Manage and monitor Astra Trident
Astra Trident

NetApp
January 14, 2026

This PDF was generated from https://docs.netapp.com/us-en/trident-2406/trident-managing-k8s/upgrade-
trident.html on January 14, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Manage and monitor Astra Trident

Upgrade Astra Trident
Upgrade Astra Trident
Upgrade with the operator
Upgrade with tridentctl

Manage Astra Trident using tridentctl
Commands and global flags
Command options and flags

Monitor Astra Trident
Overview
Step 1: Define a Prometheus target
Step 2: Create a Prometheus ServiceMonitor
Step 3: Query Trident metrics with PromQL
Learn about Astra Trident AutoSupport telemetry
Disable Astra Trident metrics

Uninstall Astra Trident
Determine the original installation method
Uninstall a Trident operator installation
Uninstall a tridentctl installation

© NN NN =2

- A A A A A A A A
©O© 0o N NOoO O~ Db D

Manage and monitor Astra Trident

Upgrade Astra Trident

Upgrade Astra Trident

Beginning with the 24.02 release, Astra Trident follows a four-month release cadence,
delivering three major releases every calendar year. Each new release builds on the
previous releases and provides new features, performance enhancements, bug fixes, and
improvements. We encourage you to upgrade at least once a year to take advantage of
the new features in Astra Trident.

Considerations before upgrading

When upgrading to the latest release of Astra Trident, consider the following:

» There should be only one Astra Trident instance installed across all the namespaces in a given Kubernetes
cluster.

 Astra Trident 23.07 and later requires v1 volume snapshots and no longer supports alpha or beta
snapshots.

* If you created Cloud Volumes Service for Google Cloud in the CVS service type, you must update the
backend configuration to use the standardsw or zoneredundantstandardsw service level when
upgrading from Astra Trident 23.01. Failure to update the servicelLevel in the backend could cause
volumes to fail. Refer to CVS service type samples for details.

* When upgrading, it is important you provide parameter. fsType in StorageClasses used by Astra
Trident. You can delete and re-create StorageClasses without disrupting pre-existing volumes.

o This is a requirement for enforcing security contexts for SAN volumes.

° The sample input directory contains examples, such as storage-class-basic.yaml.templ and
storage-class-bronze-default.yaml.

o For more information, refer to Known Issues.

Step 1: Select a version

Astra Trident versions follow a date-based YY .MM naming convention, where "YY" is the last two digits of the
year and "MM" is the month. Dot releases follow a YY.MM. X convention, where "X" is the patch level. You will
select the version to upgrade to based on the version you are upgrading from.

* You can perform a direct upgrade to any target release that is within a four-release window of your installed
version. For example, you can directly upgrade from 23.04 (or any 23.04 dot release) to 24.06.

« If you are upgrading from a release outside of the four-release window, perform a multi-step upgrade. Use
the upgrade instructions for the earlier version you are upgrading from to upgrade to the most recent
release that fits the four-release window. For example, if you are running 22.01 and want to upgrade to
24.06:

1. First upgrade from 22.07 to 23.04.
2. Then upgrade from 23.04 to 24.06.

https://docs.netapp.com/us-en/trident-2406/trident-use/gcp.html#learn-about-astra-trident-support-for-cloud-volumes-service-for-google-cloud
https://docs.netapp.com/us-en/trident-2406/trident-use/gcp.html#cvs-service-type-examples
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://github.com/NetApp/trident/tree/master/trident-installer/sample-input
https://github.com/NetApp/trident/blob/master/trident-installer/sample-input/storage-class-samples/storage-class-basic.yaml.templ
https://github.com/NetApp/trident/blob/master/trident-installer/sample-input/storage-class-samples/storage-class-bronze-default.yaml
https://docs.netapp.com/us-en/trident-2406/trident-rn.html
https://docs.netapp.com/us-en/trident-2406/earlier-versions.html

When upgrading using the Trident operator on OpenShift Container Platform, you should
upgrade to Trident 21.01.1 or later. The Trident operator released with 21.01.0 contains a known
issue that has been fixed in 21.01.1. For more details, refer to the issue details on GitHub.

