
Configure and manage backends
Astra Trident
NetApp
April 03, 2024

This PDF was generated from https://docs.netapp.com/us-en/trident-2310/trident-use/backends.html on
April 03, 2024. Always check docs.netapp.com for the latest.

Table of Contents

Configure and manage backends . 1

Configure backends . 1

Azure NetApp Files . 1

Configure a Cloud Volumes Service for Google Cloud backend . 15

Configure a NetApp HCI or SolidFire backend . 31

ONTAP SAN drivers . 37

ONTAP NAS drivers . 60

Amazon FSx for NetApp ONTAP . 88

Create backends with kubectl . 102

Manage backends . 109

Configure and manage backends

Configure backends

A backend defines the relationship between Astra Trident and a storage system. It tells

Astra Trident how to communicate with that storage system and how Astra Trident should

provision volumes from it.

Astra Trident automatically offers up storage pools from backends that match the requirements defined by a

storage class. Learn how to configure the backend for your storage system.

• Configure an Azure NetApp Files backend

• Configure a Cloud Volumes Service for Google Cloud Platform backend

• Configure a NetApp HCI or SolidFire backend

• Configure a backend with ONTAP or Cloud Volumes ONTAP NAS drivers

• Configure a backend with ONTAP or Cloud Volumes ONTAP SAN drivers

• Use Astra Trident with Amazon FSx for NetApp ONTAP

Azure NetApp Files

Configure an Azure NetApp Files backend

You can configure Azure NetApp Files as the backend for Astra Trident. You can attach

NFS and SMB volumes using an Azure NetApp Files backend. Astra Trident also

supports credential management using managed identities for Azure Kubernetes

Services (AKS) clusters.

Azure NetApp Files driver details

Astra Trident provides the following Azure NetApp Files storage drivers to communicate with the cluster.

Supported access modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX),

ReadWriteOncePod (RWOP).

Driver Protocol volumeMod

e

Access modes

supported

File systems supported

azure-netapp-files NFS

SMB

Filesystem RWO, ROX, RWX, RWOP nfs, smb

Considerations

• The Azure NetApp Files service does not support volumes smaller than 100 GB. Astra Trident

automatically creates 100-GiB volumes if a smaller volume is requested.

• Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

1

Managed identities for AKS

Astra Trident supports managed identities for Azure Kubernetes Services clusters. To take advantage of

streamlined credential management offered by managed identities, you must have:

• A Kubernetes cluster deployed using AKS

• Managed identities configured on the AKS kubernetes cluster

• Astra Trident installed that includes the cloudProvider to specify "Azure".

Trident operator

To install Astra Trident using the Trident operator, edit tridentorchestrator_cr.yaml to set

cloudProvider to "Azure". For example:

apiVersion: trident.netapp.io/v1

kind: TridentOrchestrator

metadata:

 name: trident

spec:

 debug: true

 namespace: trident

 imagePullPolicy: IfNotPresent

 cloudProvider: "Azure"

Helm

The following example installs Astra Trident sets cloudProvider to Azure using the environment

variable $CP:

helm install trident trident-operator-23.10.0-custom.tgz --create

-namespace --namespace <trident-namespace> --set cloudProvider=$CP

tridentctl

The following example installs Astra Trident sets set the cloudProvider flag to Azure:

tridentctl install --cloud-provider="Azure" -n trident

Prepare to configure an Azure NetApp Files backend

Before you can configure your Azure NetApp Files backend, you need to ensure the

following requirements are met.

2

https://learn.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview

Prerequisites for NFS and SMB volumes

If you are using Azure NetApp Files for the first time or in a new location, some initial configuration is required

to set up Azure NetApp files and create an NFS volume. Refer to Azure: Set up Azure NetApp Files and create

an NFS volume.

To configure and use an Azure NetApp Files backend, you need the following:

subscriptionID, tenantID, clientID, location, and clientSecret are optional when

using managed identities on an AKS cluster.

• A capacity pool. Refer to Microsoft: Create a capacity pool for Azure NetApp Files.

• A subnet delegated to Azure NetApp Files. Refer to Microsoft: Delegate a subnet to Azure NetApp Files.

• subscriptionID from an Azure subscription with Azure NetApp Files enabled.

• tenantID, clientID, and clientSecret from an App Registration in Azure Active Directory with

sufficient permissions to the Azure NetApp Files service. The App Registration should use either:

◦ The Owner or Contributor role predefined by Azure.

◦ A custom Contributor role at the subscription level (assignableScopes) with the following

permissions that are limited to only what Astra Trident requires. After creating the custom role, assign

the role using the Azure portal.

3

https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://azure.microsoft.com/en-us/services/netapp/
https://learn.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-set-up-capacity-pool
https://learn.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://learn.microsoft.com/en-us/azure/role-based-access-control/custom-roles-portal
https://learn.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal
https://learn.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal

Custom contributor role

{

 "id": "/subscriptions/<subscription-

id>/providers/Microsoft.Authorization/roleDefinitions/<role-

definition-id>",

 "properties": {

 "roleName": "custom-role-with-limited-perms",

 "description": "custom role providing limited

permissions",

 "assignableScopes": [

 "/subscriptions/<subscription-id>"

],

 "permissions": [

 {

 "actions": [

"Microsoft.NetApp/netAppAccounts/capacityPools/read",

"Microsoft.NetApp/netAppAccounts/capacityPools/write",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/read",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/write",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/delete",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/

read",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/

write",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/

delete",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/MountTarge

ts/read",

 "Microsoft.Network/virtualNetworks/read",

"Microsoft.Network/virtualNetworks/subnets/read",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrat

ions/read",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrat

4

ions/write",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrat

ions/delete",

 "Microsoft.Features/features/read",

 "Microsoft.Features/operations/read",

 "Microsoft.Features/providers/features/read",

"Microsoft.Features/providers/features/register/action",

"Microsoft.Features/providers/features/unregister/action",

"Microsoft.Features/subscriptionFeatureRegistrations/read"

],

 "notActions": [],

 "dataActions": [],

 "notDataActions": []

 }

]

 }

}

• The Azure location that contains at least one delegated subnet. As of Trident 22.01, the location

parameter is a required field at the top level of the backend configuration file. Location values specified in

virtual pools are ignored.

Additional requirements for SMB volumes

To create an SMB volume, you must have:

• Active Directory configured and connected to Azure NetApp Files. Refer to Microsoft: Create and manage

Active Directory connections for Azure NetApp Files.

• A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows

Server 2019. Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

• At least one Astra Trident secret containing your Active Directory credentials so Azure NetApp Files can

authenticate to Active Directory. To generate secret smbcreds:

kubectl create secret generic smbcreds --from-literal username=user

--from-literal password='password'

• A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or

GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

5

https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet
https://learn.microsoft.com/en-us/azure/azure-netapp-files/create-active-directory-connections
https://learn.microsoft.com/en-us/azure/azure-netapp-files/create-active-directory-connections
https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md

Azure NetApp Files backend configuration options and examples

Learn about NFS and SMB backend configuration options for Azure NetApp Files and

review configuration examples.

Backend configuration options

Astra Trident uses your backend configuration (subnet, virtual network, service level, and location), to create

Azure NetApp Files volumes on capacity pools that are available in the requested location and match the

requested service level and subnet.

Astra Trident does not support Manual QoS capacity pools.

Azure NetApp Files backends provide these configuration options.

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver "azure-netapp-files"

backendName Custom name or the storage

backend

Driver name + "_" + random

characters

subscriptionID The subscription ID from your

Azure subscription

Optional when managed identities

is enabled on an AKS cluster.

tenantID The tenant ID from an App

Registration

Optional when managed identities

is enabled on an AKS cluster.

clientID The client ID from an App

Registration

Optional when managed identities

is enabled on an AKS cluster.

clientSecret The client secret from an App

Registration

Optional when managed identities

is enabled on an AKS cluster.

serviceLevel One of Standard, Premium, or

Ultra

"" (random)

location Name of the Azure location where

the new volumes will be created

Optional when managed identities

is enabled on an AKS cluster.

6

Parameter Description Default

resourceGroups List of resource groups for filtering

discovered resources

"[]" (no filter)

netappAccounts List of NetApp accounts for filtering

discovered resources

"[]" (no filter)

capacityPools List of capacity pools for filtering

discovered resources

"[]" (no filter, random)

virtualNetwork Name of a virtual network with a

delegated subnet

""

subnet Name of a subnet delegated to

Microsoft.Netapp/volumes

""

networkFeatures Set of VNet features for a volume,

may be Basic or Standard.

Network Features is not available in

all regions and might have to be

enabled in a subscription.

Specifying networkFeatures

when the functionality is not

enabled causes volume

provisioning to fail.

""

nfsMountOptions Fine-grained control of NFS mount

options.

Ignored for SMB volumes.

To mount volumes using NFS

version 4.1, include nfsvers=4 in

the comma-delimited mount options

list to choose NFS v4.1.

Mount options set in a storage

class definition override mount

options set in backend

configuration.

"nfsvers=3"

limitVolumeSize Fail provisioning if the requested

volume size is above this value

"" (not enforced by default)

debugTraceFlags Debug flags to use when

troubleshooting. Example,

\{"api": false, "method":

true, "discovery": true}.

Do not use this unless you are

troubleshooting and require a

detailed log dump.

null

7

Parameter Description Default

nasType Configure NFS or SMB volumes

creation.

Options are nfs, smb or null.

Setting to null defaults to NFS

volumes.

nfs

For more information on Network Features, refer to Configure network features for an Azure

NetApp Files volume.

Required permissions and resources

If you receive a “No capacity pools found” error when creating a PVC, it is likely your app registration doesn’t

have the required permissions and resources (subnet, virtual network, capacity pool) associated. If debug is

enabled, Astra Trident will log the Azure resources discovered when the backend is created. Verify an

appropriate role is being used.

The values for resourceGroups, netappAccounts, capacityPools, virtualNetwork, and subnet

can be specified using short or fully-qualified names. Fully-qualified names are recommended in most

situations as short names can match multiple resources with the same name.

The resourceGroups, netappAccounts, and capacityPools values are filters that restrict the set of

discovered resources to those available to this storage backend and may be specified in any combination.

Fully-qualified names follow this format:

Type Format

Resource group <resource group>

NetApp account <resource group>/<netapp account>

Capacity pool <resource group>/<netapp account>/<capacity pool>

Virtual network <resource group>/<virtual network>

Subnet <resource group>/<virtual network>/<subnet>

Volume provisioning

You can control default volume provisioning by specifying the following options in a special section of the

configuration file. Refer to Example configurations for details.

Parameter Description Default

exportRule Export rules for new volumes.

exportRule must be a comma-

separated list of any combination of

IPv4 addresses or IPv4 subnets in

CIDR notation.

Ignored for SMB volumes.

"0.0.0.0/0"

8

https://docs.microsoft.com/en-us/azure/azure-netapp-files/configure-network-features
https://docs.microsoft.com/en-us/azure/azure-netapp-files/configure-network-features

Parameter Description Default

snapshotDir Controls visibility of the .snapshot

directory

"false"

size The default size of new volumes "100G"

unixPermissions The unix permissions of new

volumes (4 octal digits).

Ignored for SMB volumes.

"" (preview feature, requires

whitelisting in subscription)

Example configurations

The following examples show basic configurations that leave most parameters to default. This is the easiest

way to define a backend.

Minimal configuration

This is the absolute minimum backend configuration. With this configuration, Astra Trident discovers all of

your NetApp accounts, capacity pools, and subnets delegated to Azure NetApp Files in the configured

location, and places new volumes on one of those pools and subnets randomly. Because nasType is

omitted, the nfs default applies and the backend will provision for NFS volumes.

This configuration is ideal when you are just getting started with Azure NetApp Files and trying things out,

but in practice you are going to want to provide additional scoping for the volumes you provision.

version: 1

storageDriverName: azure-netapp-files

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf

clientID: dd043f63-bf8e-fake-8076-8de91e5713aa

clientSecret: SECRET

location: eastus

9

Managed identities for AKS

This backend configuration omits subscriptionID, tenantID, clientID, and clientSecret, which

are optional when using managed identities.

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc-anf-1

 namespace: trident

spec:

 version: 1

 storageDriverName: azure-netapp-files

 capacityPools: ["ultra-pool"]

 resourceGroups: ["aks-ami-eastus-rg"]

 netappAccounts: ["smb-na"]

 virtualNetwork: eastus-prod-vnet

 subnet: eastus-anf-subnet

Specific service level configuration with capacity pool filters

This backend configuration places volumes in Azure’s eastus location in an Ultra capacity pool. Astra

Trident automatically discovers all of the subnets delegated to Azure NetApp Files in that location and

places a new volume on one of them randomly.

version: 1

storageDriverName: azure-netapp-files

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf

clientID: dd043f63-bf8e-fake-8076-8de91e5713aa

clientSecret: SECRET

location: eastus

serviceLevel: Ultra

capacityPools:

- application-group-1/account-1/ultra-1

- application-group-1/account-1/ultra-2

10

Advanced configuration

This backend configuration further reduces the scope of volume placement to a single subnet, and also

modifies some volume provisioning defaults.

version: 1

storageDriverName: azure-netapp-files

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf

clientID: dd043f63-bf8e-fake-8076-8de91e5713aa

clientSecret: SECRET

location: eastus

serviceLevel: Ultra

capacityPools:

- application-group-1/account-1/ultra-1

- application-group-1/account-1/ultra-2

virtualNetwork: my-virtual-network

subnet: my-subnet

networkFeatures: Standard

nfsMountOptions: vers=3,proto=tcp,timeo=600

limitVolumeSize: 500Gi

defaults:

 exportRule: 10.0.0.0/24,10.0.1.0/24,10.0.2.100

 snapshotDir: 'true'

 size: 200Gi

 unixPermissions: '0777'

11

Virtual pool configuration

This backend configuration defines multiple storage pools in a single file. This is useful when you have

multiple capacity pools supporting different service levels and you want to create storage classes in

Kubernetes that represent those. Virtual pool labels were used to differentiate the pools based on

performance.

version: 1

storageDriverName: azure-netapp-files

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf

clientID: dd043f63-bf8e-fake-8076-8de91e5713aa

clientSecret: SECRET

location: eastus

resourceGroups:

- application-group-1

networkFeatures: Basic

nfsMountOptions: vers=3,proto=tcp,timeo=600

labels:

 cloud: azure

storage:

- labels:

 performance: gold

 serviceLevel: Ultra

 capacityPools:

 - ultra-1

 - ultra-2

 networkFeatures: Standard

- labels:

 performance: silver

 serviceLevel: Premium

 capacityPools:

 - premium-1

- labels:

 performance: bronze

 serviceLevel: Standard

 capacityPools:

 - standard-1

 - standard-2

Storage Class definitions

The following StorageClass definitions refer to the storage pools above.

12

Example definitions using parameter.selector field

Using parameter.selector you can specify for each StorageClass the virtual pool that is used to host a

volume. The volume will have the aspects defined in the chosen pool.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: gold

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=gold"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: silver

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=silver"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: bronze

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=bronze"

allowVolumeExpansion: true

Example definitions for SMB volumes

Using nasType, node-stage-secret-name, and node-stage-secret-namespace, you can specify an

SMB volume and provide the required Active Directory credentials.

13

Basic configuration on default namespace

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: anf-sc-smb

provisioner: csi.trident.netapp.io

parameters:

 backendType: "azure-netapp-files"

 trident.netapp.io/nasType: "smb"

 csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

 csi.storage.k8s.io/node-stage-secret-namespace: "default"

Using different secrets per namespace

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: anf-sc-smb

provisioner: csi.trident.netapp.io

parameters:

 backendType: "azure-netapp-files"

 trident.netapp.io/nasType: "smb"

 csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

 csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

Using different secrets per volume

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: anf-sc-smb

provisioner: csi.trident.netapp.io

parameters:

 backendType: "azure-netapp-files"

 trident.netapp.io/nasType: "smb"

 csi.storage.k8s.io/node-stage-secret-name: ${pvc.name}

 csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

14

nasType: smb filters for pools which support SMB volumes. nasType: nfs or nasType:

null filters for NFS pools.

Create the backend

After you create the backend configuration file, run the following command:

tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to

determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Configure a Cloud Volumes Service for Google Cloud
backend

Learn how to configure NetApp Cloud Volumes Service for Google Cloud as the backend

for your Astra Trident installation using the sample configurations provided.

Google Cloud driver details

Astra Trident provides the gcp-cvs driver to communicate with the cluster. Supported access modes are:

ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWriteOncePod (RWOP).

Driver Protocol volumeMode Access modes supported File systems supported

gcp-cvs NFS Filesystem RWO, ROX, RWX, RWOP nfs

Learn about Astra Trident support for Cloud Volumes Service for Google Cloud

Astra Trident can create Cloud Volumes Service volumes in one of two service types:

• CVS-Performance: The default Astra Trident service type. This performance-optimized service type is best

suited for production workloads that value performance. The CVS-Performance service type is a hardware

option supporting volumes with a minimum 100 GiB size. You can choose one of three service levels:

◦ standard

◦ premium

◦ extreme

• CVS: The CVS service type provides high zonal availability with limited to moderate performance levels.

The CVS service type is a software option that uses storage pools to support volumes as small as 1 GiB.

