■ NetApp # **ONTAP NAS drivers** **Astra Trident** NetApp April 03, 2024 This PDF was generated from https://docs.netapp.com/us-en/trident-2310/trident-use/ontap-nas.html on April 03, 2024. Always check docs.netapp.com for the latest. # **Table of Contents** | O | NTAP NAS drivers | 1 | |---|---|----| | | ONTAP NAS driver overview | 1 | | | Prepare to configure a backend with ONTAP NAS drivers | 2 | | | ONTAP NAS configuration options and examples | 10 | # **ONTAP NAS drivers** # **ONTAP NAS driver overview** Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP NAS drivers. #### **ONTAP NAS driver details** Astra Trident provides the following NAS storage drivers to communicate with the ONTAP cluster. Supported access modes are: *ReadWriteOnce* (RWO), *ReadOnlyMany* (ROX), *ReadWriteMany* (RWX), *ReadWriteOncePod* (RWOP). If you are using Astra Control for protection, recovery, and mobility, read Astra Control driver compatibility. | Driver | Protocol | volumeMod
e | Access modes supported | File systems supported | |---------------------|------------|----------------|------------------------|------------------------| | ontap-nas | NFS
SMB | Filesystem | RWO, ROX, RWX, RWOP | "", nfs, smb | | ontap-nas-economy | NFS
SMB | Filesystem | RWO, ROX, RWX, RWOP | "", nfs, smb | | ontap-nas-flexgroup | NFS
SMB | Filesystem | RWO, ROX, RWX, RWOP | ", nfs, smb | #### **Astra Control driver compatibility** Astra Control provides seamless protection, disaster recovery, and mobility (moving volumes between Kubernetes clusters) for volumes created with the ontap-nas, ontap-nas-flexgroup, and ontap-san drivers. See Astra Control replication prerequisites for details. - Use ontap-nas-economy only if persistent volume usage count is expected to be higher than supported ONTAP volume limits and the ontap-san-economy driver cannot be used. - Do not use use ontap-nas-economy if you anticipate the need for data protection, disaster recovery, or mobility. # **User permissions** Astra Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster user or a vsadmin SVM user, or a user with a different name that has the same role. For Amazon FSx for NetApp ONTAP deployments, Astra Trident expects to be run as either an ONTAP or SVM administrator, using the cluster fsxadmin user or a vsadmin SVM user, or a user with a different name that has the same role. The fsxadmin user is a limited replacement for the cluster admin user. If you use the limitAggregateUsage parameter, cluster admin permissions are required. When using Amazon FSx for NetApp ONTAP with Astra Trident, the limitAggregateUsage parameter will not work with the vsadmin and fsxadmin user accounts. The configuration operation will fail if you specify this parameter. While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don't recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for, making upgrades difficult and error-prone. # Prepare to configure a backend with ONTAP NAS drivers Understand the requirements, authentication options, and export policies for configuring an ONTAP backend with ONTAP NAS drivers. ### Requirements - For all ONTAP backends, Astra Trident requires at least one aggregate assigned to the SVM. - You can run more than one driver, and create storage classes that point to one or the other. For example, you could configure a Gold class that uses the ontap-nas driver and a Bronze class that uses the ontap-nas-economy one. - All your Kubernetes worker nodes must have the appropriate NFS tools installed. See here for more details. - Astra Trident supports SMB volumes mounted to pods running on Windows nodes only. Refer to Prepare to provision SMB volumes for details. #### Authenticate the ONTAP backend Astra Trident offers two modes of authenticating an ONTAP backend. - Credential-based: This mode requires sufficient permissions to the ONTAP backend. It is recommended to use an account associated with a pre-defined security login role, such as admin or vsadmin to ensure maximum compatibility with ONTAP versions. - Certificate-based: This mode requires a certificate installed on the backend for Astra Trident to communicate with an ONTAP cluster. Here, the backend definition must contain Base64-encoded values of the client certificate, key, and the trusted CA certificate if used (recommended). You can update existing backends to move between credential-based and certificate-based methods. However, only one authentication method is supported at a time. To switch to a different authentication method, you must remove the existing method from the backend configuration. If you attempt to provide **both credentials and certificates**, backend creation will fail with an error that more than one authentication method was provided in the configuration file. #### **Enable credential-based authentication** Astra Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the ONTAP backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin. This ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by future Astra Trident releases. A custom security login role can be created and used with Astra