
Provision and manage volumes
Astra Trident
NetApp
January 14, 2026

This PDF was generated from https://docs.netapp.com/us-en/trident-2310/trident-use/vol-provision.html
on January 14, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Provision and manage volumes . 1

Provision a volume. 1

Overview . 1

Create the PV and PVC . 4

Expand volumes. 5

Expand an iSCSI volume . 5

Expand an NFS volume . 9

Import volumes. 12

Overview and considerations. 12

Import a volume . 13

Examples . 14

Share an NFS volume across namespaces. 20

Features . 20

Quick start . 21

Configure the source and destination namespaces. 22

Delete a shared volume . 23

Use tridentctl get to query subordinate volumes . 23

Limitations . 24

For more information . 24

Use CSI Topology. 24

Overview . 24

Step 1: Create a topology-aware backend. 26

Step 2: Define StorageClasses that are topology aware . 28

Step 3: Create and use a PVC. 29

Update backends to include supportedTopologies. 32

Find more information . 32

Work with snapshots . 32

Overview . 32

Create a volume snapshot . 33

Create a PVC from a volume snapshot . 34

Import a volume snapshot . 35

Recover volume data using snapshots . 37

Delete a PV with associated snapshots. 37

Deploy a volume snapshot controller . 37

Related links. 38

Provision and manage volumes

Provision a volume

Create a PersistentVolume (PV) and a PersistentVolumeClaim (PVC) that uses the

configured Kubernetes StorageClass to request access to the PV. You can then mount

the PV to a pod.

Overview

A PersistentVolume (PV) is a physical storage resource provisioned by the cluster administrator on a

Kubernetes cluster. The PersistentVolumeClaim (PVC) is a request for access to the PersistentVolume on the

cluster.

The PVC can be configured to request storage of a certain size or access mode. Using the associated

StorageClass, the cluster administrator can control more than PersistentVolume size and access mode—such

as performance or service level.

After you create the PV and PVC, you can mount the volume in a pod.

Sample manifests

PersistentVolume sample manifest

This sample manifest shows a basic PV of 10Gi that is associated with StorageClass basic-csi.

apiVersion: v1

kind: PersistentVolume

metadata:

 name: pv-storage

 labels:

 type: local

spec:

 storageClassName: basic-csi

 capacity:

 storage: 10Gi

 accessModes:

 - ReadWriteOnce

 hostPath:

 path: "/my/host/path"

1

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes

PersistentVolumeClaim sample manifests

These examples show basic PVC configuration options.

PVC with RWO access

This example shows a basic PVC with RWO access that is associated with a StorageClass named

basic-csi.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pvc-storage

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: basic-csi

PVC with NVMe/TCP

This example shows a basic PVC for NVMe/TCP with RWO access that is associated with a

StorageClass named protection-gold.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san-nvme

spec:

accessModes:

 - ReadWriteOnce

resources:

 requests:

 storage: 300Mi

storageClassName: protection-gold

2

Pod manifest samples

These examples show basic configurations to attach the PVC to a pod.

Basic configuration

kind: Pod

apiVersion: v1

metadata:

 name: pv-pod

spec:

 volumes:

 - name: pv-storage

 persistentVolumeClaim:

 claimName: basic

 containers:

 - name: pv-container

 image: nginx

 ports:

 - containerPort: 80

 name: "http-server"

 volumeMounts:

 - mountPath: "/my/mount/path"

 name: pv-storage

3

Basic NVMe/TCP configuration

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 run: nginx

 name: nginx

spec:

 containers:

 - image: nginx

 name: nginx

 resources: {}

 volumeMounts:

 - mountPath: "/usr/share/nginx/html"

 name: task-pv-storage

 dnsPolicy: ClusterFirst

 restartPolicy: Always

 volumes:

 - name: task-pv-storage

 persistentVolumeClaim:

 claimName: pvc-san-nvme

Create the PV and PVC

Steps

1. Create the PV.

kubectl create -f pv.yaml

2. Verify the PV status.

kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM

STORAGECLASS REASON AGE

pv-storage 4Gi RWO Retain Available

7s

3. Create the PVC.

4

kubectl create -f pvc.yaml

4. Verify the PVC status.

kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

pvc-storage Bound pv-name 2Gi RWO 5m

5. Mount the volume in a pod.

kubectl create -f pv-pod.yaml

You can monitor the progress using kubectl get pod --watch.

6. Verify that the volume is mounted on /my/mount/path.

kubectl exec -it task-pv-pod -- df -h /my/mount/path

7. You can now delete the Pod. The Pod application will no longer exist, but the volume will remain.

kubectl delete pod task-pv-pod

Refer to Kubernetes and Trident objects for details on how storage classes interact with the

PersistentVolumeClaim and parameters for controlling how Astra Trident provisions volumes.

Expand volumes

Astra Trident provides Kubernetes users the ability to expand their volumes after they are

created. Find information about the configurations required to expand iSCSI and NFS

volumes.

