version of Astra Trident.

When to downgrade
You might consider downgrading for various reasons, such as the following:

» Contingency planning

* Immediate fix for bugs observed as a result of an upgrade

» Dependency issues, unsuccessful and incomplete upgrades
You should consider a downgrade when moving to a Astra Trident release that uses CRDs. Because Astra
Trident uses CRDs for maintaining state, all storage entities created (backends, storage classes, PV, and
volume snapshots) have associated CRD objects instead of data written into the trident PV (used by the

earlier installed version of Astra Trident). Newly created PVs, backends, and storage classes are all maintained
as CRD objects.

Only attempt downgrade for a version of Astra Trident that runs using CRDs (19.07 and later). This ensures
operations performed on the current Astra Trident release are visible after the downgrade occurs.

When not to downgrade

You should not downgrade to a release of Trident that uses etcd to maintain state (19.04 and earlier). All
operations performed with the current Astra Trident release are not reflected after the downgrade. Newly
created PVs are not usable when moving back to an earlier version. Changes made to objects such as
backends, PVs, storage classes, and volume snapshots (created/updated/deleted) are not visible to Astra
Trident when moving back to an earlier version. Going back to an earlier version does not disrupt access for
PVs that were already created by using the older release, unless they have been upgraded.

Downgrade process when Astra Trident is installed by using the operator

For installations done using the Trident Operator, the downgrade process is different and does not require the
use of tridentctl.

For installations done using the Trident operator, Astra Trident can be downgraded to either of the following:

» Aversion that is installed using the namespace-scoped operator (20.07 - 20.10).

76

« Aversion that is installed using the cluster-scoped operator (21.01 and later).

Downgrade to cluster-scoped operator

To downgrade Astra Trident to a release that uses the cluster-scoped operator, follow the steps mentioned
below.

Steps
1. Uninstall Astra Trident. Do not delete the CRDs unless you want to completely remove an existing
installation.

2. The Trident operator can be deleted by using the operator manifest associated with your version of Trident.
For example, https://github.com/NetApp/trident/tree/stable/vXX.XX
/deploy/bundle.yaml where vXX. XX is the version number (for example v22.10) and bundle. yaml
is the bundle YAML file name.

3. Continue downgrading by installing the desired version of Astra Trident. Follow the documentation for the
desired release.

Downgrade to namespace-scoped operator

This section summarizes the steps involved in downgrading to an Astra Trident release that falls in the range
20.07 through 20.10, which will be installed using the namespace-scoped operator.

Steps

1. Uninstall Astra Trident. Do not wipeout the CRDs unless you want to completely remove an existing
installation.
Make sure the tridentorchestrator is deleted.

#Check to see if there are any tridentorchestrators present
kubectl get torc
NAME AGE
trident 20h

#Looks like there is a tridentorchestrator that needs deleting
kubectl delete torc trident
tridentorchestrator.trident.netapp.io "trident" deleted

2. The Trident operator can be deleted by using the operator manifest associated with your version of Trident.
For example, https://github.com/NetApp/trident/tree/stable/vXX.XX
/deploy/bundle.yaml where vxX. XX is the version number (for example v22.10) and bundle. yaml
is the bundle YAML file name.

3. Delete the tridentorchestrator CRD.

77

#Check to see if " tridentorchestrators.trident.netapp.io” CRD is
present and delete it.

kubectl get crd tridentorchestrators.trident.netapp.io

NAME CREATED AT
tridentorchestrators.trident.netapp.io 2021-01-21T21:11:37%

kubectl delete crd tridentorchestrators.trident.netapp.io

customresourcedefinition.apiextensions.k8s.io
"tridentorchestrators.trident.netapp.io" deleted

Astra Trident has been uninstalled.

4. Continue downgrading by installing the desired version. Follow the documentation for the desired release.

Downgrade by using Helm

To downgrade, use the helm rollback command. See the following example:

helm rollback trident [revision #]

Downgrade process when Astra Trident is installed by using tridentctl

If you installed Astra Trident by using tridentctl, the downgrade process involves the following steps. This
sequence walks you through the downgrade process to move from Astra Trident 21.07 to 20.07.

(D Before beginning the downgrade, you should take a snapshot of your Kubernetes cluster’s
etcd. This enables you to back up the current state of Astra Trident’'s CRDs.

Steps

1. Make sure that Trident is installed by using tridentctl. If you are unsure about how Astra Trident is
installed, run this simple test:

a. List the pods present in the Trident namespace.

b. Identify the version of Astra Trident running in your cluster. You can either use tridentctl or take a
look at the image used in the Trident pods.

C. If you do not see a tridentOrchestrator, (or)a tridentprovisioner, (or) a pod named
trident-operator-xxxxxxxxxx-xxxxx, Astra Trident is installed with tridentctl.

2. Uninstall Astra Trident with the existing tridentct1 binary. In this case, you will uninstall with the 21.07
binary.

78

tridentctl version -n trident

fom e o +
| SERVER VERSION | CLIENT VERSION |
Fom e o m e +
| 21.07.0 | 21.07.0 |
fom e oo +

tridentctl uninstall

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

Deleted
Deleted
Deleted
Deleted
Deleted
Deleted
Deleted
Deleted

Trident
Trident
Trident
Trident
cluster
cluster

service

-n trident
deployment.
daemonset.
service.
secret.

role binding.
role.
account.

pod security policy.

podSecurityPolicy=tridentpods

INFO The uninstaller did not delete Trident's namespace in case it is

going to be reused.

INFO Trident uninstallation succeeded.

3. After this is complete, obtain the Trident binary for the desired version (in this example, 20.07), and use it
to install Astra Trident. You can generate custom YAMLs for a customized installation if needed.

cd 20.07/trident-installer/
./tridentctl install -n trident-ns
INFO Created installer service account.

serviceaccount=trident-installer

INFO Created installer cluster role.

installer

clusterrole=trident-

INFO Created installer cluster role binding.

clusterrolebinding=trident-installer

INFO Created installer configmap.

installer

configmap=trident-

INFO Deleted installer cluster role binding.
INFO Deleted installer cluster role.
INFO Deleted installer service account.

The downgrade process is complete.

79

Use Astra Trident

Prepare the worker node

All worker nodes in the Kubernetes cluster must be able to mount the volumes you have
provisioned for your pods. To prepare the worker nodes, you must install NFS or iSCSI
tools based on your driver selection.

Selecting the right tools

If you are using a combination of drivers, you should install NFS and iSCSI tools.

NFS tools

Install the NFS tools if you are using: ontap-nas, ontap-nas-economy, ontap-nas-flexgroup, azure-
netapp-files, gcp-cvs

iSCSI tools

Install the iISCSI tools if you are using: ontap-san, ontap-san-economy, solidfire-san

@ Recent versions of RedHat CoreOS have NFS and iSCSI installed by default.

Node service discovery

Astra Trident attempts to automatically detect if the node can run iISCSI or NFS services.

Node service discovery identifies discovered services but does not guarantee services are
properly configured. Conversely, the absence of a discovered service does not guarantee the
volume mount will fail.

Review events
Astra Trident creates events for the node to identify the discovered services. To review these events, run:

kubectl get event -A --field-selector involvedObject.name=<Kubernetes node

name>

Review discovered services

Astra Trident identifies services enabled for each node on the Trident node CR. To view the discovered
services, run:

tridentctl get node -o wide -n <Trident namespace>

NFS volumes

Install the NFS tools using the commands for your operating system. Ensure the NFS service is started up
during boot time.

80

RHEL 8+

sudo yum install -y nfs-utils

Ubuntu

sudo apt-get install -y nfs-common

@ Reboot your worker nodes after installing the NFS tools to prevent failure when attaching
volumes to containers.

iSCSI volumes

Astra Trident can automatically establish an iSCSI session, scan LUNs, and discover multipath devices, format
them, and mount them to a pod.

iSCSI self-healing capabilities

For ONTAP systems, Astra Trident runs iSCSI self-healing every five minutes to:

1. Identify the desired iSCSI session state and the current iISCSI session state.

2. Compare the desired state to the current state to identify needed repairs. Astra Trident determines repair
priorities and when to preempt repairs.

3. Perform repairs required to return the current iSCSI session state to the desired iSCSI session state.

Logs of self-healing activity are located in the trident-main container on the respective
Daemonset pod. To view logs, you must have set debug to "true" during Astra Trident
installation.

Astra Trident iSCSI self-healing capabilities can help prevent:

« Stale or unhealthy iSCSI sessions that could occur after a network connectivity issue. In the case of a stale
session, Astra Trident waits seven minutes before logging out to reestablish the connection with a portal.

For example, if CHAP secrets were rotated on the storage controller and the network loses
connectivity, the old (stale) CHAP secrets could persist. Self-healing can recognize this and
automatically reestablish the session to apply the updated CHAP secrets.

* Missing iSCSI sessions
* Missing LUNs

Install the iSCSI tools

Install the iISCSI tools using the commands for your operating system.

Before you begin
» Each node in the Kubernetes cluster must have a unique IQN. This is a necessary prerequisite.

81

* If using RHCOS version 4.5 or later, or other RHEL-compatible Linux distribution, with the solidfire-
san driver and Element OS 12.5 or earlier, ensure that the CHAP authentication algorithm is set to MD5 in
/etc/iscsi/iscsid.conf. Secure FIPS-compliant CHAP algorithms SHA1, SHA-256, and SHA3-256
are available with Element 12.7.

sudo sed -i 's/”\(node.session.auth.chap algs\).*/\1 = MD5/'
/etc/iscsi/iscsid.conf

* When using worker nodes that run RHEL/RedHat CoreOS with iISCSI PVs, specify the discard
mountOption in the StorageClass to perform inline space reclamation. See RedHat’'s documentation.

82

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems

RHEL 8+
1. Install the following system packages:

sudo yum install -y lsscsi iscsi-initiator-utils sg3 utils device-
mapper-multipath

2. Check that iscsi-initiator-utils version is 6.2.0.874-2.el7 or later:
rpm —-gq iscsi-initiator-utils
3. Set scanning to manual:

sudo sed -i 's/"\ (node.session.scan\).*/\1 = manual/'
/etc/iscsi/iscsid.conf

4. Enable multipathing:
sudo mpathconf --enable --with multipathd y --find multipaths n
(:) Ensure etc/multipath.conf contains find multipaths no under defaults.
5. Ensure that iscsid and multipathd are running:
sudo systemctl enable --now iscsid multipathd
6. Enable and start iscsi:

sudo systemctl enable --now iscsi

Ubuntu
1. Install the following system packages:

sudo apt-get install -y open-iscsi lsscsi sg3-utils multipath-tools
scsitools

2. Check that open-iscsi version is 2.0.874-5ubuntu2.10 or later (for bionic) or 2.0.874-7.1ubuntu6.1 or
later (for focal):

dpkg -1 open-iscsi
3. Set scanning to manual:

sudo sed -1 's/”\ (node.session.scan\).*/\1 = manual/'
/etc/iscsi/iscsid.conf

4. Enable multipathing:

sudo tee /etc/multipath.conf <<-'EOF
defaults {

user friendly names yes

find multipaths no

}

EQOF

sudo systemctl enable --now multipath-tools.service
sudo service multipath-tools restart

(:) Ensure etc/multipath.conf contains find multipaths no under defaults.

5. Ensure that open-iscsi and multipath-tools are enabled and running:

sudo systemctl status multipath-tools
sudo systemctl enable --now open-iscsi.service
sudo systemctl status open-iscsi

For Ubuntu 18.04, you must discover target ports with i scsiadm before starting
@ open-iscsi for the iISCSI daemon to start. You can alternatively modify the iscsi
service to start i scsid automatically.

@ Reboot your worker nodes after installing the iISCSI tools to prevent failure when attaching
volumes to containers.

Configure backends

Configure backends

A backend defines the relationship between Astra Trident and a storage system. It tells
Astra Trident how to communicate with that storage system and how Astra Trident should
provision volumes from it.

84

Astra Trident automatically offers up storage pools from backends that match the requirements defined by a
storage class. Learn how to configure the backend for your storage system.

+ Configure an Azure NetApp Files backend

+ Configure a Cloud Volumes Service for Google Cloud Platform backend
+ Configure a NetApp HCI or SolidFire backend

+ Configure a backend with ONTAP or Cloud Volumes ONTAP NAS drivers
» Configure a backend with ONTAP or Cloud Volumes ONTAP SAN drivers
« Use Astra Trident with Amazon FSx for NetApp ONTAP

Azure NetApp Files

Configure an Azure NetApp Files backend

You can configure Azure NetApp Files (ANF) as the backend for Astra Trident. You can
attach NFS and SMB volumes using an ANF backend.

Considerations

» The Azure NetApp Files service does not support volumes smaller than 100 GB. Astra Trident
automatically creates 100-GB volumes if a smaller volume is requested.

+ Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

Prepare to configure an Azure NetApp Files backend

Before you can configure your Azure NetApp Files backend, you need to ensure the
following requirements are met.

Prerequisites for NFS and SMB volumes

If you are using Azure NetApp Files for the first time or in a new location, some initial
@ configuration is required to set up Azure NetApp files and create an NFS volume. Refer to
Azure: Set up Azure NetApp Files and create an NFS volume.

To configure and use an Azure NetApp Files backend, you need the following:

A capacity pool. Refer to Microsoft: Create a capacity pool for Azure NetApp Files.
» A subnet delegated to Azure NetApp Files. Refer to Microsoft: Delegate a subnet to Azure NetApp Files.

* subscriptionID from an Azure subscription with Azure NetApp Files enabled.

* tenantlID, clientID, and clientSecret from an App Registration in Azure Active Directory with
sufficient permissions to the Azure NetApp Files service. The App Registration should use either:

o The Owner or Contributor role predefined by Azure.

° A custom Contributor role at the subscription level (assignableScopes) with the following
permissions that are limited to only what Astra Trident requires. After creating the custom role, assign
the role using the Azure portal.

https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://azure.microsoft.com/en-us/services/netapp/
https://learn.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-set-up-capacity-pool
https://learn.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://learn.microsoft.com/en-us/azure/role-based-access-control/custom-roles-portal
https://learn.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal
https://learn.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal

86

"id": "/subscriptions/<subscription-
id>/providers/Microsoft.Authorization/roleDefinitions/<role-
definition-id>",

"properties": ({

"roleName": "custom-role-with-limited-perms",
"description": "custom role providing limited permissions",
"assignableScopes": [

"/subscriptions/<subscription-id>"
I
"permissions": [

{

"actions": [

"Microsoft.NetApp/netAppAccounts/capacityPools/read",

"Microsoft.NetApp/netAppAccounts/capacityPools/write",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/read",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/write",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/delete",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/read

n
4

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/writ

e"’

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/dele
te",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/rea
d" 0

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/wri
te" ,

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/del
ete",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/Get
Metadata/action",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/MountTargets/r
ead",

"Microsoft.Network/virtualNetworks/read",
"Microsoft.Network/virtualNetworks/subnets/read",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrations
/read",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrations

/write",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrations
/delete",
"Microsoft.Features/features/read",
"Microsoft.Features/operations/read",
"Microsoft.Features/providers/features/read",

"Microsoft.Features/providers/features/register/action",
"Microsoft.Features/providers/features/unregister/action",

"Microsoft.Features/subscriptionFeatureRegistrations/read"

1,
"notActions": [],
"dataActions": [],

"notDataActions": []

* The Azure 1ocation that contains at least one delegated subnet. As of Trident 22.01, the 1ocation
parameter is a required field at the top level of the backend configuration file. Location values specified in
virtual pools are ignored.

Additional requirements for SMB volumes

To create an SMB volume, you must have:
« Active Directory configured and connected to Azure NetApp Files. Refer to Microsoft: Create and manage
Active Directory connections for Azure NetApp Files.

* A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows
Server 2019. Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

» At least one Astra Trident secret containing your Active Directory credentials so Azure NetApp Files can
authenticate to Active Directory. To generate secret smbcreds:

kubectl create secret generic smbcreds --from-literal username=user
--from-literal password='password'

87

https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet
https://learn.microsoft.com/en-us/azure/azure-netapp-files/create-active-directory-connections
https://learn.microsoft.com/en-us/azure/azure-netapp-files/create-active-directory-connections

* A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or
GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

Azure NetApp Files backend configuration options and examples

Learn about NFS and SMB backend configuration options for ANF and review
configuration examples.

Backend configuration options

Astra Trident uses your backend configuration (subnet, virtual network, service level, and location), to create
ANF volumes on capacity pools that are available in the requested location and match the requested service
level and subnet.

@ Astra Trident does not support Manual QoS capacity pools.

ANF backends provide these configuration options.

Parameter Description Default
version Always 1
storageDriverName Name of the storage driver "azure-netapp-files"
backendName Custom name or the storage Driver name +"_" + random
backend characters
subscriptionID The subscription ID from your
Azure subscription
tenantID The tenant ID from an App
Registration
clientID The client ID from an App
Registration
clientSecret The client secret from an App
Registration
serviceLevel One of Standard, Premium, or " (random)
Ultra
location Name of the Azure location where
the new volumes will be created
resourceGroups List of resource groups for filtering "[]" (no filter)
discovered resources
netappAccounts List of NetApp accounts for filtering "[]" (no filter)
discovered resources
capacityPools List of capacity pools for filtering "" (no filter, random)

discovered resources

virtualNetwork Name of a virtual network with a
delegated subnet

subnet Name of a subnet delegated to
Microsoft.Netapp/volumes

88

https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md

Parameter Description

networkFeatures
may be Basic or Standard.

Network Features is not available in

all regions and might have to be
enabled in a subscription.
Specifying networkFeatures
when the functionality is not
enabled causes volume
provisioning to fail.

nfsMountOptions
options.

Ignored for SMB volumes.

To mount volumes using NFS

version 4.1, include nfsvers=4in
the comma-delimited mount options

list to choose NFS v4.1.

Mount options set in a storage
class definition override mount
options set in backend
configuration.

Fail provisioning if the requested
volume size is above this value

limitVolumeSize

Debug flags to use when
troubleshooting. Example,

debugTraceFlags

\{"api": false, "method":

true, "discovery":
Do not use this unless you are
troubleshooting and require a
detailed log dump.

Configure NFS or SMB volumes
creation.

nasType

Options are nfs, smb or null.
Setting to null defaults to NFS
volumes.

Set of VNet features for a volume,

Fine-grained control of NFS mount

true}.

Default

"nfsvers=3"

(not enforced by default)

null

nfs

@ For more information on Network Features, refer to Configure network features for an Azure

NetApp Files volume.

Required permissions and resources

If you receive a “No capacity pools found” error when creating a PVC, it is likely your app registration doesn’t
have the required permissions and resources (subnet, virtual network, capacity pool) associated. If debug is
enabled, Astra Trident will log the Azure resources discovered when the backend is created. Verify an

appropriate role is being used.

89

https://docs.microsoft.com/en-us/azure/azure-netapp-files/configure-network-features
https://docs.microsoft.com/en-us/azure/azure-netapp-files/configure-network-features

The values for resourceGroups, netappAccounts, capacityPools, virtualNetwork, and subnet
can be specified using short or fully-qualified names. Fully-qualified names are recommended in most
situations as short names can match multiple resources with the same name.

The resourceGroups, netappAccounts, and capacityPools values are filters that restrict the set of
discovered resources to those available to this storage backend and may be specified in any combination.
Fully-qualified names follow this format:

Type Format

Resource group <resource group>

NetApp account <resource group>/<netapp account>

Capacity pool <resource group>/<netapp account>/<capacity pool>
Virtual network <resource group>/<virtual network>

Subnet <resource group>/<virtual network>/<subnet>

Volume provisioning

You can control default volume provisioning by specifying the following options in a special section of the
configuration file. Refer to Example configurations for details.

Parameter Description Default

exportRule Export rules for new volumes. "0.0.0.0/0"

exportRule must be a comma-
separated list of any combination of
IPv4 addresses or IPv4 subnets in
CIDR notation.

Ignored for SMB volumes.

snapshotDir Controls visibility of the .snapshot "false"
directory
size The default size of new volumes "100G"
unixPermissions The unix permissions of new "" (preview feature, requires
volumes (4 octal digits). whitelisting in subscription)

Ignored for SMB volumes.

Example configurations

90

Example 1: Minimal configuration

This is the absolute minimum backend configuration. With this configuration, Astra Trident discovers all of
your NetApp accounts, capacity pools, and subnets delegated to ANF in the configured location, and
places new volumes on one of those pools and subnets randomly. Because nasType is omitted, the nfs
default applies and the backend will provision for NFS volumes.

This configuration is ideal when you are just getting started with ANF and trying things out, but in practice
you are going to want to provide additional scoping for the volumes you provision.

version: 1

storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721add45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865ee56ct
clientID: dd043f63-bf8e-fake-8076-8de9%1e5713aa
clientSecret: SECRET

location: eastus

Example 2: Specific service level configuration with capacity pool filters

This backend configuration places volumes in Azure’s eastus location in an Ultra capacity pool. Astra
Trident automatically discovers all of the subnets delegated to ANF in that location and places a new
volume on one of them randomly.

version: 1

storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721ladd45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865eebo6ct
clientID: dd043f63-bf8e-fake-8076-8de91le5713aa
clientSecret: SECRET

location: eastus

servicelevel: Ultra

capacityPools:

- application-group-1/account-1/ultra-1

- application-group-1/account-1/ultra-2

91

Example 3: Advanced configuration

This backend configuration further reduces the scope of volume placement to a single subnet, and also
modifies some volume provisioning defaults.

version: 1
storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721add45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865eeb6ct
clientID: dd043f63-bf8e-fake-8076-8de9%1le5713aa
clientSecret: SECRET
location: eastus
servicelevel: Ultra
capacityPools:
- application-group-1/account-1/ultra-1
- application-group-1/account-1/ultra-2
virtualNetwork: my-virtual-network
subnet: my-subnet
networkFeatures: Standard
nfsMountOptions: vers=3,proto=tcp,timeo=600
limitVolumeSize: 500Gi
defaults:
exportRule: 10.0.0.0/24,10.0.1.0/24,10.0.2.100
snapshotDir: 'true'
size: 200Gi

unixPermissions: '0777"'

92

Example 4: Virtual pool configuration

This backend configuration defines multiple storage pools in a single file. This is useful when you have
multiple capacity pools supporting different service levels and you want to create storage classes in

Kubernetes that represent those. Virtual pool labels were used to differentiate the pools based on
performance.

version: 1
storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721ladd45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865ee56ct
clientID: dd043f63-bf8e-fake-8076-8de9%1e5713aa
clientSecret: SECRET
location: eastus
resourceGroups:
- application-group-1
networkFeatures: Basic
nfsMountOptions: vers=3,proto=tcp,timeo=600
labels:
cloud: azure
storage:
- labels:
performance: gold
servicelevel: Ultra
capacityPools:
- ultra-1
- ultra-2
networkFeatures: Standard
- labels:
performance: silver
servicelevel: Premium
capacityPools:
- premium-1
- labels:
performance: bronze
servicelevel: Standard
capacityPools:
- standard-1
- standard-2

Storage Class definitions

The following StorageClass definitions refer to the storage pools above.

93

Example definitions using parameter.selector field

Using parameter.selector you can specify for each StorageClass the virtual pool that is used to host a
volume. The volume will have the aspects defined in the chosen pool.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: gold
provisioner: csi.trident.netapp.io
parameters:

selector: "performance=gold"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: silver
provisioner: csi.trident.netapp.io
parameters:

selector: "performance=silver"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: bronze
provisioner: csi.trident.netapp.io
parameters:

selector: "performance=bronze"

allowVolumeExpansion: true

Example definitions for SMB volumes

Using nasType, node-stage-secret-name, and node-stage-secret-namespace, You can specify an
SMB volume and provide the required Active Directory credentials.

94

Example 1: Basic configuration on default namespace

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: anf-sc-smb
provisioner: csi.trident.netapp.io
parameters:
backendType: "azure-netapp-files"
trident.netapp.io/nasType: "smb"

csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

csi.storage.k8s.io/node-stage-secret-namespace:

Example 2: Using different secrets per namespace

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: anf-sc-smb
provisioner: csi.trident.netapp.io
parameters:
backendType: "azure-netapp-files"
trident.netapp.io/nasType: "smb"

"default"

csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

csi.storage.k8s.io/node-stage-secret-namespace:

Example 3: Using different secrets per volume

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: anf-sc-smb
provisioner: csi.trident.netapp.io
parameters:
backendType: "azure-netapp-files"
trident.netapp.io/nasType: "smb"

$S{pvc.namespace}

csi.storage.k8s.io/node-stage-secret-name: ${pvc.name}

csi.storage.k8s.io/node-stage-secret—-namespace:

S{pvc.namespace}

95

@ nasType: smb filters for pools which support SMB volumes. nasType: ‘nfs ornasType:
“null filters for NFS pools.

Create the backend

After you create the backend configuration file, run the following command:
tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to
determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Configure a Cloud Volumes Service for Google Cloud backend

Learn how to configure NetApp Cloud Volumes Service for Google Cloud as the backend
for your Astra Trident installation using the sample configurations provided.

Learn about Astra Trident support for Cloud Volumes Service for Google Cloud

Astra Trident can create Cloud Volumes Service volumes in one of two service types:

» CVS-Performance: The default Astra Trident service type. This performance-optimized service type is best
suited for production workloads that value performance. The CVS-Performance service type is a hardware
option supporting volumes with a minimum 100 GiB size. You can choose one of three service levels:

° standard
° premium
° extreme

* CVS: The CVS service type provides high zonal availability with limited to moderate performance levels.
The CVS service type is a software option that uses storage pools to support volumes as small as 1 GiB.
The storage pool can contain up to 50 volumes where all volumes share the capacity and performance of
the pool. You can choose one of two service levels:

° standardsw
° zoneredundantstandardsw

What you’ll need
To configure and use the Cloud Volumes Service for Google Cloud backend, you need the following:

» A Google Cloud account configured with NetApp Cloud Volumes Service
* Project number of your Google Cloud account

* Google Cloud service account with the netappcloudvolumes.admin role

96

https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-types
https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-levels#service_levels_for_the_cvs-performance_service_type
https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-levels#service_levels_for_the_cvs_service_type
https://cloud.netapp.com/cloud-volumes-service-for-gcp?utm_source=NetAppTrident_ReadTheDocs&utm_campaign=Trident

* API key file for your Cloud Volumes Service account

Backend configuration options

Each backend provisions volumes in a single Google Cloud region. To create volumes in other regions, you
can define additional backends.

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver "gcp-cvs"

backendName Custom name or the storage Driver name +"_" + part of API key
backend

storageClass Optional parameter used to specify

the CVS service type.

Use software to select the CVS
service type. Otherwise, Astra
Trident assumes CVS-Performance
service type (hardware).

storagePools CVS service type only. Optional
parameter used to specify storage
pools for volume creation.

projectNumber Google Cloud account project
number. The value is found on the
Google Cloud portal home page.

hostProjectNumber Required if using a shared VPC
network. In this scenario,
projectNumber is the service
project, and hostProjectNumber
is the host project.

apiRegion The Google Cloud region where
Astra Trident creates Cloud
Volumes Service volumes. When
creating cross-region Kubernetes
clusters, volumes created in an
apiRegion can be used in
workloads scheduled on nodes
across multiple Google Cloud
regions.

Cross-region traffic incurs an
additional cost.

97

Parameter

apiKey

proxyURL

nfsMountOptions

limitVolumeSize

servicelLevel

network

debugTraceFlags

98

Description Default

API key for the Google Cloud
service account with the
netappcloudvolumes.admin
role.

It includes the JSON-formatted
contents of a Google Cloud service
account’s private key file (copied
verbatim into the backend
configuration file).

Proxy URL if proxy server required
to connect to CVS account. The
proxy server can either be an HTTP
proxy or an HTTPS proxy.

For an HTTPS proxy, certificate
validation is skipped to allow the
usage of self-signed certificates in
the proxy server.

Proxy servers with authentication
enabled are not supported.

Fine-grained control of NFS mount "nfsvers=3"
options.

Fail provisioning if the requested
volume size is above this value.

(not enforced by default)

The CVS-Performance or CVS CVS-Performance default is
service level for new volumes. "standard".
CVS-Performance values are CVS default is "standardsw".

standard, premium, OF extreme.

CVS values are standardsw or
zoneredundantstandardsw.

Google Cloud network used for “default”
Cloud Volumes Service volumes.

Debug flags to use when null
troubleshooting. Example,
\{"api":false,

"method" :true}.

Do not use this unless you are
troubleshooting and require a
detailed log dump.

Parameter

allowedTopologies

Volume provisioning options

Description Default

To enable cross-region access,
your StorageClass definition for
allowedTopologies must
include all regions.

For example:

- key:
topology.kubernetes.io/reg
ion

values:

- us-eastl

- europe-westl

You can control default volume provisioning in the defaults section of the configuration file.

Parameter

exportRule

snapshotDir

snapshotReserve

size

Description Default

The export rules for new volumes. "0.0.0.0/0"
Must be a comma-separated list of

any combination of IPv4 addresses

or IPv4 subnets in CIDR notation.

Access to the . snapshot directory "“false”

Percentage of volume reserved for " (accept CVS default of 0)
snapshots

The size of new volumes. CVS-Performance service type
defaults to "100GiB".

CVS-Performance minimum is 100

GiB. CVS service type does not set a
default but requires a 1 GiB
CVS minimum is 1 GiB. minimum.

CVS-Performance service type examples

The following examples provide sample configurations for the CVS-Performance service type.

99

Example 1: Minimal configuration

This is the minimum backend configuration using default CVS-Performance service type with the default
"standard" service level.

version: 1

storageDriverName: gcp-cvs

projectNumber: '012345678901"

apiRegion: us-west2

apiKey:
type: service account
project id: my-gcp-project
private key id: "<id value>"
private key: |

znHczZsrrtHisIsAbOguSaPIKeyAZNChRAGz1zZE4jK3b1l/qp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZ2E4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3bl/gqp8BR4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNChRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
XsYgogyxy4zg701lwWgLwGa==

client email: cloudvolumes-admin-sal@my-gcp-

project.iam.gserviceaccount.com
client id: '123456789012345678901"

100

auth uri: https://accounts.google.com/o/oauth2/auth

token uri: https://ocauth2.googleapis.com/token

auth provider x509 cert url:
https://www.googleapis.com/oauth2/vl/certs

client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—admin-
sa%$40my-gcp-project.iam.gserviceaccount.com

101

Example 2: Service level configuration

This sample illustrates backend configuration options, including service level, and volume defaults.

102

version: 1

storageDriverName: gcp-cvs

projectNumber: '012345678901"

apiRegion: us-west2

apiKey:

type: service account

project id: my-gcp-project
private key id: "<id value>"

private key: |

znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507]Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y%m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8BR4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
XsYgbgyxy4zq701lwWgLwGa==

client email: cloudvolumes-admin-sal@my-gcp-

project.iam.gserviceaccount.com
client id: '123456789012345678901"
auth uri: https://accounts.google.com/o/ocauth2/auth

token uri: https://oauth2.googleapis.com/token

auth provider x509 cert url:
https://www.googleapis.com/ocauth2/vl/certs

client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—-admin-
sa%$40my-gcp-project.iam.gserviceaccount.com
proxyURL: http://proxy-server-hostname/
nfsMountOptions: vers=3,proto=tcp,timeo=600
limitVolumeSize: 10Ti
servicelevel: premium
defaults:

snapshotDir: 'true'

snapshotReserve: '5'

exportRule: 10.0.0.0/24,10.0.1.0/24,10.0.2.100

size: 5Ti

103

Example 3: Virtual pool configuration

This sample uses storage to configure virtual pools and the StorageClasses that refer back to them.
Refer to Storage class definitions to see how the storage classes were defined.

Here, specific defaults are set for all virtual pools, which set the snapshotReserve at 5% and the
exportRule to 0.0.0.0/0. The virtual pools are defined in the storage section. Each individual virtual
pool defines its own serviceLevel, and some pools overwrite the default values. Virtual pool labels
were used to differentiate the pools based on performance and protection.

version: 1
storageDriverName: gcp-cvs
projectNumber: '012345678901"
apiRegion: us-west2
apiKey:
type: service account
project id: my-gcp-project
private key id: "<id value>"

private key: |

znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jJK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jJK3bl/gqp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507]Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y%m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gp8B4Kws8zX507Y9m
XsYgbgyxy4zq701lwWgLwGa==

104

project.iam.gserviceaccount.com
client id: '123456789012345678901"
auth uri: https://accounts.google.com/o/ocauth2/auth

https://www.googleapis.com/ocauth2/vl/certs

https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—admin-
sa%$40my-gcp-project.iam.gserviceaccount.com

client email:

token uri: https://oauth2.googleapis.com/token
auth provider x509 cert url:

cloudvolumes-admin-salmy-gcp-

client x509 cert url:

vers=3,proto=tcp, timeo=600

nfsMountOptions:
defaults:
snapshotReserve: '5'
exportRule: 0.0.0.0/0
labels:
cloud: gcp
region: us-west2
storage:
- labels:
performance: extreme
protection: extra
servicelevel: extreme
defaults:
snapshotDir: 'true'
snapshotReserve: '10'
exportRule: 10.0.0.0/24
- labels:
performance: extreme
protection: standard
servicelevel: extreme
- labels:
performance: premium
protection: extra
servicelevel: premium
defaults:
snapshotDir: 'true'
snapshotReserve: '10'
- labels:
performance: premium
protection: standard
servicelevel: premium
- labels:
performance: standard
servicelevel: standard

105

Storage class definitions

The following StorageClass definitions apply to the virtual pool configuration example. Using
parameters.selector, you can specify for each StorageClass the virtual pool used to host a volume. The
volume will have the aspects defined in the chosen pool.

106

Storage class example

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs—-extreme-extra-protection
provisioner: netapp.io/trident
parameters:
selector: "performance=extreme; protection=extra"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-extreme-standard-protection
provisioner: netapp.io/trident
parameters:
selector: "performance=premium; protection=standard"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-premium-extra-protection
provisioner: netapp.io/trident
parameters:
selector: "performance=premium; protection=extra"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-premium
provisioner: netapp.io/trident
parameters:
selector: "performance=premium; protection=standard"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-standard
provisioner: netapp.io/trident
parameters:
selector: "performance=standard"
allowVolumeExpansion: true

107

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: cvs-extra-protection
provisioner: netapp.io/trident
parameters:

selector: "protection=extra"
allowVolumeExpansion: true

* The first StorageClass (cvs-extreme-extra-protection) maps to the first virtual pool. This is the only
pool offering extreme performance with a snapshot reserve of 10%.

* The last StorageClass (cvs-extra-protection) calls out any storage pool which provides a snapshot
reserve of 10%. Astra Trident decides which virtual pool is selected and ensures that the snapshot reserve
requirement is met.

CVS service type examples

The following examples provide sample configurations for the CVS service type.

108

Example 1: Minimum configuration

This is the minimum backend configuration using storageClass to specify the CVS service type and

default standardsw service level.

version: 1

storageDriverName: gcp-cvs
projectNumber: '012345678901"
storageClass: software

apiRegion: us-eastd

apiKey:

type: service account

project id: my-gcp-project
private key id: "<id value>"
private key: |

znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNChRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jJK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
XsYgoegyxy4zg701lwWgLwGa==

client email: cloudvolumes-admin-sal@my-gcp-

project.iam.gserviceaccount.com

109

client id: '123456789012345678901"

auth uri: https://accounts.google.com/o/ocauth2/auth

token uri: https://oauth2.googleapis.com/token

auth provider x509 cert url:
https://www.googleapis.com/ocauth2/v1/certs

client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—admin-
sa%$40my-gcp-project.iam.gserviceaccount.com

servicelevel: standardsw

110

Example 2: Storage pool configuration

This sample backend configuration uses storagePools to configure a storage pool.

version: 1

storageDriverName: gcp-cvs

backendName: gcp-std-so-with-pool
projectNumber: '531265380079"'
apiRegion: europe-westl

apiKey:

type: service account

project id: cloud-native-data
private key id: "<id value>"
private key: |-

MITEvAIBADANBgkghkiG9wOBAQEFAASCBKYwggSiAgEAAOIBAQDaT+0Oui9FBAW1 9
L1AGEkrYU5xd9K5N105JMkIFNDSwCD+Nv+jdl1Gvt FRLaLKSRvXyF5wzvztmODNS+
qtScpQ+5cFpQkuGtvIUI+N6qtuVYYO3b504Kp5CtqVPICgMIakK2j8pZTIgqUiMum/
5/Y90TbZrjAHSMgIm2nHzFgq2X0rgVMaHghI 6ATm4 DOuWx8XGWKTGIP1c0gPgqdlgsS
LLaWOH4VIZQZCAYyWSIUp9CAMwgHgdGOuhFNfCgMmED6PRUVVLsLvcg86X+QSWRIk
ETgE1j/sGCenPF7ti1DhGBFafd9hPnxg9PZY29ArEZwY9G/ZjZQXTWPgsOVvxiNR
DxZRC3GXAgMBAAECggEACN5¢c59bG/qnVEVI1CwMAa1M5M22z09JFh1L11jKwnt NP
Vilw2eTW2+UE7HbJru/S7KQgASDNn9kvCrakEahPRuddUMrDOvG4kT1/IODV6uFuk
Y0sZfbgd4iMUQ21smvGsqFzwloYWS5qzO1lW83ivXH/HW/1igkmY2eW+EPRS/hwSSu
SscR+SoJI7PBOBWSJh1V4yqYf3veD/D95el12CVHIRCkL85DKumeZ+yHENpiXGZAE
£8xSs4a500Pm6NHhevCw2a/UQ95/foXNUR450HtbjieJo50+FF6EYZQGEU2ZHZ08
37FBKuaJkdGWoxgaI9TL7agkGkFMF4F2qv0ZM+vy8QKBgQD40oVuOkIJDI1IhkTHP86W
esFlwlkpWyJRIZATLIOG/rVpslnX+XdDgOWQf4umdLNauS5hYEHILUGZSGs1Xk3/B
NHwWR60OXFugEKNi1u83d0zS1HhTy7PZp0Zdj5a/vVvQfPDMz 70vsgLRA7YCAbdzuQO0
+Ahg0ZtwvgOHQO64hdWO0ukpYRRWKBgQODgyHj 98ogswoYula+pPlySOpPwlLmjwKyNm
/HayzCp+Qjiyy7Tzg8AUqlH10u83XbV428jvg7kDhO7PCCKFg+mMmfgHmTpb0Mag
KpKnZg4ipsgPlyHNNEoRmcailXbwIhCLewMgMrggUiLOmCw4PscL5nK+4GKu2XE1
JLgIWAZFMOKBgFHKQIXXRAJ1kR3XpGHOGN890pZ0kCVSrgjubalef/5KY1FCt8ew
F/+aIxM21QSvmWQYOvVCnhuY/F2GFaQ7d0om3decuwI0CX/xy7PjHMkLXa2uazs4
WR17sLduj62RgGXRLX0c0QkwBiNFyHbRcpdkZJIQuibYMhBa+757SxT4BtACGAWMWT
UucocRXzZm/pdvz9wteNH3YDWnJILMxml1KCO6gMXbBoYrliY4sm3ywJWMC+1Cd/H8A
Gecxd/xVu5SmA2L2N3KMql82zhz8Th0G5DwKyDRJIGOQ0Q4 6yuNXOoYE] Lo4W] yk8Me
+t1Q8iK98EOUMZnhTgfSpSNE1bz2AgnzQ3MNIuECgYAqdvdVPnKGEvdtZ2DjyMoJd
E89UIC41W]jICGmHsd8W65+3X0RWMzKMT6aZc5tK9J5dHVMWIETnbM+1TImdBBEFga
NWOC6£f3r2xbGXHhaWS1l+nobpTuvlo56ZRIVvVk71FMsiddzMuHH8pxfgNJemwA4P
ThDHCejv035NNVE6KyoO0tA==

client email: cloudvolumes-admin-sa@cloud-native-

data.iam.gserviceaccount.com
client id: '107071413297115343396"

1M

auth uri: https://accounts.google.com/o/ocauth2/auth
token uri: https://oauth2.googleapis.com/token
auth provider x509 cert url:
https://www.googleapis.com/oauth2/vl/certs
client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—admin-
sa%$40cloud-native-data.iam.gserviceaccount.com
storageClass: software
zone: europe-westl-b
network: default
storagePools:
- 1bc7£380-3314-6005-45e9-c7dc8c2d7509
servicelevel: Standardsw

What’s next?

After you create the backend configuration file, run the following command:
tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to
determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Configure a NetApp HCI or SolidFire backend

Learn about how to create and use an Element backend with your Astra Trident
installation.

Before you begin

You'll need the following before creating an Element backend.

* A supported storage system that runs Element software.
» Credentials to a NetApp HCI/SolidFire cluster admin or tenant user that can manage volumes.

« All of your Kubernetes worker nodes should have the appropriate iSCSI tools installed. See worker node
preparation information.

Volume modes

The solidfire-san storage driver supports both volume modes: file and block. For the Filesystem
volumeMode, Astra Trident creates a volume and creates a filesystem. The filesystem type is specified by the

112

StorageClass.

Driver

solidfire-san

solidfire-san

solidfire-san

solidfire-san

Protocol

iSCSI

iSCSI

iSCSI

iSCSI

VolumeMode

Block

Block

Filesystem

Filesystem

Access modes
supported

RWO,ROX,RWX

RWO,ROX,RWX

RWO,ROX

RWO,ROX

File systems
supported

No Filesystem. Raw
block device.

No Filesystem. Raw
block device.

xfs, ext3, extd

xfs, ext3, ext4d

Astra Trident uses CHAP when functioning as an enhanced CSI Provisioner. If you're using
@ CHAP (which is the default for CSl), no further preparation is required. It is recommended to
explicitly set the UseCHAP option to use CHAP with non-CSlI Trident. Otherwise, see here.

@ Volume access groups are only supported by the conventional, non-CSI framework for Astra

Trident. When configured to work in CSI mode, Astra Trident uses CHAP.

If neither AccessGroups or UseCHAP are set, one of the following rules applies:

* If the default trident access group is detected, access groups are used.

* If no access group is detected and Kubernetes version is 1.7 or later, then CHAP is used.

Backend configuration options

See the following table for the backend configuration options:

Parameter

version

storageDriverName

backendName

Endpoint

SVIP

labels

TenantName

Description

Name of the storage driver

Custom name or the storage
backend

Default
Always 1

Always “solidfire-san”

“solidfire_” + storage (iISCSI) IP

address

MVIP for the SolidFire cluster with

tenant credentials

Storage (iISCSI) IP address and

port

Set of arbitrary JSON-formatted

labels to apply on volumes.

Tenant name to use (created
found)

if not

113

Parameter Description Default

InitiatorIFace Restrict iSCSI traffic to a specific “default”
host interface
UseCHAP Use CHAP to authenticate iSCSI true
AccessGroups List of Access Group IDs to use Finds the ID of an access group
named “trident”
Types QoS specifications
limitVolumeSize Fail provisioning if requested “” (not enforced by default)

volume size is above this value

debugTraceFlags Debug flags to use when null
troubleshooting. Example,
{“api”:false, “method”:true}

@ Do not use debugTraceFlags unless you are troubleshooting and require a detailed log dump.

Example 1: Backend configuration for solidfire-san driver with three volume types

This example shows a backend file using CHAP authentication and modeling three volume types with specific
QoS guarantees. Most likely you would then define storage classes to consume each of these using the 10PS
storage class parameter.

