Use Astra Trident
Astra Trident

NetApp
January 14, 2026

This PDF was generated from https://docs.netapp.com/us-en/trident-2307/trident-use/worker-node-
prep.html on January 14, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Use Astra Trident 1
Prepare the worker node 1
Selecting the right tools 1
Node service discovery 1
NFS volumes 1
iISCSI volumes 2
Configure and manage backends 5
Configure backends 5
Azure NetApp Files 6
Configure a Cloud Volumes Service for Google Cloud backend 17
Configure a NetApp HCI or SolidFire backend 33
ONTAP SAN drivers 39
ONTAP NAS drivers 60
Amazon FSx for NetApp ONTAP 88
Create backends with kubectl 99
Manage backends 106
Create and manage storage classes 115
Create a storage class 115
Manage storage classes 118
Provision and manage volumes 120
Provision a volume 120
Expand volumes 123
Import volumes 130
Share an NFS volume across namespaces 138
Use CSI Topology 142

Work with snapshots 149

Use Astra Trident

Prepare the worker node

All worker nodes in the Kubernetes cluster must be able to mount the volumes you have
provisioned for your pods. To prepare the worker nodes, you must install NFS or iSCSI
tools based on your driver selection.

Selecting the right tools

If you are using a combination of drivers, you should install NFS and iSCSI tools.

NFS tools

Install the NFS tools if you are using: ontap-nas, ontap-nas-economy, ontap-nas-flexgroup, azure-
netapp-files, gcp-cvs

iSCSI tools

Install the iISCSI tools if you are using: ontap-san, ontap-san-economy, solidfire-san

@ Recent versions of RedHat CoreOS have NFS and iSCSI installed by default.

Node service discovery

Astra Trident attempts to automatically detect if the node can run iISCSI or NFS services.

Node service discovery identifies discovered services but does not guarantee services are
properly configured. Conversely, the absence of a discovered service does not guarantee the
volume mount will fail.

Review events
Astra Trident creates events for the node to identify the discovered services. To review these events, run:

kubectl get event -A --field-selector involvedObject.name=<Kubernetes node

name>

Review discovered services

Astra Trident identifies services enabled for each node on the Trident node CR. To view the discovered
services, run:

tridentctl get node -o wide -n <Trident namespace>

NFS volumes

Install the NFS tools using the commands for your operating system. Ensure the NFS service is started up
during boot time.

RHEL 8+

sudo yum install -y nfs-utils

Ubuntu

sudo apt-get install -y nfs-common

@ Reboot your worker nodes after installing the NFS tools to prevent failure when attaching
volumes to containers.

iSCSI volumes

Astra Trident can automatically establish an iSCSI session, scan LUNs, and discover multipath devices, format
them, and mount them to a pod.

iSCSI self-healing capabilities

For ONTAP systems, Astra Trident runs iSCSI self-healing every five minutes to:

1. Identify the desired iSCSI session state and the current iISCSI session state.

2. Compare the desired state to the current state to identify needed repairs. Astra Trident determines repair
priorities and when to preempt repairs.

3. Perform repairs required to return the current iSCSI session state to the desired iSCSI session state.

Logs of self-healing activity are located in the trident-main container on the respective
Daemonset pod. To view logs, you must have set debug to "true" during Astra Trident
installation.

Astra Trident iSCSI self-healing capabilities can help prevent:

« Stale or unhealthy iSCSI sessions that could occur after a network connectivity issue. In the case of a stale
session, Astra Trident waits seven minutes before logging out to reestablish the connection with a portal.

For example, if CHAP secrets were rotated on the storage controller and the network loses
connectivity, the old (stale) CHAP secrets could persist. Self-healing can recognize this and
automatically reestablish the session to apply the updated CHAP secrets.

* Missing iSCSI sessions
* Missing LUNs

Install the iSCSI tools
Install the iISCSI tools using the commands for your operating system.

Before you begin
» Each node in the Kubernetes cluster must have a unique IQN. This is a necessary prerequisite.

* If using RHCOS version 4.5 or later, or other RHEL-compatible Linux distribution, with the solidfire-
san driver and Element OS 12.5 or earlier, ensure that the CHAP authentication algorithm is set to MD5 in
/etc/iscsi/iscsid.conf. Secure FIPS-compliant CHAP algorithms SHA1, SHA-256, and SHA3-256
are available with Element 12.7.

sudo sed -i 's/”\(node.session.auth.chap algs\).*/\1 = MD5/'
/etc/iscsi/iscsid.conf

* When using worker nodes that run RHEL/RedHat CoreOS with iISCSI PVs, specify the discard
mountOption in the StorageClass to perform inline space reclamation. See RedHat documentation.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems

RHEL 8+
1. Install the following system packages:

sudo yum install -y lsscsi iscsi-initiator-utils sg3 utils device-
mapper-multipath

2. Check that iscsi-initiator-utils version is 6.2.0.874-2.el7 or later:
rpm —-gq iscsi-initiator-utils
3. Set scanning to manual:

sudo sed -i 's/"\ (node.session.scan\).*/\1 = manual/'
/etc/iscsi/iscsid.conf

4. Enable multipathing:
sudo mpathconf --enable --with multipathd y --find multipaths n
(:) Ensure etc/multipath.conf contains find multipaths no under defaults.
5. Ensure that iscsid and multipathd are running:
sudo systemctl enable --now iscsid multipathd
6. Enable and start iscsi:

sudo systemctl enable --now iscsi

Ubuntu
1. Install the following system packages:

sudo apt-get install -y open-iscsi lsscsi sg3-utils multipath-tools
scsitools

2. Check that open-iscsi version is 2.0.874-5ubuntu2.10 or later (for bionic) or 2.0.874-7.1ubuntu6.1 or
later (for focal):

dpkg -1 open-iscsi
3. Set scanning to manual:

sudo sed -1 's/”\ (node.session.scan\).*/\1 = manual/'

/etc/iscsi/iscsid.conf
4. Enable multipathing:

sudo tee /etc/multipath.conf <<-'EOF
defaults {
user friendly names yes
find multipaths no
}
EQOF
sudo systemctl enable --now multipath-tools.service
sudo service multipath-tools restart

(:) Ensure etc/multipath.conf contains find multipaths no under defaults.

5. Ensure that open-iscsi and multipath-tools are enabled and running:

sudo systemctl status multipath-tools
sudo systemctl enable --now open-iscsi.service
sudo systemctl status open-iscsi

For Ubuntu 18.04, you must discover target ports with i scsiadm before starting
@ open-iscsi for the iISCSI daemon to start. You can alternatively modify the iscsi
service to start i scsid automatically.

@ Reboot your worker nodes after installing the iISCSI tools to prevent failure when attaching
volumes to containers.

Configure and manage backends

Configure backends

A backend defines the relationship between Astra Trident and a storage system. It tells
Astra Trident how to communicate with that storage system and how Astra Trident should
provision volumes from it.

Astra Trident automatically offers up storage pools from backends that match the requirements defined by a
storage class. Learn how to configure the backend for your storage system.

+ Configure an Azure NetApp Files backend

+ Configure a Cloud Volumes Service for Google Cloud Platform backend

+ Configure a NetApp HCI or SolidFire backend

+ Configure a backend with ONTAP or Cloud Volumes ONTAP NAS drivers

» Configure a backend with ONTAP or Cloud Volumes ONTAP SAN drivers

« Use Astra Trident with Amazon FSx for NetApp ONTAP

Azure NetApp Files

Configure an Azure NetApp Files backend

You can configure Azure NetApp Files as the backend for Astra Trident. You can attach
NFS and SMB volumes using an Azure NetApp Files backend.

Azure NetApp Files driver details

Astra Trident provides the following Azure NetApp Files storage drivers to communicate with the cluster.
Supported access modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX),
ReadWriteOncePod (RWOP).

Driver Protocol volumeMod Access modes File systems supported
e supported
azure-netapp-files NFS Filesystem RWO, ROX, RWX, RWOP nfs, smb
SMB

Considerations

» The Azure NetApp Files service does not support volumes smaller than 100 GB. Astra Trident
automatically creates 100-GB volumes if a smaller volume is requested.

 Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

Prepare to configure an Azure NetApp Files backend

Before you can configure your Azure NetApp Files backend, you need to ensure the
following requirements are met.

Prerequisites for NFS and SMB volumes
If you are using Azure NetApp Files for the first time or in a new location, some initial

@ configuration is required to set up Azure NetApp files and create an NFS volume. Refer to
Azure: Set up Azure NetApp Files and create an NFS volume.

To configure and use an Azure NetApp Files backend, you need the following:

A capacity pool. Refer to Microsoft: Create a capacity pool for Azure NetApp Files.

https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://azure.microsoft.com/en-us/services/netapp/
https://learn.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-set-up-capacity-pool

* A subnet delegated to Azure NetApp Files. Refer to Microsoft: Delegate a subnet to Azure NetApp Files.
* subscriptionID from an Azure subscription with Azure NetApp Files enabled.

* tenantID, clientID, and clientSecret from an App Registration in Azure Active Directory with
sufficient permissions to the Azure NetApp Files service. The App Registration should use either:

o The Owner or Contributor role predefined by Azure.

° A custom Contributor role at the subscription level (assignableScopes) with the following
permissions that are limited to only what Astra Trident requires. After creating the custom role, assign
the role using the Azure portal.

"id": "/subscriptions/<subscription-
id>/providers/Microsoft.Authorization/roleDefinitions/<role-
definition-id>",

"properties": ({

"roleName": "custom-role-with-limited-perms",
"description": "custom role providing limited permissions",
"assignableScopes": [

"/subscriptions/<subscription-id>"
1,
"permissions": [

{

"actions": [
"Microsoft.NetApp/netAppAccounts/capacityPools/read",
"Microsoft.NetApp/netAppAccounts/capacityPools/write",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/read",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/write",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/delete",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/read

A
14

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/writ

e"’

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/dele
te",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/MountTargets/r
ead",
"Microsoft.Network/virtualNetworks/read",

https://learn.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://learn.microsoft.com/en-us/azure/role-based-access-control/custom-roles-portal
https://learn.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal
https://learn.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal

"Microsoft.Network/virtualNetworks/subnets/read",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrations
/read",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrations

/write",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrations
/delete",
"Microsoft.Features/features/read",
"Microsoft.Features/operations/read",
"Microsoft.Features/providers/features/read",

"Microsoft.Features/providers/features/register/action",
"Microsoft.Features/providers/features/unregister/action",

"Microsoft.Features/subscriptionFeatureRegistrations/read"

1,

"notActions": [],
"dataActions": [],

"notDataActions": []

* The Azure location that contains at least one delegated subnet. As of Trident 22.01, the 1ocation
parameter is a required field at the top level of the backend configuration file. Location values specified in
virtual pools are ignored.

Additional requirements for SMB volumes

To create an SMB volume, you must have:
« Active Directory configured and connected to Azure NetApp Files. Refer to Microsoft: Create and manage
Active Directory connections for Azure NetApp Files.

* A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows
Server 2019. Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

At least one Astra Trident secret containing your Active Directory credentials so Azure NetApp Files can
authenticate to Active Directory. To generate secret smbcreds:

kubectl create secret generic smbcreds --from-literal username=user
-—-from-literal password='password'

https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet
https://learn.microsoft.com/en-us/azure/azure-netapp-files/create-active-directory-connections
https://learn.microsoft.com/en-us/azure/azure-netapp-files/create-active-directory-connections

* A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or
GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

Azure NetApp Files backend configuration options and examples

Learn about NFS and SMB backend configuration options for Azure NetApp Files and
review configuration examples.

Backend configuration options

Astra Trident uses your backend configuration (subnet, virtual network, service level, and location), to create
Azure NetApp Files volumes on capacity pools that are available in the requested location and match the

requested service level and subnet.

@ Astra Trident does not support Manual QoS capacity pools.

Azure NetApp Files backends provide these configuration options.

Parameter
version
storageDriverName

backendName

subscriptionID

tenantID

clientID

clientSecret

servicelLevel

location

resourceGroups

netappAccounts

capacityPools

virtualNetwork

subnet

Description

Name of the storage driver

Custom name or the storage
backend

The subscription ID from your
Azure subscription

The tenant ID from an App
Registration

The client ID from an App
Registration

The client secret from an App
Registration

One of Standard, Premium, or
Ultra

Name of the Azure location where
the new volumes will be created

List of resource groups for filtering
discovered resources

List of NetApp accounts for filtering
discovered resources

List of capacity pools for filtering
discovered resources

Name of a virtual network with a
delegated subnet

Name of a subnet delegated to
Microsoft.Netapp/volumes

Default
Always 1

"azure-netapp-files"

Driver name + + random

characters

(random)

"I" (no filter)

"[I" (no filter)

"[I" (no filter, random)

https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md

Parameter Description

networkFeatures
may be Basic or Standard.

Network Features is not available in

all regions and might have to be
enabled in a subscription.
Specifying networkFeatures
when the functionality is not
enabled causes volume
provisioning to fail.

nfsMountOptions
options.

Ignored for SMB volumes.

To mount volumes using NFS

version 4.1, include nfsvers=4in
the comma-delimited mount options

list to choose NFS v4.1.

Mount options set in a storage
class definition override mount
options set in backend
configuration.

Fail provisioning if the requested
volume size is above this value

limitVolumeSize

Debug flags to use when
troubleshooting. Example,

debugTraceFlags

\{"api": false, "method":

true, "discovery":
Do not use this unless you are
troubleshooting and require a
detailed log dump.

Configure NFS or SMB volumes
creation.

nasType

Options are nfs, smb or null.
Setting to null defaults to NFS
volumes.

Set of VNet features for a volume,

Fine-grained control of NFS mount

true}.

Default

"nfsvers=3"

(not enforced by default)

null

nfs

@ For more information on Network Features, refer to Configure network features for an Azure

NetApp Files volume.

Required permissions and resources

If you receive a “No capacity pools found” error when creating a PVC, it is likely your app registration doesn’t
have the required permissions and resources (subnet, virtual network, capacity pool) associated. If debug is
enabled, Astra Trident will log the Azure resources discovered when the backend is created. Verify an

appropriate role is being used.

10

https://docs.microsoft.com/en-us/azure/azure-netapp-files/configure-network-features
https://docs.microsoft.com/en-us/azure/azure-netapp-files/configure-network-features

The values for resourceGroups, netappAccounts, capacityPools, virtualNetwork, and subnet
can be specified using short or fully-qualified names. Fully-qualified names are recommended in most
situations as short names can match multiple resources with the same name.

The resourceGroups, netappAccounts, and capacityPools values are filters that restrict the set of
discovered resources to those available to this storage backend and may be specified in any combination.
Fully-qualified names follow this format:

Type Format

Resource group <resource group>

NetApp account <resource group>/<netapp account>

Capacity pool <resource group>/<netapp account>/<capacity pool>
Virtual network <resource group>/<virtual network>

Subnet <resource group>/<virtual network>/<subnet>

Volume provisioning

You can control default volume provisioning by specifying the following options in a special section of the
configuration file. Refer to Example configurations for details.

Parameter Description Default

exportRule Export rules for new volumes. "0.0.0.0/0"

exportRule must be a comma-
separated list of any combination of
IPv4 addresses or IPv4 subnets in
CIDR notation.

Ignored for SMB volumes.

snapshotDir Controls visibility of the .snapshot "false"
directory
size The default size of new volumes "100G"
unixPermissions The unix permissions of new "" (preview feature, requires
volumes (4 octal digits). whitelisting in subscription)

Ignored for SMB volumes.

Example configurations

11

Example 1: Minimal configuration

This is the absolute minimum backend configuration. With this configuration, Astra Trident discovers all of
your NetApp accounts, capacity pools, and subnets delegated to Azure NetApp Files in the configured
location, and places new volumes on one of those pools and subnets randomly. Because nasType is
omitted, the nfs default applies and the backend will provision for NFS volumes.

This configuration is ideal when you are just getting started with Azure NetApp Files and trying things out,
but in practice you are going to want to provide additional scoping for the volumes you provision.

version: 1

storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721add45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865ee56ct
clientID: dd043f63-bf8e-fake-8076-8de9%1e5713aa
clientSecret: SECRET

location: eastus

Example 2: Specific service level configuration with capacity pool filters

This backend configuration places volumes in Azure’s eastus location in an Ul tra capacity pool. Astra
Trident automatically discovers all of the subnets delegated to Azure NetApp Files in that location and
places a new volume on one of them randomly.

version: 1

storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721ladd45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865ee56ct
clientID: dd043f63-bf8e-fake-8076-8de91le5713aa
clientSecret: SECRET

location: eastus

servicelLevel: Ultra

capacityPools:

- application-group-1/account-1/ultra-1

- application—-group-1/account-1/ultra-2

12

Example 3: Advanced configuration

This backend configuration further reduces the scope of volume placement to a single subnet, and also
modifies some volume provisioning defaults.

version: 1
storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721add45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865eeb6ct
clientID: dd043f63-bf8e-fake-8076-8de9%1le5713aa
clientSecret: SECRET
location: eastus
servicelevel: Ultra
capacityPools:
- application-group-1/account-1/ultra-1
- application-group-1/account-1/ultra-2
virtualNetwork: my-virtual-network
subnet: my-subnet
networkFeatures: Standard
nfsMountOptions: vers=3,proto=tcp,timeo=600
limitVolumeSize: 500Gi
defaults:
exportRule: 10.0.0.0/24,10.0.1.0/24,10.0.2.100
snapshotDir: 'true'
size: 200Gi

unixPermissions: '0777"'

Example 4: Virtual pool configuration

This backend configuration defines multiple storage pools in a single file. This is useful when you have

multiple capacity pools supporting different service levels and you want to create storage classes in
Kubernetes that represent those. Virtual pool labels were used to differentiate the pools based on
performance.

version: 1
storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721ladd45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865ee56ct
clientID: dd043f63-bf8e-fake-8076-8de9%1e5713aa
clientSecret: SECRET
location: eastus
resourceGroups:
- application-group-1
networkFeatures: Basic
nfsMountOptions: vers=3,proto=tcp,timeo=600
labels:
cloud: azure
storage:
- labels:
performance: gold
servicelevel: Ultra
capacityPools:
- ultra-1
- ultra-2
networkFeatures: Standard
- labels:
performance: silver
servicelevel: Premium
capacityPools:
- premium-1
- labels:
performance: bronze
servicelevel: Standard
capacityPools:
- standard-1
- standard-2

Storage Class definitions

The following StorageClass definitions refer to the storage pools above.

14

Example definitions using parameter.selector field

Using parameter.selector you can specify for each StorageClass the virtual pool that is used to host a
volume. The volume will have the aspects defined in the chosen pool.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: gold
provisioner: csi.trident.netapp.io
parameters:

selector: "performance=gold"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: silver
provisioner: csi.trident.netapp.io
parameters:

selector: "performance=silver"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: bronze
provisioner: csi.trident.netapp.io
parameters:

selector: "performance=bronze"

allowVolumeExpansion: true

Example definitions for SMB volumes

Using nasType, node-stage-secret-name, and node-stage-secret-namespace, You can specify an
SMB volume and provide the required Active Directory credentials.

15

Example 1: Basic configuration on default namespace

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: anf-sc-smb
provisioner: csi.trident.netapp.io
parameters:
backendType: "azure-netapp-files"
trident.netapp.io/nasType: "smb"

csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

csi.storage.k8s.io/node-stage-secret-namespace:

Example 2: Using different secrets per namespace

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: anf-sc-smb
provisioner: csi.trident.netapp.io
parameters:
backendType: "azure-netapp-files"
trident.netapp.io/nasType: "smb"

"default"

csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

csi.storage.k8s.io/node-stage-secret-namespace:

Example 3: Using different secrets per volume

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: anf-sc-smb
provisioner: csi.trident.netapp.io
parameters:
backendType: "azure-netapp-files"
trident.netapp.io/nasType: "smb"

$S{pvc.namespace}

csi.storage.k8s.io/node-stage-secret-name: ${pvc.name}

csi.storage.k8s.io/node-stage-secret—-namespace:

16

S{pvc.namespace}

@ nasType: smb filters for pools which support SMB volumes. nasType: 'nfs ornasType:
“null filters for NFS pools.
Create the backend

After you create the backend configuration file, run the following command:
tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to
determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Configure a Cloud Volumes Service for Google Cloud backend

Learn how to configure NetApp Cloud Volumes Service for Google Cloud as the backend
for your Astra Trident installation using the sample configurations provided.

Google Cloud driver details

Astra Trident provides the gcp-cvs driver to communicate with the cluster. Supported access modes are:
ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWriteOncePod (RWOP).
Driver Protocol volumeMode Access modes supported File systems supported

gcp-cvs NFS Filesystem RWO, ROX, RWX, RWOP nfs

Learn about Astra Trident support for Cloud Volumes Service for Google Cloud

Astra Trident can create Cloud Volumes Service volumes in one of two service types:

* CVS-Performance: The default Astra Trident service type. This performance-optimized service type is best
suited for production workloads that value performance. The CVS-Performance service type is a hardware
option supporting volumes with a minimum 100 GiB size. You can choose one of three service levels:

° standard
° premium
° extreme

* CVS: The CVS service type provides high zonal availability with limited to moderate performance levels.
The CVS service type is a software option that uses storage pools to support volumes as small as 1 GiB.
The storage pool can contain up to 50 volumes where all volumes share the capacity and performance of
the pool. You can choose one of two service levels:

° standardsw

17

https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-types
https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-levels#service_levels_for_the_cvs-performance_service_type
https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-levels#service_levels_for_the_cvs_service_type

° zoneredundantstandardsw

What you’ll need

To configure and use the Cloud Volumes Service for Google Cloud backend, you need the following:

» A Google Cloud account configured with NetApp Cloud Volumes Service

* Project number of your Google Cloud account

* Google Cloud service account with the netappcloudvolumes.admin role

» API key file for your Cloud Volumes Service account

Backend configuration options

Each backend provisions volumes in a single Google Cloud region. To create volumes in other regions, you
can define additional backends.

Parameter
version
storageDriverName

backendName

storageClass

storagePools

projectNumber

hostProjectNumber

apiRegion

apiKey

18

Description Default
Always 1
Name of the storage driver "gcp-cvs”

Custom name or the storage backend Driver name +" " + part

of API key

Optional parameter used to specify the CVS service
type.

Use software to select the CVS service type.
Otherwise, Astra Trident assumes CVS-Performance
service type (hardware).

CVS service type only. Optional parameter used to
specify storage pools for volume creation.

Google Cloud account project number. The value is
found on the Google Cloud portal home page.

Required if using a shared VPC network. In this
scenario, projectNumber is the service project, and
hostProjectNumber is the host project.

The Google Cloud region where Astra Trident creates
Cloud Volumes Service volumes. When creating
cross-region Kubernetes clusters, volumes created in
an apiRegion can be used in workloads scheduled
on nodes across multiple Google Cloud regions.

Cross-region traffic incurs an additional cost.

API key for the Google Cloud service account with the
netappcloudvolumes.admin role.

It includes the JSON-formatted contents of a Google
Cloud service account’s private key file (copied
verbatim into the backend configuration file).

https://cloud.netapp.com/cloud-volumes-service-for-gcp?utm_source=NetAppTrident_ReadTheDocs&utm_campaign=Trident

Parameter

proxyURL

nfsMountOptions

limitVolumeSize

servicelevel

network

debugTraceFlags

allowedTopologies

Description Default

Proxy URL if proxy server required to connect to CVS
account. The proxy server can either be an HTTP
proxy or an HTTPS proxy.