Step 2: Determine the original installation method

To determine which version you used to originally install Astra Trident:

1. Use kubectl get pods -n trident to examine the pods.
° If there is no operator pod, Astra Trident was installed using tridentctl.

o If there is an operator pod, Astra Trident was installed using the Trident operator either manually or
using Helm.

2. If there is an operator pod, use kubectl describe torc to determine if Astra Trident was installed
using Helm.

o If there is a Helm label, Astra Trident was installed using Helm.

o If there is no Helm label, Astra Trident was installed manually using the Trident operator.

Step 3: Select an upgrade method

Generally, you should upgrade using the same method you used for the initial installation, however you can
move between installation methods. There are two options to upgrade Astra Trident.

» Upgrade using the Trident operator

We suggest you review Understand the operator upgrade workflow before upgrading with
the operator.

* Upgrade using tridentctl

Upgrade with the operator

Understand the operator upgrade workflow

Before using the Trident operator to upgrade Astra Trident, you should understand the
background processes that occur during upgrade. This includes changes to the Trident
controller, controller Pod and node Pods, and node DaemonSet that enable rolling
updates.

Trident operator upgrade handling

One of the many benefits of using the Trident operator to install and upgrade Astra Trident is the automatic
handling of Astra Trident and Kubernetes objects without disrupting existing mounted volumes. In this way,
Astra Trident can support upgrades with zero downtime, or rolling updates. In particular, the Trident operator
communicates with the Kubernetes cluster to:

* Delete and recreate the Trident Controller deployment and node DaemonSet.

* Replace the Trident Controller Pod and Trident Node Pods with new versions.

o If a node is not updated, it does not prevent remaining nodes from being updated.

https://github.com/NetApp/trident/issues/517
https://docs.netapp.com/us-en/trident-2406/trident-get-started/kubernetes-deploy.html#moving-between-installation-methods
https://docs.netapp.com/us-en/trident-2406/trident-get-started/kubernetes-deploy.html
https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/

> Only nodes with a running Trident Node Pod can mount volumes.

For more information about Astra Trident architecture on the Kubernetes cluster, refer to Astra
Trident architecture.

Operator upgrade workflow

When you initiate an upgrade using the Trident operator:

1. The Trident operator:
a. Detects the currently installed version of Astra Trident (version n).
b. Updates all Kubernetes objects including CRDs, RBAC, and Trident SVC.
c. Deletes the Trident Controller deployment for version n.
d. Creates the Trident Controller deployment for version n+17.
2. Kubernetes creates Trident Controller Pod for n+1.
3. The Trident operator:
a. Deletes the Trident Node DaemonSet for n. The operator does not wait for Node Pod termination.
b. Creates the Trident Node Daemonset for n+17.

4. Kubernetes creates Trident Node Pods on nodes not running Trident Node Pod n. This ensures there is
never more than one Trident Node Pod, of any version, on a node.

Upgrade an Astra Trident installation using Trident operator or Helm

You can upgrade Astra Trident using the Trident operator either manually or using Helm.
You can upgrade from a Trident operator installation to another Trident operator
installation or upgrade from a tridentctl installation to a Trident operator version.
Review Select an upgrade method before upgrading a Trident operator installation.

Upgrade a manual installation

You can upgrade from a cluster-scoped Trident operator installation to another cluster-scoped Trident operator
installation. All Astra Trident versions 21.01 and above use a cluster-scoped operator.

To upgrade from Astra Trident that was installed using the namespace-scoped operator
(versions 20.07 through 20.10), use the upgrade instructions for your installed version of Astra
Trident.

About this task

Trident provides a bundle file you can use to install the operator and create associated objects for your
Kubernetes version.

* For clusters running Kubernetes 1.24, use bundle pre_ 1 25.yaml.

* For clusters running Kubernetes 1.25 or later, use bundle_post_1_25.yaml.

Before you begin
Ensure you are using a Kubernetes cluster running a supported Kubernetes version.