114

version: 1
storageDriverName: solidfire-san
Endpoint: https://<user>:<password>@<mvip>/json-rpc/8.0
SVIP: "<svip>:3260"
TenantName: "<tenant>"
labels:
k8scluster: devl
backend: devl-element-cluster
UseCHAP: true
Types:
- Type: Bronze
Qos:
minIOPS: 1000
maxIOPS: 2000
burstIOPS: 4000
- Type: Silver
Qos:
minIOPS: 4000
maxIOPS: 6000
burstIOPS: 8000
- Type: Gold
Qos:
minIOPS: 6000
maxIOPS: 8000
burstIOPS: 10000

Example 2: Backend and storage class configuration for solidfire-san driver with virtual pools

This example shows the backend definition file configured with virtual pools along with StorageClasses that
refer back to them.

Astra Trident copies labels present on a storage pool to the backend storage LUN at provisioning. For
convenience, storage administrators can define labels per virtual pool and group volumes by label.

In the sample backend definition file shown below, specific defaults are set for all storage pools, which set the
type at Silver. The virtual pools are defined in the storage section. In this example, some of the storage
pools set their own type, and some pools override the default values set above.

version: 1

storageDriverName: solidfire-san

Endpoint: https://<user>:<password>@<mvip>/json-rpc/8.0
SVIP: "<svip>:3260"

TenantName: "<tenant>"

UseCHAP: true

115

Types:
- Type: Bronze
Qos:
minIOPS: 1000
maxIOPS: 2000
burstIOPS: 4000
- Type: Silver
Qos:
minIOPS: 4000
maxIOPS: 6000
burstIOPS: 8000
- Type: Gold
Qos:
minIOPS: 6000
maxIOPS: 8000
burstIOPS: 10000
type: Silver
labels:
store: solidfire
k8scluster: dev-l-cluster
region: us-east-1

storage:

- labels:
performance: gold
cost: '4'

zone: us-east-la
type: Gold

- labels:
performance: silver
cost: '3"

zone: us-east-1b
type: Silver

- labels:
performance: bronze
cost: '2'"

zone: us-east-1c
type: Bronze

- labels:
performance: silver
cost: '1"

zone: us-east-1d

The following StorageClass definitions refer to the above virtual pools. Using the parameters.selector
field, each StorageClass calls out which virtual pool(s) can be used to host a volume. The volume will have the
aspects defined in the chosen virtual pool.

116

The first StorageClass (solidfire-gold-four) will map to the first virtual pool. This is the only pool offering
gold performance with a Vvolume Type QoS of Gold. The last StorageClass (solidfire-silver) calls out
any storage pool which offers a silver performance. Astra Trident will decide which virtual pool is selected and

will ensure the storage requirement is met.

117

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: solidfire-gold-four
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=gold; cost=4"
fsType: "ext4d"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: solidfire-silver-three
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=silver; cost=3"
fsType: "ext4d"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: solidfire-bronze-two
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=bronze; cost=2"
fsType: "ext4d"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: solidfire-silver-one
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=silver; cost=1"
fsType: "extd"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: solidfire-silver
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=silver"

fsType: "ext4d"

118

Find more information

* Volume access groups

ONTAP SAN drivers

ONTAP SAN driver overview

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP
SAN drivers.

Important information about ONTAP SAN drivers

Astra Control provides seamless protection, disaster recovery, and mobility (moving volumes between
Kubernetes clusters) for volumes created with the ontap-nas, ontap-nas-flexgroup, and ontap-san
drivers. See Astra Control replication prerequisites for details.

* You must use ontap-nas for production workloads that require data protection, disaster recovery, and
mobility.

* Use ontap-san-economy when anticipated volume usage is expected to be much higher than what
ONTAP supports.

* Use ontap-nas-economy only where anticipated volume usage is expected to be much higher than what
ONTAP supports, and the ontap-san-economy driver cannot be used.

* Do not use use ontap-nas-economy if you anticipate the need for data protection, disaster recovery, or
mobility.

User permissions

Astra Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster
user or a vsadmin SVM user, or a user with a different name that has the same role. For Amazon FSx for
NetApp ONTAP deployments, Astra Trident expects to be run as either an ONTAP or SVM administrator, using
the cluster £sxadmin user or a vsadmin SVM user, or a user with a different name that has the same role.
The fsxadmin user is a limited replacement for the cluster admin user.

If you use the 1imitAggregateUsage parameter, cluster admin permissions are required.

@ When using Amazon FSx for NetApp ONTAP with Astra Trident, the 1imitAggregateUsage
parameter will not work with the vsadmin and fsxadmin user accounts. The configuration
operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don’t
recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,
making upgrades difficult and error-prone.

Prepare to configure backend with ONTAP SAN drivers

Understand the requirements and authentication options for configuring an ONTAP
backend with ONTAP SAN drivers.

Requirements

For all ONTAP backends, Astra Trident requires at least one aggregate assigned to the SVM.

119

https://docs.netapp.com/us-en/astra-control-center/use/replicate_snapmirror.html#replication-prerequisites

Remember that you can also run more than one driver, and create storage classes that point to one or the
other. For example, you could configure a san-dev class that uses the ontap-san driver and a san-
default class that uses the ontap-san-economy one.

All your Kubernetes worker nodes must have the appropriate iSCSI tools installed. Refer to Prepare the worker
node for details.

Authenticate the ONTAP backend

Astra Trident offers two modes of authenticating an ONTAP backend.

 Credential-based: The username and password to an ONTAP user with the required permissions. It is
recommended to use a pre-defined security login role, such as admin or vsadmin to ensure maximum
compatibility with ONTAP versions.

* Certificate-based: Astra Trident can also communicate with an ONTAP cluster using a certificate installed
on the backend. Here, the backend definition must contain Base64-encoded values of the client certificate,
key, and the trusted CA certificate if used (recommended).

You can update existing backends to move between credential-based and certificate-based methods. However,
only one authentication method is supported at a time. To switch to a different authentication method, you must
remove the existing method from the backend configuration.

@ If you attempt to provide both credentials and certificates, backend creation will fail with an
error that more than one authentication method was provided in the configuration file.

Enable credential-based authentication

Astra Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the
ONTAP backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin.
This ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by
future Astra Trident releases. A custom security login role can be created and used with Astra Trident, but is
not recommended.

A sample backend definition will look like this:

120

YAML

version: 1

backendName: ExampleBackend
storageDriverName: ontap-san
managementLIF: 10.0.0.1

svm: svm nfs

username: vsadmin

password: password

JSON

"version": 1,

"backendName": "ExampleBackend",

"storageDriverName": "ontap-san",

"managementLIF": "10.0.0.1",
"svm": "svm nfs",
"username": "vsadmin",

"password": "password"

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the

backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The

creation or update of a backend is the only step that requires knowledge of the credentials. As such, it is an
admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three
parameters are required in the backend definition.

« clientCertificate: Base64-encoded value of client certificate.

« clientPrivateKey: Base64-encoded value of associated private key.

« trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter

must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to

authenticate as.

121

openssl reqg -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key
-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=admin"

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage
administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-
name> -vserver <vserver—-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled
true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-
name> -vserver <vserver—-name>
security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name admin -application ontapi
—-authentication-method cert
security login create -user-or-group-name admin -application http

—authentication-method cert

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>
with Management LIF IP and SVM name.

curl -X POST -Lk https://<ONTAP-Management-
LIF>/servlets/netapp.servlets.admin.XMLrequest filer --key k8senv.key
--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp
xmlns="http://www.netapp.com/filer/admin" version="1.21"
vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert base64
base64 -w 0 k8senv.key >> key base64
base64 -w 0 trustedca.pem >> trustedca base6t4

7. Create backend using the values obtained from the previous step.

122

cat cert-backend.json

{

"version": 1,

"storageDriverName": "ontap-san",

"backendName": "SanBackend",

"managementLIF": "1.2.3.4",

"svm": "vserver test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",
"clientPrivateKey": "LSOtFaKE...0VaLuESOtLSOK",
"trustedCACertificate": "QNFinfO...SigOyN",
"storagePrefix": "myPrefix "

}

tridentctl create backend -f cert-backend.json -n trident

femsmmmmmm== R fes==s=ssssscscscssossssssssssssss=sa==
from e fr e +

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

I S e e e e e
e fremmmeme== iF

| SanBackend | ontap-san | 586blcd5-8cf8-428d-a76c-2872713612cl |
online | 0 |

fessmmmmeme== frememesessess==== fessssssssssssesessaososssssssssss o=
f=mm==== fememema== +

Update authentication methods or rotate credentials

You can update an existing backend to use a different authentication method or to rotate their credentials. This
works both ways: backends that make use of username/password can be updated to use certificates;
backends that utilize certificates can be updated to username/password based. To do this, you must remove
the existing authentication method and add the new authentication method. Then use the updated
backend.json file containing the required parameters to execute tridentctl backend update.

123

cat cert-backend-updated.json

{

"version": 1,
"storageDriverName": "ontap-san",
"backendName": "SanBackend",
"managementLIF": "1.2.3.4",
"svm": "vserver test",
"username": "vsadmin",
"password": "password",
"storagePrefix": "myPrefix "

}

#Update backend with tridentctl
tridentctl update backend SanBackend -f cert-backend-updated.json -n
trident

e fom e o
e fremmmeme== W+

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

R femsmemessess==== fesssssmes s e s ss s osessssss s ess
fmmm==== femememm== 4

| SanBackend | ontap-san | 586blcd5-8cf8-428d-a76c-2872713612cl |
online | 9 |

femmmmmmmma== R fessssssssssssesessosssssasssssssasaaaa
e e 1

When rotating passwords, the storage administrator must first update the password for the user

(D on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates
can be added to the user. The backend is then updated to use the new certificate, following
which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume
connections made after. A successful backend update indicates that Astra Trident can communicate with the
ONTAP backend and handle future volume operations.

Authenticate connections with bidirectional CHAP

Astra Trident can authenticate iISCSI sessions with bidirectional CHAP for the ontap-san and ontap-san-
economy drivers. This requires enabling the useCHAP option in your backend definition. When set to true,
Astra Trident configures the SVM'’s default initiator security to bidirectional CHAP and set the username and
secrets from the backend file. NetApp recommends using bidirectional CHAP to authenticate connections. See
the following sample configuration:

124

version: 1

storageDriverName: ontap-san
backendName: ontap san chap
managementLIF: 192.168.0.135

svm: ontap iscsi svm

useCHAP: true

username: vsadmin

password: password
chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz

@ The useCHAP parameter is a Boolean option that can be configured only once. It is set to false
by default. After you set it to true, you cannot set it to false.

In addition to useCHAP=true, the chapInitiatorSecret, chapTargetInitiatorSecret,
chapTargetUsername, and chapUsername fields must be included in the backend definition. The secrets
can be changed after a backend is created by running tridentctl update.

How it works

By setting useCHAP to true, the storage administrator instructs Astra Trident to configure CHAP on the storage
backend. This includes the following:

 Setting up CHAP on the SVM:

o If the SVM’s default initiator security type is none (set by default) and there are no pre-existing LUNs
already present in the volume, Astra Trident will set the default security type to CHAP and proceed to
configuring the CHAP initiator and target username and secrets.

o If the SVM contains LUNs, Astra Trident will not enable CHAP on the SVM. This ensures that access to
LUNSs that are already present on the SVM isn’t restricted.

» Configuring the CHAP initiator and target username and secrets; these options must be specified in the
backend configuration (as shown above).

After the backend is created, Astra Trident creates a corresponding tridentbackend CRD and stores the
CHAP secrets and usernames as Kubernetes secrets. All PVs that are created by Astra Trident on this
backend will be mounted and attached over CHAP.

Rotate credentials and update backends

You can update the CHAP credentials by updating the CHAP parameters in the backend. json file. This will
require updating the CHAP secrets and using the tridentctl update command to reflect these changes.

When updating the CHAP secrets for a backend, you must use tridentctl to update the
backend. Do not update the credentials on the storage cluster through the CLI/ONTAP Ul as
Astra Trident will not be able to pick up these changes.

125

cat backend-san.json

"version": 1,

"storageDriverName": "ontap-san",
"backendName": "ontap san chap",
"managementLIF": "192.168.0.135",

"svm": "ontap iscsi svm",

"useCHAP": true,

"username": "vsadmin",

"password": "password",
"chapInitiatorSecret": "cl9gxUpDaTeD",
"chapTargetInitiatorSecret": "rgxigXgkeUpDaTeD",
"chapTargetUsername": "iJF4heBRTOTCwxyz",
"chapUsername": "uh2aNCLSd6cNwxyz",

./tridentctl update backend ontap san chap -f backend-san.json -n trident

- e +

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

o Fom e
- o +

| ontap san chap | ontap-san | aad458f3b-ad2d-4378-8a33-1a472ffbeb5c |
online | T

e —— e — e e ettt
t——— R +

Existing connections will remain unaffected; they will continue to remain active if the credentials are updated by
Astra Trident on the SVM. New connections will use the updated credentials and existing connections continue
to remain active. Disconnecting and reconnecting old PVs will result in them using the updated credentials.

ONTAP SAN configuration options and examples

Learn about how to create and use ONTAP SAN drivers with your Astra Trident
installation. This section provides backend configuration examples and details about how
to map backends to StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

126

Parameter

storageDriverName

backendName

managementLIF

dataLIF

useCHAP

chapInitiatorSecret

labels

chapTargetInitiatorSecret

Description Default

Name of the storage driver ontap-nas, ontap-nas-
economy, ontap-nas-
flexgroup, ontap-san, ontap-

san—economy

Custom name or the storage
backend

Driver name + “_” + dataLIF

IP address of a cluster or SVM
management LIF

“10.0.0.17, “[2001:1234:abcd::fefe]”

For seamless MetroCluster
switchover, you must specify an
SVM management LIF.

A fully-qualified domain name
(FQDN) can be specified.

Can be set to use IPv6 addresses if
Astra Trident was installed using
the ——use-ipve flag. IPv6
addresses must be defined in
square brackets, such as
[28e8:d9fb:a825:b7bf:69a8:d02f:9e
7b:3555].

IP address of protocol LIF. Derived by the SVM
Do not specify for iISCSI. Astra

Trident uses ONTAP Selective LUN

Map to discover the iSCI LIFs

needed to establish a multi path

session. Awarning is generated if

dataLIF is explicitly defined.

Use CHAP to authenticate iSCSI
for ONTAP SAN drivers [Boolean].

false

Set to true for Astra Trident to
configure and use bidirectional
CHAP as the default authentication
for the SVM given in the backend.
Refer to Prepare to configure
backend with ONTAP SAN drivers
for details.

@

CHAP initiator secret. Required if
useCHAP=true

Set of arbitrary JSON-formatted
labels to apply on volumes

CHAP target initiator secret.
Required if useCHAP=true

127

https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html
https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html

Parameter

chapUsername

chapTargetUsername

clientCertificate

clientPrivateKey

trustedCACertificate

username

password

svm

storagePrefix

limitAggregateUsage

limitVolumeSize

lunsPerFlexvol

128

Description Default

@

Inbound username. Required if
useCHAP=true

Target username. Required if
useCHAP=true

@

Base64-encoded value of client
certificate. Used for certificate-
based auth

@

Base64-encoded value of client
private key. Used for certificate-
based auth

@

Baseb64-encoded value of trusted
CA certificate. Optional. Used for
certificate-based authentication.

“

Username needed to communicate
with the ONTAP cluster. Used for
credential-based authentication.

@

Password needed to communicate
with the ONTAP cluster. Used for
credential-based authentication.

Derived if an SVM
managementLIF is specified

Storage virtual machine to use

Prefix used when provisioning new trident
volumes in the SVM.

Cannot be modified later. To update
this parameter, you will need to
create a new backend.

@

Fail provisioning if usage is above
this percentage.

(not enforced by default)

If you are using an Amazon FSx for
NetApp ONTAP backend, do not
specify 1imitAggregateUsage
The provided fsxadmin and
vsadmin do not contain the
permissions required to retrieve
aggregate usage and limit it using
Astra Trident.

Fail provisioning if requested
volume size is above this value.

(not enforced by default)

Also restricts the maximum size of
the volumes it manages for gtrees
and LUNSs.

Maximum LUNSs per Flexvol, must 100
be in range [50, 200]

Parameter

debugTraceFlags

useREST

Description Default

Debug flags to use when null
troubleshooting. Example,
{“api”:false, “method”:true}

Do not use unless you are
troubleshooting and require a
detailed log dump.

Boolean parameter to use ONTAP false
REST APIs. Tech preview

useREST is provided as a tech
preview that is recommended for
test environments and not for
production workloads. When set to
true, Astra Trident will use ONTAP
REST APIs to communicate with
the backend. This feature requires
ONTAP 9.11.1 and later. In
addition, the ONTAP login role used
must have access to the ontap
application. This is satisfied by the
pre-defined vsadmin and
cluster-admin roles.

useREST is not supported with
MetroCluster.

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an
example, see the configuration examples below.

Parameter
spaceAllocation

spaceReserve

snapshotPolicy

Description Default
Space-allocation for LUNs “true”
Space reservation mode; “none” “none”

(thin) or “volume” (thick)

Snapshot policy to use “none”

129

Parameter

gosPolicy

adaptiveQosPolicy

snapshotReserve

splitOnClone

encryption

luksEncryption

securityStyle

tieringPolicy

Volume provisioning examples

Description Default

@

QoS policy group to assign for
volumes created. Choose one of
gosPolicy or adaptiveQosPolicy per
storage pool/backend.

Using QoS policy groups with Astra
Trident requires ONTAP 9.8 or later.
We recommend using a non-shared
QoS policy group and ensuring the
policy group is applied to each
constituent individually. A shared
QoS policy group will enforce the
ceiling for the total throughput of all
workloads.

“w

Adaptive QoS policy group to
assign for volumes created.
Choose one of qosPolicy or
adaptiveQosPolicy per storage
pool/backend

Percentage of volume reserved for If snapshotPolicy is “none”, else

snapshots “0”

Split a clone from its parent upon “false”
creation

Enable NetApp Volume Encryption “false”
(NVE) on the new volume; defaults

to false. NVE must be licensed

and enabled on the cluster to use

this option.

If NAE is enabled on the backend,
any volume provisioned in Astra
Trident will be NAE enabled.

For more information, refer to: How
Astra Trident works with NVE and
NAE.

Enable LUKS encryption. Refer to
Use Linux Unified Key Setup

(LUKS).
Security style for new volumes unix
Tiering policy to use “none” “snapshot-only” for pre-ONTAP 9.5

SVM-DR configuration

Here’s an example with defaults defined:

130

version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
svm: trident svm
username: admin
password: <password>
labels:
k8scluster: dev2
backend: dev2-sanbackend
storagePrefix: alternate-trident
debugTraceFlags:
api: false
method: true
defaults:
spaceReserve: volume
qgosPolicy: standard
spaceAllocation: 'false'
snapshotPolicy: default
snapshotReserve: '10'

For all volumes created using the ontap-san driver, Astra Trident adds an extra 10 percent
capacity to the FlexVol to accommodate the LUN metadata. The LUN will be provisioned with

@ the exact size that the user requests in the PVC. Astra Trident adds 10 percent to the FlexVol
(shows as Available size in ONTAP). Users will now get the amount of usable capacity they
requested. This change also prevents LUNs from becoming read-only unless the available
space is fully utilized. This does not apply to ontap-san-economy.

For backends that define snapshotReserve, Astra Trident calculates the size of volumes as follows:

Total volume size = [(PVC requested size) / (1 - (snapshotReserve
percentage) / 100)] * 1.1

The 1.1 is the extra 10 percent Astra Trident adds to the FlexVol to accommodate the LUN metadata. For
snapshotReserve = 5%, and PVC request = 5GiB, the total volume size is 5.79GiB and the available size is
5.5GiB. The volume show command should show results similar to this example:

Aggregate State i Available Used%

_pvc_B89f1c156_3801_4ded4_979d_034d54c395f4
online RW 18GB 5.88GB
_pvc_ed42ecbfe_3baa_4afb6_996d_134adbbbB8ebd
online RW 5.79GB 5.50GB
_pvc_eB372153_9ad9_474a_951a_0Bael5elc@ba
online RW 1GB 511.8MB
3 entries were displayed.

131

Currently, resizing is the only way to use the new calculation for an existing volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest
way to define a backend.

@ If you are using Amazon FSx on NetApp ONTAP with Astra Trident, we recommend you specify
DNS names for LIFs instead of IP addresses.

ONTAP SAN minimal configuration example

This is a basic configuration using the ontap-san driver.

version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
svm: svm_iscsi
labels:
k8scluster: test-cluster-1
backend: testclusterl-sanbackend
username: vsadmin

password: <password>

ONTAP SAN economy minimal configuration example

version: 1

storageDriverName: ontap-san-economy
managementLIF: 10.0.0.1

svm: svm_iscsi eco

username: vsadmin

password: <password>

132

Certificate-based authentication example

In this basic configuration example clientCertificate, clientPrivateKey, and
trustedCACertificate (optional, if using trusted CA) are populated in backend. json and take the
base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

version: 1

storageDriverName: ontap-san

backendName: DefaultSANBackend
managementLIF: 10.0.0.1

svm: svm iscsi

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkeslpwxyz
chapTargetUsername: 1JF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz

clientCertificate: ZXROZXJIJwYXB...ICMgJ3BhcGVyc?2
clientPrivateKey: vciwKIyAgZG...0cnksIGR1c2NyaX
trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz

133

Bidirectional CHAP examples

These examples create a backend with useCHAP set to true.

ONTAP SAN CHAP example

version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
svm: svm _iscsi
labels:

k8scluster: test-cluster-1

backend: testclusterl-sanbackend
useCHAP: true
chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: 1JF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz
username: vsadmin

password: <password>

ONTAP SAN economy CHAP example

version: 1

storageDriverName: ontap-san-economy
managementLIF: 10.0.0.1

svm: svm_iscsi eco

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

Examples of backends with virtual pools

In these sample backend definition files, specific defaults are set for all storage pools, such as spaceReserve
at none, spaceAllocation atfalse, and encryption at false. The virtual pools are defined in the storage
section.

Astra Trident sets provisioning labels in the “Comments” field. Comments are set on the FlexVol. Astra Trident
copies all labels present on a virtual pool to the storage volume at provisioning. For convenience, storage
administrators can define labels per virtual pool and group volumes by label.

134

In these examples, some of the storage pools set their own spaceReserve, spaceAllocation, and
encryption values, and some pools override the default values.

135

ONTAP SAN example

136

version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1

svm: svm iscsi

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: 1JF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

defaults:
spaceAllocation: 'false'
encryption: 'false'

gosPolicy: standard
labels:
store: san store

kubernetes-cluster: prod-cluster-1

region: us east 1
storage:
- labels:
protection: gold
creditpoints: '40000"
zone: us_east la
defaults:
spaceAllocation: 'true'

encryption: 'true'

adaptiveQosPolicy: adaptive-extreme

- labels:
protection: silver
creditpoints: '20000'
zone: us_east 1b

defaults:
spaceAllocation: 'false'
encryption: 'true'

qosPolicy: premium
- labels:
protection: bronze
creditpoints: '5000'
zone: us_east lc
defaults:
spaceAllocation: 'true'

encryption: 'false'

137

ONTAP SAN economy example

version: 1

storageDriverName: ontap-san-economy
managementLIF: 10.0.0.1

svm: svm_iscsi eco

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

defaults:
spaceAllocation: 'false'
encryption: 'false'
labels:

store: san_economy store
region: us east 1
storage:
- labels:
app: oracledb
cost: '30'
zone: us_ east la
defaults:
spaceAllocation: 'true'
encryption: 'true'
- labels:
app: postgresdb
cost: '20"'
zone: us_east 1b
defaults:
spaceAllocation: 'false'
encryption: 'true'
- labels:
app: mysqgldb
cost: '10"
zone: us_east lc
defaults:
spaceAllocation: 'true'
encryption: 'false'
- labels:
department: legal
creditpoints: '5000'
zone: us_east lc

138

defaults:
spaceAllocation: 'true'
encryption: 'false'

Map backends to StorageClasses

The following StorageClass definitions refer to the Examples of backends with virtual pools. Using the
parameters.selector field, each StorageClass calls out which virtual pools can be used to host a volume.
The volume will have the aspects defined in the chosen virtual pool.

* The protection—-gold StorageClass will map to the first virtual pool in the ontap-san backend. This is
the only pool offering gold-level protection.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-gold
provisioner: netapp.io/trident
parameters:
selector: "protection=gold"
fsType: "ext4d"

* The protection-not-gold StorageClass will map to the second and third virtual pool in ontap-san
backend. These are the only pools offering a protection level other than gold.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-not-gold
provisioner: netapp.io/trident
parameters:
selector: "protection!=gold"
fsType: "ext4d"

* The app-mysgldb StorageClass will map to the third virtual pool in ontap-san-economy backend. This
is the only pool offering storage pool configuration for the mysqldb type app.

139

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: app-mysqgldb
provisioner: netapp.io/trident
parameters:
selector: "app=mysgldb"
fsType: "ext4d"

* The protection-silver-creditpoints-20k StorageClass will map to the second virtual pool in
ontap-san backend. This is the only pool offering silver-level protection and 20000 creditpoints.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-silver-creditpoints-20k
provisioner: netapp.io/trident
parameters:
selector: "protection=silver; creditpoints=20000"
fsType: "ext4d"

* The creditpoints-5k StorageClass will map to the third virtual pool in ontap-san backend and the
fourth virtual pool in the ontap-san-economy backend. These are the only pool offerings with 5000
creditpoints.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: creditpoints-5k
provisioner: netapp.io/trident
parameters:
selector: "creditpoints=5000"
fsType: "ext4d"

Astra Trident will decide which virtual pool is selected and will ensure the storage requirement is met.

ONTAP NAS drivers

ONTAP NAS driver overview

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP
NAS drivers.

140

Important information about ONTAP NAS drivers

Astra Control provides seamless protection, disaster recovery, and mobility (moving volumes between
Kubernetes clusters) for volumes created with the ontap-nas, ontap-nas-flexgroup, and ontap-san
drivers. See Astra Control replication prerequisites for details.

* You must use ontap-nas for production workloads that require data protection, disaster recovery, and
mobility.

* Use ontap-san-economy when anticipated volume usage is expected to be much higher than what
ONTAP supports.

* Use ontap-nas-economy only where anticipated volume usage is expected to be much higher than what
ONTAP supports, and the ontap-san-economy driver cannot be used.

* Do not use use ontap-nas-economny if you anticipate the need for data protection, disaster recovery, or
mobility.

User permissions

Astra Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster
user or a vsadmin SVM user, or a user with a different name that has the same role.

For Amazon FSx for NetApp ONTAP deployments, Astra Trident expects to be run as either an ONTAP or SVM
administrator, using the cluster fsxadmin user or a vsadmin SVM user, or a user with a different name that
has the same role. The fsxadmin user is a limited replacement for the cluster admin user.

If you use the 1imitAggregateUsage parameter, cluster admin permissions are required.

@ When using Amazon FSx for NetApp ONTAP with Astra Trident, the 1imitAggregateUsage
parameter will not work with the vsadmin and fsxadmin user accounts. The configuration
operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don’t
recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,
making upgrades difficult and error-prone.

Prepare to configure a backend with ONTAP NAS drivers

Understand the requirements, authentication options, and export policies for configuring
an ONTAP backend with ONTAP NAS drivers.

Requirements

 For all ONTAP backends, Astra Trident requires at least one aggregate assigned to the SVM.

* You can run more than one driver, and create storage classes that point to one or the other. For example,
you could configure a Gold class that uses the ontap-nas driver and a Bronze class that uses the
ontap—-nas—-economy one.

« All your Kubernetes worker nodes must have the appropriate NFS tools installed. See here for more
details.

* Astra Trident supports SMB volumes mounted to pods running on Windows nodes only. Refer to Prepare to
provision SMB volumes for details.

141

https://docs.netapp.com/us-en/astra-control-center/use/replicate_snapmirror.html#replication-prerequisites

Authenticate the ONTAP backend

Astra Trident offers two modes of authenticating an ONTAP backend.

 Credential-based: The username and password to an ONTAP user with the required permissions. It is
recommended to use a pre-defined security login role, such as admin or vsadmin to ensure maximum
compatibility with ONTAP versions.

« Certificate-based: Astra Trident can also communicate with an ONTAP cluster using a certificate installed
on the backend. Here, the backend definition must contain Base64-encoded values of the client certificate,
key, and the trusted CA certificate if used (recommended).

You can update existing backends to move between credential-based and certificate-based methods. However,
only one authentication method is supported at a time. To switch to a different authentication method, you must
remove the existing method from the backend configuration.

@ If you attempt to provide both credentials and certificates, backend creation will fail with an
error that more than one authentication method was provided in the configuration file.

Enable credential-based authentication

Astra Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the
ONTAP backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin.
This ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by
future Astra Trident releases. A custom security login role can be created and used with Astra Trident, but is
not recommended.

A sample backend definition will look like this:

142

YAML

version: 1

backendName: ExampleBackend
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2

svm: svm nfs

username: vsadmin

password: password

JSON

"version": 1,

"backendName": "ExampleBackend",
"storageDriverName": "ontap-nas",
"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.2",

"svm": "svm nfs",

"username": "vsadmin",

"password": "password"

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the
backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The
creation/updation of a backend is the only step that requires knowledge of the credentials. As such, it is an
admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based Authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three
parameters are required in the backend definition.
« clientCertificate: Base64-encoded value of client certificate.
« clientPrivateKey: Base64-encoded value of associated private key.
« trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter
must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to
authenticate as.

143

openssl reqg -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key
-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=vsadmin"

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage
administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-
name> -vserver <vserver—-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled
true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-
name> -vserver <vserver—-name>
security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name vsadmin -application ontapi
—authentication-method cert -vserver <vserver-name>
security login create -user-or-group-name vsadmin -application http

—authentication-method cert -vserver <vserver-name>

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>
with Management LIF IP and SVM name. You must ensure the LIF has its service policy set to default-
data-management.

curl -X POST -Lk https://<ONTAP-Management-
LIF>/servlets/netapp.servlets.admin.XMLrequest filer --key k8senv.key
--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp
xmlns="http://www.netapp.com/filer/admin" version="1.21"
vfiler="<vserver-name>"><vserver-get></vserver—-get></netapp>"'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert baseb64
base64 -w 0 k8senv.key >> key base64
base64 -w 0 trustedca.pem >> trustedca baset4

144

7. Create backend using the values obtained from the previous step.

cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "NasBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",
"clientPrivateKey": "LSOtFaKE...O0VaLuESOtLSOK",
"storagePrefix": "myPrefix "

}

#Update backend with tridentctl
tridentctl update backend NasBackend -f cert-backend-updated.json -n

trident

o e Rt bt
o to——————— +

| NAME | STORAGE DRIVER | UulbD

STATE | VOLUMES |

o —— o ettt b L e PP
- F—m +

| NasBackend | ontap-nas | 98el9%b74-aec7-4a3d-8dcf-128e5033b214 |
online | 9 |

e —— - Bt it e e P
o F——— +

Update authentication methods or rotate credentials

You can update an existing backend to use a different authentication method or to rotate their credentials. This
works both ways: backends that make use of username/password can be updated to use certificates;
backends that utilize certificates can be updated to username/password based. To do this, you must remove
the existing authentication method and add the new authentication method. Then use the updated
backend.json file containing the required parameters to execute tridentctl update backend.

145

cat cert-backend-updated.json
{

"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "NasBackend",
"managementLIF": "1.2.3.4",
"dataLIF": "1.2.3.8",

"svm": "vserver test",
"username": "vsadmin",
"password": "password",
"storagePrefix": "myPrefix "

}

#Update backend with tridentctl
tridentctl update backend NasBackend -f cert-backend-updated.json -n
trident

Pommmmmmmmm== Fommmemcemmes=e== B e
Fommmmmoe e +

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

Fommmmmmmomo= S e e Fommmmmmmmesrrrrrrrre e reme s e mmm o
Fommmmme Pommmmmme= +

| NasBackend | ontap-nas | 98el9b74-aec7/-4a3d-8dcf-128e5033b214 |
online | 9 |

P e Fommmmememesesesese s s s s e eses
o= Fommmemm== +

When rotating passwords, the storage administrator must first update the password for the user

@ on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates
can be added to the user. The backend is then updated to use the new certificate, following
which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume
connections made after. A successful backend update indicates that Astra Trident can communicate with the
ONTAP backend and handle future volume operations.

Manage NFS export policies

Astra Trident uses NFS export policies to control access to the volumes that it provisions.

Astra Trident provides two options when working with export policies:

 Astra Trident can dynamically manage the export policy itself; in this mode of operation, the storage
administrator specifies a list of CIDR blocks that represent admissible IP addresses. Astra Trident adds
node IPs that fall in these ranges to the export policy automatically. Alternatively, when no CIDRs are
specified, any global-scoped unicast IP found on the nodes will be added to the export policy.

» Storage administrators can create an export policy and add rules manually. Astra Trident uses the default

146

export policy unless a different export policy name is specified in the configuration.

Dynamically manage export policies

The 20.04 release of CSI Trident provides the ability to dynamically manage export policies for ONTAP
backends. This provides the storage administrator the ability to specify a permissible address space for worker
node IPs, rather than defining explicit rules manually. It greatly simplifies export policy management;
modifications to the export policy no longer require manual intervention on the storage cluster. Moreover, this
helps restrict access to the storage cluster only to worker nodes that have IPs in the range specified,
supporting a fine-grained and automated management.

@ The dynamic management of export policies is only available for CSI Trident. It is important to
ensure that the worker nodes are not being NATed.

Example

There are two configuration options that must be used. Here’s an example backend definition:

version: 1

storageDriverName: ontap-nas
backendName: ontap nas auto export
managementLIF: 192.168.0.135

svm: svml

username: vsadmin

password: password
autoExportCIDRs:

- 192.168.0.0/24

autoExportPolicy: true

When using this feature, you must ensure that the root junction in your SVM has a previously

(D created export policy with an export rule that permits the node CIDR block (such as the default
export policy). Always follow NetApp’s recommended best practice of dedicating a SVM for
Astra Trident.

Here is an explanation of how this feature works using the example above:

* autoExportPolicy is setto true. This indicates that Astra Trident will create an export policy for the
svml SVM and handle the addition and deletion of rules using autoExportCIDRs address blocks. For
example, a backend with UUID 403b5326-8482-40db-96d0-d83fb3f4daec and autoExportPolicy set to
true creates an export policy named trident-403b5326-8482-40db-96d0-d83fb3f4daec on the
SVM.

* autoExportCIDRs contains a list of address blocks. This field is optional and it defaults to ["0.0.0.0/0",
"::/0"]. If not defined, Astra Trident adds all globally-scoped unicast addresses found on the worker nodes.

In this example, the 192.168.0.0/24 address space is provided. This indicates that Kubernetes node IPs
that fall within this address range will be added to the export policy that Astra Trident creates. When Astra
Trident registers a node it runs on, it retrieves the IP addresses of the node and checks them against the
address blocks provided in autoExportCIDRs. After filtering the IPs, Astra Trident creates export policy rules

147

for the client IPs it discovers, with one rule for each node it identifies.

You can update autoExportPolicy and autoExportCIDRs for backends after you create them. You can
append new CIDRs for a backend that is automatically managed or delete existing CIDRs. Exercise care when
deleting CIDRs to ensure that existing connections are not dropped. You can also choose to disable
autoExportPolicy for a backend and fall back to a manually created export policy. This will require setting
the exportPolicy parameter in your backend config.

After Astra Trident creates or updates a backend, you can check the backend using tridentctl or the
corresponding tridentbackend CRD:

./tridentctl get backends ontap nas auto export -n trident -o yaml
items:
- backendUUID: 403b5326-8482-40db-96d0-d83fb3f4daec
config:
aggregate: ""
autoExportCIDRs:
- 192.168.0.0/24
autoExportPolicy: true
backendName: ontap nas auto export
chapInitiatorSecret: ""
chapTargetInitiatorSecret: ""
chapTargetUsername: ""
chapUsername: ""
dataLIF: 192.168.0.135
debug: false
debugTraceFlags: null
defaults:
encryption: "false"
exportPolicy: <automatic>
fileSystemType: ext4

As nodes are added to a Kubernetes cluster and registered with the Astra Trident controller, export policies of

existing backends are updated (provided they fall in the address range specified in autoExportCIDRs for the
backend).

When a node is removed, Astra Trident checks all backends that are online to remove the access rule for the
node. By removing this node IP from the export policies of managed backends, Astra Trident prevents rogue
mounts, unless this IP is reused by a new node in the cluster.

For previously existing backends, updating the backend with tridentctl update backend will ensure that
Astra Trident manages the export policies automatically. This will create a new export policy named after the
backend’s UUID and volumes that are present on the backend will use the newly created export policy when
they are mounted again.

Deleting a backend with auto-managed export policies will delete the dynamically created export
@ policy. If the backend is re-created, it is treated as a new backend and will result in the creation
of a new export policy.

148

If the IP address of a live node is updated, you must restart the Astra Trident pod on the node. Astra Trident
will then update the export policy for backends it manages to reflect this IP change.

Prepare to provision SMB volumes

With a little additional preparation, you can provision SMB volumes using ontap-nas drivers.

You must configure both NFS and SMB/CIFS protocols on the SVM to create an ontap-nas-
economy SMB volume for ONTAP on-premises. Failure to configure either of these protocols
will cause SMB volume creation to fail.

Before you begin
Before you can provision SMB volumes, you must have the following.

» A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows
Server 2019. Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

At least one Astra Trident secret containing your Active Directory credentials. To generate secret
smbcreds:

kubectl create secret generic smbcreds --from-literal username=user

--from-literal password='password'
* A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or
GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

Steps
1. For on-premises ONTAP, you can optionally create an SMB share or Astra Trident can create one for you.

@ SMB shares are required for Amazon FSx for ONTAP.

You can create the SMB admin shares in one of two ways either using the Microsoft Management Console
Shared Folders snap-in or using the ONTAP CLI. To create the SMB shares using the ONTAP CLI:

a. If necessary, create the directory path structure for the share.

The vserver cifs share create command checks the path specified in the -path option during
share creation. If the specified path does not exist, the command fails.

b. Create an SMB share associated with the specified SVM:

vserver cifs share create -vserver vserver name -share-name
share name -path path [-share-properties share properties,...]
[other attributes] [-comment text]

c. Verify that the share was created:

vserver cifs share show -share-name share name

149

https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console

@ Refer to Create an SMB share for full details.

2. When creating the backend, you must configure the following to specify SMB volumes. For all FSx for
ONTAP backend configuration options, refer to FSx for ONTAP configuration options and examples.

Parameter Description Example

smbShare smb-share nasType
You can specify one of the

following: the name of an SMB

share created using the Microsoft

Management Console or ONTAP

CLI; a name to allow Astra Trident

to create the SMB share; or you

can leave the parameter blank to

prevent common share access to

volumes.

This parameter is optional for on-
premises ONTAP.

This parameter is required for
Amazon FSx for ONTAP
backends and cannot be blank.

Must set to smb. If null, defaults smb securityStyle
to nfs.
Security style for new volumes. ntfs or mixed for SMB volumes unixPermissions

Must be set to ntfs or mixed
for SMB volumes.

ONTAP NAS configuration options and examples

Learn how to create and use ONTAP NAS drivers with your Astra Trident installation. This
section provides backend configuration examples and details about how to map
backends to StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default
version Always 1
storageDriverName Name of the storage driver “ontap-nas”, “ontap-nas-economy”,

"o«

“ontap-nas-flexgroup”, “ontap-san”,
“ontap-san-economy”

backendName Custom name or the storage Driver name + “_” + dataLIF
backend

150

https://docs.netapp.com/us-en/ontap/smb-config/create-share-task.html

Parameter Description Default

managementLIF IP address of a cluster or SVM “10.0.0.17, “[2001:1234:abcd::fefe]”
management LIF

For seamless MetroCluster
switchover, you must specify an
SVM management LIF.

A fully-qualified domain name
(FQDN) can be specified.

Can be set to use IPv6 addresses if
Astra Trident was installed using
the -—use-ipvé6 flag. IPv6
addresses must be defined in
square brackets, such as
[28e8:d9fb:a825:b7bf:69a8:d02f:9e
7b:3555].

dataLIF IP address of protocol LIF. Specified address or derived from
SVM, if not specified (not
We recommend specifying recommended)
dataLIF. If not provided, Astra
Trident fetches data LIFs from the
SVM. You can specify a fully-
qualified domain name (FQDN) to
be used for the NFS mount
operations, allowing you to create a
round-robin DNS to load-balance
across multiple data LIFs.

Can be changed after initial setting.
Refer to Update dataLIF after
initial configuration.

Can be set to use IPv6 addresses if
Astra Trident was installed using
the -—use-ipvé flag. IPv6
addresses must be defined in
square brackets, such as
[28e8:d9fb:a825:b7bf:69a8:d02f:9e
7b:3555].

autoExportPolicy Enable automatic export policy false
creation and updating [Boolean].

Using the autoExportPolicy
and autoExportCIDRs options,
Astra Trident can manage export
policies automatically.

151

Parameter

autoExportCIDRs

labels

clientCertificate

clientPrivateKey

trustedCACertificate

username

password

svm

storagePrefix

limitAggregateUsage

limitVolumeSize

limitVolumeSize

152

Description

List of CIDRs to filter Kubernetes’
node IPs against when
autoExportPolicy is enabled.

Using the autoExportPolicy
and autoExportCIDRs options,
Astra Trident can manage export
policies automatically.

Set of arbitrary JSON-formatted
labels to apply on volumes

Base64-encoded value of client
certificate. Used for certificate-
based auth

Base64-encoded value of client
private key. Used for certificate-
based auth

Baseb4-encoded value of trusted
CA certificate. Optional. Used for
certificate-based auth

Username to connect to the
cluster/SVM. Used for credential-
based auth

Password to connect to the
cluster/SVM. Used for credential-
based auth

Storage virtual machine to use

Prefix used when provisioning new
volumes in the SVM. Cannot be
updated after you set it

Fail provisioning if usage is above
this percentage.

Does not apply to Amazon FSx
for ONTAP

Fail provisioning if requested
volume size is above this value.

Fail provisioning if requested
volume size is above this value.

Also restricts the maximum size of
the volumes it manages for qtrees
and LUNs, and the
gtreesPerFlexvol option allows
customizing the maximum number
of gtrees per FlexVol.

Default
[“0.0.0.0/0”, “::/0"T

@

“w

@

Derived if an SVM

managementLIF is specified

“trident”

(not enforced by default)

“w

(not enforced by default)

(not enforced by default)

Parameter

lunsPerFlexvol

debugTraceFlags

nasType

nfsMountOptions

gtreesPerFlexvol

Description

Maximum LUNSs per Flexvol, must
be in range [50, 200]

Debug flags to use when
troubleshooting. Example,
{“api”:false, “method”:true}

Do not use debugTraceFlags
unless you are troubleshooting and
require a detailed log dump.

Configure NFS or SMB volumes
creation.

Options are nfs, smb or null.
Setting to null defaults to NFS
volumes.

Comma-separated list of NFS
mount options.

The mount options for Kubernetes-
persistent volumes are normally
specified in storage classes, but if
no mount options are specified in a
storage class, Astra Trident will fall
back to using the mount options
specified in the storage backend’s
configuration file.

If no mount options are specified in
the storage class or the
configuration file, Astra Trident will
not set any mount options on an
associated persistent volume.

Default
“100”

null

nfs

Maximum Qtrees per FlexVol, must “200”

be in range [50, 300]

153

Parameter Description Default

smbShare You can specify one of the smb-share
following: the name of an SMB
share created using the Microsoft
Management Console or ONTAP
CLI; a name to allow Astra Trident
to create the SMB share; or you
can leave the parameter blank to
prevent common share access to
volumes.

This parameter is optional for on-
premises ONTAP.

This parameter is required for
Amazon FSx for ONTAP backends
and cannot be blank.

useREST Boolean parameter to use ONTAP false
REST APIs. Tech preview

useREST is provided as a tech
preview that is recommended for
test environments and not for
production workloads. When set to
true, Astra Trident will use ONTAP
REST APIs to communicate with
the backend. This feature requires
ONTAP 9.11.1 and later. In
addition, the ONTAP login role used
must have access to the ontap
application. This is satisfied by the
pre-defined vsadmin and
cluster-admin roles.

useREST is not supported with
MetroCluster.