Trident, but is not recommended. A sample backend definition will look like this: ``` YAML ``` ``` version: 1 backendName: ExampleBackend storageDriverName: ontap-nas managementLIF: 10.0.0.1 dataLIF: 10.0.0.2 svm: svm_nfs username: vsadmin password: password ``` #### **JSON** ``` "version": 1, "backendName": "ExampleBackend", "storageDriverName": "ontap-nas", "managementLIF": "10.0.0.1", "dataLIF": "10.0.0.2", "svm": "svm_nfs", "username": "vsadmin", "password": "password" } ``` Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The creation/updation of a backend is the only step that requires knowledge of the credentials. As such, it is an admin-only operation, to be performed by the Kubernetes/storage administrator. #### **Enable certificate-based Authentication** New and existing backends can use a certificate and communicate with the ONTAP backend. Three parameters are required in the backend definition. - clientCertificate: Base64-encoded value of client certificate. - clientPrivateKey: Base64-encoded value of associated private key. - trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter must be provided. This can be ignored if no trusted CA is used. A typical workflow involves the following steps. #### Steps 1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to authenticate as. ``` openssl req -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key -out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=vsadmin" ``` 2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage administrator. Ignore if no trusted CA is used. ``` security certificate install -type server -cert-name <trusted-ca-cert- name> -vserver <vserver-name> ssl modify -vserver <vserver-name> -server-enabled true -client-enabled true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca <cert-authority> ``` 3. Install the client certificate and key (from step 1) on the ONTAP cluster. ``` security certificate install -type client-ca -cert-name <certificate- name> -vserver <vserver-name> security ssl modify -vserver <vserver-name> -client-enabled true ``` Confirm the ONTAP security login role supports cert authentication method. ``` security login create -user-or-group-name vsadmin -application ontapi -authentication-method cert -vserver <vserver-name> security login create -user-or-group-name vsadmin -application http -authentication-method cert -vserver <vserver-name> ``` 5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name> with Management LIF IP and SVM name. You must ensure the LIF has its service policy set to default-data-management. ``` curl -X POST -Lk https://<ONTAP-Management- LIF>/servlets/netapp.servlets.admin.XMLrequest_filer --key k8senv.key --cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp xmlns="http://www.netapp.com/filer/admin" version="1.21" vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>' ``` 6. Encode certificate, key and trusted CA certificate with Base64. ``` base64 -w 0 k8senv.pem >> cert_base64 base64 -w 0 k8senv.key >> key_base64 base64 -w 0 trustedca.pem >> trustedca_base64 ``` 7. Create backend using the values obtained from the previous step. ``` cat cert-backend-updated.json { "version": 1, "storageDriverName": "ontap-nas", "backendName": "NasBackend", "managementLIF": "1.2.3.4", "dataLIF": "1.2.3.8", "svm": "vserver test", "clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee", "clientPrivateKey": "LSOtFaKE...OVaLuESOtLSOK", "storagePrefix": "myPrefix " #Update backend with tridentctl tridentctl update backend NasBackend -f cert-backend-updated.json -n trident +---- +----+ NAME | STORAGE DRIVER | UUID STATE | VOLUMES | +---- +----+ | NasBackend | ontap-nas | 98e19b74-aec7-4a3d-8dcf-128e5033b214 | online | 9 | +---- ``` #### Update authentication methods or rotate credentials You can update an existing backend to use a different authentication method or to rotate their credentials. This works both ways: backends that make use of username/password can be updated to use certificates; backends that utilize certificates can be updated to username/password based. To do this, you must remove the existing authentication method and add the new authentication method. Then use the updated backend.json file containing the required parameters to execute tridentctl update backend. ``` cat cert-backend-updated.json { "version": 1, "storageDriverName": "ontap-nas", "backendName": "NasBackend", "managementLIF": "1.2.3.4", "dataLIF": "1.2.3.8", "svm": "vserver test", "username": "vsadmin", "password": "password", "storagePrefix": "myPrefix " #Update backend with tridentctl tridentctl update backend NasBackend -f cert-backend-updated.json -n trident +---- +----+ NAME | STORAGE DRIVER | UUID STATE | VOLUMES | +---- +----+ | NasBackend | ontap-nas | 98e19b74-aec7-4a3d-8dcf-128e5033b214 | 9 1 online | +---- +----+ ``` When rotating passwords, the storage administrator must first update the password for the user on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates can be added to the user. The backend is then updated to use the new certificate, following which the old certificate can be deleted from the ONTAP