Steps

https://docs.netapp.com/us-en/trident-2406/trident-managing-k8s/trident-concepts/intro.html#astra-trident-architecture
https://docs.netapp.com/us-en/trident-2406/trident-managing-k8s/trident-concepts/intro.html#astra-trident-architecture
https://docs.netapp.com/us-en/trident-2406/earlier-versions.html
https://github.com/NetApp/trident/tree/stable/v24.06/deploy/bundle_pre_1_25.yaml
https://github.com/NetApp/trident/tree/stable/v24.06/deploy/bundle_post_1_25.yaml
https://docs.netapp.com/us-en/trident-2406/trident-get-started/requirements.html

1. Verify your Astra Trident version:

./tridentctl -n trident version

2. Delete the Trident operator that was used to install the current Astra Trident instance. For example, if you
are upgrading from 23.07, run the following command:

kubectl delete -f 23.07.0/trident-installer/deploy/<bundle.yaml> -n
trident

3. If you customized your initial installation using TridentOrchestrator attributes, you can edit the
TridentOrchestrator object to modify the installation parameters. This might include changes made to
specify mirrored Trident and CSI image registries for offline mode, enable debug logs, or specify image pull
secrets.

4. Install Astra Trident using the correct bundle YAML file for your environment, where <bundle.yam/> is
bundle pre 1 25.yaml orbundle post 1 25.yaml based on your Kubernetes version. For
example, if you are installing Astra Trident 24.06, run the following command:

kubectl create -f 24.06.0/trident-installer/deploy/<bundle.yaml> -n
trident

Upgrade a Helm installation

You can upgrade an Astra Trident Helm installation.

When upgrading a Kubernetes cluster from 1.24 to 1.25 or later that has Astra Trident installed,

(D you must update values.yaml to set excludePodSecurityPolicy to true oradd --set
excludePodSecurityPolicy=true tothe helm upgrade command before you can
upgrade the cluster.

Steps

1. If you installed Astra Trident using Helm, you can use helm upgrade trident netapp-
trident/trident-operator --version 100.2406.0 to upgrade in one step. If you did not add the
Helm repo or cannot use it to upgrade:

a. Download the latest Astra Trident release from the Assets section on GitHub.

b. Use the helm upgrade command where trident-operator-24.06.0.tgz reflects the version
that you want to upgrade to.

helm upgrade <name> trident-operator-24.06.0.tgz

https://docs.netapp.com/us-en/trident-2406/trident-get-started/kubernetes-deploy-helm.html#deploy-the-trident-operator-and-install-astra-trident-using-helm
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest

If you set custom options during the initial installation (such as specifying private,

@ mirrored registries for Trident and CSI images), append the helm upgrade command
using --set to ensure those options are included in the upgrade command, otherwise
the values will reset to default.

2. Run helm list to verify that the chart and app version have both been upgraded. Run tridentctl
logs to review any debug messages.

Upgrade from a tridentctl installation to Trident operator

You can upgrade to the latest release of the Trident operator from a tridentctl installation. The existing
backends and PVCs will automatically be available.

@ Before switching between installation methods, review Moving between installation methods.

Steps
1. Download the latest Astra Trident release.

Download the release required [24.060.0]

mkdir 24.06.0

cd 24.06.0

wget
https://github.com/NetApp/trident/releases/download/v24.06.0/trident-
installer-24.06.0.tar.gz

tar -xf trident-installer-24.06.0.tar.gz

cd trident-installer

2. Create the tridentorchestrator CRD from the manifest.

kubectl create -f
deploy/crds/trident.netapp.io tridentorchestrators crd postl.l6.yaml

3. Deploy the cluster-scoped operator in the same namespace.

https://docs.netapp.com/us-en/trident-2406/trident-get-started/kubernetes-deploy.html#moving-between-installation-methods

kubectl create -f deploy/<bundle-name.yaml>

serviceaccount/trident-operator created
clusterrole.rbac.authorization.k8s.io/trident-operator created
clusterrolebinding.rbac.authorization.k8s.io/trident-operator created
deployment.apps/trident-operator created
podsecuritypolicy.policy/tridentoperatorpods created