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an
example, see the configuration examples below.

Parameter Description Default
spaceAllocation Space-allocation for LUNs “true”
spaceReserve Space reservation mode; “none” “none”

(thin) or “volume” (thick)

snapshotPolicy Snapshot policy to use “none”

154

Parameter Description Default

@

gosPolicy QoS policy group to assign for
volumes created. Choose one of
gosPolicy or adaptiveQosPolicy per
storage pool/backend

@

adaptiveQosPolicy Adaptive QoS policy group to
assign for volumes created.
Choose one of qosPolicy or
adaptiveQosPolicy per storage
pool/backend.

Not supported by ontap-nas-
economy.

snapshotReserve Percentage of volume reserved for If snapshotPolicy is “none”, else
snapshots “0”

splitOnClone Split a clone from its parent upon “false”
creation
encryption Enable NetApp Volume Encryption “false”

(NVE) on the new volume; defaults
to false. NVE must be licensed
and enabled on the cluster to use
this option.

If NAE is enabled on the backend,
any volume provisioned in Astra
Trident will be NAE enabled.

For more information, refer to: How
Astra Trident works with NVE and

NAE.
tieringPolicy Tiering policy to use “none” “snapshot-only” for pre-ONTAP 9.5
SVM-DR configuration
unixPermissions Mode for new volumes “777” for NFS volumes; empty (not
applicable) for SMB volumes
snapshotDir Controls visibility of the “false”
.snapshot directory
exportPolicy Export policy to use “default”
securityStyle Security style for new volumes. NFS default is unix.

NFS supports mixed and unix SMB default is ntfs.
security styles.

SMB supports mixed and ntfs
security styles.

155

Using QoS policy groups with Astra Trident requires ONTAP 9.8 or later. It is recommended to

@ use a non-shared QoS policy group and ensure the policy group is applied to each constituent
individually. A shared QoS policy group will enforce the ceiling for the total throughput of all
workloads.

Volume provisioning examples

Here’s an example with defaults defined:

version: 1
storageDriverName: ontap-nas
backendName: customBackendName
managementLIF: 10.0.0.1
datalLIF: 10.0.0.2
labels:
k8scluster: devl
backend: devl-nasbackend
svm: trident svm
username: cluster-admin
password: <password>
limitAggregateUsage: 80%
limitVolumeSize: 50Gi
nfsMountOptions: nfsvers=4
debugTraceFlags:
api: false
method: true
defaults:
spaceReserve: volume
gosPolicy: premium
exportPolicy: myk8scluster
snapshotPolicy: default
snapshotReserve: '10'

For ontap-nas and ontap-nas-flexgroups, Astra Trident now uses a new calculation to ensure that the
FlexVol is sized correctly with the snapshotReserve percentage and PVC. When the user requests a PVC,
Astra Trident creates the original FlexVol with more space by using the new calculation. This calculation
ensures that the user receives the writable space they requested for in the PVC, and not lesser space than
what they requested. Before v21.07, when the user requests a PVC (for example, 5GiB), with the
snapshotReserve to 50 percent, they get only 2.5GiB of writeable space. This is because what the user
requested for is the whole volume and snapshotReserve is a percentage of that. With Trident 21.07, what
the user requests for is the writeable space and Astra Trident defines the snapshotReserve number as the
percentage of the whole volume. This does not apply to ontap-nas-economy. See the following example to
see how this works:

The calculation is as follows:

156

Total volume size = (PVC requested size) / (1 - (snapshotReserve

percentage) / 100)

For snapshotReserve = 50%, and PVC request = 5GiB, the total volume size is 2/.5 = 10GiB and the available
size is 5GiB, which is what the user requested in the PVC request. The volume show command should show
results similar to this example:

Vserver Volume Aggregate t ype Size Available Used%

_pvec_89f1cl156_3801_4ded4 _9f9d_034d54c395T4
online RW 18GB
_pvc_eB372153_9ad9_474a_95la_@8ael5elc@ba
online RW
2 entries were displayed.

Existing backends from previous installs will provision volumes as explained above when upgrading Astra
Trident. For volumes that you created before upgrading, you should resize their volumes for the change to be
observed. For example, a 2GiB PVC with snapshotReserve=50 earlier resulted in a volume that provides
1GiB of writable space. Resizing the volume to 3GiB, for example, provides the application with 3GiB of
writable space on a 6 GiB volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest
way to define a backend.

(D If you are using Amazon FSx on NetApp ONTAP with Trident, the recommendation is to specify
DNS names for LIFs instead of IP addresses.

Minimal configuration for ontap-nas-economy

version: 1

storageDriverName: ontap-nas-economy
managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm nfs

username: vsadmin

password: password

157

Minimal configuration for ontap-nas-flexgroup

version: 1

storageDriverName: ontap-nas-flexgroup
managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm nfs

username: vsadmin

password: password

Minimal configuration for SMB volumes

version: 1

backendName: ExampleBackend
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
nasType: smb

securityStyle: ntfs
unixPermissions: ""
datalLIF: 10.0.0.2
svm: svm nfs
username: vsadmin

password: password

158

Certificate-based authentication

This is a minimal backend configuration example. clientCertificate, clientPrivateKey, and
trustedCACertificate (optional, if using trusted CA) are populated in backend. json and take the
base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

version: 1

backendName: DefaultNASBackend
storageDriverName: ontap-nas

managementLIF: 10.0.0.1

datalLIF: 10.0.0.15

svm: nfs svm

clientCertificate: ZXROZXJwYXB...ICMgJd3BhcGVyc2
clientPrivateKey: vciwKIyAgZG...0cnksIGR1c2NyaX
trustedCACertificate: zcyBbaG...b3Igb3dulIGNsYXNz
storagePrefix: myPrefix

Auto export policy

This example shows you how you can instruct Astra Trident to use dynamic export policies to create and
manage the export policy automatically. This works the same for the ontap-nas-economy and ontap-
nas-flexgroup drivers.

version: 1
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2
svm: svm nfs
labels:
k8scluster: test-cluster-east-1la
backend: testl-nasbackend
autoExportPolicy: true
autoExportCIDRs:
- 10.0.0.0/24
username: admin
password: password
nfsMountOptions: nfsvers=4

159

Using IPv6 addresses

This example shows managementLIF using an IPv6 address.

version: 1
storageDriverName: ontap-nas
backendName: nas ipv6 backend
managementLIF: "[5c5d:5edf:8f:7657:bef8:109b:1b41:d491]"
labels:
k8scluster: test-cluster-east-la
backend: testl-ontap-ipv6
svm: nas_ipv6_ svm
username: vsadmin

password: password

Amazon FSx for ONTAP using SMB volumes

The smbShare parameter is required for FSx for ONTAP using SMB volumes.

version: 1

backendName: SMBBackend

storageDriverName: ontap-nas

managementLIF: example.mgmt.fqgdn.aws.com
nasType: smb

datalLIF: 10.0.0.15

svm: nfs svm

smbShare: smb-share

clientCertificate: ZXROZXJIJwYXB...ICMgJd3BhcGVyc2
clientPrivateKey: vciwKIyAgZG...0cnksIGR1c2NyaX
trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz
storagePrefix: myPrefix

Examples of backends with virtual pools

In the sample backend definition files shown below, specific defaults are set for all storage pools, such as
spaceReserve at none, spaceAllocation at false, and encryption at false. The virtual pools are defined
in the storage section.

Astra Trident sets provisioning labels in the “Comments” field. Comments are set on FlexVol for ontap-nas or
FlexGroup for ontap-nas-flexgroup. Astra Trident copies all labels present on a virtual pool to the storage
volume at provisioning. For convenience, storage administrators can define labels per virtual pool and group
volumes by label.

160

In these examples, some of the storage pools set their own spaceReserve, spaceAllocation, and
encryption values, and some pools override the default values.

161

ONTAP NAS example

version: 1
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
svm: svm nfs
username: admin
password: <password>
nfsMountOptions: nfsvers=4
defaults:
spaceReserve: none
encryption: 'false'
qgosPolicy: standard
labels:
store: nas_ store
k8scluster: prod-cluster-1
region: us_east 1
storage:
- labels:
app: msoffice
cost: '100"
zone: us_east la
defaults:
spaceReserve: volume
encryption: 'true'
unixPermissions: '0755'
adaptiveQosPolicy: adaptive-premium
- labels:
app: slack
cost: '75"
zone: us_east 1b
defaults:
spaceReserve: none
encryption: 'true'
unixPermissions: '0755'
- labels:
department: legal
creditpoints: '5000'
zone: us_east 1b
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0755"
- labels:

app: wordpress

162

cost: '50'
zone: us_east lc
defaults:
spaceReserve: none

encryption: 'true'
unixPermissions: '0775'
labels:
app: mysqgldb
cost: '25"
zone: us_east 1d
defaults:
spaceReserve: volume
encryption: 'false'
unixPermissions: '0775'

163

ONTAP NAS FlexGroup example

version: 1
storageDriverName: ontap-nas-flexgroup
managementLIF: 10.0.0.1
svm: svm nfs
username: vsadmin
password: <password>
defaults:
spaceReserve: none
encryption: 'false'
labels:
store: flexgroup store
k8scluster: prod-cluster-1
region: us east 1
storage:
- labels:
protection: gold
creditpoints: '50000"'
zone: us_east la
defaults:
spaceReserve: volume

encryption: 'true'
unixPermissions: '0755'
- labels:

protection: gold

creditpoints: '30000'
zone: us_east 1b
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0755'
- labels:

protection: silver

creditpoints: '20000"
zone: us_east lc
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0775"
- labels:

protection: bronze

creditpoints: '10000"'
zone: us_east 1d
defaults:

164

spaceReserve: volume
encryption: 'false'

unixPermissions: '0775"

165

ONTAP NAS economy example

version: 1
storageDriverName: ontap-nas-economy
managementLIF: 10.0.0.1
svm: svm nfs
username: vsadmin
password: <password>
defaults:
spaceReserve: none
encryption: 'false'
labels:
store: nas_economy store
region: us east 1
storage:
- labels:
department: finance
creditpoints: '6000"
zone: us_east la
defaults:

spaceReserve: volume

encryption: 'true'
unixPermissions: '0755"
- labels:

protection: bronze

creditpoints: '5000'
zone: us_east 1b
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0755"
- labels:

department: engineering

creditpoints: '3000'
zone: us_east lc
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0775"
- labels:

department: humanresource
creditpoints: '2000'
zone: us_ east 1d
defaults:
spaceReserve: volume

166

encryption: 'false'
unixPermissions: '0775'

Map backends to StorageClasses

The following StorageClass definitions refer to Examples of backends with virtual pools. Using the
parameters.selector field, each StorageClass calls out which virtual pools can be used to host a volume.
The volume will have the aspects defined in the chosen virtual pool.

* The protection-gold StorageClass will map to the first and second virtual pool in the ontap-nas-
flexgroup backend. These are the only pools offering gold level protection.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-gold
provisioner: netapp.io/trident
parameters:
selector: "protection=gold"
fsType: "ext4d"

* The protection-not-gold StorageClass will map to the third and fourth virtual pool in the ontap-
nas-flexgroup backend. These are the only pools offering protection level other than gold.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-not-gold
provisioner: netapp.io/trident
parameters:
selector: "protection!=gold"
fsType: "ext4d"

* The app-mysqgldb StorageClass will map to the fourth virtual pool in the ontap-nas backend. This is the
only pool offering storage pool configuration for mysqldb type app.

167

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: app-mysqgldb
provisioner: netapp.io/trident
parameters:
selector: "app=mysgldb"
fsType: "ext4d"

* TThe protection-silver-creditpoints-20k StorageClass will map to the third virtual pool in the
ontap-nas-flexgroup backend. This is the only pool offering silver-level protection and 20000
creditpoints.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-silver-creditpoints-20k
provisioner: netapp.io/trident
parameters:
selector: "protection=silver; creditpoints=20000"
fsType: "ext4d"

* The creditpoints-5k StorageClass will map to the third virtual pool in the ontap-nas backend and the
second virtual pool in the ontap-nas-economy backend. These are the only pool offerings with 5000
creditpoints.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: creditpoints-5k
provisioner: netapp.io/trident
parameters:
selector: "creditpoints=5000"
fsType: "ext4d"

Astra Trident will decide which virtual pool is selected and will ensure the storage requirement is met.

Update dataLIF after initial configuration

You can change the data LIF after initial configuration by running the following command to provide the new
backend JSON file with updated data LIF.

168

tridentctl update backend <backend-name> -f <path-to-backend-json-file-
with-updated-dataLIF>

@ If PVCs are attached to one or multiple pods, you must bring down all corresponding pods and
then bring them back up in order to for the new data LIF to take effect.

Amazon FSx for NetApp ONTAP

Use Astra Trident with Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP is a fully managed AWS service that enables customers
to launch and run file systems powered by the NetApp ONTAP storage operating system.
FSx for ONTAP enables you to leverage NetApp features, performance, and
administrative capabilities you are familiar with, while taking advantage of the simplicity,
agility, security, and scalability of storing data on AWS. FSx for ONTAP supports ONTAP
file system features and administration APIs.

Overview

A file system is the primary resource in Amazon FSx, analogous to an ONTAP cluster on premises. Within
each SVM you can create one or multiple volumes, which are data containers that store the files and folders in
your file system. With Amazon FSx for NetApp ONTAP, Data ONTAP will be provided as a managed file
system in the cloud. The new file system type is called NetApp ONTAP.

Using Astra Trident with Amazon FSx for NetApp ONTAP, you can ensure Kubernetes clusters running in
Amazon Elastic Kubernetes Service (EKS) can provision block and file persistent volumes backed by ONTAP.

Amazon FSx for NetApp ONTAP uses FabricPool to manage storage tiers. It enables you to store data in a tier,
based on whether the data is frequently accessed.

Considerations

* SMB volumes:
° SMB volumes are supported using the ontap-nas driver only.

o Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

* Volumes created on Amazon FSx file systems that have automatic backups enabled cannot be deleted by
Trident. To delete PVCs, you need to manually delete the PV and the FSx for ONTAP volume. To prevent
this issue:

> Do not use Quick create to create the FSx for ONTAP file system. The quick create workflow enables
automatic backups and does not provide an opt-out option.

o When using Standard create, disable automatic backup. Disabling automatic backups allows Trident
to successfully delete a volume without further manual intervention.

169

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://docs.netapp.com/ontap-9/topic/com.netapp.doc.dot-mgng-stor-tier-fp/GUID-5A78F93F-7539-4840-AB0B-4A6E3252CF84.html

v Backup and maintenance - optional

Daily automatic backup Info
Amazon F5x can protect your data through daily backups

Enabled
© Disabled

Drivers

You can integrate Astra Trident with Amazon FSx for NetApp ONTAP using the following drivers:

* ontap-san: Each PV provisioned is a LUN within its own Amazon FSx for NetApp ONTAP volume.

* ontap-san-economy: Each PV provisioned is a LUN with a configurable number of LUNs per Amazon
FSx for NetApp ONTAP volume.

* ontap-nas: Each PV provisioned is a full Amazon FSx for NetApp ONTAP volume.

* ontap-nas-economy: Each PV provisioned is a qgtree, with a configurable number of gtrees per Amazon
FSx for NetApp ONTAP volume.

* ontap-nas-flexgroup: Each PV provisioned is a full Amazon FSx for NetApp ONTAP FlexGroup
volume.

For driver details, see ONTAP drivers.

Authentication

Astra Trident offers two modes of authentication.

« Certificate-based: Astra Trident will communicate with the SVM on your FSx file system using a certificate
installed on your SVM.

* Credential-based: You can use the fsxadmin user for your file system or the vsadmin user configured for
your SVM.

Astra Trident expects to be run as a vsadmin SVM user or as a user with a different name

(D that has the same role. Amazon FSx for NetApp ONTAP has an fsxadmin user thatis a
limited replacement of the ONTAP admin cluster user. We strongly recommend using
vsadmin with Astra Trident.

You can update backends to move between credential-based and certificate-based methods. However, if you
attempt to provide credentials and certificates, backend creation will fail. To switch to a different
authentication method, you must remove the existing method from the backend configuration.

For details on enabling authentication, refer to the authentication for your driver type:

* ONTAP NAS authentication
* ONTAP SAN authentication

170

Find more information

* Amazon FSx for NetApp ONTAP documentation
* Blog post on Amazon FSx for NetApp ONTAP

Integrate Amazon FSx for NetApp ONTAP

You can integrate your Amazon FSx for NetApp ONTAP file system with Astra Trident to
ensure Kubernetes clusters running in Amazon Elastic Kubernetes Service (EKS) can
provision block and file persistent volumes backed by ONTAP.

Requirements
In addition to Astra Trident requirements, to integrate FSx for ONTAP with Astra Trident, you need:

* An existing Amazon EKS cluster or self-managed Kubernetes cluster with kubect1 installed.

» An existing Amazon FSx for NetApp ONTAP file system and storage virtual machine (SVM) that is
reachable from your cluster’s worker nodes.

» Worker nodes that are prepared for NFS or iSCSI.

@ Ensure you follow the node preparation steps required for Amazon Linux and Ubuntu
Amazon Machine Images (AMIs) depending on your EKS AMI type.

 Astra Trident supports SMB volumes mounted to pods running on Windows nodes only. Refer to Prepare to
provision SMB volumes for details.

ONTAP SAN and NAS driver integration

@ If you are configuring for SMB volumes, you must read Prepare to provision SMB volumes
before creating the backend.

Steps
1. Deploy Astra Trident using one of the deployment methods.

2. Collect your SYM management LIF DNS name. For example, using the AWS CLI, find the DNSName entry
under Endpoints — Management after running the following command:

aws fsx describe-storage-virtual-machines --region <file system region>

3. Create and install certificates for NAS backend authentication or SAN backend authentication.

You can log in to your file system (for example to install certificates) using SSH from
anywhere that can reach your file system. Use the fsxadmin user, the password you

@ configured when you created your file system, and the management DNS name from aws
fsx describe-file-systems.

4. Create a backend file using your certificates and the DNS name of your management LIF, as shown in the
sample below:

171

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://www.netapp.com/blog/amazon-fsx-for-netapp-ontap/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

YAML

version: 1

storageDriverName: ontap-san

backendName: customBackendName

managementLIF: svm—XXXXXXXXXXXXXXKXXX .L5—XXXXXXXXXXXKXXXXKXX . fsx.us~—
east-2.aws.internal

svm: svm01l

clientCertificate: ZXR0OZXJwYXB...ICMgJd3BhcGVyc2

clientPrivateKey: vciwKIyAgZG...0cnksIGR1c2NyaX
trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz

JSON

{
"version": 1,
"storageDriverName": "ontap-san",
"backendName": "customBackendName",
"managementLIF": "svm-XXXXXXXXXXXXXXXXX.fs-

XX XKXXKXXKXXKXXKXXXXXX . fsx.us—-east-2.aws.internal",
"svm": "svmO1l",
"clientCertificate": "ZXROZXJIJwYXB...ICMgJ3BhcGVyc2",
"clientPrivateKey": "vciwKIyAgZG...OcnksIGR1lc2NyaX",
"trustedCACertificate": "zcyBbaG...b3Igb3duIGNsYXNz"

For information about creating backends, see these links:

o Configure a backend with ONTAP NAS drivers
o Configure a backend with ONTAP SAN drivers

Results

After deployment, you can create a storage class, provision a volume, and mount the volume in a pod.

Prepare to provision SMB volumes

You can provision SMB volumes using the ontap-nas driver. Before you complete ONTAP SAN and NAS
driver integration complete the following steps.

Before you begin

Before you can provision SMB volumes using the ontap-nas driver, you must have the following.

* A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows
Server 2019. Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

172

At least one Astra Trident secret containing your Active Directory credentials. To generate secret
smbcreds:

kubectl create secret generic smbcreds --from-literal username=user

-—-from-literal password='password'

* A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or
GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

Steps

1. Create SMB shares. You can create the SMB admin shares in one of two ways either using the Microsoft
Management Console Shared Folders snap-in or using the ONTAP CLI. To create the SMB shares using

the ONTAP CLI:

a. If necessary, create the directory path structure for the share.

The vserver cifs share create command checks the path specified in the -path option during
share creation. If the specified path does not exist, the command fails.

b. Create an SMB share associated with the specified SVM:

vserver cifs share create -vserver vserver name -share-name
share name -path path [-share-properties share properties,...]
[other attributes] [-comment text]

c. Verify that the share was created:

vserver cifs share show -share-name share name

@ Refer to Create an SMB share for full details.

2. When creating the backend, you must configure the following to specify SMB volumes. For all FSx for
ONTAP backend configuration options, refer to FSx for ONTAP configuration options and examples.

Parameter Description Example

smbShare You can specify one of the smb-share
following: the name of an SMB
share created using the Microsoft
Management Console or ONTAP
CLI or a name to allow Astra
Trident to create the SMB share.

This parameter is required for

Amazon FSx for ONTAP
backends.

173

https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console
https://docs.netapp.com/us-en/ontap/smb-config/create-share-task.html

Parameter Description

nasType Must set to smb. If null, defaults
tonfs.

securityStyle Security style for new volumes.
Must be set to ntfs or mixed
for SMB volumes.

unixPermissions Mode for new volumes. Must be

left empty for SMB volumes.

FSx for ONTAP configuration options and examples

Example

smb

ntfs or mixed for SMB volumes

Learn about backend configuration options for Amazon FSx for ONTAP. This section

provides backend configuration examples.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description

version

storageDriverName Name of the storage driver

backendName Custom name or the storage
backend
managementLIF IP address of a cluster or SVM

management LIF

For seamless MetroCluster
switchover, you must specify an
SVM management LIF.

A fully-qualified domain name
(FQDN) can be specified.

Can be set to use IPv6 addresses if
Astra Trident was installed using
the -—use-ipvé flag. IPv6
addresses must be defined in
square brackets, such as
[28€8:d9fb:a825:b7bf:69a8:d02f:.9e
7b:3555].

174

Example

Always 1

ontap-nas, ontap-nas-
economy, ontap-nas-
flexgroup, ontap-san, ontap-
san—-economy

Driver name + “ ” + dataLIF

“10.0.0.17, “[2001:1234:abcd::fefe]”

Parameter Description Example

datallIF IP address of protocol LIF.

ONTAP NAS drivers: We
recommend specifying dataLIF. If
not provided, Astra Trident fetches
data LIFs from the SVM. You can
specify a fully-qualified domain
name (FQDN) to be used for the
NFS mount operations, allowing
you to create a round-robin DNS to
load-balance across multiple data
LIFs. Can be changed after initial
setting. Refer to Update dataLIF
after initial configuration.

ONTAP SAN drivers: Do not
specify for iSCSI. Astra Trident
uses ONTAP Selective LUN Map to
discover the iSCI LIFs needed to
establish a multi path session. A
warning is generated if dataLIF is
explicitly defined.

Can be set to use IPv6 addresses if
Astra Trident was installed using
the -—use-ipvé6 flag. IPv6
addresses must be defined in
square brackets, such as
[28e8:d9fb:a825:b7bf:69a8:d02f:9e
7b:3555].

autoExportPolicy Enable automatic export policy false
creation and updating [Boolean].

Using the autoExportPolicy
and autoExportCIDRs options,
Astra Trident can manage export
policies automatically.

autoExportCIDRs List of CIDRs to filter Kubernetes’ "[*0.0.0.0/0”, “::/0"]"
node IPs against when
autoExportPolicy is enabled.

Using the autoExportPolicy
and autoExportCIDRs options,
Astra Trident can manage export
policies automatically.

labels Set of arbitrary JSON-formatted
labels to apply on volumes

175

Parameter Description Example

clientCertificate Base64-encoded value of client
certificate. Used for certificate-
based auth

clientPrivateKey Base64-encoded value of client
private key. Used for certificate-
based auth

trustedCACertificate Base64-encoded value of trusted
CA certificate. Optional. Used for
certificate-based authentication.

username Username to connect to the cluster
or SVM. Used for credential-based
authentication. For example,
vsadmin.

password Password to connect to the cluster
or SVM. Used for credential-based
authentication.

svm Storage virtual machine to use Derived if an SVM managementLIF
is specified.

storagePrefix Prefix used when provisioning new trident
volumes in the SVM.

Cannot be modified after creation.
To update this parameter, you will
need to create a new backend.

limitAggregateUsage Do not specify for Amazon FSx Do not use.
for NetApp ONTAP.

The provided fsxadmin and
vsadmin do not contain the
permissions required to retrieve
aggregate usage and limit it using
Astra Trident.

limitVolumeSize Fail provisioning if requested
volume size is above this value.

(not enforced by default)

Also restricts the maximum size of
the volumes it manages for gtrees
and LUNs, and the
gtreesPerFlexvol option allows
customizing the maximum number
of gtrees per FlexVol.

lunsPerFlexvol Maximum LUNSs per Flexvol, must 100
be in range [50, 200].

SAN only.

176

Parameter

debugTraceFlags

nfsMountOptions

nasType

gtreesPerFlexvol

smbShare

Description

Debug flags to use when
troubleshooting. Example,
{“api”:false, “method”:true}

Do not use debugTraceFlags
unless you are troubleshooting and
require a detailed log dump.

Comma-separated list of NFS
mount options.

The mount options for Kubernetes-
persistent volumes are normally
specified in storage classes, but if
no mount options are specified in a
storage class, Astra Trident will fall
back to using the mount options
specified in the storage backend’s
configuration file.

If no mount options are specified in
the storage class or the
configuration file, Astra Trident will
not set any mount options on an
associated persistent volume.

Configure NFS or SMB volumes
creation.

Options are nfs, smb, or null.

Must set to smb for SMB
volumes. Setting to null defaults to
NFS volumes.

Example

null

nfs

Maximum Qtrees per FlexVol, must 200

be in range [50, 300]

You can specify one of the
following: the name of an SMB
share created using the Microsoft
Management Console or ONTAP
CLI or a name to allow Astra
Trident to create the SMB share.

This parameter is required for
Amazon FSx for ONTAP backends.

smb-share

177

Parameter

useREST

Description Example

Boolean parameter to use ONTAP false
REST APIs. Tech preview

useREST is provided as a tech
preview that is recommended for
test environments and not for
production workloads. When set to
true, Astra Trident will use ONTAP
REST APIs to communicate with
the backend.

This feature requires ONTAP 9.11.1
and later. In addition, the ONTAP
login role used must have access to
the ontap application. This is
satisfied by the pre-defined
vsadmin and cluster-admin
roles.

Update dataLIF after initial configuration

You can change the data LIF after initial configuration by running the following command to provide the new

backend JSON file with updated data LIF.

tridentctl update backend <backend-name> -f <path-to-backend-json-file-
with-updated-dataLIF>

@ If PVCs are attached to one or multiple pods, you must bring down all corresponding pods and

then bring them back up in order to for the new data LIF to take effect.

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an

example, see the configuration examples below.

Parameter
spaceAllocation

spaceReserve

snapshotPolicy

178

Description Default
Space-allocation for LUNs true
Space reservation mode; “none” none

(thin) or “volume” (thick)

Snapshot policy to use none

Parameter

gosPolicy

adaptiveQosPolicy

snapshotReserve

splitOnClone

encryption

luksEncryption

tieringPolicy

Description

QoS policy group to assign for
volumes created. Choose one of
gosPolicy or adaptiveQosPolicy per
storage pool or backend.

Using QoS policy groups with Astra
Trident requires ONTAP 9.8 or later.

We recommend using a non-shared
QoS policy group and ensuring the
policy group is applied to each
constituent individually. A shared
QoS policy group will enforce the
ceiling for the total throughput of all
workloads.

Adaptive QoS policy group to
assign for volumes created.
Choose one of qosPolicy or
adaptiveQosPolicy per storage pool
or backend.

Not supported by ontap-nas-
economy.

Percentage of volume reserved for
snapshots “0”

Split a clone from its parent upon
creation

Enable NetApp Volume Encryption
(NVE) on the new volume; defaults
to false. NVE must be licensed
and enabled on the cluster to use
this option.

If NAE is enabled on the backend,
any volume provisioned in Astra
Trident will be NAE enabled.

For more information, refer to: How
Astra Trident works with NVE and
NAE.

Enable LUKS encryption. Refer to
Use Linux Unified Key Setup
(LUKS).

SAN only.

Tiering policy to use none

Default

@

If snapshotPolicy is none, else

@

false

false

snapshot-only for pre-ONTAP
9.5 SVM-DR configuration

179

Parameter Description Default

unixPermissions Mode for new volumes.

Leave empty for SMB volumes.

securityStyle Security style for new volumes. NFS default is unix.

NFS supports mixed and unix SMB defaultis ntfs.
security styles.

SMB supports mixed and ntfs
security styles.

Example

Using nasType, node-stage-secret-name, and node-stage-secret-namespace, You can specify an
SMB volume and provide the required Active Directory credentials. SMB volumes are supported using the
ontap-nas driver only.

apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata:
name: nas-smb-sc

provisioner: csi.trident.netapp.io

parameters:
backendType: "ontap-nas"
trident.netapp.io/nasType: "smb"
csi.storage.k8s.io/node-stage-secret-name: "smbcreds"
csi.storage.k8s.io/node-stage-secret-namespace: "default"

Create backends with kubectl

A backend defines the relationship between Astra Trident and a storage system. It tells
Astra Trident how to communicate with that storage system and how Astra Trident should
provision volumes from it. After Astra Trident is installed, the next step is to create a
backend. The TridentBackendConfig Custom Resource Definition (CRD) enables
you to create and manage Trident backends directly through the Kubernetes interface.
You can do this by using kubect1 or the equivalent CLI tool for your Kubernetes
distribution.

TridentBackendConfig

TridentBackendConfig (tbc, tbconfig, tbackendconfig)is a frontend, namespaced CRD that
enables you to manage Astra Trident backends using kubectl. Kubernetes and storage admins can now
create and manage backends directly through the Kubernetes CLI without requiring a dedicated command-line
utility (tridentctl).

180

Upon the creation of a TridentBackendConfig object, the following happens:

* A backend is created automatically by Astra Trident based on the configuration you provide. This is
represented internally as a TridentBackend (tbe, tridentbackend) CR.

* The TridentBackendConfig is uniquely bound to a TridentBackend that was created by Astra
Trident.

Each TridentBackendConfig maintains a one-to-one mapping with a TridentBackend. The former is the
interface provided to the user to design and configure backends; the latter is how Trident represents the actual
backend object.

TridentBackend CRs are created automatically by Astra Trident. You should not modify
them. If you want to make updates to backends, do this by modifying the
TridentBackendConfig object.

See the following example for the format of the TridentBackendConfig CR:

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:

name: backend-tbc-ontap-san
spec:

version: 1

backendName: ontap-san-backend

storageDriverName: ontap-san

managementLIF: 10.0.0.1

datalIF: 10.0.0.2

svm: trident svm

credentials:

name: backend-tbc-ontap-san-secret

You can also take a look at the examples in the trident-installer directory for sample configurations for the
desired storage platform/service.

The spec takes backend-specific configuration parameters. In this example, the backend uses the ontap-
san storage driver and uses the configuration parameters that are tabulated here. For the list of configuration
options for your desired storage driver, see the backend configuration information for your storage driver.

The spec section also includes credentials and deletionPolicy fields, which are newly introduced in
the TridentBackendConfig CR:

* credentials: This parameter is a required field and contains the credentials used to authenticate with
the storage system/service. This is set to a user-created Kubernetes Secret. The credentials cannot be
passed in plain text and will result in an error.

* deletionPolicy: This field defines what should happen when the TridentBackendConfig is deleted.
It can take one of two possible values:

° delete: This results in the deletion of both TridentBackendConfig CR and the associated
backend. This is the default value.

181

https://github.com/NetApp/trident/tree/stable/v21.07/trident-installer/sample-input/backends-samples

° retain: When a TridentBackendConfig CR is deleted, the backend definition will still be present
and can be managed with tridentctl. Setting the deletion policy to retain lets users downgrade to
an earlier release (pre-21.04) and retain the created backends. The value for this field can be updated
after a TridentBackendConfig is created.

The name of a backend is set using spec.backendName. If unspecified, the name of the
@ backend is set to the name of the TridentBackendConfig object (metadata.name). It is
recommended to explicitly set backend names using spec.backendName.

Backends that were created with tridentctl do not have an associated
TridentBackendConfig object. You can choose to manage such backends with kubect1 by

creating a TridentBackendConfig CR. Care must be taken to specify identical config
parameters (such as spec.backendName, spec.storagePrefix
spec.storageDriverName, and so on). Astra Trident will automatically bind the newly-
created TridentBackendConfig with the pre-existing backend.

Steps overview
To create a new backend by using kubect1, you should do the following:

1. Create a Kubernetes Secret. The secret contains the credentials Astra Trident needs to communicate with
the storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and
references the secret created in the previous step.

After you create a backend, you can observe its status by using kubectl get tbc <tbc-name> -n
<trident-namespace> and gather additional details.

Step 1: Create a Kubernetes Secret

Create a Secret that contains the access credentials for the backend. This is unique to each storage
service/platform. Here’s an example:

kubectl -n trident create -f backend-tbc-ontap-san-secret.yaml
apiVersion: vl
kind: Secret
metadata:
name: backend-tbc-ontap-san-secret
type: Opaque
stringData:
username: cluster-admin

password: password

This table summarizes the fields that must be included in the Secret for each storage platform:

182

https://kubernetes.io/docs/concepts/configuration/secret/

Storage platform Secret Fields Secret Fields description
description

Azure NetApp Files clientlD The client ID from an app
registration

Cloud Volumes Service for GCP private_key id ID of the private key. Part of API
key for GCP Service Account with
CVS admin role

Cloud Volumes Service for GCP private_key Private key. Part of API key for
GCP Service Account with CVS
admin role

Element (NetApp HCI/SolidFire) Endpoint MVIP for the SolidFire cluster with

tenant credentials

ONTAP username Username to connect to the
cluster/SVM. Used for credential-
based authentication

ONTAP password Password to connect to the
cluster/SVM. Used for credential-
based authentication

ONTAP clientPrivateKey Base64-encoded value of client
private key. Used for certificate-
based authentication

ONTAP chapUsername Inbound username. Required if
useCHAP=true. For ontap-san
and ontap-san-economy

ONTAP chaplnitiatorSecret CHAP initiator secret. Required if
useCHAP=true. For ontap-san
and ontap-san-economy

ONTAP chapTargetUsername Target username. Required if
useCHAP=true. For ontap-san
and ontap-san-economy

ONTAP chapTargetlnitiatorSecret CHAP target initiator secret.
Required if useCHAP=true. For
ontap-san and ontap-san-
economy

The Secret created in this step will be referenced in the spec.credentials field of the
TridentBackendConfig object that is created in the next step.

183

Step 2: Create the TridentBackendConfig CR

You are now ready to create your TridentBackendConfig CR. In this example, a backend that uses the
ontap-san driver is created by using the TridentBackendConfig object shown below:

kubectl -n trident create -f backend-tbc-ontap-san.yaml

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:

name: backend-tbc-ontap-san
spec:

version: 1

backendName: ontap-san-backend

storageDriverName: ontap-san

managementLIF: 10.0.0.1

datalLIF: 10.0.0.2

svm: trident svm

credentials:

name: backend-tbc-ontap-san-secret

Step 3: Verify the status of the TridentBackendConfig CR

Now that you created the TridentBackendConfig CR, you can verify the status. See the following example:

kubectl -n trident get tbc backend-tbc-ontap-san

NAME BACKEND NAME BACKEND UUID
PHASE STATUS
backend-tbc-ontap-san ontap-san-backend 8d24fce7-6f60-4d4a-8ef6-

bab2699%e6ab8 Bound Success

A backend was successfully created and bound to the TridentBackendConfig CR.
Phase can take one of the following values:

* Bound: The TridentBackendConfig CR is associated with a backend, and that backend contains
configRef setto the TridentBackendConfig CR’s uid.

* Unbound: Represented using "". The TridentBackendConfig object is not bound to a backend. All
newly created TridentBackendConfig CRs are in this phase by default. After the phase changes, it
cannot revert to Unbound again.

* Deleting: The TridentBackendConfig CR's deletionPolicy was set to delete. When the
TridentBackendConfig CRis deleted, it transitions to the Deleting state.

° If no persistent volume claims (PVCs) exist on the backend, deleting the TridentBackendConfig

184

will result in Astra Trident deleting the backend as well as the TridentBackendConfig CR.

o If one or more PVCs are present on the backend, it goes to a deleting state. The
TridentBackendConfig CR subsequently also enters deleting phase. The backend and
TridentBackendConfig are deleted only after all PVCs are deleted.

* Lost: The backend associated with the TridentBackendConfig CR was accidentally or deliberately
deleted and the TridentBackendConfig CR still has a reference to the deleted backend. The
TridentBackendConfig CR can still be deleted irrespective of the deletionPolicy value.

* Unknown: Astra Trident is unable to determine the state or existence of the backend associated with the
TridentBackendConfig CR. For example, if the API server is not responding or if the
tridentbackends.trident.netapp.io CRD is missing. This might require the user’s intervention.

At this stage, a backend is successfully created! There are several operations that can additionally be handled,
such as backend updates and backend deletions.

(Optional) Step 4: Get more details

You can run the following command to get more information about your backend:

kubectl -n trident get tbc backend-tbc-ontap-san -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8d24fce7-6£f60-4d4a-8ef6-
bab269%e¢6ab8 Bound Success ontap-san delete

In addition, you can also obtain a YAML/JSON dump of TridentBackendConfig.

kubectl -n trident get tbc backend-tbc-ontap-san -o yaml

185

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
creationTimestamp: "2021-04-21T20:45:112Z"
finalizers:
- trident.netapp.io
generation: 1
name: backend-tbc-ontap-san
namespace: trident

resourceVersion: "947143"
uid: 35b9d777-109f-43d5-8077-c74a4559d09c
spec:

backendName: ontap-san-backend
credentials:
name: backend-tbc-ontap-san-secret
managementLIF: 10.0.0.1
datalLIF: 10.0.0.2
storageDriverName: ontap-san
svm: trident svm
version: 1
status:
backendInfo:
backendName: ontap-san-backend
backendUUID: 8d24fce7-6f60-4d4a-8ef6-bab2699e6ab8
deletionPolicy: delete
lastOperationStatus: Success
message: Backend 'ontap-san-backend' created
phase: Bound

backendInfo contains the backendName and the backendUUID of the backend that got created in
response to the TridentBackendConfig CR. The lastOperationStatus field represents the status of
the last operation of the TridentBackendConfig CR, which can be user-triggered (for example, user
changed something in spec) or triggered by Astra Trident (for example, during Astra Trident restarts). It can
either be Success or Failed. phase represents the status of the relation between the
TridentBackendConfig CR and the backend. In the example above, phase has the value Bound, which
means that the TridentBackendConfig CR is associated with the backend.

You can run the kubectl -n trident describe tbc <tbc-cr-name> command to get details of the
event logs.

You cannot update or delete a backend which contains an associated
TridentBackendConfig object using tridentctl. To understand the steps involved in
switching between tridentctl and TridentBackendConfig, see here.

186

Perform backend management with kubectl

Learn about how to perform backend management operations by using kubectl.

Delete a backend

By deleting a TridentBackendConfig, you instruct Astra Trident to delete/retain backends (based on
deletionPolicy). To delete a backend, ensure that deletionPolicy is set to delete. To delete just the
TridentBackendConfig, ensure that deletionPolicy is set to retain. This will ensure the backend is still
present and can be managed by using tridentctl.

Run the following command:

kubectl delete tbc <tbc-name> -n trident

Astra Trident does not delete the Kubernetes Secrets that were in use by TridentBackendConfig. The
Kubernetes user is responsible for cleaning up secrets. Care must be taken when deleting secrets. You should
delete secrets only if they are not in use by the backends.

View the existing backends

Run the following command:

kubectl get tbc -n trident

You can also run tridentctl get backend -n trident or tridentctl get backend -o yaml -n
trident to obtain a list of all backends that exist. This list will also include backends that were created with
tridentctl.

Update a backend

There can be multiple reasons to update a backend:

» Credentials to the storage system have changed. To update credentials, the Kubernetes Secret that is used
in the TridentBackendConfig object must be updated. Astra Trident will automatically update the
backend with the latest credentials provided. Run the following command to update the Kubernetes Secret:

kubectl apply -f <updated-secret-file.yaml> -n trident

* Parameters (such as the name of the ONTAP SVM being used) need to be updated.
In this case, TridentBackendConfig objects can be updated directly through Kubernetes.

kubectl apply -f <updated-backend-file.yaml>
Alternatively, make changes to the existing TridentBackendConfig CR by running the following command:

187

kubectl edit tbc <tbc-name> -n trident

If a backend update fails, the backend continues to remain in its last known configuration. You can view the
logs to determine the cause by running kubectl get tbc <tbc-name> -o yaml -n trident or
kubectl describe tbc <tbc-name> -n trident.

After you identify and correct the problem with the configuration file, you can re-run the update command.
Perform backend management with tridentctl
Learn about how to perform backend management operations by using tridentctl.

Create a backend

After you create a backend configuration file, run the following command:
tridentctl create backend -f <backend-file> -n trident

If backend creation fails, something was wrong with the backend configuration. You can view the logs to
determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the create command
again.

Delete a backend

To delete a backend from Astra Trident, do the following:

1. Retrieve the backend name:
tridentctl get backend -n trident
2. Delete the backend:

tridentctl delete backend <backend-name> -n trident

If Astra Trident has provisioned volumes and snapshots from this backend that still exist,

@ deleting the backend prevents new volumes from being provisioned by it. The backend will
continue to exist in a “Deleting” state and Trident will continue to manage those volumes and
snapshots until they are deleted.

188

View the existing backends

To view the backends that Trident knows about, do the following:

* To get a summary, run the following command:
tridentctl get backend -n trident
* To get all the details, run the following command:
tridentctl get backend -o json -n trident
Update a backend
After you create a new backend configuration file, run the following command:
tridentctl update backend <backend-name> -f <backend-file> -n trident

If backend update fails, something was wrong with the backend configuration or you attempted an invalid
update. You can view the logs to determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the update command
again.

Identify the storage classes that use a backend

This is an example of the kind of questions you can answer with the JSON that tridentctl outputs for
backend objects. This uses the jq utility, which you need to install.

tridentctl get backend -o json | Jjg '[.items[] | {backend: .name,
storageClasses: [.storage[].storageClasses] |unique}]’

This also applies for backends that were created by using TridentBackendConfig.
Move between backend management options
Learn about the different ways of managing backends in Astra Trident.
Options for managing backends

With the introduction of TridentBackendConfig, administrators now have two unique ways of managing

189

backends. This poses the following questions:

* Can backends created using tridentctl be managed with TridentBackendConfig?

* Can backends created using TridentBackendConfig be managed using tridentctl?

Manage tridentctl backends using TridentBackendConfig

This section covers the steps required to manage backends that were created using tridentctl directly
through the Kubernetes interface by creating TridentBackendConfig objects.

This will apply to the following scenarios:

* Pre-existing backends, that don’t have a TridentBackendConfig because they were created with
tridentctl.

* New backends that were created with tridentctl, while other TridentBackendConfig objects exist.

In both scenarios, backends will continue to be present, with Astra Trident scheduling volumes and operating
on them. Administrators have one of two choices here:

* Continue using tridentctl to manage backends that were created using it.
* Bind backends created using tridentctl to a new TridentBackendConfig object. Doing so would
mean the backends will be managed using kubectl and not tridentctl.

