■ NetApp # Manage backends Astra Trident NetApp April 03, 2024 This PDF was generated from https://docs.netapp.com/us-en/trident-2307/trident-use/backend_ops_kubectl.html on April 03, 2024. Always check docs.netapp.com for the latest. # **Table of Contents** | Manage backends | · · · · · · · · · · · · · · · · · · · | |--|---------------------------------------| | Perform backend management with kubectl | | | Perform backend management with tridentctl | | | Move between backend management options. | | ## Manage backends ### Perform backend management with kubectl Learn about how to perform backend management operations by using kubectl. ### Delete a backend By deleting a TridentBackendConfig, you instruct Astra Trident to delete/retain backends (based on deletionPolicy). To delete a backend, ensure that deletionPolicy is set to delete. To delete just the TridentBackendConfig, ensure that deletionPolicy is set to retain. This will ensure the backend is still present and can be managed by using tridentctl. Run the following command: ``` kubectl delete tbc <tbc-name> -n trident ``` Astra Trident does not delete the Kubernetes Secrets that were in use by TridentBackendConfig. The Kubernetes user is responsible for cleaning up secrets. Care must be taken when deleting secrets. You should delete secrets only if they are not in use by the backends. ### View the existing backends Run the following command: ``` kubectl get tbc -n trident ``` You can also run tridentctl get backend -n trident or tridentctl get backend -o yaml -n trident to obtain a list of all backends that exist. This list will also include backends that were created with tridentctl. ### Update a backend There can be multiple reasons to update a backend: • Credentials to the storage system have changed. To update credentials, the Kubernetes Secret that is used in the TridentBackendConfig object must be updated. Astra Trident will automatically update the backend with the latest credentials provided. Run the following command to update the Kubernetes Secret: ``` kubectl apply -f <updated-secret-file.yaml> -n trident ``` - Parameters (such as the name of the ONTAP SVM being used) need to be updated. - You can update TridentBackendConfig objects directly through Kubernetes using the following command: ``` kubectl apply -f <updated-backend-file.yaml> ``` • Alternatively, you can make changes to the existing TridentBackendConfig CR using the following command: ``` kubectl edit tbc <tbc-name> -n trident ``` - If a backend update fails, the backend continues to remain in its last known configuration. You can view the logs to determine the cause by running kubectl get tbc <tbc-name> -o yaml -n trident or kubectl describe tbc <tbc-name> -n trident. - After you identify and correct the problem with the configuration file, you can re-run the update command. ### Perform backend management with tridentctl Learn about how to perform backend management operations by using tridentctl. #### Create a backend After you create a backend configuration file, run the following command: ``` tridentctl create backend -f <backend-file> -n trident ``` If backend creation fails, something was wrong with the backend configuration. You can view the logs to determine the cause by running the following command: ``` tridentctl logs -n trident ``` After you identify and correct the problem with the configuration file, you can simply run the create command again. #### Delete a backend To delete a backend from Astra Trident, do the following: 1. Retrieve the backend name: ``` tridentctl get backend -n trident ``` 2. Delete the backend: tridentctl delete backend <backend-name> -n trident If Astra Trident has provisioned volumes and snapshots from this backend that still exist, deleting the backend prevents new volumes from being provisioned by it. The backend will continue to exist in a "Deleting" state and Trident will continue to manage those volumes and snapshots until they are deleted. ### View the existing backends To view the backends that Trident knows about, do the following: To get a summary, run the following command: ``` tridentctl get backend -n trident ``` • To get all the details, run the following command: ``` tridentctl get backend -o json -n trident ``` ### Update a backend After you create a new backend configuration file, run the following command: ``` tridentctl update backend <backend-name> -f <backend-file> -n trident ``` If backend update fails, something was wrong with the backend configuration or you attempted an invalid update. You can view the logs to determine the