Expand an iSCSI volume

You can expand an iSCSI Persistent Volume (PV) by using the CSI provisioner.

iSCSI volume expansion is supported by the ontap-san, ontap-san-economy, solidfire-

san drivers and requires Kubernetes 1.16 and later.

Step 1: Configure the StorageClass to support volume expansion

Edit the StorageClass definition to set the allowVolumeExpansion field to true.

5

https://docs.netapp.com/us-en/trident-2310/trident-reference/objects.html

cat storageclass-ontapsan.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-san

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-san"

allowVolumeExpansion: True

For an already existing StorageClass, edit it to include the allowVolumeExpansion parameter.

Step 2: Create a PVC with the StorageClass you created

Edit the PVC definition and update the spec.resources.requests.storage to reflect the newly desired

size, which must be greater than the original size.

cat pvc-ontapsan.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: san-pvc

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: ontap-san

Astra Trident creates a Persistent Volume (PV) and associates it with this Persistent Volume Claim (PVC).

6

kubectl get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi

RWO ontap-san 8s

kubectl get pv

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi RWO

Delete Bound default/san-pvc ontap-san 10s

Step 3: Define a pod that attaches the PVC

Attach the PV to a pod for it to be resized. There are two scenarios when resizing an iSCSI PV:

• If the PV is attached to a pod, Astra Trident expands the volume on the storage backend, rescans the

device, and resizes the filesystem.

• When attempting to resize an unattached PV, Astra Trident expands the volume on the storage backend.

After the PVC is bound to a pod, Trident rescans the device and resizes the filesystem. Kubernetes then

updates the PVC size after the expand operation has successfully completed.

In this example, a pod is created that uses the san-pvc.

 kubectl get pod

NAME READY STATUS RESTARTS AGE

ubuntu-pod 1/1 Running 0 65s

 kubectl describe pvc san-pvc

Name: san-pvc

Namespace: default

StorageClass: ontap-san

Status: Bound

Volume: pvc-8a814d62-bd58-4253-b0d1-82f2885db671

Labels: <none>

Annotations: pv.kubernetes.io/bind-completed: yes

 pv.kubernetes.io/bound-by-controller: yes

 volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers: [kubernetes.io/pvc-protection]

Capacity: 1Gi

Access Modes: RWO

VolumeMode: Filesystem

Mounted By: ubuntu-pod

7

Step 4: Expand the PV

To resize the PV that has been created from 1Gi to 2Gi, edit the PVC definition and update the

spec.resources.requests.storage to 2Gi.

kubectl edit pvc san-pvc

Please edit the object below. Lines beginning with a '#' will be

ignored,

and an empty file will abort the edit. If an error occurs while saving

this file will be

reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 annotations:

 pv.kubernetes.io/bind-completed: "yes"

 pv.kubernetes.io/bound-by-controller: "yes"

 volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

 creationTimestamp: "2019-10-10T17:32:29Z"

 finalizers:

 - kubernetes.io/pvc-protection

 name: san-pvc

 namespace: default

 resourceVersion: "16609"

 selfLink: /api/v1/namespaces/default/persistentvolumeclaims/san-pvc

 uid: 8a814d62-bd58-4253-b0d1-82f2885db671

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 2Gi

 ...

Step 5: Validate the expansion

You can validate the expansion worked correctly by checking the size of the PVC, PV, and the Astra Trident

volume:

8

kubectl get pvc san-pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82f2885db671 2Gi

RWO ontap-san 11m

kubectl get pv

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 2Gi RWO

Delete Bound default/san-pvc ontap-san 12m

tridentctl get volumes -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-8a814d62-bd58-4253-b0d1-82f2885db671 | 2.0 GiB | ontap-san |

block | a9b7bfff-0505-4e31-b6c5-59f492e02d33 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

Expand an NFS volume

Astra Trident supports volume expansion for NFS PVs provisioned on ontap-nas, ontap-nas-economy,

ontap-nas-flexgroup, gcp-cvs, and azure-netapp-files backends.

Step 1: Configure the StorageClass to support volume expansion

To resize an NFS PV, the admin first needs to configure the storage class to allow volume expansion by setting

the allowVolumeExpansion field to true:

cat storageclass-ontapnas.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontapnas

provisioner: csi.trident.netapp.io

parameters:

 backendType: ontap-nas

allowVolumeExpansion: true

If you have already created a storage class without this option, you can simply edit the existing storage class

by using kubectl edit storageclass to allow volume expansion.

9

Step 2: Create a PVC with the StorageClass you created

cat pvc-ontapnas.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: ontapnas20mb

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 20Mi

 storageClassName: ontapnas

Astra Trident should create a 20MiB NFS PV for this PVC:

kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi

RWO ontapnas 9s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi RWO

Delete Bound default/ontapnas20mb ontapnas

2m42s

Step 3: Expand the PV

To resize the newly created 20MiB PV to 1GiB, edit the PVC and set spec.resources.requests.storage

to 1GiB:

10

kubectl edit pvc ontapnas20mb

Please edit the object below. Lines beginning with a '#' will be

ignored,

and an empty file will abort the edit. If an error occurs while saving

this file will be

reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 annotations:

 pv.kubernetes.io/bind-completed: "yes"

 pv.kubernetes.io/bound-by-controller: "yes"

 volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

 creationTimestamp: 2018-08-21T18:26:44Z

 finalizers:

 - kubernetes.io/pvc-protection

 name: ontapnas20mb

 namespace: default

 resourceVersion: "1958015"

 selfLink: /api/v1/namespaces/default/persistentvolumeclaims/ontapnas20mb

 uid: c1bd7fa5-a56f-11e8-b8d7-fa163e59eaab

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

...

