Manage backends
Astra Trident

NetApp
January 14, 2026

This PDF was generated from https://docs.netapp.com/us-en/trident-2310/trident-
use/backend_ops_kubectl.html on January 14, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Manage backends
Perform backend management with kubectl
Delete a backend
View the existing backends
Update a backend
Perform backend management with tridentctl
Create a backend
Delete a backend
View the existing backends
Update a backend
Identify the storage classes that use a backend
Move between backend management options
Options for managing backends
Manage tridentctl backends using TridentBackendConfig

Manage TridentBackendConfig backends using tridentctl

o A DA DB OOWWNDNDN-_22 2 A A A

Manage backends

Perform backend management with kubectl

Learn about how to perform backend management operations by using kubect1.

Delete a backend

By deleting a TridentBackendConfig, you instruct Astra Trident to delete/retain backends (based on
deletionPolicy). To delete a backend, ensure that deletionPolicy is set to delete. To delete just the
TridentBackendConfig, ensure that deletionPolicy is set to retain. This will ensure the backend is still
present and can be managed by using tridentctl.

Run the following command:

kubectl delete tbc <tbc-name> -n trident

Astra Trident does not delete the Kubernetes Secrets that were in use by TridentBackendConfig. The
Kubernetes user is responsible for cleaning up secrets. Care must be taken when deleting secrets. You should
delete secrets only if they are not in use by the backends.

View the existing backends

Run the following command:

kubectl get tbc -n trident

You can also run tridentctl get backend -n trident or tridentctl get backend -o yaml -n
trident to obtain a list of all backends that exist. This list will also include backends that were created with
tridentctl.

Update a backend

There can be multiple reasons to update a backend:

 Credentials to the storage system have changed. To update credentials, the Kubernetes Secret that is used
in the TridentBackendConfig object must be updated. Astra Trident will automatically update the
backend with the latest credentials provided. Run the following command to update the Kubernetes Secret:

kubectl apply -f <updated-secret-file.yaml> -n trident

« Parameters (such as the name of the ONTAP SVM being used) need to be updated.

° You can update TridentBackendConfig objects directly through Kubernetes using the following
command:

kubectl apply -f <updated-backend-file.yaml>

° Alternatively, you can make changes to the existing TridentBackendConfig CR using the following
command:

kubectl edit tbc <tbc-name> -n trident

* If a backend update fails, the backend continues to remain in its last known configuration.
You can view the logs to determine the cause by running kubectl get tbc <tbc-name>
(:) -0 yaml -n trident or kubectl describe tbc <tbc-name> -n trident

« After you identify and correct the problem with the configuration file, you can re-run the
update command.

Perform backend management with tridentctl
Learn about how to perform backend management operations by using tridentctl.

Create a backend

After you create a backend configuration file, run the following command:
tridentctl create backend -f <backend-file> -n trident

If backend creation fails, something was wrong with the backend configuration. You can view the logs to
determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the create command
again.

Delete a backend

To delete a backend from Astra Trident, do the following:

1. Retrieve the backend name:
tridentctl get backend -n trident

2. Delete the backend:

https://docs.netapp.com/us-en/trident-2310/trident-use/backends.html

tridentctl delete backend <backend-name> -n trident

If Astra Trident has provisioned volumes and snapshots from this backend that still exist,

@ deleting the backend prevents new volumes from being provisioned by it. The backend will
continue to exist in a “Deleting” state and Trident will continue to manage those volumes and
snapshots until they are deleted.

View the existing backends

To view the backends that Trident knows about, do the following:

* To get a summary, run the following command:
tridentctl get backend -n trident
* To get all the details, run the following command:
tridentctl get backend -o json -n trident
Update a backend
After you create a new backend configuration file, run the following command:
tridentctl update backend <backend-name> -f <backend-file> -n trident

If backend update fails, something was wrong with the backend configuration or you attempted an invalid
update. You can view the logs to determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the update command
again.

Identify the storage classes that use a backend
This is an example of the kind of questions you can answer with the JSON that tridentct1 outputs for

backend objects. This uses the jq utility, which you need to install.

tridentctl get backend -o json | jg '[.items[] | {backend: .name,
storageClasses: [.storage[].storageClasses] |unique}]’

This also applies for backends that were created by using TridentBackendConfig.

Move between backend management options

Learn about the different ways of managing backends in Astra Trident.