cluster. Updating a backend does not disrupt access to volumes that have already been created, nor impact volume connections made after. A successful backend update indicates that Astra Trident can communicate with the ONTAP backend and handle future volume operations. # Manage NFS export policies Astra Trident uses NFS export policies to control access to the volumes that it provisions. Astra Trident provides two options when working with export policies: - Astra Trident can dynamically manage the export policy itself; in this mode of operation, the storage administrator specifies a list of CIDR blocks that represent admissible IP addresses. Astra Trident adds node IPs that fall in these ranges to the export policy automatically. Alternatively, when no CIDRs are specified, any global-scoped unicast IP found on the nodes will be added to the export policy. - · Storage administrators can create an export policy and add rules manually. Astra Trident uses the default export policy unless a different export policy name is specified in the configuration. #### Dynamically manage export policies Astra Trident provides the ability to dynamically manage export policies for ONTAP backends. This provides the storage administrator the ability to specify a permissible address space for worker node IPs, rather than defining explicit rules manually. It greatly simplifies export policy management; modifications to the export policy no longer require manual intervention on the storage cluster. Moreover, this helps restrict access to the storage cluster only to worker nodes that have IPs in the range specified, supporting a fine-grained and automated management. Do not use Network Address Translation (NAT) when using dynamic export policies. With NAT, the storage controller sees the frontend NAT address and not the actual IP host address, so access will be denied when no match is found in the export rules. #### Example There are two configuration options that must be used. Here's an example backend definition: version: 1 storageDriverName: ontap-nas backendName: ontap_nas_auto_export managementLIF: 192.168.0.135 svm: svm1 username: vsadmin password: password autoExportCIDRs: - 192.168.0.0/24 autoExportPolicy: true When using this feature, you must ensure that the root junction in your SVM has a previously created export policy with an export rule that permits the node CIDR block (such as the default export policy). Always follow NetApp recommended best practice to dedicate an SVM for Astra Trident. Here is an explanation of how this feature works using the example above: - autoExportPolicy is set to true. This indicates that Astra Trident will create an export policy for the svm1 SVM and handle the addition and deletion of rules using autoExportCIDRs address blocks. For example, a backend with UUID 403b5326-8482-40db-96d0-d83fb3f4daec and autoExportPolicy set to true creates an export policy named trident-403b5326-8482-40db-96d0-d83fb3f4daec on the SVM. - autoExportCIDRs contains a list of address blocks. This field is optional and it defaults to ["0.0.0.0/0", "::/0"]. If not defined, Astra Trident adds all globally-scoped unicast addresses found on the worker nodes. In this example, the 192.168.0.0/24 address space is provided. This indicates that Kubernetes node IPs that fall within this address range will be added to the export policy that Astra Trident creates. When Astra Trident registers a node it runs on, it retrieves the IP addresses of the node and checks them against the address blocks provided in autoExportCIDRs. After filtering the IPs, Astra Trident creates export policy rules for the client IPs it discovers, with one rule for each node it identifies. You can update autoExportPolicy and autoExportCIDRs for backends after you create them. You can append new CIDRs for a backend that is automatically managed or delete existing CIDRs. Exercise care when deleting CIDRs to ensure that existing connections are not dropped. You can also choose to disable autoExportPolicy for a backend and fall back to a manually created export policy. This will require setting the exportPolicy parameter in your backend config. After Astra Trident creates or updates a backend, you can check the backend using tridentctl or the corresponding tridentbackend CRD: ``` ./tridentctl get backends ontap nas auto export -n trident -o yaml items: - backendUUID: 403b5326-8482-40db-96d0-d83fb3f4daec config: aggregate: "" autoExportCIDRs: - 192.168.0.0/24 autoExportPolicy: true backendName: ontap nas_auto_export chapInitiatorSecret: "" chapTargetInitiatorSecret: "" chapTargetUsername: "" chapUsername: "" dataLIF: 192.168.0.135 debug: false debugTraceFlags: null defaults: encryption: "false" exportPolicy: <automatic> fileSystemType: ext4 ``` As nodes are added to a Kubernetes cluster and registered with the Astra Trident controller, export policies of existing backends are updated (provided they fall in the address range specified in autoExportCIDRs for the backend). When a node is removed, Astra Trident checks all backends that are online to remove the access rule for