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Provision and manage volumes

Provision a volume

Create a PersistentVolume (PV) and a PersistentVolumeClaim (PVC) that uses the

configured Kubernetes StorageClass to request access to the PV. You can then mount

the PV to a pod.

Overview

A PersistentVolume (PV) is a physical storage resource provisioned by the cluster administrator on a

Kubernetes cluster. The PersistentVolumeClaim (PVC) is a request for access to the PersistentVolume on the

cluster.

The PVC can be configured to request storage of a certain size or access mode. Using the associated

StorageClass, the cluster administrator can control more than PersistentVolume size and access mode—such

as performance or service level.

After you create the PV and PVC, you can mount the volume in a pod.

Sample manifests

PersistentVolume sample manifest

This sample manifest shows a basic PV of 10Gi that is associated with StorageClass basic-csi.

apiVersion: v1

kind: PersistentVolume

metadata:

  name: pv-storage

  labels:

    type: local

spec:

  storageClassName: basic-csi

  capacity:

    storage: 10Gi

  accessModes:

    - ReadWriteOnce

  hostPath:

    path: "/my/host/path"
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PersistentVolumeClaim sample manifests

These examples show basic PVC configuration options.

PVC with RWO access

This example shows a basic PVC with RWO access that is associated with a StorageClass named

basic-csi.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: pvc-storage

spec:

  accessModes:

    - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

  storageClassName: basic-csi

PVC with NVMe/TCP

This example shows a basic PVC for NVMe/TCP with RWO access that is associated with a

StorageClass named protection-gold.

---

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san-nvme

spec:

accessModes:

  - ReadWriteOnce

resources:

  requests:

    storage: 300Mi

storageClassName: protection-gold
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Pod manifest samples

These examples show basic configurations to attach the PVC to a pod.

Basic configuration

kind: Pod

apiVersion: v1

metadata:

  name: pv-pod

spec:

  volumes:

    - name: pv-storage

      persistentVolumeClaim:

       claimName: basic

  containers:

    - name: pv-container

      image: nginx

      ports:

        - containerPort: 80

          name: "http-server"

      volumeMounts:

        - mountPath: "/my/mount/path"

          name: pv-storage
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Basic NVMe/TCP configuration

---

apiVersion: v1

kind: Pod

metadata:

  creationTimestamp: null

  labels:

    run: nginx

  name: nginx

spec:

  containers:

    - image: nginx

      name: nginx

      resources: {}

      volumeMounts:

        - mountPath: "/usr/share/nginx/html"

          name: task-pv-storage

  dnsPolicy: ClusterFirst

  restartPolicy: Always

  volumes:

    - name: task-pv-storage

      persistentVolumeClaim:

      claimName: pvc-san-nvme

Create the PV and PVC

Steps

1. Create the PV.

kubectl create -f pv.yaml

2. Verify the PV status.

kubectl get pv

NAME        CAPACITY  ACCESS MODES  RECLAIM POLICY  STATUS    CLAIM

STORAGECLASS  REASON  AGE

pv-storage  4Gi       RWO           Retain          Available

7s

3. Create the PVC.
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kubectl create -f pvc.yaml

4. Verify the PVC status.

kubectl get pvc

NAME        STATUS VOLUME     CAPACITY ACCESS MODES STORAGECLASS AGE

pvc-storage Bound  pv-name 2Gi      RWO                       5m

5. Mount the volume in a pod.

kubectl create -f pv-pod.yaml

You can monitor the progress using kubectl get pod --watch.

6. Verify that the volume is mounted on /my/mount/path.

kubectl exec -it task-pv-pod -- df -h /my/mount/path

7. You can now delete the Pod. The Pod application will no longer exist, but the volume will remain.

kubectl delete pod task-pv-pod

Refer to Kubernetes and Trident objects for details on how storage classes interact with the

PersistentVolumeClaim and parameters for controlling how Astra Trident provisions volumes.

Expand volumes

Astra Trident provides Kubernetes users the ability to expand their volumes after they are

created. Find information about the configurations required to expand iSCSI and NFS

volumes.

Expand an iSCSI volume

You can expand an iSCSI Persistent Volume (PV) by using the CSI provisioner.

iSCSI volume expansion is supported by the ontap-san, ontap-san-economy, solidfire-

san drivers and requires Kubernetes 1.16 and later.

Step 1: Configure the StorageClass to support volume expansion

Edit the StorageClass definition to set the allowVolumeExpansion field to true.

5
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cat storageclass-ontapsan.yaml

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontap-san

provisioner: csi.trident.netapp.io

parameters:

  backendType: "ontap-san"

allowVolumeExpansion: True

For an already existing StorageClass, edit it to include the allowVolumeExpansion parameter.

Step 2: Create a PVC with the StorageClass you created

Edit the PVC definition and update the spec.resources.requests.storage to reflect the newly desired

size, which must be greater than the original size.

cat pvc-ontapsan.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: san-pvc

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

  storageClassName: ontap-san

Astra Trident creates a Persistent Volume (PV) and associates it with this Persistent Volume Claim (PVC).
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kubectl get pvc

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS   AGE

san-pvc   Bound    pvc-8a814d62-bd58-4253-b0d1-82f2885db671   1Gi

RWO            ontap-san      8s

kubectl get pv

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM             STORAGECLASS   REASON   AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671   1Gi        RWO

Delete           Bound    default/san-pvc   ontap-san               10s

Step 3: Define a pod that attaches the PVC

Attach the PV to a pod for it to be resized. There are two scenarios when resizing an iSCSI PV:

• If the PV is attached to a pod, Astra Trident expands the volume on the storage backend, rescans the

device, and resizes the filesystem.

• When attempting to resize an unattached PV, Astra Trident expands the volume on the storage backend.

After the PVC is bound to a pod, Trident rescans the device and resizes the filesystem. Kubernetes then

updates the PVC size after the expand operation has successfully completed.

In this example, a pod is created that uses the san-pvc.

 kubectl get pod

NAME         READY   STATUS    RESTARTS   AGE

ubuntu-pod   1/1     Running   0          65s

 kubectl describe pvc san-pvc

Name:          san-pvc

Namespace:     default

StorageClass:  ontap-san

Status:        Bound

Volume:        pvc-8a814d62-bd58-4253-b0d1-82f2885db671

Labels:        <none>

Annotations:   pv.kubernetes.io/bind-completed: yes

               pv.kubernetes.io/bound-by-controller: yes

               volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers:    [kubernetes.io/pvc-protection]

Capacity:      1Gi

Access Modes:  RWO

VolumeMode:    Filesystem

Mounted By:    ubuntu-pod

7



Step 4: Expand the PV

To resize the PV that has been created from 1Gi to 2Gi, edit the PVC definition and update the

spec.resources.requests.storage to 2Gi.

kubectl edit pvc san-pvc

# Please edit the object below. Lines beginning with a '#' will be

ignored,

# and an empty file will abort the edit. If an error occurs while saving

this file will be

# reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  annotations:

    pv.kubernetes.io/bind-completed: "yes"

    pv.kubernetes.io/bound-by-controller: "yes"

    volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

  creationTimestamp: "2019-10-10T17:32:29Z"

  finalizers:

  - kubernetes.io/pvc-protection

  name: san-pvc

  namespace: default

  resourceVersion: "16609"

  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/san-pvc

  uid: 8a814d62-bd58-4253-b0d1-82f2885db671

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 2Gi

 ...

