Reference
Astra Trident

NetApp
January 14, 2026

This PDF was generated from https://docs.netapp.com/us-en/trident-2402/trident-reference/ports.html on
January 14, 2026. Always check docs.netapp.com for the latest.



Table of Contents

Reference
Astra Trident ports
Astra Trident ports
Astra Trident REST API

When to use the REST API
Using REST API

Command-line options

Logging
Kubernetes
Docker
REST

Kubernetes and Trident objects

How do the objects interact with one another?
Kubernetes PersistentVolumeClaim objects
Kubernetes PersistentvVolume objects
Kubernetes SstorageClass objects
Kubernetes volumeSnapshotClass objects
Kubernetes VolumeSnapshot objects
Kubernetes volumeSnapshotContent objects
Kubernetes CustomResourceDefinition objects
Astra Trident StorageClass objects

Astra Trident backend objects

Astra Trident StoragePool objects

Astra Trident Vvolume objects

Astra Trident Snapshot objects

Astra Trident ResourceQuota object

Pod Security Standards (PSS) and Security Context Constraints (SCC)
Required Kubernetes Security Context and Related Fields

Pod Security Standards (PSS)
Pod Security Policies (PSP)
Security Context Constraints (SCC)

D O AW W WWNDNDN-_2 A A~ A

- A A A A A A A A A A =
o OO OO oo AW INDN-_2 2 A~ O O ©



Reference
Astra Trident ports
Learn more about the ports that Astra Trident uses for communication.

Astra Trident ports

Astra Trident communicates over the following ports:

Port Purpose

8443 Backchannel HTTPS

8001 Prometheus metrics endpoint

8000 Trident REST server

17546 Liveness/readiness probe port used by Trident daemonset pods

The liveness/readiness probe port can be changed during installation using the —-probe-port
flag. It is important to make sure this port isn’t being used by another process on the worker
nodes.

Astra Trident REST API

While tridentctl commands and options are the easiest way to interact with the Astra
Trident REST API, you can use the REST endpoint directly if you prefer.

When to use the REST API

REST API is useful for advanced installations that use Astra Trident as a standalone binary in non-Kubernetes
deployments.

For better security, the Astra Trident REST API is restricted to localhost by default when running inside a pod.
To change this behavior, you need to set Astra Trident’'s —address argument in its pod configuration.

Using REST API

For examples of how these APIs are called, pass the debug (-d) flag. For more information, refer to Manage
Astra Trident using tridentctl.

The API works as follows:

GET

GET <trident-address>/trident/vl1/<object-type>
Lists all objects of that type.


https://docs.netapp.com/us-en/trident-2402/trident-reference/tridentctl.html
https://docs.netapp.com/us-en/trident-2402/trident-managing-k8s/tridentctl.html
https://docs.netapp.com/us-en/trident-2402/trident-managing-k8s/tridentctl.html

GET <trident-address>/trident/vl/<object-type>/<object-name>
Gets the details of the named object.

POST

POST <trident-address>/trident/vl1/<object-type>
Creates an object of the specified type.

» Requires a JSON configuration for the object to be created. For the specification of each object type,
refer to Manage Astra Trident using tridentctl.

« If the object already exists, behavior varies: backends update the existing object, while all other object
types will fail the operation.

DELETE

DELETE <trident-address>/trident/vl/<object-type>/<object-name>
Deletes the named resource.

@ Volumes associated with backends or storage classes will continue to exist; these must be
deleted separately. For more information, refer to Manage Astra Trident using tridentctl.

Command-line options

Astra Trident exposes several command-line options for the Trident orchestrator. You can
use these options to modify your deployment.

Logging

-debug
Enables debugging output.

-loglevel <level>
Sets the logging level (debug, info, warn, error, fatal). Defaults to info.

Kubernetes

-k8s_pod

Use this option or -k8s_api server to enable Kubernetes support. Setting this causes Trident to use its
containing pod’s Kubernetes service account credentials to contact the API server. This only works when
Trident runs as a pod in a Kubernetes cluster with service accounts enabled.

-k8s_api_server <insecure-address:insecure-port>

Use this option or -k8s_pod to enable Kubernetes support. When specified, Trident connects to the
Kubernetes API server using the provided insecure address and port. This allows Trident to be deployed
outside of a pod; however, it only supports insecure connections to the API server. To connect securely,
deploy Trident in a pod with the -k8s_pod option.


https://docs.netapp.com/us-en/trident-2402/trident-managing-k8s/tridentctl.html
https://docs.netapp.com/us-en/trident-2402/trident-managing-k8s/tridentctl.html

Docker

-volume driver <name>

Driver name used when registering the Docker plugin. Defaults to netapp.