The storage pool can contain up to 50 volumes where all volumes share the capacity and performance of

the pool. You can choose one of two service levels:

15

https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-types
https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-levels#service_levels_for_the_cvs-performance_service_type
https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-levels#service_levels_for_the_cvs_service_type

◦ standardsw

◦ zoneredundantstandardsw

What you’ll need

To configure and use the Cloud Volumes Service for Google Cloud backend, you need the following:

• A Google Cloud account configured with NetApp Cloud Volumes Service

• Project number of your Google Cloud account

• Google Cloud service account with the netappcloudvolumes.admin role

• API key file for your Cloud Volumes Service account

Backend configuration options

Each backend provisions volumes in a single Google Cloud region. To create volumes in other regions, you

can define additional backends.

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver "gcp-cvs"

backendName Custom name or the storage backend Driver name + "_" + part

of API key

storageClass Optional parameter used to specify the CVS service

type.

Use software to select the CVS service type.

Otherwise, Astra Trident assumes CVS-Performance

service type (hardware).

storagePools CVS service type only. Optional parameter used to

specify storage pools for volume creation.

projectNumber Google Cloud account project number. The value is

found on the Google Cloud portal home page.

hostProjectNumber Required if using a shared VPC network. In this

scenario, projectNumber is the service project, and

hostProjectNumber is the host project.

apiRegion The Google Cloud region where Astra Trident creates

Cloud Volumes Service volumes. When creating

cross-region Kubernetes clusters, volumes created in

an apiRegion can be used in workloads scheduled

on nodes across multiple Google Cloud regions.

Cross-region traffic incurs an additional cost.

16

https://cloud.netapp.com/cloud-volumes-service-for-gcp?utm_source=NetAppTrident_ReadTheDocs&utm_campaign=Trident

Parameter Description Default

apiKey API key for the Google Cloud service account with the

netappcloudvolumes.admin role.

It includes the JSON-formatted contents of a Google

Cloud service account’s private key file (copied

verbatim into the backend configuration file).

proxyURL Proxy URL if proxy server required to connect to CVS

account. The proxy server can either be an HTTP

proxy or an HTTPS proxy.

For an HTTPS proxy, certificate validation is skipped

to allow the usage of self-signed certificates in the

proxy server.

Proxy servers with authentication enabled are not

supported.

nfsMountOptions Fine-grained control of NFS mount options. "nfsvers=3"

limitVolumeSize Fail provisioning if the requested volume size is above

this value.

"" (not enforced by

default)

serviceLevel The CVS-Performance or CVS service level for new

volumes.

CVS-Performance values are standard, premium,

or extreme.

CVS values are standardsw or

zoneredundantstandardsw.

CVS-Performance default

is "standard".

CVS default is

"standardsw".

network Google Cloud network used for Cloud Volumes

Service volumes.

"default"

debugTraceFlags Debug flags to use when troubleshooting. Example,

\{"api":false, "method":true}.

Do not use this unless you are troubleshooting and

require a detailed log dump.

null

allowedTopologies To enable cross-region access, your StorageClass

definition for allowedTopologies must include all

regions.

For example:

- key: topology.kubernetes.io/region

values:

- us-east1

- europe-west1

Volume provisioning options

You can control default volume provisioning in the defaults section of the configuration file.

17

Parameter Description Default

exportRule The export rules for new volumes.

Must be a comma-separated list of

any combination of IPv4 addresses

or IPv4 subnets in CIDR notation.

"0.0.0.0/0"

snapshotDir Access to the .snapshot directory "false"

snapshotReserve Percentage of volume reserved for

snapshots

"" (accept CVS default of 0)

size The size of new volumes.

CVS-Performance minimum is 100

GiB.

CVS minimum is 1 GiB.

CVS-Performance service type

defaults to "100GiB".

CVS service type does not set a

default but requires a 1 GiB

minimum.

CVS-Performance service type examples

The following examples provide sample configurations for the CVS-Performance service type.

18

Example 1: Minimal configuration

This is the minimum backend configuration using default CVS-Performance service type with the default

"standard" service level.

version: 1

storageDriverName: gcp-cvs

projectNumber: '012345678901'

apiRegion: us-west2

apiKey:

 type: service_account

 project_id: my-gcp-project

 private_key_id: "<id_value>"

 private_key: |

 -----BEGIN PRIVATE KEY-----

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 XsYg6gyxy4zq7OlwWgLwGa==

 -----END PRIVATE KEY-----

 client_email: cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com

 client_id: '123456789012345678901'

19

 auth_uri: https://accounts.google.com/o/oauth2/auth

 token_uri: https://oauth2.googleapis.com/token

 auth_provider_x509_cert_url:

https://www.googleapis.com/oauth2/v1/certs

 client_x509_cert_url:

https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com

20

Example 2: Service level configuration

This sample illustrates backend configuration options, including service level, and volume defaults.

version: 1

storageDriverName: gcp-cvs

projectNumber: '012345678901'

apiRegion: us-west2

apiKey:

 type: service_account

 project_id: my-gcp-project

 private_key_id: "<id_value>"

 private_key: |

 -----BEGIN PRIVATE KEY-----

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 XsYg6gyxy4zq7OlwWgLwGa==

 -----END PRIVATE KEY-----

 client_email: cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com

 client_id: '123456789012345678901'

 auth_uri: https://accounts.google.com/o/oauth2/auth

21

 token_uri: https://oauth2.googleapis.com/token

 auth_provider_x509_cert_url:

https://www.googleapis.com/oauth2/v1/certs

 client_x509_cert_url:

https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com

proxyURL: http://proxy-server-hostname/

nfsMountOptions: vers=3,proto=tcp,timeo=600

limitVolumeSize: 10Ti

serviceLevel: premium

defaults:

 snapshotDir: 'true'

 snapshotReserve: '5'

 exportRule: 10.0.0.0/24,10.0.1.0/24,10.0.2.100

 size: 5Ti

22

Example 3: Virtual pool configuration

This sample uses storage to configure virtual pools and the StorageClasses that refer back to them.

Refer to Storage class definitions to see how the storage classes were defined.

Here, specific defaults are set for all virtual pools, which set the snapshotReserve at 5% and the

exportRule to 0.0.0.0/0. The virtual pools are defined in the storage section. Each individual virtual

pool defines its own serviceLevel, and some pools overwrite the default values. Virtual pool labels

were used to differentiate the pools based on performance and protection.

version: 1

storageDriverName: gcp-cvs

projectNumber: '012345678901'

apiRegion: us-west2

apiKey:

 type: service_account

 project_id: my-gcp-project

 private_key_id: "<id_value>"

 private_key: |

 -----BEGIN PRIVATE KEY-----

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 XsYg6gyxy4zq7OlwWgLwGa==

23

 -----END PRIVATE KEY-----

 client_email: cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com

 client_id: '123456789012345678901'

 auth_uri: https://accounts.google.com/o/oauth2/auth

 token_uri: https://oauth2.googleapis.com/token

 auth_provider_x509_cert_url:

https://www.googleapis.com/oauth2/v1/certs

 client_x509_cert_url:

https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com

nfsMountOptions: vers=3,proto=tcp,timeo=600

defaults:

 snapshotReserve: '5'

 exportRule: 0.0.0.0/0

labels:

 cloud: gcp

region: us-west2

storage:

- labels:

 performance: extreme

 protection: extra

 serviceLevel: extreme

 defaults:

 snapshotDir: 'true'

 snapshotReserve: '10'

 exportRule: 10.0.0.0/24

- labels:

 performance: extreme

 protection: standard

 serviceLevel: extreme

- labels:

 performance: premium

 protection: extra

 serviceLevel: premium

 defaults:

 snapshotDir: 'true'

 snapshotReserve: '10'

- labels:

 performance: premium

 protection: standard

 serviceLevel: premium

- labels:

 performance: standard

 serviceLevel: standard

24

Storage class definitions

The following StorageClass definitions apply to the virtual pool configuration example. Using

parameters.selector, you can specify for each StorageClass the virtual pool used to host a volume. The

volume will have the aspects defined in the chosen pool.

25

Storage class example

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-extreme-extra-protection

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=extreme; protection=extra"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-extreme-standard-protection

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=premium; protection=standard"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-premium-extra-protection

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=premium; protection=extra"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-premium

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=premium; protection=standard"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-standard

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=standard"

allowVolumeExpansion: true

26

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-extra-protection

provisioner: csi.trident.netapp.io

parameters:

 selector: "protection=extra"

allowVolumeExpansion: true

• The first StorageClass (cvs-extreme-extra-protection) maps to the first virtual pool. This is the only

pool offering extreme performance with a snapshot reserve of 10%.

• The last StorageClass (cvs-extra-protection) calls out any storage pool which provides a snapshot

reserve of 10%. Astra Trident decides which virtual pool is selected and ensures that the snapshot reserve

requirement is met.

CVS service type examples

The following examples provide sample configurations for the CVS service type.

27

Example 1: Minimum configuration

This is the minimum backend configuration using storageClass to specify the CVS service type and

default standardsw service level.

version: 1

storageDriverName: gcp-cvs

projectNumber: '012345678901'

storageClass: software

apiRegion: us-east4

apiKey:

 type: service_account

 project_id: my-gcp-project

 private_key_id: "<id_value>"

 private_key: |

 -----BEGIN PRIVATE KEY-----

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 XsYg6gyxy4zq7OlwWgLwGa==

 -----END PRIVATE KEY-----

 client_email: cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com

28

 client_id: '123456789012345678901'

 auth_uri: https://accounts.google.com/o/oauth2/auth

 token_uri: https://oauth2.googleapis.com/token

 auth_provider_x509_cert_url:

https://www.googleapis.com/oauth2/v1/certs

 client_x509_cert_url:

https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com

serviceLevel: standardsw

29

Example 2: Storage pool configuration

This sample backend configuration uses storagePools to configure a storage pool.

version: 1

storageDriverName: gcp-cvs

backendName: gcp-std-so-with-pool

projectNumber: '531265380079'

apiRegion: europe-west1

apiKey:

 type: service_account

 project_id: cloud-native-data

 private_key_id: "<id_value>"

 private_key: |-

 -----BEGIN PRIVATE KEY-----

 MIIEvAIBADANBgkqhkiG9w0BAQEFAASCBKYwggSiAgEAAoIBAQDaT+Oui9FBAw19

 L1AGEkrYU5xd9K5NlO5jMkIFND5wCD+Nv+jd1GvtFRLaLK5RvXyF5wzvztmODNS+

 qtScpQ+5cFpQkuGtv9U9+N6qtuVYYO3b504Kp5CtqVPJCgMJaK2j8pZTIqUiMum/

 5/Y9oTbZrjAHSMgJm2nHzFq2X0rqVMaHghI6ATm4DOuWx8XGWKTGIPlc0qPqJlqS

 LLaWOH4VIZQZCAyW5IUp9CAmwqHgdG0uhFNfCgMmED6PBUvVLsLvcq86X+QSWR9k

 ETqElj/sGCenPF7ti1DhGBFafd9hPnxg9PZY29ArEZwY9G/ZjZQX7WPgs0VvxiNR

 DxZRC3GXAgMBAAECggEACn5c59bG/qnVEVI1CwMAalM5M2z09JFhlLlljKwntNPj

 Vilw2eTW2+UE7HbJru/S7KQgA5Dnn9kvCraEahPRuddUMrD0vG4kTl/IODV6uFuk

 Y0sZfbqd4jMUQ21smvGsqFzwloYWS5qzO1W83ivXH/HW/iqkmY2eW+EPRS/hwSSu

 SscR+SojI7PB0BWSJhlV4yqYf3vcD/D95el2CVHfRCkL85DKumeZ+yHEnpiXGZAE

 t8xSs4a5OOPm6NHhevCw2a/UQ95/foXNUR450HtbjieJo5o+FF6EYZQGfU2ZHZO8

 37FBKuaJkdGW5xqaI9TL7aqkGkFMF4F2qvOZM+vy8QKBgQD4oVuOkJDlhkTHP86W

 esFlw1kpWyJR9ZA7LI0g/rVpslnX+XdDq0WQf4umdLNau5hYEH9LU6ZSGs1Xk3/B

 NHwR6OXFuqEKNiu83d0zSlHhTy7PZpOZdj5a/vVvQfPDMz7OvsqLRd7YCAbdzuQ0

 +Ahq0Ztwvg0HQ64hdW0ukpYRRwKBgQDgyHj98oqswoYuIa+pP1yS0pPwLmjwKyNm

 /HayzCp+Qjiyy7Tzg8AUqlH1Ou83XbV428jvg7kDhO7PCCKFq+mMmfqHmTpb0Maq

 KpKnZg4ipsqP1yHNNEoRmcailXbwIhCLewMqMrggUiLOmCw4PscL5nK+4GKu2XE1

 jLqjWAZFMQKBgFHkQ9XXRAJ1kR3XpGHoGN890pZOkCVSrqju6aUef/5KYlFCt8ew

 F/+aIxM2iQSvmWQYOvVCnhuY/F2GFaQ7d0om3decuwI0CX/xy7PjHMkLXa2uaZs4

 WR17sLduj62RqXRLX0c0QkwBiNFyHbRcpdkZJQujbYMhBa+7j7SxT4BtAoGAWMWT

 UucocRXZm/pdvz9wteNH3YDWnJLMxm1KC06qMXbBoYrliY4sm3ywJWMC+iCd/H8A

 Gecxd/xVu5mA2L2N3KMq18Zhz8Th0G5DwKyDRJgOQ0Q46yuNXOoYEjlo4Wjyk8Me

 +tlQ8iK98E0UmZnhTgfSpSNElbz2AqnzQ3MN9uECgYAqdvdVPnKGfvdtZ2DjyMoJ

 E89UIC41WjjJGmHsd8W65+3X0RwMzKMT6aZc5tK9J5dHvmWIETnbM+lTImdBBFga

 NWOC6f3r2xbGXHhaWSl+nobpTuvlo56ZRJVvVk7lFMsiddzMuHH8pxfgNJemwA4P

 ThDHCejv035NNV6KyoO0tA==

 -----END PRIVATE KEY-----

 client_email: cloudvolumes-admin-sa@cloud-native-

data.iam.gserviceaccount.com

 client_id: '107071413297115343396'

30

 auth_uri: https://accounts.google.com/o/oauth2/auth

 token_uri: https://oauth2.googleapis.com/token

 auth_provider_x509_cert_url:

https://www.googleapis.com/oauth2/v1/certs

 client_x509_cert_url:

https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40cloud-native-data.iam.gserviceaccount.com

storageClass: software

zone: europe-west1-b

network: default

storagePools:

- 1bc7f380-3314-6005-45e9-c7dc8c2d7509

serviceLevel: Standardsw

What’s next?

After you create the backend configuration file, run the following command:

tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to

determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Configure a NetApp HCI or SolidFire backend

Learn how to create and use an Element backend with your Astra Trident installation.

Element driver details

Astra Trident provides the solidfire-san storage driver to communicate with the cluster. Supported access

modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWriteOncePod

(RWOP).

The solidfire-san storage driver supports file and block volume modes. For the Filesystem

volumeMode, Astra Trident creates a volume and creates a filesystem. The filesystem type is specified by the

StorageClass.

31

Driver Protocol VolumeMode Access modes

supported

File systems

supported

solidfire-san iSCSI Block RWO, ROX, RWX,

RWOP

No Filesystem. Raw

block device.

solidfire-san iSCSI Filesystem RWO, RWOP xfs, ext3, ext4

Before you begin

You’ll need the following before creating an Element backend.

• A supported storage system that runs Element software.

• Credentials to a NetApp HCI/SolidFire cluster admin or tenant user that can manage volumes.

• All of your Kubernetes worker nodes should have the appropriate iSCSI tools installed. See worker node

preparation information.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver Always “solidfire-san”

backendName Custom name or the storage

backend

“solidfire_” + storage (iSCSI) IP

address

Endpoint MVIP for the SolidFire cluster with

tenant credentials

SVIP Storage (iSCSI) IP address and

port

labels Set of arbitrary JSON-formatted

labels to apply on volumes.

“”

TenantName Tenant name to use (created if not

found)

InitiatorIFace Restrict iSCSI traffic to a specific

host interface

“default”

UseCHAP Use CHAP to authenticate iSCSI.

Astra Trident uses CHAP.

true

AccessGroups List of Access Group IDs to use Finds the ID of an access group

named “trident”

Types QoS specifications

limitVolumeSize Fail provisioning if requested

volume size is above this value

“” (not enforced by default)

32

https://docs.netapp.com/us-en/trident-2310/trident-use/worker-node-prep.html
https://docs.netapp.com/us-en/trident-2310/trident-use/worker-node-prep.html

Parameter Description Default

debugTraceFlags Debug flags to use when

troubleshooting. Example,

{“api”:false, “method”:true}

null

Do not use debugTraceFlags unless you are troubleshooting and require a detailed log dump.