Step 5: Validate the expansion

You can validate the expansion worked correctly by checking the size of the PVC, PV, and the Astra Trident

volume:
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kubectl get pvc san-pvc

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS   AGE

san-pvc   Bound    pvc-8a814d62-bd58-4253-b0d1-82f2885db671   2Gi

RWO            ontap-san      11m

kubectl get pv

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM             STORAGECLASS   REASON   AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671   2Gi        RWO

Delete           Bound    default/san-pvc   ontap-san               12m

tridentctl get volumes -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-8a814d62-bd58-4253-b0d1-82f2885db671 | 2.0 GiB | ontap-san     |

block    | a9b7bfff-0505-4e31-b6c5-59f492e02d33 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

Expand an NFS volume

Astra Trident supports volume expansion for NFS PVs provisioned on ontap-nas, ontap-nas-economy,

ontap-nas-flexgroup, gcp-cvs, and azure-netapp-files backends.

Step 1: Configure the StorageClass to support volume expansion

To resize an NFS PV, the admin first needs to configure the storage class to allow volume expansion by setting

the allowVolumeExpansion field to true:

cat storageclass-ontapnas.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontapnas

provisioner: csi.trident.netapp.io

parameters:

  backendType: ontap-nas

allowVolumeExpansion: true

If you have already created a storage class without this option, you can simply edit the existing storage class

by using kubectl edit storageclass to allow volume expansion.
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Step 2: Create a PVC with the StorageClass you created

cat pvc-ontapnas.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: ontapnas20mb

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 20Mi

  storageClassName: ontapnas

Astra Trident should create a 20MiB NFS PV for this PVC:

kubectl get pvc

NAME           STATUS   VOLUME

CAPACITY     ACCESS MODES   STORAGECLASS    AGE

ontapnas20mb   Bound    pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   20Mi

RWO            ontapnas        9s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM                  STORAGECLASS    REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   20Mi       RWO

Delete           Bound    default/ontapnas20mb   ontapnas

2m42s

Step 3: Expand the PV

To resize the newly created 20MiB PV to 1GiB, edit the PVC and set spec.resources.requests.storage

to 1GiB:
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kubectl edit pvc ontapnas20mb

# Please edit the object below. Lines beginning with a '#' will be

ignored,

# and an empty file will abort the edit. If an error occurs while saving

this file will be

# reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  annotations:

    pv.kubernetes.io/bind-completed: "yes"

    pv.kubernetes.io/bound-by-controller: "yes"

    volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

  creationTimestamp: 2018-08-21T18:26:44Z

  finalizers:

  - kubernetes.io/pvc-protection

  name: ontapnas20mb

  namespace: default

  resourceVersion: "1958015"

  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/ontapnas20mb

  uid: c1bd7fa5-a56f-11e8-b8d7-fa163e59eaab

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

...

Step 4: Validate the expansion

You can validate the resize worked correctly by checking the size of the PVC, PV, and the Astra Trident

volume:
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kubectl get pvc ontapnas20mb

NAME           STATUS   VOLUME

CAPACITY   ACCESS MODES   STORAGECLASS    AGE

ontapnas20mb   Bound    pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   1Gi

RWO            ontapnas        4m44s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM                  STORAGECLASS    REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   1Gi        RWO

Delete           Bound    default/ontapnas20mb   ontapnas

5m35s

tridentctl get volume pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 | 1.0 GiB | ontapnas      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

Import volumes

You can import existing storage volumes as a Kubernetes PV using tridentctl

import.

Overview and considerations

You might import a volume into Astra Trident to:

• Containerize an application and reuse its existing data set

• Use a clone of a data set for an ephemeral application

• Rebuild a failed Kubernetes cluster

• Migrate application data during disaster recovery

Considerations

Before importing a volume, review the following considerations.

• Astra Trident can import RW (read-write) type ONTAP volumes only. DP (data protection) type volumes are

SnapMirror destination volumes. You should break the mirror relationship before importing the volume into
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Astra Trident.

• We suggest importing volumes without active connections. To import an actively-used volume, clone the

volume and then perform the import.

This is especially important for block volumes as Kubernetes would be unaware of the

previous connection and could easily attach an active volume to a pod. This can result in

data corruption.

• Though StorageClass must be specified on a PVC, Astra Trident does not use this parameter during

import. Storage classes are used during volume creation to select from available pools based on storage

characteristics. Because the volume already exists, no pool selection is required during import. Therefore,

the import will not fail even if the volume exists on a backend or pool that does not match the storage class

specified in the PVC.

• The existing volume size is determined and set in the PVC. After the volume is imported by the storage

driver, the PV is created with a ClaimRef to the PVC.

◦ The reclaim policy is initially set to retain in the PV. After Kubernetes successfully binds the PVC and

PV, the reclaim policy is updated to match the reclaim policy of the Storage Class.

◦ If the reclaim policy of the Storage Class is delete, the storage volume will be deleted when the PV is

deleted.

• By default, Astra Trident manages the PVC and renames the FlexVol and LUN on the backend. You can

pass the --no-manage flag to import an unmanaged volume. If you use --no-manage, Astra Trident

does not perform any additional operations on the PVC or PV for the lifecycle of the objects. The storage

volume is not deleted when the PV is deleted and other operations such as volume clone and volume

resize are also ignored.

This option is useful if you want to use Kubernetes for containerized workloads but

otherwise want to manage the lifecycle of the storage volume outside of Kubernetes.

• An annotation is added to the PVC and PV that serves a dual purpose of indicating that the volume was

imported and if the PVC and PV are managed. This annotation should not be modified or removed.

Import a volume

You can use tridentctl import to import a volume.

Steps

1. Create the Persistent Volume Claim (PVC) file (for example, pvc.yaml) that will be used to create the

PVC. The PVC file should include name, namespace, accessModes, and storageClassName.

Optionally, you can specify unixPermissions in your PVC definition.

The following is an example of a minimum specification:
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kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: my_claim

  namespace: my_namespace

spec:

  accessModes:

    - ReadWriteOnce

  storageClassName: my_storage_class

Don’t include additional parameters such as PV name or volume size. This can cause the

import command to fail.

2. Use the tridentctl import command to specify the name of the Astra Trident backend containing the

volume and the name that uniquely identifies the volume on the storage (for example: ONTAP FlexVol,

Element Volume, Cloud Volumes Service path). The -f argument is required to specify the path to the

PVC file.

tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-

file>

Examples

Review the following volume import examples for supported drivers.

ONTAP NAS and ONTAP NAS FlexGroup

Astra Trident supports volume import using the ontap-nas and ontap-nas-flexgroup drivers.

• The ontap-nas-economy driver cannot import and manage qtrees.

• The ontap-nas and ontap-nas-flexgroup drivers do not allow duplicate volume

names.

Each volume created with the ontap-nas driver is a FlexVol on the ONTAP cluster. Importing FlexVols with

the ontap-nas driver works the same. A FlexVol that already exists on an ONTAP cluster can be imported as

a ontap-nas PVC. Similarly, FlexGroup vols can be imported as ontap-nas-flexgroup PVCs.

ONTAP NAS examples

The following show an example of a managed volume and an unmanaged volume import.
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Managed volume

The following example imports a volume named managed_volume on a backend named ontap_nas:

tridentctl import volume ontap_nas managed_volume -f <path-to-pvc-file>

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

Unmanaged volume

When using the --no-manage argument, Astra Trident does not rename the volume.

The following example imports unmanaged_volume on the ontap_nas backend:

tridentctl import volume nas_blog unmanaged_volume -f <path-to-pvc-

file> --no-manage

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-df07d542-afbc-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | false   |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

ONTAP SAN

Astra Trident supports volume import using the ontap-san driver. Volume import is not supported using the

ontap-san-economy driver.