For an HTTPS proxy, certificate validation is skipped
to allow the usage of self-signed certificates in the
proxy server.

Proxy servers with authentication enabled are not
supported.

Fine-grained control of NFS mount options. "nfsvers=3"

Fail provisioning if the requested volume size is above " (not enforced by
this value. default)

The CVS-Performance or CVS service level for new CVS-Performance default
volumes. is "standard".

CVS-Performance values are standard, premium, CVS defaultis
or extreme. "standardsw".

CVS values are standardsw or
zoneredundantstandardsw.

Google Cloud network used for Cloud Volumes "default"
Service volumes.

Debug flags to use when troubleshooting. Example, null
\{"api":false, "method":true}

Do not use this unless you are troubleshooting and
require a detailed log dump.

To enable cross-region access, your StorageClass
definition for allowedTopologies must include all
regions.

For example:

- key: topology.kubernetes.io/region
values:

- us-eastl

- europe-westl

Volume provisioning options

You can control default volume provisioning in the defaults section of the configuration file.

Parameter

exportRule

Description Default

The export rules for new volumes. "0.0.0.0/0"
Must be a comma-separated list of

any combination of IPv4 addresses

or IPv4 subnets in CIDR notation.

19

Parameter
snapshotDir

snapshotReserve

size

Description
Access to the . snapshot directory

Percentage of volume reserved for
snapshots

The size of new volumes.

CVS-Performance minimum is 100
GiB.

CVS minimum is 1 GiB.

CVS-Performance service type examples

Default
"false"

"" (accept CVS default of 0)

CVS-Performance service type
defaults to "100GiB".

CVS service type does not set a
default but requires a 1 GiB
minimum.

The following examples provide sample configurations for the CVS-Performance service type.

20

Example 1: Minimal configuration

This is the minimum backend configuration using default CVS-Performance service type with the default
"standard" service level.

version: 1

storageDriverName: gcp-cvs

projectNumber: '012345678901"

apiRegion: us-west2

apiKey:
type: service account
project id: my-gcp-project
private key id: "<id value>"
private key: |

znHczZsrrtHisIsAbOguSaPIKeyAZNChRAGz1zZE4jK3b1l/qp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZ2E4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3bl/gqp8BR4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNChRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
XsYgogyxy4zg701lwWgLwGa==

client email: cloudvolumes-admin-sal@my-gcp-
project.iam.gserviceaccount.com
client id: '123456789012345678901"

22

auth uri: https://accounts.google.com/o/oauth2/auth

token uri: https://ocauth2.googleapis.com/token

auth provider x509 cert url:
https://www.googleapis.com/oauth2/vl/certs

client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—admin-
sa%$40my-gcp-project.iam.gserviceaccount.com

Example 2: Service level configuration

This sample illustrates backend configuration options, including service level, and volume defaults.

version: 1

storageDriverName: gcp-cvs
projectNumber: '012345678901"
apiRegion: us-west2

apiKey:

type: service account

project id: my-gcp-project
private key id: "<id value>"

private key: |

znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507]Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y%m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8BR4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
XsYgbgyxy4zq701lwWgLwGa==

client email: cloudvolumes-admin-sal@my-gcp-

project.iam.gserviceaccount.com
client id: '123456789012345678901"
auth uri: https://accounts.google.com/o/ocauth2/auth

23

24

token uri: https://oauth2.googleapis.com/token

auth provider x509 cert url:
https://www.googleapis.com/ocauth2/vl/certs

client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—-admin-
sa%$40my-gcp-project.iam.gserviceaccount.com
proxyURL: http://proxy-server-hostname/
nfsMountOptions: vers=3,proto=tcp,timeo=600
limitVolumeSize: 10Ti
servicelevel: premium
defaults:

snapshotDir: 'true'

snapshotReserve: '5'

exportRule: 10.0.0.0/24,10.0.1.0/24,10.0.2.100

size: 5Ti

Example 3: Virtual pool configuration

This sample uses storage to configure virtual pools and the StorageClasses that refer back to them.
Refer to Storage class definitions to see how the storage classes were defined.

Here, specific defaults are set for all virtual pools, which set the snapshotReserve at 5% and the
exportRule to 0.0.0.0/0. The virtual pools are defined in the storage section. Each individual virtual
pool defines its own serviceLevel, and some pools overwrite the default values. Virtual pool labels
were used to differentiate the pools based on performance and protection.

version: 1
storageDriverName: gcp-cvs
projectNumber: '012345678901"
apiRegion: us-west2
apiKey:
type: service account
project id: my-gcp-project
private key id: "<id value>"

private key: |

znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jJK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jJK3bl/gqp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507]Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y%m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gp8B4Kws8zX507Y9m
XsYgbgyxy4zq701lwWgLwGa==

client email: cloudvolumes-admin-sa@my-gcp-
project.iam.gserviceaccount.com
client id: '123456789012345678901"
auth uri: https://accounts.google.com/o/ocauth2/auth
token uri: https://oauth2.googleapis.com/token
auth provider x509 cert url:
https://www.googleapis.com/ocauth2/vl/certs
client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—admin-
sa%$40my-gcp-project.iam.gserviceaccount.com
nfsMountOptions: vers=3,proto=tcp,timeo=600
defaults:
snapshotReserve: '5'
exportRule: 0.0.0.0/0
labels:
cloud: gcp
region: us-west2
storage:
- labels:
performance: extreme
protection: extra
servicelevel: extreme
defaults:
snapshotDir: 'true'
snapshotReserve: '10'
exportRule: 10.0.0.0/24
- labels:
performance: extreme
protection: standard
servicelevel: extreme
- labels:
performance: premium
protection: extra
servicelevel: premium
defaults:
snapshotDir: 'true'
snapshotReserve: '10'
- labels:
performance: premium
protection: standard
servicelevel: premium
- labels:
performance: standard
servicelevel: standard

Storage class definitions

The following StorageClass definitions apply to the virtual pool configuration example. Using
parameters.selector, you can specify for each StorageClass the virtual pool used to host a volume. The
volume will have the aspects defined in the chosen pool.

27

Storage class example

28

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs—-extreme-extra-protection
provisioner: netapp.io/trident
parameters:
selector: "performance=extreme; protection=extra"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-extreme-standard-protection
provisioner: netapp.io/trident
parameters:
selector: "performance=premium; protection=standard"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-premium-extra-protection
provisioner: netapp.io/trident
parameters:
selector: "performance=premium; protection=extra"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-premium
provisioner: netapp.io/trident
parameters:
selector: "performance=premium; protection=standard"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-standard
provisioner: netapp.io/trident
parameters:
selector: "performance=standard"
allowVolumeExpansion: true

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: cvs-extra-protection
provisioner: netapp.io/trident
parameters:

selector: "protection=extra"
allowVolumeExpansion: true

* The first StorageClass (cvs-extreme-extra-protection) maps to the first virtual pool. This is the only
pool offering extreme performance with a snapshot reserve of 10%.

* The last StorageClass (cvs-extra-protection) calls out any storage pool which provides a snapshot
reserve of 10%. Astra Trident decides which virtual pool is selected and ensures that the snapshot reserve
requirement is met.

CVS service type examples

The following examples provide sample configurations for the CVS service type.

29

Example 1: Minimum configuration

This is the minimum backend configuration using storageClass to specify the CVS service type and
default standardsw service level.

version: 1
storageDriverName: gcp-cvs
projectNumber: '012345678901"
storageClass: software
apiRegion: us-eastd
apiKey:
type: service account
project id: my-gcp-project
private key id: "<id value>"
private key: |

znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNChRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jJK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
XsYgoegyxy4zg701lwWgLwGa==

client email: cloudvolumes-admin-sal@my-gcp-
project.iam.gserviceaccount.com

30

client id: '123456789012345678901"

auth uri: https://accounts.google.com/o/ocauth2/auth

token uri: https://oauth2.googleapis.com/token

auth provider x509 cert url:
https://www.googleapis.com/ocauth2/v1/certs

client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—admin-
sa%$40my-gcp-project.iam.gserviceaccount.com

servicelevel: standardsw

31

Example 2: Storage pool configuration

32

This sample backend configuration uses storagePools to configure a storage pool.

version: 1

storageDriverName: gcp-cvs

backendName: gcp-std-so-with-pool
projectNumber: '531265380079"'
apiRegion: europe-westl

apiKey:

type: service account

project id: cloud-native-data
private key id: "<id value>"
private key: |-

MITEvAIBADANBgkghkiG9wOBAQEFAASCBKYwggSiAgEAAOIBAQDaT+0Oui9FBAW1 9
L1AGEkrYU5xd9K5N105JMkIFNDSwCD+Nv+jdl1Gvt FRLaLKSRvXyF5wzvztmODNS+
qtScpQ+5cFpQkuGtvIUI+N6qtuVYYO3b504Kp5CtqVPICgMIakK2j8pZTIgqUiMum/
5/Y90TbZrjAHSMgIm2nHzFgq2X0rgVMaHghI 6ATm4 DOuWx8XGWKTGIP1c0gPgqdlgsS
LLaWOH4VIZQZCAYyWSIUp9CAMwgHgdGOuhFNfCgMmED6PRUVVLsLvcg86X+QSWRIk
ETgE1j/sGCenPF7ti1DhGBFafd9hPnxg9PZY29ArEZwY9G/ZjZQXTWPgsOVvxiNR
DxZRC3GXAgMBAAECggEACN5¢c59bG/qnVEVI1CwMAa1M5M22z09JFh1L11jKwnt NP
Vilw2eTW2+UE7HbJru/S7KQgASDNn9kvCrakEahPRuddUMrDOvG4kT1/IODV6uFuk
Y0sZfbgd4iMUQ21smvGsqFzwloYWS5qzO1lW83ivXH/HW/1igkmY2eW+EPRS/hwSSu
SscR+SoJI7PBOBWSJh1V4yqYf3veD/D95el12CVHIRCkL85DKumeZ+yHENpiXGZAE
£8xSs4a500Pm6NHhevCw2a/UQ95/foXNUR450HtbjieJo50+FF6EYZQGEU2ZHZ08
37FBKuaJkdGWoxgaI9TL7agkGkFMF4F2qv0ZM+vy8QKBgQD40oVuOkIJDI1IhkTHP86W
esFlwlkpWyJRIZATLIOG/rVpslnX+XdDgOWQf4umdLNauS5hYEHILUGZSGs1Xk3/B
NHwWR60OXFugEKNi1u83d0zS1HhTy7PZp0Zdj5a/vVvQfPDMz 70vsgLRA7YCAbdzuQO0
+Ahg0ZtwvgOHQO64hdWO0ukpYRRWKBgQODgyHj 98ogswoYula+pPlySOpPwlLmjwKyNm
/HayzCp+Qjiyy7Tzg8AUqlH10u83XbV428jvg7kDhO7PCCKFg+mMmfgHmTpb0Mag
KpKnZg4ipsgPlyHNNEoRmcailXbwIhCLewMgMrggUiLOmCw4PscL5nK+4GKu2XE1
JLgIWAZFMOKBgFHKQIXXRAJ1kR3XpGHOGN890pZ0kCVSrgjubalef/5KY1FCt8ew
F/+aIxM21QSvmWQYOvVCnhuY/F2GFaQ7d0om3decuwI0CX/xy7PjHMkLXa2uazs4
WR17sLduj62RgGXRLX0c0QkwBiNFyHbRcpdkZJIQuibYMhBa+757SxT4BtACGAWMWT
UucocRXzZm/pdvz9wteNH3YDWnJILMxml1KCO6gMXbBoYrliY4sm3ywJWMC+1Cd/H8A
Gecxd/xVu5SmA2L2N3KMql82zhz8Th0G5DwKyDRJIGOQ0Q4 6yuNXOoYE] Lo4W] yk8Me
+t1Q8iK98EOUMZnhTgfSpSNE1bz2AgnzQ3MNIuECgYAqdvdVPnKGEvdtZ2DjyMoJd
E89UIC41W]jICGmHsd8W65+3X0RWMzKMT6aZc5tK9J5dHVMWIETnbM+1TImdBBEFga
NWOC6£f3r2xbGXHhaWS1l+nobpTuvlo56ZRIVvVk71FMsiddzMuHH8pxfgNJemwA4P
ThDHCejv035NNVE6KyoO0tA==

client email: cloudvolumes-admin-sa@cloud-native-

data.iam.gserviceaccount.com
client id: '107071413297115343396"

auth uri: https://accounts.google.com/o/ocauth2/auth
token uri: https://oauth2.googleapis.com/token
auth provider x509 cert url:
https://www.googleapis.com/oauth2/vl/certs
client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—admin-
sa%$40cloud-native-data.iam.gserviceaccount.com
storageClass: software
zone: europe-westl-b
network: default
storagePools:
- 1bc7£380-3314-6005-45e9-c7dc8c2d7509
servicelevel: Standardsw

What’s next?

After you create the backend configuration file, run the following command:
tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to
determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Configure a NetApp HCI or SolidFire backend

Learn how to create and use an Element backend with your Astra Trident installation.

Element driver details

Astra Trident provides the solidfire-san storage driver to communicate with the cluster. Supported access
modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWrite OncePod
(RWOP).

The solidfire-san storage driver supports file and block volume modes. For the Filesystem

volumeMode, Astra Trident creates a volume and creates a filesystem. The filesystem type is specified by the
StorageClass.

33

Driver Protocol
solidfire-san iISCSI
solidfire-san iSCSI

Before you begin

VolumeMode

Block

Filesystem

Access modes
supported

RWO, ROX, RWX,
RWOP

RWO, RWOP

File systems
supported

No Filesystem. Raw
block device.

xfs, ext3, extd

You'll need the following before creating an Element backend.

* A supported storage system that runs Element software.

* Credentials to a NetApp HCI/SolidFire cluster admin or tenant user that can manage volumes.

 All of your Kubernetes worker nodes should have the appropriate iSCSI tools installed. See worker node

preparation information.

Backend configuration options

See the following table for the backend configuration options:

Parameter
version
storageDriverName

backendName

Endpoint

SVIP

labels

TenantName

InitiatorIFace

UseCHAP

AccessGroups

Types

limitVolumeSize

34

Description

Name of the storage driver

Custom name or the storage
backend

MVIP for the SolidFire cluster with
tenant credentials

Storage (iISCSI) IP address and
port

Set of arbitrary JSON-formatted
labels to apply on volumes.

Tenant name to use (created if not
found)

Restrict iSCSI traffic to a specific
host interface

Use CHAP to authenticate iSCSI.
Astra Trident uses CHAP.

List of Access Group IDs to use

QoS specifications

Fail provisioning if requested
volume size is above this value

Default
Always 1
Always “solidfire-san”

“solidfire_” + storage (iSCSI) IP
address

@

“default”

true

Finds the ID of an access group
named “trident”

@

(not enforced by default)

Parameter Description Default

debugTraceFlags Debug flags to use when null
troubleshooting. Example,
{“api”:false, “method”:true}

@ Do not use debugTraceFlags unless you are troubleshooting and require a detailed log dump.

Example 1: Backend configuration for solidfire-san driver with three volume types

This example shows a backend file using CHAP authentication and modeling three volume types with specific
QoS guarantees. Most likely you would then define storage classes to consume each of these using the 10PS
storage class parameter.

version: 1
storageDriverName: solidfire-san
Endpoint: https://<user>:<password>@<mvip>/json-rpc/8.0
SVIP: "<svip>:3260"
TenantName: "<tenant>"
labels:
k8scluster: devl
backend: devl-element-cluster
UseCHAP: true
Types:
- Type: Bronze
Qos:
minIOPS: 1000
maxIOPS: 2000
burstIOPS: 4000
- Type: Silver
Qos:
minIOPS: 4000
maxIOPS: 6000
burstIOPS: 8000
- Type: Gold
Qos:
minIOPS: 6000
maxIOPS: 8000
burstIOPS: 10000

Example 2: Backend and storage class configuration for solidfire-san driver with virtual pools

This example shows the backend definition file configured with virtual pools along with StorageClasses that
refer back to them.

Astra Trident copies labels present on a storage pool to the backend storage LUN at provisioning. For

35

convenience, storage administrators can define labels per virtual pool and group volumes by label.

In the sample backend definition file shown below, specific defaults are set for all storage pools, which set the
type at Silver. The virtual pools are defined in the storage section. In this example, some of the storage
pools set their own type, and some pools override the default values set above.

version: 1

storageDriverName: solidfire-san

Endpoint: https://<user>:<password>@<mvip>/json-rpc/8.0
SVIP: "<svip>:3260"

TenantName: "<tenant>"
UseCHAP: true
Types:

- Type: Bronze
Qos:
minIOPS: 1000
maxIOPS: 2000
burstIOPS: 4000
- Type: Silver
Qos:
minIOPS: 4000
maxIOPS: 6000
burstIOPS: 8000
- Type: Gold
Qos:
minIOPS: 6000
maxIOPS: 8000
burstIOPS: 10000
type: Silver
labels:
store: solidfire
k8scluster: dev-l-cluster
region: us-east-1

storage:

- labels:
performance: gold
cost: '4'

zone: us-east-1la
type: Gold

- labels:
performance: silver
cost: '3"

zone: us-east-1b
type: Silver

- labels:

performance: bronze

36

cost: '2'
zone: us-east-1c
type: Bronze
- labels:
performance: silver
cost: '1'
zone: us-east-1d

The following StorageClass definitions refer to the above virtual pools. Using the parameters.selector
field, each StorageClass calls out which virtual pool(s) can be used to host a volume. The volume will have the
aspects defined in the chosen virtual pool.

The first StorageClass (solidfire-gold-four) will map to the first virtual pool. This is the only pool offering
gold performance with a volume Type QoS of Gold. The last StorageClass (solidfire-silver) calls out
any storage pool which offers a silver performance. Astra Trident will decide which virtual pool is selected and
will ensure the storage requirement is met.

37

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: solidfire-gold-four
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=gold; cost=4"
fsType: "ext4d"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: solidfire-silver-three
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=silver; cost=3"
fsType: "ext4d"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: solidfire-bronze-two
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=bronze; cost=2"
fsType: "ext4d"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: solidfire-silver-one
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=silver; cost=1"
fsType: "extd"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: solidfire-silver
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=silver"

fsType: "ext4d"

38

Find more information

* Volume access groups

ONTAP SAN drivers

ONTAP SAN driver overview

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP

SAN drivers.

ONTAP SAN driver details

Astra Trident provides the following SAN storage drivers to communicate with the ONTAP cluster. Supported
access modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX),
ReadWriteOncePod (RWOP).

@ If you are using Astra Control for protection, recovery, and mobility, read Astra Control driver

compatibility.

Driver

ontap-san

ontap-san

ontap-san-economy

ontap-san—-economy

Protocol

iSCSI

iSCSI

iSCSI

iISCSI

Astra Control driver compatibility

volumeMod Access modes

e

Block

Filesystem

Block

Filesystem

supported
RWO, ROX, RWX, RWOP

RWO, RWOP
ROX and RWX are not

available in Filesystem
volume mode.

RWO, ROX, RWX, RWOP

RWO, RWOP

ROX and RWX are not
available in Filesystem
volume mode.

File systems supported

No filesystem; raw block
device

xfs, ext3, ext4d

No filesystem; raw block
device

xfs, ext3, ext4d

Astra Control provides seamless protection, disaster recovery, and mobility (moving volumes between
Kubernetes clusters) for volumes created with the ontap-nas, ontap-nas-flexgroup, and ontap-san
drivers. See Astra Control replication prerequisites for details.

39

https://docs.netapp.com/us-en/trident-2307/trident-concepts/vol-access-groups.html
https://docs.netapp.com/us-en/astra-control-center/use/replicate_snapmirror.html#replication-prerequisites

* Use ontap-san-economy only if persistent volume usage count is expected to be higher
than supported ONTAP volume limits.

@ * Use ontap-nas-economy only if persistent volume usage count is expected to be higher
than supported ONTAP volume limits and the ontap-san-economy driver cannot be used.

* Do not use use ontap-nas-economy if you anticipate the need for data protection,
disaster recovery, or mobility.

User permissions

Astra Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster
user or a vsadmin SVM user, or a user with a different name that has the same role. For Amazon FSx for
NetApp ONTAP deployments, Astra Trident expects to be run as either an ONTAP or SVM administrator, using
the cluster £sxadmin user or a vsadmin SVM user, or a user with a different name that has the same role.
The fsxadmin user is a limited replacement for the cluster admin user.

If you use the 1imitAggregateUsage parameter, cluster admin permissions are required.

@ When using Amazon FSx for NetApp ONTAP with Astra Trident, the 1imitAggregateUsage
parameter will not work with the vsadmin and fsxadmin user accounts. The configuration
operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don’t
recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,
making upgrades difficult and error-prone.

Prepare to configure backend with ONTAP SAN drivers

Understand the requirements and authentication options for configuring an ONTAP
backend with ONTAP SAN drivers.

Requirements

For all ONTAP backends, Astra Trident requires at least one aggregate assigned to the SVM.

Remember that you can also run more than one driver, and create storage classes that point to one or the
other. For example, you could configure a san-dev class that uses the ontap-san driver and a san-
default class that uses the ontap-san-economy one.

All your Kubernetes worker nodes must have the appropriate iSCSI tools installed. Refer to Prepare the worker
node for details.

Authenticate the ONTAP backend

Astra Trident offers two modes of authenticating an ONTAP backend.

* Credential-based: The username and password to an ONTAP user with the required permissions. It is
recommended to use a pre-defined security login role, such as admin or vsadmin to ensure maximum
compatibility with ONTAP versions.

« Certificate-based: Astra Trident can also communicate with an ONTAP cluster using a certificate installed
on the backend. Here, the backend definition must contain Base64-encoded values of the client certificate,
key, and the trusted CA certificate if used (recommended).

40

https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html
https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html

You can update existing backends to move between credential-based and certificate-based methods. However,
only one authentication method is supported at a time. To switch to a different authentication method, you must

remove the existing method from the backend configuration.

@ If you attempt to provide both credentials and certificates, backend creation will fail with an
error that more than one authentication method was provided in the configuration file.

Enable credential-based authentication

Astra Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the
ONTAP backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin.
This ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by
future Astra Trident releases. A custom security login role can be created and used with Astra Trident, but is
not recommended.

A sample backend definition will look like this:

YAML

version: 1

backendName: ExampleBackend
storageDriverName: ontap-san
managementLIF: 10.0.0.1

svm: svm nfs

username: vsadmin

password: password

JSON

"version": 1,

"backendName": "ExampleBackend",
"storageDriverName": "ontap-san",
"managementLIF": "10.0.0.1",
"svm": "svm nfs",

"username": "vsadmin",

"password": "password"

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the
backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The
creation or update of a backend is the only step that requires knowledge of the credentials. As such, it is an
admin-only operation, to be performed by the Kubernetes/storage administrator.

41

Enable certificate-based authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three
parameters are required in the backend definition.

« clientCertificate: Base64-encoded value of client certificate.
« clientPrivateKey: Base64-encoded value of associated private key.

« trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter
must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to
authenticate as.

openssl req -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key
-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/0O=NetApp/CN=admin"

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage
administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-
name> -vserver <vserver-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled
true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-
name> -vserver <vserver-name>
security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name admin -application ontapi
—authentication-method cert

security login create -user-or-group-name admin -application http
—authentication-method cert

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>
with Management LIF IP and SVM name.

42

curl -X POST -Lk https://<ONTAP-Management-
LIF>/servlets/netapp.servlets.admin.XMLrequest filer --key k8senv.key
--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp
xmlns="http://www.netapp.com/filer/admin" version="1.21"
vifiler="<vserver-name>"><vserver-get></vserver-get></netapp>"'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert base64
base64 -w 0 k8senv.key >> key base64
base64 -w 0 trustedca.pem >> trustedca base64

7. Create backend using the values obtained from the previous step.

cat cert-backend.json

{

"version": 1,

"storageDriverName": "ontap-san",

"backendName": "SanBackend",

"managementLIF": "1.2.3.4",

"svm": "vserver test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",
"clientPrivateKey": "LSOtFaKE...0OVaLuESOtLSOK",
"trustedCACertificate": "QNFinfO...SigOyN",
"storagePrefix": "myPrefix "

}

tridentctl create backend -f cert-backend.json -n trident

fems=msm=ma== fomemeeseso====== e e
e fro— e +

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

fomm - fom e e
R fremememm=s I

| SanBackend | ontap-san | 586blcd5-8cf8-428d-a76c-2872713612cl |
online | 0 |

R et femsssesecso====== R
femm==== femememm== 4

Update authentication methods or rotate credentials

You can update an existing backend to use a different authentication method or to rotate their credentials. This
works both ways: backends that make use of username/password can be updated to use certificates;

43

backends that utilize certificates can be updated to username/password based. To do this, you must remove
the existing authentication method and add the new authentication method. Then use the updated
backend.json file containing the required parameters to execute tridentctl backend update.

cat cert-backend-updated.json

{

"version": 1,
"storageDriverName": "ontap-san",
"backendName": "SanBackend",
"managementLIF": "1.2.3.4",
"svm": "vserver test",
"username": "vsadmin",
"password": "password",
"storagePrefix": "myPrefix "

}

#Update backend with tridentctl
tridentctl update backend SanBackend -f cert-backend-updated.json -n
trident

o fmm e —— et ettt L L e e
- e +

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

F——— Fom e
- o +

| SanBackend | ontap-san | 586blcd5-8cf8-428d-a76c-2872713612cl |
online | 9 |

o e — e e ettt
t——— R +

When rotating passwords, the storage administrator must first update the password for the user

(D on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates
can be added to the user. The backend is then updated to use the new certificate, following
which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume
connections made after. A successful backend update indicates that Astra Trident can communicate with the
ONTAP backend and handle future volume operations.

Authenticate connections with bidirectional CHAP

Astra Trident can authenticate iSCSI sessions with bidirectional CHAP for the ontap-san and ontap-san-
economy drivers. This requires enabling the useCHAP option in your backend definition. When set to true,
Astra Trident configures the SVM’s default initiator security to bidirectional CHAP and set the username and
secrets from the backend file. NetApp recommends using bidirectional CHAP to authenticate connections. See
the following sample configuration:

44

version: 1

storageDriverName: ontap-san
backendName: ontap san chap
managementLIF: 192.168.0.135

svm: ontap iscsi svm

useCHAP: true

username: vsadmin

password: password
chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz

@ The useCHAP parameter is a Boolean option that can be configured only once. It is set to false
by default. After you set it to true, you cannot set it to false.

In addition to useCHAP=true, the chapInitiatorSecret, chapTargetInitiatorSecret,
chapTargetUsername, and chapUsername fields must be included in the backend definition. The secrets
can be changed after a backend is created by running tridentctl update.

How it works

By setting useCHAP to true, the storage administrator instructs Astra Trident to configure CHAP on the storage
backend. This includes the following:

 Setting up CHAP on the SVM:

o If the SVM’s default initiator security type is none (set by default) and there are no pre-existing LUNs
already present in the volume, Astra Trident will set the default security type to CHAP and proceed to
configuring the CHAP initiator and target username and secrets.

o If the SVM contains LUNs, Astra Trident will not enable CHAP on the SVM. This ensures that access to
LUNSs that are already present on the SVM isn’t restricted.

» Configuring the CHAP initiator and target username and secrets; these options must be specified in the
backend configuration (as shown above).

After the backend is created, Astra Trident creates a corresponding tridentbackend CRD and stores the
CHAP secrets and usernames as Kubernetes secrets. All PVs that are created by Astra Trident on this
backend will be mounted and attached over CHAP.

Rotate credentials and update backends

You can update the CHAP credentials by updating the CHAP parameters in the backend. json file. This will
require updating the CHAP secrets and using the tridentctl update command to reflect these changes.

When updating the CHAP secrets for a backend, you must use tridentctl to update the
backend. Do not update the credentials on the storage cluster through the CLI/ONTAP Ul as
Astra Trident will not be able to pick up these changes.

45

cat backend-san.json

"version": 1,
"storageDriverName": "ontap-san",
"backendName": "ontap san chap",
"managementLIF": "192.168.0.135",
"svm" :
"useCHAP": true,

"username": "vsadmin",

"ontap iscsi svm",

"password": "password",

"chapInitiatorSecret": "cl9gxUpDaTeD",
"chapTargetInitiatorSecret": "rgxigXgkeUpDaTeD",
"chapTargetUsername": "iJF4heBRTOTCwxyz",
"chapUsername": "uh2aNCLSd6cNwxyz",

./tridentctl update backend ontap san chap -f backend-san.json -n trident

- e +

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

o Fom e
- o +

| ontap san chap | ontap-san | aad458f3b-ad2d-4378-8a33-1a472ffbeb5c |
online | T

e —— e — e e ettt
t——— R +

Existing connections will remain unaffected; they will continue to remain active if the credentials are updated by
Astra Trident on the SVM. New connections will use the updated credentials and existing connections continue
to remain active. Disconnecting and reconnecting old PVs will result in them using the updated credentials.

ONTAP SAN configuration options and examples

Learn how to create and use ONTAP SAN drivers with your Astra Trident installation. This
section provides backend configuration examples and details for mapping backends to
StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

46

Parameter

storageDrive
rName

backendName

managementLI
F

datalLlIF

svm

useCHAP

chapInitiato
rSecret

labels

chapTargetIn
itiatorSecre
t

Description Default

Name of the storage driver ontap-nas, ontap-nas-
economy, ontap-nas-
flexgroup, ontap-san, ontap-

san—economy

Custom name or the storage backend Driver name +"_" + dataLIF

IP address of a cluster or SVM management LIF. “10.0.0.17, “[2001:1234:abcd::fefe]”
A fully-qualified domain name (FQDN) can be
specified.

Can be set to use IPv6 addresses if Astra Trident was
installed using the IPv6 flag. IPv6 addresses must be
defined in square brackets, such as
[28e8:d9fb:a825:b7bf:69%9a8:d02f:9e7b:3555

1.

For seamless MetroCluster switchover, see the
MetroCluster example.

IP address of protocol LIF. Derived by the SVM
Do not specify for iSCSI. Astra Trident uses ONTAP

Selective LUN Map to discover the iSCI LIFs needed

to establish a multi path session. A warning is

generated if dataLIF is explicitly defined.

Omit for Metrocluster. See the MetroCluster
example.

Derived if an SVM
managementLIF is specified

Storage virtual machine to use
Omit for Metrocluster. See the MetroCluster
example.

Use CHAP to authenticate iSCSI for ONTAP SAN
drivers [Boolean].

false

Set to true for Astra Trident to configure and use
bidirectional CHAP as the default authentication for
the SVM given in the backend. Refer to Prepare to
configure backend with ONTAP SAN drivers for
details.

CHAP initiator secret. Required if useCHAP=true

Set of arbitrary JSON-formatted labels to apply on
volumes

CHAP target initiator secret. Required if
useCHAP=true

47

https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html
https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html

Parameter
chapUsername

chapTargetUs
ername

clientCertif
icate

clientPrivat
eKey

trustedCACer
tificate

username

password

svm

storagePrefi
x

limitAggrega
teUsage

limitVolumeS
ize

lunsPerFlexv
ol

debugTraceFl
ags

48

Description
Inbound username. Required if useCHAP=true

Target username. Required if useCHAP=true

Baseb64-encoded value of client certificate. Used for
certificate-based auth

Base64-encoded value of client private key. Used for
certificate-based auth

Base64-encoded value of trusted CA certificate.
Optional. Used for certificate-based authentication.

Username needed to communicate with the ONTAP
cluster. Used for credential-based authentication.

Password needed to communicate with the ONTAP
cluster. Used for credential-based authentication.

Storage virtual machine to use

Prefix used when provisioning new volumes in the
SVM.

Cannot be modified later. To update this parameter,
you will need to create a new backend.

Fail provisioning if usage is above this percentage.

If you are using an Amazon FSx for NetApp ONTAP
backend, do not specify 1imitAggregateUsage.
The provided fsxadmin and vsadmin do not contain
the permissions required to retrieve aggregate usage
and limit it using Astra Trident.

Fail provisioning if requested volume size is above
this value.

Also restricts the maximum size of the volumes it
manages for gtrees and LUNs.

Maximum LUNs per Flexvol, must be in range [50,
200]

Debug flags to use when troubleshooting. Example,
{"api":false, "method":true}

Do not use unless you are troubleshooting and require
a detailed log dump.

Default

Derived if an SVM
managementLIF is specified

trident

(not enforced by default)

(not enforced by default)

100

null

Parameter Description Default

USeREST Boolean parameter to use ONTAP REST APIs. Tech false
preview

useREST is provided as a tech preview that is
recommended for test environments and not for
production workloads. When set to true, Astra
Trident will use ONTAP REST APIs to communicate
with the backend. This feature requires ONTAP 9.11.1
and later. In addition, the ONTAP login role used must
have access to the ontap application. This is satisfied
by the pre-defined vsadmin and cluster-admin
roles.

useREST is not supported with MetroCluster.

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an

example, see the configuration examples below.

Parameter Description Default

spaceAllocation Space-allocation for LUNs "true"

spaceReserve Space reservation mode; "none" "none"
(thin) or "volume" (thick)

snapshotPolicy Snapshot policy to use "none"

gosPolicy QoS policy group to assign for

volumes created. Choose one of
gosPolicy or adaptiveQosPolicy per
storage pool/backend.

Using QoS policy groups with Astra
Trident requires ONTAP 9.8 or later.
We recommend using a non-shared
QoS policy group and ensuring the
policy group is applied to each
constituent individually. A shared
QoS policy group will enforce the
ceiling for the total throughput of all
workloads.

adaptiveQosPolicy Adaptive QoS policy group to
assign for volumes created.
Choose one of qosPolicy or
adaptiveQosPolicy per storage

pool/backend
snapshotReserve Percentage of volume reserved for "0" if snapshotPolicy is "none",
snapshots otherwise ""

49

Parameter Description

Split a clone from its parent upon
creation

splitOnClone

Enable NetApp Volume Encryption
(NVE) on the new volume; defaults
to false. NVE must be licensed
and enabled on the cluster to use
this option.

encryption

If NAE is enabled on the backend,
any volume provisioned in Astra
Trident will be NAE enabled.

For more information, refer to: How
Astra Trident works with NVE and
NAE.

Enable LUKS encryption. Refer to
Use Linux Unified Key Setup
(LUKS).

luksEncryption

securityStyle Security style for new volumes

tieringPolicy Tiering policy to use "none"

Volume provisioning examples

Here’s an example with defaults defined:

50

Default

"false"

"false"

unix

"snapshot-only" for pre-ONTAP 9.5
SVM-DR configuration

https://docs.netapp.com/us-en/trident-2307/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2307/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2307/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2307/trident-reco/security-luks.html
https://docs.netapp.com/us-en/trident-2307/trident-reco/security-luks.html

version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
svm: trident svm
username: admin
password: <password>
labels:
k8scluster: dev2
backend: dev2-sanbackend
storagePrefix: alternate-trident
debugTraceFlags:
api: false
method: true
defaults:
spaceReserve: volume
qgosPolicy: standard
spaceAllocation: 'false'
snapshotPolicy: default
snapshotReserve: '10'

For all volumes created using the ontap-san driver, Astra Trident adds an extra 10 percent
capacity to the FlexVol to accommodate the LUN metadata. The LUN will be provisioned with

@ the exact size that the user requests in the PVC. Astra Trident adds 10 percent to the FlexVol
(shows as Available size in ONTAP). Users will now get the amount of usable capacity they
requested. This change also prevents LUNs from becoming read-only unless the available
space is fully utilized. This does not apply to ontap-san-economy.

For backends that define snapshotReserve, Astra Trident calculates the size of volumes as follows:

Total volume size = [(PVC requested size) / (1 - (snapshotReserve
percentage) / 100)] * 1.1

The 1.1 is the extra 10 percent Astra Trident adds to the FlexVol to accommodate the LUN metadata. For
snapshotReserve = 5%, and PVC request = 5GiB, the total volume size is 5.79GiB and the available size is
5.5GiB. The volume show command should show results similar to this example:

Aggregate State i Available Used%

_pvc_B89f1c156_3801_4ded4_979d_034d54c395f4
online RW 18GB 5.88GB
_pvc_ed42ecbfe_3baa_4afb6_996d_134adbbbB8ebd
online RW 5.79GB 5.50GB
_pvc_eB372153_9ad9_474a_951a_0Bael5elc@ba
online RW 1GB 511.8MB
3 entries were displayed.

51

Currently, resizing is the only way to use the new calculation for an existing volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest
way to define a backend.

@ If you are using Amazon FSx on NetApp ONTAP with Astra Trident, we recommend you specify
DNS names for LIFs instead of IP addresses.

ONTAP SAN example

This is a basic configuration using the ontap-san driver.

version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
svm: svm_iscsi
labels:
k8scluster: test-cluster-1
backend: testclusterl-sanbackend
username: vsadmin

password: <password>

ONTAP SAN economy example

version: 1

storageDriverName: ontap-san-economy
managementLIF: 10.0.0.1

svm: svm_iscsi eco

username: vsadmin

password: <password>

52

MetroCluster example

You can configure the backend to avoid having to manually update the backend definition after switchover
and switchback during SVM replication and recovery.

For seamless switchover and switchback, specify the SVM using managementLIF and omit the
dataLIF and svm parameters. For example:

version: 1
storageDriverName: ontap-san
managementLIF: 192.168.1.66
username: vsadmin

password: password

Certificate-based authentication example

In this basic configuration example clientCertificate, clientPrivateKey, and
trustedCACertificate (optional, if using trusted CA) are populated in backend. json and take the
base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

version: 1

storageDriverName: ontap-san

backendName: DefaultSANBackend

managementLIF: 10.0.0.1

svm: svm iscsi

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz
clientCertificate: ZXROZXJwYXB...ICMgJd3BhcGVyc2
clientPrivateKey: vciwKIyAgZG...0cnksIGR1c2NyaX
trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz

https://docs.netapp.com/us-en/trident-2307/trident-reco/backup.html#svm-replication-and-recovery

Bidirectional CHAP examples

These examples create a backend with useCHAP set to true.

ONTAP SAN CHAP example

version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
svm: svm _iscsi
labels:

k8scluster: test-cluster-1

backend: testclusterl-sanbackend
useCHAP: true
chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: 1JF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz
username: vsadmin

password: <password>

ONTAP SAN economy CHAP example

version: 1

storageDriverName: ontap-san-economy
managementLIF: 10.0.0.1

svm: svm_iscsi eco

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

Examples of backends with virtual pools

In these sample backend definition files, specific defaults are set for all storage pools, such as spaceReserve
at none, spaceAllocation atfalse, and encryption at false. The virtual pools are defined in the storage
section.

Astra Trident sets provisioning labels in the "Comments" field. Comments are set on the FlexVol. Astra Trident
copies all labels present on a virtual pool to the storage volume at provisioning. For convenience, storage
administrators can define labels per virtual pool and group volumes by label.

54

In these examples, some of the storage pools set their own spaceReserve, spaceAllocation, and
encryption values, and some pools override the default values.

55

ONTAP SAN example

56

version: 1

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: svm iscsi

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: 1JF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

defaults:
spaceAllocation: 'false'
encryption: 'false'

gosPolicy: standard
labels:
store: san store
kubernetes-cluster: prod-cluster-1
region: us east 1
storage:
- labels:
protection: gold
creditpoints: '40000"
zone: us_east la
defaults:
spaceAllocation: 'true'
encryption: 'true'
adaptiveQosPolicy: adaptive-extreme
- labels:
protection: silver
creditpoints: '20000'
zone: us_east 1b

defaults:
spaceAllocation: 'false'
encryption: 'true'

qosPolicy: premium
- labels:
protection: bronze
creditpoints: '5000'
zone: us_east lc
defaults:
spaceAllocation: 'true'

encryption: 'false'

ONTAP SAN economy example

version: 1

storageDriverName: ontap-san-economy
managementLIF: 10.0.0.1

svm: svm_iscsi eco

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

defaults:
spaceAllocation: 'false'
encryption: 'false'
labels:

store: san_economy store
region: us east 1
storage:
- labels:
app: oracledb
cost: '30'
zone: us_ east la
defaults:
spaceAllocation: 'true'
encryption: 'true'
- labels:
app: postgresdb
cost: '20"'
zone: us_east 1b
defaults:
spaceAllocation: 'false'
encryption: 'true'
- labels:
app: mysqgldb
cost: '10"
zone: us_east lc
defaults:
spaceAllocation: 'true'
encryption: 'false'
- labels:
department: legal
creditpoints: '5000'
zone: us_east lc

58

defaults:
spaceAllocation: 'true'
encryption: 'false'

Map backends to StorageClasses

The following StorageClass definitions refer to the Examples of backends with virtual pools. Using the
parameters.selector field, each StorageClass calls out which virtual pools can be used to host a volume.
The volume will have the aspects defined in the chosen virtual pool.

* The protection—-gold StorageClass will map to the first virtual pool in the ontap-san backend. This is
the only pool offering gold-level protection.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-gold
provisioner: netapp.io/trident
parameters:
selector: "protection=gold"
fsType: "ext4d"

* The protection-not-gold StorageClass will map to the second and third virtual pool in ontap-san
backend. These are the only pools offering a protection level other than gold.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-not-gold
provisioner: netapp.io/trident
parameters:
selector: "protection!=gold"
fsType: "ext4d"

* The app-mysgldb StorageClass will map to the third virtual pool in ontap-san-economy backend. This
is the only pool offering storage pool configuration for the mysqldb type app.

59

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: app-mysqgldb
provisioner: netapp.io/trident
parameters:
selector: "app=mysgldb"
fsType: "ext4d"

* The protection-silver-creditpoints-20k StorageClass will map to the second virtual pool in
ontap-san backend. This is the only pool offering silver-level protection and 20000 creditpoints.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-silver-creditpoints-20k
provisioner: netapp.io/trident
parameters:
selector: "protection=silver; creditpoints=20000"
fsType: "ext4d"

* The creditpoints-5k StorageClass will map to the third virtual pool in ontap-san backend and the
fourth virtual pool in the ontap-san-economy backend. These are the only pool offerings with 5000
creditpoints.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: creditpoints-5k
provisioner: netapp.io/trident
parameters:
selector: "creditpoints=5000"
fsType: "ext4d"

Astra Trident will decide which virtual pool is selected and will ensure the storage requirement is met.

ONTAP NAS drivers

ONTAP NAS driver overview

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP
NAS drivers.

60

ONTAP NAS driver details

Astra Trident provides the following NAS storage drivers to communicate with the ONTAP cluster. Supported
access modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX),
ReadWriteOncePod (RWOP).

@ If you are using Astra Control for protection, recovery, and mobility, read Astra Control driver
compatibility.
Driver Protocol volumeMod Access modes File systems supported
e supported
ontap-nas NFS Filesystem RWO, ROX, RWX, RWOP " nfs, smb
SMB
ontap-nas-economy NFS Filesystem RWO, ROX, RWX, RWOP ™ nfs, smb
SMB
ontap-nas-flexgroup NFS Filesystem RWO, ROX, RWX, RWOP ™ nfs, smb
SMB

Astra Control driver compatibility

Astra Control provides seamless protection, disaster recovery, and mobility (moving volumes between
Kubernetes clusters) for volumes created with the ontap-nas, ontap-nas-flexgroup, and ontap-san
drivers. See Astra Control replication prerequisites for details.

* Use ontap-san-economy only if persistent volume usage count is expected to be higher
than supported ONTAP volume limits.

@ * Use ontap-nas-economy only if persistent volume usage count is expected to be higher
than supported ONTAP volume limits and the ontap-san-economy driver cannot be used.

* Do not use use ontap-nas-economny if you anticipate the need for data protection,
disaster recovery, or mobility.

User permissions

Astra Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster
user or a vsadmin SVM user, or a user with a different name that has the same role.

For Amazon FSx for NetApp ONTAP deployments, Astra Trident expects to be run as either an ONTAP or SVM
administrator, using the cluster £sxadmin user or a vsadmin SVM user, or a user with a different name that
has the same role. The fsxadmin user is a limited replacement for the cluster admin user.

If you use the 1imitAggregateUsage parameter, cluster admin permissions are required.

@ When using Amazon FSx for NetApp ONTAP with Astra Trident, the 1imitAggregateUsage
parameter will not work with the vsadmin and fsxadmin user accounts. The configuration
operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don't
recommend it. Most new releases of Trident will call additional APls that would have to be accounted for,

61

https://docs.netapp.com/us-en/astra-control-center/use/replicate_snapmirror.html#replication-prerequisites
https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html
https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html

making upgrades difficult and error-prone.

Prepare to configure a backend with ONTAP NAS drivers

Understand the requirements, authentication options, and export policies for configuring
an ONTAP backend with ONTAP NAS drivers.

Requirements

 For all ONTAP backends, Astra Trident requires at least one aggregate assigned to the SVM.

* You can run more than one driver, and create storage classes that point to one or the other. For example,
you could configure a Gold class that uses the ontap-nas driver and a Bronze class that uses the
ontap-nas—-economy ONe.

« All your Kubernetes worker nodes must have the appropriate NFS tools installed. See here for more
details.

* Astra Trident supports SMB volumes mounted to pods running on Windows nodes only. Refer to Prepare to
provision SMB volumes for details.

Authenticate the ONTAP backend

Astra Trident offers two modes of authenticating an ONTAP backend.

 Credential-based: The username and password to an ONTAP user with the required permissions. It is
recommended to use a pre-defined security login role, such as admin or vsadmin to ensure maximum
compatibility with ONTAP versions.

« Certificate-based: Astra Trident can also communicate with an ONTAP cluster using a certificate installed
on the backend. Here, the backend definition must contain Base64-encoded values of the client certificate,
key, and the trusted CA certificate if used (recommended).

You can update existing backends to move between credential-based and certificate-based methods. However,
only one authentication method is supported at a time. To switch to a different authentication method, you must
remove the existing method from the backend configuration.

@ If you attempt to provide both credentials and certificates, backend creation will fail with an
error that more than one authentication method was provided in the configuration file.

Enable credential-based authentication

Astra Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the
ONTAP backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin.
This ensures forward compatibility with future ONTAP releases that might expose feature APls to be used by
future Astra Trident releases. A custom security login role can be created and used with Astra Trident, but is
not recommended.