the node. By removing this node IP from the export policies of managed backends, Astra Trident prevents rogue mounts, unless this IP is reused by a new node in the cluster. For previously existing backends, updating the backend with tridentctl update backend will ensure that Astra Trident manages the export policies automatically. This will create a new export policy named after the backend's UUID and volumes that are present on the backend will use the newly created export policy when they are mounted again. Deleting a backend with auto-managed export policies will delete the dynamically created export policy. If the backend is re-created, it is treated as a new backend and will result in the creation of a new export policy. If the IP address of a live node is updated, you must restart the Astra Trident pod on the node. Astra Trident will then update the export policy for backends it manages to reflect this IP change. ### Prepare to provision SMB volumes With a little additional preparation, you can provision SMB volumes using ontap-nas drivers. You must configure both NFS and SMB/CIFS protocols on the SVM to create an ontap-naseconomy SMB volume for ONTAP on-premises. Failure to configure either of these protocols will cause SMB volume creation to fail. #### Before you begin Before you can provision SMB volumes, you must have the following. - A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows Server 2019. Astra Trident supports SMB volumes mounted to pods running on Windows nodes only. - At least one Astra Trident secret containing your Active Directory credentials. To generate secret smbcreds: ``` kubectl create secret generic smbcreds --from-literal username=user --from-literal password='password' ``` A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows. #### **Steps** For on-premises ONTAP, you can optionally create an SMB share or Astra Trident can create one for you. SMB shares are required for Amazon FSx for ONTAP. You can create the SMB admin shares in one of two ways either using the Microsoft Management Console Shared Folders snap-in or using the ONTAP CLI. To create the SMB shares using the ONTAP CLI: a. If necessary, create the directory path structure for the share. The vserver cifs share create command checks the path specified in the -path option during share creation. If the specified path does not exist, the command fails. b. Create an SMB share associated with the specified SVM: ``` vserver cifs share create -vserver vserver_name -share-name share_name -path path [-share-properties share_properties,...] [other_attributes] [-comment text] ``` c. Verify that the share was created: vserver cifs share show -share-name share_name Refer to Create an SMB share for full details. 2. When creating the backend, you must configure the following to specify SMB volumes. For all FSx for ONTAP backend configuration options, refer to FSx for ONTAP configuration options and examples. | Parameter | Description | Example | |-----------------|--|-------------------------------| | smbShare | You can specify one of the following: the name of an SMB share created using the Microsoft Management Console or ONTAP CLI; a name to allow Astra Trident to create the SMB share; or you can leave the parameter blank to prevent common share access to volumes. This parameter is optional for on-premises ONTAP. This parameter is required for Amazon FSx for ONTAP backends and cannot be blank. | smb-share | | nasType | Must set to smb. If null, defaults to nfs. | smb | | securityStyle | Security style for new volumes. Must be set to ntfs or mixed for SMB volumes. | ntfs or mixed for SMB volumes | | unixPermissions | Mode for new volumes. Must be left empty for SMB volumes. | "" | # **ONTAP NAS configuration options and examples** Learn to create and use ONTAP NAS drivers with your Astra Trident installation. This section provides backend configuration examples and details for mapping backends to StorageClasses. # **Backend configuration options** See the following table for the backend configuration options: | Parameter | Description | Default | |-----------------------|------------------------------------|---| | version | | Always 1 | | storageDrive
rName | Name of the storage driver | "ontap-nas", "ontap-nas-economy",
"ontap-nas-flexgroup", "ontap-san",
"ontap-san-economy" | | backendName | Custom name or the storage backend | Driver name + "_" + dataLIF | | Parameter | Description | Default | | | |----------------------|--|---|--|--| | managementLI