-driver port <port-number>
Listen on this port rather than a UNIX domain socket.

-config <file>
Required; you must specify this path to a backend configuration file.

REST

-address <ip-or-host>

Specifies the address on which Trident's REST server should listen. Defaults to localhost. When listening
on localhost and running inside a Kubernetes pod, the REST interface isn’t directly accessible from outside
the pod. Use —address "" to make the REST interface accessible from the pod IP address.

@ Trident REST interface can be configured to listen and serve at 127.0.0.1 (for IPv4) or [::1]
(for IPv6) only.

-port <port-number>
Specifies the port on which Trident’'s REST server should listen. Defaults to 8000.

-rest
Enables the REST interface. Defaults to true.

Kubernetes and Trident objects

You can interact with Kubernetes and Trident using REST APIs by reading and writing
resource objects. There are several resource objects that dictate the relationship between
Kubernetes and Trident, Trident and storage, and Kubernetes and storage. Some of
these objects are managed through Kubernetes and the others are managed through
Trident.

How do the objects interact with one another?

Perhaps the easiest way to understand the objects, what they are for, and how they interact, is to follow a
single request for storage from a Kubernetes user:

1. Auser creates a PersistentVolumeClaim requesting a new PersistentVolume of a particular size
from a Kubernetes StorageClass that was previously configured by the administrator.

2. The Kubernetes StorageClass identifies Trident as its provisioner and includes parameters that tell
Trident how to provision a volume for the requested class.

3. Trident looks at its own StorageClass with the same name that identifies the matching Backends and
StoragePools that it can use to provision volumes for the class.

4. Trident provisions storage on a matching backend and creates two objects: a PersistentVolume in



Kubernetes that tells Kubernetes how to find, mount, and treat the volume, and a volume in Trident that
retains the relationship between the PersistentvVolume and the actual storage.

5. Kubernetes binds the PersistentVolumeClaim to the new PersistentVolume. Pods that include the
PersistentVolumeClaim mount that PersistentVolume on any host that it runs on.

6. A user creates a VolumeSnapshot of an existing PVC, using a VolumeSnapshotClass that points to

Trident.

7. Trident identifies the volume that is associated with the PVC and creates a snapshot of the volume on its
backend. It also creates a VolumeSnapshotContent that instructs Kubernetes on how to identify the

snapshot.

8. Auser can create a PersistentVolumeClaim using VolumeSnapshot as the source.

9. Trident identifies the required snapshot and performs the same set of steps involved in creating a
PersistentVolume and a Volume.

For further reading about Kubernetes objects, we highly recommend that you read the

Persistent Volumes section of the Kubernetes documentation.

Kubernetes PersistentVolumeClaim objects

A Kubernetes PersistentVolumeClaim object is a request for storage made by a Kubernetes cluster user.

In addition to the standard specification, Trident allows users to specify the following volume-specific
annotations if they want to override the defaults that you set in the backend configuration:

Annotation

trident.netapp.ioffileSystem

trident.netapp.io/cloneFromPVC

trident.netapp.io/splitOnClone
trident.netapp.io/protocol

trident.netapp.io/exportPolicy

trident.netapp.io/snapshotPolicy

trident.netapp.io/snapshotReserve

trident.netapp.io/snapshotDirectory

Volume Option

fileSystem

cloneSourceVolume

splitOnClone
protocol

exportPolicy

snapshotPolicy

snapshotReserve

snapshotDirectory

Supported Drivers

ontap-san, solidfire-san,ontap-san-
economy

ontap-nas,

ontap-san, solidfire-san, azure-
netapp-files, gcp-cvs,
ontap-san-economy

ontap-nas, ontap-san
any

ontap-nas,
ontap-nas-economy, ontap-nas-
flexgroup

ontap-nas,
ontap-nas-economy, ontap-nas-
flexgroup, ontap-san

ontap-nas,
ontap-nas-flexgroup, ontap-san,
gcp-cvs

ontap-nas,
ontap-nas-economy, ontap-nas-
flexgroup


https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Annotation Volume Option Supported Drivers

trident.netapp.io/unixPermissions  unixPermissions ontap-nas,
ontap-nas-economy, ontap-nas-
flexgroup

trident.netapp.io/blockSize blockSize solidfire-san

If the created PV has the Delete reclaim policy, Trident deletes both the PV and the backing volume when the
PV becomes released (that is, when the user deletes the PVC). Should the delete action fail, Trident marks the
PV as such and periodically retries the operation until it succeeds or the PV is manually deleted. If the PV uses
the Retain policy, Trident ignores it and assumes the administrator will clean it up from Kubernetes and the
backend, allowing the volume to be backed up or inspected before its removal. Note that deleting the PV does
not cause Trident to delete the backing volume. You should remove it using the REST API (tridentctl).