Step 4: Validate the expansion

You can validate the resize worked correctly by checking the size of the PVC, PV, and the Astra Trident

volume:

11

kubectl get pvc ontapnas20mb

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 1Gi

RWO ontapnas 4m44s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 1Gi RWO

Delete Bound default/ontapnas20mb ontapnas

5m35s

tridentctl get volume pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 | 1.0 GiB | ontapnas |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

Import volumes

You can import existing storage volumes as a Kubernetes PV using tridentctl

import.

Overview and considerations

You might import a volume into Astra Trident to:

• Containerize an application and reuse its existing data set

• Use a clone of a data set for an ephemeral application

• Rebuild a failed Kubernetes cluster

• Migrate application data during disaster recovery

Considerations

Before importing a volume, review the following considerations.

• Astra Trident can import RW (read-write) type ONTAP volumes only. DP (data protection) type volumes are

SnapMirror destination volumes. You should break the mirror relationship before importing the volume into

12

Astra Trident.

• We suggest importing volumes without active connections. To import an actively-used volume, clone the

volume and then perform the import.

This is especially important for block volumes as Kubernetes would be unaware of the

previous connection and could easily attach an active volume to a pod. This can result in

data corruption.

• Though StorageClass must be specified on a PVC, Astra Trident does not use this parameter during

import. Storage classes are used during volume creation to select from available pools based on storage

characteristics. Because the volume already exists, no pool selection is required during import. Therefore,

the import will not fail even if the volume exists on a backend or pool that does not match the storage class

specified in the PVC.

• The existing volume size is determined and set in the PVC. After the volume is imported by the storage

driver, the PV is created with a ClaimRef to the PVC.

◦ The reclaim policy is initially set to retain in the PV. After Kubernetes successfully binds the PVC and

PV, the reclaim policy is updated to match the reclaim policy of the Storage Class.

◦ If the reclaim policy of the Storage Class is delete, the storage volume will be deleted when the PV is

deleted.

• By default, Astra Trident manages the PVC and renames the FlexVol and LUN on the backend. You can

pass the --no-manage flag to import an unmanaged volume. If you use --no-manage, Astra Trident

does not perform any additional operations on the PVC or PV for the lifecycle of the objects. The storage

volume is not deleted when the PV is deleted and other operations such as volume clone and volume

resize are also ignored.

This option is useful if you want to use Kubernetes for containerized workloads but

otherwise want to manage the lifecycle of the storage volume outside of Kubernetes.

• An annotation is added to the PVC and PV that serves a dual purpose of indicating that the volume was

imported and if the PVC and PV are managed. This annotation should not be modified or removed.

Import a volume

You can use tridentctl import to import a volume.

Steps

1. Create the Persistent Volume Claim (PVC) file (for example, pvc.yaml) that will be used to create the

PVC. The PVC file should include name, namespace, accessModes, and storageClassName.

Optionally, you can specify unixPermissions in your PVC definition.

The following is an example of a minimum specification:

13

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: my_claim

 namespace: my_namespace

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: my_storage_class

Don’t include additional parameters such as PV name or volume size. This can cause the

import command to fail.

2. Use the tridentctl import command to specify the name of the Astra Trident backend containing the

volume and the name that uniquely identifies the volume on the storage (for example: ONTAP FlexVol,

Element Volume, Cloud Volumes Service path). The -f argument is required to specify the path to the

PVC file.

tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-

file>

Examples

Review the following volume import examples for supported drivers.

ONTAP NAS and ONTAP NAS FlexGroup

Astra Trident supports volume import using the ontap-nas and ontap-nas-flexgroup drivers.

• The ontap-nas-economy driver cannot import and manage qtrees.

• The ontap-nas and ontap-nas-flexgroup drivers do not allow duplicate volume

names.

Each volume created with the ontap-nas driver is a FlexVol on the ONTAP cluster. Importing FlexVols with

the ontap-nas driver works the same. A FlexVol that already exists on an ONTAP cluster can be imported as

a ontap-nas PVC. Similarly, FlexGroup vols can be imported as ontap-nas-flexgroup PVCs.

ONTAP NAS examples

The following show an example of a managed volume and an unmanaged volume import.

14

Managed volume

The following example imports a volume named managed_volume on a backend named ontap_nas:

tridentctl import volume ontap_nas managed_volume -f <path-to-pvc-file>

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

Unmanaged volume

When using the --no-manage argument, Astra Trident does not rename the volume.