F | IP address of a cluster or SVM management LIF A fully-qualified domain name (FQDN) can be specified. Can be set to use IPv6 addresses if Astra Trident was installed using the IPv6 flag. IPv6 addresses must be defined in square brackets, such as [28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555]. For seamless MetroCluster switchover, see the MetroCluster example. | "10.0.0.1", "[2001:1234:abcd::fefe]" | | | | dataLIF | IP address of protocol LIF. We recommend specifying datalif. If not provided, Astra Trident fetches data LIFs from the SVM. You can specify a fully-qualified domain name (FQDN) to be used for the NFS mount operations, allowing you to create a round-robin DNS to load-balance across multiple data LIFs. Can be changed after initial setting. Refer to Update datalif after initial configuration. Can be set to use IPv6 addresses if Astra Trident was installed using the IPv6 flag. IPv6 addresses must be defined in square brackets, such as [28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555]. Omit for Metrocluster. See the MetroCluster example. | Specified address or derived from SVM, if not specified (not recommended) | | | | svm | Storage virtual machine to use Omit for Metrocluster. See the MetroCluster example. | Derived if an SVM managementLIF is specified | | | | autoExportPo
licy | Enable automatic export policy creation and updating [Boolean]. Using the autoExportPolicy and autoExportCIDRs options, Astra Trident can manage export policies automatically. | false | | | | autoExportCI
DRs | List of CIDRs to filter Kubernetes' node IPs against when autoExportPolicy is enabled. Using the autoExportPolicy and autoExportCIDRs options, Astra Trident can manage export policies automatically. | ["0.0.0.0/0", "::/0"]` | | | | Parameter | Description | Default | |--------------------------|---|------------------------------| | labels | Set of arbitrary JSON-formatted labels to apply on volumes | 111 | | clientCertif icate | Base64-encoded value of client certificate. Used for certificate-based auth | "" | | clientPrivat
eKey | Base64-encoded value of client private key. Used for certificate-based auth | "" | | trustedCACer
tificate | Base64-encoded value of trusted CA certificate. Optional. Used for certificate-based auth | "" | | username | Username to connect to the cluster/SVM. Used for credential-based auth | | | password | Password to connect to the cluster/SVM. Used for credential-based auth | | | storagePrefi
x | Prefix used when provisioning new volumes in the SVM. Cannot be updated after you set it | "trident" | | limitAggrega
teUsage | Fail provisioning if usage is above this percentage. | "" (not enforced by default) | | 3 | Does not apply to Amazon FSx for ONTAP | | | limitVolumeS ize | Fail provisioning if requested volume size is above this value. | "" (not enforced by default) | | | Also restricts the maximum size of the volumes it | | | | manages for qtrees and LUNs, and the qtreesPerFlexvol option allows customizing the maximum number of qtrees per FlexVol. | | | lunsPerFlexv
ol | Maximum LUNs per Flexvol, must be in range [50, 200] | "100" | | debugTraceFl
ags | Debug flags to use when troubleshooting. Example, {"api":false, "method":true} | null | | | Do not use debugTraceFlags unless you are troubleshooting and require a detailed log dump. | | | nasType | Configure NFS or SMB volumes creation. | nfs | | | Options are nfs, smb or null. Setting to null defaults to NFS volumes. | | | Parameter | Description | Default | |---------------------|--|-----------| | nfsMountOpti
ons | Comma-separated list of NFS mount options. The mount options for Kubernetes-persistent volumes are normally specified in storage classes, but if no mount options are specified in a storage class, Astra Trident will fall back to using the mount options specified in the storage backend's configuration file. If no mount options are specified in the storage class or the configuration file, Astra Trident will not set any mount options on an associated persistent volume. | ••• | | qtreesPerFle xvol | Maximum Qtrees per FlexVol, must be in range [50, 300] | "200" | | smbShare | You can specify one of the following: the name of an SMB share created using the Microsoft Management Console or ONTAP CLI; a name to allow Astra Trident to create the SMB share; or you can leave the parameter blank to prevent common share access to volumes. This parameter is optional for on-premises ONTAP. This parameter is required for Amazon FSx for ONTAP backends and cannot be blank. | smb-share | | useREST | Boolean parameter to use ONTAP REST APIs. Tech preview useREST is provided as a tech preview that is recommended for test environments and not for production workloads. When set to true, Astra Trident will use ONTAP REST APIs to communicate with the backend. This feature requires ONTAP 9.11.1 and later. In addition, the ONTAP login role used must have access to the ontap application. This is satisfied by the pre-defined vsadmin and cluster-admin roles. useREST is not supported with MetroCluster. | false | # **Backend configuration options for provisioning volumes** You can control default provisioning using these options in the defaults section of the configuration. For an example, see the configuration examples below. | Parameter | Description | Default | | |------------------|---------------------------|---------|--| | spaceAllocat ion | Space-allocation for LUNs | "true" | | | Parameter | Description | Default | |---|--|---| | spaceReserve | Space reservation mode; "none" (thin) or "volume" (thick) | "none" | | snapshotPoli
cy | Snapshot policy to use | "none" | | qosPolicy | QoS policy group to assign for volumes created.