A sample backend definition will look like this:

62

YAML

version: 1

backendName: ExampleBackend
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2

svm: svm nfs

username: vsadmin

password: password

JSON

"version": 1,

"backendName": "ExampleBackend",
"storageDriverName": "ontap-nas",
"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.2",

"svm": "svm nfs",

"username": "vsadmin",

"password": "password"

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the
backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The
creation/updation of a backend is the only step that requires knowledge of the credentials. As such, it is an
admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based Authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three
parameters are required in the backend definition.
« clientCertificate: Base64-encoded value of client certificate.
« clientPrivateKey: Base64-encoded value of associated private key.
« trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter
must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to
authenticate as.

63

openssl reqg -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key
-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=vsadmin"

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage
administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-
name> -vserver <vserver—-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled
true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-
name> -vserver <vserver—-name>
security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name vsadmin -application ontapi
—authentication-method cert -vserver <vserver-name>
security login create -user-or-group-name vsadmin -application http

—authentication-method cert -vserver <vserver-name>

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>
with Management LIF IP and SVM name. You must ensure the LIF has its service policy set to default-
data-management.

curl -X POST -Lk https://<ONTAP-Management-
LIF>/servlets/netapp.servlets.admin.XMLrequest filer --key k8senv.key
--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp
xmlns="http://www.netapp.com/filer/admin" version="1.21"
vfiler="<vserver-name>"><vserver-get></vserver—-get></netapp>"'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert baseb64
base64 -w 0 k8senv.key >> key base64
base64 -w 0 trustedca.pem >> trustedca baset4

64

7. Create backend using the values obtained from the previous step.

cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "NasBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",
"clientPrivateKey": "LSOtFaKE...O0VaLuESOtLSOK",
"storagePrefix": "myPrefix "

}

#Update backend with tridentctl
tridentctl update backend NasBackend -f cert-backend-updated.json -n

trident

o e Rt bt
o to——————— +

| NAME | STORAGE DRIVER | UulbD

STATE | VOLUMES |

o —— o ettt b L e PP
- F—m +

| NasBackend | ontap-nas | 98el9%b74-aec7-4a3d-8dcf-128e5033b214 |
online | 9 |

e —— - Bt it e e P
o F——— +

Update authentication methods or rotate credentials

You can update an existing backend to use a different authentication method or to rotate their credentials. This
works both ways: backends that make use of username/password can be updated to use certificates;
backends that utilize certificates can be updated to username/password based. To do this, you must remove
the existing authentication method and add the new authentication method. Then use the updated
backend.json file containing the required parameters to execute tridentctl update backend.

65

cat cert-backend-updated.json
{

"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "NasBackend",
"managementLIF": "1.2.3.4",
"dataLIF": "1.2.3.8",

"svm": "vserver test",
"username": "vsadmin",
"password": "password",
"storagePrefix": "myPrefix "

}

#Update backend with tridentctl
tridentctl update backend NasBackend -f cert-backend-updated.json -n
trident

Pommmmmmmmm== Fommmemcemmes=e== B e
Fommmmmoe e +

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

Fommmmmmmomo= S e e Fommmmmmmmesrrrrrrrre e reme s e mmm o
Fommmmme Pommmmmme= +

| NasBackend | ontap-nas | 98el9b74-aec7/-4a3d-8dcf-128e5033b214 |
online | 9 |

P e Fommmmememesesesese s s s s e eses
o= Fommmemm== +

When rotating passwords, the storage administrator must first update the password for the user

@ on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates
can be added to the user. The backend is then updated to use the new certificate, following
which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume
connections made after. A successful backend update indicates that Astra Trident can communicate with the
ONTAP backend and handle future volume operations.

Manage NFS export policies

Astra Trident uses NFS export policies to control access to the volumes that it provisions.

Astra Trident provides two options when working with export policies:

 Astra Trident can dynamically manage the export policy itself; in this mode of operation, the storage
administrator specifies a list of CIDR blocks that represent admissible IP addresses. Astra Trident adds
node IPs that fall in these ranges to the export policy automatically. Alternatively, when no CIDRs are
specified, any global-scoped unicast IP found on the nodes will be added to the export policy.

» Storage administrators can create an export policy and add rules manually. Astra Trident uses the default

66

export policy unless a different export policy name is specified in the configuration.

Dynamically manage export policies

Astra Trident provides the ability to dynamically manage export policies for ONTAP backends. This provides
the storage administrator the ability to specify a permissible address space for worker node IPs, rather than

defining explicit rules manually. It greatly simplifies export policy management; modifications to the export

policy no longer require manual intervention on the storage cluster. Moreover, this helps restrict access to the

storage cluster only to worker nodes that have IPs in the range specified, supporting a fine-grained and
automated management.

Do not use Network Address Translation (NAT) when using dynamic export policies. With NAT,
the storage controller sees the frontend NAT address and not the actual IP host address, so
access will be denied when no match is found in the export rules.

Example

There are two configuration options that must be used. Here’s an example backend definition:

version: 1

storageDriverName: ontap-nas
backendName: ontap nas auto export
managementLIF: 192.168.0.135

svm: svml

username: vsadmin

password: password
autoExportCIDRs:

- 192.168.0.0/24

autoExportPolicy: true

When using this feature, you must ensure that the root junction in your SVM has a previously

(D created export policy with an export rule that permits the node CIDR block (such as the default
export policy). Always follow NetApp recommended best practice to dedicate an SVM for Astra
Trident.

Here is an explanation of how this feature works using the example above:

* autoExportPolicy is setto true. This indicates that Astra Trident will create an export policy for the

svml SVM and handle the addition and deletion of rules using autoExportCIDRs address blocks. For
example, a backend with UUID 403b5326-8482-40db-96d0-d83fb3f4daec and autoExportPolicy set to
true creates an export policy named trident-403b5326-8482-40db-96d0-d83fb3f4daec on the
SVM.

* autoExportCIDRs contains a list of address blocks. This field is optional and it defaults to ["0.0.0.0/0",
"::/0"]. If not defined, Astra Trident adds all globally-scoped unicast addresses found on the worker nodes.

In this example, the 192.168.0.0/24 address space is provided. This indicates that Kubernetes node IPs

that fall within this address range will be added to the export policy that Astra Trident creates. When Astra
Trident registers a node it runs on, it retrieves the IP addresses of the node and checks them against the

67

address blocks provided in autoExportCIDRs. After filtering the IPs, Astra Trident creates export policy rules
for the client IPs it discovers, with one rule for each node it identifies.

You can update autoExportPolicy and autoExportCIDRs for backends after you create them. You can
append new CIDRs for a backend that is automatically managed or delete existing CIDRs. Exercise care when
deleting CIDRs to ensure that existing connections are not dropped. You can also choose to disable
autoExportPolicy for a backend and fall back to a manually created export policy. This will require setting
the exportPolicy parameter in your backend config.

After Astra Trident creates or updates a backend, you can check the backend using tridentctl or the
corresponding tridentbackend CRD:

./tridentctl get backends ontap nas auto export -n trident -o yaml

items:
- backendUUID: 403b5326-8482-40db-96d0-d83fb3f4daec
config:
aggregate: ""
autoExportCIDRs:

- 192.168.0.0/24
autoExportPolicy: true
backendName: ontap nas auto export
chapInitiatorSecret: ""
chapTargetInitiatorSecret: ""
chapTargetUsername: ""
chapUsername: ""
dataLIF: 192.168.0.135
debug: false
debugTraceFlags: null
defaults:
encryption: "false"
exportPolicy: <automatic>
fileSystemType: extd

As nodes are added to a Kubernetes cluster and registered with the Astra Trident controller, export policies of
existing backends are updated (provided they fall in the address range specified in autoExportCIDRs for the
backend).

When a node is removed, Astra Trident checks all backends that are online to remove the access rule for the
node. By removing this node IP from the export policies of managed backends, Astra Trident prevents rogue
mounts, unless this IP is reused by a new node in the cluster.

For previously existing backends, updating the backend with tridentctl update backend will ensure that
Astra Trident manages the export policies automatically. This will create a new export policy named after the
backend’s UUID and volumes that are present on the backend will use the newly created export policy when
they are mounted again.

68

Deleting a backend with auto-managed export policies will delete the dynamically created export
policy. If the backend is re-created, it is treated as a new backend and will result in the creation
of a new export policy.

If the IP address of a live node is updated, you must restart the Astra Trident pod on the node. Astra Trident
will then update the export policy for backends it manages to reflect this IP change.

Prepare to provision SMB volumes

With a little additional preparation, you can provision SMB volumes using ontap-nas drivers.

You must configure both NFS and SMB/CIFS protocols on the SVM to create an ontap-nas-
economy SMB volume for ONTAP on-premises. Failure to configure either of these protocols
will cause SMB volume creation to fail.

Before you begin
Before you can provision SMB volumes, you must have the following.

* A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows
Server 2019. Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

At least one Astra Trident secret containing your Active Directory credentials. To generate secret
smbcreds:

kubectl create secret generic smbcreds --from-literal username=user

-—-from-literal password='password'
* A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or
GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

Steps
1. For on-premises ONTAP, you can optionally create an SMB share or Astra Trident can create one for you.

@ SMB shares are required for Amazon FSx for ONTAP.

You can create the SMB admin shares in one of two ways either using the Microsoft Management Console
Shared Folders snap-in or using the ONTAP CLI. To create the SMB shares using the ONTAP CLI:

a. If necessary, create the directory path structure for the share.

The vserver cifs share create command checks the path specified in the -path option during
share creation. If the specified path does not exist, the command fails.

b. Create an SMB share associated with the specified SVM:

vserver cifs share create -vserver vserver name -share-name
share name -path path [-share-properties share properties,...]
[other attributes] [-comment text]

69

https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console

c. Verify that the share was created:

vserver cifs share show -share-name share name

@ Refer to Create an SMB share for full details.

2. When creating the backend, you must configure the following to specify SMB volumes. For all FSx for
ONTAP backend configuration options, refer to FSx for ONTAP configuration options and examples.

Parameter Description Example

smbShare You can specify one of the smb-share
following: the name of an SMB
share created using the Microsoft
Management Console or ONTAP
CLI; a name to allow Astra Trident
to create the SMB share; or you
can leave the parameter blank to
prevent common share access to
volumes.

This parameter is optional for on-
premises ONTAP.

This parameter is required for
Amazon FSx for ONTAP
backends and cannot be blank.

nasType Must set to smb. If null, defaults smb
to nfs.
securityStyle Security style for new volumes. ntfs ormixed for SMB volumes

Must be set to ntfs or mixed
for SMB volumes.

unixPermissions Mode for new volumes. Must be ™"
left empty for SMB volumes.

ONTAP NAS configuration options and examples

Learn to create and use ONTAP NAS drivers with your Astra Trident installation. This
section provides backend configuration examples and details for mapping backends to
StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

70

https://docs.netapp.com/us-en/ontap/smb-config/create-share-task.html

Parameter
storageDrive
rName
backendName

managementLI
F

dataLIF

svm

autoExportPo
licy

Description Default

Name of the storage driver "ontap-nas", "ontap-nas-economy",

"ontap-nas-flexgroup", "ontap-san”,
"ontap-san-economy"

Custom name or the storage backend Driver name +"_" + dataLIF

IP address of a cluster or SVM management LIF “10.0.0.17, “[2001:1234:abcd::fefe]”

A fully-qualified domain name (FQDN) can be
specified.

Can be set to use IPv6 addresses if Astra Trident was
installed using the IPv6 flag. IPv6 addresses must be
defined in square brackets, such as
[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555

1.

For seamless MetroCluster switchover, see the
MetroCluster example.

IP address of protocol LIF. Specified address or derived from
SVM, if not specified (not

We recommend specifying dataLIF. If not provided, recommended)

Astra Trident fetches data LIFs from the SVM. You

can specify a fully-qualified domain name (FQDN) to

be used for the NFS mount operations, allowing you

to create a round-robin DNS to load-balance across

multiple data LIFs.

Can be changed after initial setting. Refer to Update
dataLIF after initial configuration.

Can be set to use IPv6 addresses if Astra Trident was
installed using the IPv6 flag. IPv6 addresses must be
defined in square brackets, such as
[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555

1.

Omit for Metrocluster. See the MetroCluster
example.

Storage virtual machine to use Derived if an SVM
managementLIF is specified

Omit for Metrocluster. See the MetroCluster
example.

Enable automatic export policy creation and updating false
[Boolean].

Using the autoExportPolicy and
autoExportCIDRs options, Astra Trident can
manage export policies automatically.

71

Parameter

autoExportCI
DRs

labels

clientCertif
icate

clientPrivat
eKey

trustedCACer
tificate

username

password

storagePrefi
X

limitAggrega
teUsage

limitVolumeS
ize

lunsPerFlexv
ol

debugTraceFl
ags

nasType

72

Description
List of CIDRs to filter Kubernetes' node IPs against
when autoExportPolicy is enabled.

Using the autoExportPolicy and
autoExportCIDRs options, Astra Trident can
manage export policies automatically.

Set of arbitrary JSON-formatted labels to apply on
volumes

Base64-encoded value of client certificate. Used for
certificate-based auth

Base64-encoded value of client private key. Used for
certificate-based auth

Base64-encoded value of trusted CA certificate.
Optional. Used for certificate-based auth

Username to connect to the cluster/SVM. Used for
credential-based auth

Password to connect to the cluster/SVM. Used for
credential-based auth

Prefix used when provisioning new volumes in the
SVM. Cannot be updated after you set it

Fail provisioning if usage is above this percentage.

Does not apply to Amazon FSx for ONTAP

Fail provisioning if requested volume size is above
this value.

Also restricts the maximum size of the volumes it
manages for gtrees and LUNs, and the
gtreesPerFlexvol option allows customizing the
maximum number of gtrees per FlexVol.

Maximum LUNs per Flexvol, must be in range [50,
200]

Debug flags to use when troubleshooting. Example,
{"api":false, "method":true}

Do not use debugTraceFlags unless you are
troubleshooting and require a detailed log dump.

Configure NFS or SMB volumes creation.

Options are nfs, smb or null. Setting to null defaults
to NFS volumes.

Default
['0.0.0.0/0", "::/0"

"trident"

" (not enforced by default)

"" (not enforced by default)

ll1 Ooll

null

nfs

Parameter Description Default

nfsMountOpti Comma-separated list of NFS mount options.

ons
The mount options for Kubernetes-persistent volumes
are normally specified in storage classes, but if no
mount options are specified in a storage class, Astra
Trident will fall back to using the mount options
specified in the storage backend’s configuration file.

If no mount options are specified in the storage class
or the configuration file, Astra Trident will not set any
mount options on an associated persistent volume.

gtreesPerFle Maximum Qtrees per FlexVol, must be in range [50, "200"
xvol 300]

smbShare You can specify one of the following: the name of an smb-share
SMB share created using the Microsoft Management
Console or ONTAP CLI; a name to allow Astra Trident
to create the SMB share; or you can leave the
parameter blank to prevent common share access to
volumes.

This parameter is optional for on-premises ONTAP.

This parameter is required for Amazon FSx for
ONTAP backends and cannot be blank.

useREST Boolean parameter to use ONTAP REST APIs. Tech false
preview

useREST is provided as a tech preview that is
recommended for test environments and not for
production workloads. When set to true, Astra
Trident will use ONTAP REST APIs to communicate
with the backend. This feature requires ONTAP 9.11.1
and later. In addition, the ONTAP login role used must
have access to the ontap application. This is satisfied
by the pre-defined vsadmin and cluster-admin
roles.

useREST is not supported with MetroCluster.

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an
example, see the configuration examples below.
Parameter Description Default

spaceAllocat Space-allocation for LUNs "true"

ion

Parameter

spaceReserve

snapshotPoli
cy

gosPolicy

adaptiveQosP
olicy

snapshotRese
rve

splitOnClone

encryption

tieringPolic
y

unixPermissi
ons

snapshotDir
exportPolicy

securityStyl
e

Description

Space reservation mode; "none" (thin) or "volume"
(thick)

Snapshot policy to use

QoS policy group to assign for volumes created.
Choose one of qosPolicy or adaptiveQosPolicy per
storage pool/backend

Adaptive QoS policy group to assign for volumes
created. Choose one of qosPolicy or
adaptiveQosPolicy per storage pool/backend.

Not supported by ontap-nas-economy.

Percentage of volume reserved for snapshots

Split a clone from its parent upon creation

Enable NetApp Volume Encryption (NVE) on the new
volume; defaults to false. NVE must be licensed and
enabled on the cluster to use this option.

If NAE is enabled on the backend, any volume
provisioned in Astra Trident will be NAE enabled.

For more information, refer to: How Astra Trident
works with NVE and NAE.

Tiering policy to use "none"

Mode for new volumes

Controls access to the . snapshot directory

Export policy to use

Security style for new volumes.
NFS supports mixed and unix security styles.

SMB supports mixed and ntfs security styles.

Default

"none"

"none"

"0" if snapshotPolicy is "none",
otherwise ""

"false"

"false"

"snapshot-only" for pre-ONTAP 9.5
SVM-DR configuration

"777" for NFS volumes; empty (not
applicable) for SMB volumes

"false"
"default"

NFS default is unix.

SMB default is ntfs.

Using QoS policy groups with Astra Trident requires ONTAP 9.8 or later. It is recommended to

®

workloads.

Volume provisioning examples

Here’s an example with defaults defined:

74

use a non-shared QoS policy group and ensure the policy group is applied to each constituent
individually. A shared QoS policy group will enforce the ceiling for the total throughput of all

https://docs.netapp.com/us-en/trident-2307/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2307/trident-reco/security-reco.html

version: 1
storageDriverName: ontap-nas
backendName: customBackendName
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2
labels:
k8scluster: devl
backend: devl-nasbackend
svm: trident svm
username: cluster-admin
password: <password>
limitAggregateUsage: 80%
limitVolumeSize: 50Gi
nfsMountOptions: nfsvers=4
debugTraceFlags:
api: false
method: true
defaults:
spaceReserve: volume
gosPolicy: premium
exportPolicy: myk8scluster
snapshotPolicy: default
snapshotReserve: '10'

For ontap-nas and ontap—-nas-flexgroups, Astra Trident now uses a new calculation to ensure that the
FlexVol is sized correctly with the snapshotReserve percentage and PVC. When the user requests a PVC,
Astra Trident creates the original FlexVol with more space by using the new calculation. This calculation
ensures that the user receives the writable space they requested for in the PVC, and not lesser space than
what they requested. Before v21.07, when the user requests a PVC (for example, 5GiB), with the
snapshotReserve to 50 percent, they get only 2.5GiB of writeable space. This is because what the user
requested for is the whole volume and snapshotReserve is a percentage of that. With Trident 21.07, what
the user requests for is the writeable space and Astra Trident defines the snapshotReserve number as the
percentage of the whole volume. This does not apply to ontap-nas-economy. See the following example to
see how this works:

The calculation is as follows:

Total volume size = (PVC requested size) / (1 - (snapshotReserve

percentage) / 100)

For snapshotReserve = 50%, and PVC request = 5GiB, the total volume size is 2/.5 = 10GiB and the available
size is 5GiB, which is what the user requested in the PVC request. The volume show command should show
results similar to this example:

75

Vserver Volume Aggregate State 'pe Size Available Used%

_pvc_89f1lcl56 3801 4ded4 9f9d _034d54c395f74
online Rw 18GB

_pvc_eB372153_9ad9_474a_95la_@8ael5elc@ba
online RW

2 entries were displayed.

Existing backends from previous installs will provision volumes as explained above when upgrading Astra
Trident. For volumes that you created before upgrading, you should resize their volumes for the change to be
observed. For example, a 2GiB PVC with snapshotReserve=50 earlier resulted in a volume that provides
1GiB of writable space. Resizing the volume to 3GiB, for example, provides the application with 3GiB of
writable space on a 6 GiB volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest
way to define a backend.

@ If you are using Amazon FSx on NetApp ONTAP with Trident, the recommendation is to specify
DNS names for LIFs instead of IP addresses.

ONTAP NAS economy example

version: 1

storageDriverName: ontap-nas—economy
managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm nfs

username: vsadmin

password: password

ONTAP NAS Flexgroup example

version: 1

storageDriverName: ontap-nas-flexgroup
managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm nfs

username: vsadmin

password: password

76

MetroCluster example

You can configure the backend to avoid having to manually update the backend definition after switchover
and switchback during SVM replication and recovery.

For seamless switchover and switchback, specify the SVM using managementLIF and omit the
dataLIF and svm parameters. For example:

version: 1
storageDriverName: ontap-nas
managementLIF: 192.168.1.66
username: vsadmin

password: password

SMB volumes example

version: 1

backendName: ExampleBackend
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
nasType: smb

securityStyle: ntfs
unixPermissions: ""
datalLIF: 10.0.0.2
svm: svm nfs
username: vsadmin
password: password

https://docs.netapp.com/us-en/trident-2307/trident-reco/backup.html#svm-replication-and-recovery

Certificate-based authentication example

This is a minimal backend configuration example. clientCertificate, clientPrivateKey, and
trustedCACertificate (optional, if using trusted CA) are populated in backend. json and take the
base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

version: 1

backendName: DefaultNASBackend
storageDriverName: ontap-nas

managementLIF: 10.0.0.1

datalLIF: 10.0.0.15

svm: nfs svm

clientCertificate: ZXROZXJwYXB...ICMgJd3BhcGVyc2
clientPrivateKey: vciwKIyAgZG...0cnksIGR1c2NyaX
trustedCACertificate: zcyBbaG...b3Igb3dulIGNsYXNz
storagePrefix: myPrefix

Auto export policy example

This example shows you how you can instruct Astra Trident to use dynamic export policies to create and
manage the export policy automatically. This works the same for the ontap-nas-economy and ontap-
nas-flexgroup drivers.

version: 1
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2
svm: svm nfs
labels:
k8scluster: test-cluster-east-1la
backend: testl-nasbackend
autoExportPolicy: true
autoExportCIDRs:
- 10.0.0.0/24
username: admin
password: password
nfsMountOptions: nfsvers=4

78

IPv6 addresses example

This example shows managementLIF using an IPv6 address.

version: 1
storageDriverName: ontap-nas
backendName: nas ipv6 backend
managementLIF: "[5c5d:5edf:8f:7657:bef8:109b:1b41:d491]"
labels:
k8scluster: test-cluster-east-la
backend: testl-ontap-ipv6
svm: nas_ipv6_ svm
username: vsadmin

password: password

Amazon FSx for ONTAP using SMB volumes example

The smbShare parameter is required for FSx for ONTAP using SMB volumes.

version: 1

backendName: SMBBackend

storageDriverName: ontap-nas

managementLIF: example.mgmt.fqgdn.aws.com
nasType: smb

datalLIF: 10.0.0.15

svm: nfs svm

smbShare: smb-share

clientCertificate: ZXROZXJIJwYXB...ICMgJd3BhcGVyc2
clientPrivateKey: vciwKIyAgZG...0cnksIGR1c2NyaX
trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz
storagePrefix: myPrefix

Examples of backends with virtual pools

In the sample backend definition files shown below, specific defaults are set for all storage pools, such as
spaceReserve at none, spaceAllocation at false, and encryption at false. The virtual pools are defined
in the storage section.