Astra Trident can import ONTAP SAN FlexVols that contain a single LUN. This is consistent with the ontap-

san driver, which creates a FlexVol for each PVC and a LUN within the FlexVol. Astra Trident imports the

FlexVol and associates it with the PVC definition.
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ONTAP SAN examples

The following show an example of a managed volume and an unmanaged volume import.
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Managed volume

For managed volumes, Astra Trident renames the FlexVol to the pvc-<uuid> format and the LUN within

the FlexVol to lun0.

The following example imports the ontap-san-managed FlexVol that is present on the

ontap_san_default backend:

tridentctl import volume ontapsan_san_default ontap-san-managed -f pvc-

basic-import.yaml -n trident -d

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-d6ee4f54-4e40-4454-92fd-d00fc228d74a | 20 MiB | basic         |

block    | cd394786-ddd5-4470-adc3-10c5ce4ca757 | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

Unmanaged volume

The following example imports unmanaged_example_volume on the ontap_san backend:

tridentctl import volume -n trident san_blog unmanaged_example_volume

-f pvc-import.yaml --no-manage

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-1fc999c9-ce8c-459c-82e4-ed4380a4b228 | 1.0 GiB | san-blog      |

block    | e3275890-7d80-4af6-90cc-c7a0759f555a | online | false   |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+
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If you have LUNS mapped to igroups that share an IQN with a Kubernetes node IQN, as

shown in the following example, you will receive the error: LUN already mapped to

initiator(s) in this group. You will need to remove the initiator or unmap the LUN

to import the volume.

Element

Astra Trident supports NetApp Element software and NetApp HCI volume import using the solidfire-san

driver.

The Element driver supports duplicate volume names. However, Astra Trident returns an error if

there are duplicate volume names. As a workaround, clone the volume, provide a unique

volume name, and import the cloned volume.

Element example

The following example imports an element-managed volume on backend element_default.

tridentctl import volume element_default element-managed -f pvc-basic-

import.yaml -n trident -d

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-970ce1ca-2096-4ecd-8545-ac7edc24a8fe | 10 GiB | basic-element |

block    | d3ba047a-ea0b-43f9-9c42-e38e58301c49 | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

Google Cloud Platform

Astra Trident supports volume import using the gcp-cvs driver.
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To import a volume backed by the NetApp Cloud Volumes Service in Google Cloud Platform,

identify the volume by its volume path. The volume path is the portion of the volume’s export

path after the :/. For example, if the export path is 10.0.0.1:/adroit-jolly-swift, the

volume path is adroit-jolly-swift.

Google Cloud Platform example

The following example imports a gcp-cvs volume on backend gcpcvs_YEppr with the volume path of

adroit-jolly-swift.

tridentctl import volume gcpcvs_YEppr adroit-jolly-swift -f <path-to-pvc-

file> -n trident

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-a46ccab7-44aa-4433-94b1-e47fc8c0fa55 | 93 GiB | gcp-storage   | file

| e1a6e65b-299e-4568-ad05-4f0a105c888f | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

Azure NetApp Files

Astra Trident supports volume import using the azure-netapp-files driver.

To import an Azure NetApp Files volume, identify the volume by its volume path. The volume

path is the portion of the volume’s export path after the :/. For example, if the mount path is

10.0.0.2:/importvol1, the volume path is importvol1.

Azure NetApp Files example

The following example imports an azure-netapp-files volume on backend azurenetappfiles_40517

with the volume path importvol1.
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tridentctl import volume azurenetappfiles_40517 importvol1 -f <path-to-

pvc-file> -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-0ee95d60-fd5c-448d-b505-b72901b3a4ab | 100 GiB | anf-storage   |

file     | 1c01274f-d94b-44a3-98a3-04c953c9a51e | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

Share an NFS volume across namespaces

Using Astra Trident, you can create a volume in a primary namespace and share it in one

or more secondary namespaces.

Features

The Astra TridentVolumeReference CR allows you to securely share ReadWriteMany (RWX) NFS volumes

across one or more Kubernetes namespaces. This Kubernetes-native solution has the following benefits:

• Multiple levels of access control to ensure security

• Works with all Trident NFS volume drivers

• No reliance on tridentctl or any other non-native Kubernetes feature

This diagram illustrates NFS volume sharing across two Kubernetes namespaces.
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Quick start

You can set up NFS volume sharing in just a few steps.

 Configure source PVC to share the volume

The source namespace owner grants permission to access the data in the source PVC.

 Grant permission to create a CR in the destination namespace

The cluster administrator grants permission to the owner of the destination namespace to create the

TridentVolumeReference CR.

 Create TridentVolumeReference in the destination namespace

The owner of the destination namespace creates the TridentVolumeReference CR to refer to the source PVC.

 Create the subordinate PVC in the destination namespace

The owner of the destination namespace creates the subordinate PVC to use the data source from the source

PVC.
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Configure the source and destination namespaces

To ensure security, cross namespace sharing requires collaboration and action by the source namespace

owner, cluster administrator, and destination namespace owner. The user role is designated in each step.

Steps

1. Source namespace owner: Create the PVC (pvc1) in the source namespace that grants permission to

share with the destination namespace (namespace2) using the shareToNamespace annotation.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: pvc1

  namespace: namespace1

  annotations:

    trident.netapp.io/shareToNamespace: namespace2

spec:

  accessModes:

    - ReadWriteMany

  storageClassName: trident-csi

  resources:

    requests:

      storage: 100Gi

Astra Trident creates the PV and its backend NFS storage volume.

◦ You can share the PVC to multiple namespaces using a comma-delimited list. For

example, trident.netapp.io/shareToNamespace:

namespace2,namespace3,namespace4.

◦ You can share to all namespaces using *. For example,

trident.netapp.io/shareToNamespace: *

◦ You can update the PVC to include the shareToNamespace annotation at any time.

2. Cluster admin: Create the custom role and kubeconfig to grant permission to the destination namespace

owner to create the TridentVolumeReference CR in the destination namespace.

3. Destination namespace owner: Create a TridentVolumeReference CR in the destination namespace that

refers to the source namespace pvc1.
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apiVersion: trident.netapp.io/v1

kind: TridentVolumeReference

metadata:

  name: my-first-tvr

  namespace: namespace2

spec:

  pvcName: pvc1

  pvcNamespace: namespace1

4. Destination namespace owner: Create a PVC (pvc2) in destination namespace (namespace2) using

the shareFromPVC annotation to designate the source PVC.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  annotations:

    trident.netapp.io/shareFromPVC: namespace1/pvc1

  name: pvc2

  namespace: namespace2

spec:

  accessModes:

    - ReadWriteMany

  storageClassName: trident-csi

  resources:

    requests:

      storage: 100Gi

The size of the destination PVC must be less than or equal than the source PVC.

Results

Astra Trident reads the shareFromPVC annotation on the destination PVC and creates the destination PV as a

subordinate volume with no storage resource of its own that points to the source PV and shares the source PV

storage resource. The destination PVC and PV appear bound as normal.

Delete a shared volume

You can delete a volume that is shared across multiple namespaces. Astra Trident will remove access to the

volume on the source namespace and maintain access for other namespaces that share the volume. When all

namespaces that reference the volume are removed, Astra Trident deletes the volume.

Use tridentctl get to query subordinate volumes

Using the tridentctl utility, you can run the get command to get subordinate volumes. For more

information, refer to tridentctl commands and options.
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Usage:

  tridentctl get [option]

Flags:

• `-h, --help: Help for volumes.

• --parentOfSubordinate string: Limit query to subordinate source volume.

• --subordinateOf string: Limit query to subordinates of volume.

Limitations

• Astra Trident cannot prevent destination namespaces from writing to the shared volume. You should use

file locking or other processes to prevent overwriting shared volume data.

• You cannot revoke access to the source PVC by removing the shareToNamespace or

shareFromNamespace annotations or deleting the TridentVolumeReference CR. To revoke access,

you must delete the subordinate PVC.