Choose one of qosPolicy or adaptiveQosPolicy per
storage pool/backend | "" | | adaptiveQosP
olicy | Adaptive QoS policy group to assign for volumes created. Choose one of qosPolicy or adaptiveQosPolicy per storage pool/backend. Not supported by ontap-nas-economy. | "" | | , , , = | | HOW if | | snapshotRese rve Percentage of volume reserved for snapshots | | "0" if snapshotPolicy is "none", otherwise "" | | splitOnClone | Split a clone from its parent upon creation | "false" | | encryption | Enable NetApp Volume Encryption (NVE) on the new volume; defaults to false. NVE must be licensed and enabled on the cluster to use this option. If NAE is enabled on the backend, any volume provisioned in Astra Trident will be NAE enabled. For more information, refer to: How Astra Trident works with NVE and NAE. | "false" | | tieringPolic
Y | Tiering policy to use "none" | "snapshot-only" for pre-ONTAP 9.5
SVM-DR configuration | | unixPermissi
ons | Mode for new volumes | "777" for NFS volumes; empty (not applicable) for SMB volumes | | snapshotDir | Controls access to the .snapshot directory | "false" | | exportPolicy Export policy to use | | "default" | | securityStyl
e | Security style for new volumes. NFS supports mixed and unix security styles. | NFS default is unix. SMB default is ntfs. | | | SMB supports mixed and ntfs security styles. | OND UCIAUIT IS ITCES. | Using QoS policy groups with Astra Trident requires ONTAP 9.8 or later. It is recommended to use a non-shared QoS policy group and ensure the policy group is applied to each constituent individually. A shared QoS policy group will enforce the ceiling for the total throughput of all workloads. ### Volume provisioning examples Here's an example with defaults defined: ``` version: 1 storageDriverName: ontap-nas backendName: customBackendName managementLIF: 10.0.0.1 dataLIF: 10.0.0.2 labels: k8scluster: dev1 backend: dev1-nasbackend svm: trident svm username: cluster-admin password: <password> limitAggregateUsage: 80% limitVolumeSize: 50Gi nfsMountOptions: nfsvers=4 debugTraceFlags: api: false method: true defaults: spaceReserve: volume qosPolicy: premium exportPolicy: myk8scluster snapshotPolicy: default snapshotReserve: '10' ``` For ontap-nas and ontap-nas-flexgroups, Astra Trident now uses a new calculation to ensure that the FlexVol is sized correctly with the snapshotReserve percentage and PVC. When the user requests a PVC, Astra Trident creates the original FlexVol with more space by using the new calculation. This calculation ensures that the user receives the writable space they requested for in the PVC, and not lesser space than what they requested. Before v21.07, when the user requests a PVC (for example, 5GiB), with the snapshotReserve to 50 percent, they get only 2.5GiB of writeable space. This is because what the user requested for is the whole volume and snapshotReserve is a percentage of that. With Trident 21.07, what the user requests for is the writeable space and Astra Trident defines the snapshotReserve number as the percentage of the whole volume. This does not apply to ontap-nas-economy. See the following example to see how this works: The calculation is as follows: ``` Total volume size = (PVC requested size) / (1 - (snapshotReserve percentage) / 100) ``` For snapshotReserve = 50%, and PVC request = 5GiB, the total volume size is 2/.5 = 10GiB and the available size is 5GiB, which is what the user requested in the PVC request. The volume show command should show results similar to this example: | Vserver | Volume | Aggregate | State | Туре | Size | Available | Used% | |-----------|--------------|----------------|-------------|-------------|------|-----------|-------| | | | | | | | | | | | _pvc | 89f1c156_3801 | 1_4de4_9f9d | _034d54c395 | f4 | | | | | | | online | RW | 10GB | 5.00GB | 0% | | | _pvc_ | _e8372153_9ad9 | 9_474a_951a | _08ae15e1c0 | ba | | | | 90 | | | online | RW | 1GB | 511.8MB | 0% | | 2 entries | were display | ed. | | | | | | Existing backends from previous installs will provision volumes as explained above when upgrading Astra Trident. For volumes that you created before upgrading, you should resize their volumes for the change to be observed. For example, a 2GiB PVC with snapshotReserve=50 earlier resulted in a volume that provides 1GiB of writable space. Resizing the volume to 3GiB, for example, provides the application with 3GiB of writable space on a 6 GiB volume. ### Minimal configuration examples The following examples show basic configurations that leave most parameters to default. This is the easiest way to define a backend. If you are using Amazon FSx on NetApp ONTAP with Trident, the recommendation is to specify DNS names for LIFs instead of IP addresses. #### **ONTAP NAS economy example** ``` version: 1 storageDriverName: ontap-nas-economy managementLIF: 10.0.0.1 dataLIF: 10.0.0.2 svm: svm_nfs username: vsadmin password: password ``` #### **ONTAP NAS Flexgroup example** ``` version: 1 storageDriverName: ontap-nas-flexgroup managementLIF: 10.0.0.1 dataLIF: 10.0.0.2 svm: svm_nfs username: vsadmin password: password ``` #### MetroCluster example You can configure the backend to avoid having to manually update the backend definition after switchover and switchback during SVM replication and recovery. For seamless switchover and switchback, specify the SVM using managementLIF and omit the dataLIF and svm parameters. For example: ``` version: 1 storageDriverName: ontap-nas managementLIF: 192.168.1.66 username: vsadmin password: password ``` #### SMB volumes example ``` version: 1 backendName: ExampleBackend storageDriverName: ontap-nas managementLIF: 10.0.0.1 nasType: smb securityStyle: ntfs unixPermissions: "" dataLIF: 10.0.0.2 svm: svm_nfs username: vsadmin password: password ``` #### **Certificate-based authentication example** This is a minimal backend configuration example. clientCertificate, clientPrivateKey, and trustedCACertificate (optional, if using trusted CA) are populated in backend.json and take the base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively. ``` version: 1 backendName: DefaultNASBackend storageDriverName: ontap-nas managementLIF: 10.0.0.1 dataLIF: 10.0.0.15 svm: nfs_svm clientCertificate: ZXR0ZXJwYXB...ICMgJ3BhcGVyc2 clientPrivateKey: vciwKIyAgZG...0cnksIGRlc2NyaX trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz storagePrefix: myPrefix_ ``` #### Auto export policy example This example shows you how you can instruct Astra Trident to use dynamic export policies to create and manage the export policy automatically. This works the same for the ontap-nas-economy and ontap-nas-flexgroup drivers. ``` version: 1 storageDriverName: ontap-nas managementLIF: 10.0.0.1 dataLIF: 10.0.0.2 svm: svm_nfs labels: k8scluster: test-cluster-east-1a backend: test1-nasbackend autoExportPolicy: true autoExportCIDRs: - 10.0.0.0/24 username: admin password: password nfsMountOptions: nfsvers=4 ``` #### IPv6 addresses example This example shows managementLIF using an IPv6 address. ``` version: 1 storageDriverName: ontap-nas backendName: nas_ipv6_backend managementLIF: "[5c5d:5edf:8f:7657:bef8:109b:1b41:d491]" labels: k8scluster: test-cluster-east-la backend: testl-ontap-ipv6 svm: nas_ipv6_svm username: vsadmin password: password ``` #### Amazon FSx for ONTAP using SMB volumes example The smbShare parameter is required for FSx for ONTAP using SMB volumes. ``` version: 1 backendName: SMBBackend storageDriverName: ontap-nas managementLIF: example.mgmt.fqdn.aws.com nasType: smb dataLIF: 10.0.0.15 svm: nfs_svm smbShare: smb-share clientCertificate: ZXR0ZXJwYXB...ICMgJ3BhcGVyc2 clientPrivateKey: vciwKIyAgZG...0cnksIGRlc2NyaX trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz storagePrefix: myPrefix_ ``` # **Examples of backends with virtual pools** In the sample backend definition files shown below, specific defaults are set for all storage pools, such as spaceReserve at none, spaceAllocation at false, and encryption at false. The virtual pools are defined in the storage section. Astra Trident sets provisioning labels in the "Comments" field. Comments are set on FlexVol for ontap-nas or FlexGroup for ontap-nas-flexgroup. Astra Trident copies all labels present on a virtual pool to the storage volume at provisioning. For convenience, storage administrators can define labels per virtual pool and group volumes by label. | In these examples, some of the storage pools set their own spaceReserve, spaceAllocation, and encryption values, and some pools override the default values. | | | | | | | |--|--|--|--|--|--|--| ``` version: 1 storageDriverName: ontap-nas managementLIF: 10.0.0.1 svm: svm nfs username: admin password: <password> nfsMountOptions: nfsvers=4 defaults: spaceReserve: none encryption: 'false' qosPolicy: standard labels: store: nas store k8scluster: prod-cluster-1 region: us east 1 storage: - labels: app: msoffice cost: '100' zone: us east 1a defaults: spaceReserve: volume encryption: 'true' unixPermissions: '0755' adaptiveQosPolicy: adaptive-premium - labels: app: slack cost: '75' zone: us east 1b defaults: spaceReserve: none encryption: 'true' unixPermissions: '0755' - labels: department: legal creditpoints: '5000' zone: us east 1b defaults: spaceReserve: none encryption: 'true' unixPermissions: '0755' - labels: app: wordpress ``` ``` cost: '50' zone: us_east_1c defaults: spaceReserve: none encryption: 'true' unixPermissions: '0775' - labels: app: mysqldb cost: '25' zone: us_east_1d defaults: spaceReserve: volume encryption: 'false' unixPermissions: '0775' ``` ``` version: 1 storageDriverName: ontap-nas-flexgroup managementLIF: 10.0.0.1 