Options for managing backends

With the introduction of TridentBackendConfig, administrators now have two unique ways of managing
backends. This poses the following questions:

* Can backends created using tridentctl be managed with TridentBackendConfig?

* Can backends created using TridentBackendConfig be managed using tridentctl?

Manage tridentctl backends using TridentBackendConfig

This section covers the steps required to manage backends that were created using tridentctl directly
through the Kubernetes interface by creating TridentBackendConfig objects.

This will apply to the following scenarios:

* Pre-existing backends, that don’t have a TridentBackendConfig because they were created with
tridentctl.

* New backends that were created with tridentctl, while other TridentBackendConfig objects exist.

In both scenarios, backends will continue to be present, with Astra Trident scheduling volumes and operating
on them. Administrators have one of two choices here:

* Continue using tridentctl to manage backends that were created using it.

* Bind backends created using tridentctl to a new TridentBackendConfig object. Doing so would
mean the backends will be managed using kubectl and not tridentctl.

To manage a pre-existing backend using kubect1, you will need to create a TridentBackendConfig that
binds to the existing backend. Here is an overview of how that works:

1. Create a Kubernetes Secret. The secret contains the credentials Astra Trident needs to communicate with
the storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and
references the secret created in the previous step. Care must be taken to specify identical config
parameters (such as spec.backendName, spec.storagePrefix, spec.storageDriverName, and
so on). spec.backendName must be set to the name of the existing backend.

Step 0: Identify the backend
To create a TridentBackendConfig that binds to an existing backend, you will need to obtain the backend

configuration. In this example, let us assume a backend was created using the following JSON definition:

tridentctl get backend ontap-nas-backend -n trident
fom fom

NAME | STORAGE DRIVER |

| STATE | VOLUMES |

| ontap-nas-backend | ontap-nas | 52f2ebl0
96b3be5ab5d7 | online | 25 |

ontap-nas-backend.json

"version": 1,

"storageDriverName": "ontap-nas",
"managementLIF": "10.10.10.1",
"dataLIF": "10.10.10.2",
"backendName": "ontap-nas-backend",
"svm": "trident svm",

"username": "cluster-admin",

"password": "admin-password",

"defaults": {
"spaceReserve": "none",
"encryption": "false"
by
"labels":{"store":"nas store"},
"region": "us east 1",
"storage": [
{
"labels": {"app":"msoffice", "cost":"1l
"zone":"us east la",
"defaults": {
"spaceReserve": "volume",
"encryption": "true",

"unixPermissions": "0755"

"labels": {"app":"mysqgldb", "cost":"25
"zone":"us east 1d",
"defaults": {
"spaceReserve": "volume",
"encryption": "false",

"unixPermissions": "0775"

00"},

"},

Step 1: Create a Kubernetes Secret

Create a Secret that contains the credentials for the backend, as shown in this example:

cat tbc-ontap-nas-backend-secret.yaml

apiVersion: vl
kind: Secret
metadata:
name: ontap-nas-backend-secret
type: Opaque
stringData:
username: cluster-admin

password: admin-password

kubectl create -f tbc-ontap-nas-backend-secret.yaml -n trident
secret/backend-tbc-ontap-san-secret created

Step 2: Create a TridentBackendConfig CR

The next step is to create a TridentBackendConfig CR that will automatically bind to the pre-existing
ontap-nas-backend (as in this example). Ensure the following requirements are met:

* The same backend name is defined in spec.backendName.

» Configuration parameters are identical to the original backend.

* Virtual pools (if present) must retain the same order as in the original backend.

* Credentials are provided through a Kubernetes Secret and not in plain text.

In this case, the TridentBackendConfig will look like this:

cat backend-tbc-ontap-nas.yaml
apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: tbc-ontap-nas-backend
spec:
version: 1
storageDriverName: ontap-nas
managementLIF: 10.10.10.1
datalLIF: 10.10.10.2
backendName: ontap-nas-backend
svm: trident svm
credentials:
name: mysecret
defaults:
spaceReserve: none
encryption: 'false'
labels:
store: nas_ store
region: us east 1
storage:
- labels:
app: msoffice
cost: '100"
zone: us_east la
defaults:
spaceReserve: volume
encryption: 'true'
unixPermissions: '0755'
- labels:
app: mysqgldb
cost: '25"
zone: us_east 1d
defaults:
spaceReserve: volume
encryption: 'false'

unixPermissions: '0775"

kubectl create -f backend-tbc-ontap-nas.yaml -n trident
tridentbackendconfig.trident.netapp.io/tbc-ontap-nas-backend created