• Snapshots, clones, and mirroring are not possible on subordinate volumes.

For more information

To learn more about cross-namespace volume access:

• Visit Sharing volumes between namespaces: Say hello to cross-namespace volume access.

Replicate volumes using SnapMirror

Using Astra Control Provisioner, you can create mirror relationships between a source

volume on one cluster and the destination volume on the peered cluster for replicating

data for disaster recovery. You can use a namespaced Custom Resource Definition

(CRD) to perform the following operations:

• Create mirror relationships between volumes (PVCs)

• Remove mirror relationships between volumes

• Break the mirror relationships

• Promote the secondary volume during disaster conditions (failovers)

• Perform lossless transition of applications from cluster to cluster (during planned failovers or migrations)

Replication prerequisites

Ensure that the following prerequisites are met before you begin:

ONTAP clusters

• Astra Control Provisioner: Astra Control Provisioner version 23.10 or later must exist on both the source

and destination Kubernetes clusters that utilize ONTAP as a backend.

• Licenses: ONTAP SnapMirror asynchronous licenses using the Data Protection bundle must be enabled
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on both the source and destination ONTAP clusters. Refer to SnapMirror licensing overview in ONTAP for

more information.

Peering

• Cluster and SVM: The ONTAP storage backends must be peered. Refer to Cluster and SVM peering

overview for more information.

Ensure that the SVM names used in the replication relationship between two ONTAP

clusters are unique.

• Astra Control Provisioner and SVM: The peered remote SVMs must be available to Astra Control

Provisioner on the destination cluster.

Supported drivers

• Volume replication is supported for the ontap-nas and ontap-san drivers.

Create a mirrored PVC

Follow these steps and use the CRD examples to create mirror relationship between primary and secondary

volumes.

Steps

1. Perform the following steps on the primary Kubernetes cluster:

a. Create a StorageClass object with the trident.netapp.io/replication: true parameter.

Example

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: csi-nas

provisioner: csi.trident.netapp.io

parameters:

  backendType: "ontap-nas"

  fsType: "nfs"

  trident.netapp.io/replication: "true"

b. Create a PVC with previously created StorageClass.

25

https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html


Example

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: csi-nas

spec:

  accessModes:

  - ReadWriteMany

  resources:

    requests:

      storage: 1Gi

  storageClassName: csi-nas

c. Create a MirrorRelationship CR with local information.

Example

kind: TridentMirrorRelationship

apiVersion: trident.netapp.io/v1

metadata:

  name: csi-nas

spec:

  state: promoted

  volumeMappings:

  - localPVCName: csi-nas

Astra Control Provisioner fetches the internal information for the volume and the volume’s current data

protection (DP) state, then populates the status field of the MirrorRelationship.

d. Get the TridentMirrorRelationship CR to obtain the internal name and SVM of the PVC.

kubectl get tmr csi-nas
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kind: TridentMirrorRelationship

apiVersion: trident.netapp.io/v1

metadata:

  name: csi-nas

  generation: 1

spec:

  state: promoted

  volumeMappings:

  - localPVCName: csi-nas

status:

  conditions:

  - state: promoted

    localVolumeHandle:

"datavserver:trident_pvc_3bedd23c_46a8_4384_b12b_3c38b313c1e1"

    localPVCName: csi-nas

    observedGeneration: 1

2. Perform the following steps on the secondary Kubernetes cluster:

a. Create a StorageClass with the trident.netapp.io/replication: true parameter.

Example

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: csi-nas

provisioner: csi.trident.netapp.io

parameters:

  trident.netapp.io/replication: true

b. Create a MirrorRelationship CR with destination and source information.

Example

kind: TridentMirrorRelationship

apiVersion: trident.netapp.io/v1

metadata:

  name: csi-nas

spec:

  state: established

  volumeMappings:

  - localPVCName: csi-nas

    remoteVolumeHandle:

"datavserver:trident_pvc_3bedd23c_46a8_4384_b12b_3c38b313c1e1"
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Astra Control Provisioner will create a SnapMirror relationship with the configured relationship policy

name (or default for ONTAP) and initialize it.

c. Create a PVC with previously created StorageClass to act as the secondary (SnapMirror destination).

Example

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: csi-nas

  annotations:

    trident.netapp.io/mirrorRelationship: csi-nas

spec:

  accessModes:

  - ReadWriteMany

resources:

  requests:

    storage: 1Gi

storageClassName: csi-nas

Astra Control Provisioner will check for the TridentMirrorRelationship CRD and fail to create the volume

if the relationship does not exist. If the relationship exists, Astra Control Provisioner will ensure the new

FlexVol volume is placed onto an SVM that is peered with the remote SVM defined in the

MirrorRelationship.

Volume Replication States

A Trident Mirror Relationship (TMR) is a CRD that represents one end of a replication relationship between

PVCs. The destination TMR has a state, which tells Astra Control Provisioner what the desired state is. The

destination TMR has the following states:

• Established: the local PVC is the destination volume of a mirror relationship, and this is a new relationship.

• Promoted: the local PVC is ReadWrite and mountable, with no mirror relationship currently in effect.

• Reestablished: the local PVC is the destination volume of a mirror relationship and was also previously in

that mirror relationship.

◦ The reestablished state must be used if the destination volume was ever in a relationship with the

source volume because it overwrites the destination volume contents.

◦ The reestablished state will fail if the volume was not previously in a relationship with the source.

Promote secondary PVC during an unplanned failover

Perform the following step on the secondary Kubernetes cluster:

• Update the spec.state field of TridentMirrorRelationship to promoted.
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Promote secondary PVC during a planned failover

During a planned failover (migration), perform the following steps to promote the secondary PVC:

Steps

1. On the primary Kubernetes cluster, create a snapshot of the PVC and wait until the snapshot is created.

2. On the primary Kubernetes cluster, create the SnapshotInfo CR to obtain internal details.

Example

kind: SnapshotInfo

apiVersion: trident.netapp.io/v1

metadata:

  name: csi-nas

spec:

  snapshot-name: csi-nas-snapshot

3. On secondary Kubernetes cluster, update the spec.state field of the TridentMirrorRelationship CR to

promoted and spec.promotedSnapshotHandle to be the internalName of the snapshot.

4. On secondary Kubernetes cluster, confirm the status (status.state field) of TridentMirrorRelationship to

promoted.

Restore a mirror relationship after a failover

Before restoring a mirror relationship, choose the side that you want to make as the new primary.

Steps

1. On the secondary Kubernetes cluster, ensure that the values for the spec.remoteVolumeHandle field on

the TridentMirrorRelationship is updated.

2. On secondary Kubernetes cluster, update the spec.mirror field of TridentMirrorRelationship to

reestablished.

Additional operations

Astra Control Provisioner supports the following operations on the primary and secondary volumes:

Replicate primary PVC to a new secondary PVC

Ensure that you already have a primary PVC and a secondary PVC.

Steps

1. Delete the PersistentVolumeClaim and TridentMirrorRelationship CRDs from the established secondary

(destination) cluster.

2. Delete the TridentMirrorRelationship CRD from the primary (source) cluster.

3. Create a new TridentMirrorRelationship CRD on the primary (source) cluster for the new secondary

(destination) PVC you want to establish.
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Resize a mirrored, primary or secondary PVC

The PVC can be resized as normal, ONTAP will automatically expand any destination flevxols if the amount of

data exceeds the current size.

Remove replication from a PVC

To remove replication, perform one of the following operations on the current secondary volume:

• Delete the MirrorRelationship on the secondary PVC. This breaks the replication relationship.

• Or, update the spec.state field to promoted.

Delete a PVC (that was previously mirrored)

Astra Control Provisioner checks for replicated PVCs, and releases the replication relationship before

attempting to delete the volume.