cause by running the following command: ``` tridentctl logs -n trident ``` After you identify and correct the problem with the configuration file, you can simply run the update command again. ### Identify the storage classes that use a backend This is an example of the kind of questions you can answer with the JSON that tridentctl outputs for backend objects. This uses the jq utility, which you need to install. ``` tridentctl get backend -o json | jq '[.items[] | {backend: .name, storageClasses: [.storage[].storageClasses]|unique}]' ``` This also applies for backends that were created by using TridentBackendConfig. ### Move between backend management options Learn about the different ways of managing backends in Astra Trident. ### **Options for managing backends** With the introduction of TridentBackendConfig, administrators now have two unique ways of managing backends. This poses the following questions: - Can backends created using tridentctl be managed with TridentBackendConfig? - Can backends created using TridentBackendConfig be managed using tridentctl? ### Manage tridentctl backends using TridentBackendConfig This section covers the steps required to manage backends that were created using tridentctl directly through the Kubernetes interface by creating TridentBackendConfig objects. This will apply to the following scenarios: - Pre-existing backends, that don't have a TridentBackendConfig because they were created with tridentctl. - New backends that were created with tridentctl, while other TridentBackendConfig objects exist. In both scenarios, backends will continue to be present, with Astra Trident scheduling volumes and operating on them. Administrators have one of two choices here: - Continue using tridentctl to manage backends that were created using it. - Bind backends created using tridentctl to a new TridentBackendConfig object. Doing so would mean the backends will be managed using kubectl and not tridentctl. To manage a pre-existing backend using kubectl, you will need to create a TridentBackendConfig that binds to the existing backend. Here is an overview of how that works: - 1. Create a Kubernetes Secret. The secret contains the credentials Astra Trident needs to communicate with the storage cluster/service. - 2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and references the secret created in the previous step. Care must be taken to specify identical config parameters (such as spec.backendName, spec.storagePrefix, spec.storageDriverName, and so on). spec.backendName must be set to the name of the existing backend. #### Step 0: Identify the backend To create a TridentBackendConfig that binds to an existing backend, you will need to obtain the backend configuration. In this example, let us assume a backend was created using the following JSON definition: ``` tridentctl get backend ontap-nas-backend -n trident ``` ``` +----+ NAME | STORAGE DRIVER | UUID | STATE | VOLUMES | +---- +----+ | ontap-nas-backend | ontap-nas | 52f2eb10-e4c6-4160-99fc- 96b3be5ab5d7 | online | 25 | +----- +----+ cat ontap-nas-backend.json { "version": 1, "storageDriverName": "ontap-nas", "managementLIF": "10.10.10.1", "dataLIF": "10.10.10.2", "backendName": "ontap-nas-backend", "svm": "trident svm", "username": "cluster-admin", "password": "admin-password", "defaults": { "spaceReserve": "none", "encryption": "false" "labels":{"store":"nas store"}, "region": "us east 1", "storage": ["labels": { "app": "msoffice", "cost": "100" }, "zone": "us east 1a", "defaults": { "spaceReserve": "volume", "encryption": "true", "unixPermissions": "0755" }, "labels":{"app":"mysqldb", "cost":"25"}, "zone":"us east 1d", "defaults": { "spaceReserve": "volume", "encryption": "false", "unixPermissions": "0775" } ``` ```] } ``` #### **Step 1: Create a Kubernetes Secret** Create a Secret that contains the credentials for the backend, as shown in this example: ``` cat tbc-ontap-nas-backend-secret.yaml apiVersion: v1 kind: Secret metadata: name: ontap-nas-backend-secret type: Opaque stringData: username: cluster-admin password: admin-password kubectl create -f tbc-ontap-nas-backend-secret.yaml -n trident secret/backend-tbc-ontap-san-secret created ``` ### Step 2: Create a TridentBackendConfig CR The next step is to create a TridentBackendConfig CR that will automatically bind to the pre-existing ontap-nas-backend (as in this example). Ensure the following requirements are met: - The same backend name is defined in spec.backendName. - Configuration parameters are identical to the original backend. - Virtual pools (if present) must retain