The following example imports unmanaged_volume on the ontap_nas backend:

tridentctl import volume nas_blog unmanaged_volume -f <path-to-pvc-

file> --no-manage

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-df07d542-afbc-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | false |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

ONTAP SAN

Astra Trident supports volume import using the ontap-san driver. Volume import is not supported using the

ontap-san-economy driver.

Astra Trident can import ONTAP SAN FlexVols that contain a single LUN. This is consistent with the ontap-

san driver, which creates a FlexVol for each PVC and a LUN within the FlexVol. Astra Trident imports the

FlexVol and associates it with the PVC definition.

15

ONTAP SAN examples

The following show an example of a managed volume and an unmanaged volume import.

16

Managed volume

For managed volumes, Astra Trident renames the FlexVol to the pvc-<uuid> format and the LUN within

the FlexVol to lun0.

The following example imports the ontap-san-managed FlexVol that is present on the

ontap_san_default backend:

tridentctl import volume ontapsan_san_default ontap-san-managed -f pvc-

basic-import.yaml -n trident -d

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-d6ee4f54-4e40-4454-92fd-d00fc228d74a | 20 MiB | basic |

block | cd394786-ddd5-4470-adc3-10c5ce4ca757 | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

Unmanaged volume

The following example imports unmanaged_example_volume on the ontap_san backend:

tridentctl import volume -n trident san_blog unmanaged_example_volume

-f pvc-import.yaml --no-manage

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-1fc999c9-ce8c-459c-82e4-ed4380a4b228 | 1.0 GiB | san-blog |

block | e3275890-7d80-4af6-90cc-c7a0759f555a | online | false |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

17

If you have LUNS mapped to igroups that share an IQN with a Kubernetes node IQN, as

shown in the following example, you will receive the error: LUN already mapped to

initiator(s) in this group. You will need to remove the initiator or unmap the LUN

to import the volume.

Element

Astra Trident supports NetApp Element software and NetApp HCI volume import using the solidfire-san

driver.

The Element driver supports duplicate volume names. However, Astra Trident returns an error if

there are duplicate volume names. As a workaround, clone the volume, provide a unique

volume name, and import the cloned volume.

Element example

The following example imports an element-managed volume on backend element_default.

tridentctl import volume element_default element-managed -f pvc-basic-

import.yaml -n trident -d

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-970ce1ca-2096-4ecd-8545-ac7edc24a8fe | 10 GiB | basic-element |

block | d3ba047a-ea0b-43f9-9c42-e38e58301c49 | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

Google Cloud Platform

Astra Trident supports volume import using the gcp-cvs driver.

18

To import a volume backed by the NetApp Cloud Volumes Service in Google Cloud Platform,

identify the volume by its volume path. The volume path is the portion of the volume’s export

path after the :/. For example, if the export path is 10.0.0.1:/adroit-jolly-swift, the

volume path is adroit-jolly-swift.

Google Cloud Platform example

The following example imports a gcp-cvs volume on backend gcpcvs_YEppr with the volume path of

adroit-jolly-swift.

tridentctl import volume gcpcvs_YEppr adroit-jolly-swift -f <path-to-pvc-

file> -n trident

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-a46ccab7-44aa-4433-94b1-e47fc8c0fa55 | 93 GiB | gcp-storage | file

| e1a6e65b-299e-4568-ad05-4f0a105c888f | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

Azure NetApp Files

Astra Trident supports volume import using the azure-netapp-files driver.

To import an Azure NetApp Files volume, identify the volume by its volume path. The volume

path is the portion of the volume’s export path after the :/. For example, if the mount path is

10.0.0.2:/importvol1, the volume path is importvol1.

Azure NetApp Files example

The following example imports an azure-netapp-files volume on backend azurenetappfiles_40517

with the volume path importvol1.

19

tridentctl import volume azurenetappfiles_40517 importvol1 -f <path-to-

pvc-file> -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-0ee95d60-fd5c-448d-b505-b72901b3a4ab | 100 GiB | anf-storage |

file | 1c01274f-d94b-44a3-98a3-04c953c9a51e | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

Share an NFS volume across namespaces

Using Astra Trident, you can create a volume in a primary namespace and share it in one

or more secondary namespaces.

Features

The Astra TridentVolumeReference CR allows you to securely share ReadWriteMany (RWX) NFS volumes

across one or more Kubernetes namespaces. This Kubernetes-native solution has the following benefits:

• Multiple levels of access control to ensure security

• Works with all Trident NFS volume drivers

• No reliance on tridentctl or any other non-native Kubernetes feature

This diagram illustrates NFS volume sharing across two Kubernetes namespaces.

20

Quick start

You can set up NFS volume sharing in just a few steps.

 Configure source PVC to share the volume

The source namespace owner grants permission to access the data in the source PVC.

 Grant permission to create a CR in the destination namespace

The cluster administrator grants permission to the owner of the destination namespace to create the

TridentVolumeReference CR.

 Create TridentVolumeReference in the destination namespace

The owner of the destination namespace creates the TridentVolumeReference CR to refer to the source PVC.