To manage a pre-existing backend using kubect1, you will need to create a TridentBackendConfig that
binds to the existing backend. Here is an overview of how that works:

1. Create a Kubernetes Secret. The secret contains the credentials Astra Trident needs to communicate with
the storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and
references the secret created in the previous step. Care must be taken to specify identical config
parameters (such as spec.backendName, spec.storagePrefix, spec.storageDriverName, and
SO on). spec.backendName must be set to the name of the existing backend.

Step 0: Identify the backend

To create a TridentBackendConfig that binds to an existing backend, you will need to obtain the backend
configuration. In this example, let us assume a backend was created using the following JSON definition:

tridentctl get backend ontap-nas-backend -n trident

R foss=ss==========
e e fomm - +

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

fmm fomm e

fessssssss s e s ss s oses s s s e =s e fomsmm==== +

| ontap-nas-backend | ontap-nas | 52f2ebl0-e4c6-4160-99fc-
96b3bebab5d7 | online | 25 |

fresssesesmess oo ==== Fossmssssm=ssas=s

190

cat ontap-nas-backend. json

"version": 1,

"storageDriverName": "ontap-nas",
"managementLIF": "10.10.10.1",
"dataLIF": "10.10.10.2",
"backendName": "ontap-nas-backend",
"svm": "trident svm",

"username": "cluster-admin",

"password": "admin-password",

"defaults": {

"spaceReserve": "none",
"encryption": "false"
}I
"labels":{"store":"nas store"},
"region": "us east 1",
"storage": [

{

"labels":{"app":"msoffice", "cost"

"zone":"us east la",
"defaults": {

"spaceReserve": "volume",
"encryption": "true",
"unixPermissions": "0755"

:"100"},

"labels":{"app":"mysgldb", "cost":"25"},

"zone":"us east 1d",
"defaults": {

"spaceReserve": "volume",
"encryption": "false",
"unixPermissions": "0775"

Step 1: Create a Kubernetes Secret

Create a Secret that contains the credentials for the backend, as shown in this example:

191

cat tbc-ontap-nas-backend-secret.yaml

apiVersion: vl
kind: Secret
metadata:
name: ontap-nas-backend-secret
type: Opaque
stringData:
username: cluster-admin

password: admin-password

kubectl create -f tbc-ontap-nas-backend-secret.yaml -n trident
secret/backend-tbc-ontap-san-secret created

Step 2: Create a TridentBackendConfig CR

The next step is to create a TridentBackendConfig CR that will automatically bind to the pre-existing
ontap-nas-backend (as in this example). Ensure the following requirements are met:

* The same backend name is defined in spec.backendName.
« Configuration parameters are identical to the original backend.
* Virtual pools (if present) must retain the same order as in the original backend.

» Credentials are provided through a Kubernetes Secret and not in plain text.

In this case, the TridentBackendConfig will look like this:

192

cat backend-tbc-ontap-nas.yaml
apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: tbc-ontap-nas-backend
spec:
version: 1
storageDriverName: ontap-nas
managementLIF: 10.10.10.1
datalLIF: 10.10.10.2
backendName: ontap-nas-backend
svm: trident svm
credentials:
name: mysecret
defaults:
spaceReserve: none
encryption: 'false'
labels:
store: nas_ store
region: us east 1
storage:
- labels:
app: msoffice
cost: '100"
zone: us_east la
defaults:
spaceReserve: volume
encryption: 'true'
unixPermissions: '0755'
- labels:
app: mysqgldb
cost: '25"
zone: us_east 1d
defaults:
spaceReserve: volume
encryption: 'false'

unixPermissions: '0775"

kubectl create -f backend-tbc-ontap-nas.yaml -n trident
tridentbackendconfig.trident.netapp.io/tbc-ontap-nas-backend created

Step 3: Verify the status of the TridentBackendConfig CR

After the TridentBackendConfig has been created, its phase must be Bound. It should also reflect the
same backend name and UUID as that of the existing backend.

193

kubectl get tbc tbc-ontap-nas-backend -n trident

NAME BACKEND NAME BACKEND UUID
PHASE STATUS
tbc-ontap-nas-backend ontap-nas-backend 52f2ebl10-e4c6-4160-99fc-

96b3beb5ab5d7 Bound Success

#confirm that no new backends were created (i.e., TridentBackendConfig did
not end up creating a new backend)
tridentctl get backend -n trident

fmm e fom e

Rt ettt F—————— o — +

| NAME | STORAGE DRIVER | UuID

| STATE | VOLUMES |

et e T o

e - e b +

| ontap-nas-backend | ontap-nas | 52f2ebl0-ed4c6-4160-99fc—-
96b3bebab5d7 | online | 25 |

e o
e - +————— +

The backend will now be completely managed using the tbc-ontap-nas-backend
TridentBackendConfig object.

Manage TridentBackendConfig backends using tridentctl
tridentctl can be used to list backends that were created using TridentBackendConfig. In addition,

administrators can also choose to completely manage such backends through tridentctl by deleting
TridentBackendConfig and making sure spec.deletionPolicy is setto retain

Step 0: Identify the backend

For example, let us assume the following backend was created using TridentBackendConfig:

194

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8labcb27-ea63-49bb-b606-
0a5315ach5£f82 Bound Success ontap-san delete

tridentctl get backend ontap-san-backend -n trident

P memssesem== P m===
R Fommomome Fomomomom= +

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

Fommmmmmmmemeoeoeoos Fommmmmmomeomomm=
et Fom—————— fom——————— +

| ontap-san-backend | ontap-san | 8labcb27-ea63-49%bb-b606-
0a5315ac5f82 | online | 33 |

Fommmmcmemcmsosmsmss Fommmmmmsmemsmse=
B e o= Pommmmmm== +

From the output, it is seen that TridentBackendConfig was created successfully and is bound to a
backend [observe the backend’s UUID].

Step 1: Confirm deletionPolicy is setto retain

Let us take a look at the value of deletionPolicy. This needs to be set to retain. This will ensure that
when a TridentBackendConfig CR is deleted, the backend definition will still be present and can be
managed with tridentctl.

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8labcb27-ea63-49bb-b606-
0a5315ac5£82 Bound Success ontap-san delete

Patch value of deletionPolicy to retain
kubectl patch tbc backend-tbc-ontap-san --type=merge -p
"{"spec":{"deletionPolicy":"retain"}}' -n trident

tridentbackendconfig.trident.netapp.io/backend-tbc-ontap-san patched

#Confirm the value of deletionPolicy
kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8labcb27-ea63-49bb-b606-
0ab5315ac5f82 Bound Success ontap-san retain

195

(D Do not proceed to the next step unless deletionPolicy is setto retain.

Step 2: Delete the TridentBackendConfig CR

The final step is to delete the TridentBackendConfig CR. After confirming the deletionPolicy is set to
retain, you can go ahead with the deletion:

kubectl delete tbc backend-tbc-ontap-san -n trident
tridentbackendconfig.trident.netapp.io "backend-tbc-ontap-san" deleted

tridentctl get backend ontap-san-backend -n trident

fomm e fom -
Rt bt PP t——————— Fo———— +

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

o o

e it ettt PP +—————— o +

| ontap-san-backend | ontap-san | 8labcb27-ea63-49bb-b606-
0a5315ac5f82 | online | 33 |

o o

Rt et ettt et - +—————— +

Upon the deletion of the TridentBackendConfig object, Astra Trident simply removes it without actually
deleting the backend itself.

Manage storage classes
You can create a storage class, delete a storage class, and view existing storage classes.

Design a storage class

See here for more information on what storage classes are and how you configure them.

Create a storage class

After you have a storage class file, run the following command:

kubectl create -f <storage-class-file>

<storage-class-file> should be replaced with your storage class file name.

Delete a storage class

To delete a storage class from Kubernetes, run the following command:

196

kubectl delete storageclass <storage-class>

<storage-class> should be replaced with your storage class.

Any persistent volumes that were created through this storage class will remain untouched, and Astra Trident
will continue to manage them.

Astra Trident enforces a blank £sType for the volumes it creates. For iSCSI backends, it is
recommended to enforce parameters. fsType in the StorageClass. You should delete
existing StorageClasses and re-create them with parameters. £sType specified.

View the existing storage classes

» To view existing Kubernetes storage classes, run the following command:

kubectl get storageclass

 To view Kubernetes storage class detail, run the following command:

kubectl get storageclass <storage-class> -o json

» To view Astra Trident’s synchronized storage classes, run the following command:
tridentctl get storageclass

» To view Astra Trident’s synchronized storage class detail, run the following command:

tridentctl get storageclass <storage-class> -o json

Set a default storage class

Kubernetes 1.6 added the ability to set a default storage class. This is the storage class that will be used to
provision a Persistent Volume if a user does not specify one in a Persistent Volume Claim (PVC).

* Define a default storage class by setting the annotation storageclass. kubernetes.io/is-
default-class to true in the storage class definition. According to the specification, any other value or
absence of the annotation is interpreted as false.

* You can configure an existing storage class to be the default storage class by using the following
command:

kubectl patch storageclass <storage-class-name> -p '{'"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}"'

197

« Similarly, you can remove the default storage class annotation by using the following command:

kubectl patch storageclass <storage-class-name> -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}}"'

There are also examples in the Trident installer bundle that include this annotation.

You should only have one default storage class in your cluster at any given time. Kubernetes
@ does not technically prevent you from having more than one, but it will behave as if there is no
default storage class at all.

Identify the backend for a storage class

This is an example of the kind of questions you can answer with the JSON that tridentctl outputs for Astra
Trident backend objects. This uses the g utility, which you may need to install first.

tridentctl get storageclass -o json | jgq '[.items[] | {storageClass:
.Config.name, backends: [.storage]|unique}]'

Perform volume operations

Use CSI Topology

Astra Trident can selectively create and attach volumes to nodes present in a Kubernetes
cluster by making use of the CSI Topology feature.

Overview

Using the CSI Topology feature, access to volumes can be limited to a subset of nodes, based on regions and
availability zones. Cloud providers today enable Kubernetes administrators to spawn nodes that are zone
based. Nodes can be located in different availability zones within a region, or across various regions. To
facilitate the provisioning of volumes for workloads in a multi-zone architecture, Astra Trident uses CSI
Topology.

Learn more about the CSI Topology feature here.

Kubernetes provides two unique volume binding modes:

* With VolumeBindingMode set to Immediate, Astra Trident creates the volume without any topology
awareness. Volume binding and dynamic provisioning are handled when the PVC is created. This is the
default volumeBindingMode and is suited for clusters that do not enforce topology constraints. Persistent
Volumes are created without having any dependency on the requesting pod’s scheduling requirements.

* With VolumeBindingMode set to WaitForFirstConsumer, the creation and binding of a Persistent
Volume for a PVC is delayed until a pod that uses the PVC is scheduled and created. This way, volumes
are created to meet the scheduling constraints that are enforced by topology requirements.

198

https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/

@ The WaitForFirstConsumer binding mode does not require topology labels. This can be

used independent of the CSI Topology feature.

What you’ll need
To make use of CSI Topology, you need the following:

* A Kubernetes cluster running a supported Kubernetes version

kubectl version

Client Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"1el1e4a2108024935ecfcb2912226cedeafd99df",
GitTreeState:"clean", BuildDate:"2020-10-14T12:50:192",
GoVersion:"gol.15.2", Compiler:"gc", Platform:"linux/amd64"}
Server Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"1el11e4a2108024935ecfcb2912226cedeafd99df",
GitTreeState:"clean", BuildDate:"2020-10-14T12:41:492",
GoVersion:"gol.15.2", Compiler:"gc", Platform:"linux/amd64"}

* Nodes in the cluster should have labels that introduce topology awareness

(topology.kubernetes.io/region and topology.kubernetes.io/zone). These labels should

be present on nodes in the cluster before Astra Trident is installed for Astra Trident to be topology

aware.

kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{.metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"
[nodel,
{"beta.kubernetes.io/arch":"amd64", "beta.kubernetes.io/os":"1linux", "kube

rnetes.io/arch":"amdo64", "kubernetes.io/hostname" :"nodel", "kubernetes.io/
os":"linux", "node-

role.kubernetes.io/master":"", "topology.kubernetes.io/region":"us-
eastl","topology.kubernetes.io/zone":"us-eastl-a"}]

[node2,

{"beta.kubernetes.io/arch":"amd64", "beta.kubernetes.io/os":"linux", "kube
rnetes.io/arch":"amdo64", "kubernetes.io/hostname" :"node2", "kubernetes.io/
os":"linux", "node-

role.kubernetes.io/worker":"", "topology.kubernetes.io/region":"us-
eastl","topology.kubernetes.io/zone" :"us-eastl-b"}]

[node3,

{"beta.kubernetes.io/arch":"amd64", "beta.kubernetes.io/0s":"1linux", "kube
rnetes.io/arch":"amdo64", "kubernetes.io/hostname" :"node3", "kubernetes.io/
os":"linux", "node-
role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

eastl","topology.kubernetes.io/zone":"us-eastl-c"}]

199

Step 1: Create a topology-aware backend

Astra Trident storage backends can be designed to selectively provision volumes based on availability zones.
Each backend can carry an optional supportedTopologies block that represents a list of zones and regions
that must be supported. For StorageClasses that make use of such a backend, a volume would only be
created if requested by an application that is scheduled in a supported region/zone.

Here is an example backend definition:

YAML

version: 1

storageDriverName: ontap-san

backendName: san-backend-us-eastl

managementLIF: 192.168.27.5

svm: iscsi svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-eastl
topology.kubernetes.io/zone: us-eastl-a

- topology.kubernetes.io/region: us-eastl
topology.kubernetes.io/zone: us-eastl-b

JSON
{
"version": 1,
"storageDriverName": "ontap-san",
"backendName": "san-backend-us-eastl",
"managementLIF": "192.168.27.5",
"svm": "iscsi svm",
"username": "admin",
"password": "password",
"supportedTopologies™": [
{"topology.kubernetes.io/region": "us-eastl",
"topology.kubernetes.io/zone": "us-eastl-a"},
{"topology.kubernetes.io/region": "us-eastl",
"topology.kubernetes.io/zone": "us-eastl-b"}

]
}

200

supportedTopologies is used to provide a list of regions and zones per backend. These

@ regions and zones represent the list of permissible values that can be provided in a
StorageClass. For StorageClasses that contain a subset of the regions and zones provided in a
backend, Astra Trident will create a volume on the backend.

You can define supportedTopologies per storage pool as well. See the following example:

version: 1
storageDriverName: ontap-nas
backendName: nas-backend-us-centrall
managementLIF: 172.16.238.5
svm: nfs svm
username: admin
password: password
supportedTopologies:
- topology.kubernetes.io/region: us-centrall
topology.kubernetes.io/zone: us-centrall-a
- topology.kubernetes.io/region: us-centrall
topology.kubernetes.io/zone: us-centrall-b
storage:
- labels:
workload: production
region: Iowa-DC
zone: Iowa-DC-A
supportedTopologies:
- topology.kubernetes.io/region: us-centrall
topology.kubernetes.io/zone: us-centrall-a
- labels:
workload: dev
region: Iowa-DC
zone: Iowa-DC-B
supportedTopologies:
- topology.kubernetes.io/region: us-centrall
topology.kubernetes.io/zone: us-centrall-b

In this example, the region and zone labels stand for the location of the storage pool.
topology.kubernetes.io/region and topology.kubernetes.io/zone dictate where the storage
pools can be consumed from.

Step 2: Define StorageClasses that are topology aware

Based on the topology labels that are provided to the nodes in the cluster, StorageClasses can be defined to
contain topology information. This will determine the storage pools that serve as candidates for PVC requests
made, and the subset of nodes that can make use of the volumes provisioned by Trident.

See the following example:

201

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: netapp-san-us-eastl
provisioner: csi.trident.netapp.io
volumeBindingMode: WaitForFirstConsumer
allowedTopologies:
- matchLabelExpressions:
- key: topology.kubernetes.io/zone
values:
- us-eastl-a
- us-eastl-b
- key: topology.kubernetes.io/region
values:
- us-eastl
parameters:
fsType: "ext4d"

In the StorageClass definition provided above, volumeBindingMode is set to WaitForFirstConsumer.
PVCs that are requested with this StorageClass will not be acted upon until they are referenced in a pod. And,
allowedTopologies provides the zones and region to be used. The netapp-san-us-eastl1 StorageClass
will create PVCs on the san-backend-us-east1 backend defined above.

Step 3: Create and use a PVC

With the StorageClass created and mapped to a backend, you can now create PVCs.

See the example spec below:

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-san
spec:
accessModes:

- ReadWriteOnce
resources:

requests:

storage: 300Mi

storageClassName: netapp-san-us-eastl

Creating a PVC using this manifest would result in the following:

202

kubectl create -f pvc.yaml
persistentvolumeclaim/pvc-san created
kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

AGE

pvc-san Pending netapp-san-us-eastl

2s

kubectl describe pvc

Name: pvc-san

Namespace: default

StorageClass: netapp-san-us-eastl

Status: Pending

Volume:

Labels: <none>

Annotations: <none>

Finalizers: [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode: Filesystem

Mounted By: <none>

Events:
Type Reason Age From Message
Normal WaitForFirstConsumer ©6s persistentvolume-controller waiting

for first consumer to be created before binding

For Trident to create a volume and bind it to the PVC, use the PVC in a pod. See the following example:

203

apiVersion: vl
kind: Pod
metadata:
name: app-pod-1
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: topology.kubernetes.io/region
operator: In
values:
- us-eastl
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
preference:
matchExpressions:
- key: topology.kubernetes.io/zone
operator: In
values:
- us-eastl-a
- us-eastl-b
securityContext:
runAsUser: 1000
runAsGroup: 3000
fsGroup: 2000
volumes:
- name: voll
persistentVolumeClaim:
claimName: pvc-san
containers:
- name: sec-ctx-demo
image: busybox
command: ["sh", "-c", "sleep 1h"]
volumeMounts:
- name: voll
mountPath: /data/demo
securityContext:
allowPrivilegeEscalation: false

This podSpec instructs Kubernetes to schedule the pod on nodes that are present in the us-east1 region,
and choose from any node that is present in the us-eastl-a or us-eastl-b zones.

See the following output:

204

kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES

app-pod-1 1/1 Running 0 19s 192.168.25.131 node?2
<none> <none>

kubectl get pvc -o wide

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE VOLUMEMODE

pvc-san Bound pvc-ecblelal0-840c-463b-8b65-b3d033e2e62b 300Mi
RWO netapp-san-us-eastl 48s Filesystem

Update backends to include supportedTopologies

Pre-existing backends can be updated to include a list of supportedTopologies using tridentctl
backend update. This will not affect volumes that have already been provisioned, and will only be used for
subsequent PVCs.

Find more information

* Manage resources for containers
* nodeSelector
« Affinity and anti-affinity

¢ Taints and Tolerations

Work with snapshots

You can create Kubernetes VolumeSnapshots (volume snapshot) of Persistent Volumes
(PVs) to maintain point-in-time copies of Astra Trident volumes. Additionally, you can
create a new volume, also known as a clone, from an existing volume snapshot. Volume
snapshot is supported by ontap-nas, ontap-nas-flexgroup, ontap-san, ontap-
san-economy, solidfire-san, gcp-cvs, and azure-netapp-£files drivers.

Before you begin

You must have an external snapshot controller and Custom Resource Definitions (CRDs). This is the
responsibility of the Kubernetes orchestrator (for example: Kubeadm, GKE, OpenShift).

If your Kubernetes distribution does not include the snapshot controller and CRDs, refer to Deploying a volume
snapshot controller.

@ Don’t create a snapshot controller if creating on-demand volume snapshots in a GKE
environment. GKE uses a built-in, hidden snapshot controller.

Step 1: Create a VolumeSnapshotClass

This example creates a volume snapshot class.

205

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

cat snap-sc.yaml
apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshotClass
metadata:

name: csi-snapclass
driver: csi.trident.netapp.io
deletionPolicy: Delete

The driver points to the Astra Trident CSI driver. deletionPolicy can be Delete or Retain. When set to
Retain, the underlying physical snapshot on the storage cluster is retained even when the VvolumeSnapshot
object is deleted.

For more information, refer to VvolumeSnapshotClass.

Step 2: Create a snapshot of an existing PVC

This example creates a snapshot of an existing PVC.

cat snap.yaml
apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshot
metadata:
name: pvcl-snap
spec:
volumeSnapshotClassName: csi-snapclass
source:

persistentVolumeClaimName: pvcl

In this example, the snapshot is created for a PVC named pvcl and the name of the snapshot is set to pvcl-
snap.

kubectl create -f snap.yaml
volumesnapshot.snapshot.storage.k8s.io/pvcl-snap created

kubectl get volumesnapshots
NAME AGE
pvcl-snap 50s

This created a VolumeSnapshot object. A VolumeSnapshot is analogous to a PVC and is associated with a
VolumeSnapshotContent object that represents the actual snapshot.

It is possible to identify the VolumeSnapshotContent object for the pvcl-snap VolumeSnapshot by
describing it.

206

kubectl describe volumesnapshots pvcl-snap
Name : pvcl-snap

Namespace: default

Spec:
Snapshot Class Name: pvcl-snap
Snapshot Content Name: snapcontent-e8d8alca-9826-11e9-9807-525400f3f660
Source:
API Group:
Kind: PersistentVolumeClaim
Name: pvcl
Status:
Creation Time: 2019-06-26T15:27:297
Ready To Use: true
Restore Size: 3Gi

The Snapshot Content Name identifies the VolumeSnapshotContent object which serves this snapshot.
The Ready To Use parameter indicates that the Snapshot can be used to create a new PVC.

Step 3: Create PVCs from VolumeSnapshots

This example creates a PVC using a snapshot.

cat pvc-from-snap.yaml
apiVersion: vl
kind: PersistentVolumeClaim
metadata:

name: pvc-from-snap
spec:

accessModes:

- ReadWriteOnce
storageClassName: golden
resources:

requests:

storage: 3Gi
dataSource:

name: pvcl-snap

kind: VolumeSnapshot

apiGroup: snapshot.storage.k8s.io

dataSource shows that the PVC must be created using a VolumeSnapshot named pvcl-snap as the

207

source of the data. This instructs Astra Trident to create a PVC from the snapshot. After the PVC is created, it
can be attached to a pod and used just like any other PVC.

@ The PVC must be created in the same namespace as its dataSource.

Deleting a PV with snapshots

When deleting a Persistent Volume with associated snapshots, the corresponding Trident volume is updated to
a “Deleting state”. Remove the volume snapshots to delete the Astra Trident volume.

Deploying a volume snapshot controller

If your Kubernetes distribution does not include the snapshot controller and CRDs, you can deploy them as
follows.

Steps
1. Create volume snapshot CRDs.

cat snapshot-setup.sh

#!/bin/bash

Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshotclasses.yaml
kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshotcontents.yam
1

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshots.yaml

2. Create the snapshot controller.

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-
controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-
controller/setup-snapshot-controller.yaml

(:) If necessary, open deploy/kubernetes/snapshot-controller/rbac-snapshot-
controller.yaml and update namespace to your namespace.

208

Recover volume data using snapshots

The snapshot directory is hidden by default to facilitate maximum compatibility of volumes provisioned using
the ontap-nas and ontap-nas-economy drivers. Enable the . snapshot directory to recover data from
snapshots directly.

Use the volume snapshot restore ONTAP CLI to to restore a volume to a state recorded in a prior snapshot.

clusterl::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3 snap archive

@ When you restore a snapshot copy, the existing volume configuration is overwritten. Changes
made to volume data after the snapshot copy was created are lost.

Related links

* Volume snapshots

* VolumeSnapshotClass

Expand volumes

Astra Trident provides Kubernetes users the ability to expand their volumes after they are
created. Find information about the configurations required to expand iISCSI and NFS
volumes.

Expand an iSCSI volume

You can expand an iSCSI Persistent Volume (PV) by using the CSI provisioner.

@ iSCSI volume expansion is supported by the ontap-san, ontap-san-economy, solidfire-
san drivers and requires Kubernetes 1.16 and later.

Overview
Expanding an iSCSI PV includes the following steps:

* Editing the StorageClass definition to set the allowVolumeExpansion field to true.

* Editing the PVC definition and updating the spec.resources.requests.storage to reflect the newly
desired size, which must be greater than the original size.

« Attaching the PV must be attached to a pod for it to be resized. There are two scenarios when resizing an
iISCSI PV:

o If the PV is attached to a pod, Astra Trident expands the volume on the storage backend, rescans the
device, and resizes the filesystem.

o When attempting to resize an unattached PV, Astra Trident expands the volume on the storage
backend. After the PVC is bound to a pod, Trident rescans the device and resizes the filesystem.
Kubernetes then updates the PVC size after the expand operation has successfully completed.

The example below shows how expanding iSCSI PVs work.

209

Step 1: Configure the StorageClass to support volume expansion

cat storageclass-ontapsan.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontap-san
provisioner: csi.trident.netapp.io
parameters:

backendType: "ontap-san"
allowVolumeExpansion: True

For an already existing StorageClass, edit it to include the allowVolumeExpansion parameter.

Step 2: Create a PVC with the StorageClass you created

cat pvc-ontapsan.yaml
kind: PersistentVolumeClaim
apivVersion: vl
metadata:
name: san-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: ontap-san

Astra Trident creates a Persistent Volume (PV) and associates it with this Persistent Volume Claim (PVC).

kubectl get pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82£2885db671 1Gi

RWO ontap-san 8s

kubectl get pv

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-8a814d62-bd58-4253-b0d1-82£2885db671 1G1i RWO

Delete Bound default/san-pvc ontap-san 10s

210

Step 3: Define a pod that attaches the PVC

In this example, a pod is created that uses the san-pvc.

kubectl get pod
NAME READY STATUS RESTARTS AGE

ubuntu-pod 1/1 Running 0 65s

kubectl describe pvc san-pvc

Name: san—-pvc

Namespace: default

StorageClass: ontap-san

Status: Bound

Volume: pvc-8a814d62-bd58-4253-b0d1-82£2885db671
Labels: <none>

Annotations: pv.kubernetes.io/bind-completed: yes

pv.kubernetes.io/bound-by-controller: yes
volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers: [kubernetes.io/pvc—protection]
Capacity: 1G1i

Access Modes: RWO

VolumeMode: Filesystem

Mounted By: ubuntu-pod

Step 4: Expand the PV

To resize the PV that has been created from 1Gi to 2Gi, edit the PVC definition and update the
spec.resources.requests.storage to 2Gi.

211

kubectl edit pvc san-pvc

Please edit the object below. Lines beginning with a '#' will be
ignored,

and an empty file will abort the edit. If an error occurs while saving
this file will be

reopened with the relevant failures.

#

apiVersion: vl

kind: PersistentVolumeClaim

metadata:
annotations:
pv.kubernetes.io/bind-completed: "yes"
pv.kubernetes.io/bound-by-controller: "yes"

volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
creationTimestamp: "2019-10-10T17:32:292"
finalizers:
- kubernetes.io/pvc-protection
name: san-pvc
namespace: default
resourceVersion: "16609"
selflLink: /api/vl/namespaces/default/persistentvolumeclaims/san-pvc
uid: 8a814d62-bd58-4253-b0d1-82£2885db671

spec:

accessModes:
- ReadWriteOnce
resources:

requests:

storage: 2Gi

Step 5: Validate the expansion

You can validate the expansion worked correctly by checking the size of the PVC, PV, and the Astra Trident
volume:

212

kubectl get pvc san-pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82£2885db671 2Gi

RWO ontap-san 1lm

kubectl get pv

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-8a814d62-bd58-4253-b0d1-82£2885db671 2G1 RWO

Delete Bound default/san-pvc ontap-san 12m

tridentctl get volumes -n trident

fos=s=ss=s=ssscsessssssssosossssss=s=sssa=s fememe==== e

e L T s frommmem e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

o o e e o o e o o e e o o 5 D) e e i e e frommmom e e

fremmmm=a==s frememsesessss s s s m s s e o s = = e fremememm=s I
| pvc-8a814d62-bd58-4253-b0d1-82£2885db671 | 2.0 GiB | ontap-san |
block | a%7bfff-0505-4e31-b6c5-59£492e02d33 | online | true |

fomssssess s s s s o s e o s sss s osss fremmmemm=s frememesmeeeeaaa=

fem======== e Bt fmm====== fememe==== 4

Expand an NFS volume

Astra Trident supports volume expansion for NFS PVs provisioned on ontap-nas, ontap-nas-economy,

ontap-nas-flexgroup, gcp-cvs, and azure-netapp-files backends.

Step 1: Configure the StorageClass to support volume expansion

To resize an NFS PV, the admin first needs to configure the storage class to allow volume expansion by setting

the allowVolumeExpansion field to true:

cat storageclass-ontapnas.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontapnas
provisioner: csi.trident.netapp.io
parameters:

backendType: ontap-nas
allowVolumeExpansion: true

If you have already created a storage class without this option, you can simply edit the existing storage class

by using kubectl edit storageclass to allow volume expansion.

213

Step 2: Create a PVC with the StorageClass you created

cat pvc-ontapnas.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: ontapnas20mb
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 20Mi
storageClassName: ontapnas

Astra Trident should create a 20MiB NFS PV for this PVC:

kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08£f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi

RWO ontapnas 9s

kubectl get pv pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLATIM STORAGECLASS REASON
AGE

pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7 20Mi RWO

Delete Bound default/ontapnas20mb ontapnas

2mé2s

Step 3: Expand the PV

To resize the newly created 20MiB PV to 1GiB, edit the PVC and set spec.resources.requests.storage
to 1GB:

214

kubectl edit pvc ontapnas20mb

Please edit the object below. Lines beginning with a '#' will be
ignored,

and an empty file will abort the edit. If an error occurs while saving
this file will be

reopened with the relevant failures.

#

apiVersion: vl

kind: PersistentVolumeClaim

metadata:
annotations:
pv.kubernetes.io/bind-completed: "yes"
pv.kubernetes.io/bound-by-controller: "yes"

volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
creationTimestamp: 2018-08-21T18:26:447%
finalizers:
- kubernetes.io/pvc-protection
name: ontapnas20mb
namespace: default
resourceVersion: "1958015"
selflLink: /api/vl/namespaces/default/persistentvolumeclaims/ontapnas20mb
uid: clbd7fab5-a56f-11e8-b8d7-fal63e59%eaab

spec:

accessModes:
- ReadWriteOnce
resources:

requests:

storage: 1Gi

Step 4: Validate the expansion

You can validate the resize worked correctly by checking the size of the PVC, PV, and the Astra Trident
volume:

215

kubectl get pvc ontapnas20mb

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08£f3d561-b199-11e9-8d9£f-5254004dfdb7 1G1i
RWO ontapnas 4médds

kubectl get pv pvc-08£3d561-b199-11e9-8d9£-5254004dfdb7

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON
AGE

pvc-08£3d561-0199-11e9-8d9£f-5254004dfdb7 1Gi RWO

Delete Bound default/ontapnas20mb ontapnas

5m35s

tridentctl get volume pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

o e Fomm -
fom - o fom - fom— +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

- fom o
fom - o fomm - fomm - +
| pvc-08£3d561-b199-11e9-8d9£-5254004dfdb7 | 1.0 GiB | ontapnas |
file | cS5abf6ad-b052-423b-80d4-8fb491alda22 | online | true |

et ittt L fommm - fom e
fom - oo fom - e +

Import volumes

You can import existing storage volumes as a Kubernetes PV using tridentctl
import.

Overview and considerations

You might import a volume into Astra Trident to:

« Containerize an application and reuse its existing data set
* Use a clone of a data set for an ephemeral application
» Rebuild a failed Kubernetes cluster

» Migrate application data during disaster recovery

Considerations
Before importing a volume, review the following considerations.

 Astra Trident can import RW (read-write) type ONTAP volumes only. DP (data protection) type volumes are

SnapMirror destination volumes. You should break the mirror relationship before importing the volume into
Astra Trident.

216

* We suggest importing volumes without active connections. To import an actively-used volume, clone the
volume and then perform the import.

This is especially important for block volumes as Kubernetes would be unaware of the
@ previous connection and could easily attach an active volume to a pod. This can result in
data corruption.

* Though storageClass must be specified on a PVC, Astra Trident does not use this parameter during
import. Storage classes are used during volume creation to select from available pools based on storage
characteristics. Because the volume already exists, no pool selection is required during import. Therefore,
the import will not fail even if the volume exists on a backend or pool that does not match the storage class
specified in the PVC.

* The existing volume size is determined and set in the PVC. After the volume is imported by the storage
driver, the PV is created with a ClaimRef to the PVC.

° The reclaim policy is initially set to retain in the PV. After Kubernetes successfully binds the PVC and
PV, the reclaim policy is updated to match the reclaim policy of the Storage Class.

° If the reclaim policy of the Storage Class is delete, the storage volume will be deleted when the PV is
deleted.

* By default, Astra Trident manages the PVC and renames the FlexVol and LUN on the backend. You can
pass the --no-manage flag to import an unmanaged volume. If you use --no-manage, Astra Trident
does not perform any additional operations on the PVC or PV for the lifecycle of the objects. The storage
volume is not deleted when the PV is deleted and other operations such as volume clone and volume
resize are also ignored.

This option is useful if you want to use Kubernetes for containerized workloads but
otherwise want to manage the lifecycle of the storage volume outside of Kubernetes.

» An annotation is added to the PVC and PV that serves a dual purpose of indicating that the volume was
imported and if the PVC and PV are managed. This annotation should not be modified or removed.

Import a volume

You can use tridentctl import to import a volume.

Steps

1. Create the Persistent Volume Claim (PVC) file (for example, pvc . yaml) that will be used to create the
PVC. The PVC file should include name, namespace, accessModes, and storageClassName.
Optionally, you can specify unixPermissions in your PVC definition.

The following is an example of a minimum specification:

217

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: my claim
namespace: my namespace
spec:
accessModes:
- ReadWriteOnce
storageClassName: my storage class

(D Don’t include additional parameters such as PV name or volume size. This can cause the
import command to fail.

2. Use the tridentctl import command to specify the name of the Astra Trident backend containing the
volume and the name that uniquely identifies the volume on the storage (for example: ONTAP FlexVol,
Element Volume, Cloud Volumes Service path). The -f argument is required to specify the path to the
PVC file.

tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-
file>

Examples

Review the following volume import examples for supported drivers.

ONTAP NAS and ONTAP NAS FlexGroup

Astra Trident supports volume import using the ontap-nas and ontap-nas-flexgroup drivers.

* The ontap-nas-economy driver cannot import and manage qtrees.
(D * The ontap-nas and ontap-nas-flexgroup drivers do not allow duplicate volume
names.

Each volume created with the ontap-nas driver is a FlexVol on the ONTAP cluster. Importing FlexVols with
the ontap-nas driver works the same. A FlexVol that already exists on an ONTAP cluster can be imported as
a ontap-nas PVC. Similarly, FlexGroup vols can be imported as ontap-nas-flexgroup PVCs.

ONTAP NAS examples
The following show an example of a managed volume and an unmanaged volume import.

218

Managed volume

The following example imports a volume named managed volume on a backend named ontap nas:

tridentctl import volume ontap nas managed volume -f <path-to-pvc-file>

fossssss=s=ssscscssssssesosossssssss==ssa=s fememe==== fememmmsaemaaa=a
T e e e e e e S D e fro— e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

L fr e fr e e
fress=m=m==s fremeosesesssssss e s s s s s o s e fremememm=s I
| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |
file | cba6f6ad-b052-423b-80d4-8fb491ald4a22 | online | true |
fossssssssssssesessssoees oo ssssss s s s e e
femm======a femessesessss s e e se s e eessssaa s fmmm==== femememm== 4

Unmanaged volume

When using the --no-manage argument, Astra Trident does not rename the volume.

The following example imports unmanaged volume on the ontap nas backend:

tridentctl import volume nas blog unmanaged volume -f <path-to-pvc-
file> --no-manage

o fomm - Fomm -
fomm - o fom - fomm - +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
e ittt L e fomm - fomm e
Fommcmmomo= B e Fommcomo= oo +
| pvc-df07d542-afbc-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |
file | c5a6f6ad-b052-423b-80d4-8fb491aldaz22 | online | false |
o Fommm - Fomm -
fom - o fom— - e +

ONTAP SAN

Astra Trident supports volume import using the ontap-san driver.

Astra Trident can import ONTAP SAN FlexVols that contain a single LUN. This is consistent with the ontap-
san driver, which creates a FlexVol for each PVC and a LUN within the FlexVol. Astra Trident imports the
FlexVol and associates it with the PVC definition.

ONTAP SAN examples

219

The following show an example of a managed volume and an unmanaged volume import.

220

Managed volume

For managed volumes, Astra Trident renames the FlexVol to the pvc-<uuid> format and the LUN within
the FlexVol to 1un0.

The following example imports the ontap-san-managed FlexVol that is present on the
ontap san default backend:

tridentctl import volume ontapsan san default ontap-san-managed -f pvc-

basic-import.yaml -n trident -d

Fommmmmmmmsmeososorreroememememe oo memmm o Frommomoms Fommmmmmomoomoms
Fommemmomo= o memererserererr s eseee s ee e Focmcomo= ommmcemos +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
e e et rommmmom= Fommcmmccmeoeo=e
Fommmmmmm== e Fommmmm== o= +
| pvc-d6eedf54-4e40-4454-92£fd-d00£c228d74a | 20 MiB | basic |
block | cd394786-ddd5-4470-adc3-10c5ced4ca’57 | online | true |
Fommmmmmemsmssesese s s s s s e e i Fommmmmmemememe=
Fommmomomme Fommememerossrsreemenessosoeseoomomoms Fomomomme Fommomomos +

Unmanaged volume

The following example imports unmanaged example volume onthe ontap san backend:

tridentctl import volume -n trident san blog unmanaged example volume
-f pvc-import.yaml --no-manage

Fommmmmmemssesesese s s s s e e e P o=
Fommmmmomo= B e e e Fommmmmoe e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
i e et ommmmomos e e
Pommmmmmm== ettt Fommmmm== o= +
| pvc-1£c999c9-ce8c-459c-82e4-ed4380a4b228 | 1.0 GiB | san-blog

block | €3275890-7d80-4af6-90cc-c7a0759£555a | online | false |
et P P
Fommmmmmm== e et Fommmmm== o= +

221

If you have LUNS mapped to igroups that share an IQN with a Kubernetes node IQN, as
shown in the following example, you will receive the error: LUN already mapped to
initiator(s) in this group. You will need to remove the initiator or unmap the LUN
to import the volume.

(::) Vserver Igroup Protocol 0S Type Initiators

k8s-nodename. example. com-fe5d36f2-cded-4138-9eb@-c7719fc2193

iscsi linux iqn.1994-05.com.redhat:4c2elcf35e0

unmanaged-example-igroup
mixed linux ign.1994-05.com.redhat:4c2elcf35e0

Element

Astra Trident supports NetApp Element software and NetApp HCI volume import using the solidfire-san
driver.

The Element driver supports duplicate volume names. However, Astra Trident returns an error if
there are duplicate volume names. As a workaround, clone the volume, provide a unique
volume name, and import the cloned volume.

Element example

The following example imports an element-managed volume on backend element default.

tridentctl import volume element default element-managed -f pvc-basic-
import.yaml -n trident -d

fossssssssssssesessssssesososssassasssssa=s femmmm=== fommsmssmemaaa=
fremsmm=a==s E Bttt e e X
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

frosssscesms s oo s e n e s s s s e e froccscssmemeea==
fe========c femsmsesessss s s e s s s o s fe======s e +
| pvc-970celca-2096-4ecd-8545-ac7edc24a8fe | 10 GiB | basic-element |
block | d3bal47a-ealb-43£9-9¢c42-e38e58301c49 | online | true |
R Fem=m==== fomsmessmema====
fmmmmmmma=a fomemme e s s e e me s e ce s e s e e fmmmmm==e fommmema=e +

Google Cloud Platform

Astra Trident supports volume import using the gcp-cvs driver.

222

To import a volume backed by the NetApp Cloud Volumes Service in Google Cloud Platform,
identify the volume by its volume path. The volume path is the portion of the volume’s export

@ path after the : /. For example, if the export pathis 10.0.0.1:/adroit-jolly-swift, the
volume path is adroit-jolly-swift.

Google Cloud Platform example

The following example imports a gcp-cvs volume on backend gcpcvs YEppr with the volume path of
adroit-jolly-swift.

tridentctl import volume gcpcvs YEppr adroit-jolly-swift -f <path-to-pvc-
file> -n trident

o fomm - fom -
Fommmmmmm== Bt e Fommmmm== o= +

| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
Fommmmmmemsmssesese s s s s s e o= Fommmmmmemememe=
Fommmommmme Fommmmemeressrereemenessssoesen oo moms Fomommmme Frommmmomos +

| pvc-ad6ccab7-44aa-4433-94bl-e47£c8c0fad5 | 93 GiB | gcp-storage | file
| ela6e65b-299e-4568-ad05-4£0a105c888f | online | true |
e L L Fommmmom= Fommmmmmemoomo=e
et ettt Fommmmmos Fosommmmes +

Azure NetApp Files

Astra Trident supports volume import using the azure-netapp-files and azure-netapp-files-
subvolume drivers.

To import an Azure NetApp Files volume, identify the volume by its volume path. The volume
path is the portion of the volume’s export path after the : /. For example, if the mount path is
10.0.0.2:/importvoll, the volume path is importvoll.

Azure NetApp Files example

The following example imports an azure-netapp-files volume on backend azurenetappfiles 40517
with the volume path importvoll.

223

tridentctl import volume azurenetappfiles 40517 importvoll -f <path-to-
pvc-file> -n trident

fos=ssss=s=ssscsessssssssosossssssss==ssa=s fememe===s e
e e e e e e e e e e fro— e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

e e e e e e e e) fro— e s e
frems=m=m==s e ittt R remmmeme== +F
| pvc-0ee95d60-£d5¢c-448d-b505-b72901b3ad4ab | 100 GiB | anf-storage |
file | 1c01274£-d94b-44a3-98a3-04c953c9%a5le | online | true |
fossssssssss s e se s s oses oo sssssss s s e fremmmmmeee e
femm======a femessesessss s e e se s e eessssaa s femm==== femememm== 4

Share an NFS volume across namespaces

Using Astra Trident, you can create a volume in a primary namespace and share it in one
or more secondary namespaces.

Features

The Astra TridentVolumeReference CR allows you to securely share ReadWriteMany (RWX) NFS volumes
across one or more Kubernetes namespaces. This Kubernetes-native solution has the following benefits:

* Multiple levels of access control to ensure security
» Works with all Trident NFS volume drivers

* No reliance on tridentctl or any other non-native Kubernetes feature

This diagram illustrates NFS volume sharing across two Kubernetes namespaces.

224

................. : Primary PV Secondary PV

npl"il'l'"lar}f" o . a = :,’

R D T T e 0

¢ Trident
namespace

TVol €—p» TVol

1
1
]
1
1
primary secondary |
1
:
1
1

.......................

TridentVolumeReference

primary/pvci

O [
H

Slorage = tt-cecemecsecosno-e
Volume

Quick start

You can set up NFS volume sharing in just a few steps.

Configure source PVC to share the volume
The source namespace owner grants permission to access the data in the source PVC.

Grant permission to create a CR in the destination namespace

The cluster administrator grants permission to the owner of the destination namespace to create the
TridentVolumeReference CR.

Create TridentVolumeReference in the destination namespace
The owner of the destination namespace creates the TridentVolumeReference CR to refer to the source PVC.

Create the subordinate PVC in the destination namespace

The owner of the destination namespace creates the subordinate PVC to use the data source from the source
PVC.

225

Configure the source and destination namespaces

To ensure security, cross namespace sharing requires collaboration and action by the source namespace
owner, cluster administrator, and destination namespace owner. The user role is designated in each step.