Astra Trident sets provisioning labels in the "Comments" field. Comments are set on FlexVol for ontap-nas or
FlexGroup for ontap-nas-flexgroup. Astra Trident copies all labels present on a virtual pool to the storage
volume at provisioning. For convenience, storage administrators can define labels per virtual pool and group
volumes by label.

79

In these examples, some of the storage pools set their own spaceReserve, spaceAllocation, and
encryption values, and some pools override the default values.

80

ONTAP NAS example

version: 1
storageDriverName
managementLIF: 10
svm: svm nfs
username: admin

password: <passwo

nfsMountOptions:

defaults:
spaceReserve: n
encryption: 'fa

gosPolicy: stan
labels:
store: nas_stor
k8scluster: pro
region: us_east 1
storage:
- labels:
app: msoffice
cost: '100"
zone: us_east 1
defaults:
spaceReserve:
encryption: '
unixPermissio
adaptiveQosPo
- labels:
app: slack
cost: '75"
zone: us_east 1
defaults:
spaceReserve:
encryption: '
unixPermissio
- labels:
department: 1
creditpoints:
zone: us east 1
defaults:
spaceReserve:
encryption:

: ontap-nas
.0.0.1

rd>

nfsvers=4

one
1se!
dard

e
d-cluster-1

a

volume

true'

ns: '0755"

licy: adaptive-premium

b

none
true'
ns: '0755"

egal
'5000'"
b

none

true'

unixPermissions: '0755"

- labels:
app: wordpres

S

81

82

cost: '50'
zone: us_east lc
defaults:
spaceReserve: none

encryption: 'true'
unixPermissions: '0775'
labels:
app: mysqgldb
cost: '25"
zone: us_east 1d
defaults:
spaceReserve: volume
encryption: 'false'
unixPermissions: '0775'

ONTAP NAS FlexGroup example

version: 1
storageDriverName: ontap-nas-flexgroup
managementLIF: 10.0.0.1
svm: svm nfs
username: vsadmin
password: <password>
defaults:
spaceReserve: none
encryption: 'false'
labels:
store: flexgroup store
k8scluster: prod-cluster-1
region: us east 1
storage:
- labels:
protection: gold
creditpoints: '50000"'
zone: us_east la
defaults:
spaceReserve: volume

encryption: 'true'
unixPermissions: '0755'
- labels:

protection: gold

creditpoints: '30000'
zone: us_east 1b
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0755'
- labels:

protection: silver

creditpoints: '20000"
zone: us_east lc
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0775"
- labels:

protection: bronze

creditpoints: '10000"'
zone: us_east 1d
defaults:

84

spaceReserve: volume

encryption: 'false'

unixPermissions:

'0775"

ONTAP NAS economy example

version: 1
storageDriverName: ontap-nas-economy
managementLIF: 10.0.0.1
svm: svm nfs
username: vsadmin
password: <password>
defaults:
spaceReserve: none
encryption: 'false'
labels:
store: nas_economy store
region: us east 1
storage:
- labels:
department: finance
creditpoints: '6000"
zone: us_east la
defaults:

spaceReserve: volume

encryption: 'true'
unixPermissions: '0755"
- labels:

protection: bronze

creditpoints: '5000'
zone: us_east 1b
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0755"
- labels:

department: engineering

creditpoints: '3000'
zone: us_east lc
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0775"
- labels:

department: humanresource
creditpoints: '2000'
zone: us_ east 1d
defaults:
spaceReserve: volume

85

encryption: 'false'
unixPermissions: '0775'

Map backends to StorageClasses

The following StorageClass definitions refer to Examples of backends with virtual pools. Using the
parameters.selector field, each StorageClass calls out which virtual pools can be used to host a volume.
The volume will have the aspects defined in the chosen virtual pool.

* The protection-gold StorageClass will map to the first and second virtual pool in the ontap-nas-
flexgroup backend. These are the only pools offering gold level protection.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-gold
provisioner: netapp.io/trident
parameters:
selector: "protection=gold"
fsType: "ext4d"

* The protection-not-gold StorageClass will map to the third and fourth virtual pool in the ontap-
nas-flexgroup backend. These are the only pools offering protection level other than gold.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-not-gold
provisioner: netapp.io/trident
parameters:
selector: "protection!=gold"
fsType: "ext4d"

* The app-mysqgldb StorageClass will map to the fourth virtual pool in the ontap-nas backend. This is the
only pool offering storage pool configuration for mysqldb type app.

86

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: app-mysqgldb
provisioner: netapp.io/trident
parameters:
selector: "app=mysgldb"
fsType: "ext4d"

* TThe protection-silver-creditpoints-20k StorageClass will map to the third virtual pool in the
ontap-nas-flexgroup backend. This is the only pool offering silver-level protection and 20000
creditpoints.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-silver-creditpoints-20k
provisioner: netapp.io/trident
parameters:
selector: "protection=silver; creditpoints=20000"

fsType: "ext4d"

* The creditpoints-5k StorageClass will map to the third virtual pool in the ontap-nas backend and the
second virtual pool in the ontap-nas-economy backend. These are the only pool offerings with 5000
creditpoints.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: creditpoints-5k
provisioner: netapp.io/trident
parameters:
selector: "creditpoints=5000"
fsType: "ext4d"

Astra Trident will decide which virtual pool is selected and will ensure the storage requirement is met.

Update dataLIF after initial configuration

You can change the data LIF after initial configuration by running the following command to provide the new
backend JSON file with updated data LIF.

87

tridentctl update backend <backend-name> -f <path-to-backend-json-file-
with-updated-dataLIF>

@ If PVCs are attached to one or multiple pods, you must bring down all corresponding pods and
then bring them back up in order to for the new data LIF to take effect.

Amazon FSx for NetApp ONTAP

Use Astra Trident with Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP is a fully managed AWS service that enables customers
to launch and run file systems powered by the NetApp ONTAP storage operating system.
FSx for ONTAP enables you to leverage NetApp features, performance, and
administrative capabilities you are familiar with, while taking advantage of the simplicity,
agility, security, and scalability of storing data on AWS. FSx for ONTAP supports ONTAP
file system features and administration APIs.

Overview

A file system is the primary resource in Amazon FSx, analogous to an ONTAP cluster on premises. Within
each SVM you can create one or multiple volumes, which are data containers that store the files and folders in
your file system. With Amazon FSx for NetApp ONTAP, Data ONTAP will be provided as a managed file
system in the cloud. The new file system type is called NetApp ONTAP.

Using Astra Trident with Amazon FSx for NetApp ONTAP, you can ensure Kubernetes clusters running in
Amazon Elastic Kubernetes Service (EKS) can provision block and file persistent volumes backed by ONTAP.

Amazon FSx for NetApp ONTAP uses FabricPool to manage storage tiers. It enables you to store data in a tier,
based on whether the data is frequently accessed.

Considerations

* SMB volumes:
° SMB volumes are supported using the ontap-nas driver only.

o Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

* Volumes created on Amazon FSx file systems that have automatic backups enabled cannot be deleted by
Trident. To delete PVCs, you need to manually delete the PV and the FSx for ONTAP volume. To prevent
this issue:

> Do not use Quick create to create the FSx for ONTAP file system. The quick create workflow enables
automatic backups and does not provide an opt-out option.

o When using Standard create, disable automatic backup. Disabling automatic backups allows Trident
to successfully delete a volume without further manual intervention.

88

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://docs.netapp.com/ontap-9/topic/com.netapp.doc.dot-mgng-stor-tier-fp/GUID-5A78F93F-7539-4840-AB0B-4A6E3252CF84.html

v Backup and maintenance - optional

Daily automatic backup Info
Amazon F5x can protect your data through daily backups

Enabled
© Disabled

FSx for ONTAP driver details

You can integrate Astra Trident with Amazon FSx for NetApp ONTAP using the following drivers:

* ontap-san: Each PV provisioned is a LUN within its own Amazon FSx for NetApp ONTAP volume.

* ontap-san-economy: Each PV provisioned is a LUN with a configurable number of LUNs per Amazon
FSx for NetApp ONTAP volume.

* ontap-nas: Each PV provisioned is a full Amazon FSx for NetApp ONTAP volume.

* ontap-nas-economy: Each PV provisioned is a qgtree, with a configurable number of gtrees per Amazon
FSx for NetApp ONTAP volume.

* ontap-nas-flexgroup: Each PV provisioned is a full Amazon FSx for NetApp ONTAP FlexGroup
volume.

For driver details, see NAS drivers and SAN drivers.

Authentication

Astra Trident offers two modes of authentication.

« Certificate-based: Astra Trident will communicate with the SVM on your FSx file system using a certificate
installed on your SVM.

* Credential-based: You can use the fsxadmin user for your file system or the vsadmin user configured for
your SVM.

Astra Trident expects to be run as a vsadmin SVM user or as a user with a different name

(D that has the same role. Amazon FSx for NetApp ONTAP has an fsxadmin user thatis a
limited replacement of the ONTAP admin cluster user. We strongly recommend using
vsadmin with Astra Trident.

You can update backends to move between credential-based and certificate-based methods. However, if you
attempt to provide credentials and certificates, backend creation will fail. To switch to a different
authentication method, you must remove the existing method from the backend configuration.

For details on enabling authentication, refer to the authentication for your driver type:

* ONTAP NAS authentication
* ONTAP SAN authentication

89

Find more information

* Amazon FSx for NetApp ONTAP documentation
* Blog post on Amazon FSx for NetApp ONTAP

Integrate Amazon FSx for NetApp ONTAP

You can integrate your Amazon FSx for NetApp ONTAP file system with Astra Trident to
ensure Kubernetes clusters running in Amazon Elastic Kubernetes Service (EKS) can
provision block and file persistent volumes backed by ONTAP.

Requirements

In addition to Astra Trident requirements, to integrate FSx for ONTAP with Astra Trident, you need:

* An existing Amazon EKS cluster or self-managed Kubernetes cluster with kubect1 installed.

» An existing Amazon FSx for NetApp ONTAP file system and storage virtual machine (SVM) that is
reachable from your cluster’s worker nodes.

» Worker nodes that are prepared for NFS or iSCSI.

@ Ensure you follow the node preparation steps required for Amazon Linux and Ubuntu
Amazon Machine Images (AMIs) depending on your EKS AMI type.

 Astra Trident supports SMB volumes mounted to pods running on Windows nodes only. Refer to Prepare to
provision SMB volumes for details.

ONTAP SAN and NAS driver integration

@ If you are configuring for SMB volumes, you must read Prepare to provision SMB volumes
before creating the backend.

Steps
1. Deploy Astra Trident using one of the deployment methods.

2. Collect your SYM management LIF DNS name. For example, using the AWS CLI, find the DNSName entry
under Endpoints — Management after running the following command:

aws fsx describe-storage-virtual-machines --region <file system region>

3. Create and install certificates for NAS backend authentication or SAN backend authentication.

You can log in to your file system (for example to install certificates) using SSH from
anywhere that can reach your file system. Use the fsxadmin user, the password you

@ configured when you created your file system, and the management DNS name from aws
fsx describe-file-systems.

4. Create a backend file using your certificates and the DNS name of your management LIF, as shown in the
sample below:

90

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://www.netapp.com/blog/amazon-fsx-for-netapp-ontap/
https://docs.netapp.com/us-en/trident-2307/trident-get-started/requirements.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.netapp.com/us-en/trident-2307/trident-get-started/kubernetes-deploy.html

YAML

version: 1

storageDriverName: ontap-san

backendName: customBackendName

managementLIF: svm—XXXXXXXXXXXXXXKXXX .L5—XXXXXXXXXXXKXXXXKXX . fsx.us~—
east-2.aws.internal

svm: svm01l

clientCertificate: ZXR0OZXJwYXB...ICMgJd3BhcGVyc2

clientPrivateKey: vciwKIyAgZG...0cnksIGR1c2NyaX
trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz

JSON

{
"version": 1,
"storageDriverName": "ontap-san",
"backendName": "customBackendName",
"managementLIF": "svm-XXXXXXXXXXXXXXXXX.fs-

XX XKXXKXXKXXKXXKXXXXXX . fsx.us—-east-2.aws.internal",
"svm": "svmO1l",
"clientCertificate": "ZXROZXJIJwYXB...ICMgJ3BhcGVyc2",
"clientPrivateKey": "vciwKIyAgZG...OcnksIGR1lc2NyaX",
"trustedCACertificate": "zcyBbaG...b3Igb3duIGNsYXNz"

For information about creating backends, see these links:
o Configure a backend with ONTAP NAS drivers
o Configure a backend with ONTAP SAN drivers
Prepare to provision SMB volumes

You can provision SMB volumes using the ontap-nas driver. Before you complete ONTAP SAN and NAS
driver integration complete the following steps.

Before you begin
Before you can provision SMB volumes using the ontap-nas driver, you must have the following.
* A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows
Server 2019. Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

* At least one Astra Trident secret containing your Active Directory credentials. To generate secret
smbcreds:

91

kubectl create secret generic smbcreds --from-literal username=user
-—-from-literal password='password'

* A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or
GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

Steps

1. Create SMB shares. You can create the SMB admin shares in one of two ways either using the Microsoft
Management Console Shared Folders snap-in or using the ONTAP CLI. To create the SMB shares using
the ONTAP CLI:

a. If necessary, create the directory path structure for the share.

The vserver cifs share create command checks the path specified in the -path option during
share creation. If the specified path does not exist, the command fails.

b. Create an SMB share associated with the specified SVM:

vserver cifs share create -vserver vserver name -share-name
share name -path path [-share-properties share properties,...]
[other attributes] [-comment text]

c. Verify that the share was created:

vserver cifs share show -share-name share name

@ Refer to Create an SMB share for full details.

2. When creating the backend, you must configure the following to specify SMB volumes. For all FSx for
ONTAP backend configuration options, refer to FSx for ONTAP configuration options and examples.

Parameter Description Example

smbShare You can specify one of the smb-share
following: the name of an SMB
share created using the Microsoft
Management Console or ONTAP
CLI or a name to allow Astra
Trident to create the SMB share.

This parameter is required for
Amazon FSx for ONTAP
backends.

nasType Must set to smb. If null, defaults smb
tonfs.

92

https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console
https://docs.netapp.com/us-en/ontap/smb-config/create-share-task.html

Parameter Description Example

securityStyle Security style for new volumes. ntfs or mixed for SMB volumes

Must be set to ntfs or mixed
for SMB volumes.

unixPermissions Mode for new volumes. Must be
left empty for SMB volumes.

FSx for ONTAP configuration options and examples

Learn about backend configuration options for Amazon FSx for ONTAP. This section
provides backend configuration examples.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Example
version Always 1
storageDriverName Name of the storage driver ontap-nas, ontap-nas-

economy, ontap-nas-
flexgroup, ontap-san, ontap-
san—-economy

backendName Custom name or the storage Driver name + “_” + dataLIF
backend
managementLIF IP address of a cluster or SVM “10.0.0.17, “[2001:1234:abcd::fefe]”

management LIF

A fully-qualified domain name
(FQDN) can be specified.

Can be set to use IPv6 addresses if
Astra Trident was installed using
the IPv6 flag. IPv6 addresses must
be defined in square brackets, such
as
[28e8:d9fb:a825:b7bf:69a8:d02f:9e
7b:3555].

93

Parameter

dataLlIF

autoExportPolicy

autoExportCIDRs

labels

94

Description

IP address of protocol LIF.

ONTAP NAS drivers: We
recommend specifying dataLIF. If
not provided, Astra Trident fetches
data LIFs from the SVM. You can
specify a fully-qualified domain
name (FQDN) to be used for the
NFS mount operations, allowing
you to create a round-robin DNS to
load-balance across multiple data
LIFs. Can be changed after initial
setting. Refer to Update dataLIF
after initial configuration.

ONTAP SAN drivers: Do not
specify for iSCSI. Astra Trident
uses ONTAP Selective LUN Map to
discover the iSCI LIFs needed to
establish a multi path session. A
warning is generated if dataLIF is
explicitly defined.

Can be set to use IPv6 addresses if
Astra Trident was installed using
the IPv6 flag. IPv6 addresses must
be defined in square brackets, such
as
[28e8:d9fb:a825:b7bf:69a8:d02f:9e
7b:3555].

Enable automatic export policy
creation and updating [Boolean].

Using the autoExportPolicy
and autoExportCIDRs options,
Astra Trident can manage export
policies automatically.

List of CIDRs to filter Kubernetes'
node IPs against when
autoExportPolicy is enabled.

Using the autoExportPolicy
and autoExportCIDRs options,
Astra Trident can manage export
policies automatically.

Set of arbitrary JSON-formatted
labels to apply on volumes

Example

false

"[*0.0.0.0/07, “::/0™]"

Parameter

clientCertificate

clientPrivateKey

trustedCACertificate

username

password

svm

storagePrefix

limitAggregateUsage

limitVolumeSize

lunsPerFlexvol

Description Example

Base64-encoded value of client
certificate. Used for certificate-
based auth

Base64-encoded value of client
private key. Used for certificate-
based auth

Base64-encoded value of trusted
CA certificate. Optional. Used for
certificate-based authentication.

Username to connect to the cluster
or SVM. Used for credential-based
authentication. For example,
vsadmin.

Password to connect to the cluster
or SVM. Used for credential-based
authentication.

Storage virtual machine to use Derived if an SVM managementLIF

is specified.

Prefix used when provisioning new trident
volumes in the SVM.

Cannot be modified after creation.
To update this parameter, you will
need to create a new backend.

Do not specify for Amazon FSx Do not use.

for NetApp ONTAP.

The provided fsxadmin and
vsadmin do not contain the
permissions required to retrieve
aggregate usage and limit it using
Astra Trident.

Fail provisioning if requested
volume size is above this value.

Also restricts the maximum size of
the volumes it manages for gtrees
and LUNs, and the
gtreesPerFlexvol option allows
customizing the maximum number
of gtrees per FlexVol.

Maximum LUNSs per Flexvol, must 100
be in range [50, 200].

SAN only.

(not enforced by default)

95

Parameter

debugTraceFlags

nfsMountOptions

nasType

gtreesPerFlexvol

smbShare

96

Description

Debug flags to use when
troubleshooting. Example,
{“api”:false, “method”:true}

Do not use debugTraceFlags
unless you are troubleshooting and
require a detailed log dump.

Comma-separated list of NFS
mount options.

The mount options for Kubernetes-
persistent volumes are normally
specified in storage classes, but if
no mount options are specified in a
storage class, Astra Trident will fall
back to using the mount options
specified in the storage backend’s
configuration file.

If no mount options are specified in
the storage class or the
configuration file, Astra Trident will
not set any mount options on an
associated persistent volume.

Configure NFS or SMB volumes
creation.

Options are nfs, smb, or null.

Must set to smb for SMB
volumes. Setting to null defaults to
NFS volumes.

Example

null

nfs

Maximum Qtrees per FlexVol, must 200

be in range [50, 300]

You can specify one of the
following: the name of an SMB
share created using the Microsoft
Management Console or ONTAP
CLI or a name to allow Astra
Trident to create the SMB share.

This parameter is required for
Amazon FSx for ONTAP backends.

smb-share

Parameter

useREST

Description Example

Boolean parameter to use ONTAP false
REST APIs. Tech preview

useREST is provided as a tech
preview that is recommended for
test environments and not for
production workloads. When set to
true, Astra Trident will use ONTAP
REST APIs to communicate with
the backend.

This feature requires ONTAP 9.11.1
and later. In addition, the ONTAP
login role used must have access to
the ontap application. This is
satisfied by the pre-defined
vsadmin and cluster-admin
roles.

Update dataLIF after initial configuration

You can change the data LIF after initial configuration by running the following command to provide the new

backend JSON file with updated data LIF.

tridentctl update backend <backend-name> -f <path-to-backend-json-file-
with-updated-dataLIF>

@ If PVCs are attached to one or multiple pods, you must bring down all corresponding pods and

then bring them back up in order to for the new data LIF to take effect.

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an

example, see the configuration examples below.

Parameter
spaceAllocation

spaceReserve

snapshotPolicy

Description Default
Space-allocation for LUNs true
Space reservation mode; “none” none

(thin) or “volume” (thick)

Snapshot policy to use none

97

Parameter

gosPolicy

adaptiveQosPolicy

snapshotReserve

splitOnClone

encryption

luksEncryption

tieringPolicy

98

Description

QoS policy group to assign for
volumes created. Choose one of
gosPolicy or adaptiveQosPolicy per
storage pool or backend.

Using QoS policy groups with Astra
Trident requires ONTAP 9.8 or later.

We recommend using a non-shared
QoS policy group and ensuring the
policy group is applied to each
constituent individually. A shared
QoS policy group will enforce the
ceiling for the total throughput of all
workloads.

Adaptive QoS policy group to
assign for volumes created.
Choose one of qosPolicy or
adaptiveQosPolicy per storage pool
or backend.

Not supported by ontap-nas-
economy.

Percentage of volume reserved for
snapshots “0”

Split a clone from its parent upon
creation

Enable NetApp Volume Encryption
(NVE) on the new volume; defaults
to false. NVE must be licensed
and enabled on the cluster to use
this option.

If NAE is enabled on the backend,
any volume provisioned in Astra
Trident will be NAE enabled.

For more information, refer to: How
Astra Trident works with NVE and
NAE.

Enable LUKS encryption. Refer to
Use Linux Unified Key Setup
(LUKS).

SAN only.

Tiering policy to use none

Default

@

If snapshotPolicy is none, else

false

false

snapshot-only for pre-ONTAP
9.5 SVM-DR configuration

https://docs.netapp.com/us-en/trident-2307/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2307/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2307/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2307/trident-reco/security-reco.html#Use-Linux-Unified-Key-Setup-(LUKS)
https://docs.netapp.com/us-en/trident-2307/trident-reco/security-reco.html#Use-Linux-Unified-Key-Setup-(LUKS)

Parameter Description Default

unixPermissions Mode for new volumes.

Leave empty for SMB volumes.

securityStyle Security style for new volumes. NFS default is unix.

NFS supports mixed and unix SMB defaultis ntfs.
security styles.

SMB supports mixed and ntfs
security styles.

Example

Using nasType, node-stage-secret-name, and node-stage-secret-namespace, You can specify an
SMB volume and provide the required Active Directory credentials. SMB volumes are supported using the
ontap-nas driver only.

apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata:
name: nas-smb-sc

provisioner: csi.trident.netapp.io

parameters:
backendType: "ontap-nas"
trident.netapp.io/nasType: "smb"
csi.storage.k8s.io/node-stage-secret-name: "smbcreds"
csi.storage.k8s.io/node-stage-secret-namespace: "default"

Create backends with kubectl

A backend defines the relationship between Astra Trident and a storage system. It tells
Astra Trident how to communicate with that storage system and how Astra Trident should
provision volumes from it. After Astra Trident is installed, the next step is to create a
backend. The TridentBackendConfig Custom Resource Definition (CRD) enables
you to create and manage Trident backends directly through the Kubernetes interface.
You can do this by using kubect1 or the equivalent CLI tool for your Kubernetes
distribution.

TridentBackendConfig

TridentBackendConfig (tbc, tbconfig, tbackendconfig)is a frontend, namespaced CRD that
enables you to manage Astra Trident backends using kubect1. Kubernetes and storage admins can now
create and manage backends directly through the Kubernetes CLI without requiring a dedicated command-line
utility (tridentctl).