Trident supports the creation of Volume Snapshots using the CSI specification: you can create a Volume
Snapshot and use it as a Data Source to clone existing PVCs. This way, point-in-time copies of PVs can be
exposed to Kubernetes in the form of snapshots. The snapshots can then be used to create new PVs. Take a
look at On-Demand Volume Snapshots to see how this would work.

Trident also provides the cloneFromPVC and splitOnClone annotations for creating clones. You can use
these annotations to clone a PVC without having to use the CSI implementation.

Here is an example: If a user already has a PVC called mysql, the user can create a new PVC called
mysglclone by using the annotation, such as trident.netapp.io/cloneFromPVC: mysql. With this
annotation set, Trident clones the volume corresponding to the mysqgl PVC, instead of provisioning a volume
from scratch.

Consider the following points:

* We recommend cloning an idle volume.

* APVC and its clone should be in the same Kubernetes namespace and have the same storage class.

* With the ontap-nas and ontap-san drivers, it might be desirable to set the PVC annotation
trident.netapp.io/splitOnClone in conjunction with trident.netapp.io/cloneFromPVC. With
trident.netapp.io/splitOnClone setto true, Trident splits the cloned volume from the parent
volume and thus, completely decoupling the life cycle of the cloned volume from its parent at the expense
of losing some storage efficiency. Not setting trident.netapp.io/splitOnClone or setting it to
false results in reduced space consumption on the backend at the expense of creating dependencies
between the parent and clone volumes such that the parent volume cannot be deleted unless the clone is
deleted first. A scenario where splitting the clone makes sense is cloning an empty database volume where
it's expected for the volume and its clone to greatly diverge and not benefit from storage efficiencies offered
by ONTAP.

The sample-input directory contains examples of PVC definitions for use with Trident. Refer to [Trident
Volume objects] for a full description of the parameters and settings associated with Trident volumes.

Kubernetes PersistentVolume objects

A Kubernetes PersistentVolume object represents a piece of storage that is made available to the
Kubernetes cluster. It has a lifecycle that is independent of the pod that uses it.



Trident creates PersistentVolume objects and registers them with the Kubernetes cluster
automatically based on the volumes that it provisions. You are not expected to manage them
yourself.

When you create a PVC that refers to a Trident-based StorageClass, Trident provisions a new volume using
the corresponding storage class and registers a new PV for that volume. In configuring the provisioned volume
and corresponding PV, Trident follows the following rules:

 Trident generates a PV name for Kubernetes and an internal name that it uses to provision the storage. In
both cases, it is assuring that the names are unique in their scope.

* The size of the volume matches the requested size in the PVC as closely as possible, though it might be
rounded up to the nearest allocatable quantity, depending on the platform.

Kubernetes storageClass objects

Kubernetes storageClass objects are specified by name in PersistentVolumeClaims to provision
storage with a set of properties. The storage class itself identifies the provisioner to be used and defines that
set of properties in terms the provisioner understands.

It is one of two basic objects that need to be created and managed by the administrator. The other is the
Trident backend object.

A Kubernetes StorageClass object that uses Trident looks like this:

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: <Name>
provisioner: csi.trident.netapp.io
mountOptions: <Mount Options>
parameters:

<Trident Parameters>
allowVolumeExpansion: true
volumeBindingMode: Immediate

These parameters are Trident-specific and tell Trident how to provision volumes for the class.

The storage class parameters are:

Attribute Type Required Description

attributes map|[string]string no See the attributes section
below

storagePools map[string]StringList no Map of backend names to
lists

of storage pools within



Attribute

additionalStoragePools

excludeStoragePools

Type

map[string]StringList

map[string]StringList

Required

no

Description

Map of backend names
to lists of storage pools

within

Map of backend names to
lists of storage pools

within

Storage attributes and their possible values can be classified into storage pool selection attributes and

Kubernetes attributes.