Steps

1. Source namespace owner: Create the PVC (pvc1) in the source namespace that grants permission to
share with the destination namespace (namespace?2) using the shareToNamespace annotation.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvcl
namespace: namespacel
annotations:

trident.netapp.io/shareToNamespace: namespace?

spec:
accessModes:

- ReadWriteMany
storageClassName: trident-csi
resources:

requests:

storage: 100Gi

Astra Trident creates the PV and its backend NFS storage volume.

> You can share the PVC to multiple namespaces using a comma-delimited list. For
example, trident.netapp.io/shareToNamespace:
namespace?2, namespace3, namespaced.

@ ° You can share to all namespaces using *. For example,
trident.netapp.io/shareToNamespace: *

° You can update the PVC to include the shareToNamespace annotation at any time.

2. Cluster admin: Create the custom role and kubeconfig to grant permission to the destination namespace
owner to create the TridentVolumeReference CR in the destination namespace.

3. Destination namespace owner: Create a TridentVolumeReference CR in the destination namespace that
refers to the source namespace pvcl.

226

apiVersion: trident.netapp.io/vl
kind: TridentVolumeReference
metadata:

name: my-first-tvr

namespace: namespace?2
spec:

pvcName: pvcl

pvcNamespace: namespacel

4. Destination namespace owner: Create a PVC (pvc2) in destination namespace (namespace?2) using
the shareFromPVC annotation to designate the source PVC.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:

annotations:

trident.netapp.io/shareFromPVC: namespacel/pvcl
name: pvc2
namespace: namespace2

spec:
accessModes:

- ReadWriteMany
storageClassName: trident-csi
resources:

requests:

storage: 100Gi

@ The size of the destination PVC must be less than or equal than the source PVC.

Results

Astra Trident reads the shareFromPVC annotation on the destination PVC and creates the destination PV as a
subordinate volume with no storage resource of its own that points to the source PV and shares the source PV
storage resource. The destination PVC and PV appear bound as normal.

Delete a shared volume

You can delete a volume that is shared across multiple namespaces. Astra Trident will remove access to the
volume on the source namespace and maintain access for other namespaces that share the volume. When all
namespaces that reference the volume are removed, Astra Trident deletes the volume.

Use tridentctl get to query subordinate volumes

Using the tridentctl utility, you can run the get command to get subordinate volumes. For more
information, refer to tridentctl commands and options.

227

Usage:
tridentctl get [option]

Flags:

* *-h, --help: Help for volumes.
* —-parentOfSubordinate string: Limit query to subordinate source volume.

* ——subordinateOf string: Limit query to subordinates of volume.

Limitations

 Astra Trident cannot prevent destination namespaces from writing to the shared volume. You should use
file locking or other processes to prevent overwriting shared volume data.

* You cannot revoke access to the source PVC by removing the shareToNamespace or
shareFromNamespace annotations or deleting the TridentvVolumeReference CR. To revoke access,
you must delete the subordinate PVC.

» Snapshots, clones, and mirroring are not possible on subordinate volumes.
For more information

To learn more about cross-namespace volume access:

+ Visit Sharing volumes between namespaces: Say hello to cross-namespace volume access.

* Watch the demo on NetAppTV.

Monitor Astra Trident

Astra Trident provides a set of Prometheus metrics endpoints that you can use to monitor
Astra Trident performance.

Overview
The metrics provided by Astra Trident enable you to do the following:
» Keep tabs on Astra Trident’s health and configuration. You can examine how successful operations are and

if it can communicate with the backends as expected.

« Examine backend usage information and understand how many volumes are provisioned on a backend
and the amount of space consumed, and so on.

» Maintain a mapping of the amount of volumes provisioned on available backends.

» Track performance. You can take a look at how long it takes for Astra Trident to communicate to backends
and perform operations.

@ By default, Trident’s metrics are exposed on the target port 8001 at the /metrics endpoint.
These metrics are enabled by default when Trident is installed.

What you’ll need

228

https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products

* A Kubernetes cluster with Astra Trident installed.

* A Prometheus instance. This can be a containerized Prometheus deployment or you can choose to run
Prometheus as a native application.

Step 1: Define a Prometheus target

You should define a Prometheus target to gather the metrics and obtain information about the backends Astra
Trident manages, the volumes it creates, and so on. This blog explains how you can use Prometheus and
Grafana with Astra Trident to retrieve metrics. The blog explains how you can run Prometheus as an operator
in your Kubernetes cluster and the creation of a ServiceMonitor to obtain Astra Trident’s metrics.

Step 2: Create a Prometheus ServiceMonitor

To consume the Trident metrics, you should create a Prometheus ServiceMonitor that watches the trident-
csi service and listens on the metrics port. A sample ServiceMonitor looks like this:

apiVersion: monitoring.coreos.com/v1l
kind: ServiceMonitor
metadata:
name: trident-sm
namespace: monitoring
labels:
release: prom-operator

spec:
jobLabel: trident
selector:
matchLabels:

app: controller.csi.trident.netapp.io
namespaceSelector:
matchNames:
- trident
endpoints:
- port: metrics

interval: 15s

This ServiceMonitor definition retrieves metrics returned by the trident-csi service and specifically looks
for the metrics endpoint of the service. As a result, Prometheus is now configured to understand Astra
Trident’s

metrics.

In addition to metrics available directly from Astra Trident, kubelet exposes many kubelet volume * metrics

via it's own metrics endpoint. Kubelet can provide information about the volumes that are attached, and pods
and other internal operations it handles. See here.

Step 3: Query Trident metrics with PromQL

PromQL is good for creating expressions that return time-series or tabular data.

229

https://github.com/prometheus-operator/prometheus-operator
https://prometheus.io/download/
https://netapp.io/2020/02/20/prometheus-and-trident/
https://kubernetes.io/docs/concepts/cluster-administration/monitoring/

Here are some PromQL queries that you can use:

Get Trident health information

* Percentage of HTTP 2XX responses from Astra Trident

(sum (trident rest ops seconds total count{status code=~"2.."} OR on()
vector (0)) / sum (trident rest ops seconds total count)) * 100

* Percentage of REST responses from Astra Trident via status code

(sum (trident rest ops seconds total count) by (status code) / scalar
(sum (trident rest ops seconds total count))) * 100

* Average duration in ms of operations performed by Astra Trident

sum by (operation)

(trident operation duration milliseconds sum{success="true"}) / sum by
(operation)

(trident operation duration milliseconds count{success="true"})

Get Astra Trident usage information

* Average volume size
trident volume allocated bytes/trident volume count
» Total volume space provisioned by each backend

sum (trident volume allocated bytes) by (backend uuid)

Get individual volume usage
@ This is enabled only if kubelet metrics are also gathered.

* Percentage of used space for each volume

kubelet volume stats used bytes / kubelet volume stats capacity bytes *
100

230

Learn about Astra Trident AutoSupport telemetry

By default, Astra Trident sends Prometheus metrics and basic backend information to NetApp on a daily
cadence.

 To stop Astra Trident from sending Prometheus metrics and basic backend information to NetApp, pass the
--silence-autosupport flag during Astra Trident installation.

* Astra Trident can also send container logs to NetApp Support on-demand via tridentctl send
autosupport. You will need to trigger Astra Trident to upload it’s logs. Before you submit logs, you should
accept NetApp’s
privacy policy.

» Unless specified, Astra Trident fetches the logs from the past 24 hours.

* You can specify the log retention time frame with the —--since flag. For example: tridentctl send
autosupport --since=1h. This information is collected and sent via a trident-autosupport
container
that is installed alongside Astra Trident. You can obtain the container image at Trident AutoSupport.

 Trident AutoSupport does not gather or transmit Personally Identifiable Information (Pll) or Personal
Information. It comes with a EULA that is not applicable to the Trident container image itself. You can learn
more about NetApp’s commitment to data security and trust here.

An example payload sent by Astra Trident looks like this:

items:
- backendUUID: ff3852el1-18a5-4df4-b2d3-£59£829627ed
protocol: file
config:
version: 1
storageDriverName: ontap-nas
debug: false
debugTraceFlags:
disableDelete: false
serialNumbers:
- nwkvzfanek SN
limitVolumeSize: "'
state: online

online: true

* The AutoSupport messages are sent to NetApp’s AutoSupport endpoint. If you are using a private registry
to store container images, you can use the --image-registry flag.

* You can also configure proxy URLs by generating the installation YAML files. This can be done by using
tridentctl install --generate-custom-yaml to create the YAML files and adding the --proxy
—-url argument for the trident-autosupport containerin trident-deployment.yaml.

Disable Astra Trident metrics

To disable metrics from being reported, you should generate custom YAMLs (using the -—generate-custom

231

https://www.netapp.com/company/legal/privacy-policy/
https://hub.docker.com/r/netapp/trident-autosupport
https://www.netapp.com/us/media/enduser-license-agreement-worldwide.pdf
https://www.netapp.com/pdf.html?item=/media/14114-enduserlicenseagreementworldwidepdf.pdf

-yaml flag) and edit them to remove the --metrics flag from being invoked for the trident-main
container.

232

Astra Trident for Docker

Prerequisites for deployment

You have to install and configure the necessary protocol prerequisites on your host before

you can deploy Astra Trident.

Verify the requirements

« Verify that your deployment meets all of the requirements.

« Verify that you have a supported version of Docker installed. If your Docker version is out of date, install or

update it.

docker —--version

« Verify that the protocol prerequisites are installed and configured on your host:

Protocol

NFS

NFS

Operating system

RHEL 8+

Ubuntu

Commands

sudo yum install -y nfs-
utils

sudo apt-get install -y
nfs-common

233

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

Protocol

iSCSI

234

Operating system

RHEL 8+

Commands

1. Install the following system

packages:

sudo yum install -y
lsscsi iscsi-initiator-
utils sg3 utils device-
mapper-multipath

. Check that iscsi-initiator-utils

version is 6.2.0.874-2.el7 or
later:

rpm -gq iscsi-initiator-
utils

. Set scanning to manual:

sudo sed -1

's/"\ (node.session.scan
\).*/\1 = manual/'
/etc/iscsi/iscsid.conf

. Enable multipathing:

sudo mpathconf --enable
--with multipathd y
-—-find multipaths n

Ensure
etc/multipat
h.conf contains
@ find multipa
ths no under
defaults.

. Ensure that iscsid and

multipathd are running:

sudo systemctl enable
--now iscsid multipathd

. Enable and start iscsi:

sudo systemctl enable
--now iscsi

Protocol

iSCSI

Operating system Commands

Ubuntu 1. Install the following system
packages:

sudo apt-get install -y
open-iscsi lsscsi sg3-
utils multipath-tools
scsitools

2. Check that open-iscsi version is
2.0.874-5ubuntu2.10 or later
(for bionic) or 2.0.874-
7.1ubuntu6.1 or later (for focal):

dpkg -1 open-iscsi
3. Set scanning to manual:

sudo sed -1i

's/”\ (node.session.scan
\).*/\1 = manual/"'
/etc/iscsi/iscsid.conf

4. Enable multipathing:

sudo tee
/etc/multipath.conf <
«—'EOQOF'

defaults {

user friendly names yes
find multipaths no

}

EOF

sudo systemctl enable
--now multipath-
tools.service

sudo service multipath-
tools restart

Ensure
etc/multipat
h.conf contains
(D find multipa
ths no under
defaults.

5. Ensure that open-iscsi and
multipath-tools are
enabled and running:

sudo systemctl status
multipath-tools

sudo systemctl enable
--now open-
iscsi.service 235

Deploy Astra Trident

do systemctl status

Astra Trident for Docker provides direct integration with the Docggg@gg%ﬁtem for
NetApp’s storage platforms. It supports the provisioning and management of storage
resources from the storage platform to Docker hosts, with a framework for adding
additional platforms in the future.

Multiple instances of Astra Trident can run concurrently on the same host. This allows simultaneous
connections to multiple storage systems and storage types, with the ablity to customize the storage used for
the Docker volumes.

What you’ll need

See the prerequisites for deployment. After you ensure the prerequisites are met, you are ready to deploy
Astra Trident.

Docker managed plugin method (version 1.13/17.03 and later)
Before you begin
@ If you have used Astra Trident pre Docker 1.13/17.03 in the traditional daemon method, ensure

that you stop the Astra Trident process and restart your Docker daemon before using the
managed plugin method.

1. Stop all running instances:

pkill /usr/local/bin/netappdvp
pkill /usr/local/bin/trident

2. Restart Docker.
systemctl restart docker

3. Ensure that you have Docker Engine 17.03 (new 1.13) or later installed.
docker --version

If your version is out of date, install or update your installation.

Steps
1. Create a configuration file and specify the options as follows:

° config: The default filename is config. json, however you can use any nhame you choose by
specifying the config option with the filename. The configuration file must be located in the
/etc/netappdvp directory on the host system.

° log-level: Specify the logging level (debug, info, warn, error, fatal). The defaultis info.

° debug: Specify whether debug logging is enabled. Default is false. Overrides log-level if true.

236

https://docs.docker.com/engine/install/

a. Create a location for the configuration file:

sudo mkdir -p /etc/netappdvp

b. Create the configuration file:

cat << EOF > /etc/netappdvp/config.json

"version": 1,
"storageDriverName": "ontap-nas",
"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.2",

"svm": "svm nfs",

"username": "vsadmin",
"password": "password",
"aggregate": "aggrl"

EOF

2. Start Astra Trident using the managed plugin system. Replace <version> with the plugin version
(xxx.xx.x) you are using.

docker plugin install --grant-all-permissions --alias netapp
netapp/trident-plugin:<version> config=myConfigFile.json

3. Begin using Astra Trident to consume storage from the configured system.

a. Create a volume named "firstVolume":
docker volume create -d netapp --name firstVolume
b. Create a default volume when the container starts:

docker run --rm -it --volume-driver netapp --volume
secondVolume:/my vol alpine ash

c. Remove the volume "firstVolume":

docker volume rm firstVolume

237

Traditional method (version 1.12 or earlier)

Before you begin

1. Ensure that you have Docker version 1.10 or later.

docker --version

If your version is out of date, update your installation.
curl -fsSL https://get.docker.com/ | sh

Or, follow the instructions for your distribution.

2. Ensure that NFS and/or iSCSI is configured for your system.

Steps
1. Install and configure the NetApp Docker Volume Plugin:

a. Download and unpack the application:

wget

https://github.com/NetApp/trident/releases/download/v23.04.0/trident-
installer-23.04.0.tar.gz

tar zxf trident-installer-23.04.0.tar.gz

b. Move to a location in the bin path:

sudo mv trident-installer/extras/bin/trident /usr/local/bin/
sudo chown root:root /usr/local/bin/trident
sudo chmod 755 /usr/local/bin/trident

c. Create a location for the configuration file:
sudo mkdir -p /etc/netappdvp

d. Create the configuration file:

238

https://docs.docker.com/engine/install/

cat << EOF > /etc/netappdvp/ontap-nas.json

"version": 1,
"storageDriverName": "ontap-nas",
"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.2",

"svm": "svm nfs",

"username": "vsadmin",
"password": "password",
"aggregate": "aggrl"

EOF

2. After placing the binary and creating the configuration file(s), start the Trident daemon using the desired

configuration file.

sudo trident --config=/etc/netappdvp/ontap-nas.json

@ Unless specified, the default name for the volume driver is “netapp”.

After the daemon is started, you can create and manage volumes by using the Docker CLI interface

3. Create a volume:

docker volume create -d netapp --name trident 1

4. Provision a Docker volume when starting a container:

docker run --rm -it --volume-driver netapp --volume trident 2:/my vol

alpine ash

5. Remove a Docker volume:

docker volume rm trident 1

docker volume rm trident 2

Start Astra Trident at system startup

A sample unit file for systemd based systems can be found at contrib/trident.service.example in the

Git repo. To use the file with RHEL, do the following:

1. Copy the file to the correct location.

239

You should use unique names for the unit files if you have more than one instance running.

cp contrib/trident.service.example
/usr/lib/systemd/system/trident.service

2. Edit the file, change the description (line 2) to match the driver name and the configuration file path (line 9)
to reflect your environment.

3. Reload systemd for it to ingest changes:
systemctl daemon-reload

4. Enable the service.

This name varies depending on what you named the file in the /usr/1ib/systemd/system directory.
systemctl enable trident
5. Start the service.
systemctl start trident
6. View the status.

systemctl status trident

@ Any time you modify the unit file, run the systemctl daemon-reload command for it to be
aware of the changes.

Upgrade or uninstall Astra Trident

You can safely upgrade Astra Trident for Docker without any impact to volumes that are in
use. During the upgrade process there will be a brief period where docker volume
commands directed at the plugin will not succeed, and applications will be unable to
mount volumes until the plugin is running again. Under most circumstances, this is a
matter of seconds.

Upgrade

Perform the steps below to upgrade Astra Trident for Docker.

Steps

240

1. List the existing volumes:

docker volume 1s
DRIVER VOLUME NAME
netapp:latest my volume

2. Disable the plugin:

docker plugin disable -f netapp:latest
docker plugin 1ls

ID NAME DESCRIPTION
ENABLED
7067£3%9a5df5 netapp:latest nDVP - NetApp Docker Volume

Plugin false
3. Upgrade the plugin:

docker plugin upgrade --skip-remote-check --grant-all-permissions
netapp:latest netapp/trident-plugin:21.07

@ The 18.01 release of Astra Trident replaces the nDVP. You should upgrade directly from the
netapp/ndvp-plugin image to the netapp/trident-plugin image.

4. Enable the plugin:
docker plugin enable netapp:latest
5. Verify that the plugin is enabled:

docker plugin 1ls

ID NAME DESCRIPTION

ENABLED

7067£39a5df5 netapp:latest Trident - NetApp Docker Volume
Plugin true

6. Verify that the volumes are visible:

docker volume 1ls
DRIVER VOLUME NAME
netapp:latest my volume

241

If you are upgrading from an old version of Astra Trident (pre-20.10) to Astra Trident 20.10
or later, you might run into an error. For more information, see Known Issues. If you run into
the error, you should first disable the plugin, then remove the plugin, and then install the

@ required Astra Trident version by passing an extra config parameter: docker plugin
install netapp/trident-plugin:20.10 --alias netapp --grant-all
-permissions config=config.json

Uninstall
Perform the steps below to uninstall Astra Trident for Docker.

Steps
1. Remove any volumes that the plugin created.

2. Disable the plugin:

docker plugin disable netapp:latest
docker plugin 1s

ID NAME DESCRIPTION
ENABLED
7067£39%9a5df5 netapp:latest nDVP - NetApp Docker Volume

Plugin false
3. Remove the plugin:

docker plugin rm netapp:latest

Work with volumes

You can easily create, clone, and remove volumes using the standard docker volume
commands with the Astra Trident driver name specified when needed.

Create a volume

* Create a volume with a driver using the default name:
docker volume create -d netapp --name firstVolume
» Create a volume with a specific Astra Trident instance:

docker volume create -d ntap bronze --name bronzeVolume

@ If you do not specify any options, the defaults for the driver are used.

242

« Override the default volume size. See the following example to create a 20GiB volume with a driver:

docker volume create -d netapp --name my vol --opt size=20G

Volume sizes are expressed as strings containing an integer value with optional units

(example: 10G, 20GB, 3TiB). If no units are specified, the default is G. Size units can be
expressed either as powers of 2 (B, KiB, MiB, GiB, TiB) or powers of 10 (B, KB, MB, GB,
TB). Shorthand units use powers of 2 (G = GiB, T =TiB, ...).

Remove a volume

* Remove the volume just like any other Docker volume:

docker volume rm firstVolume

(D When using the solidfire-san driver, the above example deletes and purges the
volume.

Perform the steps below to upgrade Astra Trident for Docker.

Clone a volume

When using the ontap-nas, ontap-san, solidfire-san, and gcp-cvs storage drivers, Astra
Trident can clone volumes. When using the ontap-nas-flexgroup Or ontap-nas—-economy drivers,
cloning is not supported. Creating a new volume from an existing volume will result in a new snapshot being
created.

* Inspect the volume to enumerate snapshots:
docker volume inspect <volume name>
» Create a new volume from an existing volume. This will result in a new snapshot being created:

docker volume create -d <driver name> --name <new name> -0

from=<source docker volume>
* Create a new volume from an existing snapshot on a volume. This will not create a new snapshot:

docker volume create -d <driver name> --name <new name> -0
from=<source docker volume> -o fromSnapshot=<source snap name>

243

Example

docker volume inspect firstVolume

"Driver": "ontap-nas",
"Labels": null,
"Mountpoint": "/var/lib/docker-volumes/ontap-

nas/netappdvp firstvVolume",
"Name": "firstVolume",

"Options": {1},

"Scope": "global",
"Status": {
"Snapshots": [

{
"Created": "2017-02-10T19:05:00z2",
"Name": "hourly.2017-02-10 1505"

docker volume create -d ontap-nas --name clonedVolume -o from=firstVolume
clonedVolume

docker volume rm clonedVolume

docker volume create -d ontap-nas —--name volFromSnap -o from=firstVolume
-o fromSnapshot=hourly.2017-02-10 1505
volFromSnap

docker volume rm volFromSnap

Access externally created volumes
You can access externally created block devices (or their clones) by containers using Trident only if they have

no partitions and if their filesystem is supported by Astra Trident (for example: an ext 4-formatted /dev/sdcl
will not be accessible via Astra Trident).

Driver-specific volume options

Each storage driver has a different set of options, which you can specify at volume
creation time to customize the outcome. See below for options that apply to your
configured storage system.

244

Using these options during the volume create operation is simple. Provide the option and the value using the
-o operator during the CLI operation. These override any equivalent values from the JSON configuration file.

ONTAP volume options

Volume create options for both NFS and iSCSI include the following:

Option

size

spaceReserve

snapshotPolicy

snapshotReserve

splitOnClone

Description

The size of the volume, defaults to 1 GiB.

Thin or thick provision the volume, defaults to thin.
Valid values are none (thin provisioned) and volume
(thick provisioned).

This will set the snapshot policy to the desired value.
The default is none, meaning no snapshots will
automatically be created for the volume. Unless
modified by your storage administrator, a policy
named “default” exists on all ONTAP systems which
creates and retains six hourly, two daily, and two
weekly snapshots. The data preserved in a snapshot
can be recovered by browsing to the . snapshot
directory in any directory in the volume.

This will set the snapshot reserve to the desired
percentage. The default is no value, meaning ONTAP
will select the snapshotReserve (usually 5%) if you
have selected a snapshotPolicy, or 0% if the
snapshotPolicy is none. You can set the default
snapshotReserve value in the config file for all
ONTAP backends, and you can use it as a volume
creation option for all ONTAP backends except ontap-
nas-economy.

When cloning a volume, this will cause ONTAP to
immediately split the clone from its parent. The default
is false. Some use cases for cloning volumes are
best served by splitting the clone from its parent
immediately upon creation, because there is unlikely
to be any opportunity for storage efficiencies. For
example, cloning an empty database can offer large
time savings but little storage savings, so it's best to
split the clone immediately.

245

Option

encryption

tieringPolicy

The following additional options are for NFS only:

Option

unixPermissions

snapshotDir

exportPolicy

securityStyle

The following additional options are for iSCSI only:

Option

fileSystemType

246

Description

Enable NetApp Volume Encryption (NVE) on the new
volume; defaults to false. NVE must be licensed
and enabled on the cluster to use this option.

If NAE is enabled on the backend, any volume
provisioned in Astra Trident will be NAE enabled.

For more information, refer to: How Astra Trident
works with NVE and NAE.

Sets the tiering policy to be used for the volume. This
decides whether data is moved to the cloud tier when
it becomes inactive (cold).

Description

This controls the permission set for the volume itself.
By default the permissions will be setto *---rwxr-
xr-x, or in numerical notation 0755, and root will be
the owner. Either the text or numerical format will
work.

Setting this to true will make the . snapshot
directory visible to clients accessing the volume. The
default value is false, meaning that visibility of the
.snapshot directory is disabled by default. Some
images, for example the official MySQL image, don’t
function as expected when the . snapshot directory
is visible.

Sets the export policy to be used for the volume. The
default is default.

Sets the security style to be used for access to the
volume. The default is unix. Valid values are unix
and mixed.

Description

Sets the file system used to format iISCSI volumes.
The default is ext 4. Valid values are ext3, ext4,
and xfs.

Option Description

spaceAllocation Setting this to false will turn off the LUN’s space-
allocation feature. The default value is true, meaning
ONTAP notifies the host when the volume has run out
of space and the LUN in the volume cannot accept
writes. This option also enables ONTAP to reclaim
space automatically when your host deletes data.

Examples

See the examples below:

» Create a 10GiB volume:

docker volume create -d netapp --name demo -0 size=10G -o

encryption=true

* Create a 100GiB volume with snapshots:

docker volume create -d netapp --name demo -o size=100G -o
snapshotPolicy=default -o snapshotReserve=10

» Create a volume which has the setUID bit enabled:

docker volume create -d netapp --name demo -0 unixPermissions=4755

The minimum volume size is 20MiB.

If the snapshot reserve is not specified and the snapshot policy is none, Trident will use a snapshot reserve of
0%.
» Create a volume with no snapshot policy and no snapshot reserve:
docker volume create -d netapp --name my vol --opt snapshotPolicy=none

» Create a volume with no snapshot policy and a custom snapshot reserve of 10%:

docker volume create -d netapp --name my vol --opt snapshotPolicy=none

—--opt snapshotReserve=10

» Create a volume with a snapshot policy and a custom snapshot reserve of 10%:

247

docker volume create -d netapp --name my vol --opt
snapshotPolicy=myPolicy --opt snapshotReserve=10

» Create a volume with a snapshot policy, and accept ONTAP’s default snapshot reserve (usually 5%):

docker volume create -d netapp --name my vol --opt

snapshotPolicy=myPolicy

Element software volume options

The Element software options expose the size and quality of service (QoS) policies associated with the
volume. When the volume is created, the QoS policy associated with it is specified using the -o
type=service level nomenclature.

The first step to defining a QoS service level with the Element driver is to create at least one type and specify
the minimum, maximum, and burst IOPS associated with a name in the configuration file.

Other Element software volume create options include the following:

Option Description

size The size of the volume, defaults to 1GiB or config
entry ... "defaults": {"size": "5G"}.

blocksize Use either 512 or 4096, defaults to 512 or config entry
DefaultBlockSize.

Example

See the following sample configuration file with QoS definitions:

248

"Types": [
{
"Type": "Bronze",
"Qos": {
"minIOPS": 1000,
"maxIOPS": 2000,
"burstIOPS": 4000

"Type": "Silver",
"Qos": |
"minIOPS": 4000,
"maxIOPS": 6000,
"burstIOPS": 8000

"Type": "Gold",

"Qos": |
"minIOPS": 6000,
"maxIOPS": 8000,
"burstIOPS": 10000

In the above configuration, we have three policy definitions: Bronze, Silver, and Gold. These names are
arbitrary.
* Create a 10GiB Gold volume:
docker volume create -d solidfire --name sfGold -o type=Gold -o size=10G

* Create a 100GiB Bronze volume:

docker volume create -d solidfire --name sfBronze -o type=Bronze -0
size=100G

249

Collect logs

You can collect logs for help with troubleshooting. The method you use to collect the logs
varies based on how you are running the Docker plugin.
Collect logs for troubleshooting

Steps

1. If you are running Astra Trident using the recommended managed plugin method (i.e., using docker
plugin commands), view them as follows:

docker plugin 1s

ID NAME DESCRIPTION
ENABLED
4fb97d2b956b netapp:latest nDVP - NetApp Docker Volume

Plugin false
journalctl -u docker | grep 4fb97d2b956b

The standard logging level should allow you to diagnose most issues. If you find that’s not enough, you can
enable debug logging.
2. To enable debug logging, install the plugin with debug logging enabled:

docker plugin install netapp/trident-plugin:<version> --alias <alias>
debug=true

Or, enable debug logging when the plugin is already installed:

docker plugin disable <plugin>
docker plugin set <plugin> debug=true
docker plugin enable <plugin>

3. If you are running the binary itself on the host, logs are available in the host's /var/log/netappdvp
directory. To enable debug logging, specify ~debug when you run the plugin.

General troubleshooting tips
* The most common problem new users run into is a misconfiguration that prevents the plugin from
initializing. When this happens you will likely see a message such as this when you try to install or enable
the plugin:

Error response from daemon: dial unix /run/docker/plugins/<id>/netapp.sock:
connect: no such file or directory

This means that the plugin failed to start. Luckily, the plugin has been built with a comprehensive logging
capability that should help you diagnose most of the issues you are likely to come across.

250

* If there are problems with mounting a PV to a container, ensure that rpcbind is installed and running. Use
the required package manager for the host OS and check if rpcbind is running. You can check the status

of the rpcbind service by running a systemctl status rpcbind orits equivalent.

Manage multiple Astra Trident instances

Multiple instances of Trident are needed when you desire to have multiple storage
configurations available simultaneously. The key to multiple instances is to give them
different names using the --alias option with the containerized plugin, or -—volume

-driver option when instantiating Trident on the host.

Steps for Docker managed plugin (version 1.13/17.03 or later)

1. Launch the first instance specifying an alias and configuration file.

docker plugin install --grant-all-permissions --alias silver
netapp/trident-plugin:21.07 config=silver.json

2. Launch the second instance, specifying a different alias and configuration file.

docker plugin install --grant-all-permissions --alias gold
netapp/trident-plugin:21.07 config=gold.json

3. Create volumes specifying the alias as the driver name.

For example, for gold volume:
docker volume create -d gold --name ntapGold
For example, for silver volume:
docker volume create -d silver --name ntapSilver
Steps for traditional (version 1.12 or earlier)
1. Launch the plugin with an NFS configuration using a custom driver ID:

sudo trident —--volume-driver=netapp-nas --config=/path/to/config

-nfs.json

2. Launch the plugin with an iSCSI configuration using a custom driver ID:

251

sudo trident --volume-driver=netapp-san --config=/path/to/config

-iscsi.json

3. Provision Docker volumes for each driver instance:

For example, for NFS:
docker volume create -d netapp-nas -—-name my nfs vol
For example, for iISCSI:

docker volume create -d netapp-san --name my iscsi vol

Storage configuration options
See the configuration options available for your Astra Trident configurations.

Global configuration options

These configuration options apply to all Astra Trident configurations, regardless of the storage platform being
used.

Option Description Example
version Config file version number 1
storageDriverName Name of storage driver ontap-nas, ontap-san, ontap-

nas-economy,
ontap-nas-flexgroup,
solidfire-san

storagePrefix Optional prefix for volume names. staging
Default: netappdvp .

limitVolumeSize Optional restriction on volume 10g
sizes. Default: “” (not enforced)

Do not use storagePrefix (including the default) for Element backends. By default, the
solidfire-san driver will ignore this setting and not use a prefix. We recommend using either

a specific tenantlID for Docker volume mapping or using the attribute data which is populated
with the Docker version, driver info, and raw name from Docker in cases where any name
munging may have been used.

Default options are available to avoid having to specify them on every volume you create. The size option is

252

available for all the controller types. See the ONTAP configuration section for an example of how to set the

default volume size.

Option

size

ONTAP configuration

In addition to the global configuration
available.

Option

managementLIF

dataLIF

svm

username

password

Description Example

Optional default size for new
volumes. Default: 16

10G

values above, when using ONTAP, the following top-level options are

Description Example

IP address of ONTAP management 10.0.0.1
LIF. You can specify a fully-qualified
domain name (FQDN).

IP address of protocol LIF. 10.0.0.2

ONTAP NAS drivers: We
recommend specifying dataLIF. If
not provided, Astra Trident fetches
data LIFs from the SVM. You can
specify a fully-qualified domain
name (FQDN) to be used for the
NFS mount operations, allowing
you to create a round-robin DNS to
load-balance across multiple data
LIFs.

ONTAP SAN drivers: Do not
specify for iISCSI. Astra Trident
uses ONTAP Selective LUN Map to
discover the iSCI LIFs needed to
establish a multi path session. A
warning is generated if dataLIF is
explicitly defined.

Storage virtual machine to use
(required, if management LIF is a
cluster LIF)

svm nfs

Username to connect to the
storage device

vsadmin

Password to connect to the storage secret
device

253

https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html

Option

aggregate

limitAggregateUsage

nfsMountOptions

igroupName

limitVolumeSize

gtreesPerFlexvol

Description

Aggregate for provisioning
(optional; if set, must be assigned
to the SVM). For the ontap-nas-
flexgroup driver, this option is
ignored. All aggregates assigned to
the SVM are used to provision a
FlexGroup Volume.

Optional, fail provisioning if usage
is above this percentage

Fine grained control of NFS mount
options; defaults to “-0 nfsvers=3".
Available only for the ontap-nas
and ontap-nas-economy
drivers. See NFS host
configuration information here.

Astra Trident creates and manages
per-node igroups as netappdvp.

This value cannot be changed or
omitted.

Available only for the ontap-san
driver.

Maximum requestable volume size
and qtree parent volume size. For
the ontap-nas-economy driver,
this option additionally limits the
size of the FlexVols that it
creates.

Maximum gtrees per FlexVol, must
be in range [50, 300], default is
200. For the ontap-nas-
economy driver, this option
allows customizing the
maximum number of qtrees per
FlexVol.

Example

aggrl

-0 nfsvers=4

netappdvp

300g

300

Default options are available to avoid having to specify them on every volume you create:

Option

spaceReserve

254

Description

Space reservation mode; none
(thin provisioned) or volume (thick)

Example

none

https://www.netapp.com/pdf.html?item=/media/10720-tr-4067.pdf
https://www.netapp.com/pdf.html?item=/media/10720-tr-4067.pdf

Option

snapshotPolicy

snapshotReserve

splitOnClone

encryption

unixPermissions

snapshotDir

exportPolicy

securityStyle

fileSystemType

tieringPolicy

Description

Snapshot policy to use, default is
none

Snapshot reserve percentage,
default is “ to accept the ONTAP
default

Split a clone from its parent upon
creation, defaults to false

Enables NetApp Volume
Encryption (NVE) on the new
volume; defaults to false. NVE
must be licensed and enabled on
the cluster to use this option.

If NAE is enabled on the backend,
any volume provisioned in Astra
Trident will be NAE enabled.

For more information, refer to: How
Astra Trident works with NVE and
NAE.

NAS option for provisioned NFS
volumes, defaults to 777

NAS option for access to the
.snapshot directory, defaults to
false

NAS option for the NFS export
policy to use, defaults to default

NAS option for access to the
provisioned NFS volume.

NFS supports mixed and unix

security styles. The default is unix.

SAN option to select the file system

type, defaults to ext 4

Tiering policy to use, default is

none; snapshot-only for pre-
ONTAP 9.5 SVM-DR configuration

Example

none

10

false

true

777

true

default

unix

xfs

none

255

Scaling options

The ontap-nas and ontap-san drivers create an ONTAP FlexVol for each Docker volume. ONTAP supports
up to 1000 FlexVols per cluster node with a cluster maximum of 12,000 FlexVols. If your Docker volume
requirements fit within that limitation, the ontap-nas driver is the preferred NAS solution due to the additional
features offered by FlexVols, such as Docker-volume-granular snapshots and cloning.

If you need more Docker volumes than can be accommodated by the FlexVol limits, choose the ontap-nas-
economy or the ontap-san-economy driver.

The ontap-nas-economy driver creates Docker volumes as ONTAP Qtrees within a pool of automatically
managed FlexVols. Qtrees offer far greater scaling, up to 100,000 per cluster node and 2,400,000 per cluster,
at the expense of some features. The ontap-nas-economy driver does not support Docker-volume-granular
snapshots or cloning.

@ The ontap-nas-economy driver is not currently supported in Docker Swarm, because Swarm
does not orchestrate volume creation across multiple nodes.

The ontap-san-economy driver creates Docker volumes as ONTAP LUNs within a shared pool of
automatically managed FlexVols. This way, each FlexVol is not restricted to only one LUN and it offers better
scalability for SAN workloads. Depending on the storage array, ONTAP supports up to 16384 LUNs per cluster.
Because the volumes are LUNs underneath, this driver supports Docker-volume-granular snapshots and
cloning.

Choose the ontap-nas-flexgroup driver to increase parallelism to a single volume that can grow into the
petabyte range with billions of files. Some ideal use cases for FlexGroups include Al/ML/DL, big data and
analytics, software builds, streaming, file repositories, and so on. Trident uses all aggregates assigned to an
SVM when provisioning a FlexGroup Volume. FlexGroup support in Trident also has the following
considerations:

» Requires ONTAP version 9.2 or greater.

* As of this writing, FlexGroups only support NFS v3.

* Recommended to enable the 64-bit NFSv3 identifiers for the SVM.

* The minimum recommended FlexGroup size is 100GB.

* Cloning is not supported for FlexGroup Volumes.

For information about FlexGroups and workloads that are appropriate for FlexGroups see the NetApp
FlexGroup Volume Best Practices and Implementation Guide.

To get advanced features and huge scale in the same environment, you can run multiple instances of the
Docker Volume Plugin, with one using ontap-nas and another using ontap-nas-economny.

Example ONTAP configuration files

NFS example for ontap-nas driver

256

https://www.netapp.com/pdf.html?item=/media/12385-tr4571pdf.pdf
https://www.netapp.com/pdf.html?item=/media/12385-tr4571pdf.pdf

"version": 1,
"storageDriverName": "ontap-nas",
"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.2",
"svm": "svm nfs",
"username": "vsadmin",
"password": "password",
"aggregate": "aggrl",
"defaults": {

"size": "10G",

"spaceReserve": "none",

"exportPolicy": "default"

NFS example for ontap-nas-flexgroup driver

"version": 1,
"storageDriverName": "ontap-nas-flexgroup",
"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.2",
"svm": "svm nfs",
"username": "vsadmin",
"password": "password",
"defaults": {

"size": "100G",

"spaceReserve": "none",

"exportPolicy": "default"

NFS example for ontap-nas-economy driver

257

"version": 1,

"storageDriverName": "ontap-nas-economy",
"managementLIF": "10.0.0.1",

"datalLIF": "10.0.0.2",

"svm": "svm nfs",

"username": "vsadmin",

"password": "password",

"aggregate": "aggrl"

iSCSI example for ontap-san driver

"version": 1,
"storageDriverName": "ontap-san",
"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.3",

"svm": "svm iscsi",

"username": "vsadmin",
"password": "password",
"aggregate": "aggrl",
"igroupName": "netappdvp"

NFS example for ontap-san-economy driver

"version": 1,

"storageDriverName": "ontap-san-economy",
"managementLIF": "10.0.0.1",

"dataLIF": "10.0.0.3",

"svm": "svm iscsi eco",

"username": "vsadmin",

"password": "password",

"aggregate": "aggrl",

"igroupName": "netappdvp"

Element software configuration

In addition to the global configuration values, when using Element software (NetApp HCI/SolidFire), these
options are available.

258

Option

Endpoint

SVIP

TenantName

InitiatorIFace

Types

LegacyNamePrefix

Description Example
https://<login>:<password>@<mvip https://admin:admin@192.168.160.
>/json-rpc/<element-version> 3/json-rpc/8.0

iSCSI IP address and port 10.0.0.7:3260

SolidFireF Tenant to use (created if docker
not found)

Specify interface when restricting default
iISCSI traffic to non-default interface

QoS specifications See example below

Prefix for upgraded Trident installs. netappdvp-
If you used a version of Trident

prior to 1.3.2 and perform an

upgrade with existing volumes,

you’ll need to set this value to

access your old volumes that were

mapped via the volume-name

method.

The solidfire-san driver does not support Docker Swarm.

Example Element software configuration file

259

"version": 1,
"storageDriverName": "solidfire-san",
"Endpoint": "https://admin:admin@192.168.160.3/json-rpc/8.0",
"SVIP": "10.0.0.7:3260",
"TenantName": "docker",
"InitiatorIFace": "default",
"Types": [
{
"Type": "Bronze",
"Qos": {
"minIOPS": 1000,
"maxIOPS": 2000,
"burstIOPS": 4000

"Type": "Silver",
"Qos": |
"minIOPS": 4000,
"maxIOPS": 6000,
"burstIOPS": 8000

"Type": "Gold",

"Qos": |
"minIOPS": 6000,
"maxIOPS": 8000,
"burstIOPS": 10000

Known issues and limitations

Find information about known issues and limitations when using Astra Trident with
Docker.

Upgrading Trident Docker Volume Plugin to 20.10 and later from older versions
results in upgrade failure with the no such file or directory error.

Workaround
1. Disable the plugin.

260

docker plugin disable -f netapp:latest
2. Remove the plugin.

docker plugin rm -f netapp:latest
3. Reinstall the plugin by providing the extra config parameter.

docker plugin install netapp/trident-plugin:20.10 --alias netapp --grant
-all-permissions config=config.json

Volume names must be a minimum of 2 characters in length.

(D This is a Docker client limitation. The client will interpret a single character name as being a
Windows path. See bug 25773.

Docker Swarm has certain behaviors that prevent Astra Trident from supporting it
with every storage and driver combination.
* Docker Swarm presently makes use of volume name instead of volume ID as its unique volume identifier.

* Volume requests are simultaneously sent to each node in a Swarm cluster.
* Volume plugins (including Astra Trident) must run independently on each node in a Swarm cluster.

Due to the way ONTAP works and how the ontap-nas and ontap-san drivers function, they are the only
ones that happen to be able to operate within these limitations.

The rest of the drivers are subject to issues like race conditions that can result in the creation of a large
number of volumes for a single request without a clear “winner”; for example, Element has a feature that allows
volumes to have the same name but different IDs.

NetApp has provided feedback to the Docker team, but does not have any indication of future recourse.

If a FlexGroup is being provisioned, ONTAP does not provision a second
FlexGroup if the second FlexGroup has one or more aggregates in common with
the FlexGroup being provisioned.

261

https://github.com/moby/moby/issues/25773

Frequently asked questions

Find answers to the frequently asked questions about installing, configuring, upgrading,
and troubleshooting Astra Trident.

General questions

How frequently is Astra Trident released?

Astra Trident is released every three months: January, April, July, and October. This is one month after a
Kubernetes release.

Does Astra Trident support all the features that are released in a particular version
of Kubernetes?

Astra Trident usually does not support alpha features in Kubernetes. Trident might support beta features within
the two Trident releases that follow the Kubernetes beta release.

Does Astra Trident have any dependencies on other NetApp products for its
functioning?

Astra Trident does not have any dependencies on other NetApp software products and it works as a
standalone application. However, you should have a NetApp backend storage device.

How can | obtain complete Astra Trident configuration details?

Use the tridentctl get command to obtain more information about your Astra Trident configuration.

Can | obtain metrics on how storage is provisioned by Astra Trident?

Yes. Trident 20.01 introduces Prometheus endpoints that can be used to gather information about Astra
Trident’s operation, such as the number of backends managed, the number of volumes provisioned, bytes
consumed, and so on. You can also use Cloud Insights for monitoring and analysis.

Does the user experience change when using Astra Trident as a CSl Provisioner?

No. There are no changes as far as the user experience and functionalities are concerned. The provisioner
name used is csi.trident.netapp.io. This method of installing Astra Trident is recommended if you want
to use all the new features provided by current and future releases.

Install and use Astra Trident on a Kubernetes cluster

What are the supported versions of etcd?

Astra Trident no longer needs an etcd. It uses CRDs to maintain state.

Does Astra Trident support an offline install from a private registry?

Yes, Astra Trident can be installed offline. See here.

262

https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy.html

Can |l install Astra Trident be remotely?

Yes. Astra Trident 18.10 and later support remote installation capability from any machine that has kubect1
access to the cluster. After kubect1 access is verified (for example, initiate a kubectl get nodes
command from the remote machine to verify), follow the installation instructions.

Can | configure High Availability with Astra Trident?

Astra Trident is installed as a Kubernetes Deployment (ReplicaSet) with one instance, and so it has HA built in.
You should not increase the number of replicas in the deployment. If the node where Astra Trident is installed
is lost or the pod is otherwise inaccessible, Kubernetes automatically re-deploys the pod to a healthy node in
your cluster. Astra Trident is control-plane only, so currently mounted pods are not affected if Astra Trident is
re-deployed.