 Create the subordinate PVC in the destination namespace

The owner of the destination namespace creates the subordinate PVC to use the data source from the source

PVC.

21

Configure the source and destination namespaces

To ensure security, cross namespace sharing requires collaboration and action by the source namespace

owner, cluster administrator, and destination namespace owner. The user role is designated in each step.

Steps

1. Source namespace owner: Create the PVC (pvc1) in the source namespace that grants permission to

share with the destination namespace (namespace2) using the shareToNamespace annotation.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pvc1

 namespace: namespace1

 annotations:

 trident.netapp.io/shareToNamespace: namespace2

spec:

 accessModes:

 - ReadWriteMany

 storageClassName: trident-csi

 resources:

 requests:

 storage: 100Gi

Astra Trident creates the PV and its backend NFS storage volume.

◦ You can share the PVC to multiple namespaces using a comma-delimited list. For

example, trident.netapp.io/shareToNamespace:

namespace2,namespace3,namespace4.

◦ You can share to all namespaces using *. For example,

trident.netapp.io/shareToNamespace: *

◦ You can update the PVC to include the shareToNamespace annotation at any time.

2. Cluster admin: Create the custom role and kubeconfig to grant permission to the destination namespace

owner to create the TridentVolumeReference CR in the destination namespace.

3. Destination namespace owner: Create a TridentVolumeReference CR in the destination namespace that

refers to the source namespace pvc1.

22

apiVersion: trident.netapp.io/v1

kind: TridentVolumeReference

metadata:

 name: my-first-tvr

 namespace: namespace2

spec:

 pvcName: pvc1

 pvcNamespace: namespace1

4. Destination namespace owner: Create a PVC (pvc2) in destination namespace (namespace2) using

the shareFromPVC annotation to designate the source PVC.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 annotations:

 trident.netapp.io/shareFromPVC: namespace1/pvc1

 name: pvc2

 namespace: namespace2

spec:

 accessModes:

 - ReadWriteMany

 storageClassName: trident-csi

 resources:

 requests:

 storage: 100Gi

The size of the destination PVC must be less than or equal than the source PVC.

Results

Astra Trident reads the shareFromPVC annotation on the destination PVC and creates the destination PV as a

subordinate volume with no storage resource of its own that points to the source PV and shares the source PV

storage resource. The destination PVC and PV appear bound as normal.

Delete a shared volume

You can delete a volume that is shared across multiple namespaces. Astra Trident will remove access to the

volume on the source namespace and maintain access for other namespaces that share the volume. When all

namespaces that reference the volume are removed, Astra Trident deletes the volume.

Use tridentctl get to query subordinate volumes

Using the tridentctl utility, you can run the get command to get subordinate volumes. For more

information, refer to tridentctl commands and options.

23

https://docs.netapp.com/us-en/trident-2310/trident-reference/tridentctl.html
https://docs.netapp.com/us-en/trident-2310/trident-reference/tridentctl.html

Usage:

 tridentctl get [option]

Flags:

• `-h, --help: Help for volumes.

• --parentOfSubordinate string: Limit query to subordinate source volume.

• --subordinateOf string: Limit query to subordinates of volume.

Limitations

• Astra Trident cannot prevent destination namespaces from writing to the shared volume. You should use

file locking or other processes to prevent overwriting shared volume data.

• You cannot revoke access to the source PVC by removing the shareToNamespace or

shareFromNamespace annotations or deleting the TridentVolumeReference CR. To revoke access,

you must delete the subordinate PVC.

• Snapshots, clones, and mirroring are not possible on subordinate volumes.

For more information

To learn more about cross-namespace volume access:

• Visit Sharing volumes between namespaces: Say hello to cross-namespace volume access.

• Watch the demo on NetAppTV.

Use CSI Topology

Astra Trident can selectively create and attach volumes to nodes present in a Kubernetes

cluster by making use of the CSI Topology feature.

Overview

Using the CSI Topology feature, access to volumes can be limited to a subset of nodes, based on regions and

availability zones. Cloud providers today enable Kubernetes administrators to spawn nodes that are zone

based. Nodes can be located in different availability zones within a region, or across various regions. To

facilitate the provisioning of volumes for workloads in a multi-zone architecture, Astra Trident uses CSI

Topology.

Learn more about the CSI Topology feature here.

Kubernetes provides two unique volume binding modes:

• With VolumeBindingMode set to Immediate, Astra Trident creates the volume without any topology

awareness. Volume binding and dynamic provisioning are handled when the PVC is created. This is the

default VolumeBindingMode and is suited for clusters that do not enforce topology constraints. Persistent

Volumes are created without having any dependency on the requesting pod’s scheduling requirements.

24

https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/

• With VolumeBindingMode set to WaitForFirstConsumer, the creation and binding of a Persistent

Volume for a PVC is delayed until a pod that uses the PVC is scheduled and created. This way, volumes

are created to meet the scheduling constraints that are enforced by topology requirements.