Storage pool selection attributes

These parameters determine which Trident-managed storage pools should be utilized to provision volumes of

a given type.
Attribute Type
media’ string

provisioningType string

backendType string
snapshots bool
clones bool

Values

hdd, hybrid, ssd

thin, thick

ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
solidfire-san,
gcp-cvs, azure-
netapp-files,
ontap-san-
economy

true, false

true, false

Offer

Pool contains
media of this
type; hybrid
means both

Pool supports
this provisioning
method

Pool belongs to
this type of
backend

Pool supports
volumes with
snapshots

Pool supports
cloning volumes

Request

Media type
specified

Provisioning
method specified

Backend
specified

Volume with
shapshots
enabled

Volume with
clones enabled

Supported by

ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
solidfire-san

thick: all ontap;
thin: all ontap &
solidfire-san

All drivers

ontap-nas,
ontap-san,
solidfire-san,
gcp-cvs

ontap-nas,
ontap-san,
solidfire-san,
gcp-cvs



Attribute Type Values Offer Request Supported by

encryption bool true, false Pool supports Volume with ontap-nas,
encrypted encryption ontap-nas-
volumes enabled economy, ontap-
nas-flexgroups,
ontap-san
IOPS int positive integer  Pool is capable  Volume solidfire-san
of guaranteeing guaranteed
IOPS in this these IOPS
range

' Not supported by ONTAP Select systems

In most cases, the values requested directly influence provisioning; for instance, requesting thick provisioning
results in a thickly provisioned volume. However, an Element storage pool uses its offered IOPS minimum and
maximum to set QoS values, rather than the requested value. In this case, the requested value is used only to
select the storage pool.

Ideally, you can use attributes alone to model the qualities of the storage you need to satisfy the needs of a
particular class. Trident automatically discovers and selects storage pools that match all of the attributes
that you specify.

If you find yourself unable to use attributes to automatically select the right pools for a class, you can use
the storagePools and additionalStoragePools parameters to further refine the pools or even to select
a specific set of pools.

You can use the storagePools parameter to further restrict the set of pools that match any specified
attributes. In other words, Trident uses the intersection of pools identified by the attributes and
storagePools parameters for provisioning. You can use either parameter alone or both together.

You can use the additionalStoragePools parameter to extend the set of pools that Trident uses for
provisioning, regardless of any pools selected by the attributes and storagePools parameters.

You can use the excludeStoragePools parameter to filter the set of pools that Trident uses for provisioning.
Using this parameter removes any pools that match.

In the storagePools and additionalStoragePools parameters, each entry takes the form
<backend>:<storagePoolList>, where <storagePoolList> is a comma-separated list of storage pools
for the specified backend. For example, a value for additionalStoragePools might look like
ontapnas_192.168.1.100:aggrl,aggr2;solidfire 192.168.1.101:bronze.

These lists accept regex values for both the backend and list values. You can use tridentctl get
backend to get the list of backends and their pools.

Kubernetes attributes

These attributes have no impact on the selection of storage pools/backends by Trident during dynamic
provisioning. Instead, these attributes simply supply parameters supported by Kubernetes Persistent Volumes.
Worker nodes are responsible for filesystem create operations and might require filesystem utilities, such as
xfsprogs.



Attribute Type

fsType string

allowVolumeExp boolean
ansion

volumeBindingM string
ode

Values

extd, ext3, xfs,
etc.

true, false

Immediate,
WaitForFirstCon
sumer

Description

The file system
type for block
volumes

Enable or
disable support
for growing the
PVC size

Choose when
volume binding
and dynamic
provisioning
occurs

Relevant
Drivers

solidfire-san,
ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
ontap-san-
economy

ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
ontap-san-
economy,
solidfire-san,
gcp-cvs, azure-
netapp-files

All

Kubernetes
Version

All

1.1+

1.19-1.26

* The £sType parameter is used to control the desired file system type for SAN LUNSs. In
addition, Kubernetes also uses the presence of £sType in a storage class to indicate a
filesystem exists. Volume ownership can be controlled using the fsGroup security context
of a pod only if £sType is set. Refer to Kubernetes: Configure a Security Context for a Pod
or Container for an overview on setting volume ownership using the £sGroup context.
Kubernetes will apply the £sGroup value only if:

° fsType is set in the storage class.

o The PVC access mode is RWO.