Example 1: Backend configuration for solidfire-san driver with three volume
types

This example shows a backend file using CHAP authentication and modeling three volume types with specific

QoS guarantees. Most likely you would then define storage classes to consume each of these using the IOPS

storage class parameter.

version: 1

storageDriverName: solidfire-san

Endpoint: https://<user>:<password>@<mvip>/json-rpc/8.0

SVIP: "<svip>:3260"

TenantName: "<tenant>"

labels:

 k8scluster: dev1

 backend: dev1-element-cluster

UseCHAP: true

Types:

- Type: Bronze

 Qos:

 minIOPS: 1000

 maxIOPS: 2000

 burstIOPS: 4000

- Type: Silver

 Qos:

 minIOPS: 4000

 maxIOPS: 6000

 burstIOPS: 8000

- Type: Gold

 Qos:

 minIOPS: 6000

 maxIOPS: 8000

 burstIOPS: 10000

Example 2: Backend and storage class configuration for solidfire-san driver
with virtual pools

This example shows the backend definition file configured with virtual pools along with StorageClasses that

33

refer back to them.

Astra Trident copies labels present on a storage pool to the backend storage LUN at provisioning. For

convenience, storage administrators can define labels per virtual pool and group volumes by label.

In the sample backend definition file shown below, specific defaults are set for all storage pools, which set the

type at Silver. The virtual pools are defined in the storage section. In this example, some of the storage

pools set their own type, and some pools override the default values set above.

version: 1

storageDriverName: solidfire-san

Endpoint: https://<user>:<password>@<mvip>/json-rpc/8.0

SVIP: "<svip>:3260"

TenantName: "<tenant>"

UseCHAP: true

Types:

- Type: Bronze

 Qos:

 minIOPS: 1000

 maxIOPS: 2000

 burstIOPS: 4000

- Type: Silver

 Qos:

 minIOPS: 4000

 maxIOPS: 6000

 burstIOPS: 8000

- Type: Gold

 Qos:

 minIOPS: 6000

 maxIOPS: 8000

 burstIOPS: 10000

type: Silver

labels:

 store: solidfire

 k8scluster: dev-1-cluster

region: us-east-1

storage:

- labels:

 performance: gold

 cost: '4'

 zone: us-east-1a

 type: Gold

- labels:

 performance: silver

 cost: '3'

 zone: us-east-1b

34

 type: Silver

- labels:

 performance: bronze

 cost: '2'

 zone: us-east-1c

 type: Bronze

- labels:

 performance: silver

 cost: '1'

 zone: us-east-1d

The following StorageClass definitions refer to the above virtual pools. Using the parameters.selector

field, each StorageClass calls out which virtual pool(s) can be used to host a volume. The volume will have the

aspects defined in the chosen virtual pool.

The first StorageClass (solidfire-gold-four) will map to the first virtual pool. This is the only pool offering

gold performance with a Volume Type QoS of Gold. The last StorageClass (solidfire-silver) calls out

any storage pool which offers a silver performance. Astra Trident will decide which virtual pool is selected and

will ensure the storage requirement is met.

35

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-gold-four

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=gold; cost=4"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-silver-three

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=silver; cost=3"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-bronze-two

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=bronze; cost=2"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-silver-one

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=silver; cost=1"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-silver

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=silver"

 fsType: "ext4"

36

Find more information

• Volume access groups

ONTAP SAN drivers

ONTAP SAN driver overview

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP

SAN drivers.

ONTAP SAN driver details

Astra Trident provides the following SAN storage drivers to communicate with the ONTAP cluster. Supported

access modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX),

ReadWriteOncePod (RWOP).

If you are using Astra Control for protection, recovery, and mobility, read Astra Control driver

compatibility.

Driver Protocol volumeMod

e

Access modes

supported

File systems supported

ontap-san iSCSI Block RWO, ROX, RWX, RWOP No filesystem; raw block

device

ontap-san iSCSI Filesystem RWO, RWOP

ROX and RWX are not

available in Filesystem

volume mode.

xfs, ext3, ext4

ontap-san NVMe/TCP

Refer to

Additional

consideratio

ns for

NVMe/TCP.

Block RWO, ROX, RWX, RWOP No filesystem; raw block

device

ontap-san NVMe/TCP

Refer to

Additional

consideratio

ns for

NVMe/TCP.

Filesystem RWO, RWOP

ROX and RWX are not

available in Filesystem

volume mode.

xfs, ext3, ext4

ontap-san-economy iSCSI Block RWO, ROX, RWX, RWOP No filesystem; raw block

device

37

https://docs.netapp.com/us-en/trident-2310/trident-concepts/vol-access-groups.html

Driver Protocol volumeMod

e

Access modes

supported

File systems supported

ontap-san-economy iSCSI Filesystem RWO, RWOP

ROX and RWX are not

available in Filesystem

volume mode.

xfs, ext3, ext4

Astra Control driver compatibility

Astra Control provides seamless protection, disaster recovery, and mobility (moving volumes between

Kubernetes clusters) for volumes created with the ontap-nas, ontap-nas-flexgroup, and ontap-san

drivers. See Astra Control replication prerequisites for details.

• Use ontap-san-economy only if persistent volume usage count is expected to be higher

than supported ONTAP volume limits.

• Use ontap-nas-economy only if persistent volume usage count is expected to be higher

than supported ONTAP volume limits and the ontap-san-economy driver cannot be used.

• Do not use use ontap-nas-economy if you anticipate the need for data protection,

disaster recovery, or mobility.

User permissions

Astra Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster

user or a vsadmin SVM user, or a user with a different name that has the same role. For Amazon FSx for

NetApp ONTAP deployments, Astra Trident expects to be run as either an ONTAP or SVM administrator, using

the cluster fsxadmin user or a vsadmin SVM user, or a user with a different name that has the same role.

The fsxadmin user is a limited replacement for the cluster admin user.

If you use the limitAggregateUsage parameter, cluster admin permissions are required.

When using Amazon FSx for NetApp ONTAP with Astra Trident, the limitAggregateUsage

parameter will not work with the vsadmin and fsxadmin user accounts. The configuration

operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don’t

recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,

making upgrades difficult and error-prone.

Additional considerations for NVMe/TCP

Astra Trident supports the non-volatile memory express (NVMe) protocol using the ontap-san driver

including:

• IPv6

• Snapshots and clones of NVMe volumes

• Resizing an NVMe volume

• Importing an NVMe volume that was created outside of Astra Trident so that its lifecycle can be managed

by Astra Trident

38

https://docs.netapp.com/us-en/astra-control-center/use/replicate_snapmirror.html#replication-prerequisites
https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html
https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html

• NVMe-native multipathing

• Graceful or ungraceful shutdown of the K8s nodes (23.10)

Astra Trident does not support:

• DH-HMAC-CHAP that is supported by natively by NVMe

• Device mapper (DM) multipathing

• LUKS encryption

Prepare to configure backend with ONTAP SAN drivers

Understand the requirements and authentication options for configuring an ONTAP

backend with ONTAP SAN drivers.

Requirements

For all ONTAP backends, Astra Trident requires at least one aggregate assigned to the SVM.

Remember that you can also run more than one driver, and create storage classes that point to one or the

other. For example, you could configure a san-dev class that uses the ontap-san driver and a san-

default class that uses the ontap-san-economy one.

All your Kubernetes worker nodes must have the appropriate iSCSI tools installed. Refer to Prepare the worker

node for details.

Authenticate the ONTAP backend

Astra Trident offers two modes of authenticating an ONTAP backend.

• Credential-based: The username and password to an ONTAP user with the required permissions. It is

recommended to use a pre-defined security login role, such as admin or vsadmin to ensure maximum

compatibility with ONTAP versions.

• Certificate-based: Astra Trident can also communicate with an ONTAP cluster using a certificate installed

on the backend. Here, the backend definition must contain Base64-encoded values of the client certificate,

key, and the trusted CA certificate if used (recommended).

You can update existing backends to move between credential-based and certificate-based methods. However,

only one authentication method is supported at a time. To switch to a different authentication method, you must

remove the existing method from the backend configuration.

If you attempt to provide both credentials and certificates, backend creation will fail with an

error that more than one authentication method was provided in the configuration file.

Enable credential-based authentication

Astra Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the

ONTAP backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin.

This ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by

future Astra Trident releases. A custom security login role can be created and used with Astra Trident, but is

not recommended.

A sample backend definition will look like this:

39

https://docs.netapp.com/us-en/trident-2310/trident-use/worker-node-prep.html
https://docs.netapp.com/us-en/trident-2310/trident-use/worker-node-prep.html

YAML

version: 1

backendName: ExampleBackend

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: svm_nfs

username: vsadmin

password: password

JSON

{

 "version": 1,

 "backendName": "ExampleBackend",

 "storageDriverName": "ontap-san",

 "managementLIF": "10.0.0.1",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "password"

}

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the

backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The

creation or update of a backend is the only step that requires knowledge of the credentials. As such, it is an

admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three

parameters are required in the backend definition.

• clientCertificate: Base64-encoded value of client certificate.

• clientPrivateKey: Base64-encoded value of associated private key.

• trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter

must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to

authenticate as.

40

openssl req -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key

-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=admin"

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage

administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-

name> -vserver <vserver-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled

true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-

name> -vserver <vserver-name>

security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name admin -application ontapi

-authentication-method cert

security login create -user-or-group-name admin -application http

-authentication-method cert

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>

with Management LIF IP and SVM name.

curl -X POST -Lk https://<ONTAP-Management-

LIF>/servlets/netapp.servlets.admin.XMLrequest_filer --key k8senv.key

--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp

xmlns="http://www.netapp.com/filer/admin" version="1.21"

vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert_base64

base64 -w 0 k8senv.key >> key_base64

base64 -w 0 trustedca.pem >> trustedca_base64

7. Create backend using the values obtained from the previous step.

41

cat cert-backend.json

{

"version": 1,

"storageDriverName": "ontap-san",

"backendName": "SanBackend",

"managementLIF": "1.2.3.4",

"svm": "vserver_test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",

"clientPrivateKey": "LS0tFaKE...0VaLuES0tLS0K",

"trustedCACertificate": "QNFinfO...SiqOyN",

"storagePrefix": "myPrefix_"

}

tridentctl create backend -f cert-backend.json -n trident

+------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| SanBackend | ontap-san | 586b1cd5-8cf8-428d-a76c-2872713612c1 |

online | 0 |

+------------+----------------+--------------------------------------

+--------+---------+

Update authentication methods or rotate credentials

You can update an existing backend to use a different authentication method or to rotate their credentials. This

works both ways: backends that make use of username/password can be updated to use certificates;

backends that utilize certificates can be updated to username/password based. To do this, you must remove

the existing authentication method and add the new authentication method. Then use the updated

backend.json file containing the required parameters to execute tridentctl backend update.

42

cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-san",

"backendName": "SanBackend",

"managementLIF": "1.2.3.4",

"svm": "vserver_test",

"username": "vsadmin",

"password": "password",

"storagePrefix": "myPrefix_"

}

#Update backend with tridentctl

tridentctl update backend SanBackend -f cert-backend-updated.json -n

trident

+------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| SanBackend | ontap-san | 586b1cd5-8cf8-428d-a76c-2872713612c1 |

online | 9 |

+------------+----------------+--------------------------------------

+--------+---------+

When rotating passwords, the storage administrator must first update the password for the user

on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates

can be added to the user. The backend is then updated to use the new certificate, following

which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume

connections made after. A successful backend update indicates that Astra Trident can communicate with the

ONTAP backend and handle future volume operations.

Authenticate connections with bidirectional CHAP

Astra Trident can authenticate iSCSI sessions with bidirectional CHAP for the ontap-san and ontap-san-

economy drivers. This requires enabling the useCHAP option in your backend definition. When set to true,

Astra Trident configures the SVM’s default initiator security to bidirectional CHAP and set the username and

secrets from the backend file. NetApp recommends using bidirectional CHAP to authenticate connections. See

the following sample configuration:

43

version: 1

storageDriverName: ontap-san

backendName: ontap_san_chap

managementLIF: 192.168.0.135

svm: ontap_iscsi_svm

useCHAP: true

username: vsadmin

password: password

chapInitiatorSecret: cl9qxIm36DKyawxy

chapTargetInitiatorSecret: rqxigXgkesIpwxyz

chapTargetUsername: iJF4heBRT0TCwxyz

chapUsername: uh2aNCLSd6cNwxyz

The useCHAP parameter is a Boolean option that can be configured only once. It is set to false

by default. After you set it to true, you cannot set it to false.

In addition to useCHAP=true, the chapInitiatorSecret, chapTargetInitiatorSecret,

chapTargetUsername, and chapUsername fields must be included in the backend definition. The secrets

can be changed after a backend is created by running tridentctl update.

How it works

By setting useCHAP to true, the storage administrator instructs Astra Trident to configure CHAP on the storage

backend. This includes the following:

• Setting up CHAP on the SVM:

◦ If the SVM’s default initiator security type is none (set by default) and there are no pre-existing LUNs

already present in the volume, Astra Trident will set the default security type to CHAP and proceed to

configuring the CHAP initiator and target username and secrets.

◦ If the SVM contains LUNs, Astra Trident will not enable CHAP on the SVM. This ensures that access to

LUNs that are already present on the SVM isn’t restricted.

• Configuring the CHAP initiator and target username and secrets; these options must be specified in the

backend configuration (as shown above).

After the backend is created, Astra Trident creates a corresponding tridentbackend CRD and stores the

CHAP secrets and usernames as Kubernetes secrets. All PVs that are created by Astra Trident on this

backend will be mounted and attached over CHAP.

Rotate credentials and update backends

You can update the CHAP credentials by updating the CHAP parameters in the backend.json file. This will

require updating the CHAP secrets and using the tridentctl update command to reflect these changes.

When updating the CHAP secrets for a backend, you must use tridentctl to update the

backend. Do not update the credentials on the storage cluster through the CLI/ONTAP UI as

Astra Trident will not be able to pick up these changes.

44

cat backend-san.json

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "ontap_san_chap",

 "managementLIF": "192.168.0.135",

 "svm": "ontap_iscsi_svm",

 "useCHAP": true,

 "username": "vsadmin",

 "password": "password",

 "chapInitiatorSecret": "cl9qxUpDaTeD",

 "chapTargetInitiatorSecret": "rqxigXgkeUpDaTeD",

 "chapTargetUsername": "iJF4heBRT0TCwxyz",

 "chapUsername": "uh2aNCLSd6cNwxyz",

}

./tridentctl update backend ontap_san_chap -f backend-san.json -n trident

+----------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+----------------+----------------+--------------------------------------

+--------+---------+

| ontap_san_chap | ontap-san | aa458f3b-ad2d-4378-8a33-1a472ffbeb5c |

online | 7 |

+----------------+----------------+--------------------------------------

+--------+---------+

Existing connections will remain unaffected; they will continue to remain active if the credentials are updated by

Astra Trident on the SVM. New connections will use the updated credentials and existing connections continue

to remain active. Disconnecting and reconnecting old PVs will result in them using the updated credentials.

ONTAP SAN configuration options and examples

Learn how to create and use ONTAP SAN drivers with your Astra Trident installation. This

section provides backend configuration examples and details for mapping backends to

StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

45

Parameter Description Default

storageDrive

rName

Name of the storage driver ontap-nas, ontap-nas-

economy, ontap-nas-

flexgroup, ontap-san, ontap-

san-economy

backendName Custom name or the storage backend Driver name + "_" + dataLIF

managementLI

F

IP address of a cluster or SVM management LIF.

A fully-qualified domain name (FQDN) can be

specified.

Can be set to use IPv6 addresses if Astra Trident was

installed using the IPv6 flag. IPv6 addresses must be

defined in square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555

].

For seamless MetroCluster switchover, see the

MetroCluster example.

“10.0.0.1”, “[2001:1234:abcd::fefe]”

dataLIF IP address of protocol LIF.

Do not specify for iSCSI. Astra Trident uses ONTAP

Selective LUN Map to discover the iSCI LIFs needed

to establish a multi path session. A warning is

generated if dataLIF is explicitly defined.

Omit for Metrocluster. See the MetroCluster

example.

Derived by the SVM

svm Storage virtual machine to use

Omit for Metrocluster. See the MetroCluster

example.

Derived if an SVM

managementLIF is specified

useCHAP Use CHAP to authenticate iSCSI for ONTAP SAN

drivers [Boolean].

Set to true for Astra Trident to configure and use

bidirectional CHAP as the default authentication for

the SVM given in the backend. Refer to Prepare to

configure backend with ONTAP SAN drivers for

details.

false

chapInitiato

rSecret

CHAP initiator secret. Required if useCHAP=true ""

labels Set of arbitrary JSON-formatted labels to apply on

volumes

""

chapTargetIn

itiatorSecre

t

CHAP target initiator secret. Required if

useCHAP=true

""

46

https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html
https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html

Parameter Description Default

chapUsername Inbound username. Required if useCHAP=true ""

chapTargetUs

ername

Target username. Required if useCHAP=true ""

clientCertif

icate

Base64-encoded value of client certificate. Used for

certificate-based auth

""

clientPrivat

eKey

Base64-encoded value of client private key. Used for

certificate-based auth

""

trustedCACer

tificate

Base64-encoded value of trusted CA certificate.

Optional. Used for certificate-based authentication.

""

username Username needed to communicate with the ONTAP

cluster. Used for credential-based authentication.

""

password Password needed to communicate with the ONTAP

cluster. Used for credential-based authentication.

""

svm Storage virtual machine to use Derived if an SVM

managementLIF is specified

storagePrefi

x

Prefix used when provisioning new volumes in the

SVM.

Cannot be modified later. To update this parameter,

you will need to create a new backend.

trident

limitAggrega

teUsage

Fail provisioning if usage is above this percentage.