The WaitForFirstConsumer binding mode does not require topology labels. This can be

used independent of the CSI Topology feature.

What you’ll need

To make use of CSI Topology, you need the following:

• A Kubernetes cluster running a supported Kubernetes version

kubectl version

Client Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:50:19Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

Server Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:41:49Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

• Nodes in the cluster should have labels that introduce topology awareness

(topology.kubernetes.io/region and topology.kubernetes.io/zone). These labels should

be present on nodes in the cluster before Astra Trident is installed for Astra Trident to be topology

aware.

25

https://docs.netapp.com/us-en/trident-2310/trident-get-started/requirements.html

kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{.metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"

[node1,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node1","kubernetes.io/

os":"linux","node-

role.kubernetes.io/master":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-a"}]

[node2,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node2","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-b"}]

[node3,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node3","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-c"}]

Step 1: Create a topology-aware backend

Astra Trident storage backends can be designed to selectively provision volumes based on availability zones.

Each backend can carry an optional supportedTopologies block that represents a list of zones and regions

that must be supported. For StorageClasses that make use of such a backend, a volume would only be

created if requested by an application that is scheduled in a supported region/zone.

Here is an example backend definition:

26

YAML

version: 1

storageDriverName: ontap-san

backendName: san-backend-us-east1

managementLIF: 192.168.27.5

svm: iscsi_svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-east1

 topology.kubernetes.io/zone: us-east1-a

- topology.kubernetes.io/region: us-east1

 topology.kubernetes.io/zone: us-east1-b

JSON

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "san-backend-us-east1",

 "managementLIF": "192.168.27.5",

 "svm": "iscsi_svm",

 "username": "admin",

 "password": "password",

 "supportedTopologies": [

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-a"},

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-b"}

]

}

supportedTopologies is used to provide a list of regions and zones per backend. These

regions and zones represent the list of permissible values that can be provided in a

StorageClass. For StorageClasses that contain a subset of the regions and zones provided in a

backend, Astra Trident will create a volume on the backend.

You can define supportedTopologies per storage pool as well. See the following example:

27

version: 1

storageDriverName: ontap-nas

backendName: nas-backend-us-central1

managementLIF: 172.16.238.5

svm: nfs_svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-a

- topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-b

storage:

- labels:

 workload: production

 region: Iowa-DC

 zone: Iowa-DC-A

 supportedTopologies:

 - topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-a

- labels:

 workload: dev

 region: Iowa-DC

 zone: Iowa-DC-B

 supportedTopologies:

 - topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-b

In this example, the region and zone labels stand for the location of the storage pool.

topology.kubernetes.io/region and topology.kubernetes.io/zone dictate where the storage

pools can be consumed from.

Step 2: Define StorageClasses that are topology aware

Based on the topology labels that are provided to the nodes in the cluster, StorageClasses can be defined to

contain topology information. This will determine the storage pools that serve as candidates for PVC requests

made, and the subset of nodes that can make use of the volumes provisioned by Trident.

See the following example:

28

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

name: netapp-san-us-east1

provisioner: csi.trident.netapp.io

volumeBindingMode: WaitForFirstConsumer

allowedTopologies:

- matchLabelExpressions:

- key: topology.kubernetes.io/zone

 values:

 - us-east1-a

 - us-east1-b

- key: topology.kubernetes.io/region

 values:

 - us-east1

parameters:

 fsType: "ext4"

In the StorageClass definition provided above, volumeBindingMode is set to WaitForFirstConsumer.

PVCs that are requested with this StorageClass will not be acted upon until they are referenced in a pod. And,

allowedTopologies provides the zones and region to be used. The netapp-san-us-east1 StorageClass

will create PVCs on the san-backend-us-east1 backend defined above.

Step 3: Create and use a PVC

With the StorageClass created and mapped to a backend, you can now create PVCs.

See the example spec below:

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san

spec:

accessModes:

 - ReadWriteOnce

resources:

 requests:

 storage: 300Mi

storageClassName: netapp-san-us-east1

Creating a PVC using this manifest would result in the following:

29

kubectl create -f pvc.yaml

persistentvolumeclaim/pvc-san created

kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

AGE

pvc-san Pending netapp-san-us-east1

2s

kubectl describe pvc

Name: pvc-san

Namespace: default

StorageClass: netapp-san-us-east1

Status: Pending

Volume:

Labels: <none>

Annotations: <none>

Finalizers: [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode: Filesystem

Mounted By: <none>

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Normal WaitForFirstConsumer 6s persistentvolume-controller waiting

for first consumer to be created before binding

For Trident to create a volume and bind it to the PVC, use the PVC in a pod. See the following example:

30

apiVersion: v1

kind: Pod

metadata:

 name: app-pod-1

spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: topology.kubernetes.io/region

 operator: In

 values:

 - us-east1

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 1

 preference:

 matchExpressions:

 - key: topology.kubernetes.io/zone

 operator: In

 values:

 - us-east1-a

 - us-east1-b

 securityContext:

 runAsUser: 1000

 runAsGroup: 3000

 fsGroup: 2000

 volumes:

 - name: vol1

 persistentVolumeClaim:

 claimName: pvc-san

 containers:

 - name: sec-ctx-demo

 image: busybox

 command: ["sh", "-c", "sleep 1h"]

 volumeMounts:

 - name: vol1

 mountPath: /data/demo

 securityContext:

 allowPrivilegeEscalation: false

This podSpec instructs Kubernetes to schedule the pod on nodes that are present in the us-east1 region,

and choose from any node that is present in the us-east1-a or us-east1-b zones.