For NFS storage drivers, a filesystem already exists as part of the NFS export. In order to
use £sGroup the storage class still needs to specify a £sType. You can setitto nfs or any

non-null value.

Refer to Expand volumes for further details on volume expansion.

The Trident installer bundle provides several example storage class definitions for use with

Trident in sample-input/storage-class-*.yaml. Deleting a Kubernetes storage class
causes the corresponding Trident storage class to be deleted as well.

Kubernetes VolumeSnapshotClass objects

Kubernetes volumeSnapshotClass objects are analogous to StorageClasses. They help define multiple
classes of storage and are referenced by volume snapshots to associate the snapshot with the required
snapshot class. Each volume snapshot is associated with a single volume snapshot class.


https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://docs.netapp.com/us-en/trident/trident-use/vol-expansion.html

AVvolumeSnapshotClass should be defined by an administrator in order to create snapshots. A volume
snapshot class is created with the following definition:

apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshotClass
metadata:

name: csi-snapclass
driver: csi.trident.netapp.io
deletionPolicy: Delete

The driver specifies to Kubernetes that requests for volume snapshots of the csi-snapclass class are
handled by Trident. The deletionPolicy specifies the action to be taken when a snapshot must be deleted.
When deletionPolicy is set to Delete, the volume snapshot objects as well as the underlying snapshot on
the storage cluster are removed when a snapshot is deleted. Alternatively, setting it to Retain means that
VolumeSnapshotContent and the physical snapshot are retained.

Kubernetes VolumeSnapshot objects

A Kubernetes VvolumeSnapshot object is a request to create a snapshot of a volume. Just as a PVC
represents a request made by a user for a volume, a volume snapshot is a request made by a user to create a
snapshot of an existing PVC.

When a volume snapshot request comes in, Trident automatically manages the creation of the snapshot for the
volume on the backend and exposes the snapshot by creating a unique

VolumeSnapshotContent object. You can create snapshots from existing PVCs and use the snapshots as a
DataSource when creating new PVCs.

The lifecyle of a VolumeSnapshot is independent of the source PVC: a snapshot persists even

(D after the source PVC is deleted. When deleting a PVC which has associated snapshots, Trident
marks the backing volume for this PVC in a Deleting state, but does not remove it completely.
The volume is removed when all the associated snapshots are deleted.

Kubernetes VvolumeSnapshotContent objects

A Kubernetes VvolumeSnapshotContent object represents a snapshot taken from an already provisioned
volume. It is analogous to a PersistentVolume and signifies a provisioned snapshot on the storage cluster.
Similar to PersistentVolumeClaim and PersistentVolume objects, when a snapshot is created, the
VolumeSnapshotContent object maintains a one-to-one mapping to the volumeSnapshot object, which
had requested the snapshot creation.

The volumeSnapshotContent object contains details that uniquely identify the snapshot, such as the
snapshotHandle. This snapshotHandle is a unique combination of the name of the PV and the name of
the VolumeSnapshotContent object.

When a snapshot request comes in, Trident creates the snapshot on the backend. After the snapshot is

created, Trident configures a VolumeSnapshotContent object and thus exposes the snapshot to the
Kubernetes API.
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@ Typically, you do not need to manage the VvolumeSnapshotContent object. An exception to
this is when you want to import a volume snapshot created outside of Astra Trident.

Kubernetes CustomResourceDefinition objects

Kubernetes Custom Resources are endpoints in the Kubernetes API that are defined by the administrator and
are used to group similar objects. Kubernetes supports the creation of custom resources for storing a collection
of objects. You can obtain these resource definitions by running kubectl get crds.

Custom Resource Definitions (CRDs) and their associated object metadata are stored by Kubernetes in its
metadata store. This eliminates the need for a separate store for Trident.

Astra Trident uses CustomResourceDefinition objects to preserve the identity of Trident objects, such as
Trident backends, Trident storage classes, and Trident volumes. These objects are managed by Trident. In
addition, the CSI volume snapshot framework introduces some CRDs that are required to define volume
snapshots.

CRDs are a Kubernetes construct. Objects of the resources defined above are created by Trident. As a simple
example, when a backend is created using tridentctl, a corresponding tridentbackends CRD object is
created for consumption by Kubernetes.

Here are a few points to keep in mind about Trident’'s CRDs:

» When Trident is installed, a set of CRDs are created and can be used like any other resource type.