99

Upon the creation of a TridentBackendConfig object, the following happens:

» A backend is created automatically by Astra Trident based on the configuration you provide. This is
represented internally as a TridentBackend (tbe, tridentbackend) CR.

* The TridentBackendConfig is uniquely bound to a TridentBackend that was created by Astra
Trident.

Each TridentBackendConfig maintains a one-to-one mapping with a TridentBackend. The former is the
interface provided to the user to design and configure backends; the latter is how Trident represents the actual
backend object.

TridentBackend CRs are created automatically by Astra Trident. You should not modify
them. If you want to make updates to backends, do this by modifying the
TridentBackendConfig object.

See the following example for the format of the TridentBackendConfig CR:

apivVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:

name: backend-tbc-ontap-san
spec:

version: 1

backendName: ontap-san-backend

storageDriverName: ontap-san

managementLIF: 10.0.0.1

datalLIF: 10.0.0.2

svm: trident svm

credentials:

name: backend-tbc-ontap-san-secret

You can also take a look at the examples in the trident-installer directory for sample configurations for the
desired storage platform/service.

The spec takes backend-specific configuration parameters. In this example, the backend uses the ontap-
san storage driver and uses the configuration parameters that are tabulated here. For the list of configuration
options for your desired storage driver, see the backend configuration information for your storage driver.

The spec section also includes credentials and deletionPolicy fields, which are newly introduced in
the TridentBackendConfig CR:

* credentials: This parameter is a required field and contains the credentials used to authenticate with
the storage system/service. This is set to a user-created Kubernetes Secret. The credentials cannot be
passed in plain text and will result in an error.

* deletionPolicy: This field defines what should happen when the TridentBackendConfig is deleted.
It can take one of two possible values:

° delete: This results in the deletion of both TridentBackendConfig CR and the associated
backend. This is the default value.

100

https://github.com/NetApp/trident/tree/stable/v21.07/trident-installer/sample-input/backends-samples

° retain: When a TridentBackendConfig CR is deleted, the backend definition will still be present
and can be managed with tridentctl. Setting the deletion policy to retain lets users downgrade to
an earlier release (pre-21.04) and retain the created backends. The value for this field can be updated
after a TridentBackendConfig is created.

The name of a backend is set using spec.backendName. If unspecified, the name of the
@ backend is set to the name of the TridentBackendConfig object (metadata.name). It is
recommended to explicitly set backend names using spec.backendName.

Backends that were created with tridentctl do not have an associated
TridentBackendConfig object. You can choose to manage such backends with kubect1 by

creating a TridentBackendConfig CR. Care must be taken to specify identical config
parameters (such as spec.backendName, spec.storagePrefix
spec.storageDriverName, and so on). Astra Trident will automatically bind the newly-
created TridentBackendConfig with the pre-existing backend.

Steps overview

To create a new backend by using kubect1, you should do the following:

1. Create a Kubernetes Secret. The secret contains the credentials Astra Trident needs to communicate with
the storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and
references the secret created in the previous step.

After you create a backend, you can observe its status by using kubectl get tbc <tbc-name> -n
<trident-namespace> and gather additional details.

Step 1: Create a Kubernetes Secret

Create a Secret that contains the access credentials for the backend. This is unique to each storage
service/platform. Here’s an example:

kubectl -n trident create -f backend-tbc-ontap-san-secret.yaml
apiVersion: vl
kind: Secret
metadata:
name: backend-tbc-ontap-san-secret
type: Opaque
stringData:
username: cluster-admin

password: password

This table summarizes the fields that must be included in the Secret for each storage platform:

101

https://kubernetes.io/docs/concepts/configuration/secret/

Storage platform Secret Fields
description

Azure NetApp Files

Cloud Volumes Service for GCP

Cloud Volumes Service for GCP

Element (NetApp HCI/SolidFire)

ONTAP

ONTAP

ONTAP

ONTAP

ONTAP

ONTAP

ONTAP

Secret

clientID

private_key id

private_key

Endpoint

username

password

clientPrivateKey

chapUsername

chaplnitiatorSecret

chapTargetUsername

chapTargetlnitiatorSecret

Fields description

The client ID from an app
registration

ID of the private key. Part of API
key for GCP Service Account with
CVS admin role

Private key. Part of API key for
GCP Service Account with CVS
admin role

MVIP for the SolidFire cluster with
tenant credentials

Username to connect to the
cluster/SVM. Used for credential-
based authentication

Password to connect to the
cluster/SVM. Used for credential-
based authentication

Base64-encoded value of client
private key. Used for certificate-
based authentication

Inbound username. Required if
useCHAP=true. For ontap-san
and ontap-san-economy

CHAP initiator secret. Required if
useCHAP=true. For ontap-san
and ontap-san-economy

Target username. Required if
useCHAP=true. For ontap-san
and ontap-san-economy

CHAP target initiator secret.
Required if useCHAP=true. For
ontap-san and ontap-san-
economy

The Secret created in this step will be referenced in the spec.credentials field of the

TridentBackendConfig object that is created in the next step.

102

Step 2: Create the TridentBackendConfig CR

You are now ready to create your TridentBackendConfig CR. In this example, a backend that uses the
ontap-san driver is created by using the TridentBackendConfig object shown below:

kubectl -n trident create -f backend-tbc-ontap-san.yaml

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:

name: backend-tbc-ontap-san
spec:

version: 1

backendName: ontap-san-backend

storageDriverName: ontap-san

managementLIF: 10.0.0.1

datalLIF: 10.0.0.2

svm: trident svm

credentials:

name: backend-tbc-ontap-san-secret

Step 3: Verify the status of the TridentBackendConfig CR

Now that you created the TridentBackendConfig CR, you can verify the status. See the following example:

kubectl -n trident get tbc backend-tbc-ontap-san

NAME BACKEND NAME BACKEND UUID
PHASE STATUS
backend-tbc-ontap-san ontap-san-backend 8d24fce7-6£60-4d4a-8ef6-

bab2699%e6ab8 Bound Success

A backend was successfully created and bound to the TridentBackendConfig CR.
Phase can take one of the following values:

* Bound: The TridentBackendConfig CR is associated with a backend, and that backend contains
configRef settothe TridentBackendConfig CR’s uid.

* Unbound: Represented using "". The TridentBackendConfig object is not bound to a backend. All
newly created TridentBackendConfig CRs are in this phase by default. After the phase changes, it
cannot revert to Unbound again.

* Deleting: The TridentBackendConfig CR's deletionPolicy was set to delete. When the
TridentBackendConfig CRis deleted, it transitions to the Deleting state.

° If no persistent volume claims (PVCs) exist on the backend, deleting the TridentBackendConfig
will result in Astra Trident deleting the backend as well as the TridentBackendConfig CR.

103

o If one or more PVCs are present on the backend, it goes to a deleting state. The
TridentBackendConfig CR subsequently also enters deleting phase. The backend and
TridentBackendConfig are deleted only after all PVCs are deleted.

* Lost: The backend associated with the TridentBackendConfig CR was accidentally or deliberately
deleted and the TridentBackendConfig CR still has a reference to the deleted backend. The
TridentBackendConfig CR can still be deleted irrespective of the deletionPolicy value.

* Unknown: Astra Trident is unable to determine the state or existence of the backend associated with the
TridentBackendConfig CR. For example, if the API server is not responding or if the
tridentbackends.trident.netapp.io CRD is missing. This might require intervention.

At this stage, a backend is successfully created! There are several operations that can additionally be handled,
such as backend updates and backend deletions.

(Optional) Step 4: Get more details

You can run the following command to get more information about your backend:

kubectl -n trident get tbc backend-tbc-ontap-san -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8d24fce7-6f60-4d4a-8ef6-
bab2699e6ab8 Bound Success ontap-san delete

In addition, you can also obtain a YAML/JSON dump of TridentBackendConfig.

kubectl -n trident get tbc backend-tbc-ontap-san -o yaml

104

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
creationTimestamp: "2021-04-21T20:45:112Z"
finalizers:
- trident.netapp.io
generation: 1
name: backend-tbc-ontap-san
namespace: trident

resourceVersion: "947143"
uid: 35b9d777-109f-43d5-8077-c74a4559d09c
spec:

backendName: ontap-san-backend
credentials:
name: backend-tbc-ontap-san-secret
managementLIF: 10.0.0.1
datalLIF: 10.0.0.2
storageDriverName: ontap-san
svm: trident svm
version: 1
status:
backendInfo:
backendName: ontap-san-backend
backendUUID: 8d24fce7-6f60-4d4a-8ef6-bab2699e6ab8
deletionPolicy: delete
lastOperationStatus: Success
message: Backend 'ontap-san-backend' created
phase: Bound

backendInfo contains the backendName and the backendUUID of the backend that got created in
response to the TridentBackendConfig CR. The lastOperationStatus field represents the status of
the last operation of the TridentBackendConfig CR, which can be user-triggered (for example, user
changed something in spec) or triggered by Astra Trident (for example, during Astra Trident restarts). It can
either be Success or Failed. phase represents the status of the relation between the
TridentBackendConfig CR and the backend. In the example above, phase has the value Bound, which
means that the TridentBackendConfig CR is associated with the backend.

You can run the kubectl -n trident describe tbc <tbc-cr-name> command to get details of the
event logs.

You cannot update or delete a backend which contains an associated
TridentBackendConfig object using tridentctl. To understand the steps involved in
switching between tridentctl and TridentBackendConfig, see here.

105

Manage backends
Perform backend management with kubectl

Learn about how to perform backend management operations by using kubectl1.

Delete a backend

By deleting a TridentBackendConfig, you instruct Astra Trident to delete/retain backends (based on
deletionPolicy). To delete a backend, ensure that deletionPolicy is set to delete. To delete just the
TridentBackendConfig, ensure that deletionPolicy is set to retain. This will ensure the backend is still
present and can be managed by using tridentctl.

Run the following command:

kubectl delete tbc <tbc—-name> -n trident

Astra Trident does not delete the Kubernetes Secrets that were in use by TridentBackendConfig. The
Kubernetes user is responsible for cleaning up secrets. Care must be taken when deleting secrets. You should
delete secrets only if they are not in use by the backends.

View the existing backends

Run the following command:

kubectl get tbc -n trident

You can also run tridentctl get backend -n trident or tridentctl get backend -o yaml -n
trident to obtain a list of all backends that exist. This list will also include backends that were created with
tridentctl.

Update a backend
There can be multiple reasons to update a backend:
» Credentials to the storage system have changed. To update credentials, the Kubernetes Secret that is used

in the TridentBackendConfig object must be updated. Astra Trident will automatically update the
backend with the latest credentials provided. Run the following command to update the Kubernetes Secret:

kubectl apply -f <updated-secret-file.yaml> -n trident

« Parameters (such as the name of the ONTAP SVM being used) need to be updated.

° You can update TridentBackendConfig objects directly through Kubernetes using the following
command:

kubectl apply -f <updated-backend-file.yaml>

106

° Alternatively, you can make changes to the existing TridentBackendConfig CR using the following
command:

kubectl edit tbc <tbc-name> -n trident

* If a backend update fails, the backend continues to remain in its last known configuration.
You can view the logs to determine the cause by running kubectl get tbc <tbc-name>
(D -0 yaml -n trident or kubectl describe tbc <tbc-name> -n trident.

« After you identify and correct the problem with the configuration file, you can re-run the
update command.

Perform backend management with tridentctl

Learn about how to perform backend management operations by using tridentctl.

Create a backend

After you create a backend configuration file, run the following command:
tridentctl create backend -f <backend-file> -n trident

If backend creation fails, something was wrong with the backend configuration. You can view the logs to
determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the create command
again.

Delete a backend

To delete a backend from Astra Trident, do the following:

1. Retrieve the backend name:
tridentctl get backend -n trident
2. Delete the backend:

tridentctl delete backend <backend-name> -n trident

107

If Astra Trident has provisioned volumes and snapshots from this backend that still exist,

@ deleting the backend prevents new volumes from being provisioned by it. The backend will
continue to exist in a “Deleting” state and Trident will continue to manage those volumes and
snapshots until they are deleted.

View the existing backends

To view the backends that Trident knows about, do the following:

* To get a summary, run the following command:
tridentctl get backend -n trident
* To get all the details, run the following command:

tridentctl get backend -o json -n trident

Update a backend

After you create a new backend configuration file, run the following command:
tridentctl update backend <backend-name> -f <backend-file> -n trident

If backend update fails, something was wrong with the backend configuration or you attempted an invalid
update. You can view the logs to determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the update command
again.

Identify the storage classes that use a backend

This is an example of the kind of questions you can answer with the JSON that tridentct1 outputs for
backend objects. This uses the jq utility, which you need to install.

tridentctl get backend -o json | jg '[.items[] | {backend: .name,
storageClasses: [.storage[].storageClasses] |unique}]’

This also applies for backends that were created by using TridentBackendConfig.

Move between backend management options

Learn about the different ways of managing backends in Astra Trident.

108

Options for managing backends

With the introduction of TridentBackendConfig, administrators now have two unique ways of managing
backends. This poses the following questions:

* Can backends created using tridentctl be managed with TridentBackendConfig?

* Can backends created using TridentBackendConfig be managed using tridentctl?

Manage tridentctl backends using TridentBackendConfig

This section covers the steps required to manage backends that were created using tridentctl directly
through the Kubernetes interface by creating TridentBackendConfig objects.

This will apply to the following scenarios:

* Pre-existing backends, that don’t have a TridentBackendConfig because they were created with
tridentctl.

* New backends that were created with tridentctl, while other TridentBackendConfig objects exist.

In both scenarios, backends will continue to be present, with Astra Trident scheduling volumes and operating
on them. Administrators have one of two choices here:

* Continue using tridentctl to manage backends that were created using it.

* Bind backends created using tridentctl to a new TridentBackendConfig object. Doing so would
mean the backends will be managed using kubectl and not tridentctl.

To manage a pre-existing backend using kubect1, you will need to create a TridentBackendConfig that
binds to the existing backend. Here is an overview of how that works:

1. Create a Kubernetes Secret. The secret contains the credentials Astra Trident needs to communicate with
the storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and
references the secret created in the previous step. Care must be taken to specify identical config
parameters (such as spec.backendName, spec.storagePrefix, spec.storageDriverName, and
S0 on). spec.backendName must be set to the name of the existing backend.

Step 0: Identify the backend

To create a TridentBackendConfig that binds to an existing backend, you will need to obtain the backend
configuration. In this example, let us assume a backend was created using the following JSON definition:

tridentctl get backend ontap-nas-backend -n trident

o e e o e
fessssssssssssesessososssssssssss o= fremmm==== e +

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

e e fossmmsm=s===m===

fesmsee e s se s e me s e s e e e femmmm=== fommmmm=as 4

| ontap-nas-backend | ontap-nas | 52f2ebl0-e4c6-4160-99fc-

109

96b3beb5abbd7 | online | 25 |

cat ontap-nas-backend.json

"version": 1,

"storageDriverName": "ontap-nas",
"managementLIF": "10.10.10.1",
"dataLIF": "10.10.10.2",
"backendName": "ontap-nas-backend",

"svm": "trident svm",
"username": "cluster-admin",

"password": "admin-password",

"defaults": {

"spaceReserve": "none",
"encryption": "false"
by
"labels":{"store":"nas store"},
"region": "us east 1",
"storage": [

{
"labels":{"app":"msoffice", "cost":"100"},
"zone":"us east la",
"defaults": {
"spaceReserve": "volume",
"encryption": "true",

"unixPermissions": "0755"

"labels":{"app":"mysqgldb", "cost":"25"},
"zone":"us east 1d",
"defaults": {
"spaceReserve": "volume",
"encryption": "false",

"unixPermissions": "0775"

110

Step 1: Create a Kubernetes Secret

Create a Secret that contains the credentials for the backend, as shown in this example:

cat tbc-ontap-nas-backend-secret.yaml

apiVersion: vl
kind: Secret
metadata:
name: ontap-nas-backend-secret
type: Opaque
stringData:
username: cluster-admin

password: admin-password

kubectl create -f tbc-ontap-nas-backend-secret.yaml -n trident
secret/backend-tbc-ontap-san-secret created

Step 2: Create a TridentBackendConfig CR

The next step is to create a TridentBackendConfig CR that will automatically bind to the pre-existing
ontap-nas-backend (as in this example). Ensure the following requirements are met:

* The same backend name is defined in spec.backendName.

« Configuration parameters are identical to the original backend.

« Virtual pools (if present) must retain the same order as in the original backend.

* Credentials are provided through a Kubernetes Secret and not in plain text.

In this case, the TridentBackendConfig will look like this:

cat backend-tbc-ontap-nas.yaml
apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: tbc-ontap-nas-backend
spec:
version: 1
storageDriverName: ontap-nas
managementLIF: 10.10.10.1
datalLIF: 10.10.10.2
backendName: ontap-nas-backend
svm: trident svm
credentials:
name: mysecret
defaults:
spaceReserve: none
encryption: 'false'
labels:
store: nas_ store
region: us east 1
storage:
- labels:
app: msoffice
cost: '100"
zone: us_east la
defaults:
spaceReserve: volume
encryption: 'true'
unixPermissions: '0755'
- labels:
app: mysqgldb
cost: '25"
zone: us_east 1d
defaults:
spaceReserve: volume
encryption: 'false'

unixPermissions: '0775"

kubectl create -f backend-tbc-ontap-nas.yaml -n trident
tridentbackendconfig.trident.netapp.io/tbc-ontap-nas-backend created

Step 3: Verify the status of the TridentBackendConfig CR

After the TridentBackendConfig has been created, its phase must be Bound. It should also reflect the
same backend name and UUID as that of the existing backend.

112

kubectl get tbc tbc-ontap-nas-backend -n trident

NAME BACKEND NAME BACKEND UUID
PHASE STATUS
tbc-ontap-nas-backend ontap-nas-backend 52f2ebl10-e4c6-4160-99fc-

96b3beb5ab5d7 Bound Success

#confirm that no new backends were created (i.e., TridentBackendConfig did
not end up creating a new backend)
tridentctl get backend -n trident

fmm e fom e

Rt ettt F—————— o — +

| NAME | STORAGE DRIVER | UuID

| STATE | VOLUMES |

et e T o

e - e b +

| ontap-nas-backend | ontap-nas | 52f2ebl0-ed4c6-4160-99fc—-
96b3bebab5d7 | online | 25 |

e o
e - +————— +

The backend will now be completely managed using the tbc-ontap-nas-backend
TridentBackendConfig object.

Manage TridentBackendConfig backends using tridentctl

tridentctl can be used to list backends that were created using TridentBackendConfig. In addition,
administrators can also choose to completely manage such backends through tridentctl by deleting
TridentBackendConfig and making sure spec.deletionPolicyis setto retain

Step 0: Identify the backend

For example, let us assume the following backend was created using TridentBackendConfig:

113

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8labcb27-ea63-49bb-b606-
0a5315ach5£f82 Bound Success ontap-san delete

tridentctl get backend ontap-san-backend -n trident

P memssesem== P m===
R Fommomome Fomomomom= +

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

Fommmmmmmmemeoeoeoos Fommmmmmomeomomm=
et Fom—————— fom——————— +

| ontap-san-backend | ontap-san | 8labcb27-ea63-49%bb-b606-
0a5315ac5f82 | online | 33 |

Fommmmcmemcmsosmsmss Fommmmmmsmemsmse=
B e o= Pommmmmm== +

From the output, it is seen that TridentBackendConfig was created successfully and is bound to a
backend [observe the backend’s UUID].

Step 1: Confirm deletionPolicy is setto retain

Let us take a look at the value of deletionPolicy. This needs to be set to retain. This will ensure that
when a TridentBackendConfig CR is deleted, the backend definition will still be present and can be
managed with tridentctl.

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8labcb27-ea63-49bb-b606-
0a5315ac5£82 Bound Success ontap-san delete

Patch value of deletionPolicy to retain
kubectl patch tbc backend-tbc-ontap-san --type=merge -p
"{"spec":{"deletionPolicy":"retain"}}' -n trident

tridentbackendconfig.trident.netapp.io/backend-tbc-ontap-san patched

#Confirm the value of deletionPolicy

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8labcb27-ea63-49bb-b606-
0ab5315ac5f82 Bound Success ontap-san retain

114

(D Do not proceed to the next step unless deletionPolicy is setto retain.

Step 2: Delete the TridentBackendConfig CR

The final step is to delete the TridentBackendConfig CR. After confirming the deletionPolicy is set to
retain, you can go ahead with the deletion:

kubectl delete tbc backend-tbc-ontap-san -n trident
tridentbackendconfig.trident.netapp.io "backend-tbc-ontap-san" deleted

tridentctl get backend ontap-san-backend -n trident

fomm e fom -

Rt bt PP t——————— Fo———— +

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

o o

e it ettt PP +—————— o +

| ontap-san-backend | ontap-san | 8labcb27-ea63-49bb-b606-
0a5315ac5f82 | online | 33 |

o o

Rt et ettt et - +—————— +

Upon the deletion of the TridentBackendConfig object, Astra Trident simply removes it without actually
deleting the backend itself.

Create and manage storage classes

Create a storage class

Configure a Kubernetes StorageClass object and create the storage class to instruct
Astra Trident how to provision volumes.

Configure a Kubernetes StorageClass object

The Kubernetes StorageClass object identifies Astra Trident as the provisioner that is used for that class
instructs Astra Trident how to provision a volume. For example:

115

https://kubernetes.io/docs/concepts/storage/storage-classes/

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: <Name>
provisioner: csi.trident.netapp.io
mountOptions: <Mount Options>
parameters:

<Trident Parameters>
allowVolumeExpansion: true
volumeBindingMode: Immediate

Refer to Kubernetes and Trident objects for details on how storage classes interact with the
PersistentVolumeClaim and parameters for controlling how Astra Trident provisions volumes.

Create a storage class

After you create the StorageClass object, you can create the storage class. Storage class samples provides
some basic samples you can use or modify.

Steps
1. This is a Kubernetes object, so use kubectl to create it in Kubernetes.

kubectl create -f sample-input/storage-class-basic-csi.yaml

2. You should now see a basic-csi storage class in both Kubernetes and Astra Trident, and Astra Trident
should have discovered the pools on the backend.

116

https://docs.netapp.com/us-en/trident-2307/trident-reference/objects.html

kubectl get sc basic-csi
NAME PROVISIONER AGE

basic-csi csi.trident.netapp.io 15h

./tridentctl -n trident get storageclass basic-csi -o json

{

"items": [
{

"Config": {
"version": "1V,
"name": "basic-csi",
"attributes": {

"backendType": "ontap-nas"

by
"storagePools": null,
"additionalStoragePools": null

by

"storage": {

"ontapnas 10.0.0.1": [
"aggrl",
"aggrz",
"aggr3",
"aggrd"

Storage class samples

Astra Trident provides simple storage class definitions for specific backends.

Alternatively, you can edit sample-input/storage-class-csi.yaml.templ file that comes with the
installer and replace BACKEND TYPE with the storage driver name.