#Examine the pods in the Trident namespace

NAME READY STATUS RESTARTS AGE

trident-controller-79df798bdc-m79dc 6/6 Running 0 150d
trident-node-linux-xrst8 2/2 Running 0 150d
trident-operator-5574dbbc68-nthijv 1/1 Running 0 1m30s

4. Create a TridentOrchestrator CR for installing Astra Trident.

cat deploy/crds/tridentorchestrator cr.yaml
apiVersion: trident.netapp.io/vl
kind: TridentOrchestrator
metadata:
name: trident
spec:
debug: true
namespace: trident

kubectl create -f deploy/crds/tridentorchestrator cr.yaml

#Examine the pods in the Trident namespace

NAME READY STATUS RESTARTS AGE
trident-csi-79d£f798bdc-m79dc 6/6 Running 0 Im
trident-csi-xrst8 2/2 Running 0 1m
trident-operator-5574dbbc68-nthijv 1/1 Running 0 5m4dls

5. Confirm Trident was upgraded to the intended version.

kubectl describe torc trident | grep Message -A 3

Message: Trident installed
Namespace: trident

Status: Installed
Version: v24.06.0

Upgrade with tridentctl
You can easily upgrade an existing Astra Trident installation using tridentctl.

About this task

Uninstalling and reinstalling Astra Trident acts as an upgrade. When you uninstall Trident, the Persistent
Volume Claim (PVC) and Persistent Volume (PV) used by the Astra Trident deployment are not deleted. PVs
that have already been provisioned will remain available while Astra Trident is offline, and Astra Trident will
provision volumes for any PVCs that are created in the interim once it is back online.

Before you begin

Review Select an upgrade method before upgrading using tridentctl.

Steps

1. Run the uninstall command in tridentctl to remove all of the resources associated with Astra Trident
except for the CRDs and related objects.

./tridentctl uninstall -n <namespace>

2. Reinstall Astra Trident. Refer to Install Astra Trident using tridentctl.

@ Do not interrupt the upgrade process. Ensure the installer runs to completion.

Manage Astra Trident using tridentctl

The Trident installer bundle includes the tridentctl command-line utility to provide
simple access to Astra Trident. Kubernetes users with sufficient privileges can use it to
install Astra Trident or manage the namespace that contains the Astra Trident pod.

Commands and global flags

You canrun tridentctl help to get a list of available commands for tridentctl or append the --help
flag to any command to get a list of options and flags for that specific command.

tridentctl [command] [--optional-flag]

The Astra Trident tridentctl utility supports the following commands and global flags.

https://docs.netapp.com/us-en/trident-2406/trident-get-started/kubernetes-deploy-tridentctl.html
https://github.com/NetApp/trident/releases

Commands

create

Add a resource to Astra Trident.

delete
Remove one or more resources from Astra Trident.

get
Get one or more resources from Astra Trident.

help
Help about any command.

images

Print a table of the container images Astra Trident needs.

import

Import an existing resource to Astra Trident.

install

Install Astra Trident.

logs
Print the logs from Astra Trident.

send

Send a resource from Astra Trident.

uninstall
Uninstall Astra Trident.

update
Modify a resource in Astra Trident.

update backend state
Temporarily suspend backend operations.

upgrade
Upgrade a resource in Astra Trident.

version

Print the version of Astra Trident.

Global flags

-d, --debug
Debug output.

-h, --help
Help for tridentctl.

-k, -—kubeconfig string

Specify the KUBECONFIG path to run commands locally or from one Kubernetes cluster to another.

@ Alternatively, you can export the KUBECONFIG variable to point to a specific Kubernetes
cluster and issue tridentctl commands to that cluster.

-n, --namespace string

Namespace of Astra Trident deployment.

-0, ——output string

Output format. One of json|yaml|name|wide|ps (default).

-s, --server string

Address/port of Astra Trident REST interface.

(D Trident REST interface can be configured to listen and serve at 127.0.0.1 (for IPv4) or
[::1] (for IPv6) only.