* When uninstalling Trident by using the tridentctl uninstall command, Trident pods are deleted but
the created CRDs are not cleaned up. Refer to Uninstall Trident to understand how Trident can be
completely removed and reconfigured from scratch.

Astra Trident StorageClass objects

Trident creates matching storage classes for Kubernetes StorageClass objects that specify
csi.trident.netapp.io in their provisioner field. The storage class name matches that of the Kubernetes
StorageClass object it represents.

@ With Kubernetes, these objects are created automatically when a Kubernetes StorageClass
that uses Trident as a provisioner is registered.

Storage classes comprise a set of requirements for volumes. Trident matches these requirements with the
attributes present in each storage pool; if they match, that storage pool is a valid target for provisioning
volumes using that storage class.

You can create storage class configurations to directly define storage classes by using the REST API.
However, for Kubernetes deployments, we expect them to be created when registering new Kubernetes
StorageClass objects.

Astra Trident backend objects

Backends represent the storage providers on top of which Trident provisions volumes; a single Trident instance
can manage any number of backends.

11
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@ This is one of the two object types that you create and manage yourself. The other is the
Kubernetes StorageClass object.

For more information about how to construct these objects, refer to configuring backends.

Astra Trident StoragePool objects

Storage pools represent the distinct locations available for provisioning on each backend. For ONTAP, these
correspond to aggregates in SVMs. For NetApp HCI/SolidFire, these correspond to administrator-specified
QoS bands. For Cloud Volumes Service, these correspond to cloud provider regions. Each storage pool has a
set of distinct storage attributes, which define its performance characteristics and data protection
characteristics.

Unlike the other objects here, storage pool candidates are always discovered and managed automatically.

Astra Trident Vvolume objects

Volumes are the basic unit of provisioning, comprising backend endpoints, such as NFS shares and iSCSI
LUNSs. In Kubernetes, these correspond directly to PersistentVolumes. When you create a volume, ensure
that it has a storage class, which determines where that volume can be provisioned, along with a size.

 In Kubernetes, these objects are managed automatically. You can view them to see what
Trident provisioned.

@ « When deleting a PV with associated snapshots, the corresponding Trident volume is
updated to a Deleting state. For the Trident volume to be deleted, you should remove the
snapshots of the volume.

A volume configuration defines the properties that a provisioned volume should have.

Attribute Type Required Description

version string no Version of the Trident API
("1 ll)

name string yes Name of volume to create

storageClass string yes Storage class to use when
provisioning the volume

size string yes Size of the volume to
provision in bytes

protocol string no Protocol type to use; "file"
or "block"

internalName string no Name of the object on the

storage system;
generated by Trident

cloneSourceVolume string no ontap (nas, san) &
solidfire-*: Name of the
volume to clone from

splitOnClone string no ontap (nas, san): Split the
clone from its parent

12
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Attribute Type Required Description

snapshotPolicy string no ontap-*: Snapshot policy
to use

snapshotReserve string no ontap-*: Percentage of
volume reserved for
shapshots

exportPolicy string no ontap-nas*: Export policy
to use

snapshotDirectory bool no ontap-nas*: Whether the
snapshot directory is
visible

unixPermissions string no ontap-nas*: Initial UNIX
permissions

blockSize string no solidfire-*: Block/sector
size

fileSystem string no File system type

Trident generates internalName when creating the volume. This consists of two steps. First, it prepends the
storage prefix (either the default trident or the prefix in the backend configuration) to the volume name,
resulting in a name of the form <prefix>-<volume-name>. It then proceeds to sanitize the name, replacing
characters not permitted in the backend. For ONTAP backends, it replaces hyphens with underscores (thus,
the internal name becomes <prefix> <volume-name>). For Element backends, it replaces underscores
with hyphens.

You can use volume configurations to directly provision volumes using the REST API, but in Kubernetes
deployments we expect most users to use the standard Kubernetes PersistentVolumeClaim method.
Trident creates this volume object automatically as part of the provisioning

process.

Astra Trident Snapshot objects

Snapshots are a point-in-time copy of volumes, which can be used to provision new volumes or restore state.
In Kubernetes, these correspond directly to VolumeSnapshotContent objects. Each snapshot is associated
with a volume, which is the source of the data for the snapshot.