svm: svm nfs username: vsadmin password: <password> defaults: spaceReserve: none encryption: 'false' labels: store: flexgroup store k8scluster: prod-cluster-1 region: us east 1 storage: - labels: protection: gold creditpoints: '50000' zone: us_east_1a defaults: spaceReserve: volume encryption: 'true' unixPermissions: '0755' - labels: protection: gold creditpoints: '30000' zone: us east 1b defaults: spaceReserve: none encryption: 'true' unixPermissions: '0755' - labels: protection: silver creditpoints: '20000' zone: us east 1c defaults: spaceReserve: none encryption: 'true' unixPermissions: '0775' - labels: protection: bronze creditpoints: '10000' zone: us east 1d defaults: ``` spaceReserve: volume encryption: 'false' unixPermissions: '0775' ``` version: 1 storageDriverName: ontap-nas-economy managementLIF: 10.0.0.1 svm: svm nfs username: vsadmin password: <password> defaults: spaceReserve: none encryption: 'false' labels: store: nas_economy_store region: us east 1 storage: - labels: department: finance creditpoints: '6000' zone: us east 1a defaults: spaceReserve: volume encryption: 'true' unixPermissions: '0755' - labels: protection: bronze creditpoints: '5000' zone: us east 1b defaults: spaceReserve: none encryption: 'true' unixPermissions: '0755' - labels: department: engineering creditpoints: '3000' zone: us east 1c defaults: spaceReserve: none encryption: 'true' unixPermissions: '0775' - labels: department: humanresource creditpoints: '2000' zone: us east 1d defaults: spaceReserve: volume ``` ``` encryption: 'false' unixPermissions: '0775' ``` ### Map backends to StorageClasses The following StorageClass definitions refer to Examples of backends with virtual pools. Using the parameters.selector field, each StorageClass calls out which virtual pools can be used to host a volume. The volume will have the aspects defined in the chosen virtual pool. • The protection-gold StorageClass will map to the first and second virtual pool in the ontap-nas-flexgroup backend. These are the only pools offering gold level protection. ``` apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: name: protection-gold provisioner: csi.trident.netapp.io parameters: selector: "protection=gold" fsType: "ext4" ``` • The protection-not-gold StorageClass will map to the third and fourth virtual pool in the ontapnas-flexgroup backend. These are the only pools offering protection level other than gold. ``` apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: name: protection-not-gold provisioner: csi.trident.netapp.io parameters: selector: "protection!=gold" fsType: "ext4" ``` • The app-mysqldb StorageClass will map to the fourth virtual pool in the ontap-nas backend. This is the only pool offering storage pool configuration for mysqldb type app. ``` apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: name: app-mysqldb provisioner: csi.trident.netapp.io parameters: selector: "app=mysqldb" fsType: "ext4" ``` • TThe protection-silver-creditpoints-20k StorageClass will map to the third virtual pool in the ontap-nas-flexgroup backend. This is the only pool offering silver-level protection and 20000 creditpoints. ``` apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: name: protection-silver-creditpoints-20k provisioner: csi.trident.netapp.io parameters: selector: "protection=silver; creditpoints=20000" fsType: "ext4" ``` • The creditpoints-5k StorageClass will map to the third virtual pool in the ontap-nas backend and the second virtual pool in the ontap-nas-economy backend. These are the only pool offerings with 5000 creditpoints. ``` apiVersion: storage.k8s.io/v1 kind: StorageClass metadata: name: creditpoints-5k provisioner: csi.trident.netapp.io parameters: selector: "creditpoints=5000" fsType: "ext4" ``` Astra Trident will decide which virtual pool is selected and will ensure the storage requirement is met. # Update dataLIF after initial configuration You can change the data LIF after initial configuration by running the following command to provide the new backend JSON file with updated data LIF. tridentctl update backend <backend-name> -f <path-to-backend-json-filewith-updated-dataLIF> If PVCs are attached to one or multiple pods, you must bring down all corresponding pods and then bring them back up in order to for the new data LIF to take effect. #### Copyright information Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner. Software derived from copyrighted NetApp material is subject to the following license and disclaimer: THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013 (FEB 2014) and FAR 52.227-19 (DEC 2007). Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101) and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014). #### **Trademark information** NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.