117

https://github.com/NetApp/trident/tree/master/trident-installer/sample-input/pvc-samples

./tridentctl -n trident get backend

e o T bt
o t————— +

| NAME | STORAGE DRIVER | UuID

STATE | VOLUMES |

o —— o T et it
- F—m————— +

| nas-backend | ontap-nas | 98el9b74-aec7-4a3d-8dcf-128e5033b214 |
online | 0 |

o —— e it PP T ittt
- F—————— +

cp sample-input/storage-class-csi.yaml.templ sample-input/storage-class-
basic-csi.yaml

Modify = BACKEND TYPE with the storage driver field above (e.g.,
ontap-nas)
vi sample-input/storage-class-basic-csi.yaml

Manage storage classes

You can view existing storage classes, set a default storage class, identify the storage
class backend, and delete storage classes.

View the existing storage classes

» To view existing Kubernetes storage classes, run the following command:

kubectl get storageclass

» To view Kubernetes storage class detail, run the following command:

kubectl get storageclass <storage-class> -o json

» To view Astra Trident’s synchronized storage classes, run the following command:
tridentctl get storageclass

» To view Astra Trident’s synchronized storage class detail, run the following command:

tridentctl get storageclass <storage-class> -0 json

118

Set a default storage class

Kubernetes 1.6 added the ability to set a default storage class. This is the storage class that will be used to
provision a Persistent Volume if a user does not specify one in a Persistent Volume Claim (PVC).

* Define a default storage class by setting the annotation storageclass.kubernetes.io/is-

default-class to true in the storage class definition. According to the specification, any other value or
absence of the annotation is interpreted as false.

* You can configure an existing storage class to be the default storage class by using the following
command:

kubectl patch storageclass <storage-class-name> -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}"'

« Similarly, you can remove the default storage class annotation by using the following command:

kubectl patch storageclass <storage-class-name> -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}}"

There are also examples in the Trident installer bundle that include this annotation.

There should be only one default storage class in your cluster at a time. Kubernetes does not
technically prevent you from having more than one, but it will behave as if there is no default
storage class at all.

Identify the backend for a storage class

This is an example of the kind of questions you can answer with the JSON that tridentctl outputs for Astra
Trident backend objects. This uses the - q utility, which you may need to install first.

tridentctl get storageclass -o json | jg '[.items[] | {storageClass:
.Config.name, backends: [.storage] |unique}]’

Delete a storage class

To delete a storage class from Kubernetes, run the following command:

kubectl delete storageclass <storage-class>
<storage-class> should be replaced with your storage class.

Any persistent volumes that were created through this storage class will remain untouched, and Astra Trident
will continue to manage them.

119

Astra Trident enforces a blank £sType for the volumes it creates. For iSCSI backends, it is
recommended to enforce parameters. fsType in the StorageClass. You should delete
existing StorageClasses and re-create them with parameters. fsType specified.

Provision and manage volumes

Provision a volume

Create a PersistentVolume (PV) and a PersistentVolumeClaim (PVC) that uses the
configured Kubernetes StorageClass to request access to the PV. You can then mount
the PV to a pod.

Overview

A PersistentVolume (PV) is a physical storage resource provisioned by the cluster administrator on a
Kubernetes cluster. The PersistentVolumeClaim (PVC) is a request for access to the PersistentVolume on the
cluster.

The PVC can be configured to request storage of a certain size or access mode. Using the associated
StorageClass, the cluster administrator can control more than PersistentVolume size and access mode—such
as performance or service level.

After you create the PV and PVC, you can mount the volume in a pod.

Sample manifests

PersistentVolume sample manifest

This sample manifest shows a basic PV of 10Gi that is associated with StorageClass basic-csi.

apiVersion: vl
kind: PersistentVolume
metadata:
name: pv-storage
labels:
type: local
spec:
storageClassName: basic-csi
capacity:
storage: 10Gi
accessModes:
- ReadWriteOnce
hostPath:
path: "/my/host/path"

120

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes

PersistentVolumeClaim sample manifest

This example shows a basic PVC with RWO access that is associated with a StorageClass named

basic-csi.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-storage
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi

storageClassName: basic-csi

Pod manifest sample

kind: Pod
apiVersion: vl
metadata:
name: pv-pod
spec:
volumes:
- name: pv-storage
persistentVolumeClaim:
claimName: basic
containers:
- name: pv-container
image: nginx
ports:
- containerPort: 80
name: "http-server"
volumeMounts:
- mountPath: "/my/mount/path"
name: pv-storage

Create the PV and PVC

Steps
1. Create the PV.

121

kubectl create -f pv.yaml

2. Verify the PV status.

kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE

pv-storage 4Gi RWO Retain Available

7s

3. Create the PVC.
kubectl create -f pvc.yaml
4. Verify the PVC status.

kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

pvc-storage Bound pv-name 2Gi RWO 5m
5. Mount the volume in a pod.

kubectl create -f pv-pod.yaml

(D You can monitor the progress using kubectl get pod --watch.

6. Verify that the volume is mounted on /my/mount /path.
kubectl exec -it task-pv-pod -- df -h /my/mount/path
7. You can now delete the Pod. The Pod application will no longer exist, but the volume will remain.

kubectl delete pod task-pv-pod

Refer to Kubernetes and Trident objects for details on how storage classes interact with the
PersistentVolumeClaim and parameters for controlling how Astra Trident provisions volumes.

122

https://docs.netapp.com/us-en/trident-2307/trident-reference/objects.html

Expand volumes

Astra Trident provides Kubernetes users the ability to expand their volumes after they are

created. Find information about the configurations required to expand iSCSI and NFS
volumes.

Expand an iSCSI volume

You can expand an iSCSI Persistent Volume (PV) by using the CSI provisioner.

(D iSCSI volume expansion is supported by the ontap-san, ontap-san-economy, solidfire-

san drivers and requires Kubernetes 1.16 and later.

Step 1: Configure the StorageClass to support volume expansion

Edit the StorageClass definition to set the allowVvolumeExpansion field to true.

cat storageclass-ontapsan.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontap-san
provisioner: csi.trident.netapp.io
parameters:

backendType: "ontap-san"
allowVolumeExpansion: True

For an already existing StorageClass, edit it to include the allowVolumeExpansion parameter.

Step 2: Create a PVC with the StorageClass you created

Edit the PVC definition and update the spec.resources.requests.storage to reflect the newly desired

size, which must be greater than the original size.

123

cat pvc-ontapsan.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: san-—-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: ontap-san

Astra Trident creates a Persistent Volume (PV) and associates it with this Persistent Volume Claim (PVC).

kubectl get pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82£2885db671 1Gi

RWO ontap-san 8s

kubectl get pv

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-8a814d62-bd58-4253-b0d1-82£2885db671 1G1i RWO

Delete Bound default/san-pvc ontap-san 10s

Step 3: Define a pod that attaches the PVC

Attach the PV to a pod for it to be resized. There are two scenarios when resizing an iSCSI PV:

« If the PV is attached to a pod, Astra Trident expands the volume on the storage backend, rescans the
device, and resizes the filesystem.

* When attempting to resize an unattached PV, Astra Trident expands the volume on the storage backend.
After the PVC is bound to a pod, Trident rescans the device and resizes the filesystem. Kubernetes then
updates the PVC size after the expand operation has successfully completed.

In this example, a pod is created that uses the san-pvc.

124

kubectl get pod
NAME READY STATUS RESTARTS AGE
ubuntu-pod 1/1 Running 0 65s

kubectl describe pvc san-pvc

Name : san—-pvc

Namespace: default

StorageClass: ontap-san

Status: Bound

Volume: pvc-8a814d62-bd58-4253-b0d1-82£2885db671
Labels: <none>

Annotations: pv.kubernetes.io/bind-completed: yes

pv.kubernetes.io/bound-by-controller: yes
volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers: [kubernetes.io/pvc—protection]
Capacity: 1G1i

Access Modes: RWO

VolumeMode: Filesystem

Mounted By: ubuntu-pod

Step 4: Expand the PV

To resize the PV that has been created from 1Gi to 2Gi, edit the PVC definition and update the
spec.resources.requests.storage to 2Gi.

125

kubectl edit pvc san-pvc

Please edit the object below. Lines beginning with a '#' will be
ignored,

and an empty file will abort the edit. If an error occurs while saving
this file will be

reopened with the relevant failures.

#

apiVersion: vl

kind: PersistentVolumeClaim

metadata:
annotations:
pv.kubernetes.io/bind-completed: "yes"
pv.kubernetes.io/bound-by-controller: "yes"

volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
creationTimestamp: "2019-10-10T17:32:292"
finalizers:
- kubernetes.io/pvc-protection
name: san-pvc
namespace: default
resourceVersion: "16609"
selflLink: /api/vl/namespaces/default/persistentvolumeclaims/san-pvc
uid: 8a814d62-bd58-4253-b0d1-82£2885db671

spec:

accessModes:
- ReadWriteOnce
resources:

requests:

storage: 2Gi

Step 5: Validate the expansion

You can validate the expansion worked correctly by checking the size of the PVC, PV, and the Astra Trident
volume:

126

kubectl get pvc san-pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82£2885db671 2Gi

RWO ontap-san 1lm

kubectl get pv

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-8a814d62-bd58-4253-b0d1-82£2885db671 2G1 RWO

Delete Bound default/san-pvc ontap-san 12m

tridentctl get volumes -n trident

fos=s=ss=s=ssscsessssssssosossssss=s=sssa=s fememe==== e

e L T s frommmem e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

o o e e o o e o o e e o o 5 D) e e i e e frommmom e e

fremmmm=a==s frememsesessss s s s m s s e o s = = e fremememm=s I
| pvc-8a814d62-bd58-4253-b0d1-82£2885db671 | 2.0 GiB | ontap-san |
block | a%7bfff-0505-4e31-b6c5-59£492e02d33 | online | true |

fomssssess s s s s o s e o s sss s osss fremmmemm=s frememesmeeeeaaa=

fem======== e Bt fmm====== fememe==== 4

Expand an NFS volume

Astra Trident supports volume expansion for NFS PVs provisioned on ontap-nas, ontap-nas-economy,

ontap-nas-flexgroup, gcp-cvs, and azure-netapp-files backends.

Step 1: Configure the StorageClass to support volume expansion

To resize an NFS PV, the admin first needs to configure the storage class to allow volume expansion by setting

the allowVolumeExpansion field to true:

cat storageclass-ontapnas.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontapnas
provisioner: csi.trident.netapp.io
parameters:

backendType: ontap-nas
allowVolumeExpansion: true

If you have already created a storage class without this option, you can simply edit the existing storage class

by using kubectl edit storageclass to allow volume expansion.

127

Step 2: Create a PVC with the StorageClass you created

cat pvc-ontapnas.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: ontapnas20mb
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 20Mi
storageClassName: ontapnas

Astra Trident should create a 20MiB NFS PV for this PVC:

kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08£f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi

RWO ontapnas 9s

kubectl get pv pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLATIM STORAGECLASS REASON
AGE

pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7 20Mi RWO

Delete Bound default/ontapnas20mb ontapnas

2mé2s

Step 3: Expand the PV

To resize the newly created 20MiB PV to 1GiB, edit the PVC and set spec.resources.requests.storage
to 1GB:

128

kubectl edit pvc ontapnas20mb

Please edit the object below. Lines beginning with a '#' will be
ignored,

and an empty file will abort the edit. If an error occurs while saving
this file will be

reopened with the relevant failures.

#

apiVersion: vl

kind: PersistentVolumeClaim

metadata:
annotations:
pv.kubernetes.io/bind-completed: "yes"
pv.kubernetes.io/bound-by-controller: "yes"

volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
creationTimestamp: 2018-08-21T18:26:447%
finalizers:
- kubernetes.io/pvc-protection
name: ontapnas20mb
namespace: default
resourceVersion: "1958015"
selflLink: /api/vl/namespaces/default/persistentvolumeclaims/ontapnas20mb
uid: clbd7fab5-a56f-11e8-b8d7-fal63e59%eaab

spec:

accessModes:
- ReadWriteOnce
resources:

requests:

storage: 1Gi

Step 4: Validate the expansion

You can validate the resize worked correctly by checking the size of the PVC, PV, and the Astra Trident
volume:

129

kubectl get pvc ontapnas20mb

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08£f3d561-b199-11e9-8d9£f-5254004dfdb7 1G1i
RWO ontapnas 4médds

kubectl get pv pvc-08£3d561-b199-11e9-8d9£-5254004dfdb7

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON
AGE

pvc-08£3d561-0199-11e9-8d9£f-5254004dfdb7 1Gi RWO

Delete Bound default/ontapnas20mb ontapnas

5m35s

tridentctl get volume pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

o e Fomm -
fom - o fom - fom— +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

- fom o
fom - o fomm - fomm - +
| pvc-08£3d561-b199-11e9-8d9£-5254004dfdb7 | 1.0 GiB | ontapnas |
file | cS5abf6ad-b052-423b-80d4-8fb491alda22 | online | true |

et ittt L fommm - fom e
fom - oo fom - e +

Import volumes

You can import existing storage volumes as a Kubernetes PV using tridentctl
import.

Overview and considerations

You might import a volume into Astra Trident to:

« Containerize an application and reuse its existing data set
* Use a clone of a data set for an ephemeral application
» Rebuild a failed Kubernetes cluster

» Migrate application data during disaster recovery

Considerations
Before importing a volume, review the following considerations.

 Astra Trident can import RW (read-write) type ONTAP volumes only. DP (data protection) type volumes are

SnapMirror destination volumes. You should break the mirror relationship before importing the volume into
Astra Trident.

130

* We suggest importing volumes without active connections. To import an actively-used volume, clone the
volume and then perform the import.

This is especially important for block volumes as Kubernetes would be unaware of the
@ previous connection and could easily attach an active volume to a pod. This can result in
data corruption.

* Though storageClass must be specified on a PVC, Astra Trident does not use this parameter during
import. Storage classes are used during volume creation to select from available pools based on storage
characteristics. Because the volume already exists, no pool selection is required during import. Therefore,
the import will not fail even if the volume exists on a backend or pool that does not match the storage class
specified in the PVC.

* The existing volume size is determined and set in the PVC. After the volume is imported by the storage
driver, the PV is created with a ClaimRef to the PVC.

° The reclaim policy is initially set to retain in the PV. After Kubernetes successfully binds the PVC and
PV, the reclaim policy is updated to match the reclaim policy of the Storage Class.

° If the reclaim policy of the Storage Class is delete, the storage volume will be deleted when the PV is
deleted.

* By default, Astra Trident manages the PVC and renames the FlexVol and LUN on the backend. You can
pass the --no-manage flag to import an unmanaged volume. If you use --no-manage, Astra Trident
does not perform any additional operations on the PVC or PV for the lifecycle of the objects. The storage
volume is not deleted when the PV is deleted and other operations such as volume clone and volume
resize are also ignored.

This option is useful if you want to use Kubernetes for containerized workloads but
otherwise want to manage the lifecycle of the storage volume outside of Kubernetes.

» An annotation is added to the PVC and PV that serves a dual purpose of indicating that the volume was
imported and if the PVC and PV are managed. This annotation should not be modified or removed.

Import a volume

You can use tridentctl import to import a volume.

Steps

1. Create the Persistent Volume Claim (PVC) file (for example, pvc . yaml) that will be used to create the
PVC. The PVC file should include name, namespace, accessModes, and storageClassName.
Optionally, you can specify unixPermissions in your PVC definition.

The following is an example of a minimum specification:

131

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: my claim
namespace: my namespace
spec:
accessModes:
- ReadWriteOnce
storageClassName: my storage class

(D Don’t include additional parameters such as PV name or volume size. This can cause the
import command to fail.

2. Use the tridentctl import command to specify the name of the Astra Trident backend containing the
volume and the name that uniquely identifies the volume on the storage (for example: ONTAP FlexVol,
Element Volume, Cloud Volumes Service path). The -f argument is required to specify the path to the
PVC file.

tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-
file>

Examples

Review the following volume import examples for supported drivers.

ONTAP NAS and ONTAP NAS FlexGroup

Astra Trident supports volume import using the ontap-nas and ontap-nas-flexgroup drivers.

* The ontap-nas-economy driver cannot import and manage qtrees.
(D * The ontap-nas and ontap-nas-flexgroup drivers do not allow duplicate volume
names.

Each volume created with the ontap-nas driver is a FlexVol on the ONTAP cluster. Importing FlexVols with
the ontap-nas driver works the same. A FlexVol that already exists on an ONTAP cluster can be imported as
a ontap-nas PVC. Similarly, FlexGroup vols can be imported as ontap-nas-flexgroup PVCs.

ONTAP NAS examples
The following show an example of a managed volume and an unmanaged volume import.

132

Managed volume

The following example imports a volume named managed volume on a backend named ontap nas:

tridentctl import volume ontap nas managed volume -f <path-to-pvc-file>

fossssss=s=ssscscssssssesosossssssss==ssa=s fememe==== fememmmsaemaaa=a
T e e e e e e S D e fro— e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

L fr e fr e e
fress=m=m==s fremeosesesssssss e s s s s s o s e fremememm=s I
| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |
file | cba6f6ad-b052-423b-80d4-8fb491ald4a22 | online | true |
fossssssssssssesessssoees oo ssssss s s s e e
femm======a femessesessss s e e se s e eessssaa s fmmm==== femememm== 4

Unmanaged volume

When using the --no-manage argument, Astra Trident does not rename the volume.

The following example imports unmanaged volume on the ontap nas backend:

tridentctl import volume nas blog unmanaged volume -f <path-to-pvc-
file> --no-manage

o fomm - Fomm -
fomm - o fom - fomm - +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
e ittt L e fomm - fomm e
Fommcmmomo= B e Fommcomo= oo +
| pvc-df07d542-afbc-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |
file | c5a6f6ad-b052-423b-80d4-8fb491aldaz22 | online | false |
o Fommm - Fomm -
fom - o fom— - e +

ONTAP SAN

Astra Trident supports volume import using the ontap-san driver. Volume import is not supported using the
ontap-san-econony driver.

Astra Trident can import ONTAP SAN FlexVols that contain a single LUN. This is consistent with the ontap-

san driver, which creates a FlexVol for each PVC and a LUN within the FlexVol. Astra Trident imports the
FlexVol and associates it with the PVC definition.

133

ONTAP SAN examples
The following show an example of a managed volume and an unmanaged volume import.

134

Managed volume

For managed volumes, Astra Trident renames the FlexVol to the pvc-<uuid> format and the LUN within
the FlexVol to 1un0.

The following example imports the ontap-san-managed FlexVol that is present on the
ontap san default backend:

tridentctl import volume ontapsan san default ontap-san-managed -f pvc-

basic-import.yaml -n trident -d

Fommmmmmmmsmeososorreroememememe oo memmm o Frommomoms Fommmmmmomoomoms
Fommemmomo= o memererserererr s eseee s ee e Focmcomo= ommmcemos +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
e e et rommmmom= Fommcmmccmeoeo=e
Fommmmmmm== e Fommmmm== o= +
| pvc-d6eedf54-4e40-4454-92£fd-d00£c228d74a | 20 MiB | basic |
block | cd394786-ddd5-4470-adc3-10c5ced4ca’57 | online | true |
Fommmmmmemsmssesese s s s s s e e i Fommmmmmemememe=
Fommmomomme Fommememerossrsreemenessosoeseoomomoms Fomomomme Fommomomos +

Unmanaged volume

The following example imports unmanaged example volume onthe ontap san backend:

tridentctl import volume -n trident san blog unmanaged example volume
-f pvc-import.yaml --no-manage

Fommmmmmemssesesese s s s s e e e P o=
Fommmmmomo= B e e e Fommmmmoe e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
i e et ommmmomos e e
Pommmmmmm== ettt Fommmmm== o= +
| pvc-1£c999c9-ce8c-459c-82e4-ed4380a4b228 | 1.0 GiB | san-blog

block | €3275890-7d80-4af6-90cc-c7a0759£555a | online | false |
et P P
Fommmmmmm== e et Fommmmm== o= +

135

If you have LUNS mapped to igroups that share an IQN with a Kubernetes node IQN, as
shown in the following example, you will receive the error: LUN already mapped to
initiator(s) in this group. You will need to remove the initiator or unmap the LUN
to import the volume.

(::) Vserver Igroup Protocol 0S Type Initiators

k8s-nodename. example. com-fe5d36f2-cded-4138-9eb@-c7719fc2193

iscsi linux iqn.1994-05.com.redhat:4c2elcf35e0

unmanaged-example-igroup
mixed linux ign.1994-05.com.redhat:4c2elcf35e0

Element

Astra Trident supports NetApp Element software and NetApp HCI volume import using the solidfire-san
driver.

The Element driver supports duplicate volume names. However, Astra Trident returns an error if
there are duplicate volume names. As a workaround, clone the volume, provide a unique
volume name, and import the cloned volume.

Element example

The following example imports an element-managed volume on backend element default.

tridentctl import volume element default element-managed -f pvc-basic-
import.yaml -n trident -d

fossssssssssssesessssssesososssassasssssa=s femmmm=== fommsmssmemaaa=
fremsmm=a==s E Bttt e e X
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

frosssscesms s oo s e n e s s s s e e froccscssmemeea==
fe========c femsmsesessss s s e s s s o s fe======s e +
| pvc-970celca-2096-4ecd-8545-ac7edc24a8fe | 10 GiB | basic-element |
block | d3bal47a-ealb-43£9-9¢c42-e38e58301c49 | online | true |
R Fem=m==== fomsmessmema====
fmmmmmmma=a fomemme e s s e e me s e ce s e s e e fmmmmm==e fommmema=e +

Google Cloud Platform

Astra Trident supports volume import using the gcp-cvs driver.

136

To import a volume backed by the NetApp Cloud Volumes Service in Google Cloud Platform,
identify the volume by its volume path. The volume path is the portion of the volume’s export

@ path after the : /. For example, if the export pathis 10.0.0.1:/adroit-jolly-swift, the
volume path is adroit-jolly-swift.

Google Cloud Platform example

The following example imports a gcp-cvs volume on backend gcpcvs YEppr with the volume path of
adroit-jolly-swift.

tridentctl import volume gcpcvs YEppr adroit-jolly-swift -f <path-to-pvc-
file> -n trident

o fomm - fom -
Fommmmmmm== Bt e Fommmmm== o= +

| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
Fommmmmmemsmssesese s s s s s e o= Fommmmmmemememe=
Fommmommmme Fommmmemeressrereemenessssoesen oo moms Fomommmme Frommmmomos +

| pvc-ad6ccab7-44aa-4433-94bl-e47£c8c0fad5 | 93 GiB | gcp-storage | file
| ela6e65b-299e-4568-ad05-4£0a105c888f | online | true |
e L L Fommmmom= Fommmmmmemoomo=e
et ettt Fommmmmos Fosommmmes +

Azure NetApp Files

Astra Trident supports volume import using the azure-netapp-files driver.

To import an Azure NetApp Files volume, identify the volume by its volume path. The volume
path is the portion of the volume’s export path after the : /. For example, if the mount path is
10.0.0.2:/importvoll, the volume path is importvoll.

Azure NetApp Files example

The following example imports an azure-netapp-files volume on backend azurenetappfiles 40517
with the volume path importvoll.