Each snapshot object includes the properties listed below:

Attribute Type Required Description

version String Yes Version of the Trident API
("1 ll)

name String Yes Name of the Trident

snapshot object

internalName String Yes Name of the Trident
snapshot object on the
storage system

13



Attribute Type Required Description

volumeName String Yes Name of the Persistent
Volume for which the
shapshot is created

volumelnternalName String Yes Name of the associated
Trident volume object on
the storage system

(D In Kubernetes, these objects are managed automatically. You can view them to see what Trident
provisioned.

When a Kubernetes VolumeSnapshot object request is created, Trident works by creating a snapshot object
on the backing storage system. The internalName of this snapshot object is generated by combining the
prefix snapshot- with the UID of the VolumeSnapshot object (for example, snapshot-e8d8alca-9826-
11e9-9807-525400£3£660). volumeName and volumeInternalName are populated by getting the details
of the backing

volume.

Astra Trident ResourceQuota object

The Trident deamonset consumes a system-node-critical Priority Class—the highest Priority Class
available in Kubernetes—to ensure Astra Trident can identify and clean up volumes during graceful node
shutdown and allow Trident daemonset pods to preempt workloads with a lower priority in clusters where there
is high resource pressure.

To accomplish this, Astra Trident employs a ResourceQuota object to ensure a "system-node-critical" Priority
Class on the Trident daemonset is satisfied. Prior to deployment and daemonset creation, Astra Trident looks
for the ResourceQuota object and, if not discovered, applies it.

If you need more control over the default Resource Quota and Priority Class, you can generate a
custom.yaml or configure the ResourceQuota object using Helm chart.

The following is an example of a 'ResourceQuota’object prioritizing the Trident daemonset.

apiVersion: <version>
kind: ResourceQuota
metadata:
name: trident-csi
labels:
app: node.csi.trident.netapp.io

spec:
scopeSelector:

matchExpressions:

- operator : In

scopeName: PriorityClass
values: ["system-node-critical"]

For more information on Resource Quotas, refer to Kubernetes: Resource Quotas.
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Clean up ResourceQuota if installation fails

In the rare case where installation fails after the ResourceQuota object is created, first try uninstalling and
then reinstall.

If that doesn’t work, manually remove the ResourceQuota object.

Remove ResourceQuota

If you prefer to control your own resource allocation, you can remove the Astra Trident ResourceQuota object
using the command:

kubectl delete quota trident-csi -n trident

Pod Security Standards (PSS) and Security Context
Constraints (SCC)

Kubernetes Pod Security Standards (PSS) and Pod Security Policies (PSP) define
permission levels and restrict the behavior of pods. OpenShift Security Context
Constraints (SCC) similarly define pod restriction specific to the OpenShift Kubernetes
Engine. To provide this customization, Astra Trident enables certain permissions during
installation. The following sections detail the permissions set by Astra Trident.

@ PSS replaces Pod Security Policies (PSP). PSP was deprecated in Kubernetes v1.21 and will
be removed in v1.25. For more information, Refer to Kubernetes: Security.

Required Kubernetes Security Context and Related Fields

Permission Description

Privileged CSI requires mount points to be Bidirectional, which
means the Trident node pod must run a privileged
container. For more information, refer to Kubernetes:
Mount propagation.

Host networking Required for the iISCSI daemon. iscsiadm manages
iSCSI mounts and uses host networking to
communicate with the iISCSI daemon.

Host IPC NFS uses interprocess communication (IPC) to
communicate with the NFSD.

Host PID Required to start rpc-statd for NFS. Astra Trident
queries host processes to determine if rpc-statd is
running before mounting NFS volumes.
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Permission

Capabilities

Seccomp

SELinux

DAC

Pod Security Standards (PSS)

Label Description

Description

The SYS ADMIN capability is provided as part of the
default capabilities for privileged containers. For
example, Docker sets these capabilities for privileged
containers:

CapPrm: O0O0OOQO3fffffffff

CapkEff: 0000Q03fffffffff

Seccomp profile is always "Unconfined" in privileged
containers; therefore, it cannot be enabled in Astra
Trident.

On OpenShift, privileged containers are run in the
spc_t ("Super Privileged Container") domain, and
unprivileged containers are run in the container t
domain. On containerd, with container-
selinux installed, all containers are run in the spc_t
domain, which effectively disables SELinux.
Therefore, Astra Trident does not add
seLinuxOptions to containers.

Privileged containers must be run as root. Non-
privileged containers run as root to access unix
sockets required by CSI.