Does Astra Trident need access to the kube-system namespace?

Astra Trident reads from the Kubernetes API Server to determine when applications request new PVCs, so it
needs access to kube-system.

What are the roles and privileges used by Astra Trident?

The Trident installer creates a Kubernetes ClusterRole, which has specific access to the cluster’s
PersistentVolume, PersistentVolumeClaim, StorageClass, and Secret resources of the Kubernetes cluster. See
here.

Can | locally generate the exact manifest files Astra Trident uses for installation?

You can locally generate and modify the exact manifest files Astra Trident uses for installation, if needed. See
here.

Can | share the same ONTAP backend SVM for two separate Astra Trident
instances for two separate Kubernetes clusters?

Although it is not advised, you can use the same backend SVM for two Astra Trident instances. Specify a
unique volume name for each instance during installation and/or specify a unique StoragePrefix parameter
in the setup/backend. json file. This is to ensure the same FlexVol is not used for both instances.

Is it possible to install Astra Trident under ContainerLinux (formerly Core0OS)?

Astra Trident is simply a Kubernetes pod and can be installed wherever Kubernetes is running.

Can | use Astra Trident with NetApp Cloud Volumes ONTAP?

Yes, Astra Trident is supported on AWS, Google Cloud, and Azure.

Does Astra Trident work with Cloud Volumes Services?

Yes, Astra Trident supports the Azure NetApp Files service in Azure as well as the Cloud Volumes Service in
GCP.

263

https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-customize-deploy-tridentctl.html
https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-customize-deploy-tridentctl.html

Troubleshooting and support

Does NetApp support Astra Trident?

Although Astra Trident is open source and provided for free, NetApp fully supports it provided your NetApp
backend is supported.

How do | raise a support case?

To raise a support case, do one of the following:

1. Contact your Support Account Manager and get help to raise a ticket.

2. Raise a support case by contacting NetApp Support.

How do | generate a support log bundle?

You can create a support bundle by running tridentctl logs -a. In addition to the logs captured in the
bundle, capture the kubelet log to diagnose the mount problems on the Kubernetes side. The instructions to
get the kubelet log varies based on how Kubernetes is installed.

What do | do if | need to raise a request for a new feature?

Create an issue on Astra Trident Github and mention RFE in the subject and description of the issue.

Where do | raise a defect?

Create an issue on Astra Trident Github. Make sure to include all the necessary information and logs pertaining
to the issue.

What happens if | have quick question on Astra Trident that | need clarification on?
Is there a community or a forum?

If you have any questions, issues, or requests, reach out to us through our Astra Discord channel or GitHub.

My storage system’s password has changed and Astra Trident no longer works,
how do | recover?

Update the backend’s password with tridentctl update backend myBackend -f
</path/to _new backend.json> -n trident. Replace myBackend in the example with your backend
name, and " /path/to new backend. json with the path to the correct backend. json file.

Astra Trident cannot find my Kubernetes node. How do I fix this?

There are two likely scenarios why Astra Trident cannot find a Kubernetes node. It can be because of a
networking issue within Kubernetes or a DNS issue. The Trident node daemonset that runs on each
Kubernetes node must be able to communicate with the Trident controller to register the node with Trident. If
networking changes occurred after Astra Trident was installed, you encounter this problem only with new
Kubernetes nodes that are added to the cluster.

264

https://www.netapp.com/company/contact-us/support/
https://github.com/NetApp/trident
https://github.com/NetApp/trident
https://discord.gg/NetApp

If the Trident pod is destroyed, will | lose the data?

Data will not be lost if the Trident pod is destroyed. Trident’s metadata is stored in CRD objects. All PVs that
have been provisioned by Trident will function normally.

Upgrade Astra Trident

Can | upgrade from a older version directly to a newer version (skipping a few
versions)?

NetApp supports upgrading Astra Trident from one major release to the next immediate major release. You can
upgrade from version 18.xx to 19.xx, 19.xx to 20.xx, and so on. You should test upgrading in a lab before
production deployment.

Is it possible to downgrade Trident to a previous release?

There are a number of factors to be evaluated if you want to downgrade. See the section on downgrading.

Manage backends and volumes

Do | need to define both Management and Data LIFs in an ONTAP backend
definition file?

The management LIF is mandatory. Data LIF varies:

* ONTAP SAN: Do not specify for iSCSI. Astra Trident uses ONTAP Selective LUN Map to discover the iSCI
LIFs needed to establish a multi path session. A warning is generated if dataLIF is explicitly defined.
Refer to ONTAP SAN configuration options and examples for details.

* ONTAP NAS: We recommend specifying dataLIF. If not provided, Astra Trident fetches data LIFs from
the SVM. You can specify a fully-qualified domain name (FQDN) to be used for the NFS mount operations,
allowing you to create a round-robin DNS to load-balance across multiple data LIFs. Refer to ONTAP NAS
configuration options and examples for details

Can Astra Trident configure CHAP for ONTAP backends?

Yes. Beginning with 20.04, Astra Trident supports bidirectional CHAP for ONTAP backends. This requires
setting useCHAP=t rue in your backend configuration.

How do | manage export policies with Astra Trident?

Astra Trident can dynamically create and manage export policies from version 20.04 onwards. This enables
the storage administrator to provide one or more CIDR blocks in their backend configuration and have Trident
add node IPs that fall within these ranges to an export policy it creates. In this manner, Astra Trident
automatically manages the addition and deletion of rules for nodes with IPs within the given CIDRs. This
feature requires CSI Trident.

Can we specify a port in the DataLIF?

Astra Trident 19.01 and later support specifying a port in the DataLIF. Configure it in the backend. json file as
“managementLIF”: <ip address>:<port>”.For example, if the IP address of your management LIF is
192.0.2.1, and the port is 1000, configure "managementLIF": "192.0.2.1:1000".

265

https://docs.netapp.com/us-en/trident/trident-managing-k8s/downgrade-trident.html
https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html

Can IPv6 addresses be used for the Management and Data LIFs?

Astra Trident supports defining IPv6 addresses for:

* managementLIF and dataLIF for ONTAP NAS backends.

* managementLIF for ONTAP SAN backends. You cannot specify dataLIF on an ONTAP SAN backend.

Astra Trident must be installed using the * --use-1ipvé6 flag for it to function over IPv6.

Is it possible to update the Management LIF on the backend?

Yes, it is possible to update the backend Management LIF using the tridentctl update backend
command.

Is it possible to update the Data LIF on the backend?

You can update the Data LIF on ontap-nas and ontap-nas-economy only.

Can | create multiple backends in Astra Trident for Kubernetes?

Astra Trident can support many backends simultaneously, either with the same driver or different drivers.

How does Astra Trident store backend credentials?

Astra Trident stores the backend credentials as Kubernetes Secrets.

How does Astra Trident select a specific backend?

If the backend attributes cannot be used to automatically select the right pools for a class, the storagePools
and additionalStoragePools parameters are used to select a specific set of pools.

How do | ensure that Astra Trident will not provision from a specific backend?

The excludeStoragePools parameter is used to filter the set of pools that Astra Trident will use for
provisioning and will remove any pools that match.

If there are multiple backends of the same kind, how does Astra Trident select
which backend to use?

If there are multiple configured backends of the same type, Astra Trident selects the appropriate backend
based on the parameters present in StorageClass and PersistentVolumeClaim. For example, if there
are multiple ontap-nas driver backends, Astra Trident tries to match parameters in the StorageClass and
PersistentVolumeClaim combined and match a backend which can deliver the requirements listed in
StorageClass and PersistentVolumeClaim. If there are multiple backends that match the request, Astra
Trident selects from one of them at random.

Does Astra Trident support bi-directional CHAP with Element/SolidFire?

Yes.

266

How does Astra Trident deploy Qtrees on an ONTAP volume? How many Qtrees
can be deployed on a single volume?

The ontap-nas-economy driver creates up to 200 Qtrees in the same FlexVol (configurable between 50 and
300), 100,000 Qtrees per cluster node, and 2.4M per cluster. When you enter a new
PersistentVolumeClaim that is serviced by the economy driver, the driver looks to see if a FlexVol already
exists that can service the new Qtree. If the FlexVol does not exist that can service the Qtree, a new FlexVol is
created.

How can | set Unix permissions for volumes provisioned on ONTAP NAS?

You can set Unix permissions on the volume provisioned by Astra Trident by setting a parameter in the
backend definition file.

How can | configure an explicit set of ONTAP NFS mount options while
provisioning a volume?

By default, Astra Trident does not set mount options to any value with Kubernetes. To specify the mount
options in the Kubernetes Storage Class, follow the example given here.

How do | set the provisioned volumes to a specific export policy?

To allow the appropriate hosts access to a volume, use the exportPolicy parameter configured in the
backend definition file.

How do | set volume encryption through Astra Trident with ONTAP?

You can set encryption on the volume provisioned by Trident by using the encryption parameter in the backend
definition file. For more information, refer to: How Astra Trident works with NVE and NAE

What is the best way to implement QoS for ONTAP through Astra Trident?

Use StorageClasses to implement QoS for ONTAP.

How do | specify thin or thick provisioning through Astra Trident?

The ONTAP drivers support either thin or thick provisioning. The ONTAP drivers default to thin provisioning. If
thick provisioning is desired, you should configure either the backend definition file or the StorageClass. If
both are configured, StorageClass takes precedence. Configure the following for ONTAP:

1. On StorageClass, set the provisioningType attribute as thick.

2. In the backend definition file, enable thick volumes by setting backend spaceReserve parameter as
volume.

How do | make sure that the volumes being used are not deleted even if |
accidentally delete the PVC?

PVC protection is automatically enabled on Kubernetes starting from version 1.10.

267

https://github.com/NetApp/trident/blob/master/trident-installer/sample-input/storage-class-samples/storage-class-ontapnas-k8s1.8-mountoptions.yaml
https://docs.netapp.com/us-en/trident/trident-reco/security-reco.html#use-astra-trident-with-nve-and-nae

Can | grow NFS PVCs that were created by Astra Trident?

Yes. You can expand a PVC that has been created by Astra Trident. Note that volume autogrow is an ONTAP
feature that is not applicable to Trident.

If | have a volume that was created outside Astra Trident can | import it into Astra
Trident?

Starting in 19.04, you can use the volume import feature to bring volumes into Kubernetes.

Can | import a volume while it is in SnapMirror Data Protection (DP) or offline
mode?

The volume import fails if the external volume is in DP mode or is offline. You receive the following error
message:

Error: could not import volume: volume import failed to get size of
volume: volume <name> was not found (400 Bad Request) command terminated
with exit code 1.

Make sure to remove the DP mode or put the volume online before importing
the volume.

Can | expand iSCSI PVCs that were created by Astra Trident?

Trident 19.10 supports expanding iSCSI PVs using the CSI Provisioner.

How is resource quota translated to a NetApp cluster?

Kubernetes Storage Resource Quota should work as long as NetApp storage has capacity. When the NetApp
storage cannot honor the Kubernetes quota settings due to lack of capacity, Astra Trident tries to provision but
errors out.

Can | create Volume Snapshots using Astra Trident?

Yes. Creating on-demand volume snapshots and Persistent Volumes from Snapshots are supported by Astra
Trident. To create PVs from snapshots, ensure that the VolumeSnapshotDataSource feature gate has been
enabled.

What are the drivers that support Astra Trident volume snapshots?

As of today, on-demand snapshot support is available for our ontap-nas, ontap-nas-flexgroup, ontap-
san, ontap-san-economy, solidfire-san, gcp-cvs, and azure-netapp-£files backend drivers.

How do | take a snapshot backup of a volume provisioned by Astra Trident with
ONTAP?

This is available on ontap-nas, ontap-san, and ontap-nas-flexgroup drivers. You can also specify a
snapshotPolicy for the ontap-san-economy driver at the FlexVol level.

This is also available on the ontap-nas-economy drivers but on the FlexVol level granularity and not on the

268

gtree level granularity. To enable the ability to snapshot volumes provisioned by Astra Trident, set the backend
parameter option snapshotPolicy to the desired snapshot policy as defined on the ONTAP backend. Any
snapshots taken by the storage controller are not known by Astra Trident.

Can | set a snapshot reserve percentage for a volume provisioned through Astra
Trident?

Yes, you can reserve a specific percentage of disk space for storing the snapshot copies through Astra Trident
by setting the snapshotReserve attribute in the backend definition file. If you have configured
snapshotPolicy and snapshotReserve in the backend definition file, snapshot reserve percentage is set
according to the snapshotReserve percentage mentioned in the backend file. If the snapshotReserve
percentage number is not mentioned, ONTAP by default takes the snapshot reserve percentage as 5. If the
snapshotPolicy option is set to none, the snapshot reserve percentage is set to 0.

Can | directly access the volume snapshot directory and copy files?

Yes, you can access the snapshot directory on the volume provisioned by Trident by setting the snapshotDir
parameter in the backend definition file.

Can | set up SnapMirror for volumes through Astra Trident?

Currently, SnapMirror has to be set externally by using ONTAP CLI or OnCommand System Manager.

How do | restore Persistent Volumes to a specific ONTAP snapshot?

To restore a volume to an ONTAP snapshot, perform the following steps:

1. Quiesce the application pod which is using the Persistent volume.
2. Revert to the required snapshot through ONTAP CLI or OnCommand System Manager.
3. Restart the application pod.

Can Trident provision volumes on SVMs that have a Load-Sharing Mirror
configured?

Load-sharing mirrors can be created for root volumes of SVMs that serve data over NFS. ONTAP automatically
updates load-sharing mirrors for volumes that have been created by Trident. This may result in delays in
mounting volumes. When multiple volumes are created using Trident, provisioning a volume is dependent on
ONTAP updating the load-sharing mirror.

How can | separate out storage class usage for each customer/tenant?

Kubernetes does not allow storage classes in namespaces. However, you can use Kubernetes to limit usage of
a specific storage class per namespace by using Storage Resource Quotas, which are per namespace. To
deny a specific namespace access to specific storage, set the resource quota to 0 for that storage class.

269

Support

Astra Trident is an officially supported NetApp project. You can reach out to NetApp using
any of the standard mechanisms and get the enterprise grade support that you need.

There is also a vibrant public community of container users (including Astra Trident developers) on our Astra

Discord channel. This is a great place to ask general questions about the project and discuss related topics
with like-minded peers.

270

https://discord.gg/NetApp

Troubleshooting

Use the pointers provided here for troubleshooting issues you might encounter while
installing and using Astra Trident.

(D For help with Astra Trident, create a support bundle using tridentctl logs -a -n
trident and send it to NetApp Support <Getting Help>.

For a comprehensive list of troubleshooting articles, see the NetApp Knowledgebase (login
required). You can also find information about troubleshooting issues related to Astra here.

General troubleshooting
« If the Trident pod fails to come up properly (for example, when the Trident pod is stuck in the
ContainerCreating phase with fewer than two ready containers), running kubectl -n trident
describe deployment trident and kubectl -n trident describe pod trident--** can

provide additional insights. Obtaining kubelet logs (for example, via journalctl -xeu kubelet)can
also be helpful.

« If there is not enough information in the Trident logs, you can try enabling the debug mode for Trident by
passing the -d flag to the install parameter based on your installation option.

Then confirm debug is set using . /tridentctl logs -n trident and searching for level=debug
msgq in the log.

Installed with Operator

kubectl patch torc trident -n <namespace> --type=merge -p
'{"spec":{"debug":true}}'

This will restart all Trident pods, which can take several seconds. You can check this by observing the
'AGE' column in the output of kubectl get pod -n trident.

For Astra Trident 20.07 and 20.10 use tprov in place of torc.

Installed with Helm

helm upgrade <name> trident-operator-21.07.l1-custom.tgz --set
tridentDebug=true’

Installed with tridentctl

./tridentctl uninstall -n trident
./tridentctl install -d -n trident

* You can also obtain debug logs for each backend by including debugTraceFlags in your backend
definition. For example, include debugTraceFlags: {“api”:true, “method”:true, } to obtain API

271

https://kb.netapp.com/Advice_and_Troubleshooting/Cloud_Services/Trident_Kubernetes
https://kb.netapp.com/Advice_and_Troubleshooting/Cloud_Services/Trident_Kubernetes
https://kb.netapp.com/Advice_and_Troubleshooting/Cloud_Services/Astra

calls and method traversals in the Trident logs. Existing backends can have debugTraceFlags
configured with a tridentctl backend update.

* When using RedHat CoreOS, ensure that iscsid is enabled on the worker nodes and started by default.
This can be done using OpenShift MachineConfigs or by modifying the ignition templates.

* A common problem you could encounter when using Trident with Azure NetApp Files is when the tenant
and client secrets come from an app registration with insufficient permissions. For a complete list of Trident
requirements, see Azure NetApp Files configuration.

* If there are problems with mounting a PV to a container, ensure that rpcbind is installed and running. Use
the required package manager for the host OS and check if rpcbind is running. You can check the status
of the rpcbind service by running a systemctl status rpcbind or its equivalent.

* If a Trident backend reports that it is in the failed state despite having worked before, it is likely caused
by changing the SVM/admin credentials associated with the backend. Updating the backend information
using tridentctl update backend or bouncing the Trident pod will fix this issue.

« If you are upgrading your Kubernetes cluster and/or Trident to use beta Volume Snapshots, ensure that all
the existing alpha snapshot CRs are completely removed. You can then use the tridentctl
obliviate alpha-snapshot-crd command to delete alpha snapshot CRDs. See this blog to
understand the steps involved in migrating alpha snapshots.

* If you encounter permission issues when installing Trident with Docker as the container runtime, attempt
the installation of Trident with the --in cluster=false flag. This will not use an installer pod and avoid
permission troubles seen due to the trident-installer user.

* Use the uninstall parameter <Uninstalling Trident> for cleaning up after a failed run. By
default, the script does not remove the CRDs that have been created by Trident, making it safe to uninstall
and install again even in a running deployment.

* If you are looking to downgrade to an earlier version of Trident, first run the tridentctl uninstall
command to remove Trident. Download the desired Trident version and install using the tridentctl
install command. Only consider a downgrade if there are no new PVs created and if no changes have
been made to already existing PVs/backends/ storage classes. Since Trident now uses CRDs for
maintaining state, all storage entities created (backends, storage classes, PVs and Volume Snapshots)
have associated CRD objects <Kubernetes CustomResourceDefinition Objects> instead
of data written into the PV that was used by the earlier installed version of Trident. Newly created PVs will
not be usable when moving back to an earlier version. Changes made to objects, such as
backends, PVs, storage classes, and volume snapshots (created/updated/deleted) will not be
visible to Trident when downgraded. The PV that was used by the earlier version of Trident installed will
still be visible to Trident. Going back to an earlier version will not disrupt access for PVs that were already
created using the older release, unless they have been upgraded.

* To completely remove Trident, run the tridentctl obliviate crd command. This will remove all
CRD objects and undefine the CRDs. Trident will no longer manage any PVs it had already provisioned.

@ Trident will need to be reconfigured from scratch after this.

* After a successful install, if a PVC is stuck in the Pending phase, running kubectl describe pvc can
provide additional information about why Trident failed to provision a PV for this PVC.

Troubleshooting an unsuccessful Trident deployment using
the operator

If you are deploying Trident using the operator, the status of TridentOrchestrator changes from

272

https://azure.microsoft.com/en-us/services/netapp/
https://docs.netapp.com/us-en/trident-2304/../trident-use/anf.html
https://netapp.io/2020/01/30/alpha-to-beta-snapshots/
https://github.com/NetApp/trident/releases

Installingto Installed. If you observe the Failed status, and the operator is unable to recover by itself,
you should check the logs of the operator by running following command:

tridentctl logs -1 trident-operator

Trailing the logs of the trident-operator container can point to where the problem lies. For example, one such
issue could be the inability to pull the required container images from upstream registries in an airgapped
environment.

To understand why the installation of Trident was unsuccessful, you
should take a look at the TridentOrchestrator status.

kubectl describe torc trident-2

Name : trident-2
Namespace:

Labels: <none>
Annotations: <none>

API Version: trident.netapp.io/vl

Kind: TridentOrchestrator
Status:
Current Installation Params:
IPvo6:

Autosupport Hostname:
Autosupport Image:
Autosupport Proxy:
Autosupport Serial Number:
Debug:

Image Pull Secrets: <nil>
Image Registry:
k8sTimeout:

Kubelet Dir:

Log Format:

Silence Autosupport:
Trident Image:

Message: Trident is bound to another CR 'trident'
Namespace: trident-2
Status: Error
Version:

Events:
Type Reason Age From Message
Warning Error 16s (x2 over 16s) trident-operator.netapp.io Trident

is bound to another CR 'trident'

273

This error indicates that there already exists a TridentOrchestrator
that was used to install Trident. Since each Kubernetes cluster can only
have one instance of Trident, the operator ensures that at any given
time there only exists one active TridentOrchestrator thatit can
create.

In addition, observing the status of the Trident pods can often indicate if something is not right.

kubectl get pods -n trident

NAME READY STATUS RESTARTS
AGE

trident-csi-4p5kg 1/2 ImagePullBackOff 0
5ml8s

trident-csi-6f45bfd8b6-vfrkw 4/5 ImagePullBackOff 0
5ml19s

trident-csi-9g5xc 1/2 ImagePullBackOff 0
5ml18s

trident-csi-9v95z 1/2 ImagePullBackOff 0
5ml8s

trident-operator-766f7b8658-1dzsv 1/1 Running 0
8ml7s

You can clearly see that the pods are not able to initialize completely
because one or more container images were not fetched.

To address the problem, you should edit the TridentOrchestrator CR.

Alternatively, you can delete TridentOrchestrator, and create a new
one with the modified and accurate definition.

Troubleshooting an unsuccessful Trident deployment using
tridentctl

To help figure out what went wrong, you could run the installer again using the -d argument, which will turn on
debug mode and help you understand what the problem is:

./tridentctl install -n trident -d

After addressing the problem, you can clean up the installation as follows, and then run the tridentctl
install command again:

274

./tridentctl

INFO
INFO
INFO
INFO
INFO
INFO

Deleted
Deleted
Deleted
Deleted
Removed
Trident

uninstall -n trident

Trident deployment.

cluster role binding.

cluster role.

service account.

Trident user from security context constraint.

uninstallation succeeded.

275

Best practices and recommendations

Deployment

Use the recommendations listed here when you deploy Astra Trident.

Deploy to a dedicated namespace

Namespaces provide administrative separation between different applications and are a barrier for resource
sharing. For example, a PVC from one namespace cannot be consumed from another. Astra Trident provides
PV resources to all the namespaces in the Kubernetes cluster and consequently leverages a service account
which has elevated privileges.

Additionally, access to the Trident pod might enable a user to access storage system credentials and other
sensitive information. It is important to ensure that application users and management applications do not have
the ability to access the Trident object definitions or the pods themselves.

Use quotas and range limits to control storage consumption

Kubernetes has two features which, when combined, provide a powerful mechanism for limiting the resource
consumption by applications. The storage quota mechanism enables the administrator to implement global,
and storage class specific, capacity and object count consumption limits on a per-namespace basis. Further,
using a range limit ensures that the PVC requests are within both a minimum and maximum value before the
request is forwarded to the provisioner.

These values are defined on a per-namespace basis, which means that each namespace should have values
defined which fall in line with their resource requirements. See here for information about how to leverage
quotas.

Storage configuration

Each storage platform in the NetApp portfolio has unique capabilities that benefit
applications, containerized or not.
Platform overview

Trident works with ONTAP and Element. There is not one platform which is better suited for all applications and
scenarios than another, however, the needs of the application and the team administering the device should be
taken into account when choosing a platform.

You should follow the baseline best practices for the host operating system with the protocol that you are

leveraging. Optionally, you might want to consider incorporating application best practices, when available, with
backend, storage class, and PVC settings to optimize storage for specific applications.

ONTAP and Cloud Volumes ONTAP best practices
Learn the best practices for configuring ONTAP and Cloud Volumes ONTAP for Trident.
The following recommendations are guidelines for configuring ONTAP for containerized workloads, which

consume volumes that are dynamically provisioned by Trident. Each should be considered and evaluated for
appropriateness in your environment.

276

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/policy/resource-quotas/#storage-resource-quota
https://kubernetes.io/docs/tasks/administer-cluster/limit-storage-consumption/#limitrange-to-limit-requests-for-storage
https://netapp.io/2017/06/09/self-provisioning-storage-kubernetes-without-worry
https://netapp.io/2017/06/09/self-provisioning-storage-kubernetes-without-worry

Use SVM(s) dedicated to Trident

Storage Virtual Machines (SVMs) provide isolation and administrative separation between tenants on an
ONTAP system. Dedicating an SVM to applications enables the delegation of privileges and enables applying
best practices for limiting resource consumption.

There are several options available for the management of the SVM:

» Provide the cluster management interface in the backend configuration, along with appropriate credentials,
and specify the SVM name.

* Create a dedicated management interface for the SVM by using ONTAP System Manager or the CLI.

» Share the management role with an NFS data interface.

In each case, the interface should be in DNS, and the DNS name should be used when configuring Trident.
This helps to facilitate some DR scenarios, for example, SVM-DR without the use of network identity retention.

There is no preference between having a dedicated or shared management LIF for the SVM, however, you
should ensure that your network security policies align with the approach you choose. Regardless, the
management LIF should be accessible via DNS to facilitate maximum flexibility should SVM-DR be used in
conjunction with Trident.

Limit the maximum volume count

ONTAP storage systems have a maximum volume count, which varies based on the software version and
hardware platform. See NetApp Hardware Universe for your specific platform and ONTAP version to determine
the exact limits. When the volume count is exhausted, provisioning operations fail not only for Trident, but for
all the storage requests.

Trident’'s ontap-nas and ontap-san drivers provision a FlexVolume for each Kubernetes Persistent Volume
(PV) that is created. The ontap-nas-economy driver creates approximately one FlexVolume for every 200
PVs (configurable between 50 and 300). The ontap-san-economy driver creates approximately one
FlexVolume for every 100 PVs (configurable between 50 and 200). To prevent Trident from consuming all the
available volumes on the storage system, you should set a limit on the SVM. You can do this from the
command line:

vserver modify -vserver <svm name> -max-volumes <num of volumes>

The value for max-volumes varies based on several criteria specific to your environment:

* The number of existing volumes in the ONTAP cluster
* The number of volumes you expect to provision outside of Trident for other applications
» The number of persistent volumes expected to be consumed by Kubernetes applications
The max-volumes value is the total volumes provisioned across all the nodes in the ONTAP cluster, and not

on an individual ONTAP node. As a result, you might encounter some conditions where an ONTAP cluster
node might have far more or less Trident provisioned volumes than another node.

For example, a two-node ONTAP cluster has the ability to host a maximum of 2000 FlexVolumes. Having the
maximum volume count set to 1250 appears very reasonable. However, if only aggregates from one node are
assigned to the SVM, or the aggregates assigned from one node are unable to be provisioned against (for
example, due to capacity), then the other node becomes the target for all Trident provisioned volumes. This

277

https://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-dap/GUID-B9E36563-1C7A-48F5-A9FF-1578B99AADA9.html
https://hwu.netapp.com/
https://library.netapp.com/ecmdocs/ECMP1368859/html/GUID-3AC7685D-B150-4C1F-A408-5ECEB3FF0011.html

means that the volume limit might be reached for that node before the max-volumes value is reached,
resulting in impacting both Trident and other volume operations that use that node. You can avoid this
situation by ensuring that aggregates from each node in the cluster are assigned to the SVM used by
Trident in equal numbers.

Limit the maximum size of volumes created by Trident

To configure the maximum size for volumes that can be created by Trident, use the 1imitvolumeSize
parameter in your backend. json definition.

In addition to controlling the volume size at the storage array, you should also leverage Kubernetes
capabilities.

Configure Trident to use bidirectional CHAP

You can specify the CHAP initiator and target usernames and passwords in your backend definition and have
Trident enable CHAP on the SVM. Using the useCHAP parameter in your backend configuration, Trident
authenticates iISCSI connections for ONTAP backends with CHAP. Bidirectional CHAP support is available with
Trident 20.04 and above.

Create and use an SVM QoS policy

Leveraging an ONTAP QoS policy, applied to the SVM, limits the number of IOPS consumable by the Trident
provisioned volumes. This helps to prevent a bully or out-of-control container from affecting workloads outside
of the Trident SVM.

You can create a QoS policy for the SVM in a few steps. See the documentation for your version of ONTAP for
the most accurate information. The example below creates a QoS policy that limits the total IOPS available to
the SVM to 5000.

create the policy group for the SVM
gos policy-group create -policy-group <policy name> -vserver <svm name>
-max-throughput 5000iops

assign the policy group to the SVM, note this will not work
1if volumes or files in the SVM have existing QoS policies
vserver modify -vserver <svm name> -gos-policy-group <policy name>

Additionally, if your version of ONTAP supports it, you can consider using a QoS minimum to guarantee an
amount of throughput to containerized workloads. Adaptive QoS is not compatible with an SVM level policy.

The number of IOPS dedicated to the containerized workloads depends on many aspects. Among other things,
these include:

« Other workloads using the storage array. If there are other workloads, not related to the Kubernetes
deployment, utilizing the storage resources, care should be taken to ensure that those workloads are not
accidentally adversely impacted.

» Expected workloads running in containers. If workloads which have high IOPS requirements will be running
in containers, a low QoS policy results in a bad experience.

It's important to remember that a QoS policy assigned at the SVM level results in all the volumes provisioned to

278

http://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-perf-mon/GUID-77DF9BAF-4ED7-43F6-AECE-95DFB0680D2F.html?cp=7_1_2_1_2

the SVM sharing the same IOPS pool. If one, or a small number, of the containerized applications have a high
IOPS requirement, it could become a bully to the other containerized workloads. If this is the case, you might
want to consider using external automation to assign per-volume QoS policies.

@ You should assign the QoS policy group to the SVM only if your ONTAP version is earlier than
9.8.

Create QoS policy groups for Trident

Quality of service (QoS) guarantees that performance of critical workloads is not degraded by competing
workloads. ONTAP QoS policy groups provide QoS options for volumes, and enable users to define the
throughput ceiling for one or more workloads. For more information about QoS, see Guaranteeing throughput
with QoS.

You can specify QoS policy groups in the backend or in a storage pool, and they are applied to each volume
created in that pool or backend.

ONTAP has two kinds of QoS policy groups: traditional and adaptive. Traditional policy groups provide a flat
maximum (or minimum, in later versions) throughput in IOPS. Adaptive QoS automatically scales the
throughput to workload size, maintaining the ratio of IOPS to TBs|GBs as the size of the workload changes.
This provides a significant advantage when you are managing hundreds or thousands of workloads in a large
deployment.

Consider the following when you create QoS policy groups:

* You should set the gosPolicy key in the defaults block of the backend configuration. See the following
backend configuration example:

version: 1
storageDriverName: ontap-nas
managementLIF: 0.0.0.0
dataLIF: 0.0.0.0
svm: svm0
username: user
password: pass
defaults:
qosPolicy: standard-pg
storage:
- labels:
performance: extreme
defaults:
adaptiveQosPolicy: extremely-adaptive-pg
- labels:
performance: premium
defaults:
qosPolicy: premium-pg

* You should apply the policy groups per volume, so that each volume gets the entire throughput as specified
by the policy group. Shared policy groups are not supported.

279

https://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-perf-mon/GUID-77DF9BAF-4ED7-43F6-AECE-95DFB0680D2F.html
https://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-perf-mon/GUID-77DF9BAF-4ED7-43F6-AECE-95DFB0680D2F.html

For more information about QoS policy groups, see ONTAP 9.8 QoS commands.

Limit storage resource access to Kubernetes cluster members

Limiting access to the NFS volumes and iSCSI LUNs created by Trident is a critical component of the security
posture for your Kubernetes deployment. Doing so prevents hosts that are not a part of the Kubernetes cluster
from accessing the volumes and potentially modifying data unexpectedly.

It's important to understand that namespaces are the logical boundary for resources in Kubernetes. The
assumption is that resources in the same namespace are able to be shared, however, importantly, there is no
cross-namespace capability. This means that even though PVs are global objects, when bound to a PVC they
are only accessible by pods which are in the same namespace. It is critical to ensure that namespaces are
used to provide separation when appropriate.

The primary concern for most organizations with regard to data security in a Kubernetes context is that a
process in a container can access storage mounted to the host, but which is not intended for the container.
Namespaces are designed to prevent this type of compromise. However, there is one exception: privileged
containers.

A privileged container is one that is run with substantially more host-level permissions than normal. These are
not denied by default, so ensure that you disable the capability by using pod security policies.

For volumes where access is desired from both Kubernetes and external hosts, the storage should be
managed in a traditional manner, with the PV introduced by the administrator and not managed by Trident. This
ensures that the storage volume is destroyed only when both the Kubernetes and external hosts have
disconnected and are no longer using the volume. Additionally, a custom export policy can be applied, which
enables access from the Kubernetes cluster nodes and targeted servers outside of the Kubernetes cluster.

For deployments which have dedicated infrastructure nodes (for example, OpenShift) or other nodes which are
unable to schedule user applications, separate export policies should be used to further limit access to storage
resources. This includes creating an export policy for services which are deployed to those infrastructure
nodes (for example, the OpenShift Metrics and Logging services), and standard applications which are
deployed to non-infrastructure nodes.

Use a dedicated export policy

You should ensure that an export policy exists for each backend that only allows access to the nodes present

in the Kubernetes cluster. Trident can automatically create and manage export policies starting from the 20.04
release. This way, Trident limits access to the volumes it provisions to the nodes in the Kubernetes cluster and
simplifies the addition/deletion of nodes.

Alternatively, you can also create an export policy manually and populate it with one or more export rules that
process each node access request:

* Use the vserver export-policy create ONTAP CLI command to create the export policy.

* Add rules to the export policy by using the vserver export-policy rule create ONTAP CLI
command.

Running these commands enables you to restrict which Kubernetes nodes have access to the data.

Disable showmount for the application SVM

The showmount feature enables an NFS client to query the SVM for a list of available NFS exports. A pod
deployed to the Kubernetes cluster can issue the showmount -e command against the data LIF and receive

280

https://docs.netapp.com/ontap-9/topic/com.netapp.doc.dot-cm-cmpr-980/TOC__qos.html
https://en.wikipedia.org/wiki/Linux_namespaces
https://kubernetes.io/docs/concepts/policy/pod-security-policy/

a list of available mounts, including those which it does not have access to. While this, by itself, is not a
security compromise, it does provide unnecessary information potentially aiding an unauthorized user with
connecting to an NFS export.

You should disable showmount by using the SVM-level ONTAP CLI command:

vserver nfs modify -vserver <svm name> -showmount disabled

SolidFire best practices

Learn the best practices for configuring SolidFire storage for Trident.

Create Solidfire Account

Each SolidFire account represents a unique volume owner and receives its own set of Challenge-Handshake
Authentication Protocol (CHAP) credentials. You can access volumes assigned to an account either by using
the account name and the relative CHAP credentials or through a volume access group. An account can have
up to two-thousand volumes assigned to it, but a volume can belong to only one account.

Create a QoS policy

Use SolidFire Quality of Service (QoS) policies if you want to create and save a standardized quality of service
setting that can be applied to many volumes.

You can set QoS parameters on a per-volume basis. Performance for each volume can be assured by setting
three configurable parameters that define the QoS: Min IOPS, Max IOPS, and Burst IOPS.

Here are the possible minimum, maximum, and burst IOPS values for the 4Kb block size.

IOPS parameter Definition Min. value Default value Max. value(4Kb)
Min IOPS The guaranteed 50 50 15000
level of performance
for a volume.
Max IOPS The performance 50 15000 200,000
will not exceed this
limit.
Burst IOPS Maximum IOPS 50 15000 200,000

allowed in a short
burst scenario.

@ Although the Max IOPS and Burst IOPS can be set as high as 200,000, the real-world maximum
performance of a volume is limited by cluster usage and per-node performance.

Block size and bandwidth have a direct influence on the number of IOPS. As block sizes increase, the system
increases bandwidth to a level necessary to process the larger block sizes. As bandwidth increases, the
number of IOPS the system is able to attain decreases. See SolidFire Quality of Service for more information
about QoS and performance.

281

https://www.netapp.com/pdf.html?item=/media/10502-tr-4644pdf.pdf

SolidFire authentication

Element supports two methods for authentication: CHAP and Volume Access Groups (VAG). CHAP uses the
CHAP protocol to authenticate the host to the backend. Volume Access Groups controls access to the volumes
it provisions. NetApp recommends using CHAP for authentication as it's simpler and has no scaling limits.

@ Trident with the enhanced CSI provisioner supports the use of CHAP authentication. VAGs
should only be used in the traditional non-CSI mode of operation.

CHAP authentication (verification that the initiator is the intended volume user) is supported only with account-
based access control. If you are using CHAP for authentication, two options are available: unidirectional CHAP
and bidirectional CHAP. Unidirectional CHAP authenticates volume access by using the SolidFire account
name and initiator secret. The bidirectional CHAP option provides the most secure way of authenticating the
volume because the volume authenticates the host through the account name and the initiator secret, and then
the host authenticates the volume through the account name and the target secret.

However, if CHAP cannot be enabled and VAGs are required, create the access group and add the host

initiators and volumes to the access group. Each IQN that you add to an access group can access each

volume in the group with or without CHAP authentication. If the iSCSI initiator is configured to use CHAP
authentication, account-based access control is used. If the iSCSI initiator is not configured to use CHAP
authentication, then Volume Access Group access control is used.

Where to find more information?

Some of the best practices documentation is listed below. Search the NetApp library for the most current
versions.

ONTAP

* NFS Best Practice and Implementation Guide
* SAN Administration Guide (for iISCSI)
* iSCSI Express Configuration for RHEL

Element software
+ Configuring SolidFire for Linux
NetApp HCI

* NetApp HCI deployment prerequisites
* Access the NetApp Deployment Engine

Application best practices information

* Best practices for MySQL on ONTAP
+ Best practices for MySQL on SolidFire
* NetApp SolidFire and Cassandra

* Oracle best practices on SolidFire

» PostgreSQL best practices on SolidFire

Not all applications have specific guidelines, it's important to work with your NetApp team and to use the

282

https://www.netapp.com/search/
https://www.netapp.com/pdf.html?item=/media/10720-tr-4067.pdf
http://docs.netapp.com/ontap-9/topic/com.netapp.doc.dot-cm-sanag/home.html
http://docs.netapp.com/ontap-9/topic/com.netapp.doc.exp-iscsi-rhel-cg/home.html
https://www.netapp.com/pdf.html?item=/media/10507-tr4639pdf.pdf
https://docs.netapp.com/us-en/hci/docs/hci_prereqs_overview.html
https://docs.netapp.com/us-en/hci/docs/concept_nde_access_overview.html
https://docs.netapp.com/us-en/ontap-apps-dbs/mysql/mysql-overview.html
https://www.netapp.com/pdf.html?item=/media/10510-tr-4605.pdf
https://www.netapp.com/pdf.html?item=/media/10513-tr-4635pdf.pdf
https://www.netapp.com/pdf.html?item=/media/10511-tr4606pdf.pdf
https://www.netapp.com/pdf.html?item=/media/10512-tr-4610pdf.pdf

NetApp library to find the most up-to-date documentation.

Integrate Astra Trident

To integrate Astra Trident, the following design and architectural elements require
integration: driver selection and deployment, storage class design, virtual pool design,
Persistent Volume Claim (PVC) impacts on storage provisioning, volume operations, and
OpenShift services deployment using Astra Trident.

Driver selection and deployment

Select and deploy a backend driver for your storage system.

ONTAP backend drivers

ONTAP backend drivers are differentiated by the protocol used and how the volumes are provisioned on the
storage system. Therefore, give careful consideration when deciding which driver to deploy.

At a higher level, if your application has components which need shared storage (multiple pods accessing the
same PVC), NAS-based drivers would be the default choice, while the block-based iSCSI drivers meet the
needs of non-shared storage. Choose the protocol based on the requirements of the application and the
comfort level of the storage and infrastructure teams. Generally speaking, there is little difference between
them for most applications, so often the decision is based upon whether or not shared storage (where more
than one pod will need simultaneous access) is needed.

The available ONTAP backend drivers are:

* ontap-nas: Each PV provisioned is a full ONTAP FlexVolume.

* ontap-nas-economy: Each PV provisioned is a qgtree, with a configurable number of gtrees per
FlexVolume (default is 200).

* ontap-nas-flexgroup: Each PV provisioned as a full ONTAP FlexGroup, and all aggregates assigned
to a SVM are used.

* ontap-san: Each PV provisioned is a LUN within its own FlexVolume.

* ontap-san-economy: Each PV provisioned is a LUN, with a configurable number of LUNs per
FlexVolume (default is 100).

Choosing between the three NAS drivers has some ramifications to the features, which are made available to
the application.

Note that, in the tables below, not all of the capabilities are exposed through Astra Trident. Some must be
applied by the storage administrator after provisioning if that functionality is desired. The superscript footnotes
distinguish the functionality per feature and driver.

ONTAP NAS drivers Snapshot Clones Dynamic Multi- QoS Resize Replicatio
s export attach n
policies
ontap-nas Yes Yes Yes [5] Yes Yes [1] Yes Yes [1]
ontap-nas-economy Yes [3] Yes [3] Yes [9] Yes Yes [3] Yes Yes [3]

283

https://www.netapp.com/search/

ONTAP NAS drivers Snapshot Clones Dynamic Multi- QoS Resize Replicatio

s export attach n
policies
ontap-nas- Yes [1] No Yes [5] Yes Yes [1] Yes Yes [1]

flexgroup

Astra Trident offers 2 SAN drivers for ONTAP, whose capabilities are shown below.

ONTAP SAN drivers Snapshot Clones Multi- Bi- QoS Resize Replicatio
s attach directiona n
| CHAP
ontap-san Yes Yes Yes [4] Yes Yes [1] Yes Yes [1]
ontap-san-economy Yes Yes Yes [4] Yes Yes [3] Yes Yes [3]

Footnote for the above tables:

Yes [1]: Not managed by Astra Trident

Yes [2]: Managed by Astra Trident, but not PV granular
Yes [3]: Not managed by Astra Trident and not PV granular
Yes [4]: Supported for raw-block volumes

Yes [5]: Supported by CSI Trident

The features that are not PV granular are applied to the entire FlexVolume and all of the PVs (that is, gtrees or
LUNSs in shared FlexVols) will share a common schedule.

As we can see in the above tables, much of the functionality between the ontap-nas and ontap-nas-
economy is the same. However, because the ontap-nas—-economy driver limits the ability to control the
schedule at per-PV granularity, this can affect your disaster recovery and backup planning in particular. For
development teams which desire to leverage PVC clone functionality on ONTAP storage, this is only possible
when using the ontap-nas, ontap-san Or ontap-san—-economy drivers.

@ The solidfire-san driver is also capable of cloning PVCs.

Cloud Volumes ONTAP backend drivers

Cloud Volumes ONTAP provides data control along with enterprise-class storage features for various use
cases, including file shares and block-level storage serving NAS and SAN protocols (NFS, SMB / CIFS, and
iSCSI). The compatible drivers for Cloud Volume ONTAP are ontap-nas, ontap-nas-economy, ontap-
san and ontap-san-economy. These are applicable for Cloud Volume ONTAP for Azure, Cloud Volume
ONTAP for GCP.

284

Amazon FSx for ONTAP backend drivers

Amazon FSx for ONTAP enables customers to leverage NetApp features, performance, and administrative
capabilities they’re familiar with, while taking advantage of the simplicity, agility, security, and scalability of
storing data on AWS. FSx for ONTAP supports many of ONTAP’s file system features and administration APIs.
The compatible drivers for Cloud Volume ONTAP are ontap-nas, ontap—-nas-economy, ontap-nas-
flexgroup, ontap—-san and ontap-san-economy.