If you are using an Amazon FSx for NetApp ONTAP

backend, do not specify limitAggregateUsage.

The provided fsxadmin and vsadmin do not contain

the permissions required to retrieve aggregate usage

and limit it using Astra Trident.

"" (not enforced by default)

limitVolumeS

ize

Fail provisioning if requested volume size is above

this value.

Also restricts the maximum size of the volumes it

manages for qtrees and LUNs.

"" (not enforced by default)

lunsPerFlexv

ol

Maximum LUNs per Flexvol, must be in range [50,

200]
100

debugTraceFl

ags

Debug flags to use when troubleshooting. Example,

{"api":false, "method":true}

Do not use unless you are troubleshooting and require

a detailed log dump.

null

47

Parameter Description Default

useREST Boolean parameter to use ONTAP REST APIs. Tech

preview

useREST is provided as a tech preview that is

recommended for test environments and not for

production workloads. When set to true, Astra

Trident will use ONTAP REST APIs to communicate

with the backend. This feature requires ONTAP 9.11.1

and later. In addition, the ONTAP login role used must

have access to the ontap application. This is satisfied

by the pre-defined vsadmin and cluster-admin

roles.

useREST is not supported with MetroCluster.

useREST is fully qualified for NVMe/TCP.

false

sanType Use to select iscsi for iSCSI or nvme for

NVMe/TCP.

iscsi if blank

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an

example, see the configuration examples below.

Parameter Description Default

spaceAllocat

ion

Space-allocation for LUNs "true"

spaceReserve Space reservation mode; "none" (thin) or "volume"

(thick)

"none"

snapshotPoli

cy

Snapshot policy to use "none"

qosPolicy QoS policy group to assign for volumes created.

Choose one of qosPolicy or adaptiveQosPolicy per

storage pool/backend.

Using QoS policy groups with Astra Trident requires

ONTAP 9.8 or later. We recommend using a non-

shared QoS policy group and ensuring the policy

group is applied to each constituent individually. A

shared QoS policy group will enforce the ceiling for

the total throughput of all workloads.

""

adaptiveQosP

olicy

Adaptive QoS policy group to assign for volumes

created. Choose one of qosPolicy or

adaptiveQosPolicy per storage pool/backend

""

snapshotRese

rve

Percentage of volume reserved for snapshots "0" if snapshotPolicy is "none",

otherwise ""

48

Parameter Description Default

splitOnClone Split a clone from its parent upon creation "false"

encryption Enable NetApp Volume Encryption (NVE) on the new

volume; defaults to false. NVE must be licensed and

enabled on the cluster to use this option.

If NAE is enabled on the backend, any volume

provisioned in Astra Trident will be NAE enabled.

For more information, refer to: How Astra Trident

works with NVE and NAE.

"false"

luksEncrypti

on

Enable LUKS encryption. Refer to Use Linux Unified

Key Setup (LUKS).

LUKS encryption is not supported for NVMe/TCP.

""

securityStyl

e

Security style for new volumes unix

tieringPolic

y

Tiering policy to use "none" "snapshot-only" for pre-ONTAP 9.5

SVM-DR configuration

Volume provisioning examples

Here’s an example with defaults defined:

version: 1

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: trident_svm

username: admin

password: <password>

labels:

 k8scluster: dev2

 backend: dev2-sanbackend

storagePrefix: alternate-trident

debugTraceFlags:

 api: false

 method: true

defaults:

 spaceReserve: volume

 qosPolicy: standard

 spaceAllocation: 'false'

 snapshotPolicy: default

 snapshotReserve: '10'

49

https://docs.netapp.com/us-en/trident-2310/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2310/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2310/trident-reco/security-luks.html
https://docs.netapp.com/us-en/trident-2310/trident-reco/security-luks.html

For all volumes created using the ontap-san driver, Astra Trident adds an extra 10 percent

capacity to the FlexVol to accommodate the LUN metadata. The LUN will be provisioned with

the exact size that the user requests in the PVC. Astra Trident adds 10 percent to the FlexVol

(shows as Available size in ONTAP). Users will now get the amount of usable capacity they

requested. This change also prevents LUNs from becoming read-only unless the available

space is fully utilized. This does not apply to ontap-san-economy.

For backends that define snapshotReserve, Astra Trident calculates the size of volumes as follows:

Total volume size = [(PVC requested size) / (1 - (snapshotReserve

percentage) / 100)] * 1.1

The 1.1 is the extra 10 percent Astra Trident adds to the FlexVol to accommodate the LUN metadata. For

snapshotReserve = 5%, and PVC request = 5GiB, the total volume size is 5.79GiB and the available size is

5.5GiB. The volume show command should show results similar to this example:

Currently, resizing is the only way to use the new calculation for an existing volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest

way to define a backend.

If you are using Amazon FSx on NetApp ONTAP with Astra Trident, we recommend you specify

DNS names for LIFs instead of IP addresses.

50

ONTAP SAN example

This is a basic configuration using the ontap-san driver.

version: 1

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: svm_iscsi

labels:

 k8scluster: test-cluster-1

 backend: testcluster1-sanbackend

username: vsadmin

password: <password>

ONTAP SAN economy example

version: 1

storageDriverName: ontap-san-economy

managementLIF: 10.0.0.1

svm: svm_iscsi_eco

username: vsadmin

password: <password>

MetroCluster example

You can configure the backend to avoid having to manually update the backend definition after switchover

and switchback during SVM replication and recovery.

For seamless switchover and switchback, specify the SVM using managementLIF and omit the

dataLIF and svm parameters. For example:

version: 1

storageDriverName: ontap-san

managementLIF: 192.168.1.66

username: vsadmin

password: password

51

https://docs.netapp.com/us-en/trident-2310/trident-reco/backup.html#svm-replication-and-recovery

Certificate-based authentication example

In this basic configuration example clientCertificate, clientPrivateKey, and

trustedCACertificate (optional, if using trusted CA) are populated in backend.json and take the

base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

version: 1

storageDriverName: ontap-san

backendName: DefaultSANBackend

managementLIF: 10.0.0.1

svm: svm_iscsi

useCHAP: true

chapInitiatorSecret: cl9qxIm36DKyawxy

chapTargetInitiatorSecret: rqxigXgkesIpwxyz

chapTargetUsername: iJF4heBRT0TCwxyz

chapUsername: uh2aNCLSd6cNwxyz

clientCertificate: ZXR0ZXJwYXB...ICMgJ3BhcGVyc2

clientPrivateKey: vciwKIyAgZG...0cnksIGRlc2NyaX

trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz

52

Bidirectional CHAP examples

These examples create a backend with useCHAP set to true.

ONTAP SAN CHAP example

version: 1

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: svm_iscsi

labels:

 k8scluster: test-cluster-1

 backend: testcluster1-sanbackend

useCHAP: true

chapInitiatorSecret: cl9qxIm36DKyawxy

chapTargetInitiatorSecret: rqxigXgkesIpwxyz

chapTargetUsername: iJF4heBRT0TCwxyz

chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

ONTAP SAN economy CHAP example

version: 1

storageDriverName: ontap-san-economy

managementLIF: 10.0.0.1

svm: svm_iscsi_eco

useCHAP: true

chapInitiatorSecret: cl9qxIm36DKyawxy

chapTargetInitiatorSecret: rqxigXgkesIpwxyz

chapTargetUsername: iJF4heBRT0TCwxyz

chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

53

NVMe/TCP example

You must have an SVM configured with NVMe on your ONTAP backend. This is a basic backend

configuration for NVMe/TCP.

version: 1

backendName: NVMeBackend

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: svm_nvme

username: vsadmin

password: password

sanType: nvme

useREST: true

Examples of backends with virtual pools

In these sample backend definition files, specific defaults are set for all storage pools, such as spaceReserve

at none, spaceAllocation at false, and encryption at false. The virtual pools are defined in the storage

section.

Astra Trident sets provisioning labels in the "Comments" field. Comments are set on the FlexVol. Astra Trident

copies all labels present on a virtual pool to the storage volume at provisioning. For convenience, storage

administrators can define labels per virtual pool and group volumes by label.

In these examples, some of the storage pools set their own spaceReserve, spaceAllocation, and

encryption values, and some pools override the default values.

54

ONTAP SAN example

55

version: 1

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: svm_iscsi

useCHAP: true

chapInitiatorSecret: cl9qxIm36DKyawxy

chapTargetInitiatorSecret: rqxigXgkesIpwxyz

chapTargetUsername: iJF4heBRT0TCwxyz

chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

defaults:

 spaceAllocation: 'false'

 encryption: 'false'

 qosPolicy: standard

labels:

 store: san_store

 kubernetes-cluster: prod-cluster-1

region: us_east_1

storage:

- labels:

 protection: gold

 creditpoints: '40000'

 zone: us_east_1a

 defaults:

 spaceAllocation: 'true'

 encryption: 'true'

 adaptiveQosPolicy: adaptive-extreme

- labels:

 protection: silver

 creditpoints: '20000'

 zone: us_east_1b

 defaults:

 spaceAllocation: 'false'

 encryption: 'true'

 qosPolicy: premium

- labels:

 protection: bronze

 creditpoints: '5000'

 zone: us_east_1c

 defaults:

 spaceAllocation: 'true'

 encryption: 'false'

56

ONTAP SAN economy example

version: 1

storageDriverName: ontap-san-economy

managementLIF: 10.0.0.1

svm: svm_iscsi_eco

useCHAP: true

chapInitiatorSecret: cl9qxIm36DKyawxy

chapTargetInitiatorSecret: rqxigXgkesIpwxyz

chapTargetUsername: iJF4heBRT0TCwxyz

chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

defaults:

 spaceAllocation: 'false'

 encryption: 'false'

labels:

 store: san_economy_store

region: us_east_1

storage:

- labels:

 app: oracledb

 cost: '30'

 zone: us_east_1a

 defaults:

 spaceAllocation: 'true'

 encryption: 'true'

- labels:

 app: postgresdb

 cost: '20'

 zone: us_east_1b

 defaults:

 spaceAllocation: 'false'

 encryption: 'true'

- labels:

 app: mysqldb

 cost: '10'

 zone: us_east_1c

 defaults:

 spaceAllocation: 'true'

 encryption: 'false'

- labels:

 department: legal

 creditpoints: '5000'

 zone: us_east_1c

57

 defaults:

 spaceAllocation: 'true'

 encryption: 'false'

NVMe/TCP example

version: 1

storageDriverName: ontap-san

sanType: nvme

managementLIF: 10.0.0.1

svm: nvme_svm

username: vsadmin

password: <password>

useREST: true

defaults:

 spaceAllocation: 'false'

 encryption: 'true'

storage:

- labels:

 app: testApp

 cost: '20'

 defaults:

 spaceAllocation: 'false'

 encryption: 'false'

Map backends to StorageClasses

The following StorageClass definitions refer to the Examples of backends with virtual pools. Using the

parameters.selector field, each StorageClass calls out which virtual pools can be used to host a volume.

The volume will have the aspects defined in the chosen virtual pool.

• The protection-gold StorageClass will map to the first virtual pool in the ontap-san backend. This is

the only pool offering gold-level protection.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-gold

provisioner: csi.trident.netapp.io

parameters:

 selector: "protection=gold"

 fsType: "ext4"

58

• The protection-not-gold StorageClass will map to the second and third virtual pool in ontap-san

backend. These are the only pools offering a protection level other than gold.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-not-gold

provisioner: csi.trident.netapp.io

parameters:

 selector: "protection!=gold"

 fsType: "ext4"

• The app-mysqldb StorageClass will map to the third virtual pool in ontap-san-economy backend. This

is the only pool offering storage pool configuration for the mysqldb type app.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: app-mysqldb

provisioner: csi.trident.netapp.io

parameters:

 selector: "app=mysqldb"

 fsType: "ext4"

• The protection-silver-creditpoints-20k StorageClass will map to the second virtual pool in

ontap-san backend. This is the only pool offering silver-level protection and 20000 creditpoints.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-silver-creditpoints-20k

provisioner: csi.trident.netapp.io

parameters:

 selector: "protection=silver; creditpoints=20000"

 fsType: "ext4"

• The creditpoints-5k StorageClass will map to the third virtual pool in ontap-san backend and the

fourth virtual pool in the ontap-san-economy backend. These are the only pool offerings with 5000

creditpoints.

59

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: creditpoints-5k

provisioner: csi.trident.netapp.io

parameters:

 selector: "creditpoints=5000"

 fsType: "ext4"

• The my-test-app-sc StorageClass will map to the testAPP virtual pool in the ontap-san driver with

sanType: nvme. This is the only pool offering testApp.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: my-test-app-sc

provisioner: csi.trident.netapp.io

parameters:

 selector: "app=testApp"

 fsType: "ext4"

Astra Trident will decide which virtual pool is selected and will ensure the storage requirement is met.

ONTAP NAS drivers

ONTAP NAS driver overview

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP

NAS drivers.

ONTAP NAS driver details

Astra Trident provides the following NAS storage drivers to communicate with the ONTAP cluster. Supported

access modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX),

ReadWriteOncePod (RWOP).

If you are using Astra Control for protection, recovery, and mobility, read Astra Control driver

compatibility.

60

Driver Protocol volumeMod

e

Access modes

supported

File systems supported

ontap-nas NFS

SMB

Filesystem RWO, ROX, RWX, RWOP "", nfs, smb

ontap-nas-economy NFS

SMB

Filesystem RWO, ROX, RWX, RWOP "", nfs, smb

ontap-nas-flexgroup NFS

SMB

Filesystem RWO, ROX, RWX, RWOP "", nfs, smb

Astra Control driver compatibility

Astra Control provides seamless protection, disaster recovery, and mobility (moving volumes between

Kubernetes clusters) for volumes created with the ontap-nas, ontap-nas-flexgroup, and ontap-san

drivers. See Astra Control replication prerequisites for details.

• Use ontap-san-economy only if persistent volume usage count is expected to be higher

than supported ONTAP volume limits.

• Use ontap-nas-economy only if persistent volume usage count is expected to be higher

than supported ONTAP volume limits and the ontap-san-economy driver cannot be used.

• Do not use use ontap-nas-economy if you anticipate the need for data protection,

disaster recovery, or mobility.

User permissions

Astra Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster

user or a vsadmin SVM user, or a user with a different name that has the same role.

For Amazon FSx for NetApp ONTAP deployments, Astra Trident expects to be run as either an ONTAP or SVM

administrator, using the cluster fsxadmin user or a vsadmin SVM user, or a user with a different name that

has the same role. The fsxadmin user is a limited replacement for the cluster admin user.

If you use the limitAggregateUsage parameter, cluster admin permissions are required.

When using Amazon FSx for NetApp ONTAP with Astra Trident, the limitAggregateUsage

parameter will not work with the vsadmin and fsxadmin user accounts. The configuration

operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don’t

recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,

making upgrades difficult and error-prone.

Prepare to configure a backend with ONTAP NAS drivers

Understand the requirements, authentication options, and export policies for configuring

an ONTAP backend with ONTAP NAS drivers.

61

https://docs.netapp.com/us-en/astra-control-center/use/replicate_snapmirror.html#replication-prerequisites
https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html
https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html

Requirements

• For all ONTAP backends, Astra Trident requires at least one aggregate assigned to the SVM.

• You can run more than one driver, and create storage classes that point to one or the other. For example,

you could configure a Gold class that uses the ontap-nas driver and a Bronze class that uses the

ontap-nas-economy one.

• All your Kubernetes worker nodes must have the appropriate NFS tools installed. See here for more

details.

• Astra Trident supports SMB volumes mounted to pods running on Windows nodes only. Refer to Prepare to

provision SMB volumes for details.

Authenticate the ONTAP backend

Astra Trident offers two modes of authenticating an ONTAP backend.

• Credential-based: This mode requires sufficient permissions to the ONTAP backend. It is recommended to

use an account associated with a pre-defined security login role, such as admin or vsadmin to ensure

maximum compatibility with ONTAP versions.

• Certificate-based: This mode requires a certificate installed on the backend for Astra Trident to

communicate with an ONTAP cluster. Here, the backend definition must contain Base64-encoded values of

the client certificate, key, and the trusted CA certificate if used (recommended).

You can update existing backends to move between credential-based and certificate-based methods. However,

only one authentication method is supported at a time. To switch to a different authentication method, you must

remove the existing method from the backend configuration.

If you attempt to provide both credentials and certificates, backend creation will fail with an

error that more than one authentication method was provided in the configuration file.

Enable credential-based authentication

Astra Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the

ONTAP backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin.

This ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by

future Astra Trident releases. A custom security login role can be created and used with Astra Trident, but is

not recommended.

A sample backend definition will look like this:

62

https://docs.netapp.com/us-en/trident-2310/trident-use/worker-node-prep.html

YAML

version: 1

backendName: ExampleBackend

storageDriverName: ontap-nas

managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm_nfs

username: vsadmin

password: password

JSON

{

 "version": 1,

 "backendName": "ExampleBackend",

 "storageDriverName": "ontap-nas",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "password"

}

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the

backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The

creation/updation of a backend is the only step that requires knowledge of the credentials. As such, it is an

admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based Authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three

parameters are required in the backend definition.

• clientCertificate: Base64-encoded value of client certificate.

• clientPrivateKey: Base64-encoded value of associated private key.

• trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter

must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to

authenticate as.