Default

pod- Allows the Trident Controller and enforce: privileged
security.kubernetes.io/enf nodes to be admitted into the install

orce namespace. enforce-version: <version
of the current cluster or
pod- Do not change the namespace highest version of PSS

security.kubernetes.io/enf label
orce-version

tested.>

Changing the namespace labels can result in pods not being scheduled, an "Error creating: ..."
or, "Warning: trident-csi-...". If this happens, check if the namespace label for privileged was

changed. If so, reinstall Trident.

Pod Security Policies (PSP)

Field Description

Default

allowPrivilegeEscalation Privileged containers must allow true
privilege escalation.

allowedCSIDrivers Trident does not use inline CSI Empty
ephemeral volumes.
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Field

allowedCapabilities

allowedFlexVolumes

allowedHostPaths

allowedProcMountTypes

allowedUnsafeSysctls

defaultAddCapabilities

defaultAllowPrivilegeEscal

ation
forbiddenSysctls
fsGroup

hostIPC

hostNetwork

hostPID

hostPorts

privileged

readOnlyRootFilesystem

requiredDropCapabilities

runAsGroup

runAsUser

Description

Non-privileged Trident containers
do not require more capabilities
than the default set and privileged

containers are granted all possible

capabilities.

Trident does not make use of a
FlexVolume driver, therefore they
are not included in the list of
allowed volumes.

The Trident node pod mounts the
node’s root filesystem, therefore

there is no benefit to setting this list.

Trident does not use any
ProcMountTypes.

Trident does not require any unsafe

sysctls.

No capabilities are required to be
added to privileged containers.

Allowing privilege escalation is
handled in each Trident pod.

No sysctls are allowed.
Trident containers run as root.

Mounting NFS volumes requires
host IPC to communicate with
nfsd

iscsiadm requires the host network

to communicate with the iISCSI
daemon.

Host PID is required to check if

rpc-statd is running on the node.

Trident does not use any host
ports.

Trident node pods must run a
privileged container in order to
mount volumes.

Trident node pods must write to the

node filesystem.

Trident node pods run a privileged
container and cannot drop
capabilities.

Trident containers run as root.

Trident containers run as root.

Default
Empty

Empty

Empty

Empty

Empty

Empty

false

Empty
RunAsAny

true

true

true

Empty

true

false

none

RunAsAny

runAsAny
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Field Description Default

runtimeClass Trident does not use Empty
RuntimeClasses.
seLinux Trident does not set Empty

seLinuxOptions because there
are currently differences in how
container runtimes and Kubernetes
distributions handle SELinux.

supplementalGroups Trident containers run as root. RunAsAny
volumes Trident pods require these volume hostPath, projected,
plugins. emptyDir

Security Context Constraints (SCC)

Labels Description Default

allowHostDirVolumePlugin Trident node pods mount the true
node’s root filesystem.

allowHostIPC Mounting NFS volumes requires true
host IPC to communicate with
nfsd.

allowHostNetwork iscsiadm requires the host network true
to communicate with the iISCSI
daemon.

allowHostPID Host PID is required to check if true
rpc-statd is running on the node.

allowHostPorts Trident does not use any host false
ports.

allowPrivilegeEscalation Privileged containers must allow true
privilege escalation.

allowPrivilegedContainer  Trident node pods mustruna true
privileged container in order to
mount volumes.

allowedUnsafeSysctls Trident does not require any unsafe none
sysctls.
allowedCapabilities Non-privileged Trident containers ~ Empty

do not require more capabilities
than the default set and privileged
containers are granted all possible
capabilities.

defaultAddCapabilities No capabilities are required to be ~ Empty
added to privileged containers.

fsGroup Trident containers run as root. RUnAsAny
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Labels Description Default

groups This SCC is specific to Trident and Empty
is bound to its user.

readOnlyRootFilesystem Trident node pods must write to the false
node filesystem.

requiredDropCapabilities Trident node pods run a privileged none
container and cannot drop

capabilities.
runAsUser Trident containers run as root. RunAsAny
seLinuxContext Trident does not set Empty

seLinuxOptions because there
are currently differences in how
container runtimes and Kubernetes
distributions handle SELinux.

seccompProfiles Privileged containers always run Empty
"Unconfined".

supplementalGroups Trident containers run as root. RunAsAny

users One entry is provided to bind this  n/a

SCC to the Trident user in the
Trident namespace.

volumes Trident pods require these volume hostPath, downwardAPI,
plugins. projected, emptyDir
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