NetApp HCI/SolidFire backend drivers

The solidfire-san driver used with the NetApp HCI/SolidFire platforms, helps the admin configure an
Element backend for Trident on the basis of QoS limits. If you would like to design your backend to set the
specific QoS limits on the volumes provisioned by Trident, use the type parameter in the backend file. The
admin also can restrict the volume size that could be created on the storage using the 1imitVolumeSize
parameter. Currently, Element storage features like volume resize and volume replication are not supported

through the solidfire-san driver. These operations should be done manually through Element Software
web Ul.

SolidFire Driver Snapshot Clones Multi- CHAP QoS Resize Replicatio
s attach n
solidfire-san Yes Yes Yes [2] Yes Yes Yes Yes [1]
Footnote:

Yes [1]: Not managed by Astra Trident
Yes [2]: Supported for raw-block volumes

Azure NetApp Files backend drivers
Astra Trident uses the azure-netapp-files driver to manage the Azure NetApp Files service.

More information about this driver and how to configure it can be found in Astra Trident backend configuration
for Azure NetApp Files.

Azure NetApp Files Snapshots Clones Multi-attach QoS Expand Replication

Driver

azure-netapp-files Yes Yes Yes Yes Yes Yes [1]
Footnote:

Yes [1]: Not managed by Astra Trident

Cloud Volumes Service on Google Cloud backend driver

Astra Trident uses the gcp-cvs driver to link with the Cloud Volumes Service on Google Cloud.

The gcp-cvs driver uses virtual pools to abstract the backend and allow Astra Trident to determine volume
placement. The administrator defines the virtual pools in the backend. json files. Storage classes use

285

https://azure.microsoft.com/en-us/services/netapp/
https://docs.netapp.com/us-en/trident/trident-use/anf.html
https://docs.netapp.com/us-en/trident/trident-use/anf.html

selectors to identify virtual pools by label.

« If virtual pools are defined in the backend, Astra Trident will try to create a volume in the Google Cloud
storage pools to which those virtual pools are limited.

« If virtual pools are not defined in the backend, Astra Trident will select a Google Cloud storage pool from
the available storage pools in the region.

To configure the Google Cloud backend on Astra Trident, you must specify projectNumber, apiRegion,
and apiKey in the backend file. You can find the project number in the Google Cloud console. The API key is
taken from the service account private key file you created when setting up APl access for Cloud Volumes
Service on Google Cloud.

For details on Cloud Volumes Service on Google Cloud service types and service levels, see Learn about
Astra Trident support for CVS for GCP.

Cloud Volumes Service Snapshots Clones Multi-attach QoS Expand Replication

for Google Cloud driver

gcp-cvs Yes Yes Yes Yes Yes Available on
CVSs-
Performanc
e service
type only.

Replication notes
@ * Replication is not managed by Astra Trident.

» The clone will be created in the same storage pool as the source volume.

Storage class design

Individual Storage classes need to be configured and applied to create a Kubernetes Storage Class object.
This section discusses how to design a storage class for your application.

Specific backend utilization

Filtering can be used within a specific storage class object to determine which storage pool or set of pools are
to be used with that specific storage class. Three sets of filters can be set in the Storage Class:
storagePools, additionalStoragePools, and/or excludeStoragePools.

The storagePools parameter helps restrict storage to the set of pools that match any specified attributes.
The additionalStoragePools parameter is used to extend the set of pools that Astra Trident will use for
provisioning along with the set of pools selected by the attributes and storagePools parameters. You can
use either parameter alone or both together to make sure that the appropriate set of storage pools are
selected.

The excludeStoragePools parameter is used to specifically exclude the listed set of pools that match the
attributes.

Emulate QoS policies

If you would like to design Storage Classes to emulate Quality of Service policies, create a Storage Class with
the media attribute as hdd or ssd. Based on the media attribute mentioned in the storage class, Trident will

286

select the appropriate backend that serves hdd or ssd aggregates to match the media attribute and then direct
the provisioning of the volumes on to the specific aggregate. Therefore we can create a storage class
PREMIUM which would have media attribute set as ssd which could be classified as the PREMIUM QoS
policy. We can create another storage class STANDARD which would have the media attribute set as "hdd'
which could be classified as the STANDARD QoS policy. We could also use the "IOPS" attribute in the storage
class to redirect provisioning to an Element appliance which can be defined as a QoS Policy.

Utilize backend based on specific features

Storage classes can be designed to direct volume provisioning on a specific backend where features such as
thin and thick provisioning, snapshots, clones, and encryption are enabled. To specify which storage to use,
create Storage Classes that specify the appropriate backend with the required feature enabled.

Virtual pools

Virtual pools are available for all Astra Trident backends. You can define virtual pools for any backend, using
any driver that Astra Trident provides.

Virtual pools allow an administrator to create a level of abstraction over backends which can be referenced
through Storage Classes, for greater flexibility and efficient placement of volumes on backends. Different
backends can be defined with the same class of service. Moreover, multiple storage pools can be created on
the same backend but with different characteristics. When a Storage Class is configured with a selector with
the specific labels, Astra Trident chooses a backend which matches all the selector labels to place the volume.
If the Storage Class selector labels matches multiple storage pools, Astra Trident will choose one of them to
provision the volume from.

Virtual pool design

While creating a backend, you can generally specify a set of parameters. It was impossible for the
administrator to create another backend with the same storage credentials and with a different set of
parameters. With the introduction of virtual pools, this issue has been alleviated. Virtual pools is a level
abstraction introduced between the backend and the Kubernetes Storage Class so that the administrator can
define parameters along with labels which can be referenced through Kubernetes Storage Classes as a
selector, in a backend-agnostic way. Virtual pools can be defined for all supported NetApp backends with Astra
Trident. That list includes SolidFire/NetApp HCI, ONTAP, Cloud Volumes Service on GCP, as well as Azure
NetApp Files.

When defining virtual pools, it is recommended to not attempt to rearrange the order of existing
virtual pools in a backend definition. It is also advisable to not edit/modify attributes for an
existing virtual pool and define a new virtual pool instead.

Emulating different service levels/QoS

It is possible to design virtual pools for emulating service classes. Using the virtual pool implementation for
Cloud Volume Service for Azure NetApp Files, let us examine how we can setup up different service classes.
Configure the ANF backend with multiple labels, representing different performance levels. Set
servicelevel aspect to the appropriate performance level and add other required aspects under each
labels. Now create different Kubernetes Storage Classes that would map to different virtual pools. Using the
parameters.selector field, each StorageClass calls out which virtual pools may be used to host a volume.

Assigning specific set of aspects

Multiple virtual pools with a specific set of aspects can be designed from a single storage backend. For doing

287

so, configure the backend with multiple labels and set the required aspects under each label. Now create
different Kubernetes Storage Classes using the parameters.selector field that would map to different
virtual pools. The volumes that get provisioned on the backend will have the aspects defined in the chosen
virtual pool.

PVC characteristics which affect storage provisioning

Some parameters beyond the requested storage class may affect the Astra Trident provisioning decision
process when creating a PVC.

Access mode

When requesting storage via a PVC, one of the mandatory fields is the access mode. The mode desired may
affect the backend selected to host the storage request.

Astra Trident will attempt to match the storage protocol used with the access method specified according to the
following matrix. This is independent of the underlying storage platform.

ReadWriteOnce ReadOnlyMany ReadWriteMany
iISCSI Yes Yes Yes (Raw block)
NFS Yes Yes Yes

A request for a ReadWriteMany PVC submitted to a Trident deployment without an NFS backend configured
will result in no volume being provisioned. For this reason, the requestor should use the access mode which is
appropriate for their application.

Volume operations

Modify persistent volumes

Persistent volumes are, with two exceptions, immutable objects in Kubernetes. Once created, the reclaim
policy and the size can be modified. However, this doesn’t prevent some aspects of the volume from being
modified outside of Kubernetes. This may be desirable in order to customize the volume for specific
applications, to ensure that capacity is not accidentally consumed, or simply to move the volume to a different
storage controller for any reason.

@ Kubernetes in-tree provisioners do not support volume resize operations for NFS or iSCSI PVs
at this time. Astra Trident supports expanding both NFS and iSCSI volumes.

The connection details of the PV cannot be modified after creation.

Create on-demand volume snapshots

Astra Trident supports on-demand volume snapshot creation and the creation of PVCs from snapshots using
the CSI framework. Snapshots provide a convenient method of maintaining point-in-time copies of the data and
have a lifecycle independent of the source PV in Kubernetes. These snapshots can be used to clone PVCs.

Create volumes from snapshots

Astra Trident also supports the creation of PersistentVolumes from volume snapshots. To accomplish this, just
create a PersistentVolumeClaim and mention the datasource as the required snapshot from which the
volume needs to be created. Astra Trident will handle this PVC by creating a volume with the data present on

288

the snapshot. With this feature, it is possible to duplicate data across regions, create test environments,
replace a damaged or corrupted production volume in its entirety, or retrieve specific files and directories and
transfer them to another attached volume.

Move volumes in the cluster

Storage administrators have the ability to move volumes between aggregates and controllers in the ONTAP
cluster non-disruptively to the storage consumer. This operation does not affect Astra Trident or the
Kubernetes cluster, as long as the destination aggregate is one which the SVM that Astra Trident is using has
access to. Importantly, if the aggregate has been newly added to the SVM, the backend will need to be
refreshed by re-adding it to Astra Trident. This will trigger Astra Trident to reinventory the SVM so that the new
aggregate is recognized.

However, moving volumes across backends is not supported automatically by Astra Trident. This includes
between SVMs in the same cluster, between clusters, or onto a different storage platform (even if that storage
system is one which is connected to Astra Trident).

If a volume is copied to another location, the volume import feature may be used to import current volumes into
Astra Trident.

Expand volumes

Astra Trident supports resizing NFS and iSCSI PVs. This enables users to resize their volumes directly through
the Kubernetes layer. Volume expansion is possible for all major NetApp storage platforms, including ONTAP,
SolidFire/NetApp HCI and Cloud Volumes Service backends. To allow possible expansion later, set
allowVolumeExpansion to true in your StorageClass associated with the volume. Whenever the
Persistent Volume needs to be resized, edit the spec.resources.requests.storage annotation in the
Persistent Volume Claim to the required volume size. Trident will automatically take care of resizing the volume
on the storage cluster.

Import an existing volume into Kubernetes

Volume import provides the ability to import an existing storage volume into a Kubernetes environment. This is
currently supported by the ontap-nas, ontap-nas-flexgroup, solidfire-san, azure-netapp-
files, and gcp-cvs drivers. This feature is useful when porting an existing application into Kubernetes or
during disaster recovery scenarios.

When using the ONTAP and solidfire-san drivers, use the command tridentctl import volume
<backend-name> <volume-name> -f /path/pvc.yaml toimportan existing volume into Kubernetes to
be managed by Astra Trident. The PVC YAML or JSON file used in the import volume command points to a
storage class which identifies Astra Trident as the provisioner. When using a NetApp HCI/SolidFire backend,
ensure the volume names are unique. If the volume names are duplicated, clone the volume to a unique name
so the volume import feature can distinguish between them.

If the azure-netapp-files or gcp-cvs driver is used, use the command tridentctl import volume
<backend-name> <volume path> -f /path/pvc.yaml toimportthe volume into Kubernetes to be
managed by Astra Trident. This ensures a unique volume reference.

When the above command is executed, Astra Trident will find the volume on the backend and read its size. It
will automatically add (and overwrite if necessary) the configured PVC’s volume size. Astra Trident then
creates the new PV and Kubernetes binds the PVC to the PV.

If a container was deployed such that it required the specific imported PVC, it would remain in a pending state

until the PVC/PV pair are bound via the volume import process. After the PVC/PV pair are bound, the container
should come up, provided there are no other issues.

289

Deploy OpenShift services

The OpenShift value-add cluster services provide important functionality to cluster administrators and the
applications being hosted. The storage which these services use can be provisioned using the node-local
resources, however, this often limits the capacity, performance, recoverability, and sustainability of the service.
Leveraging an enterprise storage array to provide the capacity to these services can enable dramatically
improved service, however, as with all applications, the OpenShift and storage administrators should work
closely together to determine the best options for each. The Red Hat documentation should be leveraged
heavily to determine the requirements and ensure that sizing and performance needs are met.

Registry service

Deploying and managing storage for the registry has been documented on netapp.io in the blog.

Logging service

Like other OpenShift services, the logging service is deployed using Ansible with configuration parameters
supplied by the inventory file, a.k.a. hosts, provided to the playbook. There are two installation methods which
will be covered: deploying logging during initial OpenShift install and deploying logging after OpenShift has
been

installed.

As of Red Hat OpenShift version 3.9, the official documentation recommends against NFS for
the logging service due to concerns around data corruption. This is based on Red Hat testing of

@ their products. ONTAP’s NFS server does not have these issues, and can easily back a logging
deployment. Ultimately, the choice of protocol for the logging service is up to you, just know that
both will work great when using NetApp platforms and there is no reason to avoid NFS if that is
your preference.

If you choose to use NFS with the logging service, you will need to set the Ansible variable
openshift enable unsupported configurations to true to prevent the installer from failing.

Get started

The logging service can, optionally, be deployed for both applications as well as for the core operations of the
OpenShift cluster itself. If you choose to deploy operations logging, by specifying the variable

openshift logging use ops as true, two instances of the service will be created. The variables which
control the logging instance for operations contain "ops" in them, whereas the instance for applications does
not.

Configuring the Ansible variables according to the deployment method is important in order to ensure that the
correct storage is utilized by the underlying services. Let’s look at the options for each of the deployment
methods.

The tables below only contain the variables which are relevant for storage configuration as it
@ relates to the logging service. You can find other options in RedHat OpenShift logging
documentation which should be reviewed, configured, and used according to your deployment.

The variables in the below table will result in the Ansible playbook creating a PV and PVC for the logging
service using the details provided. This method is significantly less flexible than using the component
installation playbook after OpenShift installation, however, if you have existing volumes available, it is an
option.

290

https://netapp.io/
https://netapp.io/2017/08/24/deploying-the-openshift-registry-using-netapp-storage/
https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging.html
https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging.html

Variable

openshift logging storage kind

openshift logging storage host

openshift logging storage nfs directory

openshift logging storage volume name

openshift logging storage volume size

Details

Set to nfs to have the installer create an NFS PV for
the logging service.

The hostname or IP address of the NFS host. This
should be set to the data LIF for your virtual machine.

The mount path for the NFS export. For example, if
the volume is junctioned as /openshift logging,
you would use that path for this variable.

The name, e.g. pv_ose_ logs, of the PV to create.

The size of the NFS export, for example 100G1.

If your OpensShift cluster is already running, and therefore Trident has been deployed and configured, the
installer can use dynamic provisioning to create the volumes. The following variables will need to be

configured.

Variable
openshift logging es pvc dynamic

openshift logging es pvc storage class n
ame

openshift logging es pvc size
openshift logging es pvc prefix

openshift logging es ops pvc _dynamic

openshift logging es ops pvc storage cla
Ss_name

openshift logging es ops pvc size

openshift logging es ops pvc prefix

Deploy the logging stack

Details
Set to true to use dynamically provisioned volumes.

The name of the storage class which will be used in
the PVC.

The size of the volume requested in the PVC.
A prefix for the PVCs used by the logging service.

Set to true to use dynamically provisioned volumes
for the ops logging instance.

The name of the storage class for the ops logging
instance.

The size of the volume request for the ops instance.

A prefix for the ops instance PVCs.

If you are deploying logging as a part of the initial OpenShift install process, then you only need to follow the
standard deployment process. Ansible will configure and deploy the needed services and OpenShift objects so
that the service is available as soon as Ansible completes.

However, if you are deploying after the initial installation, the component playbook will need to be used by
Ansible. This process may change slightly with different versions of OpenShift, so be sure to read and follow
RedHat OpenShift Container Platform 3.11 documentation for your version.

Metrics service

The metrics service provides valuable information to the administrator regarding the status, resource utilization,
and availability of the OpenShift cluster. It is also necessary for pod auto-scale functionality and many
organizations use data from the metrics service for their charge back and/or show back applications.

Like with the logging service, and OpenShift as a whole, Ansible is used to deploy the metrics service. Also,

291

https://docs.openshift.com/container-platform/3.11/welcome/index.html

like the logging service, the metrics service can be deployed during an initial setup of the cluster or after it's
operational using the component installation method. The following tables contain the variables which are
important when configuring persistent storage for the metrics service.

The tables below only contain the variables which are relevant for storage configuration as it

®

relates to the metrics service. There are many other options found in the documentation which

should be reviewed, configured, and used according to your deployment.

Variable

openshift metrics storage kind

openshift metrics storage host

openshift metrics storage nfs directory

openshift metrics storage volume name

openshift metrics storage volume size

Details

Set to nfs to have the installer create an NFS PV for
the logging service.

The hostname or IP address of the NFS host. This
should be set to the data LIF for your SVM.

The mount path for the NFS export. For example, if
the volume is junctioned as /openshift metrics,
you would use that path for this variable.

The name,
e.g. pv_ose metrics, of the PV to create.

The size of the NFS export, for example 100Gi.

If your OpenShift cluster is already running, and therefore Trident has been deployed and configured, the
installer can use dynamic provisioning to create the volumes. The following variables will need to be

configured.

Variable
openshift metrics cassandra pvc prefix

openshift metrics cassandra pvc size

Details
A prefix to use for the metrics PVCs.

The size of the volumes to request.

openshift metrics cassandra storage type The type of storage to use for metrics, this must be

set to dynamic for Ansible to create PVCs with the
appropriate storage class.

openshift metrics cassanda pvc_storage c The name of the storage class to use.

lass name

Deploy the metrics service

With the appropriate Ansible variables defined in your hosts/inventory file, deploy the service using Ansible. If
you are deploying at OpenShift install time, then the PV will be created and used automatically. If you're
deploying using the component playbooks, after OpenShift install, then Ansible will create any PVCs which are
needed and, after Astra Trident has provisioned storage for them, deploy the service.

The variables above, and the process for deploying, may change with each version of OpenShift. Ensure you
review and follow RedHat’'s OpenShift deployment guide for your version so that it is configured for your

environment.

292

https://docs.openshift.com/container-platform/3.11/install_config/cluster_metrics.html

Data protection and disaster recovery

Learn about protection and recovery options for Astra Trident and volumes created using
Astra Trident. You should have a data protection and recovery strategy for each
application with a persistence requirement.

Astra Trident replication and recovery

You can create a backup to restore Astra Trident in the event of a disaster.

Astra Trident replication

Astra Trident uses Kubernetes CRDs to store and manage its own state and the Kubernetes cluster etcd to
store its metadata.

Steps
1. Back up the Kubernetes cluster etcd using Kubernetes: Backing up an etcd cluster.

2. Place the backup artifacts on a FlexVol.

@ We recommend you protect the SVM where the FlexVol resides with a SnapMirror
relationship to another SVM.

Astra Trident recovery

Using Kubernetes CRDs and the Kubernetes cluster etcd snapshot, you can recover Astra Trident.

Steps

1. From the destination SVM, mount the volume which contains the Kubernetes etcd data files and certificates
on to the host which will be set up as a master node.

2. Copy all required certificates pertaining to the Kubernetes cluster under /etc/kubernetes/pki and the
etcd member files under /var/lib/etcd.

3. Restore the Kubernetes cluster from the etcd backup using Kubernetes: Restoring an etcd cluster.

4. Run kubectl get crd to verify all Trident custom resources have come up and retrieve the Trident
objects to verify all data is available.

SVM replication and recovery

Astra Trident cannot configure replication relationships, however, the storage administrator can use ONTAP
SnapMirror to replicate an SVM.

In the event of a disaster, you can activate the SnapMirror destination SVM to start serving data. You can
switch back to the primary when systems are restored.

About this task
Consider the following when using the SnapMirror SVM Replication feature:

* You should create a distinct backend for each SVM with SVM-DR enabled.

» Configure the storage classes to select the replicated backends only when needed to avoid having
volumes which do not need replication provisioned onto the backends that support SVM-DR.

293

https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#backing-up-an-etcd-cluster
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#restoring-an-etcd-cluster
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-svm-replication-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-svm-replication-concept.html

 Application administrators should understand the additional cost and complexity associated with replication
and carefully consider their recovery plan prior to beginning this process.

SVM replication

You can use ONTAP: SnapMirror SVM replication to create the SVM replication relationship.

SnapMirror allows you to set options to control what to replicate. You'll need to know which options you
selected when preforming SVM recovery using Astra Trident.

* -identity-preserve true replicates the entire SVM configuration.
« -discard-configs network excludes LIFs and related network settings.

« -identity-preserve false replicates only the volumes and security configuration.

SVM recovery using Astra Trident

Astra Trident does not automatically detect SVM failures. In the event of a disaster, the administrator can
manually initiate Trident failover to the new SVM.

Steps

1. Cancel scheduled and ongoing SnapMirror transfers, break the replication relationship, stop the source
SVM and then activate the SnapMirror destination SVM.

2. If you specified -identity-preserve false or -discard-config network when configuring your
SVM replication, update the managementLIF and dataLIF in the Trident backend definition file.

3. Confirm storagePrefix is present in the Trident backend definition file. This parameter cannot be
changed. Omitting storagePrefix will cause the backend update to fail.

4. Update all the required backends to reflect the new destination SVM name using:

./tridentctl update backend <backend-name> -f <backend-json-file> -n
<namespace>

5. If you specified ~identity-preserve false ordiscard-config network, you must bounce all
application pods.

@ If you specified -identity-preserve true, all volumes provisioned by Astra Trident
start serving data when the destination SVM is activated.

Volume replication and recovery

Astra Trident cannot configure SnapMirror replication relationships, however, the storage administrator can use
ONTAP SnapMirror replication and recovery to replicate volumes created by Astra Trident.

You can then import the recovered volumes into Astra Trident using tridentctl volume import.

(:) Import is not supported on ontap-nas-economy, ontap-san-economy, Of ontap-
flexgroup-economy drivers.

294

https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-svm-replication-workflow-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/replicate-entire-svm-config-task.html
https://docs.netapp.com/us-en/ontap/data-protection/exclude-lifs-svm-replication-task.html
https://docs.netapp.com/us-en/ontap/data-protection/exclude-network-name-service-svm-replication-task.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-disaster-recovery-concept.html
https://docs.netapp.com/us-en/trident-2304/trident-reco/trident-use/vol-import.html

Snapshot data protection

You can protect and restore data using:

» An external snapshot controller and CRDs to create Kubernetes volume snapshots of Persistent Volumes
(PVs).

Volume snapshots
* ONTAP Snapshots to restore the entire contents of a volume or to recover individual files or LUNSs.

ONTAP Snapshots

Astra Control Center application replication

Using Astra Control, you can replicate data and application changes from one cluster to another using
asynchronous replication capabilities of SnapMirror.

Astra Control: Replicate apps to a remote system using SnapMirror technology

Security

Security

Use the recommendations listed here to ensure your Astra Trident installation is secure.

Run Astra Trident in its own namespace

It is important to prevent applications, application administrators, users, and management applications from
accessing Astra Trident object definitions or the pods to ensure reliable storage and block potential malicious
activity.

To separate the other applications and users from Astra Trident, always install Astra Trident in its own
Kubernetes namespace (trident). Putting Astra Trident in its own namespace assures that only the
Kubernetes administrative personnel have access to the Astra Trident pod and the artifacts (such as backend
and CHAP secrets if applicable) stored in the namespaced CRD objects.

You should ensure that you allow only administrators access to the Astra Trident namespace and thus access
to the tridentctl application.

Use CHAP authentication with ONTAP SAN backends

Astra Trident supports CHAP-based authentication for ONTAP SAN workloads (using the ontap-san and
ontap-san-economy drivers). NetApp recommends using bidirectional CHAP with Astra Trident for
authentication between a host and the storage backend.

For ONTAP backends that use the SAN storage drivers, Astra Trident can set up bidirectional CHAP and

manage CHAP usernames and secrets through tridentctl.
See here to understand how Astra Trident configures CHAP on ONTAP backends.

@ CHAP support for ONTAP backends is available with Trident 20.04 and later.

295

https://docs.netapp.com/us-en/trident-2304/trident-reco/trident-use/vol-snapshots.html
https://docs.netapp.com/us-en/ontap/data-protection/manage-local-snapshot-copies-concept.html
https://docs.netapp.com/us-en/astra-control-center/use/replicate_snapmirror.html

Use CHAP authentication with NetApp HCI and SolidFire backends

NetApp recommends deploying bidirectional CHAP to ensure authentication between a host and the NetApp
HCI and SolidFire backends. Astra Trident uses a secret object that includes two CHAP passwords per tenant.
When Trident is installed as a CSI provisioner, it manages the CHAP secrets and stores them in a
tridentvolume CR object for the respective PV. When you create a PV, CSI Astra Trident uses the CHAP
secrets to initiate an iISCSI session and communicate with the NetApp HCI and SolidFire system over CHAP.

@ The volumes that are created by CSI Trident are not associated with any Volume Access Group.

In the non-CSl frontend, the attachment of volumes as devices on the worker nodes is handled by Kubernetes.
After volume creation, Astra Trident makes an API call to the NetApp HCI/SolidFire system to retrieve the
secrets if the secret for that tenant does not already exist. Astra Trident then passes the secrets on to
Kubernetes. The kubelet located on each node accesses the secrets via the Kubernetes API and uses them to
run/enable CHAP between each node accessing the volume and the NetApp HCI/SolidFire system where the
volumes are located.

Use Astra Trident with NVE and NAE

NetApp ONTAP provides data-at-rest encryption to protect sensitive data in the event a disk is stolen, returned,
or repurposed. For details, refer to Configure NetApp Volume Encryption overview.

* If NAE is enabled on the backend, any volume provisioned in Astra Trident will be NAE-enabled.

« If NAE is not enabled on the backend, any volume provisioned in Astra Trident will be NVE-enabled unless
you set the NVE encryption flag to false in the backend configuration.

Volumes created in Astra Trident on an NAE-enabled backend must be NVE or NAE encrypted.

* You can set the NVE encryption flag to true in the Trident backend configuration to override
@ the NAE encryption and use a specific encryption key on a per volume basis.

* Setting the NVE encryption flag to false on an NAE-enabled backend will create an NAE-
enabled volume. You cannot disable NAE encryption by setting the NVE encryption flag to
false.

* You can manually create an NVE volume in Astra Trident by explicitly setting the NVE encryption flag to
true.

For more information on backend configuration options, refer to:
« ONTAP SAN configuration options
* ONTAP NAS configuration options

Linux Unified Key Setup (LUKS)

You can enable Linux Unified Key Setup (LUKS) to encrypt ONTAP SAN and ONTAP
SAN ECONOMY volumes on Astra Trident. Astra Trident supports passphrase rotation
and volume expansion for LUKS-encrypted volumes.

In Astra Trident, LUKS-encrypted volumes use the aes-xts-plain64 cypher and mode, as recommended by
NIST.

296

https://docs.netapp.com/us-en/ontap/encryption-at-rest/configure-netapp-volume-encryption-concept.html
https://csrc.nist.gov/publications/detail/sp/800-38e/final

Before you begin

» Worker nodes must have cryptsetup 2.1 or higher (but lower than 3.0) installed. For more information, visit
Gitlab: cryptsetup.

* For performance reasons, we recommend that worker nodes support Advanced Encryption Standard New
Instructions (AES-NI). To verify AES-NI support, run the following command:

grep "aes" /proc/cpuinfo

If nothing is returned, your processor does not support AES-NI. For more information on AES-NI, visit:
Intel: Advanced Encryption Standard Instructions (AES-NI).

Enable LUKS encryption

You can enable per-volume, host-side encryption using Linux Unified Key Setup (LUKS) for ONTAP SAN and
ONTAP SAN ECONOMY volumes.

Steps

1. Define LUKS encryption attributes in the backend configuration. For more information on backend
configuration options for ONTAP SAN, refer to ONTAP SAN configuration options.

"storage": [
{
"labels":{"1luks": "true"},
"zone":"us east la",
"defaults": {
"luksEncryption": "true"

"labels":{"luks": "false"},

"zone":"us east la",

"defaults": {
"luksEncryption": "false"

by

2. Use parameters.selector to define the storage pools using LUKS encryption. For example:

297

https://gitlab.com/cryptsetup/cryptsetup
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: luks
provisioner: netapp.io/trident
parameters:
selector: "luks=true"
csi.storage.k8s.io/node-stage-secret-name: luks-${pvc.name}
csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

3. Create a secret that contains the LUKS passphrase. For example:

kubectl -n trident create -f luks-pvcl.yaml
apiVersion: vl
kind: Secret
metadata:
name: luks-pvcl
stringData:
luks-passphrase—-name: A
luks-passphrase: secretA

Limitations

LUKS-encrypted volumes cannot take advantage of ONTAP deduplication and compression.

Backend configuration for importing LUKS volumes

To import a LUKS volume, you must set 1uksEncryption to true on the backend. The 1uksEncryption
option tells Astra Trident if the volume is LUKS-compliant (true) or not LUKS-compliant (false) as shown in
the following example.

version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
datalLIF: 10.0.0.2

svm: trident svm

username: admin

password: password

defaults:
luksEncryption: 'true'
spaceAllocation: 'false'

snapshotPolicy: default
snapshotReserve: '10'

298

Rotate a LUKS passphrase

You can rotate the LUKS passphrase and confirm rotation.

Do not forget a passphrase until you have verified it is no longer referenced by any volume,
snapshot, or secret. If a referenced passphrase is lost, you might be unable to mount the
volume and the data will remain encrypted and inaccessible.

About this task

LUKS passphrase rotation occurs when a pod that mounts the volume is created after a new LUKS
passphrase is specified. When a new pod is created, Astra Trident compares the LUKS passphrase on the
volume to the active passphrase in the secret.

« If the passphrase on the volume does not match the active passphrase in the secret, rotation occurs.

* If the passphrase on the volume matches the active passphrase in the secret, the previous-luks-
passphrase parameter is ignored.

Steps

1. Add the node-publish-secret-name and node-publish-secret-namespace StorageClass
parameters. For example:

apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata:
name: csi-san

provisioner: csi.trident.netapp.io

parameters:
trident.netapp.io/backendType: "ontap-san"
csi.storage.k8s.io/node-stage-secret-name: luks
csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}
csi.storage.k8s.io/node-publish-secret-name: luks
csi.storage.k8s.io/node-publish-secret-namespace: ${pvc.namespace}

2. ldentify existing passphrases on the volume or snapshot.

Volume

tridentctl -d get volume luks-pvcl
GET http://127.0.0.1:8000/trident/v1/volume/<volumeID>

...luksPassphraseNames: ["A"]

299

Snapshot

tridentctl -d get snapshot luks-pvcl
GET http://127.0.0.1:8000/trident/v1/volume/<volumelID>/<snapshotID>

...luksPassphraseNames: ["A"]

3. Update the LUKS secret for the volume to specify the new and previous passphrases. Ensure previous-
luke-passphrase-name and previous—-luks-passphrase match the previous passphrase.

apiVersion: vl

kind: Secret

metadata:
name: luks-pvcl

stringData:
luks-passphrase—-name: B
luks-passphrase: secretB
previous-luks-passphrase-name: A
previous-luks-passphrase: secretA

4. Create a new pod mounting the volume. This is required to initiate the rotation.

5. Verify the the passphrase was rotated.

Volume

tridentctl -d get volume luks-pvcl
GET http://127.0.0.1:8000/trident/v1/volume/<volumelID>

...luksPassphraseNames: ["B"]

Snapshot

tridentctl -d get snapshot luks-pvcl
GET http://127.0.0.1:8000/trident/v1/volume/<volumelID>/<snapshotID>

...luksPassphraseNames: ["B"]

Results
The passphrase was rotated when only the new passphrase is returned on the volume and snapshot.

@ If two passphrases are returned, for example luksPassphraseNames: ["B", "A"], the
rotation is incomplete. You can trigger a new pod to attempt to complete the rotation.

300

Enable volume expansion
You can enable volume expansion on a LUKS-encrypted volume.

Steps

1. Enable the CSINodeExpandSecret feature gate (beta 1.25+). Refer to Kubernetes 1.25: Use Secrets for
Node-Driven Expansion of CSI Volumes for details.

2. Add the node-expand-secret-name and node-expand-secret-namespace StorageClass
parameters. For example:

apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata:
name: luks

provisioner: netapp.io/trident

parameters:
selector: "luks=true"
csi.storage.k8s.io/node-stage-secret-name: luks-${pvc.name}
csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}
csi.storage.k8s.io/node-expand-secret-name: luks-${pvc.name}
csi.storage.k8s.io/node-expand-secret-namespace: ${pvc.namespace}

allowVolumeExpansion: true

Results
When you initiate online storage expansion, the kubelet passes the appropriate credentials to the driver.

301

https://kubernetes.io/blog/2022/09/21/kubernetes-1-25-use-secrets-while-expanding-csi-volumes-on-node-alpha/
https://kubernetes.io/blog/2022/09/21/kubernetes-1-25-use-secrets-while-expanding-csi-volumes-on-node-alpha/

Reference
Astra Trident ports
Learn more about the ports that Astra Trident uses for communication.

Astra Trident ports

Astra Trident communicates over the following ports:

Port Purpose

8443 Backchannel HTTPS

8001 Prometheus metrics endpoint

8000 Trident REST server

17546 Liveness/readiness probe port used by Trident daemonset pods

The liveness/readiness probe port can be changed during installation using the —-probe-port
flag. It is important to make sure this port isn’t being used by another process on the worker
nodes.

Astra Trident REST API

While tridentctl commands and options are the easiest way to interact with the Astra
Trident REST API, you can use the REST endpoint directly if you prefer.

When to use the REST API

REST API is useful for advanced installations that use Astra Trident as a standalone binary in non-Kubernetes
deployments.

For better security, the Astra Trident REST API is restricted to localhost by default when running inside a pod.
To change this behavior, you need to set Astra Trident’'s —address argument in its pod configuration.

Using REST API
The APl works as follows:
GET

* GET <trident-address>/trident/v1/<object-type>: Lists all objects of that type.

* GET <trident-address>/trident/vl/<object-type>/<object-name>: Gets the details of the
named object.

POST

POST <trident-address>/trident/vl1/<object-type>: Creates an object of the specified type.

302

* Requires a JSON configuration for the object to be created. For the specification of each object type, see
tridentctl commands and options.

« If the object already exists, behavior varies: backends update the existing object, while all other object
types will fail the operation.

DELETE

DELETE <trident-address>/trident/vl/<object-type>/<object-name>: Deletes the named
resource.

@ Volumes associated with backends or storage classes will continue to exist; these must be
deleted separately. For more information, see tridentctl commands and options.

For examples of how these APIs are called, pass the debug (-d) flag. For more information, see tridentctl
commands and options.

Command-line options

Astra Trident exposes several command-line options for the Trident orchestrator. You can
use these options to modify your deployment.

Logging
* —-debug: Enables debugging output.

* -loglevel <level>: Sets the logging level (debug, info, warn, error, fatal). Defaults to info.

Kubernetes

* -k8s_pod: Use this option or -k8s_api server to enable Kubernetes support. Setting this causes
Trident to use its containing pod’s Kubernetes service account credentials to contact the API server. This
only works when Trident runs as a pod in a Kubernetes cluster with service accounts enabled.

* -k8s_api server <insecure-address:insecure-port>: Use this option or -k8s pod to enable
Kubernetes support. When specified, Trident connects to the Kubernetes API server using the provided
insecure address and port. This allows Trident to be deployed outside of a pod; however, it only supports
insecure connections to the API server. To connect securely, deploy Trident in a pod with the -k8s pod
option.

* -k8s_config path <file>: Required; you must specify this path to a KubeConfig file.

Docker

* -volume driver <name>: Driver name used when registering the Docker plugin. Defaults to netapp.
* -driver port <port-number>: Listen on this port rather than a UNIX domain socket.

* —config <file>: Required; you must specify this path to a backend configuration file.

REST

* —address <ip-or-host>: Specifies the address on which Trident’'s REST server should listen. Defaults

303

to localhost. When listening on localhost and running inside a Kubernetes pod, the REST interface isn’t
directly accessible from outside the pod. Use -address "" to make the REST interface accessible from
the pod IP address.

@ Trident REST interface can be configured to listen and serve at 127.0.0.1 (for IPv4) or [::1] (for
IPv6) only.

* -port <port-number>: Specifies the port on which Trident's REST server should listen. Defaults to
8000.

* —rest: Enables the REST interface. Defaults to true.

NetApp products integrated with Kubernetes

The NetApp portfolio of storage products integrates with many different aspects of a
Kubernetes cluster, providing advanced data management capabilities, which enhance
the functionality, capability, performance, and availability of the Kubernetes deployment.

Astra

Astra makes it easier for enterprises to manage, protect, and move their data-rich containerized workloads
running on Kubernetes within and across public clouds and on-premises. Astra provisions and provides
persistent container storage using Trident from NetApp’s proven and expansive storage portfolio in the public
cloud and on-premises. It also offers a rich set of advanced application-aware data management functionality,
such as snapshot, backup and restore, activity logs, and active cloning for data protection, disaster/data
recovery, data audit, and migration use cases for Kubernetes workloads.

ONTAP

ONTAP is NetApp’s multiprotocol, unified storage operating system that provides advanced data management
capabilities for any application. ONTAP systems have all-flash, hybrid, or all-HDD configurations and offer
many different deployment models, including engineered hardware (FAS and AFF), white-box (ONTAP Select),
and cloud-only (Cloud Volumes ONTAP).

@ Trident supports all the above mentioned ONTAP deployment models.

Cloud Volumes ONTAP

Cloud Volumes ONTAP is a software-only storage appliance that runs the ONTAP data management software
in the cloud. You can use Cloud Volumes ONTAP for production workloads, disaster recovery, DevOps, file
shares, and database management. It extends enterprise storage to the cloud by offering storage efficiencies,
high availability, data replication, data tiering and application consistency.

Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP is a fully managed AWS service that enables customers to launch and run file
systems powered by NetApp’s ONTAP storage operating system. FSx for ONTAP enables customers to
leverage NetApp features, performance, and administrative capabilities they’re familiar with, while taking
advantage of the simplicity, agility, security, and scalability of storing data on AWS. FSx for ONTAP supports
many of ONTAP’s file system features and administration APlIs.

304

https://docs.netapp.com/us-en/astra/
http://cloud.netapp.com/ontap-cloud?utm_source=GitHub&utm_campaign=Trident
https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html

Element software

Element enables the storage administrator to consolidate workloads by guaranteeing performance and
enabling a simplified and streamlined storage footprint. Coupled with an API to enable automation of all
aspects of storage management, Element enables storage administrators to do more with less effort.

NetApp HCI

NetApp HCI simplifies the management and scale of the datacenter by automating routine tasks and enabling
infrastructure administrators to focus on more important functions.

NetApp HCl is fully supported by Trident. Trident can provision and manage storage devices for containerized
applications directly against the underlying NetApp HCI storage platform.

Azure NetApp Files

Azure NetApp Files is an enterprise-grade Azure file share service, powered by NetApp. You can run your
most demanding file-based workloads in Azure natively, with the performance and rich data management you
expect from NetApp.

Cloud Volumes Service for Google Cloud

NetApp Cloud Volumes Service for Google Cloud is a cloud native file service that provides NAS volumes over
NFS and SMB with all-flash performance. This service enables any workload, including legacy applications, to
run in the GCP cloud. It provides a fully managed service which offers consistent high performance, instant
cloning, data protection and secure access to Google Compute Engine (GCE) instances.

Kubernetes and Trident objects

You can interact with Kubernetes and Trident using REST APIs by reading and writing
resource objects. There are several resource objects that dictate the relationship between
Kubernetes and Trident, Trident and storage, and Kubernetes and storage. Some of
these objects are managed through Kubernetes and the others are managed through
Trident.

How do the objects interact with one another?

Perhaps the easiest way to understand the objects, what they are for, and how they interact, is to follow a
single request for storage from a Kubernetes user:

1. Auser creates a PersistentVolumeClaim requesting a new PersistentVolume of a particular size
from a Kubernetes StorageClass that was previously configured by the administrator.

2. The Kubernetes StorageClass identifies Trident as its provisioner and includes parameters that tell
Trident how to provision a volume for the requested class.

3. Trident looks at its own StorageClass with the same name that identifies the matching Backends and
StoragePools that it can use to provision volumes for the class.

4. Trident provisions storage on a matching backend and creates two objects: a PersistentVolume in
Kubernetes that tells Kubernetes how to find, mount, and treat the volume, and a volume in Trident that
retains the relationship between the PersistentvVolume and the actual storage.

305

https://www.netapp.com/data-management/element-software/
https://www.netapp.com/virtual-desktop-infrastructure/netapp-hci/
https://azure.microsoft.com/en-us/services/netapp/
https://cloud.netapp.com/cloud-volumes-service-for-gcp?utm_source=GitHub&utm_campaign=Trident

9. Kubernetes binds the PersistentVolumeClaim to the new PersistentVolume. Pods that include the
PersistentVolumeClaim mount that PersistentVolume on any host that it runs on.

6. A user creates a VolumeSnapshot of an existing PVC, using a VolumeSnapshotClass that points to

Trident.

7. Trident identifies the volume that is associated with the PVC and creates a snapshot of the volume on its
backend. It also creates a VolumeSnapshotContent that instructs Kubernetes on how to identify the

snapshot.

8. Auser can create a PersistentVolumeClaim using VolumeSnapshot as the source.

9. Trident identifies the required snapshot and performs the same set of steps involved in creating a
PersistentVolume and a Volume.

For further reading about Kubernetes objects, we highly recommend that you read the

Persistent Volumes section of the Kubernetes documentation.

Kubernetes PersistentVolumeClaim objects

A Kubernetes PersistentVolumeClaim object is a request for storage made by a Kubernetes cluster user.

In addition to the standard specification, Trident allows users to specify the following volume-specific
annotations if they want to override the defaults that you set in the backend configuration:

Annotation

trident.netapp.io/fileSystem

trident.netapp.io/cloneFromPVC

trident.netapp.io/splitOnClone
trident.netapp.io/protocol

trident.netapp.io/exportPolicy

trident.netapp.io/snapshotPolicy

trident.netapp.io/snapshotReserve

trident.netapp.io/snapshotDirectory

306

Volume Option

fileSystem

cloneSourceVolume

splitOnClone
protocol

exportPolicy

snapshotPolicy

snapshotReserve

snapshotDirectory

Supported Drivers

ontap-san, solidfire-san,ontap-san-
economy

ontap-nas,

ontap-san, solidfire-san, azure-
netapp-files, gcp-cvs,
ontap-san-economy

ontap-nas, ontap-san
any

ontap-nas,
ontap-nas-economy, ontap-nas-
flexgroup

ontap-nas,
ontap-nas-economy, ontap-nas-
flexgroup, ontap-san

ontap-nas,
ontap-nas-flexgroup, ontap-san,
gcp-cvs

ontap-nas,
ontap-nas-economy, ontap-nas-
flexgroup

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Annotation Volume Option Supported Drivers

trident.netapp.io/unixPermissions unixPermissions ontap-nas,
ontap-nas-economy, ontap-nas-
flexgroup

trident.netapp.io/blockSize blockSize solidfire-san

If the created PV has the Delete reclaim policy, Trident deletes both the PV and the backing volume when the
PV becomes released (that is, when the user deletes the PVC). Should the delete action fail, Trident marks the
PV as such and periodically retries the operation until it succeeds or the PV is manually deleted. If the PV uses
the Retain policy, Trident ignores it and assumes the administrator will clean it up from Kubernetes and the
backend, allowing the volume to be backed up or inspected before its removal. Note that deleting the PV does
not cause Trident to delete the backing volume. You should remove it using the REST API (tridentctl).