Command options and flags

create

Use the create command to add a resource to Astra Trident.
tridentctl create [option]

Options
backend: Add a backend to Astra Trident.

delete

Use the delete command to remove one or more resources from Astra Trident.
tridentctl delete [option]

Options

backend: Delete one or more storage backends from Astra Trident.
snapshot: Delete one or more volume snapshots from Astra Trident.
storageclass: Delete one or more storage classes from Astra Trident.
volume: Delete one or more storage volumes from Astra Trident.

get

Use the get command to get one or more resources from Astra Trident.
tridentctl get [option]

Options

backend: Get one or more storage backends from Astra Trident.
snapshot: Get one or more snapshots from Astra Trident.
storageclass: Get one or more storage classes from Astra Trident.
volume: Get one or more volumes from Astra Trident.

Flags

-h, --help: Help for volumes.
--parentOfSubordinate string: Limit query to subordinate source volume.
--subordinateOf string: Limit query to subordinates of volume.

images
Use images flags to print a table of the container images Astra Trident needs.
tridentctl images [flags]

Flags

-h, ——help: Help for images.
-v, --k8s-version string: Semantic version of Kubernetes cluster.

import volume

Use the import volume command to import an existing volume to Astra Trident.
tridentctl import volume <backendName> <volumeName> [flags]

Aliases

volume, v

Flags

-f, --filename string: Path to YAML or JSON PVC file.
-h, -—help: Help for volume.
--no-manage: Create PV/PVC only. Don’t assume volume lifecycle management.

install
Use the install flags to install Astra Trident.
tridentctl install [flags]

Flags

--autosupport-image string: The container image for Autosupport Telemetry (default "netapp/trident
autosupport:<current-version>").
--autosupport-proxy string: The address/port of a proxy for sending Autosupport Telemetry.

10

--enable-node-prep: Attempt to install required packages on nodes.

--generate-custom-yaml: Generate YAML files without installing anything.

-h, --help: Help for install.

--http-request-timeout: Override the HTTP request timeout for Trident controller's REST API (default
1m30s).

--image-registry string: The address/port of an internal image registry.

--k8s-timeout duration: The timeout for all Kubernetes operations (default 3m0s).

--kubelet-dir string: The host location of kubelet’s internal state (default "/var/lib/kubelet").
--log-format string: The Astra Trident logging format (text, json) (default "text").

--pv string: The name of the legacy PV used by Astra Trident, makes sure this doesn’t exist (default
"trident").

--pvc string: The name of the legacy PVC used by Astra Trident, makes sure this doesn’t exist (default
"trident").

--silence-autosupport: Don’'t send autosupport bundles to NetApp automatically (default true).
--silent: Disable most output during installation.

--trident-image string: The Astra Trident image to install.

--use-custom-yaml: Use any existing YAML files that exist in setup directory.

--use-ipvé6: Use IPv6 for Astra Trident’'s communication.

logs
Use logs flags to print the logs from Astra Trident.
tridentctl logs [flags]

Flags

-a, ——archive: Create a support archive with all logs unless otherwise specified.

-h, --help: Help for logs.

-1, -—log string: Astra Trident log to display. One of trident|auto|trident-operator|all (default "auto").
--node string: The Kubernetes node name from which to gather node pod logs.

-p, ——previous: Get the logs for the previous container instance if it exists.

--sidecars: Get the logs for the sidecar containers.

send
Use the send command to send a resource from Astra Trident.
tridentctl send [option]

Options
autosupport: Send an Autosupport archive to NetApp.

uninstall
Use uninstall flags to uninstall Astra Trident.
tridentctl uninstall [flags]

Flags

-h, --help: Help for uninstall.
--silent: Disable most output during uninstall.

11

update

Use the update command to modify a resource in Astra Trident.

tridentctl update [option]

Options

backend: Update a backend in Astra Trident.

update backend state

Use the update backend state command to suspend or resume backend operations.

tridentctl update backend state <backend-name> [flag]

Points to consider

If a backend is created using a TridentBackendConfig (tbc), the backend cannot be updated using a
backend. json file.

If the userState has been set in a tbc, it cannot be modified using the tridentctl update backend
state <backend-name> --user-state suspended/normal command.

To regain the ability to set the userState via tridentctl once it has been set via tbc, the userState field
must be removed from the tbc. This can be done using the kubectl edit tbc command. Once the
userState field is removed, you can use the tridentctl update backend state command to
change the userState of a backend.