See the following output:

31

kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE

NOMINATED NODE READINESS GATES

app-pod-1 1/1 Running 0 19s 192.168.25.131 node2

<none> <none>

kubectl get pvc -o wide

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE VOLUMEMODE

pvc-san Bound pvc-ecb1e1a0-840c-463b-8b65-b3d033e2e62b 300Mi

RWO netapp-san-us-east1 48s Filesystem

Update backends to include supportedTopologies

Pre-existing backends can be updated to include a list of supportedTopologies using tridentctl

backend update. This will not affect volumes that have already been provisioned, and will only be used for

subsequent PVCs.

Find more information

• Manage resources for containers

• nodeSelector

• Affinity and anti-affinity

• Taints and Tolerations

Work with snapshots

Kubernetes volume snapshots of Persistent Volumes (PVs) enable point-in-time copies of

volumes. You can create a snapshot of a volume created using Astra Trident, import a

snapshot created outside of Astra Trident, create a new volume from an existing

snapshot, and recover volume data from snapshots.

Overview

Volume snapshot is supported by ontap-nas, ontap-nas-flexgroup, ontap-san, ontap-san-

economy, solidfire-san, gcp-cvs, and azure-netapp-files drivers.

Before you begin

You must have an external snapshot controller and Custom Resource Definitions (CRDs) to work with

snapshots. This is the responsibility of the Kubernetes orchestrator (for example: Kubeadm, GKE, OpenShift).

If your Kubernetes distribution does not include the snapshot controller and CRDs, refer to Deploy a volume

snapshot controller.

Don’t create a snapshot controller if creating on-demand volume snapshots in a GKE

environment. GKE uses a built-in, hidden snapshot controller.

32

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Create a volume snapshot

Steps

1. Create a VolumeSnapshotClass. For more information, refer to VolumeSnapshotClass.

◦ The driver points to the Astra Trident CSI driver.

◦ deletionPolicy can be Delete or Retain. When set to Retain, the underlying physical snapshot

on the storage cluster is retained even when the VolumeSnapshot object is deleted.

Example

cat snap-sc.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

 name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

2. Create a snapshot of an existing PVC.

Examples

◦ This example creates a snapshot of an existing PVC.

cat snap.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

 name: pvc1-snap

spec:

 volumeSnapshotClassName: csi-snapclass

 source:

 persistentVolumeClaimName: pvc1

◦ This example creates a volume snapshot object for a PVC named pvc1 and the name of the snapshot

is set to pvc1-snap. A VolumeSnapshot is analogous to a PVC and is associated with a

VolumeSnapshotContent object that represents the actual snapshot.

kubectl create -f snap.yaml

volumesnapshot.snapshot.storage.k8s.io/pvc1-snap created

kubectl get volumesnapshots

NAME AGE

pvc1-snap 50s

◦ You can identify the VolumeSnapshotContent object for the pvc1-snap VolumeSnapshot by

33

https://docs.netapp.com/us-en/trident-2310/trident-reference/objects.html#kubernetes-volumesnapshotclass-objects

describing it. The Snapshot Content Name identifies the VolumeSnapshotContent object which

serves this snapshot. The Ready To Use parameter indicates that the snapshot can be used to

create a new PVC.

kubectl describe volumesnapshots pvc1-snap

Name: pvc1-snap

Namespace: default

.

.

.

Spec:

 Snapshot Class Name: pvc1-snap

 Snapshot Content Name: snapcontent-e8d8a0ca-9826-11e9-9807-

525400f3f660

 Source:

 API Group:

 Kind: PersistentVolumeClaim

 Name: pvc1

Status:

 Creation Time: 2019-06-26T15:27:29Z

 Ready To Use: true

 Restore Size: 3Gi

.

.

Create a PVC from a volume snapshot

You can use dataSource to create a PVC using a VolumeSnapshot named <pvc-name> as the source of the

data. After the PVC is created, it can be attached to a pod and used just like any other PVC.

The PVC will be created in the same backend as the source volume. Refer to KB: Creating a

PVC from a Trident PVC Snapshot cannot be created in an alternate backend.

The following example creates the PVC using pvc1-snap as the data source.

34

https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend

cat pvc-from-snap.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: pvc-from-snap

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: golden

 resources:

 requests:

 storage: 3Gi

 dataSource:

 name: pvc1-snap

 kind: VolumeSnapshot

 apiGroup: snapshot.storage.k8s.io

Import a volume snapshot

Astra Trident supports the Kubernetes pre-provisioned snapshot process to enable the cluster administrator to

create a VolumeSnapshotContent object and import snapshots created outside of Astra Trident.