63

openssl req -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key

-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=vsadmin"

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage

administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-

name> -vserver <vserver-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled

true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-

name> -vserver <vserver-name>

security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name vsadmin -application ontapi

-authentication-method cert -vserver <vserver-name>

security login create -user-or-group-name vsadmin -application http

-authentication-method cert -vserver <vserver-name>

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>

with Management LIF IP and SVM name. You must ensure the LIF has its service policy set to default-

data-management.

curl -X POST -Lk https://<ONTAP-Management-

LIF>/servlets/netapp.servlets.admin.XMLrequest_filer --key k8senv.key

--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp

xmlns="http://www.netapp.com/filer/admin" version="1.21"

vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert_base64

base64 -w 0 k8senv.key >> key_base64

base64 -w 0 trustedca.pem >> trustedca_base64

64

7. Create backend using the values obtained from the previous step.

cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "NasBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver_test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",

"clientPrivateKey": "LS0tFaKE...0VaLuES0tLS0K",

"storagePrefix": "myPrefix_"

}

#Update backend with tridentctl

tridentctl update backend NasBackend -f cert-backend-updated.json -n

trident

+------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| NasBackend | ontap-nas | 98e19b74-aec7-4a3d-8dcf-128e5033b214 |

online | 9 |

+------------+----------------+--------------------------------------

+--------+---------+

Update authentication methods or rotate credentials

You can update an existing backend to use a different authentication method or to rotate their credentials. This

works both ways: backends that make use of username/password can be updated to use certificates;

backends that utilize certificates can be updated to username/password based. To do this, you must remove

the existing authentication method and add the new authentication method. Then use the updated

backend.json file containing the required parameters to execute tridentctl update backend.

65

cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "NasBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver_test",

"username": "vsadmin",

"password": "password",

"storagePrefix": "myPrefix_"

}

#Update backend with tridentctl

tridentctl update backend NasBackend -f cert-backend-updated.json -n

trident

+------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| NasBackend | ontap-nas | 98e19b74-aec7-4a3d-8dcf-128e5033b214 |

online | 9 |

+------------+----------------+--------------------------------------

+--------+---------+

When rotating passwords, the storage administrator must first update the password for the user

on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates

can be added to the user. The backend is then updated to use the new certificate, following

which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume

connections made after. A successful backend update indicates that Astra Trident can communicate with the

ONTAP backend and handle future volume operations.

Manage NFS export policies

Astra Trident uses NFS export policies to control access to the volumes that it provisions.

Astra Trident provides two options when working with export policies:

• Astra Trident can dynamically manage the export policy itself; in this mode of operation, the storage

administrator specifies a list of CIDR blocks that represent admissible IP addresses. Astra Trident adds

node IPs that fall in these ranges to the export policy automatically. Alternatively, when no CIDRs are

specified, any global-scoped unicast IP found on the nodes will be added to the export policy.

• Storage administrators can create an export policy and add rules manually. Astra Trident uses the default

66

export policy unless a different export policy name is specified in the configuration.

Dynamically manage export policies

Astra Trident provides the ability to dynamically manage export policies for ONTAP backends. This provides

the storage administrator the ability to specify a permissible address space for worker node IPs, rather than

defining explicit rules manually. It greatly simplifies export policy management; modifications to the export

policy no longer require manual intervention on the storage cluster. Moreover, this helps restrict access to the

storage cluster only to worker nodes that have IPs in the range specified, supporting a fine-grained and

automated management.

Do not use Network Address Translation (NAT) when using dynamic export policies. With NAT,

the storage controller sees the frontend NAT address and not the actual IP host address, so

access will be denied when no match is found in the export rules.

Example

There are two configuration options that must be used. Here’s an example backend definition:

version: 1

storageDriverName: ontap-nas

backendName: ontap_nas_auto_export

managementLIF: 192.168.0.135

svm: svm1

username: vsadmin

password: password

autoExportCIDRs:

- 192.168.0.0/24

autoExportPolicy: true

When using this feature, you must ensure that the root junction in your SVM has a previously

created export policy with an export rule that permits the node CIDR block (such as the default

export policy). Always follow NetApp recommended best practice to dedicate an SVM for Astra

Trident.

Here is an explanation of how this feature works using the example above:

• autoExportPolicy is set to true. This indicates that Astra Trident will create an export policy for the

svm1 SVM and handle the addition and deletion of rules using autoExportCIDRs address blocks. For

example, a backend with UUID 403b5326-8482-40db-96d0-d83fb3f4daec and autoExportPolicy set to

true creates an export policy named trident-403b5326-8482-40db-96d0-d83fb3f4daec on the

SVM.

• autoExportCIDRs contains a list of address blocks. This field is optional and it defaults to ["0.0.0.0/0",

"::/0"]. If not defined, Astra Trident adds all globally-scoped unicast addresses found on the worker nodes.

In this example, the 192.168.0.0/24 address space is provided. This indicates that Kubernetes node IPs

that fall within this address range will be added to the export policy that Astra Trident creates. When Astra

Trident registers a node it runs on, it retrieves the IP addresses of the node and checks them against the

67

address blocks provided in autoExportCIDRs. After filtering the IPs, Astra Trident creates export policy rules

for the client IPs it discovers, with one rule for each node it identifies.

You can update autoExportPolicy and autoExportCIDRs for backends after you create them. You can

append new CIDRs for a backend that is automatically managed or delete existing CIDRs. Exercise care when

deleting CIDRs to ensure that existing connections are not dropped. You can also choose to disable

autoExportPolicy for a backend and fall back to a manually created export policy. This will require setting

the exportPolicy parameter in your backend config.

After Astra Trident creates or updates a backend, you can check the backend using tridentctl or the

corresponding tridentbackend CRD:

./tridentctl get backends ontap_nas_auto_export -n trident -o yaml

items:

- backendUUID: 403b5326-8482-40db-96d0-d83fb3f4daec

 config:

 aggregate: ""

 autoExportCIDRs:

 - 192.168.0.0/24

 autoExportPolicy: true

 backendName: ontap_nas_auto_export

 chapInitiatorSecret: ""

 chapTargetInitiatorSecret: ""

 chapTargetUsername: ""

 chapUsername: ""

 dataLIF: 192.168.0.135

 debug: false

 debugTraceFlags: null

 defaults:

 encryption: "false"

 exportPolicy: <automatic>

 fileSystemType: ext4

As nodes are added to a Kubernetes cluster and registered with the Astra Trident controller, export policies of

existing backends are updated (provided they fall in the address range specified in autoExportCIDRs for the

backend).

When a node is removed, Astra Trident checks all backends that are online to remove the access rule for the

node. By removing this node IP from the export policies of managed backends, Astra Trident prevents rogue

mounts, unless this IP is reused by a new node in the cluster.

For previously existing backends, updating the backend with tridentctl update backend will ensure that

Astra Trident manages the export policies automatically. This will create a new export policy named after the

backend’s UUID and volumes that are present on the backend will use the newly created export policy when

they are mounted again.

68

Deleting a backend with auto-managed export policies will delete the dynamically created export

policy. If the backend is re-created, it is treated as a new backend and will result in the creation

of a new export policy.

If the IP address of a live node is updated, you must restart the Astra Trident pod on the node. Astra Trident

will then update the export policy for backends it manages to reflect this IP change.

Prepare to provision SMB volumes

With a little additional preparation, you can provision SMB volumes using ontap-nas drivers.

You must configure both NFS and SMB/CIFS protocols on the SVM to create an ontap-nas-

economy SMB volume for ONTAP on-premises. Failure to configure either of these protocols

will cause SMB volume creation to fail.

Before you begin

Before you can provision SMB volumes, you must have the following.

• A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows

Server 2019. Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

• At least one Astra Trident secret containing your Active Directory credentials. To generate secret

smbcreds:

kubectl create secret generic smbcreds --from-literal username=user

--from-literal password='password'

• A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or

GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

Steps

1. For on-premises ONTAP, you can optionally create an SMB share or Astra Trident can create one for you.

SMB shares are required for Amazon FSx for ONTAP.

You can create the SMB admin shares in one of two ways either using the Microsoft Management Console

Shared Folders snap-in or using the ONTAP CLI. To create the SMB shares using the ONTAP CLI:

a. If necessary, create the directory path structure for the share.

The vserver cifs share create command checks the path specified in the -path option during

share creation. If the specified path does not exist, the command fails.

b. Create an SMB share associated with the specified SVM:

vserver cifs share create -vserver vserver_name -share-name

share_name -path path [-share-properties share_properties,...]

[other_attributes] [-comment text]

69

https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console

c. Verify that the share was created:

vserver cifs share show -share-name share_name

Refer to Create an SMB share for full details.

2. When creating the backend, you must configure the following to specify SMB volumes. For all FSx for

ONTAP backend configuration options, refer to FSx for ONTAP configuration options and examples.

Parameter Description Example

smbShare You can specify one of the following: the name of an

SMB share created using the Microsoft

Management Console or ONTAP CLI; a name to

allow Astra Trident to create the SMB share; or you

can leave the parameter blank to prevent common

share access to volumes.

This parameter is optional for on-premises ONTAP.

This parameter is required for Amazon FSx for

ONTAP backends and cannot be blank.

smb-share

nasType Must set to smb. If null, defaults to nfs. smb

securityStyle Security style for new volumes.

Must be set to ntfs or mixed for SMB volumes.

ntfs or mixed for SMB

volumes

unixPermissions Mode for new volumes. Must be left empty for

SMB volumes.

""

ONTAP NAS configuration options and examples

Learn to create and use ONTAP NAS drivers with your Astra Trident installation. This

section provides backend configuration examples and details for mapping backends to

StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

storageDrive

rName

Name of the storage driver "ontap-nas", "ontap-nas-economy",

"ontap-nas-flexgroup", "ontap-san",

"ontap-san-economy"

backendName Custom name or the storage backend Driver name + "_" + dataLIF

70

https://docs.netapp.com/us-en/ontap/smb-config/create-share-task.html

Parameter Description Default

managementLI

F

IP address of a cluster or SVM management LIF

A fully-qualified domain name (FQDN) can be

specified.

Can be set to use IPv6 addresses if Astra Trident was

installed using the IPv6 flag. IPv6 addresses must be

defined in square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555

].

For seamless MetroCluster switchover, see the

MetroCluster example.

“10.0.0.1”, “[2001:1234:abcd::fefe]”

dataLIF IP address of protocol LIF.

We recommend specifying dataLIF. If not provided,

Astra Trident fetches data LIFs from the SVM. You

can specify a fully-qualified domain name (FQDN) to

be used for the NFS mount operations, allowing you

to create a round-robin DNS to load-balance across

multiple data LIFs.

Can be changed after initial setting. Refer to Update

dataLIF after initial configuration.

Can be set to use IPv6 addresses if Astra Trident was

installed using the IPv6 flag. IPv6 addresses must be

defined in square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555

].

Omit for Metrocluster. See the MetroCluster

example.

Specified address or derived from

SVM, if not specified (not

recommended)

svm Storage virtual machine to use

Omit for Metrocluster. See the MetroCluster

example.

Derived if an SVM

managementLIF is specified

autoExportPo

licy

Enable automatic export policy creation and updating

[Boolean].

Using the autoExportPolicy and

autoExportCIDRs options, Astra Trident can

manage export policies automatically.

false

autoExportCI

DRs

List of CIDRs to filter Kubernetes' node IPs against

when autoExportPolicy is enabled.

Using the autoExportPolicy and

autoExportCIDRs options, Astra Trident can

manage export policies automatically.

["0.0.0.0/0", "::/0"]`

71

Parameter Description Default

labels Set of arbitrary JSON-formatted labels to apply on

volumes

""

clientCertif

icate

Base64-encoded value of client certificate. Used for

certificate-based auth

""

clientPrivat

eKey

Base64-encoded value of client private key. Used for

certificate-based auth

""

trustedCACer

tificate

Base64-encoded value of trusted CA certificate.

Optional. Used for certificate-based auth

""

username Username to connect to the cluster/SVM. Used for

credential-based auth

password Password to connect to the cluster/SVM. Used for

credential-based auth

storagePrefi

x

Prefix used when provisioning new volumes in the

SVM. Cannot be updated after you set it

"trident"

limitAggrega

teUsage

Fail provisioning if usage is above this percentage.

Does not apply to Amazon FSx for ONTAP

"" (not enforced by default)

limitVolumeS

ize

Fail provisioning if requested volume size is above

this value.

Also restricts the maximum size of the volumes it

manages for qtrees and LUNs, and the

qtreesPerFlexvol option allows customizing the

maximum number of qtrees per FlexVol.

"" (not enforced by default)

lunsPerFlexv

ol

Maximum LUNs per Flexvol, must be in range [50,

200]

"100"

debugTraceFl

ags

Debug flags to use when troubleshooting. Example,

{"api":false, "method":true}

Do not use debugTraceFlags unless you are

troubleshooting and require a detailed log dump.

null

nasType Configure NFS or SMB volumes creation.

Options are nfs, smb or null. Setting to null defaults

to NFS volumes.

nfs

72

Parameter Description Default

nfsMountOpti

ons

Comma-separated list of NFS mount options.

The mount options for Kubernetes-persistent volumes

are normally specified in storage classes, but if no

mount options are specified in a storage class, Astra

Trident will fall back to using the mount options

specified in the storage backend’s configuration file.

If no mount options are specified in the storage class

or the configuration file, Astra Trident will not set any

mount options on an associated persistent volume.

""

qtreesPerFle

xvol

Maximum Qtrees per FlexVol, must be in range [50,

300]

"200"

smbShare You can specify one of the following: the name of an

SMB share created using the Microsoft Management

Console or ONTAP CLI; a name to allow Astra Trident

to create the SMB share; or you can leave the

parameter blank to prevent common share access to

volumes.

This parameter is optional for on-premises ONTAP.

This parameter is required for Amazon FSx for

ONTAP backends and cannot be blank.

smb-share

useREST Boolean parameter to use ONTAP REST APIs. Tech

preview

useREST is provided as a tech preview that is

recommended for test environments and not for

production workloads. When set to true, Astra

Trident will use ONTAP REST APIs to communicate

with the backend. This feature requires ONTAP 9.11.1

and later. In addition, the ONTAP login role used must

have access to the ontap application. This is satisfied

by the pre-defined vsadmin and cluster-admin

roles.

useREST is not supported with MetroCluster.

false

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an

example, see the configuration examples below.

Parameter Description Default

spaceAllocat

ion

Space-allocation for LUNs "true"

73

Parameter Description Default

spaceReserve Space reservation mode; "none" (thin) or "volume"

(thick)

"none"

snapshotPoli

cy

Snapshot policy to use "none"

qosPolicy QoS policy group to assign for volumes created.

Choose one of qosPolicy or adaptiveQosPolicy per

storage pool/backend

""

adaptiveQosP

olicy

Adaptive QoS policy group to assign for volumes

created. Choose one of qosPolicy or

adaptiveQosPolicy per storage pool/backend.

Not supported by ontap-nas-economy.

""

snapshotRese

rve

Percentage of volume reserved for snapshots "0" if snapshotPolicy is "none",

otherwise ""

splitOnClone Split a clone from its parent upon creation "false"

encryption Enable NetApp Volume Encryption (NVE) on the new

volume; defaults to false. NVE must be licensed and

enabled on the cluster to use this option.

If NAE is enabled on the backend, any volume

provisioned in Astra Trident will be NAE enabled.

For more information, refer to: How Astra Trident

works with NVE and NAE.

"false"

tieringPolic

y

Tiering policy to use "none" "snapshot-only" for pre-ONTAP 9.5

SVM-DR configuration

unixPermissi

ons

Mode for new volumes "777" for NFS volumes; empty (not

applicable) for SMB volumes

snapshotDir Controls access to the .snapshot directory "false"

exportPolicy Export policy to use "default"

securityStyl

e

Security style for new volumes.

NFS supports mixed and unix security styles.

SMB supports mixed and ntfs security styles.

NFS default is unix.

SMB default is ntfs.

Using QoS policy groups with Astra Trident requires ONTAP 9.8 or later. It is recommended to

use a non-shared QoS policy group and ensure the policy group is applied to each constituent

individually. A shared QoS policy group will enforce the ceiling for the total throughput of all

workloads.

Volume provisioning examples

Here’s an example with defaults defined:

74

https://docs.netapp.com/us-en/trident-2310/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2310/trident-reco/security-reco.html

version: 1

storageDriverName: ontap-nas

backendName: customBackendName

managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

labels:

 k8scluster: dev1

 backend: dev1-nasbackend

svm: trident_svm

username: cluster-admin

password: <password>

limitAggregateUsage: 80%

limitVolumeSize: 50Gi

nfsMountOptions: nfsvers=4

debugTraceFlags:

 api: false

 method: true

defaults:

 spaceReserve: volume

 qosPolicy: premium

 exportPolicy: myk8scluster

 snapshotPolicy: default

 snapshotReserve: '10'

For ontap-nas and ontap-nas-flexgroups, Astra Trident now uses a new calculation to ensure that the

FlexVol is sized correctly with the snapshotReserve percentage and PVC. When the user requests a PVC,

Astra Trident creates the original FlexVol with more space by using the new calculation. This calculation

ensures that the user receives the writable space they requested for in the PVC, and not lesser space than

what they requested. Before v21.07, when the user requests a PVC (for example, 5GiB), with the

snapshotReserve to 50 percent, they get only 2.5GiB of writeable space. This is because what the user

requested for is the whole volume and snapshotReserve is a percentage of that. With Trident 21.07, what

the user requests for is the writeable space and Astra Trident defines the snapshotReserve number as the

percentage of the whole volume. This does not apply to ontap-nas-economy. See the following example to

see how this works:

The calculation is as follows:

Total volume size = (PVC requested size) / (1 - (snapshotReserve

percentage) / 100)

For snapshotReserve = 50%, and PVC request = 5GiB, the total volume size is 2/.5 = 10GiB and the available

size is 5GiB, which is what the user requested in the PVC request. The volume show command should show

results similar to this example:

75

Existing backends from previous installs will provision volumes as explained above when upgrading Astra

Trident. For volumes that you created before upgrading, you should resize their volumes for the change to be

observed. For example, a 2GiB PVC with snapshotReserve=50 earlier resulted in a volume that provides

1GiB of writable space. Resizing the volume to 3GiB, for example, provides the application with 3GiB of

writable space on a 6 GiB volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest

way to define a backend.