Delete a TMR

Deleting a TMR on one side of a mirrored relationship causes the remaining TMR to transition to promoted

state before Astra Control Provisioner completes the deletion. If the TMR selected for deletion is already in

promoted state, there is no existing mirror relationship and the TMR will be removed and Astra Control

Provisioner will promote the local PVC to ReadWrite. This deletion releases SnapMirror metadata for the local

volume in ONTAP. If this volume is used in a mirror relationship in the future, it must use a new TMR with an

established volume replication state when creating the new mirror relationship.

Update mirror relationships when ONTAP is online

Mirror relationships can be updated any time after they are established. You can use the state: promoted

or state: reestablished fields to update the relationships.

When promoting a destination volume to a regular ReadWrite volume, you can use promotedSnapshotHandle

to specify a specific snapshot to restore the current volume to.

Update mirror relationships when ONTAP is offline

You can use a CRD to perform a SnapMirror update without Astra Control having direct connectivity to the

ONTAP cluster. Refer to the following example format of the TridentActionMirrorUpdate:

Example

apiVersion: trident.netapp.io/v1

kind: TridentActionMirrorUpdate

metadata:

  name: update-mirror-b

spec:

  snapshotHandle: "pvc-1234/snapshot-1234"

  tridentMirrorRelationshipName: mirror-b

status.state reflects the state of the TridentActionMirrorUpdate CRD. It can take a value from Succeeded,

In Progress, or Failed.
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Enable Astra Control Provisioner

Trident versions 23.10 and later include the option to use Astra Control Provisioner, which

enables licensed Astra Control users to access advanced storage provisioning

functionality. Astra Control Provisioner provides this extended functionality in addition to

standard Astra Trident CSI-based functionality. You can use this procedure to enable and

install Astra Control Provisioner.

Your Astra Control Service subscription automatically includes the license for Astra Control Provisioner use.

In coming Astra Control updates, Astra Control Provisioner will replace Astra Trident as storage provisioner

and orchestrator and be mandatory for Astra Control use. Because of this, it’s strongly recommended that

Astra Control users enable Astra Control Provisioner. Astra Trident will continue to remain open source and be

released, maintained, supported, and updated with new CSI and other features from NetApp.

How do I know if I need to enable Astra Control Provisioner?

If you add a cluster to Astra Control Service that does not have Astra Trident previously installed, the cluster

will be marked as Eligible. After you add the cluster to Astra Control, Astra Control Provisioner will be

automatically enabled.

If your cluster is not marked Eligible, it will be marked Partially eligible because of one of the

following:

• It’s using an older version of Astra Trident

• It’s using an Astra Trident 23.10 that does not yet have the provisioner option enabled

• It’s a cluster type that does not allow automatic enablement

For Partially eligible cases, use these instructions to manually enable Astra Control Provisioner for

your cluster.

31

https://docs.netapp.com/us-en/trident-2402/get-started/add-first-cluster.html


Before you enable Astra Control Provisioner

If you have an existing Astra Trident without Astra Control Provisioner and want to enable Astra Control

Provisioner, do the following first:

• If you have Astra Trident installed, confirm that its version is within a four-release window: You can

perform a direct upgrade to Astra Trident 24.02 with Astra Control Provisioner if your Astra Trident is within

a four-release window of version 24.02. For example, you can directly upgrade from Astra Trident 23.04 to

24.02.

• Confirm that your cluster has an AMD64 system architecture: The Astra Control Provisioner image is

provided in both AMD64 and ARM64 CPU architectures, but only AMD64 is supported by Astra Control.

Steps

1. Access the NetApp Astra Control image registry:

a. Log on to the Astra Control Service UI and record your Astra Control account ID.

i. Select the figure icon at the top right of the page.

ii. Select API access.

iii. Write down your account ID.

b. From the same page, select Generate API token and copy the API token string to the clipboard and

save it in your editor.

c. Log into the Astra Control registry using your preferred method:

docker login cr.astra.netapp.io -u <account-id> -p <api-token>
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crane auth login cr.astra.netapp.io -u <account-id> -p <api-token>

2. (Custom registries only) Follow these steps to move the image to your custom registry. If you aren’t using a

registry, follow the Trident operator steps in the next section.

You can use Podman instead of Docker for the following commands. If you are using a

Windows environment, PowerShell is recommended.

Docker

1. Pull the Astra Control Provisioner image from the registry:

The image pulled will not support multiple platforms and will only support the same

platform as the host that pulled the image, such as Linux AMD64.

docker pull cr.astra.netapp.io/astra/trident-acp:24.02.0

--platform <cluster platform>

Example:

docker pull cr.astra.netapp.io/astra/trident-acp:24.02.0

--platform linux/amd64

2. Tag the image:

docker tag cr.astra.netapp.io/astra/trident-acp:24.02.0

<my_custom_registry>/trident-acp:24.02.0

3. Push the image to your custom registry:

docker push <my_custom_registry>/trident-acp:24.02.0

Crane

1. Copy the Astra Control Provisioner manifest to your custom registry:

crane copy cr.astra.netapp.io/astra/trident-acp:24.02.0

<my_custom_registry>/trident-acp:24.02.0

3. Determine if the original Astra Trident installation method used an operator (either manually or with Helm)

or tridentctl.
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4. Enable Astra Control Provisioner in Astra Trident using the installation method you used originally:
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Astra Trident operator

1. Download the Astra Trident installer and extract it.

2. Complete these steps if you have not yet installed Astra Trident or if you removed the operator

from your original Astra Trident deployment:

a. Create the CRD:

kubectl create -f

deploy/crds/trident.netapp.io_tridentorchestrators_crd_post1.1

6.yaml

b. Create the trident namespace (kubectl create namespace trident) or confirm that the

trident namespace still exists (kubectl get all -n trident). If the namespace has

been removed, create it again.

3. Update Astra Trident to 24.02.0:

For clusters running Kubernetes 1.24 or earlier, use bundle_pre_1_25.yaml.

For clusters running Kubernetes 1.25 or later, use bundle_post_1_25.yaml.

kubectl -n trident apply -f trident-installer/deploy/<bundle-

name.yaml>

4. Verify Astra Trident is running:

kubectl get torc -n trident

Response:

NAME      AGE

trident   21m

5. If you have a registry that uses secrets, create a secret to use to pull the Astra Control

Provisioner image:

kubectl create secret docker-registry <secret_name> -n trident

--docker-server=<my_custom_registry> --docker-username=<username>

--docker-password=<token>

6. Edit the TridentOrchestrator CR and make the following edits:
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kubectl edit torc trident -n trident

a. Set a custom registry location for the Astra Trident image or pull it from the Astra Control

registry (tridentImage: <my_custom_registry>/trident:24.02.0 or

tridentImage: netapp/trident:24.02.0).

b. Enable Astra Control Provisioner (enableACP: true).

c. Set the custom registry location for the Astra Control Provisioner image or pull it from the

Astra Control registry (acpImage: <my_custom_registry>/trident-acp:24.02.0 or

acpImage: cr.astra.netapp.io/astra/trident-acp:24.02.0).

d. If you established image pull secrets earlier in this procedure, you can set them here

(imagePullSecrets: - <secret_name>). Use the same name secret name you

established in the previous steps.

apiVersion: trident.netapp.io/v1

kind: TridentOrchestrator

metadata:

  name: trident

spec:

  debug: true

  namespace: trident

  tridentImage: <registry>/trident:24.02.0

  enableACP: true

  acpImage: <registry>/trident-acp:24.02.0

  imagePullSecrets:

  - <secret_name>

7. Save and exit the file. The deployment process will begin automatically.

8. Verify the operator, deployment, and replicasets are created.

kubectl get all -n trident

There should only be one instance of the operator in a Kubernetes cluster. Do not

create multiple deployments of the Astra Trident operator.