Use the tridentctl update backend state to change the userState. You can also update the
userState using TridentBackendConfig or backend. json file; this triggers a complete re-
initialization of the backend and can be time-consuming.

Flags

-h, -—help: Help for backend state.
--user-state: Set to suspended to pause backend operations. Set to normal to resume backend
operations. When set to suspended:

Addvolume and Import Volume are paused.

CloneVolume, ResizeVolume, PublishVolume, UnPublishVolume, CreateSnapshot,
GetSnapshot, RestoreSnapshot, DeleteSnapshot, RemoveVolume, GetVolumeExternal,
ReconcileNodeAccess remain available.

You can also update the backend state using userstate field in the backend configuration file
TridentBackendConfig or backend. json.

For more information, refer to Options for managing backends and Perform backend management with
kubectl.

Example:

12

https://docs.netapp.com/us-en/trident-2406/trident-use/backend_options.html
https://docs.netapp.com/us-en/trident-2406/trident-use/backend_ops_kubectl.html
https://docs.netapp.com/us-en/trident-2406/trident-use/backend_ops_kubectl.html

JSON

Follow these steps to update the userState using the backend. json file:

1. Edit the backend. json file to include the usersState field with its value set to 'suspended'.

2. Update the backend using the tridentctl backend update command and the path to the
updated backend. json file.

Example: tridentctl backend update -f /<path to backend JSON
file>/backend. json

"version": 1,
"storageDriverName": "ontap-nas",
"managementLIF": "<redacted>",
"svm": "nas-svm",

"backendName": "customBackend",
"username": "<redacted>",
"password": "<redacted>",
"userState": "suspended",

YAML

You can edit the tbc after it has been applied using the kubectl edit <tbc-name> -n
<namespace> command

The following example updates the backend state to suspend using the userState: suspended
option:

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: backend-ontap-nas
spec:
version: 1
backendName: customBackend
storageDriverName: ontap-nas
managementLIF: <redacted>
svm: nas-svm
userState: suspended
credentials:
name: backend-tbc-ontap-nas-secret

13

version

Use version flags to print the version of tridentctl and the running Trident service.
tridentctl version [flags]

Flags

--client: Client version only (no server required).
-h, --help: Help for version.

Monitor Astra Trident

Astra Trident provides a set of Prometheus metrics endpoints that you can use to monitor
Astra Trident performance.

Overview

The metrics provided by Astra Trident enable you to do the following:
* Keep tabs on Astra Trident’s health and configuration. You can examine how successful operations are and
if it can communicate with the backends as expected.

» Examine backend usage information and understand how many volumes are provisioned on a backend
and the amount of space consumed, and so on.

* Maintain a mapping of the amount of volumes provisioned on available backends.

» Track performance. You can take a look at how long it takes for Astra Trident to communicate to backends
and perform operations.

@ By default, Trident’s metrics are exposed on the target port 8001 at the /metrics endpoint.
These metrics are enabled by default when Trident is installed.

What you’ll need
* A Kubernetes cluster with Astra Trident installed.

* A Prometheus instance. This can be a containerized Prometheus deployment or you can choose to run
Prometheus as a native application.

Step 1: Define a Prometheus target

You should define a Prometheus target to gather the metrics and obtain information about the backends Astra
Trident manages, the volumes it creates, and so on. This blog explains how you can use Prometheus and
Grafana with Astra Trident to retrieve metrics. The blog explains how you can run Prometheus as an operator
in your Kubernetes cluster and the creation of a ServiceMonitor to obtain Astra Trident metrics.

Step 2: Create a Prometheus ServiceMonitor

To consume the Trident metrics, you should create a Prometheus ServiceMonitor that watches the trident-
csi service and listens on the metrics port. A sample ServiceMonitor looks like this:

14

https://github.com/prometheus-operator/prometheus-operator
https://prometheus.io/download/
https://netapp.io/2020/02/20/prometheus-and-trident/

apiVersion: monitoring.coreos.com/v1l
kind: ServiceMonitor
metadata:
name: trident-sm
namespace: monitoring
labels:
release: prom-operator

spec:
jobLabel: trident
selector:
matchLabels:

app: controller.csi.trident.netapp.io
namespaceSelector:
matchNames:
- trident
endpoints:
- port: metrics
interval: 15s

This ServiceMonitor definition retrieves metrics returned by the trident-csi service and specifically looks
for the metrics endpoint of the service. As a result, Prometheus is now configured to understand Astra
Trident’s

metrics.