If you are using Amazon FSx on NetApp ONTAP with Trident, the recommendation is to specify

DNS names for LIFs instead of IP addresses.

ONTAP NAS economy example

version: 1

storageDriverName: ontap-nas-economy

managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm_nfs

username: vsadmin

password: password

ONTAP NAS Flexgroup example

version: 1

storageDriverName: ontap-nas-flexgroup

managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm_nfs

username: vsadmin

password: password

76

MetroCluster example

You can configure the backend to avoid having to manually update the backend definition after switchover

and switchback during SVM replication and recovery.

For seamless switchover and switchback, specify the SVM using managementLIF and omit the

dataLIF and svm parameters. For example:

version: 1

storageDriverName: ontap-nas

managementLIF: 192.168.1.66

username: vsadmin

password: password

SMB volumes example

version: 1

backendName: ExampleBackend

storageDriverName: ontap-nas

managementLIF: 10.0.0.1

nasType: smb

securityStyle: ntfs

unixPermissions: ""

dataLIF: 10.0.0.2

svm: svm_nfs

username: vsadmin

password: password

77

https://docs.netapp.com/us-en/trident-2310/trident-reco/backup.html#svm-replication-and-recovery

Certificate-based authentication example

This is a minimal backend configuration example. clientCertificate, clientPrivateKey, and

trustedCACertificate (optional, if using trusted CA) are populated in backend.json and take the

base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

version: 1

backendName: DefaultNASBackend

storageDriverName: ontap-nas

managementLIF: 10.0.0.1

dataLIF: 10.0.0.15

svm: nfs_svm

clientCertificate: ZXR0ZXJwYXB...ICMgJ3BhcGVyc2

clientPrivateKey: vciwKIyAgZG...0cnksIGRlc2NyaX

trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz

storagePrefix: myPrefix_

Auto export policy example

This example shows you how you can instruct Astra Trident to use dynamic export policies to create and

manage the export policy automatically. This works the same for the ontap-nas-economy and ontap-

nas-flexgroup drivers.

version: 1

storageDriverName: ontap-nas

managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm_nfs

labels:

 k8scluster: test-cluster-east-1a

 backend: test1-nasbackend

autoExportPolicy: true

autoExportCIDRs:

- 10.0.0.0/24

username: admin

password: password

nfsMountOptions: nfsvers=4

78

IPv6 addresses example

This example shows managementLIF using an IPv6 address.

version: 1

storageDriverName: ontap-nas

backendName: nas_ipv6_backend

managementLIF: "[5c5d:5edf:8f:7657:bef8:109b:1b41:d491]"

labels:

 k8scluster: test-cluster-east-1a

 backend: test1-ontap-ipv6

svm: nas_ipv6_svm

username: vsadmin

password: password

Amazon FSx for ONTAP using SMB volumes example

The smbShare parameter is required for FSx for ONTAP using SMB volumes.

version: 1

backendName: SMBBackend

storageDriverName: ontap-nas

managementLIF: example.mgmt.fqdn.aws.com

nasType: smb

dataLIF: 10.0.0.15

svm: nfs_svm

smbShare: smb-share

clientCertificate: ZXR0ZXJwYXB...ICMgJ3BhcGVyc2

clientPrivateKey: vciwKIyAgZG...0cnksIGRlc2NyaX

trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz

storagePrefix: myPrefix_

Examples of backends with virtual pools

In the sample backend definition files shown below, specific defaults are set for all storage pools, such as

spaceReserve at none, spaceAllocation at false, and encryption at false. The virtual pools are defined

in the storage section.

Astra Trident sets provisioning labels in the "Comments" field. Comments are set on FlexVol for ontap-nas or

FlexGroup for ontap-nas-flexgroup. Astra Trident copies all labels present on a virtual pool to the storage

volume at provisioning. For convenience, storage administrators can define labels per virtual pool and group

volumes by label.

79

In these examples, some of the storage pools set their own spaceReserve, spaceAllocation, and

encryption values, and some pools override the default values.

80

ONTAP NAS example

version: 1

storageDriverName: ontap-nas

managementLIF: 10.0.0.1

svm: svm_nfs

username: admin

password: <password>

nfsMountOptions: nfsvers=4

defaults:

 spaceReserve: none

 encryption: 'false'

 qosPolicy: standard

labels:

 store: nas_store

 k8scluster: prod-cluster-1

region: us_east_1

storage:

- labels:

 app: msoffice

 cost: '100'

 zone: us_east_1a

 defaults:

 spaceReserve: volume

 encryption: 'true'

 unixPermissions: '0755'

 adaptiveQosPolicy: adaptive-premium

- labels:

 app: slack

 cost: '75'

 zone: us_east_1b

 defaults:

 spaceReserve: none

 encryption: 'true'

 unixPermissions: '0755'

- labels:

 department: legal

 creditpoints: '5000'

 zone: us_east_1b

 defaults:

 spaceReserve: none

 encryption: 'true'

 unixPermissions: '0755'

- labels:

 app: wordpress

81

 cost: '50'

 zone: us_east_1c

 defaults:

 spaceReserve: none

 encryption: 'true'

 unixPermissions: '0775'

- labels:

 app: mysqldb

 cost: '25'

 zone: us_east_1d

 defaults:

 spaceReserve: volume

 encryption: 'false'

 unixPermissions: '0775'

82

ONTAP NAS FlexGroup example

version: 1

storageDriverName: ontap-nas-flexgroup

managementLIF: 10.0.0.1

svm: svm_nfs

username: vsadmin

password: <password>

defaults:

 spaceReserve: none

 encryption: 'false'

labels:

 store: flexgroup_store

 k8scluster: prod-cluster-1

region: us_east_1

storage:

- labels:

 protection: gold

 creditpoints: '50000'

 zone: us_east_1a

 defaults:

 spaceReserve: volume

 encryption: 'true'

 unixPermissions: '0755'

- labels:

 protection: gold

 creditpoints: '30000'

 zone: us_east_1b

 defaults:

 spaceReserve: none

 encryption: 'true'

 unixPermissions: '0755'

- labels:

 protection: silver

 creditpoints: '20000'

 zone: us_east_1c

 defaults:

 spaceReserve: none

 encryption: 'true'

 unixPermissions: '0775'

- labels:

 protection: bronze

 creditpoints: '10000'

 zone: us_east_1d

 defaults:

83

 spaceReserve: volume

 encryption: 'false'

 unixPermissions: '0775'

84

ONTAP NAS economy example

version: 1

storageDriverName: ontap-nas-economy

managementLIF: 10.0.0.1

svm: svm_nfs

username: vsadmin

password: <password>

defaults:

 spaceReserve: none

 encryption: 'false'

labels:

 store: nas_economy_store

region: us_east_1

storage:

- labels:

 department: finance

 creditpoints: '6000'

 zone: us_east_1a

 defaults:

 spaceReserve: volume

 encryption: 'true'

 unixPermissions: '0755'

- labels:

 protection: bronze

 creditpoints: '5000'

 zone: us_east_1b

 defaults:

 spaceReserve: none

 encryption: 'true'

 unixPermissions: '0755'

- labels:

 department: engineering

 creditpoints: '3000'

 zone: us_east_1c

 defaults:

 spaceReserve: none

 encryption: 'true'

 unixPermissions: '0775'

- labels:

 department: humanresource

 creditpoints: '2000'

 zone: us_east_1d

 defaults:

 spaceReserve: volume

85

 encryption: 'false'

 unixPermissions: '0775'

Map backends to StorageClasses

The following StorageClass definitions refer to Examples of backends with virtual pools. Using the

parameters.selector field, each StorageClass calls out which virtual pools can be used to host a volume.

The volume will have the aspects defined in the chosen virtual pool.

• The protection-gold StorageClass will map to the first and second virtual pool in the ontap-nas-

flexgroup backend. These are the only pools offering gold level protection.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-gold

provisioner: csi.trident.netapp.io

parameters:

 selector: "protection=gold"

 fsType: "ext4"

• The protection-not-gold StorageClass will map to the third and fourth virtual pool in the ontap-

nas-flexgroup backend. These are the only pools offering protection level other than gold.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-not-gold

provisioner: csi.trident.netapp.io

parameters:

 selector: "protection!=gold"

 fsType: "ext4"

• The app-mysqldb StorageClass will map to the fourth virtual pool in the ontap-nas backend. This is the

only pool offering storage pool configuration for mysqldb type app.

86

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: app-mysqldb

provisioner: csi.trident.netapp.io

parameters:

 selector: "app=mysqldb"

 fsType: "ext4"

• TThe protection-silver-creditpoints-20k StorageClass will map to the third virtual pool in the

ontap-nas-flexgroup backend. This is the only pool offering silver-level protection and 20000

creditpoints.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-silver-creditpoints-20k

provisioner: csi.trident.netapp.io

parameters:

 selector: "protection=silver; creditpoints=20000"

 fsType: "ext4"

• The creditpoints-5k StorageClass will map to the third virtual pool in the ontap-nas backend and the

second virtual pool in the ontap-nas-economy backend. These are the only pool offerings with 5000

creditpoints.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: creditpoints-5k

provisioner: csi.trident.netapp.io

parameters:

 selector: "creditpoints=5000"

 fsType: "ext4"

Astra Trident will decide which virtual pool is selected and will ensure the storage requirement is met.

Update dataLIF after initial configuration

You can change the data LIF after initial configuration by running the following command to provide the new

backend JSON file with updated data LIF.

87

tridentctl update backend <backend-name> -f <path-to-backend-json-file-

with-updated-dataLIF>

If PVCs are attached to one or multiple pods, you must bring down all corresponding pods and

then bring them back up in order to for the new data LIF to take effect.

Amazon FSx for NetApp ONTAP

Use Astra Trident with Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP is a fully managed AWS service that enables customers

to launch and run file systems powered by the NetApp ONTAP storage operating system.

FSx for ONTAP enables you to leverage NetApp features, performance, and

administrative capabilities you are familiar with, while taking advantage of the simplicity,

agility, security, and scalability of storing data on AWS. FSx for ONTAP supports ONTAP

file system features and administration APIs.

Overview

A file system is the primary resource in Amazon FSx, analogous to an ONTAP cluster on premises. Within

each SVM you can create one or multiple volumes, which are data containers that store the files and folders in

your file system. With Amazon FSx for NetApp ONTAP, Data ONTAP will be provided as a managed file

system in the cloud. The new file system type is called NetApp ONTAP.

Using Astra Trident with Amazon FSx for NetApp ONTAP, you can ensure Kubernetes clusters running in

Amazon Elastic Kubernetes Service (EKS) can provision block and file persistent volumes backed by ONTAP.

Amazon FSx for NetApp ONTAP uses FabricPool to manage storage tiers. It enables you to store data in a tier,

based on whether the data is frequently accessed.

Considerations

• SMB volumes:

◦ SMB volumes are supported using the ontap-nas driver only.

◦ Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

• Volumes created on Amazon FSx file systems that have automatic backups enabled cannot be deleted by

Trident. To delete PVCs, you need to manually delete the PV and the FSx for ONTAP volume. To prevent

this issue:

◦ Do not use Quick create to create the FSx for ONTAP file system. The quick create workflow enables

automatic backups and does not provide an opt-out option.

◦ When using Standard create, disable automatic backup. Disabling automatic backups allows Trident

to successfully delete a volume without further manual intervention.

88

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://docs.netapp.com/ontap-9/topic/com.netapp.doc.dot-mgng-stor-tier-fp/GUID-5A78F93F-7539-4840-AB0B-4A6E3252CF84.html

FSx for ONTAP driver details

You can integrate Astra Trident with Amazon FSx for NetApp ONTAP using the following drivers:

• ontap-san: Each PV provisioned is a LUN within its own Amazon FSx for NetApp ONTAP volume.

• ontap-san-economy: Each PV provisioned is a LUN with a configurable number of LUNs per Amazon

FSx for NetApp ONTAP volume.

• ontap-nas: Each PV provisioned is a full Amazon FSx for NetApp ONTAP volume.

• ontap-nas-economy: Each PV provisioned is a qtree, with a configurable number of qtrees per Amazon

FSx for NetApp ONTAP volume.

• ontap-nas-flexgroup: Each PV provisioned is a full Amazon FSx for NetApp ONTAP FlexGroup

volume.

For driver details, see NAS drivers and SAN drivers.

Authentication

Astra Trident offers two modes of authentication.

• Certificate-based: Astra Trident will communicate with the SVM on your FSx file system using a certificate

installed on your SVM.

• Credential-based: You can use the fsxadmin user for your file system or the vsadmin user configured for

your SVM.

Astra Trident expects to be run as a vsadmin SVM user or as a user with a different name

that has the same role. Amazon FSx for NetApp ONTAP has an fsxadmin user that is a

limited replacement of the ONTAP admin cluster user. We strongly recommend using

vsadmin with Astra Trident.

You can update backends to move between credential-based and certificate-based methods. However, if you

attempt to provide credentials and certificates, backend creation will fail. To switch to a different

authentication method, you must remove the existing method from the backend configuration.

For details on enabling authentication, refer to the authentication for your driver type:

• ONTAP NAS authentication

• ONTAP SAN authentication

89

Find more information

• Amazon FSx for NetApp ONTAP documentation

• Blog post on Amazon FSx for NetApp ONTAP

Integrate Amazon FSx for NetApp ONTAP

You can integrate your Amazon FSx for NetApp ONTAP file system with Astra Trident to

ensure Kubernetes clusters running in Amazon Elastic Kubernetes Service (EKS) can

provision block and file persistent volumes backed by ONTAP.

Requirements

In addition to Astra Trident requirements, to integrate FSx for ONTAP with Astra Trident, you need:

• An existing Amazon EKS cluster or self-managed Kubernetes cluster with kubectl installed.

• An existing Amazon FSx for NetApp ONTAP file system and storage virtual machine (SVM) that is

reachable from your cluster’s worker nodes.

• Worker nodes that are prepared for NFS or iSCSI.

Ensure you follow the node preparation steps required for Amazon Linux and Ubuntu

Amazon Machine Images (AMIs) depending on your EKS AMI type.

• Astra Trident supports SMB volumes mounted to pods running on Windows nodes only. Refer to Prepare to

provision SMB volumes for details.

ONTAP SAN and NAS driver integration

If you are configuring for SMB volumes, you must read Prepare to provision SMB volumes

before creating the backend.

Steps

1. Deploy Astra Trident using one of the deployment methods.

2. Collect your SVM management LIF DNS name. For example, using the AWS CLI, find the DNSName entry

under Endpoints → Management after running the following command:

aws fsx describe-storage-virtual-machines --region <file system region>

3. Create and install certificates for NAS backend authentication or SAN backend authentication.

You can log in to your file system (for example to install certificates) using SSH from

anywhere that can reach your file system. Use the fsxadmin user, the password you

configured when you created your file system, and the management DNS name from aws

fsx describe-file-systems.

4. Create a backend file using your certificates and the DNS name of your management LIF, as shown in the

sample below:

90

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://www.netapp.com/blog/amazon-fsx-for-netapp-ontap/
https://docs.netapp.com/us-en/trident-2310/trident-get-started/requirements.html
https://docs.netapp.com/us-en/trident-2310/trident-use/worker-node-prep.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.netapp.com/us-en/trident-2310/trident-get-started/kubernetes-deploy.html

YAML

version: 1

storageDriverName: ontap-san

backendName: customBackendName

managementLIF: svm-XXXXXXXXXXXXXXXXX.fs-XXXXXXXXXXXXXXXXX.fsx.us-

east-2.aws.internal

svm: svm01

clientCertificate: ZXR0ZXJwYXB...ICMgJ3BhcGVyc2

clientPrivateKey: vciwKIyAgZG...0cnksIGRlc2NyaX

trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz

JSON

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "customBackendName",

 "managementLIF": "svm-XXXXXXXXXXXXXXXXX.fs-

XXXXXXXXXXXXXXXXX.fsx.us-east-2.aws.internal",

 "svm": "svm01",

 "clientCertificate": "ZXR0ZXJwYXB...ICMgJ3BhcGVyc2",

 "clientPrivateKey": "vciwKIyAgZG...0cnksIGRlc2NyaX",

 "trustedCACertificate": "zcyBbaG...b3Igb3duIGNsYXNz"

 }

For information about creating backends, see these links:

◦ Configure a backend with ONTAP NAS drivers

◦ Configure a backend with ONTAP SAN drivers

Prepare to provision SMB volumes

You can provision SMB volumes using the ontap-nas driver. Before you complete ONTAP SAN and NAS

driver integration complete the following steps.