9. Verify the trident-acp container is running and that acpVersion is 24.02.0 with a status of

Installed:

kubectl get torc -o yaml

Response:
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status:

  acpVersion: 24.02.0

  currentInstallationParams:

    ...

    acpImage: <registry>/trident-acp:24.02.0

    enableACP: "true"

    ...

  ...

  status: Installed

tridentctl

1. Download the Astra Trident installer and extract it.

2. If you have an existing Astra Trident, uninstall it from the cluster that hosts it.

3. Install Astra Trident with Astra Control Provisioner enabled (--enable-acp=true):

./tridentctl -n trident install --enable-acp=true --acp

-image=mycustomregistry/trident-acp:24.02

4. Confirm that Astra Control Provisioner has been enabled:

./tridentctl -n trident version

Response:

+----------------+----------------+-------------+ | SERVER

VERSION | CLIENT VERSION | ACP VERSION | +----------------

+----------------+-------------+ | 24.02.0 | 24.02.0 | 24.02.0. |

+----------------+----------------+-------------+

Helm

1. If you have Astra Trident 23.07.1 or earlier installed, uninstall the operator and other components.

2. If your Kubernetes cluster is running 1.24 or earlier, delete psp:

kubectl delete psp tridentoperatorpod

3. Add the Astra Trident Helm repository:
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helm repo add netapp-trident https://netapp.github.io/trident-

helm-chart

4. Update the Helm chart:

helm repo update netapp-trident

Response:

Hang tight while we grab the latest from your chart

repositories...

...Successfully got an update from the "netapp-trident" chart

repository

Update Complete. ⎈Happy Helming!⎈

5. List the images:

./tridentctl images -n trident

Response:

| v1.28.0            | netapp/trident:24.02.0|

|                    | docker.io/netapp/trident-

autosupport:24.02|

|                    | registry.k8s.io/sig-storage/csi-

provisioner:v4.0.0|

|                    | registry.k8s.io/sig-storage/csi-

attacher:v4.5.0|

|                    | registry.k8s.io/sig-storage/csi-

resizer:v1.9.3|

|                    | registry.k8s.io/sig-storage/csi-

snapshotter:v6.3.3|

|                    | registry.k8s.io/sig-storage/csi-node-

driver-registrar:v2.10.0 |

|                    | netapp/trident-operator:24.02.0 (optional)

6. Ensure that trident-operator 24.02.0 is available:

helm search repo netapp-trident/trident-operator --versions

Response:
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NAME                            CHART VERSION   APP VERSION

DESCRIPTION

netapp-trident/trident-operator 100.2402.0      24.02.0         A

7. Use helm install and run one of the following options that include these settings:

▪ A name for your deployment location

▪ The Astra Trident version

▪ The name of the Astra Control Provisioner image

▪ The flag to enable the provisioner

▪ (Optional) A local registry path. If you are using a local registry, your Trident images can be

located in one registry or different registries, but all CSI images must be located in the same

registry.

▪ The Trident namespace

Options

◦ Images without a registry

helm install trident netapp-trident/trident-operator --version

100.2402.0 --set acpImage=cr.astra.netapp.io/astra/trident-

acp:24.02.0 --set enableACP=true --set operatorImage=netapp/trident-

operator:24.02.0 --set

tridentAutosupportImage=docker.io/netapp/trident-autosupport:24.02

--set tridentImage=netapp/trident:24.02.0 --namespace trident

◦ Images in one or more registries

helm install trident netapp-trident/trident-operator --version

100.2402.0 --set acpImage=<your-registry>:<acp image> --set

enableACP=true --set imageRegistry=<your-registry>/sig-storage --set

operatorImage=netapp/trident-operator:24.02.0 --set

tridentAutosupportImage=docker.io/netapp/trident-autosupport:24.02

--set tridentImage=netapp/trident:24.02.0 --namespace trident

You can use helm list to review installation details such as name, namespace, chart, status, app

version, and revision number.
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If you have any issues deploying Trident using Helm, run this command to fully

uninstall Astra Trident:

./tridentctl uninstall -n trident

Do not completely remove Astra Trident CRDs as part of your uninstall before

attempting to enable Astra Control Provisioner again.

Result

Astra Control Provisioner functionality is enabled and you can use any features available for the version you

are running.

After Astra Control Provisioner is installed, the cluster hosting the provisioner in the Astra Control UI will show

an ACP version rather than Trident version field and current installed version number.

For more information

• Astra Trident upgrades documentation

Use CSI Topology

Astra Trident can selectively create and attach volumes to nodes present in a Kubernetes

cluster by making use of the CSI Topology feature.

Overview

Using the CSI Topology feature, access to volumes can be limited to a subset of nodes, based on regions and

availability zones. Cloud providers today enable Kubernetes administrators to spawn nodes that are zone

based. Nodes can be located in different availability zones within a region, or across various regions. To

facilitate the provisioning of volumes for workloads in a multi-zone architecture, Astra Trident uses CSI

Topology.

Learn more about the CSI Topology feature here.

Kubernetes provides two unique volume binding modes:
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• With VolumeBindingMode set to Immediate, Astra Trident creates the volume without any topology

awareness. Volume binding and dynamic provisioning are handled when the PVC is created. This is the

default VolumeBindingMode and is suited for clusters that do not enforce topology constraints. Persistent

Volumes are created without having any dependency on the requesting pod’s scheduling requirements.

• With VolumeBindingMode set to WaitForFirstConsumer, the creation and binding of a Persistent

Volume for a PVC is delayed until a pod that uses the PVC is scheduled and created. This way, volumes

are created to meet the scheduling constraints that are enforced by topology requirements.

The WaitForFirstConsumer binding mode does not require topology labels. This can be

used independent of the CSI Topology feature.

What you’ll need

To make use of CSI Topology, you need the following:

• A Kubernetes cluster running a supported Kubernetes version

kubectl version

Client Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:50:19Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

Server Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:41:49Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

• Nodes in the cluster should have labels that introduce topology awareness

(topology.kubernetes.io/region and topology.kubernetes.io/zone). These labels should

be present on nodes in the cluster before Astra Trident is installed for Astra Trident to be topology

aware.
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kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{.metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"

[node1,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node1","kubernetes.io/

os":"linux","node-

role.kubernetes.io/master":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-a"}]

[node2,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node2","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-b"}]

[node3,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node3","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-c"}]

Step 1: Create a topology-aware backend

Astra Trident storage backends can be designed to selectively provision volumes based on availability zones.

Each backend can carry an optional supportedTopologies block that represents a list of zones and regions

that must be supported. For StorageClasses that make use of such a backend, a volume would only be

created if requested by an application that is scheduled in a supported region/zone.

Here is an example backend definition:
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YAML

---

version: 1

storageDriverName: ontap-san

backendName: san-backend-us-east1

managementLIF: 192.168.27.5

svm: iscsi_svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-east1

  topology.kubernetes.io/zone: us-east1-a

- topology.kubernetes.io/region: us-east1

  topology.kubernetes.io/zone: us-east1-b

JSON

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "san-backend-us-east1",

 "managementLIF": "192.168.27.5",

 "svm": "iscsi_svm",

 "username": "admin",

 "password": "password",

 "supportedTopologies": [

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-a"},

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-b"}

]

}

supportedTopologies is used to provide a list of regions and zones per backend. These

regions and zones represent the list of permissible values that can be provided in a

StorageClass. For StorageClasses that contain a subset of the regions and zones provided in a

backend, Astra Trident will create a volume on the backend.