In addition to metrics available directly from Astra Trident, kubelet exposes many kubelet volume * metrics
via it's own metrics endpoint. Kubelet can provide information about the volumes that are attached, and pods
and other internal operations it handles. Refer to here.

Step 3: Query Trident metrics with PromQL
PromQL is good for creating expressions that return time-series or tabular data.

Here are some PromQL queries that you can use:

Get Trident health information

* Percentage of HTTP 2XX responses from Astra Trident

(sum (trident rest ops seconds total count{status code=~"2.."} OR on()
vector (0)) / sum (trident rest ops seconds total count)) * 100

* Percentage of REST responses from Astra Trident via status code

(sum (trident rest ops seconds total count) by (status code) / scalar
(sum (trident rest ops seconds_total count))) * 100

15

https://kubernetes.io/docs/concepts/cluster-administration/monitoring/

* Average duration in ms of operations performed by Astra Trident

sum by (operation)

(trident operation duration milliseconds_ sum{success="true"}) / sum by
(operation)

(trident operation duration milliseconds count{success="true"})

Get Astra Trident usage information

* Average volume size
trident volume allocated bytes/trident volume count
» Total volume space provisioned by each backend

sum (trident volume allocated bytes) by (backend uuid)

Get individual volume usage

@ This is enabled only if kubelet metrics are also gathered.

* Percentage of used space for each volume

kubelet volume stats used bytes / kubelet volume stats capacity bytes *
100

Learn about Astra Trident AutoSupport telemetry

By default, Astra Trident sends Prometheus metrics and basic backend information to NetApp on a daily
cadence.

* To stop Astra Trident from sending Prometheus metrics and basic backend information to NetApp, pass the
--silence-autosupport flag during Astra Trident installation.

* Astra Trident can also send container logs to NetApp Support on-demand via tridentctl send
autosupport. You will need to trigger Astra Trident to upload it’s logs. Before you submit logs, you should
accept NetApp’s
privacy policy.

» Unless specified, Astra Trident fetches the logs from the past 24 hours.

* You can specify the log retention time frame with the —-since flag. For example: tridentctl send
autosupport --since=1h. This information is collected and sent via a trident-autosupport
container
that is installed alongside Astra Trident. You can obtain the container image at Trident AutoSupport.

 Trident AutoSupport does not gather or transmit Personally Identifiable Information (PIl) or Personal
Information. It comes with a EULA that is not applicable to the Trident container image itself. You can learn

16

https://www.netapp.com/company/legal/privacy-policy/
https://hub.docker.com/r/netapp/trident-autosupport
https://www.netapp.com/us/media/enduser-license-agreement-worldwide.pdf

more about NetApp’s commitment to data security and trust here.

An example payload sent by Astra Trident looks like this:

items:
- backendUUID: ff3852el1-18a5-4df4-b2d3-£59f829627ed
protocol: file
config:
version: 1
storageDriverName: ontap-nas
debug: false
debugTraceFlags:
disableDelete: false
serialNumbers:
- nwkvzfanek SN
limitVolumeSize: "'
state: online

online: true

* The AutoSupport messages are sent to NetApp’s AutoSupport endpoint. If you are using a private registry
to store container images, you can use the --image-registry flag.

* You can also configure proxy URLs by generating the installation YAML files. This can be done by using
tridentctl install --generate-custom-yaml to create the YAML files and adding the --proxy
—-url argument for the trident-autosupport containerin trident-deployment.yaml.

Disable Astra Trident metrics

To disable metrics from being reported, you should generate custom YAMLs (using the -—generate-custom
-yaml flag) and edit them to remove the --metrics flag from being invoked for the trident-main
container.