137

tridentctl import volume azurenetappfiles 40517 importvoll -f <path-to-
pvc-file> -n trident

fos=ssss=s=ssscsessssssssosossssssss==ssa=s fememe===s e
e e e e e e e e e e fro— e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

e e e e e e e e) fro— e s e
frems=m=m==s e ittt R remmmeme== +F
| pvc-0ee95d60-£d5¢c-448d-b505-b72901b3ad4ab | 100 GiB | anf-storage |
file | 1c01274£-d94b-44a3-98a3-04c953c9%a5le | online | true |
fossssssssss s e se s s oses oo sssssss s s e fremmmmmeee e
femm======a femessesessss s e e se s e eessssaa s femm==== femememm== 4

Share an NFS volume across namespaces

Using Astra Trident, you can create a volume in a primary namespace and share it in one
or more secondary namespaces.

Features

The Astra TridentVolumeReference CR allows you to securely share ReadWriteMany (RWX) NFS volumes
across one or more Kubernetes namespaces. This Kubernetes-native solution has the following benefits:

» Multiple levels of access control to ensure security
» Works with all Trident NFS volume drivers

* No reliance on tridentctl or any other non-native Kubernetes feature

This diagram illustrates NFS volume sharing across two Kubernetes namespaces.

138

................. : Primary PV Secondary PV

npl"il'l'"lar}f" o . Q = :,’

1T Trident T g %
namespace

primary

Vo TVel e——>

TridentVolumeReference

O [
H

primary/pvci

Slorage = tt-cecemecsecosno-e
Volume

Quick start

You can set up NFS volume sharing in just a few steps.

o Configure source PVC to share the volume
The source namespace owner grants permission to access the data in the source PVC.

9 Grant permission to create a CR in the destination namespace

The cluster administrator grants permission to the owner of the destination namespace to create the
TridentVolumeReference CR.

e Create TridentVolumeReference in the destination namespace
The owner of the destination namespace creates the TridentVolumeReference CR to refer to the source PVC.

o Create the subordinate PVC in the destination namespace

The owner of the destination namespace creates the subordinate PVC to use the data source from the source
PVC.

Configure the source and destination namespaces

To ensure security, cross namespace sharing requires collaboration and action by the source namespace

139

owner, cluster administrator, and destination namespace owner. The user role is designated in each step.

Steps

1. Source namespace owner: Create the PVC (pvc1) in the source namespace that grants permission to
share with the destination namespace (namespace?) using the shareToNamespace annotation.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvcl
namespace: namespacel
annotations:

trident.netapp.io/shareToNamespace: namespace?

spec:
accessModes:

- ReadWriteMany
storageClassName: trident-csi
resources:

requests:

storage: 100Gi

Astra Trident creates the PV and its backend NFS storage volume.

> You can share the PVC to multiple namespaces using a comma-delimited list. For
example, trident.netapp.io/shareToNamespace:
namespace?2, namespace3, namespace4.

@ ° You can share to all namespaces using *. For example,
trident.netapp.io/shareToNamespace: *

° You can update the PVC to include the shareToNamespace annotation at any time.

2. Cluster admin: Create the custom role and kubeconfig to grant permission to the destination namespace
owner to create the TridentVolumeReference CR in the destination namespace.

3. Destination namespace owner: Create a TridentVolumeReference CR in the destination namespace that
refers to the source namespace pvcl.

apiVersion: trident.netapp.io/vl
kind: TridentVolumeReference
metadata:

name: my-first-tvr

namespace: namespace?2
spec:

pvcName: pvcl

pvcNamespace: namespacel

140

4. Destination namespace owner: Create a PVC (pvc2) in destination namespace (namespace?2) using
the shareFromPVC annotation to designate the source PVC.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:

annotations:

trident.netapp.io/shareFromPVC: namespacel/pvcl
name: pvc2
namespace: namespace?2

spec:
accessModes:

- ReadWriteMany
storageClassName: trident-csi
resources:

requests:

storage: 100Gi

@ The size of the destination PVC must be less than or equal than the source PVC.

Results

Astra Trident reads the shareFromPVC annotation on the destination PVC and creates the destination PV as a
subordinate volume with no storage resource of its own that points to the source PV and shares the source PV
storage resource. The destination PVC and PV appear bound as normal.

Delete a shared volume

You can delete a volume that is shared across multiple namespaces. Astra Trident will remove access to the
volume on the source namespace and maintain access for other namespaces that share the volume. When all
namespaces that reference the volume are removed, Astra Trident deletes the volume.

Use tridentctl get to query subordinate volumes
Using the tridentctl utility, you can run the get command to get subordinate volumes. For more

information, refer to tridentctl commands and options.

Usage:
tridentctl get [option]
Flags:

* "-h, --help: Help for volumes.
* ——parentOfSubordinate string: Limit query to subordinate source volume.

* ——subordinateOf string: Limit query to subordinates of volume.

141

https://docs.netapp.com/us-en/trident-2307/trident-reference/tridentctl.html
https://docs.netapp.com/us-en/trident-2307/trident-reference/tridentctl.html

Limitations

 Astra Trident cannot prevent destination namespaces from writing to the shared volume. You should use
file locking or other processes to prevent overwriting shared volume data.

* You cannot revoke access to the source PVC by removing the shareToNamespace or
shareFromNamespace annotations or deleting the TridentvVolumeReference CR. To revoke access,
you must delete the subordinate PVC.

» Snapshots, clones, and mirroring are not possible on subordinate volumes.

For more information

To learn more about cross-namespace volume access:

* Visit Sharing volumes between namespaces: Say hello to cross-namespace volume access.

* Watch the demo on NetAppTV.

Use CSI Topology

Astra Trident can selectively create and attach volumes to nodes present in a Kubernetes
cluster by making use of the CSI Topology feature.

Overview

Using the CSI Topology feature, access to volumes can be limited to a subset of nodes, based on regions and
availability zones. Cloud providers today enable Kubernetes administrators to spawn nodes that are zone
based. Nodes can be located in different availability zones within a region, or across various regions. To
facilitate the provisioning of volumes for workloads in a multi-zone architecture, Astra Trident uses CSI
Topology.

Learn more about the CSI Topology feature here.

Kubernetes provides two unique volume binding modes:

* With VolumeBindingMode set to Immediate, Astra Trident creates the volume without any topology
awareness. Volume binding and dynamic provisioning are handled when the PVC is created. This is the
default volumeBindingMode and is suited for clusters that do not enforce topology constraints. Persistent
Volumes are created without having any dependency on the requesting pod’s scheduling requirements.

* With VolumeBindingMode set to WaitForFirstConsumer, the creation and binding of a Persistent
Volume for a PVC is delayed until a pod that uses the PVC is scheduled and created. This way, volumes
are created to meet the scheduling constraints that are enforced by topology requirements.

@ The WaitForFirstConsumer binding mode does not require topology labels. This can be
used independent of the CSI Topology feature.

What you’ll need
To make use of CSI Topology, you need the following:

» A Kubernetes cluster running a supported Kubernetes version

142

https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://docs.netapp.com/us-en/trident-2307/trident-get-started/requirements.html

kubectl version

Client Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"1el1le4a2108024935ecfcb2912226cedeafd99df",
GitTreeState:"clean", BuildDate:"2020-10-14T12:50:192",
GoVersion:"gol.15.2", Compiler:"gc", Platform:"linux/amdoc4"}
Server Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"1elled4a2108024935ecfcb2912226cedeafd99df"”,
GitTreeState:"clean", BuildDate:"2020-10-14T12:41:492",
GoVersion:"gol.15.2", Compiler:"gc", Platform:"linux/amd64"}

* Nodes in the cluster should have labels that introduce topology awareness
(topology.kubernetes.io/region and topology.kubernetes.io/zone). These labels should
be present on nodes in the cluster before Astra Trident is installed for Astra Trident to be topology
aware.

kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{ .metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"
[nodel,
{"beta.kubernetes.io/arch":"amd64", "beta.kubernetes.io/o0os":"1linux", "kube

rnetes.io/arch":"amdo64", "kubernetes.io/hostname" :"nodel", "kubernetes.io/
os":"linux", "node-

role.kubernetes.io/master":"", "topology.kubernetes.io/region":"us-
eastl","topology.kubernetes.io/zone":"us-eastl-a"}]

[node2,

{"beta.kubernetes.io/arch":"amde64", "beta.kubernetes.io/0s":"1linux", "kube
rnetes.io/arch":"amd64", "kubernetes.io/hostname" :"node2", "kubernetes.io/
os":"linux", "node-

role.kubernetes.io/worker":"", "topology.kubernetes.io/region":"us-
eastl","topology.kubernetes.io/zone" :"us-eastl-b"}]

[node3,

{"beta.kubernetes.io/arch":"amd64", "beta.kubernetes.io/o0os":"1linux", "kube
rnetes.io/arch":"amd64", "kubernetes.io/hostname" :"node3", "kubernetes.io/
os":"linux", "node-

role.kubernetes.io/worker":"", "topology.kubernetes.io/region":"us-
eastl", "topology.kubernetes.io/zone":"us-eastl-c"}]

Step 1: Create a topology-aware backend

Astra Trident storage backends can be designed to selectively provision volumes based on availability zones.
Each backend can carry an optional supportedTopologies block that represents a list of zones and regions
that must be supported. For StorageClasses that make use of such a backend, a volume would only be
created if requested by an application that is scheduled in a supported region/zone.

143

Here is an example backend definition:

YAML

version: 1

storageDriverName: ontap-san

backendName: san-backend-us-eastl

managementLIF: 192.168.27.5

svm: iscsi svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-eastl
topology.kubernetes.io/zone: us-eastl-a

- topology.kubernetes.io/region: us-eastl

topology.kubernetes.io/zone: us-eastl-Db

JSON
{
"version": 1,
"storageDriverName": "ontap-san",
"backendName": "san-backend-us-eastl",
"managementLIF": "192.168.27.5",
"svm": "iscsi svm",
"username": "admin",
"password": "password",
"supportedTopologies™": [
{"topology.kubernetes.io/region": "us-eastl",
"topology.kubernetes.io/zone": "us-eastl-a"},
{"topology.kubernetes.io/region": "us-eastl",
"topology.kubernetes.io/zone": "us-eastl-b"}

]
}

supportedTopologies is used to provide a list of regions and zones per backend. These

@ regions and zones represent the list of permissible values that can be provided in a
StorageClass. For StorageClasses that contain a subset of the regions and zones provided in a
backend, Astra Trident will create a volume on the backend.

You can define supportedTopologies per storage pool as well. See the following example:

144

version: 1

storageDriverName: ontap-nas

backendName: nas-backend-us-centrall

managementLIF: 172.16.

svm: nfs svm
username: admin
password: password
supportedTopologies:
- topology.kubernetes

topology.kubernetes.
- topology.kubernetes.
topology.kubernetes.

storage:
- labels:

238.5

.1o0/region: us-centrall

io/zone: us-centrall-a
io/region: us-centrall
io/zone: us-centrall-b

workload: production

region: Iowa-DC
zone: Iowa-DC-A

supportedTopologies:
- topology.kubernetes.
topology.kubernetes.io/zone: us-centrall-a

- labels:
workload: dev
region: Iowa-DC
zone: Iowa-DC-B

supportedTopologies:
- topology.kubernetes.
topology.kubernetes.io/zone: us-centrall-b

In this example, the region and zone labels stand for the location of the storage pool.
topology.kubernetes.io/region and topology.kubernetes.io/zone dictate where the storage

pools can be consumed from.

Step 2: Define StorageClasses that are topology aware

io/region: us-centrall

io/region: us-centrall

Based on the topology labels that are provided to the nodes in the cluster, StorageClasses can be defined to
contain topology information. This will determine the storage pools that serve as candidates for PVC requests

made, and the subset of nodes that can make use of the volumes provisioned by Trident.

See the following example:

145

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: netapp-san-us-eastl
provisioner: csi.trident.netapp.io
volumeBindingMode: WaitForFirstConsumer
allowedTopologies:
- matchLabelExpressions:
- key: topology.kubernetes.io/zone
values:
- us-eastl-a
- us-eastl-b
- key: topology.kubernetes.io/region
values:
- us-eastl
parameters:
fsType: "ext4d"

In the StorageClass definition provided above, volumeBindingMode is set to WaitForFirstConsumer.
PVCs that are requested with this StorageClass will not be acted upon until they are referenced in a pod. And,
allowedTopologies provides the zones and region to be used. The netapp-san-us-eastl1 StorageClass
will create PVCs on the san-backend-us-east1 backend defined above.

Step 3: Create and use a PVC

With the StorageClass created and mapped to a backend, you can now create PVCs.

See the example spec below:

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-san
spec:
accessModes:

- ReadWriteOnce
resources:

requests:

storage: 300Mi

storageClassName: netapp-san-us-eastl

Creating a PVC using this manifest would result in the following:

146

kubectl create -f pvc.yaml
persistentvolumeclaim/pvc-san created
kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

AGE

pvc-san Pending netapp-san-us-eastl

2s

kubectl describe pvc

Name: pvc-san

Namespace: default

StorageClass: netapp-san-us-eastl

Status: Pending

Volume:

Labels: <none>

Annotations: <none>

Finalizers: [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode: Filesystem

Mounted By: <none>

Events:
Type Reason Age From Message
Normal WaitForFirstConsumer ©6s persistentvolume-controller waiting

for first consumer to be created before binding

For Trident to create a volume and bind it to the PVC, use the PVC in a pod. See the following example:

147

apiVersion: vl
kind: Pod
metadata:
name: app-pod-1
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: topology.kubernetes.io/region
operator: In
values:
- us-eastl
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
preference:
matchExpressions:
- key: topology.kubernetes.io/zone
operator: In
values:
- us-eastl-a
- us-eastl-b
securityContext:
runAsUser: 1000
runAsGroup: 3000
fsGroup: 2000
volumes:
- name: voll
persistentVolumeClaim:
claimName: pvc-san
containers:
- name: sec-ctx-demo
image: busybox
command: ["sh", "-c", "sleep 1h"]
volumeMounts:
- name: voll
mountPath: /data/demo
securityContext:
allowPrivilegeEscalation: false

This podSpec instructs Kubernetes to schedule the pod on nodes that are present in the us-east1 region,
and choose from any node that is present in the us-eastl-a or us-eastl-b zones.

See the following output:

148

kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES

app-pod-1 1/1 Running 0 19s 192.168.25.131 node?2
<none> <none>

kubectl get pvc -o wide

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE VOLUMEMODE

pvc-san Bound pvc-ecblelal0-840c-463b-8b65-b3d033e2e62b 300Mi
RWO netapp-san-us-eastl 48s Filesystem

Update backends to include supportedTopologies

Pre-existing backends can be updated to include a list of supportedTopologies using tridentctl
backend update. This will not affect volumes that have already been provisioned, and will only be used for
subsequent PVCs.

Find more information

* Manage resources for containers
* nodeSelector
« Affinity and anti-affinity

¢ Taints and Tolerations

Work with snapshots

Kubernetes volume snapshots of Persistent Volumes (PVs) enable point-in-time copies of
volumes. You can create a snapshot of a volume created using Astra Trident, import a
snapshot created outside of Astra Trident, create a new volume from an existing
shapshot, and recover volume data from snapshots.

Overview

Volume snapshot is supported by ontap-nas, ontap-nas-flexgroup, ontap-san, ontap-san-
economy, solidfire-san, gcp-cvs, and azure-netapp-files drivers.

Before you begin

You must have an external snapshot controller and Custom Resource Definitions (CRDs) to work with
snapshots. This is the responsibility of the Kubernetes orchestrator (for example: Kubeadm, GKE, OpenShift).

If your Kubernetes distribution does not include the snapshot controller and CRDs, refer to Deploy a volume
shapshot controller.

(D Don’t create a snapshot controller if creating on-demand volume snapshots in a GKE
environment. GKE uses a built-in, hidden snapshot controller.

149

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Create a volume snapshot

Steps
1. Create a VolumeSnapshotClass. For more information, refer to VolumeSnapshotClass.

° The driver points to the Astra Trident CSI driver.

° deletionPolicy can be Delete or Retain. When set to Retain, the underlying physical snapshot
on the storage cluster is retained even when the volumeSnapshot object is deleted.

Example

cat snap-sc.yaml
apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshotClass
metadata:

name: csi-snapclass
driver: csi.trident.netapp.io
deletionPolicy: Delete

2. Create a snapshot of an existing PVC.

Examples
o This example creates a snapshot of an existing PVC.

cat snap.yaml
apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshot
metadata:
name: pvcl-snap
spec:
volumeSnapshotClassName: csi-snapclass
source:
persistentVolumeClaimName: pvcl

° This example creates a volume snapshot object for a PVC named pvcl and the name of the snapshot
is set to pvcl-snap. A VolumeSnapshot is analogous to a PVC and is associated with a
VolumeSnapshotContent object that represents the actual snapshot.

kubectl create -f snap.yaml
volumesnapshot.snapshot.storage.k8s.io/pvcl-snap created

kubectl get volumesnapshots
NAME AGE
pvcl-snap 50s

° You can identify the volumeSnapshotContent object for the pvcl-snap VolumeSnapshot by

150

https://docs.netapp.com/us-en/trident-2307/trident-reference/objects.html#kubernetes-volumesnapshotclass-objects

describing it. The Snapshot Content Name identifies the VolumeSnapshotContent object which
serves this snapshot. The Ready To Use parameter indicates that the snapshot can be used to
create a new PVC.

kubectl describe volumesnapshots pvcl-snap

Name: pvcl-snap
Namespace: default
Spec:
Snapshot Class Name: pvcl-snap
Snapshot Content Name: snapcontent-e8d8a0ca-9826-11e9-9807-
525400£3£660
Source:
API Group:
Kind: PersistentVolumeClaim
Name: pvcl
Status:
Creation Time: 2019-06-26T15:27:29%
Ready To Use: true
Restore Size: 3Gi

Create a PVC from a volume snapshot

You can use dataSource to create a PVC using a VolumeSnapshot named <pvc-name> as the source of the
data. After the PVC is created, it can be attached to a pod and used just like any other PVC.

@ The PVC will be created in the same backend as the source volume. Refer to KB: Creating a
PVC from a Trident PVC Snapshot cannot be created in an alternate backend.

The following example creates the PVC using pvcl-snap as the data source.

151

https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend

cat pvc-from-snap.yaml
apiVersion: vl
kind: PersistentVolumeClaim
metadata:

name: pvc-from-snap
spec:

accessModes:

- ReadWriteOnce
storageClassName: golden
resources:

requests:

storage: 3Gi
dataSource:

name: pvcl-snap

kind: VolumeSnapshot

apiGroup: snapshot.storage.k8s.io

Import a volume snapshot

Astra Trident supports the Kubernetes pre-provisioned snapshot process to enable the cluster administrator to
create a VolumeSnapshotContent object and import snapshots created outside of Astra Trident.

Before you begin
Astra Trident must have created or imported the snapshot’s parent volume.

Steps
1. Cluster admin: Create a VolumeSnapshotContent object that references the backend snapshot. This
initiates the snapshot workflow in Astra Trident.

° Specify the name of the backend snapshot in annotations as
trident.netapp.io/internalSnapshotName: <"backend-snapshot—-name">.

° Specify <name-of-parent-volume-in-trident>/<volume-snapshot-content-name> in
snapshotHandle. This is the only information provided to Astra Trident by the external snapshotter in
the ListSnapshots call.

(D The <volumeSnapshotContentName> cannot always match the backend snapshot
name due to CR naming constraints.

Example

The following example creates a VolumeSnapshotContent object that references backend snapshot
snap-01.

152

https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static

apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshotContent
metadata:
name: import-snap-content
annotations:
trident.netapp.io/internalSnapshotName: "snap-01" # This is the
name of the snapshot on the backend
spec:
deletionPolicy: Retain
driver: csi.trident.netapp.io
source:
snapshotHandle: pvc-£f71223b5-23b9-4235-bbfe-e269ac7b84b0/import—-
snap-content # <import PV name or source PV name>/<volume-snapshot-

content—-name>

2. Cluster admin: Create the VolumeSnapshot CR that references the volumeSnapshotContent object.
This requests access to use the VolumeSnapshot in a given namespace.

Example

The following example creates a VolumeSnapshot CR named import-snap that references the
VolumeSnapshotContent named import-snap-content.

apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshot
metadata:

name: import-snap
spec:

volumeSnapshotClassName: csi-snapclass (not required for pre-
provisioned or imported snapshots)

source:

volumeSnapshotContentName: import-snap-content

3. Internal processing (no action required): The external snapshotter recognizes the newly created
VolumeSnapshotContent and runs the ListSnapshots call. Astra Trident creates the
TridentSnapshot.

° The external snapshotter sets the VolumeSnapshotContent to readyToUse and the
VolumeSnapshot to true.

° Trident returns readyToUse=true.

4. Any user: Create a PersistentVolumeClaim to reference the new volumeSnapshot, where the
spec.dataSource (or spec.dataSourceRef) name is the VolumeSnapshot name.

Example

The following example creates a PVC referencing the VolumeSnapshot named import-snap.

153

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: pvc-from-snap
spec:
accessModes:

- ReadWriteOnce
storageClassName: simple-sc
resources:

requests:

storage: 1Gi
dataSource:

name: import-snap

kind: VolumeSnapshot

apiGroup: snapshot.storage.k8s.io

Recover volume data using snapshots

The snapshot directory is hidden by default to facilitate maximum compatibility of volumes provisioned using
the ontap-nas and ontap-nas-economy drivers. Enable the . snapshot directory to recover data from
snapshots directly.

Use the volume snapshot restore ONTAP CLI to to restore a volume to a state recorded in a prior snapshot.

clusterl::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3 snap archive

(D When you restore a snapshot copy, the existing volume configuration is overwritten. Changes
made to volume data after the snapshot copy was created are lost.
Delete a PV with associated snapshots

When deleting a Persistent Volume with associated snapshots, the corresponding Trident volume is updated to
a “Deleting state”. Remove the volume snapshots to delete the Astra Trident volume.

Deploy a volume snapshot controller

If your Kubernetes distribution does not include the snapshot controller and CRDs, you can deploy them as
follows.

Steps
1. Create volume snapshot CRDs.

154

cat snapshot-setup.sh

#!/bin/bash

Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshotclasses.yaml
kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshotcontents.yam
1

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshots.yaml

2. Create the snapshot controller.

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-
controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-
controller/setup-snapshot-controller.yaml

(:) If necessary, open deploy/kubernetes/snapshot-controller/rbac-snapshot-
controller.yaml and update namespace to your namespace.

Related links

* Volume snapshots

* VolumeSnapshotClass

155

https://docs.netapp.com/us-en/trident-2307/trident-concepts/snapshots.html
https://docs.netapp.com/us-en/trident-2307/trident-reference/objects.html

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

156

http://www.netapp.com/TM

	Use Astra Trident : Astra Trident
	Table of Contents
	Use Astra Trident
	Prepare the worker node
	Selecting the right tools
	Node service discovery
	NFS volumes
	iSCSI volumes

	Configure and manage backends
	Configure backends
	Azure NetApp Files
	Configure a Cloud Volumes Service for Google Cloud backend
	Configure a NetApp HCI or SolidFire backend
	ONTAP SAN drivers
	ONTAP NAS drivers
	Amazon FSx for NetApp ONTAP
	Create backends with kubectl
	Manage backends

	Create and manage storage classes
	Create a storage class
	Manage storage classes

	Provision and manage volumes
	Provision a volume
	Expand volumes
	Import volumes
	Share an NFS volume across namespaces
	Use CSI Topology
	Work with snapshots