Before you begin

Astra Trident must have created or imported the snapshot’s parent volume.

Steps

1. Cluster admin: Create a VolumeSnapshotContent object that references the backend snapshot. This

initiates the snapshot workflow in Astra Trident.

◦ Specify the name of the backend snapshot in annotations as

trident.netapp.io/internalSnapshotName: <"backend-snapshot-name">.

◦ Specify <name-of-parent-volume-in-trident>/<volume-snapshot-content-name> in

snapshotHandle. This is the only information provided to Astra Trident by the external snapshotter in

the ListSnapshots call.

The <volumeSnapshotContentName> cannot always match the backend snapshot

name due to CR naming constraints.

Example

The following example creates a VolumeSnapshotContent object that references backend snapshot

snap-01.

35

https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotContent

metadata:

 name: import-snap-content

 annotations:

 trident.netapp.io/internalSnapshotName: "snap-01" # This is the

name of the snapshot on the backend

spec:

 deletionPolicy: Retain

 driver: csi.trident.netapp.io

 source:

 snapshotHandle: pvc-f71223b5-23b9-4235-bbfe-e269ac7b84b0/import-

snap-content # <import PV name or source PV name>/<volume-snapshot-

content-name>

2. Cluster admin: Create the VolumeSnapshot CR that references the VolumeSnapshotContent object.

This requests access to use the VolumeSnapshot in a given namespace.

Example

The following example creates a VolumeSnapshot CR named import-snap that references the

VolumeSnapshotContent named import-snap-content.

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

 name: import-snap

spec:

 # volumeSnapshotClassName: csi-snapclass (not required for pre-

provisioned or imported snapshots)

 source:

 volumeSnapshotContentName: import-snap-content

3. Internal processing (no action required): The external snapshotter recognizes the newly created

VolumeSnapshotContent and runs the ListSnapshots call. Astra Trident creates the

TridentSnapshot.

◦ The external snapshotter sets the VolumeSnapshotContent to readyToUse and the

VolumeSnapshot to true.

◦ Trident returns readyToUse=true.

4. Any user: Create a PersistentVolumeClaim to reference the new VolumeSnapshot, where the

spec.dataSource (or spec.dataSourceRef) name is the VolumeSnapshot name.

Example

The following example creates a PVC referencing the VolumeSnapshot named import-snap.

36

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: pvc-from-snap

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: simple-sc

 resources:

 requests:

 storage: 1Gi

 dataSource:

 name: import-snap

 kind: VolumeSnapshot

 apiGroup: snapshot.storage.k8s.io

Recover volume data using snapshots

The snapshot directory is hidden by default to facilitate maximum compatibility of volumes provisioned using

the ontap-nas and ontap-nas-economy drivers. Enable the .snapshot directory to recover data from

snapshots directly.

Use the volume snapshot restore ONTAP CLI to to restore a volume to a state recorded in a prior snapshot.

cluster1::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3_snap_archive

When you restore a snapshot copy, the existing volume configuration is overwritten. Changes

made to volume data after the snapshot copy was created are lost.

Delete a PV with associated snapshots

When deleting a Persistent Volume with associated snapshots, the corresponding Trident volume is updated to

a “Deleting state”. Remove the volume snapshots to delete the Astra Trident volume.

Deploy a volume snapshot controller

If your Kubernetes distribution does not include the snapshot controller and CRDs, you can deploy them as

follows.

Steps

1. Create volume snapshot CRDs.

37

cat snapshot-setup.sh

#!/bin/bash

Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents.yam

l

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml

2. Create the snapshot controller.

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

If necessary, open deploy/kubernetes/snapshot-controller/rbac-snapshot-

controller.yaml and update namespace to your namespace.

Related links

• Volume snapshots

• VolumeSnapshotClass

38

https://docs.netapp.com/us-en/trident-2310/trident-concepts/snapshots.html
https://docs.netapp.com/us-en/trident-2310/trident-reference/objects.html

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

39

http://www.netapp.com/TM

	Provision and manage volumes : Astra Trident
	Table of Contents
	Provision and manage volumes
	Provision a volume
	Overview
	Create the PV and PVC

	Expand volumes
	Expand an iSCSI volume
	Expand an NFS volume

	Import volumes
	Overview and considerations
	Import a volume
	Examples

	Share an NFS volume across namespaces
	Features
	Quick start
	Configure the source and destination namespaces
	Delete a shared volume
	Use tridentctl get to query subordinate volumes
	Limitations
	For more information

	Use CSI Topology
	Overview
	Step 1: Create a topology-aware backend
	Step 2: Define StorageClasses that are topology aware
	Step 3: Create and use a PVC
	Update backends to include supportedTopologies
	Find more information

	Work with snapshots
	Overview
	Create a volume snapshot
	Create a PVC from a volume snapshot
	Import a volume snapshot
	Recover volume data using snapshots
	Delete a PV with associated snapshots
	Deploy a volume snapshot controller
	Related links