Before you begin

Before you can provision SMB volumes using the ontap-nas driver, you must have the following.

• A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows

Server 2019. Astra Trident supports SMB volumes mounted to pods running on Windows nodes only.

• At least one Astra Trident secret containing your Active Directory credentials. To generate secret

smbcreds:

91

kubectl create secret generic smbcreds --from-literal username=user

--from-literal password='password'

• A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or

GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

Steps

1. Create SMB shares. You can create the SMB admin shares in one of two ways either using the Microsoft

Management Console Shared Folders snap-in or using the ONTAP CLI. To create the SMB shares using

the ONTAP CLI:

a. If necessary, create the directory path structure for the share.

The vserver cifs share create command checks the path specified in the -path option during

share creation. If the specified path does not exist, the command fails.

b. Create an SMB share associated with the specified SVM:

vserver cifs share create -vserver vserver_name -share-name

share_name -path path [-share-properties share_properties,...]

[other_attributes] [-comment text]

c. Verify that the share was created:

vserver cifs share show -share-name share_name

Refer to Create an SMB share for full details.

2. When creating the backend, you must configure the following to specify SMB volumes. For all FSx for

ONTAP backend configuration options, refer to FSx for ONTAP configuration options and examples.

Parameter Description Example

smbShare You can specify one of the

following: the name of an SMB

share created using the Microsoft

Management Console or ONTAP

CLI or a name to allow Astra

Trident to create the SMB share.

This parameter is required for

Amazon FSx for ONTAP

backends.

smb-share

nasType Must set to smb. If null, defaults

to nfs.

smb

92

https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console
https://docs.netapp.com/us-en/ontap/smb-config/create-share-task.html

Parameter Description Example

securityStyle Security style for new volumes.

Must be set to ntfs or mixed

for SMB volumes.

ntfs or mixed for SMB volumes

unixPermissions Mode for new volumes. Must be

left empty for SMB volumes.

""

FSx for ONTAP configuration options and examples

Learn about backend configuration options for Amazon FSx for ONTAP. This section

provides backend configuration examples.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Example

version Always 1

storageDriverName Name of the storage driver ontap-nas, ontap-nas-

economy, ontap-nas-

flexgroup, ontap-san, ontap-

san-economy

backendName Custom name or the storage

backend

Driver name + “_” + dataLIF

managementLIF IP address of a cluster or SVM

management LIF

A fully-qualified domain name

(FQDN) can be specified.

Can be set to use IPv6 addresses if

Astra Trident was installed using

the IPv6 flag. IPv6 addresses must

be defined in square brackets, such

as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e

7b:3555].

“10.0.0.1”, “[2001:1234:abcd::fefe]”

93

Parameter Description Example

dataLIF IP address of protocol LIF.

ONTAP NAS drivers: We

recommend specifying dataLIF. If

not provided, Astra Trident fetches

data LIFs from the SVM. You can

specify a fully-qualified domain

name (FQDN) to be used for the

NFS mount operations, allowing

you to create a round-robin DNS to

load-balance across multiple data

LIFs. Can be changed after initial

setting. Refer to Update dataLIF

after initial configuration.

ONTAP SAN drivers: Do not

specify for iSCSI. Astra Trident

uses ONTAP Selective LUN Map to

discover the iSCI LIFs needed to

establish a multi path session. A

warning is generated if dataLIF is

explicitly defined.

Can be set to use IPv6 addresses if

Astra Trident was installed using

the IPv6 flag. IPv6 addresses must

be defined in square brackets, such

as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e

7b:3555].

autoExportPolicy Enable automatic export policy

creation and updating [Boolean].

Using the autoExportPolicy

and autoExportCIDRs options,

Astra Trident can manage export

policies automatically.

false

autoExportCIDRs List of CIDRs to filter Kubernetes'

node IPs against when

autoExportPolicy is enabled.

Using the autoExportPolicy

and autoExportCIDRs options,

Astra Trident can manage export

policies automatically.

"[“0.0.0.0/0”, “::/0”]"

labels Set of arbitrary JSON-formatted

labels to apply on volumes

""

94

Parameter Description Example

clientCertificate Base64-encoded value of client

certificate. Used for certificate-

based auth

""

clientPrivateKey Base64-encoded value of client

private key. Used for certificate-

based auth

""

trustedCACertificate Base64-encoded value of trusted

CA certificate. Optional. Used for

certificate-based authentication.

""

username Username to connect to the cluster

or SVM. Used for credential-based

authentication. For example,

vsadmin.

password Password to connect to the cluster

or SVM. Used for credential-based

authentication.

svm Storage virtual machine to use Derived if an SVM managementLIF

is specified.

storagePrefix Prefix used when provisioning new

volumes in the SVM.

Cannot be modified after creation.

To update this parameter, you will

need to create a new backend.

trident

limitAggregateUsage Do not specify for Amazon FSx

for NetApp ONTAP.

The provided fsxadmin and

vsadmin do not contain the

permissions required to retrieve

aggregate usage and limit it using

Astra Trident.

Do not use.

limitVolumeSize Fail provisioning if requested

volume size is above this value.

Also restricts the maximum size of

the volumes it manages for qtrees

and LUNs, and the

qtreesPerFlexvol option allows

customizing the maximum number

of qtrees per FlexVol.

“” (not enforced by default)

lunsPerFlexvol Maximum LUNs per Flexvol, must

be in range [50, 200].

SAN only.

100

95

Parameter Description Example

debugTraceFlags Debug flags to use when

troubleshooting. Example,

{“api”:false, “method”:true}

Do not use debugTraceFlags

unless you are troubleshooting and

require a detailed log dump.

null

nfsMountOptions Comma-separated list of NFS

mount options.

The mount options for Kubernetes-

persistent volumes are normally

specified in storage classes, but if

no mount options are specified in a

storage class, Astra Trident will fall

back to using the mount options

specified in the storage backend’s

configuration file.

If no mount options are specified in

the storage class or the

configuration file, Astra Trident will

not set any mount options on an

associated persistent volume.

""

nasType Configure NFS or SMB volumes

creation.

Options are nfs, smb, or null.

Must set to smb for SMB

volumes. Setting to null defaults to

NFS volumes.

nfs

qtreesPerFlexvol Maximum Qtrees per FlexVol, must

be in range [50, 300]
200

smbShare You can specify one of the

following: the name of an SMB

share created using the Microsoft

Management Console or ONTAP

CLI or a name to allow Astra

Trident to create the SMB share.

This parameter is required for

Amazon FSx for ONTAP backends.

smb-share

96

Parameter Description Example

useREST Boolean parameter to use ONTAP

REST APIs. Tech preview

useREST is provided as a tech

preview that is recommended for

test environments and not for

production workloads. When set to

true, Astra Trident will use ONTAP

REST APIs to communicate with

the backend.

This feature requires ONTAP 9.11.1

and later. In addition, the ONTAP

login role used must have access to

the ontap application. This is

satisfied by the pre-defined

vsadmin and cluster-admin

roles.

false

Update dataLIF after initial configuration

You can change the data LIF after initial configuration by running the following command to provide the new

backend JSON file with updated data LIF.

tridentctl update backend <backend-name> -f <path-to-backend-json-file-

with-updated-dataLIF>

If PVCs are attached to one or multiple pods, you must bring down all corresponding pods and

then bring them back up in order to for the new data LIF to take effect.

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an

example, see the configuration examples below.

Parameter Description Default

spaceAllocation Space-allocation for LUNs true

spaceReserve Space reservation mode; “none”

(thin) or “volume” (thick)
none

snapshotPolicy Snapshot policy to use none

97

Parameter Description Default

qosPolicy QoS policy group to assign for

volumes created. Choose one of

qosPolicy or adaptiveQosPolicy per

storage pool or backend.

Using QoS policy groups with Astra

Trident requires ONTAP 9.8 or later.

We recommend using a non-shared

QoS policy group and ensuring the

policy group is applied to each

constituent individually. A shared

QoS policy group will enforce the

ceiling for the total throughput of all

workloads.

“”

adaptiveQosPolicy Adaptive QoS policy group to

assign for volumes created.

Choose one of qosPolicy or

adaptiveQosPolicy per storage pool

or backend.

Not supported by ontap-nas-

economy.

“”

snapshotReserve Percentage of volume reserved for

snapshots “0”
If snapshotPolicy is none, else

“”

splitOnClone Split a clone from its parent upon

creation
false

encryption Enable NetApp Volume Encryption

(NVE) on the new volume; defaults

to false. NVE must be licensed

and enabled on the cluster to use

this option.

If NAE is enabled on the backend,

any volume provisioned in Astra

Trident will be NAE enabled.

For more information, refer to: How

Astra Trident works with NVE and

NAE.

false

luksEncryption Enable LUKS encryption. Refer to

Use Linux Unified Key Setup

(LUKS).

SAN only.

""

tieringPolicy Tiering policy to use none snapshot-only for pre-ONTAP

9.5 SVM-DR configuration

98

https://docs.netapp.com/us-en/trident-2310/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2310/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2310/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2310/trident-reco/security-reco.html#Use-Linux-Unified-Key-Setup-(LUKS)
https://docs.netapp.com/us-en/trident-2310/trident-reco/security-reco.html#Use-Linux-Unified-Key-Setup-(LUKS)

Parameter Description Default

unixPermissions Mode for new volumes.

Leave empty for SMB volumes.

“"

securityStyle Security style for new volumes.

NFS supports mixed and unix

security styles.

SMB supports mixed and ntfs

security styles.

NFS default is unix.

SMB default is ntfs.

Example

Using nasType, node-stage-secret-name, and node-stage-secret-namespace, you can specify an

SMB volume and provide the required Active Directory credentials. SMB volumes are supported using the

ontap-nas driver only.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: nas-smb-sc

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-nas"

 trident.netapp.io/nasType: "smb"

 csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

 csi.storage.k8s.io/node-stage-secret-namespace: "default"

Configure the Astra Trident EKS add-on version 23.10 on EKS cluster

Astra Trident streamlines Amazon FSx for NetApp ONTAP storage management in

Kubernetes to enable your developers and administrators focus on application

deployment. The Astra Trident EKS add-on includes the latest security patches, bug

fixes, and is validated by AWS to work with Amazon EKS. The EKS add-on enables you

to consistently ensure that your Amazon EKS clusters are secure and stable and reduce

the amount of work that you need to do in order to install, configure, and update add-ons.

Prerequisites

Ensure that you have the following before configuring the Astra Trident add-on for AWS EKS:

• An Amazon EKS cluster account with add-on subscription

• AWS permissions to the AWS marketplace:

"aws-marketplace:ViewSubscriptions",

"aws-marketplace:Subscribe",

99

"aws-marketplace:Unsubscribe

• AMI type: Amazon Linux 2 (AL2_x86_64) or Amazon Linux 2 Arm(AL2_ARM_64)

• Node type: AMD or ARM

• An existing Amazon FSx for NetApp ONTAP file system

Steps

1. On your your EKS Kubernetes cluster, navigate to the Add-ons tab.

2. Go to AWS Marketplace add-ons and choose the storage category.

3. Locate AstraTrident by NetApp and select the checkbox for the Astra Trident add-on.

4. Choose the desired version of the add-on.

100

5. Select the IAM role option to inherit from the node.

6. Configure any optional settings as required and select Next.

7. Select Create.

8. Verify that the status of the add-on is Active.

101

Install/uninstall the Astra Trident EKS add-on using CLI

Install the Astra Trident EKS add-on using CLI:

The following example commands install the Astra Trident EKS add-on:

eksctl create addon --cluster K8s-arm --name netapp_trident-operator --version

v23.10.0-eksbuild.

eksctl create addon --cluster K8s-arm --name netapp_trident-operator --version

v23.10.0-eksbuild.1 (with a dedicated version)

Uninstall the Astra Trident EKS add-on using CLI:

The following command uninstalls the Astra Trident EKS add-on:

eksctl delete addon --cluster K8s-arm --name netapp_trident-operator

Create backends with kubectl

A backend defines the relationship between Astra Trident and a storage system. It tells

Astra Trident how to communicate with that storage system and how Astra Trident should

provision volumes from it. After Astra Trident is installed, the next step is to create a

backend. The TridentBackendConfig Custom Resource Definition (CRD) enables

you to create and manage Trident backends directly through the Kubernetes interface.

You can do this by using kubectl or the equivalent CLI tool for your Kubernetes

distribution.

TridentBackendConfig

TridentBackendConfig (tbc, tbconfig, tbackendconfig) is a frontend, namespaced CRD that

enables you to manage Astra Trident backends using kubectl. Kubernetes and storage admins can now

create and manage backends directly through the Kubernetes CLI without requiring a dedicated command-line

utility (tridentctl).

Upon the creation of a TridentBackendConfig object, the following happens:

• A backend is created automatically by Astra Trident based on the configuration you provide. This is

represented internally as a TridentBackend (tbe, tridentbackend) CR.

• The TridentBackendConfig is uniquely bound to a TridentBackend that was created by Astra

Trident.

Each TridentBackendConfig maintains a one-to-one mapping with a TridentBackend. The former is the

interface provided to the user to design and configure backends; the latter is how Trident represents the actual

backend object.

102

TridentBackend CRs are created automatically by Astra Trident. You should not modify

them. If you want to make updates to backends, do this by modifying the

TridentBackendConfig object.

See the following example for the format of the TridentBackendConfig CR:

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc-ontap-san

spec:

 version: 1

 backendName: ontap-san-backend

 storageDriverName: ontap-san

 managementLIF: 10.0.0.1

 dataLIF: 10.0.0.2

 svm: trident_svm

 credentials:

 name: backend-tbc-ontap-san-secret

You can also take a look at the examples in the trident-installer directory for sample configurations for the

desired storage platform/service.

The spec takes backend-specific configuration parameters. In this example, the backend uses the ontap-

san storage driver and uses the configuration parameters that are tabulated here. For the list of configuration

options for your desired storage driver, see the backend configuration information for your storage driver.

The spec section also includes credentials and deletionPolicy fields, which are newly introduced in

the TridentBackendConfig CR:

• credentials: This parameter is a required field and contains the credentials used to authenticate with

the storage system/service. This is set to a user-created Kubernetes Secret. The credentials cannot be

passed in plain text and will result in an error.

• deletionPolicy: This field defines what should happen when the TridentBackendConfig is deleted.

It can take one of two possible values:

◦ delete: This results in the deletion of both TridentBackendConfig CR and the associated

backend. This is the default value.

◦ retain: When a TridentBackendConfig CR is deleted, the backend definition will still be present

and can be managed with tridentctl. Setting the deletion policy to retain lets users downgrade to

an earlier release (pre-21.04) and retain the created backends. The value for this field can be updated

after a TridentBackendConfig is created.

The name of a backend is set using spec.backendName. If unspecified, the name of the

backend is set to the name of the TridentBackendConfig object (metadata.name). It is

recommended to explicitly set backend names using spec.backendName.

103

https://github.com/NetApp/trident/tree/stable/v21.07/trident-installer/sample-input/backends-samples

Backends that were created with tridentctl do not have an associated

TridentBackendConfig object. You can choose to manage such backends with kubectl by

creating a TridentBackendConfig CR. Care must be taken to specify identical config

parameters (such as spec.backendName, spec.storagePrefix,

spec.storageDriverName, and so on). Astra Trident will automatically bind the newly-

created TridentBackendConfig with the pre-existing backend.

Steps overview

To create a new backend by using kubectl, you should do the following:

1. Create a Kubernetes Secret. The secret contains the credentials Astra Trident needs to communicate with

the storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and

references the secret created in the previous step.

After you create a backend, you can observe its status by using kubectl get tbc <tbc-name> -n

<trident-namespace> and gather additional details.

Step 1: Create a Kubernetes Secret

Create a Secret that contains the access credentials for the backend. This is unique to each storage

service/platform. Here’s an example:

kubectl -n trident create -f backend-tbc-ontap-san-secret.yaml

apiVersion: v1

kind: Secret

metadata:

 name: backend-tbc-ontap-san-secret

type: Opaque

stringData:

 username: cluster-admin

 password: t@Ax@7q(>

This table summarizes the fields that must be included in the Secret for each storage platform:

Storage platform Secret Fields

description

Secret Fields description

Azure NetApp Files clientID The client ID from an app

registration

Cloud Volumes Service for GCP private_key_id ID of the private key. Part of API

key for GCP Service Account with

CVS admin role

104

https://kubernetes.io/docs/concepts/configuration/secret/

Storage platform Secret Fields

description

Secret Fields description

Cloud Volumes Service for GCP private_key Private key. Part of API key for

GCP Service Account with CVS

admin role

Element (NetApp HCI/SolidFire) Endpoint MVIP for the SolidFire cluster with

tenant credentials

ONTAP username Username to connect to the

cluster/SVM. Used for credential-

based authentication

ONTAP password Password to connect to the

cluster/SVM. Used for credential-

based authentication

ONTAP clientPrivateKey Base64-encoded value of client

private key. Used for certificate-

based authentication

ONTAP chapUsername Inbound username. Required if

useCHAP=true. For ontap-san

and ontap-san-economy

ONTAP chapInitiatorSecret CHAP initiator secret. Required if

useCHAP=true. For ontap-san

and ontap-san-economy

ONTAP chapTargetUsername Target username. Required if

useCHAP=true. For ontap-san

and ontap-san-economy

ONTAP chapTargetInitiatorSecret CHAP target initiator secret.