the same order as in the original backend. - Credentials are provided through a Kubernetes Secret and not in plain text. In this case, the TridentBackendConfig will look like this: ``` cat backend-tbc-ontap-nas.yaml apiVersion: trident.netapp.io/v1 kind: TridentBackendConfig metadata: name: tbc-ontap-nas-backend spec: version: 1 storageDriverName: ontap-nas managementLIF: 10.10.10.1 dataLIF: 10.10.10.2 backendName: ontap-nas-backend svm: trident svm credentials: name: mysecret defaults: spaceReserve: none encryption: 'false' labels: store: nas store region: us_east 1 storage: - labels: app: msoffice cost: '100' zone: us east 1a defaults: spaceReserve: volume encryption: 'true' unixPermissions: '0755' - labels: app: mysqldb cost: '25' zone: us east 1d defaults: spaceReserve: volume encryption: 'false' unixPermissions: '0775' kubectl create -f backend-tbc-ontap-nas.yaml -n trident tridentbackendconfig.trident.netapp.io/tbc-ontap-nas-backend created ``` Step 3: Verify the status of the TridentBackendConfig CR After the TridentBackendConfig has been created, its phase must be Bound. It should also reflect the same backend name and UUID as that of the existing backend. ``` kubectl get tbc tbc-ontap-nas-backend -n trident NAME BACKEND NAME BACKEND UUID PHASE STATUS tbc-ontap-nas-backend ontap-nas-backend 52f2eb10-e4c6-4160-99fc- 96b3be5ab5d7 Bound Success #confirm that no new backends were created (i.e., TridentBackendConfig did not end up creating a new backend) tridentctl get backend -n trident +---- +----+ NAME | STORAGE DRIVER | | STATE | VOLUMES | +---- +----+ | ontap-nas-backend | ontap-nas | 52f2eb10-e4c6-4160-99fc- 96b3be5ab5d7 | online | 25 I +----+ +----+ ``` The backend will now be completely managed using the tbc-ontap-nas-backend TridentBackendConfig object. ### Manage TridentBackendConfig backends using tridentctl tridentctl can be used to list backends that were created using TridentBackendConfig. In addition, administrators can also choose to completely manage such backends through tridentctl by deleting TridentBackendConfig and making sure spec.deletionPolicy is set to retain. #### Step 0: Identify the backend For example, let us assume the following backend was created using TridentBackendConfig: ``` kubectl get tbc backend-tbc-ontap-san -n trident -o wide NAME BACKEND NAME BACKEND UUID STORAGE DRIVER DELETION POLICY PHASE STATUS backend-tbc-ontap-san ontap-san-backend 81abcb27-ea63-49bb-b606- delete 0a5315ac5f82 Bound Success ontap-san tridentctl get backend ontap-san-backend -n trident +---- +----+ NAME | STORAGE DRIVER | UTUU | STATE | VOLUMES | +---- +----+ ontap-san-backend | ontap-san | 81abcb27-ea63-49bb-b606- 0a5315ac5f82 | online | 33 | +---- +----+ ``` From the output, it is seen that TridentBackendConfig was created successfully and is bound to a backend [observe the backend's UUID]. ### Step 1: Confirm deletionPolicy is set to retain Let us take a look at the value of deletionPolicy. This needs to be set to retain. This will ensure that when a TridentBackendConfig CR is deleted, the backend definition will still be present and can be managed with tridentctl. ``` kubectl get tbc backend-tbc-ontap-san -n trident -o wide NAME BACKEND NAME BACKEND UUID STORAGE DRIVER DELETION POLICY PHASE STATUS backend-tbc-ontap-san ontap-san-backend 81abcb27-ea63-49bb-b606- 0a5315ac5f82 Bound Success ontap-san delete # Patch value of deletionPolicy to retain kubectl patch tbc backend-tbc-ontap-san --type=merge -p '{"spec":{"deletionPolicy":"retain"}}' -n trident tridentbackendconfig.trident.netapp.io/backend-tbc-ontap-san patched #Confirm the value of deletionPolicy kubectl get tbc backend-tbc-ontap-san -n trident -o wide BACKEND NAME NAME BACKEND UUID STORAGE DRIVER DELETION POLICY PHASE STATUS backend-tbc-ontap-san ontap-san-backend 81abcb27-ea63-49bb-b606- 0a5315ac5f82 Bound Success ontap-san retain ``` ### Step 2: Delete the TridentBackendConfig CR The final step is to delete the TridentBackendConfig CR. After confirming the deletionPolicy is set to retain, you can go ahead with the deletion: Upon the deletion of the TridentBackendConfig object, Astra Trident simply removes it without actually deleting the backend itself. ### Copyright information Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner. Software derived from copyrighted NetApp material is subject to the following license and disclaimer: THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007). Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014). #### **Trademark information** NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.