You can define supportedTopologies per storage pool as well. See the following example:
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---

version: 1

storageDriverName: ontap-nas

backendName: nas-backend-us-central1

managementLIF: 172.16.238.5

svm: nfs_svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-central1

  topology.kubernetes.io/zone: us-central1-a

- topology.kubernetes.io/region: us-central1

  topology.kubernetes.io/zone: us-central1-b

storage:

- labels:

    workload: production

  region: Iowa-DC

  zone: Iowa-DC-A

  supportedTopologies:

  - topology.kubernetes.io/region: us-central1

    topology.kubernetes.io/zone: us-central1-a

- labels:

    workload: dev

  region: Iowa-DC

  zone: Iowa-DC-B

  supportedTopologies:

  - topology.kubernetes.io/region: us-central1

    topology.kubernetes.io/zone: us-central1-b

In this example, the region and zone labels stand for the location of the storage pool.

topology.kubernetes.io/region and topology.kubernetes.io/zone dictate where the storage

pools can be consumed from.

Step 2: Define StorageClasses that are topology aware

Based on the topology labels that are provided to the nodes in the cluster, StorageClasses can be defined to

contain topology information. This will determine the storage pools that serve as candidates for PVC requests

made, and the subset of nodes that can make use of the volumes provisioned by Trident.

See the following example:
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apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

name: netapp-san-us-east1

provisioner: csi.trident.netapp.io

volumeBindingMode: WaitForFirstConsumer

allowedTopologies:

- matchLabelExpressions:

- key: topology.kubernetes.io/zone

  values:

  - us-east1-a

  - us-east1-b

- key: topology.kubernetes.io/region

  values:

  - us-east1

parameters:

  fsType: "ext4"

In the StorageClass definition provided above, volumeBindingMode is set to WaitForFirstConsumer.

PVCs that are requested with this StorageClass will not be acted upon until they are referenced in a pod. And,

allowedTopologies provides the zones and region to be used. The netapp-san-us-east1 StorageClass

will create PVCs on the san-backend-us-east1 backend defined above.

Step 3: Create and use a PVC

With the StorageClass created and mapped to a backend, you can now create PVCs.

See the example spec below:

---

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san

spec:

accessModes:

  - ReadWriteOnce

resources:

  requests:

    storage: 300Mi

storageClassName: netapp-san-us-east1

Creating a PVC using this manifest would result in the following:
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kubectl create -f pvc.yaml

persistentvolumeclaim/pvc-san created

kubectl get pvc

NAME      STATUS    VOLUME   CAPACITY   ACCESS MODES   STORAGECLASS

AGE

pvc-san   Pending                                      netapp-san-us-east1

2s

kubectl describe pvc

Name:          pvc-san

Namespace:     default

StorageClass:  netapp-san-us-east1

Status:        Pending

Volume:

Labels:        <none>

Annotations:   <none>

Finalizers:    [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode:    Filesystem

Mounted By:    <none>

Events:

  Type    Reason                Age   From                         Message

  ----    ------                ----  ----                         -------

  Normal  WaitForFirstConsumer  6s    persistentvolume-controller  waiting

for first consumer to be created before binding

For Trident to create a volume and bind it to the PVC, use the PVC in a pod. See the following example:
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apiVersion: v1

kind: Pod

metadata:

  name: app-pod-1

spec:

  affinity:

    nodeAffinity:

      requiredDuringSchedulingIgnoredDuringExecution:

        nodeSelectorTerms:

        - matchExpressions:

          - key: topology.kubernetes.io/region

            operator: In

            values:

            - us-east1

      preferredDuringSchedulingIgnoredDuringExecution:

      - weight: 1

        preference:

          matchExpressions:

          - key: topology.kubernetes.io/zone

            operator: In

            values:

            - us-east1-a

            - us-east1-b

  securityContext:

    runAsUser: 1000

    runAsGroup: 3000

    fsGroup: 2000

  volumes:

  - name: vol1

    persistentVolumeClaim:

      claimName: pvc-san

  containers:

  - name: sec-ctx-demo

    image: busybox

    command: [ "sh", "-c", "sleep 1h" ]

    volumeMounts:

    - name: vol1

      mountPath: /data/demo

    securityContext:

      allowPrivilegeEscalation: false

This podSpec instructs Kubernetes to schedule the pod on nodes that are present in the us-east1 region,

and choose from any node that is present in the us-east1-a or us-east1-b zones.

See the following output:
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kubectl get pods -o wide

NAME        READY   STATUS    RESTARTS   AGE   IP               NODE

NOMINATED NODE   READINESS GATES

app-pod-1   1/1     Running   0          19s   192.168.25.131   node2

<none>           <none>

kubectl get pvc -o wide

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS          AGE   VOLUMEMODE

pvc-san   Bound    pvc-ecb1e1a0-840c-463b-8b65-b3d033e2e62b   300Mi

RWO            netapp-san-us-east1   48s   Filesystem

Update backends to include supportedTopologies

Pre-existing backends can be updated to include a list of supportedTopologies using tridentctl

backend update. This will not affect volumes that have already been provisioned, and will only be used for

subsequent PVCs.

Find more information

• Manage resources for containers

• nodeSelector

• Affinity and anti-affinity

• Taints and Tolerations

Work with snapshots

Kubernetes volume snapshots of Persistent Volumes (PVs) enable point-in-time copies of

volumes. You can create a snapshot of a volume created using Astra Trident, import a

snapshot created outside of Astra Trident, create a new volume from an existing

snapshot, and recover volume data from snapshots.

Overview

Volume snapshot is supported by ontap-nas, ontap-nas-flexgroup, ontap-san, ontap-san-

economy, solidfire-san, gcp-cvs, and azure-netapp-files drivers.

Before you begin

You must have an external snapshot controller and Custom Resource Definitions (CRDs) to work with

snapshots. This is the responsibility of the Kubernetes orchestrator (for example: Kubeadm, GKE, OpenShift).

If your Kubernetes distribution does not include the snapshot controller and CRDs, refer to Deploy a volume

snapshot controller.

Don’t create a snapshot controller if creating on-demand volume snapshots in a GKE

environment. GKE uses a built-in, hidden snapshot controller.
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Create a volume snapshot

Steps

1. Create a VolumeSnapshotClass. For more information, refer to VolumeSnapshotClass.

◦ The driver points to the Astra Trident CSI driver.

◦ deletionPolicy can be Delete or Retain. When set to Retain, the underlying physical snapshot

on the storage cluster is retained even when the VolumeSnapshot object is deleted.

Example

cat snap-sc.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

  name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

2. Create a snapshot of an existing PVC.

Examples

◦ This example creates a snapshot of an existing PVC.

cat snap.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

  name: pvc1-snap

spec:

  volumeSnapshotClassName: csi-snapclass

  source:

    persistentVolumeClaimName: pvc1

◦ This example creates a volume snapshot object for a PVC named pvc1 and the name of the snapshot

is set to pvc1-snap. A VolumeSnapshot is analogous to a PVC and is associated with a

VolumeSnapshotContent object that represents the actual snapshot.

kubectl create -f snap.yaml

volumesnapshot.snapshot.storage.k8s.io/pvc1-snap created

kubectl get volumesnapshots

NAME                   AGE

pvc1-snap              50s

◦ You can identify the VolumeSnapshotContent object for the pvc1-snap VolumeSnapshot by
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describing it. The Snapshot Content Name identifies the VolumeSnapshotContent object which

serves this snapshot. The Ready To Use parameter indicates that the snapshot can be used to

create a new PVC.

kubectl describe volumesnapshots pvc1-snap

Name:         pvc1-snap

Namespace:    default

.

.

.