Uninstall Astra Trident

You should use the same method to uninstall Astra Trident that you used to install Astra
Trident.

About this task

« If you need a fix for bugs observed after an upgrade, dependency issues, or an unsuccessful or incomplete
upgrade, you should uninstall Astra Trident and reinstall the earlier version using the specific instructions
for that version. This is the only recommended way to downgrade to an earlier version.

» For easy upgrade and reinstallation, uninstalling Astra Trident does not remove the CRDs or related
objects created by Astra Trident. If you need to completely remove Astra Trident and all of its data, refer to
Completely remove Astra Trident and CRDs.

Before you begin
If you are decommissioning Kubernetes clusters, you must delete all applications that use volumes created by

17

https://www.netapp.com/pdf.html?item=/media/14114-enduserlicenseagreementworldwidepdf.pdf
https://docs.netapp.com/us-en/trident-2406/earlier-versions.html
https://docs.netapp.com/us-en/trident-2406/troubleshooting.html#completely-remove-astra-trident-and-crds

Astra Trident prior to uninstalling. This ensures that PVCs are unpublished on Kubernetes nodes before they
are deleted.

Determine the original installation method

You should use the same method to uninstall Astra Trident that you used to install it. Before uninstalling, verify
which version you used to originally install Astra Trident.

1. Use kubectl get pods -n trident to examine the pods.
° If there is no operator pod, Astra Trident was installed using tridentctl.

o If there is an operator pod, Astra Trident was installed using the Trident operator either manually or
using Helm.

2. If there is an operator pod, use kubectl describe tproc trident to determine if Astra Trident was
installed using Helm.

o If there is a Helm label, Astra Trident was installed using Helm.
o If there is no Helm label, Astra Trident was installed manually using the Trident operator.
Uninstall a Trident operator installation

You can uninstall a trident operator installation manually or using Helm.

Uninstall manual installation

If you installed Astra Trident using the operator, you can uninstall it by doing one of the following:
1. Edit TridentOrchestrator CR and set the uninstall flag:

kubectl patch torc <trident-orchestrator-name> --type=merge -p
'"{"spec":{"uninstall":true}}'

When the uninstall flag is set to true, the Trident operator uninstalls Trident, but does not remove the
TridentOrchestrator itself. You should clean up the TridentOrchestrator and create a new one if you want to
install Trident again.

2. Delete TridentOrchestrator: By removing the TridentOrchestrator CR that was used to deploy
Astra Trident, you instruct the operator to uninstall Trident. The operator processes the removal of

TridentOrchestrator and proceeds to remove the Astra Trident deployment and daemonset, deleting
the Trident pods it had created as part of the installation.

kubectl delete -f deploy/<bundle.yaml> -n <namespace>

Uninstall Helm installation

If you installed Astra Trident by using Helm, you can uninstall it by using helm uninstall.

18

#List the Helm release corresponding to the Astra Trident install.
helm 1ls -n trident

NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION

trident trident 1 2021-04-20
00:26:42.417764794 +0000 UTC deployed trident-operator-21.07.1
21.07.1

#Uninstall Helm release to remove Trident
helm uninstall trident -n trident
release "trident" uninstalled

Uninstall a tridentctl installation

Use the uninstall command in tridentctl to remove all of the resources associated with Astra Trident
except for the CRDs and related objects:

./tridentctl uninstall -n <namespace>

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

20

http://www.netapp.com/TM

	Manage and monitor Astra Trident : Astra Trident
	Table of Contents
	Manage and monitor Astra Trident
	Upgrade Astra Trident
	Upgrade Astra Trident
	Upgrade with the operator
	Upgrade with tridentctl

	Manage Astra Trident using tridentctl
	Commands and global flags
	Command options and flags

	Monitor Astra Trident
	Overview
	Step 1: Define a Prometheus target
	Step 2: Create a Prometheus ServiceMonitor
	Step 3: Query Trident metrics with PromQL
	Learn about Astra Trident AutoSupport telemetry
	Disable Astra Trident metrics

	Uninstall Astra Trident
	Determine the original installation method
	Uninstall a Trident operator installation
	Uninstall a tridentctl installation