Step 3: Verify the status of the TridentBackendConfig CR

After the TridentBackendConfig has been created, its phase must be Bound. It should also reflect the
same backend name and UUID as that of the existing backend.

kubectl get tbc tbc-ontap-nas-backend -n trident

NAME BACKEND NAME BACKEND UUID
PHASE STATUS
tbc-ontap-nas-backend ontap-nas-backend 52f2ebl10-e4c6-4160-99fc-

96b3beb5ab5d7 Bound Success

#confirm that no new backends were created (i.e., TridentBackendConfig did
not end up creating a new backend)
tridentctl get backend -n trident

fmm e fom e

Rt ettt F—————— o — +

| NAME | STORAGE DRIVER | UuID

| STATE | VOLUMES |

et e T o

e - e b +

| ontap-nas-backend | ontap-nas | 52f2ebl0-ed4c6-4160-99fc—-
96b3bebab5d7 | online | 25 |

e o
e - +————— +

The backend will now be completely managed using the tbc-ontap-nas-backend
TridentBackendConfig object.

Manage TridentBackendConfig backends using tridentctl
tridentctl can be used to list backends that were created using TridentBackendConfig. In addition,

administrators can also choose to completely manage such backends through tridentctl by deleting
TridentBackendConfig and making sure spec.deletionPolicy is setto retain

Step 0: Identify the backend

For example, let us assume the following backend was created using TridentBackendConfig:

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8labcb27-ea63-49bb-b606-
0a5315ach5£f82 Bound Success ontap-san delete

tridentctl get backend ontap-san-backend -n trident

P memssesem== P m===
R Fommomome Fomomomom= +

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

Fommmmmmmmemeoeoeoos Fommmmmmomeomomm=
et Fom—————— fom——————— +

| ontap-san-backend | ontap-san | 8labcb27-ea63-49%bb-b606-
0a5315ac5f82 | online | 33 |

Fommmmcmemcmsosmsmss Fommmmmmsmemsmse=
B e o= Pommmmmm== +

From the output, it is seen that TridentBackendConfig was created successfully and is bound to a
backend [observe the backend’s UUID].

Step 1: Confirm deletionPolicy is setto retain

Let us take a look at the value of deletionPolicy. This needs to be set to retain. This will ensure that
when a TridentBackendConfig CR is deleted, the backend definition will still be present and can be
managed with tridentctl.

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8labcb27-ea63-49bb-b606-
0a5315ac5£82 Bound Success ontap-san delete

Patch value of deletionPolicy to retain
kubectl patch tbc backend-tbc-ontap-san --type=merge -p
"{"spec":{"deletionPolicy":"retain"}}' -n trident

tridentbackendconfig.trident.netapp.io/backend-tbc-ontap-san patched

#Confirm the value of deletionPolicy

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8labcb27-ea63-49bb-b606-
0ab5315ac5f82 Bound Success ontap-san retain

@ Do not proceed to the next step unless deletionPolicy is setto retain.

Step 2: Delete the TridentBackendConfig CR

The final step is to delete the TridentBackendConfig CR. After confirming the deletionPolicy is set to
retain, you can go ahead with the deletion:

kubectl delete tbc backend-tbc-ontap-san -n trident
tridentbackendconfig.trident.netapp.io "backend-tbc-ontap-san" deleted

tridentctl get backend ontap-san-backend -n trident

fomm e fom -
Rt bt PP o Fo———— +

| NAME | STORAGE DRIVER | UuID

| STATE | VOLUMES |

o o

e it ettt PP +—————— o +

| ontap-san-backend | ontap-san | 8labcb27-ea63-49bb-b606-
0a5315ac5f82 | online | 33 |

o o

Rt et ettt et - +—————— +

Upon the deletion of the TridentBackendConfig object, Astra Trident simply removes it without actually
deleting the backend itself.

10

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

11

http://www.netapp.com/TM

	Manage backends : Astra Trident
	Table of Contents
	Manage backends
	Perform backend management with kubectl
	Delete a backend
	View the existing backends
	Update a backend

	Perform backend management with tridentctl
	Create a backend
	Delete a backend
	View the existing backends
	Update a backend
	Identify the storage classes that use a backend

	Move between backend management options
	Options for managing backends
	Manage tridentctl backends using TridentBackendConfig
	Manage TridentBackendConfig backends using tridentctl