Required if useCHAP=true. For

ontap-san and ontap-san-

economy

The Secret created in this step will be referenced in the spec.credentials field of the

TridentBackendConfig object that is created in the next step.

Step 2: Create the TridentBackendConfig CR

You are now ready to create your TridentBackendConfig CR. In this example, a backend that uses the

ontap-san driver is created by using the TridentBackendConfig object shown below:

105

kubectl -n trident create -f backend-tbc-ontap-san.yaml

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc-ontap-san

spec:

 version: 1

 backendName: ontap-san-backend

 storageDriverName: ontap-san

 managementLIF: 10.0.0.1

 dataLIF: 10.0.0.2

 svm: trident_svm

 credentials:

 name: backend-tbc-ontap-san-secret

Step 3: Verify the status of the TridentBackendConfig CR

Now that you created the TridentBackendConfig CR, you can verify the status. See the following example:

kubectl -n trident get tbc backend-tbc-ontap-san

NAME BACKEND NAME BACKEND UUID

PHASE STATUS

backend-tbc-ontap-san ontap-san-backend 8d24fce7-6f60-4d4a-8ef6-

bab2699e6ab8 Bound Success

A backend was successfully created and bound to the TridentBackendConfig CR.

Phase can take one of the following values:

• Bound: The TridentBackendConfig CR is associated with a backend, and that backend contains

configRef set to the TridentBackendConfig CR’s uid.

• Unbound: Represented using "". The TridentBackendConfig object is not bound to a backend. All

newly created TridentBackendConfig CRs are in this phase by default. After the phase changes, it

cannot revert to Unbound again.

• Deleting: The TridentBackendConfig CR’s deletionPolicy was set to delete. When the

TridentBackendConfig CR is deleted, it transitions to the Deleting state.

◦ If no persistent volume claims (PVCs) exist on the backend, deleting the TridentBackendConfig

will result in Astra Trident deleting the backend as well as the TridentBackendConfig CR.

◦ If one or more PVCs are present on the backend, it goes to a deleting state. The

TridentBackendConfig CR subsequently also enters deleting phase. The backend and

TridentBackendConfig are deleted only after all PVCs are deleted.

106

• Lost: The backend associated with the TridentBackendConfig CR was accidentally or deliberately

deleted and the TridentBackendConfig CR still has a reference to the deleted backend. The

TridentBackendConfig CR can still be deleted irrespective of the deletionPolicy value.

• Unknown: Astra Trident is unable to determine the state or existence of the backend associated with the

TridentBackendConfig CR. For example, if the API server is not responding or if the

tridentbackends.trident.netapp.io CRD is missing. This might require intervention.

At this stage, a backend is successfully created! There are several operations that can additionally be handled,

such as backend updates and backend deletions.

(Optional) Step 4: Get more details

You can run the following command to get more information about your backend:

kubectl -n trident get tbc backend-tbc-ontap-san -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY

backend-tbc-ontap-san ontap-san-backend 8d24fce7-6f60-4d4a-8ef6-

bab2699e6ab8 Bound Success ontap-san delete

In addition, you can also obtain a YAML/JSON dump of TridentBackendConfig.

kubectl -n trident get tbc backend-tbc-ontap-san -o yaml

107

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 creationTimestamp: "2021-04-21T20:45:11Z"

 finalizers:

 - trident.netapp.io

 generation: 1

 name: backend-tbc-ontap-san

 namespace: trident

 resourceVersion: "947143"

 uid: 35b9d777-109f-43d5-8077-c74a4559d09c

spec:

 backendName: ontap-san-backend

 credentials:

 name: backend-tbc-ontap-san-secret

 managementLIF: 10.0.0.1

 dataLIF: 10.0.0.2

 storageDriverName: ontap-san

 svm: trident_svm

 version: 1

status:

 backendInfo:

 backendName: ontap-san-backend

 backendUUID: 8d24fce7-6f60-4d4a-8ef6-bab2699e6ab8

 deletionPolicy: delete

 lastOperationStatus: Success

 message: Backend 'ontap-san-backend' created

 phase: Bound

backendInfo contains the backendName and the backendUUID of the backend that got created in

response to the TridentBackendConfig CR. The lastOperationStatus field represents the status of

the last operation of the TridentBackendConfig CR, which can be user-triggered (for example, user

changed something in spec) or triggered by Astra Trident (for example, during Astra Trident restarts). It can

either be Success or Failed. phase represents the status of the relation between the

TridentBackendConfig CR and the backend. In the example above, phase has the value Bound, which

means that the TridentBackendConfig CR is associated with the backend.

You can run the kubectl -n trident describe tbc <tbc-cr-name> command to get details of the

event logs.

You cannot update or delete a backend which contains an associated

TridentBackendConfig object using tridentctl. To understand the steps involved in

switching between tridentctl and TridentBackendConfig, see here.

108

Manage backends

Perform backend management with kubectl

Learn about how to perform backend management operations by using kubectl.

Delete a backend

By deleting a TridentBackendConfig, you instruct Astra Trident to delete/retain backends (based on

deletionPolicy). To delete a backend, ensure that deletionPolicy is set to delete. To delete just the

TridentBackendConfig, ensure that deletionPolicy is set to retain. This will ensure the backend is still

present and can be managed by using tridentctl.

Run the following command:

kubectl delete tbc <tbc-name> -n trident

Astra Trident does not delete the Kubernetes Secrets that were in use by TridentBackendConfig. The

Kubernetes user is responsible for cleaning up secrets. Care must be taken when deleting secrets. You should

delete secrets only if they are not in use by the backends.

View the existing backends

Run the following command:

kubectl get tbc -n trident

You can also run tridentctl get backend -n trident or tridentctl get backend -o yaml -n

trident to obtain a list of all backends that exist. This list will also include backends that were created with

tridentctl.

Update a backend

There can be multiple reasons to update a backend:

• Credentials to the storage system have changed. To update credentials, the Kubernetes Secret that is used

in the TridentBackendConfig object must be updated. Astra Trident will automatically update the

backend with the latest credentials provided. Run the following command to update the Kubernetes Secret:

kubectl apply -f <updated-secret-file.yaml> -n trident

• Parameters (such as the name of the ONTAP SVM being used) need to be updated.

◦ You can update TridentBackendConfig objects directly through Kubernetes using the following

command:

109

kubectl apply -f <updated-backend-file.yaml>

◦ Alternatively, you can make changes to the existing TridentBackendConfig CR using the following

command:

kubectl edit tbc <tbc-name> -n trident

• If a backend update fails, the backend continues to remain in its last known configuration.

You can view the logs to determine the cause by running kubectl get tbc <tbc-name>

-o yaml -n trident or kubectl describe tbc <tbc-name> -n trident.

• After you identify and correct the problem with the configuration file, you can re-run the

update command.

Perform backend management with tridentctl

Learn about how to perform backend management operations by using tridentctl.

Create a backend

After you create a backend configuration file, run the following command:

tridentctl create backend -f <backend-file> -n trident

If backend creation fails, something was wrong with the backend configuration. You can view the logs to

determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the create command

again.

Delete a backend

To delete a backend from Astra Trident, do the following:

1. Retrieve the backend name:

tridentctl get backend -n trident

2. Delete the backend:

110

tridentctl delete backend <backend-name> -n trident

If Astra Trident has provisioned volumes and snapshots from this backend that still exist,

deleting the backend prevents new volumes from being provisioned by it. The backend will

continue to exist in a “Deleting” state and Trident will continue to manage those volumes and

snapshots until they are deleted.

View the existing backends

To view the backends that Trident knows about, do the following:

• To get a summary, run the following command:

tridentctl get backend -n trident

• To get all the details, run the following command:

tridentctl get backend -o json -n trident

Update a backend

After you create a new backend configuration file, run the following command:

tridentctl update backend <backend-name> -f <backend-file> -n trident

If backend update fails, something was wrong with the backend configuration or you attempted an invalid

update. You can view the logs to determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the update command

again.

Identify the storage classes that use a backend

This is an example of the kind of questions you can answer with the JSON that tridentctl outputs for

backend objects. This uses the jq utility, which you need to install.

tridentctl get backend -o json | jq '[.items[] | {backend: .name,

storageClasses: [.storage[].storageClasses]|unique}]'

This also applies for backends that were created by using TridentBackendConfig.

111

Move between backend management options

Learn about the different ways of managing backends in Astra Trident.

Options for managing backends

With the introduction of TridentBackendConfig, administrators now have two unique ways of managing

backends. This poses the following questions:

• Can backends created using tridentctl be managed with TridentBackendConfig?

• Can backends created using TridentBackendConfig be managed using tridentctl?

Manage tridentctl backends using TridentBackendConfig

This section covers the steps required to manage backends that were created using tridentctl directly

through the Kubernetes interface by creating TridentBackendConfig objects.

This will apply to the following scenarios:

• Pre-existing backends, that don’t have a TridentBackendConfig because they were created with

tridentctl.

• New backends that were created with tridentctl, while other TridentBackendConfig objects exist.

In both scenarios, backends will continue to be present, with Astra Trident scheduling volumes and operating

on them. Administrators have one of two choices here:

• Continue using tridentctl to manage backends that were created using it.

• Bind backends created using tridentctl to a new TridentBackendConfig object. Doing so would

mean the backends will be managed using kubectl and not tridentctl.

To manage a pre-existing backend using kubectl, you will need to create a TridentBackendConfig that

binds to the existing backend. Here is an overview of how that works:

1. Create a Kubernetes Secret. The secret contains the credentials Astra Trident needs to communicate with

the storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and

references the secret created in the previous step. Care must be taken to specify identical config

parameters (such as spec.backendName, spec.storagePrefix, spec.storageDriverName, and

so on). spec.backendName must be set to the name of the existing backend.

Step 0: Identify the backend

To create a TridentBackendConfig that binds to an existing backend, you will need to obtain the backend

configuration. In this example, let us assume a backend was created using the following JSON definition:

tridentctl get backend ontap-nas-backend -n trident

+---------------------+----------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

112

| STATE | VOLUMES |

+---------------------+----------------

+--------------------------------------+--------+---------+

| ontap-nas-backend | ontap-nas | 52f2eb10-e4c6-4160-99fc-

96b3be5ab5d7 | online | 25 |

+---------------------+----------------

+--------------------------------------+--------+---------+

cat ontap-nas-backend.json

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "managementLIF": "10.10.10.1",

 "dataLIF": "10.10.10.2",

 "backendName": "ontap-nas-backend",

 "svm": "trident_svm",

 "username": "cluster-admin",

 "password": "admin-password",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "false"

 },

 "labels":{"store":"nas_store"},

 "region": "us_east_1",

 "storage": [

 {

 "labels":{"app":"msoffice", "cost":"100"},

 "zone":"us_east_1a",

 "defaults": {

 "spaceReserve": "volume",

 "encryption": "true",

 "unixPermissions": "0755"

 }

 },

 {

 "labels":{"app":"mysqldb", "cost":"25"},

 "zone":"us_east_1d",

 "defaults": {

 "spaceReserve": "volume",

 "encryption": "false",

 "unixPermissions": "0775"

 }

 }

]

113

}

Step 1: Create a Kubernetes Secret

Create a Secret that contains the credentials for the backend, as shown in this example:

cat tbc-ontap-nas-backend-secret.yaml

apiVersion: v1

kind: Secret

metadata:

 name: ontap-nas-backend-secret

type: Opaque

stringData:

 username: cluster-admin

 password: admin-password

kubectl create -f tbc-ontap-nas-backend-secret.yaml -n trident

secret/backend-tbc-ontap-san-secret created

Step 2: Create a TridentBackendConfig CR

The next step is to create a TridentBackendConfig CR that will automatically bind to the pre-existing

ontap-nas-backend (as in this example). Ensure the following requirements are met:

• The same backend name is defined in spec.backendName.

• Configuration parameters are identical to the original backend.

• Virtual pools (if present) must retain the same order as in the original backend.

• Credentials are provided through a Kubernetes Secret and not in plain text.

In this case, the TridentBackendConfig will look like this:

114

cat backend-tbc-ontap-nas.yaml

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: tbc-ontap-nas-backend

spec:

 version: 1

 storageDriverName: ontap-nas

 managementLIF: 10.10.10.1

 dataLIF: 10.10.10.2

 backendName: ontap-nas-backend

 svm: trident_svm

 credentials:

 name: mysecret

 defaults:

 spaceReserve: none

 encryption: 'false'

 labels:

 store: nas_store

 region: us_east_1

 storage:

 - labels:

 app: msoffice

 cost: '100'

 zone: us_east_1a

 defaults:

 spaceReserve: volume

 encryption: 'true'

 unixPermissions: '0755'

 - labels:

 app: mysqldb

 cost: '25'

 zone: us_east_1d

 defaults:

 spaceReserve: volume

 encryption: 'false'

 unixPermissions: '0775'

kubectl create -f backend-tbc-ontap-nas.yaml -n trident

tridentbackendconfig.trident.netapp.io/tbc-ontap-nas-backend created

Step 3: Verify the status of the TridentBackendConfig CR

After the TridentBackendConfig has been created, its phase must be Bound. It should also reflect the

same backend name and UUID as that of the existing backend.

115

kubectl get tbc tbc-ontap-nas-backend -n trident

NAME BACKEND NAME BACKEND UUID

PHASE STATUS

tbc-ontap-nas-backend ontap-nas-backend 52f2eb10-e4c6-4160-99fc-

96b3be5ab5d7 Bound Success

#confirm that no new backends were created (i.e., TridentBackendConfig did

not end up creating a new backend)

tridentctl get backend -n trident

+---------------------+----------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+---------------------+----------------

+--------------------------------------+--------+---------+

| ontap-nas-backend | ontap-nas | 52f2eb10-e4c6-4160-99fc-

96b3be5ab5d7 | online | 25 |

+---------------------+----------------

+--------------------------------------+--------+---------+

The backend will now be completely managed using the tbc-ontap-nas-backend

TridentBackendConfig object.

Manage TridentBackendConfig backends using tridentctl

tridentctl can be used to list backends that were created using TridentBackendConfig. In addition,

administrators can also choose to completely manage such backends through tridentctl by deleting

TridentBackendConfig and making sure spec.deletionPolicy is set to retain.

Step 0: Identify the backend

For example, let us assume the following backend was created using TridentBackendConfig:

116

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY

backend-tbc-ontap-san ontap-san-backend 81abcb27-ea63-49bb-b606-

0a5315ac5f82 Bound Success ontap-san delete

tridentctl get backend ontap-san-backend -n trident

+-------------------+----------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+-------------------+----------------

+--------------------------------------+--------+---------+

| ontap-san-backend | ontap-san | 81abcb27-ea63-49bb-b606-

0a5315ac5f82 | online | 33 |

+-------------------+----------------

+--------------------------------------+--------+---------+

From the output, it is seen that TridentBackendConfig was created successfully and is bound to a

backend [observe the backend’s UUID].

Step 1: Confirm deletionPolicy is set to retain

Let us take a look at the value of deletionPolicy. This needs to be set to retain. This will ensure that

when a TridentBackendConfig CR is deleted, the backend definition will still be present and can be

managed with tridentctl.

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY

backend-tbc-ontap-san ontap-san-backend 81abcb27-ea63-49bb-b606-

0a5315ac5f82 Bound Success ontap-san delete

Patch value of deletionPolicy to retain

kubectl patch tbc backend-tbc-ontap-san --type=merge -p

'{"spec":{"deletionPolicy":"retain"}}' -n trident

tridentbackendconfig.trident.netapp.io/backend-tbc-ontap-san patched

#Confirm the value of deletionPolicy

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY

backend-tbc-ontap-san ontap-san-backend 81abcb27-ea63-49bb-b606-

0a5315ac5f82 Bound Success ontap-san retain

117

Do not proceed to the next step unless deletionPolicy is set to retain.

Step 2: Delete the TridentBackendConfig CR

The final step is to delete the TridentBackendConfig CR. After confirming the deletionPolicy is set to

retain, you can go ahead with the deletion:

kubectl delete tbc backend-tbc-ontap-san -n trident

tridentbackendconfig.trident.netapp.io "backend-tbc-ontap-san" deleted

tridentctl get backend ontap-san-backend -n trident

+-------------------+----------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+-------------------+----------------

+--------------------------------------+--------+---------+

| ontap-san-backend | ontap-san | 81abcb27-ea63-49bb-b606-

0a5315ac5f82 | online | 33 |

+-------------------+----------------

+--------------------------------------+--------+---------+

Upon the deletion of the TridentBackendConfig object, Astra Trident simply removes it without actually

deleting the backend itself.

118

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

119

http://www.netapp.com/TM

	Configure and manage backends : Astra Trident
	Table of Contents
	Configure and manage backends
	Configure backends
	Azure NetApp Files
	Configure a Cloud Volumes Service for Google Cloud backend
	Configure a NetApp HCI or SolidFire backend
	ONTAP SAN drivers
	ONTAP NAS drivers
	Amazon FSx for NetApp ONTAP
	Create backends with kubectl
	Manage backends