Spec:

  Snapshot Class Name:    pvc1-snap

  Snapshot Content Name:  snapcontent-e8d8a0ca-9826-11e9-9807-

525400f3f660

  Source:

    API Group:

    Kind:       PersistentVolumeClaim

    Name:       pvc1

Status:

  Creation Time:  2019-06-26T15:27:29Z

  Ready To Use:   true

  Restore Size:   3Gi

.

.

Create a PVC from a volume snapshot

You can use dataSource to create a PVC using a VolumeSnapshot named <pvc-name> as the source of the

data. After the PVC is created, it can be attached to a pod and used just like any other PVC.

The PVC will be created in the same backend as the source volume. Refer to KB: Creating a

PVC from a Trident PVC Snapshot cannot be created in an alternate backend.

The following example creates the PVC using pvc1-snap as the data source.
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cat pvc-from-snap.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  name: pvc-from-snap

spec:

  accessModes:

    - ReadWriteOnce

  storageClassName: golden

  resources:

    requests:

      storage: 3Gi

  dataSource:

    name: pvc1-snap

    kind: VolumeSnapshot

    apiGroup: snapshot.storage.k8s.io

Import a volume snapshot

Astra Trident supports the Kubernetes pre-provisioned snapshot process to enable the cluster administrator to

create a VolumeSnapshotContent object and import snapshots created outside of Astra Trident.

Before you begin

Astra Trident must have created or imported the snapshot’s parent volume.

Steps

1. Cluster admin: Create a VolumeSnapshotContent object that references the backend snapshot. This

initiates the snapshot workflow in Astra Trident.

◦ Specify the name of the backend snapshot in annotations as

trident.netapp.io/internalSnapshotName: <"backend-snapshot-name">.

◦ Specify <name-of-parent-volume-in-trident>/<volume-snapshot-content-name> in

snapshotHandle. This is the only information provided to Astra Trident by the external snapshotter in

the ListSnapshots call.

The <volumeSnapshotContentName> cannot always match the backend snapshot

name due to CR naming constraints.

Example

The following example creates a VolumeSnapshotContent object that references backend snapshot

snap-01.
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apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotContent

metadata:

  name: import-snap-content

  annotations:

    trident.netapp.io/internalSnapshotName: "snap-01"  # This is the

name of the snapshot on the backend

spec:

  deletionPolicy: Retain

  driver: csi.trident.netapp.io

  source:

    snapshotHandle: pvc-f71223b5-23b9-4235-bbfe-e269ac7b84b0/import-

snap-content # <import PV name or source PV name>/<volume-snapshot-

content-name>

2. Cluster admin: Create the VolumeSnapshot CR that references the VolumeSnapshotContent object.

This requests access to use the VolumeSnapshot in a given namespace.

Example

The following example creates a VolumeSnapshot CR named import-snap that references the

VolumeSnapshotContent named import-snap-content.

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

  name: import-snap

spec:

  # volumeSnapshotClassName: csi-snapclass (not required for pre-

provisioned or imported snapshots)

  source:

    volumeSnapshotContentName: import-snap-content

3. Internal processing (no action required): The external snapshotter recognizes the newly created

VolumeSnapshotContent and runs the ListSnapshots call. Astra Trident creates the

TridentSnapshot.

◦ The external snapshotter sets the VolumeSnapshotContent to readyToUse and the

VolumeSnapshot to true.

◦ Trident returns readyToUse=true.

4. Any user: Create a PersistentVolumeClaim to reference the new VolumeSnapshot, where the

spec.dataSource (or spec.dataSourceRef) name is the VolumeSnapshot name.

Example

The following example creates a PVC referencing the VolumeSnapshot named import-snap.
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apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  name: pvc-from-snap

spec:

  accessModes:

    - ReadWriteOnce

  storageClassName: simple-sc

  resources:

    requests:

      storage: 1Gi

  dataSource:

    name: import-snap

    kind: VolumeSnapshot

    apiGroup: snapshot.storage.k8s.io

Recover volume data using snapshots

The snapshot directory is hidden by default to facilitate maximum compatibility of volumes provisioned using

the ontap-nas and ontap-nas-economy drivers. Enable the .snapshot directory to recover data from

snapshots directly.

Use the volume snapshot restore ONTAP CLI to to restore a volume to a state recorded in a prior snapshot.

cluster1::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3_snap_archive

When you restore a snapshot copy, the existing volume configuration is overwritten. Changes

made to volume data after the snapshot copy was created are lost.

The snapshot directory is hidden by default to facilitate maximum compatibility of volumes provisioned using

the ontap-nas and ontap-nas-economy drivers. Enable the .snapshot directory to recover data from

snapshots directly.

When you restore a snapshot copy, the existing volume configuration is overwritten. Changes

made to volume data after the snapshot copy was created are lost.

In-place volume restoration from a snapshot

Astra Control Provisioner provides rapid, in-place volume restoration from a snapshot using the

TridentActionSnapshotRestore (TASR) CR. This CR functions as an imperative Kubernetes action and

does not persist after the operation completes.

Astra Control Provisioner supports snapshot restore on the ontap-san, ontap-san-economy, ontap-nas,

ontap-nas-flexgroup, azure-netapp-files, gcp-cvs, and solidfire-san drivers.
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Before you begin

You must have a bound PVC and available volume snapshot.

• Verify the PVC status is bound.

kubectl get pvc

• Verify the volume snapshot is ready to use.

kubectl get vs

Steps

1. Create the TASR CR. This example creates a CR for PVC pvc1 and volume snapshot pvc1-snapshot.

cat tasr-pvc1-snapshot.yaml

apiVersion: v1

kind: TridentActionSnapshotRestore

metadata:

  name: this-doesnt-matter

  namespace: trident

spec:

  pvcName: pvc1

  volumeSnapshotName: pvc1-snapshot

2. Apply the CR to restore from the snapshot. This example restores from snapshot pvc1.

kubectl create -f tasr-pvc1-snapshot.yaml

tridentactionsnapshotrestore.trident.netapp.io/this-doesnt-matter

created

Results

Astra Control Provisioner restores the data from the snapshot. You can verify the snapshot restore status.
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kubectl get tasr -o yaml

apiVersion: v1

items:

- apiVersion: trident.netapp.io/v1

  kind: TridentActionSnapshotRestore

  metadata:

    creationTimestamp: "2023-04-14T00:20:33Z"

    generation: 3

    name: this-doesnt-matter

    namespace: trident

    resourceVersion: "3453847"

    uid: <uid>

  spec:

    pvcName: pvc1

    volumeSnapshotName: pvc1-snapshot

  status:

    startTime: "2023-04-14T00:20:34Z"

    completionTime: "2023-04-14T00:20:37Z"

    state: Succeeded

kind: List

metadata:

  resourceVersion: ""

• In most cases, Astra Control Provisioner will not automatically retry the operation in case of

failure. You will need to perform the operation again.

• Kubernetes users without admin access might have to be granted permission by the admin

to create a TASR CR in their application namespace.

Use the volume snapshot restore ONTAP CLI to to restore a volume to a state recorded in a prior snapshot.

cluster1::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3_snap_archive

Delete a PV with associated snapshots

When deleting a Persistent Volume with associated snapshots, the corresponding Trident volume is updated to

a “Deleting state”. Remove the volume snapshots to delete the Astra Trident volume.

Deploy a volume snapshot controller

If your Kubernetes distribution does not include the snapshot controller and CRDs, you can deploy them as

follows.

Steps
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1. Create volume snapshot CRDs.

cat snapshot-setup.sh

#!/bin/bash

# Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents.yam

l

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml

2. Create the snapshot controller.

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

If necessary, open deploy/kubernetes/snapshot-controller/rbac-snapshot-

controller.yaml and update namespace to your namespace.

Related links

• Volume snapshots

• VolumeSnapshotClass
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