Trident supports the creation of Volume Snapshots using the CSI specification: you can create a Volume
Snapshot and use it as a Data Source to clone existing PVCs. This way, point-in-time copies of PVs can be
exposed to Kubernetes in the form of snapshots. The snapshots can then be used to create new PVs. Take a
look at On-Demand Volume Snapshots to see how this would work.

Trident also provides the cloneFromPVC and splitOnClone annotations for creating clones. You can use
these annotations to clone a PVC without having to use the CSI implementation (on Kubernetes 1.13 and
earlier) or if your Kubernetes release does not support beta Volume Snapshots (Kubernetes 1.16 and earlier).
Keep in mind that Trident 19.10 supports the CSI workflow for cloning from a PVC.

@ You can use the cloneFromPVC and splitOnClone annotations with CSI Trident as well as
the traditional non-CSI frontend.

Here is an example: If a user already has a PVC called mysql, the user can create a new PVC called
mysglclone by using the annotation, such as trident.netapp.io/cloneFromPVC: mysql. With this
annotation set, Trident clones the volume corresponding to the mysqgl PVC, instead of provisioning a volume
from scratch.

Consider the following points:

* We recommend cloning an idle volume.

* APVC and its clone should be in the same Kubernetes namespace and have the same storage class.

* With the ontap-nas and ontap-san drivers, it might be desirable to set the PVC annotation
trident.netapp.io/splitOnClone in conjunction with trident.netapp.io/cloneFromPVC. With
trident.netapp.io/splitOnClone setto true, Trident splits the cloned volume from the parent
volume and thus, completely decoupling the life cycle of the cloned volume from its parent at the expense
of losing some storage efficiency. Not setting trident.netapp.io/splitOnClone or setting it to
false results in reduced space consumption on the backend at the expense of creating dependencies
between the parent and clone volumes such that the parent volume cannot be deleted unless the clone is
deleted first. A scenario where splitting the clone makes sense is cloning an empty database volume where
it's expected for the volume and its clone to greatly diverge and not benefit from storage efficiencies offered
by ONTAP.

The sample-input directory contains examples of PVC definitions for use with Trident. See Trident Volume
objects for a full description of the parameters and settings associated with Trident volumes.

307

Kubernetes PersistentVolume objects

A Kubernetes PersistentVolume object represents a piece of storage that is made available to the
Kubernetes cluster. It has a lifecycle that is independent of the pod that uses it.

Trident creates PersistentVolume objects and registers them with the Kubernetes cluster
automatically based on the volumes that it provisions. You are not expected to manage them
yourself.

When you create a PVC that refers to a Trident-based storageClass, Trident provisions a new volume using
the corresponding storage class and registers a new PV for that volume. In configuring the provisioned volume
and corresponding PV, Trident follows the following rules:

* Trident generates a PV name for Kubernetes and an internal name that it uses to provision the storage. In
both cases, it is assuring that the names are unique in their scope.

» The size of the volume matches the requested size in the PVC as closely as possible, though it might be
rounded up to the nearest allocatable quantity, depending on the platform.

Kubernetes storageClass objects

Kubernetes StorageClass objects are specified by name in PersistentVolumeClaims to provision
storage with a set of properties. The storage class itself identifies the provisioner to be used and defines that
set of properties in terms the provisioner understands.

It is one of two basic objects that need to be created and managed by the administrator. The other is the
Trident backend object.

A Kubernetes StorageClass object that uses Trident looks like this:

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: <Name>
provisioner: csi.trident.netapp.io
mountOptions: <Mount Options>
parameters:

<Trident Parameters>
allowVolumeExpansion: true
volumeBindingMode: Immediate

These parameters are Trident-specific and tell Trident how to provision volumes for the class.

The storage class parameters are:

Attribute Type Required Description
attributes map[string]string no See the attributes section
below

308

Attribute

storagePools

additionalStoragePools

excludeStoragePools

Type

map[string]StringList

map[string]StringList

map[string]StringList

Required

no

Description

Map of backend names to

lists

of storage pools within

Map of backend names
to lists of storage pools

within

Map of backend names to
lists of storage pools

within

Storage attributes and their possible values can be classified into storage pool selection attributes and

Kubernetes attributes.

Storage pool selection attributes

These parameters determine which Trident-managed storage pools should be utilized to provision volumes of

a given type.
Attribute Type
media’ string

provisioningType string

backendType string
snapshots bool
clones bool

Values

hdd, hybrid, ssd

thin, thick

ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
solidfire-san,
gcp-cvs, azure-
netapp-files,
ontap-san-
economy

true, false

true, false

Offer

Pool contains
media of this
type; hybrid
means both

Pool supports
this provisioning
method

Pool belongs to
this type of
backend

Pool supports
volumes with
snhapshots

Pool supports
cloning volumes

Request

Media type
specified

Provisioning
method specified

Backend
specified

Volume with
shapshots
enabled

Volume with
clones enabled

Supported by

ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
solidfire-san

thick: all ontap;
thin: all ontap &
solidfire-san

All drivers

ontap-nas,
ontap-san,
solidfire-san,
gcp-cvs

ontap-nas,
ontap-san,
solidfire-san,
gcp-cvs

309

Attribute Type Values Offer Request Supported by

encryption bool true, false Pool supports Volume with ontap-nas,
encrypted encryption ontap-nas-
volumes enabled economy, ontap-
nas-flexgroups,
ontap-san
IOPS int positive integer Pool is capable Volume solidfire-san
of guaranteeing guaranteed
IOPS in this these IOPS
range

' Not supported by ONTAP Select systems

In most cases, the values requested directly influence provisioning; for instance, requesting thick provisioning
results in a thickly provisioned volume. However, an Element storage pool uses its offered IOPS minimum and
maximum to set QoS values, rather than the requested value. In this case, the requested value is used only to
select the storage pool.

Ideally, you can use attributes alone to model the qualities of the storage you need to satisfy the needs of a
particular class. Trident automatically discovers and selects storage pools that match all of the attributes
that you specify.

If you find yourself unable to use attributes to automatically select the right pools for a class, you can use
the storagePools and additionalStoragePools parameters to further refine the pools or even to select
a specific set of pools.

You can use the storagePools parameter to further restrict the set of pools that match any specified
attributes. In other words, Trident uses the intersection of pools identified by the attributes and
storagePools parameters for provisioning. You can use either parameter alone or both together.

You can use the additionalStoragePools parameter to extend the set of pools that Trident uses for
provisioning, regardless of any pools selected by the attributes and storagePools parameters.

You can use the excludeStoragePools parameter to filter the set of pools that Trident uses for provisioning.
Using this parameter removes any pools that match.

In the storagePools and additionalStoragePools parameters, each entry takes the form
<backend>:<storagePoolList>, where <storagePoolList> is a comma-separated list of storage pools
for the specified backend. For example, a value for additionalStoragePools might look like
ontapnas_192.168.1.100:aggrl,aggr2;solidfire 192.168.1.101:bronze.

These lists accept regex values for both the backend and list values. You can use tridentctl get
backend to get the list of backends and their pools.

Kubernetes attributes

These attributes have no impact on the selection of storage pools/backends by Trident during dynamic
provisioning. Instead, these attributes simply supply parameters supported by Kubernetes Persistent Volumes.
Worker nodes are responsible for filesystem create operations and might require filesystem utilities, such as
xfsprogs.

310

Attribute Type

fsType string

allowVolumeExp boolean
ansion

volumeBindingM string
ode

Values

ext4, ext3, xfs,
etc.

true, false

Immediate,
WaitForFirstCon
sumer

Description

The file system
type for block
volumes

Enable or
disable support
for growing the
PVC size

Choose when
volume binding
and dynamic
provisioning
occurs

Relevant
Drivers

solidfire-san,
ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
ontap-san-
economy

ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
ontap-san-
economy,
solidfire-san,
gcp-cvs, azure-
netapp-files

All

Kubernetes
Version

All

1.1+

1.19-1.26

* The £sType parameter is used to control the desired file system type for SAN LUNSs. In
addition, Kubernetes also uses the presence of £sType in a storage class to indicate a
filesystem exists. Volume ownership can be controlled using the fsGroup security context
of a pod only if £sType is set. See Kubernetes: Configure a Security Context for a Pod or
Container for an overview on setting volume ownership using the fsGroup context.
Kubernetes will apply the £sGroup value only if:

° fsType is set in the storage class.

o The PVC access mode is RWO.

For NFS storage drivers, a filesystem already exists as part of the NFS export. In order to
use £sGroup the storage class still needs to specify a £sType. You can setitto nfs or any

non-null value.

» See Expand volumes for further details on volume expansion.

The Trident installer bundle provides several example storage class definitions for use with

Trident in sample-input/storage-class-*.yaml. Deleting a Kubernetes storage class
causes the corresponding Trident storage class to be deleted as well.

Kubernetes VolumeSnapshotClass objects

Kubernetes volumeSnapshotClass objects are analogous to StorageClasses. They help define multiple
classes of storage and are referenced by volume snapshots to associate the snapshot with the required
snapshot class. Each volume snapshot is associated with a single volume snapshot class.

311

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://docs.netapp.com/us-en/trident/trident-use/vol-expansion.html

AVvolumeSnapshotClass should be defined by an administrator in order to create snapshots. A volume
snapshot class is created with the following definition:

apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshotClass
metadata:

name: csi-snapclass
driver: csi.trident.netapp.io
deletionPolicy: Delete

The driver specifies to Kubernetes that requests for volume snapshots of the csi-snapclass class are
handled by Trident. The deletionPolicy specifies the action to be taken when a snapshot must be deleted.
When deletionPolicy is set to Delete, the volume snapshot objects as well as the underlying snapshot on
the storage cluster are removed when a snapshot is deleted. Alternatively, setting it to Retain means that
VolumeSnapshotContent and the physical snapshot are retained.

Kubernetes VolumeSnapshot objects

A Kubernetes VvolumeSnapshot object is a request to create a snapshot of a volume. Just as a PVC
represents a request made by a user for a volume, a volume snapshot is a request made by a user to create a
snapshot of an existing PVC.

When a volume snapshot request comes in, Trident automatically manages the creation of the snapshot for the
volume on the backend and exposes the snapshot by creating a unique

VolumeSnapshotContent object. You can create snapshots from existing PVCs and use the snapshots as a
DataSource when creating new PVCs.

The lifecyle of a VolumeSnapshot is independent of the source PVC: a snapshot persists even

(D after the source PVC is deleted. When deleting a PVC which has associated snapshots, Trident
marks the backing volume for this PVC in a Deleting state, but does not remove it completely.
The volume is removed when all the associated snapshots are deleted.

Kubernetes VvolumeSnapshotContent objects

A Kubernetes VvolumeSnapshotContent object represents a snapshot taken from an already provisioned
volume. It is analogous to a PersistentVolume and signifies a provisioned snapshot on the storage cluster.
Similar to PersistentVolumeClaim and PersistentVolume objects, when a snapshot is created, the
VolumeSnapshotContent object maintains a one-to-one mapping to the volumeSnapshot object, which
had requested the snapshot creation.

Trident creates VolumeSnapshotContent objects and registers them with the Kubernetes
cluster automatically based on the volumes that it provisions. You are not expected to manage
them yourself.

The volumeSnapshotContent object contains details that uniquely identify the snapshot, such as the
snapshotHandle. This snapshotHandle is a unique combination of the name of the PV and the name of
the VolumeSnapshotContent object.

When a snapshot request comes in, Trident creates the snapshot on the backend. After the snapshot is

312

created, Trident configures a VolumeSnapshotContent object and thus exposes the snapshot to the
Kubernetes API.

Kubernetes CustomResourceDefinition objects

Kubernetes Custom Resources are endpoints in the Kubernetes API that are defined by the administrator and
are used to group similar objects. Kubernetes supports the creation of custom resources for storing a collection
of objects. You can obtain these resource definitions by running kubectl get crds.

Custom Resource Definitions (CRDs) and their associated object metadata are stored by Kubernetes in its
metadata store. This eliminates the need for a separate store for Trident.

Beginning with the 19.07 release, Trident uses a number of CustomResourceDefinition objects to
preserve the identity of Trident objects, such as Trident backends, Trident storage classes, and Trident
volumes. These objects are managed by Trident. In addition, the CSI volume snapshot framework introduces
some CRDs that are required to define volume snapshots.

CRDs are a Kubernetes construct. Objects of the resources defined above are created by Trident. As a simple
example, when a backend is created using tridentctl, a corresponding tridentbackends CRD object is
created for consumption by Kubernetes.

Here are a few points to keep in mind about Trident’'s CRDs:

» When Trident is installed, a set of CRDs are created and can be used like any other resource type.

* When upgrading from a previous version of Trident (one that used etcd to maintain state), the Trident
installer migrates data from the et cd key-value data store and creates corresponding CRD objects.

* When uninstalling Trident by using the tridentctl uninstall command, Trident pods are deleted but
the created CRDs are not cleaned up. See Uninstall Trident to understand how Trident can be completely
removed and reconfigured from scratch.

Trident StorageClass objects

Trident creates matching storage classes for Kubernetes StorageClass objects that specify
csi.trident.netapp.io/netapp.io/trident in their provisioner field. The storage class name matches
that of the Kubernetes StorageClass object it represents.

@ With Kubernetes, these objects are created automatically when a Kubernetes StorageClass
that uses Trident as a provisioner is registered.

Storage classes comprise a set of requirements for volumes. Trident matches these requirements with the
attributes present in each storage pool; if they match, that storage pool is a valid target for provisioning
volumes using that storage class.

You can create storage class configurations to directly define storage classes by using the REST API.

However, for Kubernetes deployments, we expect them to be created when registering new Kubernetes
StorageClass objects.

Trident backend objects

Backends represent the storage providers on top of which Trident provisions volumes; a single Trident instance
can manage any number of backends.

313

@ This is one of the two object types that you create and manage yourself. The other is the
Kubernetes StorageClass object.

For more information about how to construct these objects, see configuring backends.

Trident StoragePool objects

Storage pools represent the distinct locations available for provisioning on each backend. For ONTAP, these
correspond to aggregates in SVMs. For NetApp HCI/SolidFire, these correspond to administrator-specified
QoS bands. For Cloud Volumes Service, these correspond to cloud provider regions. Each storage pool has a
set of distinct storage attributes, which define its performance characteristics and data protection
characteristics.

Unlike the other objects here, storage pool candidates are always discovered and managed automatically.

Trident Vvolume objects

Volumes are the basic unit of provisioning, comprising backend endpoints, such as NFS shares and iSCSI
LUNSs. In Kubernetes, these correspond directly to PersistentVolumes. When you create a volume, ensure
that it has a storage class, which determines where that volume can be provisioned, along with a size.

@ In Kubernetes, these objects are managed automatically. You can view them to see what Trident
provisioned.

When deleting a PV with associated snapshots, the corresponding Trident volume is updated to
a Deleting state. For the Trident volume to be deleted, you should remove the snapshots of the
volume.

A volume configuration defines the properties that a provisioned volume should have.

Attribute Type Required Description

version string no Version of the Trident API
(|l1 ll)

name string yes Name of volume to create

storageClass string yes Storage class to use when
provisioning the volume

size string yes Size of the volume to
provision in bytes

protocol string no Protocol type to use; "file"
or "block”

internalName string no Name of the object on the

storage system,;
generated by Trident

cloneSourceVolume string no ontap (nas, san) &
solidfire-*: Name of the
volume to clone from

314

Attribute Type Required Description

splitOnClone string no ontap (nas, san): Split the
clone from its parent

snapshotPolicy string no ontap-*: Snapshot policy
to use

snapshotReserve string no ontap-*: Percentage of
volume reserved for
snapshots

exportPolicy string no ontap-nas*: Export policy
to use

snapshotDirectory bool no ontap-nas*: Whether the
snapshot directory is
visible

unixPermissions string no ontap-nas®: Initial UNIX
permissions

blockSize string no solidfire-*: Block/sector
size

fileSystem string no File system type

Trident generates internalName when creating the volume. This consists of two steps. First, it prepends the
storage prefix (either the default trident or the prefix in the backend configuration) to the volume name,
resulting in a name of the form <prefix>-<volume-name>. It then proceeds to sanitize the name, replacing
characters not permitted in the backend. For ONTAP backends, it replaces hyphens with underscores (thus,
the internal name becomes <prefix> <volume-name>). For Element backends, it replaces underscores
with hyphens.

You can use volume configurations to directly provision volumes using the REST API, but in Kubernetes
deployments we expect most users to use the standard Kubernetes PersistentvVolumeClaim method.
Trident creates this volume object automatically as part of the provisioning

process.

Trident Snapshot objects

Snapshots are a point-in-time copy of volumes, which can be used to provision new volumes or restore state.
In Kubernetes, these correspond directly to VolumeSnapshotContent objects. Each snapshot is associated
with a volume, which is the source of the data for the snapshot.

Each snapshot object includes the properties listed below:

Attribute Type Required Description

version String Yes Version of the Trident API
("1 ll)

name String Yes Name of the Trident

snapshot object

315

Attribute Type Required Description

internalName String Yes Name of the Trident
snapshot object on the
storage system

volumeName String Yes Name of the Persistent
Volume for which the
snapshot is created

volumelnternalName String Yes Name of the associated
Trident volume object on
the storage system

@ In Kubernetes, these objects are managed automatically. You can view them to see what Trident
provisioned.

When a Kubernetes VolumeSnapshot object request is created, Trident works by creating a snapshot object
on the backing storage system. The internalName of this snapshot object is generated by combining the
prefix snapshot- with the UID of the VolumeSnapshot object (for example, snapshot-e8d8alca-9826-
11e9-9807-525400£3£660). volumeName and volumeInternalName are populated by getting the details
of the backing

volume.

Astra Trident ResourceQuota object

The Trident deamonset consumes a system-node-critical Priority Class—the highest Priority Class
available in Kubernetes—to ensure Astra Trident can identify and clean up volumes during graceful node
shutdown and allow Trident daemonset pods to preempt workloads with a lower priority in clusters where there
is high resource pressure.

To accomplish this, Astra Trident employs a ResourceQuota object to ensure a "system-node-critical" Priority
Class on the Trident daemonset is satisfied. Prior to deployment and daemonset creation, Astra Trident looks
for the ResourceQuota object and, if not discovered, applies it.

If you need more control over the default Resource Quota and Priority Class, you can generate a
custom.yaml or configure the ResourceQuota object using Helm chart.

The following is an example of a 'ResourceQuota’object prioritizing the Trident daemonset.

316

apiVersion: <version>
kind: ResourceQuota
metadata:
name: trident-csi
labels:
app: node.csi.trident.netapp.io

spec:
scopeSelector:

matchExpressions:

- operator : In

scopeName: PriorityClass
values: ["system-node-critical"]

For more information on Resource Quotas, see Kubernetes: Resource Quotas.

Clean up ResourceQuota if installation fails

In the rare case where installation fails after the ResourceQuota object is created, first try uninstalling and
then reinstall.

If that doesn’t work, manually remove the ResourceQuota object.

Remove ResourceQuota

If you prefer to control your own resource allocation, you can remove the Astra Trident ResourceQuota object
using the command:

kubectl delete quota trident-csi -n trident

tridentctl commands and options

The Trident installer bundle includes a command-line utility, tridentctl, that provides
simple access to Astra Trident. Kubernetes users with sufficient privileges can use it to
install Astra Trident as well as to interact with it directly to manage the namespace that
contains the Astra Trident pod.

Available commands and options

For usage information, run tridentctl --help.

The available commands and global options are:

Usage:
tridentctl [command]

317

https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://github.com/NetApp/trident/releases

Available commands:

* create: Add a resource to Astra Trident.

* delete: Remove one or more resources from Astra Trident.
* get: Get one or more resources from Astra Trident.

* help: Help about any command.

* images: Print a table of the container images Astra Trident needs.
* import: Import an existing resource to Astra Trident.

* install: Install Astra Trident.

* logs: Print the logs from Astra Trident.

* send: Send a resource from Astra Trident.

* uninstall: Uninstall Astra Trident.

* update: Modify a resource in Astra Trident.

* upgrade: Upgrade a resource in Astra Trident.

* version: Print the version of Astra Trident.
Flags:

* '-d, --debug: Debug output.

* '-h, --help:Helpfortridentctl.

* '-n, --namespace string: Namespace of Astra Trident deployment.

* "-o0, --output string: Output format. One of json|yaml|name|wide|ps (default).

* -5, --server string: Address/port of Astra Trident REST interface.

@ Trident REST interface can be configured to listen and serve at 127.0.0.1 (for IPv4) or [::1]
(for IPv6) only.

@ Trident REST interface can be configured to listen and serve at 127.0.0.1 (for IPv4) or [::1] (for
IPv6) only.

create

You can use run the create command to add a resource to Astra Trident.

Usage:
tridentctl create [option]

Available option:
backend: Add a backend to Astra Trident.

318

delete
You can run the delete command to remove one or more resources from Astra Trident.
Usage:
tridentctl delete [option]

Available options:

* backend: Delete one or more storage backends from Astra Trident.
* snapshot: Delete one or more volume snapshots from Astra Trident.
* storageclass: Delete one or more storage classes from Astra Trident.

* volume: Delete one or more storage volumes from Astra Trident.

get
You can run the get command to get one or more resources from Astra Trident.
Usage:
tridentctl get [option]

Available options:

* backend: Get one or more storage backends from Astra Trident.
* snapshot: Get one or more snapshots from Astra Trident.
* storageclass: Get one or more storage classes from Astra Trident.

* volume: Get one or more volumes from Astra Trident.
volume flags:
* *-h, --help: Help for volumes.

* ——parentOfSubordinate string: Limit query to subordinate source volume.
* ——subordinateOf string: Limit query to subordinates of volume.

images

You can run the images flag to print a table of the container images Astra Trident needs.

Usage:
tridentctl images [flags]

Flags:
*-h, --help': Help for images.
* -y, --k8s-version string’: Semantic version of Kubernetes cluster.

319

import volume

You can run the import volume command to import an existing volume to Astra Trident.

Usage:

tridentctl import volume <backendName> <volumeName> [flags]

Aliases:
volume, Vv

Flags:

‘-f, --filename string: Pathto YAML or JSON PVC file.
"-h, --help: Help for volume.

‘--no-manage: Create PV/PVC only. Don’t assume volume lifecycle management.

install

You can run the install flags to install Astra Trident.

Usage:

tridentctl install [flags]

Flags:

320

‘-—autosupport-image string: The container image for Autosupport Telemetry (default
"netapp/trident autosupport:20.07.0").

‘-—autosupport-proxy string: The address/port of a proxy for sending Autosupport Telemetry.
*—-csi: Install CSI Trident (override for Kubernetes 1.13 only, requires feature gates).
‘--enable-node-prep: Attempt to install required packages on nodes.
‘--generate-custom-yaml: Generate YAML files without installing anything.

‘-h, --help: Help forinstall.

‘—--http-request-timeout: Override the HTTP request timeout for Trident controller's REST API
(default Tm30s).

‘--image-registry string: The address/port of an internal image registry.
"--k8s-timeout duration: The timeout for all Kubernetes operations (default 3m0s).
‘—-kubelet-dir string: The host location of kubelet’s internal state (default "/var/lib/kubelet").
‘--log-format string: The Astra Trident logging format (text, json) (default "text").

"--pv string: The name of the legacy PV used by Astra Trident, makes sure this doesn’t exist (default
"trident").

"--pvc string: The name of the legacy PVC used by Astra Trident, makes sure this doesn’t exist

(default "trident").

* “--silence-autosupport: Don’t send autosupport bundles to NetApp automatically (default true).
* "—-silent: Disable most output during installation.
* ‘—-trident-image string: The Astra Trident image to install.
* '--use-custom-yaml: Use any existing YAML files that exist in setup directory.
* “——use-ipvé6: Use IPv6 for Astra Trident's communication.
logs

You can run the 1ogs flags to print the logs from Astra Trident.

Usage:
tridentctl logs [flags]

Flags:
* '-a, --archive: Create a support archive with all logs unless otherwise specified.

* *-h, --help: Help forlogs.

* '-1, --log string:Astra Trident log to display. One of trident|auto|trident-operator|all (default "auto").

* ‘—--node string: The Kubernetes node name from which to gather node pod logs.

* "-p, --previous: Getthe logs for the previous container instance if it exists.

* "--sidecars: Get the logs for the sidecar containers.

send

You can run the send command to send a resource from Astra Trident.

Usage:
tridentctl send [option]

Available option:
autosupport: Send an Autosupport archive to NetApp.

uninstall

You can run the uninstall flags to uninstall Astra Trident.

Usage:
tridentctl uninstall [flags]

321

Flags:
* -h, --help: Help for uninstall.
* ——silent: Disable most output during uninstall.

update
You can run the update commands to modify a resource in Astra Trident.

Usage:
tridentctl update [option]

Available options:
backend: Update a backend in Astra Trident.

upgrade
You can run the upgrade commands to upgrade a resource in Astra Trident.

Usage:
tridentctl upgrade [option]

Available option:
volume: Upgrade one or more persistent volumes from NFS/iSCSI to CSI.

version

You can run the version flags to print the version of tridentctl and the running Trident service.

Usage:
tridentctl version [flags]

Flags:
* ——client: Client version only (no server required).
* -h, --help: Help for version.

Pod Security Standards (PSS) and Security Context
Constraints (SCC)

Kubernetes Pod Security Standards (PSS) and Pod Security Policies (PSP) define
permission levels and restrict the behavior of pods. OpenShift Security Context
Constraints (SCC) similarly define pod restriction specific to the OpenShift Kubernetes
Engine. To provide this customization, Astra Trident enables certain permissions during
installation. The following sections detail the permissions set by Astra Trident.

322

@ PSS replaces Pod Security Policies (PSP). PSP was deprecated in Kubernetes v1.21 and will
be removed in v1.25. For more information, see Kubernetes: Security.

Required Kubernetes Security Context and Related Fields

Permission

Privileged

Host networking

Host IPC

Host PID

Capabilities

Seccomp

SELinux

DAC

Pod Security Standards (PSS)

Description

CSI requires mount points to be Bidirectional, which
means the Trident node pod must run a privileged
container. For more information, see Kubernetes:
Mount propagation.

Required for the iISCSI daemon. iscsiadm manages
iSCSI mounts and uses host networking to
communicate with the iSCSI daemon.

NFS uses interprocess communication (IPC) to
communicate with the NFSD.

Required to start rpc-statd for NFS. Astra Trident
queries host processes to determine if roc-statd is
running before mounting NFS volumes.

The SYS ADMIN capability is provided as part of the
default capabilities for privileged containers. For
example, Docker sets these capabilities for privileged
containers:

CapPrm: 0000QO03fffffffff

CapEff: 0000QOQ3fffffffff

Seccomp profile is always "Unconfined" in privileged
containers; therefore, it cannot be enabled in Astra
Trident.

On OpenShift, privileged containers are run in the
spc_t ("Super Privileged Container") domain, and
unprivileged containers are run in the container t
domain. On containerd, with container-
selinux installed, all containers are run in the spc_t
domain, which effectively disables SELinux.
Therefore, Astra Trident does not add
seLinuxOptions to containers.

Privileged containers must be run as root. Non-
privileged containers run as root to access unix
sockets required by CSI.

323

https://kubernetes.io/docs/concepts/security/
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation

Label Description Default

pod- Allows the Trident Controller and enforce: privileged

security.kubernetes.io/enf nodes to be admitted into the install

orce namespace. enforce-version: <version
of the current cluster or

pod- Do not change the namespace highest version of PSS

security.kubernetes.io/enf label tested.>

orce-version

Changing the namespace labels can result in pods not being scheduled, an "Error creating: ..."
or, "Warning: trident-csi-...". If this happens, check if the namespace label for privileged was
changed. If so, reinstall Trident.

Pod Security Policies (PSP)

Field Description Default

allowPrivilegeEscalation Privileged containers must allow true
privilege escalation.

allowedCSIDrivers Trident does not use inline CSI Empty
ephemeral volumes.

allowedCapabilities Non-privileged Trident containers ~ Empty
do not require more capabilities
than the default set and privileged
containers are granted all possible
capabilities.

allowedFlexVolumes Trident does not make use of a Empty
FlexVolume driver, therefore they
are not included in the list of
allowed volumes.

allowedHostPaths The Trident node pod mounts the Empty
node’s root filesystem, therefore
there is no benefit to setting this list.

allowedProcMountTypes Trident does not use any Empty
ProcMountTypes.

allowedUnsafeSysctls Trident does not require any unsafe Empty
sysctls.

defaultAddCapabilities No capabilities are required to be Empty
added to privileged containers.

defaultAllowPrivilegeEscal Allowing privilege escalation is false

ation handled in each Trident pod.

forbiddenSysctls No sysctls are allowed. Empty

fsGroup Trident containers run as root. RunAsAny

324

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-storage/flexvolume.md

Field Description Default

hostIPC Mounting NFS volumes requires true
host IPC to communicate with
nfsd

hostNetwork iscsiadm requires the host network true
to communicate with the iSCSI
daemon.

hostPID Host PID is required to check if true
rpc-statd is running on the node.

hostPorts Trident does not use any host Empty
ports.

privileged Trident node pods must run a true

privileged container in order to
mount volumes.

readOnlyRootFilesystem Trident node pods must write to the false
node filesystem.

requiredDropCapabilities Trident node pods run a privileged none
container and cannot drop

capabilities.
runAsGroup Trident containers run as root. RunAsAny
runAsUser Trident containers run as root. runAsAny
runtimeClass Trident does not use Empty
RuntimeClasses.
selLinux Trident does not set Empty

seLinuxOptions because there
are currently differences in how
container runtimes and Kubernetes
distributions handle SELinux.

supplementalGroups Trident containers run as root. RunAsAny
volumes Trident pods require these volume hostPath, projected,
plugins. emptyDir

Security Context Constraints (SCC)

Labels Description Default

allowHostDirVolumePlugin Trident node pods mount the true
node’s root filesystem.

allowHostIPC Mounting NFS volumes requires true
host IPC to communicate with
nfsd.

allowHostNetwork iscsiadm requires the host network true
to communicate with the iISCSI
daemon.

325

Labels Description Default

allowHostPID Host PID is required to check if true
rpc-statd is running on the node.

allowHostPorts Trident does not use any host false
ports.

allowPrivilegeEscalation Privileged containers must allow true
privilege escalation.

allowPrivilegedContainer Trident node pods mustruna true
privileged container in order to
mount volumes.

allowedUnsafeSysctls Trident does not require any unsafe none
sysctls.
allowedCapabilities Non-privileged Trident containers ~ Empty

do not require more capabilities
than the default set and privileged
containers are granted all possible

capabilities.
defaultAddCapabilities No capabilities are required to be ~ Empty
added to privileged containers.
fsGroup Trident containers run as root. RunAsAny
groups This SCC is specific to Trident and Empty

is bound to its user.

readOnlyRootFilesystem Trident node pods must write to the false
node filesystem.

requiredDropCapabilities Trident node pods run a privileged none
container and cannot drop

capabilities.
runAsUser Trident containers run as root. RunAsAny
seLinuxContext Trident does not set Empty

seLinuxOptions because there
are currently differences in how
container runtimes and Kubernetes
distributions handle SELinux.

seccompProfiles Privileged containers always run Empty
"Unconfined".

supplementalGroups Trident containers run as root. RunAsAny

users One entry is provided to bind this n/a

SCC to the Trident user in the
Trident namespace.

volumes Trident pods require these volume hostPath, downwardAPI,
plugins. projected, emptyDir

326

Legal notices
Legal notices provide access to copyright statements, trademarks, patents, and more.

Copyright

https://www.netapp.com/company/legal/copyright/

Trademarks

NETAPP, the NETAPP logo, and the marks listed on the NetApp Trademarks page are trademarks of NetApp,
Inc. Other company and product names may be trademarks of their respective owners.

https://www.netapp.com/company/legal/trademarks/

Patents
A current list of NetApp owned patents can be found at:

https://www.netapp.com/pdf.html?item=/media/11887-patentspage.pdf

Privacy policy

https://www.netapp.com/company/legal/privacy-policy/

Open source

You can review third-party copyright and licenses used in NetApp software for Astra Trident in the notices file
for each release at https://github.com/NetApp/trident/.

327

https://www.netapp.com/company/legal/copyright/
https://www.netapp.com/company/legal/trademarks/
https://www.netapp.com/pdf.html?item=/media/11887-patentspage.pdf
https://www.netapp.com/company/legal/privacy-policy/
https://github.com/NetApp/trident/

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

328

http://www.netapp.com/TM

	Astra Trident 23.04 documentation : Astra Trident
	Table of Contents
	Astra Trident 23.04 documentation
	Release notes
	What’s new
	What’s new in 23.04
	Changes in 23.01.1
	Changes in 23.01
	Changes in 22.10
	Changes in 22.07
	Changes in 22.04
	Changes in 22.01.1
	Changes in 22.01.0
	Changes in 21.10.1
	Changes in 21.10.0
	Known issues
	Find more information

	Earlier versions of documentation

	Concepts
	Learn about Astra Trident
	Overview
	Supported Kubernetes cluster architectures
	What is Astra?
	For more information

	ONTAP drivers
	Astra Control supported drivers
	Astra Trident storage drivers for ONTAP

	Provisioning
	Storage class association
	Volume creation

	Volume snapshots
	Learn about volume snapshot creation

	Virtual pools
	Learn about virtual pools

	Volume access groups
	Learn about volume access groups

	Get started
	Try it out
	Learn about the Test Drive

	Requirements
	Critical information about Astra Trident 23.01
	Supported frontends (orchestrators)
	Supported backends (storage)
	Feature requirements
	Tested host operating systems
	Host configuration
	Storage system configuration
	Astra Trident ports
	Container images and corresponding Kubernetes versions

	Install Astra Trident
	Learn about Astra Trident installation
	Install using Trident operator
	Install using tridentctl

	What’s next?
	Step 1: Create a backend
	Step 2: Create a storage class
	Step 3: Provision your first volume
	Step 4: Mount the volumes in a pod

	Manage Astra Trident
	Upgrade Astra Trident
	Upgrade Astra Trident
	Upgrade with the operator
	Upgrade with tridentctl

	Uninstall Astra Trident
	Uninstall by using Helm
	Uninstall by using the Trident operator
	Uninstall by using tridentctl

	Downgrade Astra Trident
	When to downgrade
	When not to downgrade
	Downgrade process when Astra Trident is installed by using the operator
	Downgrade process when Astra Trident is installed by using tridentctl

	Use Astra Trident
	Prepare the worker node
	Selecting the right tools
	Node service discovery
	NFS volumes
	iSCSI volumes

	Configure backends
	Configure backends
	Azure NetApp Files
	Configure a Cloud Volumes Service for Google Cloud backend
	Configure a NetApp HCI or SolidFire backend
	ONTAP SAN drivers
	ONTAP NAS drivers
	Amazon FSx for NetApp ONTAP

	Create backends with kubectl
	TridentBackendConfig
	Steps overview
	Step 1: Create a Kubernetes Secret
	Step 2: Create the TridentBackendConfig CR
	Step 3: Verify the status of the TridentBackendConfig CR
	(Optional) Step 4: Get more details

	Perform backend management with kubectl
	Delete a backend
	View the existing backends
	Update a backend

	Perform backend management with tridentctl
	Create a backend
	Delete a backend
	View the existing backends
	Update a backend
	Identify the storage classes that use a backend

	Move between backend management options
	Options for managing backends
	Manage tridentctl backends using TridentBackendConfig
	Manage TridentBackendConfig backends using tridentctl

	Manage storage classes
	Design a storage class
	Create a storage class
	Delete a storage class
	View the existing storage classes
	Set a default storage class
	Identify the backend for a storage class

	Perform volume operations
	Use CSI Topology
	Work with snapshots
	Expand volumes
	Import volumes

	Share an NFS volume across namespaces
	Features
	Quick start
	Configure the source and destination namespaces
	Delete a shared volume
	Use tridentctl get to query subordinate volumes
	Limitations
	For more information

	Monitor Astra Trident
	Overview
	Step 1: Define a Prometheus target
	Step 2: Create a Prometheus ServiceMonitor
	Step 3: Query Trident metrics with PromQL
	Learn about Astra Trident AutoSupport telemetry
	Disable Astra Trident metrics

	Astra Trident for Docker
	Prerequisites for deployment
	Verify the requirements

	Deploy Astra Trident
	Docker managed plugin method (version 1.13/17.03 and later)
	Traditional method (version 1.12 or earlier)
	Start Astra Trident at system startup

	Upgrade or uninstall Astra Trident
	Upgrade
	Uninstall

	Work with volumes
	Create a volume
	Remove a volume
	Clone a volume
	Access externally created volumes
	Driver-specific volume options

	Collect logs
	Collect logs for troubleshooting
	General troubleshooting tips

	Manage multiple Astra Trident instances
	Steps for Docker managed plugin (version 1.13/17.03 or later)
	Steps for traditional (version 1.12 or earlier)

	Storage configuration options
	Global configuration options
	ONTAP configuration
	Element software configuration

	Known issues and limitations
	Upgrading Trident Docker Volume Plugin to 20.10 and later from older versions results in upgrade failure with the no such file or directory error.
	Volume names must be a minimum of 2 characters in length.
	Docker Swarm has certain behaviors that prevent Astra Trident from supporting it with every storage and driver combination.
	If a FlexGroup is being provisioned, ONTAP does not provision a second FlexGroup if the second FlexGroup has one or more aggregates in common with the FlexGroup being provisioned.

	Frequently asked questions
	General questions
	How frequently is Astra Trident released?
	Does Astra Trident support all the features that are released in a particular version of Kubernetes?
	Does Astra Trident have any dependencies on other NetApp products for its functioning?
	How can I obtain complete Astra Trident configuration details?
	Can I obtain metrics on how storage is provisioned by Astra Trident?
	Does the user experience change when using Astra Trident as a CSI Provisioner?

	Install and use Astra Trident on a Kubernetes cluster
	What are the supported versions of etcd?
	Does Astra Trident support an offline install from a private registry?
	Can I install Astra Trident be remotely?
	Can I configure High Availability with Astra Trident?
	Does Astra Trident need access to the kube-system namespace?
	What are the roles and privileges used by Astra Trident?
	Can I locally generate the exact manifest files Astra Trident uses for installation?
	Can I share the same ONTAP backend SVM for two separate Astra Trident instances for two separate Kubernetes clusters?
	Is it possible to install Astra Trident under ContainerLinux (formerly CoreOS)?
	Can I use Astra Trident with NetApp Cloud Volumes ONTAP?
	Does Astra Trident work with Cloud Volumes Services?

	Troubleshooting and support
	Does NetApp support Astra Trident?
	How do I raise a support case?
	How do I generate a support log bundle?
	What do I do if I need to raise a request for a new feature?
	Where do I raise a defect?
	What happens if I have quick question on Astra Trident that I need clarification on? Is there a community or a forum?
	My storage system’s password has changed and Astra Trident no longer works, how do I recover?
	Astra Trident cannot find my Kubernetes node. How do I fix this?
	If the Trident pod is destroyed, will I lose the data?

	Upgrade Astra Trident
	Can I upgrade from a older version directly to a newer version (skipping a few versions)?
	Is it possible to downgrade Trident to a previous release?

	Manage backends and volumes
	Do I need to define both Management and Data LIFs in an ONTAP backend definition file?
	Can Astra Trident configure CHAP for ONTAP backends?
	How do I manage export policies with Astra Trident?
	Can we specify a port in the DataLIF?
	Can IPv6 addresses be used for the Management and Data LIFs?
	Is it possible to update the Management LIF on the backend?
	Is it possible to update the Data LIF on the backend?
	Can I create multiple backends in Astra Trident for Kubernetes?
	How does Astra Trident store backend credentials?
	How does Astra Trident select a specific backend?
	How do I ensure that Astra Trident will not provision from a specific backend?
	If there are multiple backends of the same kind, how does Astra Trident select which backend to use?
	Does Astra Trident support bi-directional CHAP with Element/SolidFire?
	How does Astra Trident deploy Qtrees on an ONTAP volume? How many Qtrees can be deployed on a single volume?
	How can I set Unix permissions for volumes provisioned on ONTAP NAS?
	How can I configure an explicit set of ONTAP NFS mount options while provisioning a volume?
	How do I set the provisioned volumes to a specific export policy?
	How do I set volume encryption through Astra Trident with ONTAP?
	What is the best way to implement QoS for ONTAP through Astra Trident?
	How do I specify thin or thick provisioning through Astra Trident?
	How do I make sure that the volumes being used are not deleted even if I accidentally delete the PVC?
	Can I grow NFS PVCs that were created by Astra Trident?
	If I have a volume that was created outside Astra Trident can I import it into Astra Trident?
	Can I import a volume while it is in SnapMirror Data Protection (DP) or offline mode?
	Can I expand iSCSI PVCs that were created by Astra Trident?
	How is resource quota translated to a NetApp cluster?
	Can I create Volume Snapshots using Astra Trident?
	What are the drivers that support Astra Trident volume snapshots?
	How do I take a snapshot backup of a volume provisioned by Astra Trident with ONTAP?
	Can I set a snapshot reserve percentage for a volume provisioned through Astra Trident?
	Can I directly access the volume snapshot directory and copy files?
	Can I set up SnapMirror for volumes through Astra Trident?
	How do I restore Persistent Volumes to a specific ONTAP snapshot?
	Can Trident provision volumes on SVMs that have a Load-Sharing Mirror configured?
	How can I separate out storage class usage for each customer/tenant?

	Support
	Troubleshooting
	General troubleshooting
	Troubleshooting an unsuccessful Trident deployment using the operator
	Troubleshooting an unsuccessful Trident deployment using tridentctl

	Best practices and recommendations
	Deployment
	Deploy to a dedicated namespace
	Use quotas and range limits to control storage consumption

	Storage configuration
	Platform overview
	ONTAP and Cloud Volumes ONTAP best practices
	SolidFire best practices
	Where to find more information?

	Integrate Astra Trident
	Driver selection and deployment
	Storage class design
	Virtual pool design
	Volume operations
	Deploy OpenShift services
	Metrics service

	Data protection and disaster recovery
	Astra Trident replication and recovery
	SVM replication and recovery
	Volume replication and recovery
	Snapshot data protection
	Astra Control Center application replication

	Security
	Security
	Linux Unified Key Setup (LUKS)

	Reference
	Astra Trident ports
	Astra Trident ports

	Astra Trident REST API
	When to use the REST API
	Using REST API

	Command-line options
	Logging
	Kubernetes
	Docker
	REST

	NetApp products integrated with Kubernetes
	Astra
	ONTAP
	Cloud Volumes ONTAP
	Amazon FSx for NetApp ONTAP
	Element software
	NetApp HCI
	Azure NetApp Files
	Cloud Volumes Service for Google Cloud

	Kubernetes and Trident objects
	How do the objects interact with one another?
	Kubernetes PersistentVolumeClaim objects
	Kubernetes PersistentVolume objects
	Kubernetes StorageClass objects
	Kubernetes VolumeSnapshotClass objects
	Kubernetes VolumeSnapshot objects
	Kubernetes VolumeSnapshotContent objects
	Kubernetes CustomResourceDefinition objects
	Trident StorageClass objects
	Trident backend objects
	Trident StoragePool objects
	Trident Volume objects
	Trident Snapshot objects
	Astra Trident ResourceQuota object

	tridentctl commands and options
	Available commands and options
	create
	delete
	get
	images
	import volume
	install
	logs
	send
	uninstall
	update
	upgrade
	version

	Pod Security Standards (PSS) and Security Context Constraints (SCC)
	Required Kubernetes Security Context and Related Fields
	Pod Security Standards (PSS)
	Pod Security Policies (PSP)
	Security Context Constraints (SCC)

	Legal notices
	Copyright
	Trademarks
	Patents
	Privacy policy
	Open source

