Trident 24.10 documentation
Trident

NetApp
February 05, 2026

This PDF was generated from https://docs.netapp.com/us-en/trident-2410/index.html on February 05,
2026. Always check docs.netapp.com for the latest.

Table of Contents

Trident 24.10 documentation
Release notes
What's new

What's new in 24.10
Changes in 24.06
Changes in 24.02
Changes in 23.10
Changes in 23.07.1
Changes in 23.07
Changes in 23.04
Changes in 23.01.1
Changes in 23.01
Changes in 22.10
Changes in 22.07
Changes in 22.04
Changes in 22.01.1
Changes in 22.01.0
Changes in 21.10.1
Changes in 21.10.0
Known issues

Find more information

Earlier versions of documentation
Get started
Learn about Trident

Learn about Trident
Trident architecture
Concepts

Quick start for Trident

What's next?

Requirements

Critical information about Trident

Supported frontends (orchestrators)

Supported backends (storage)

Feature requirements

Tested host operating systems

Host configuration

Storage system configuration

Trident ports

Container images and corresponding Kubernetes versions

Install Trident
Install using Trident operator
Install using tridentctl

Use Trident

0 00 N O oot ok W DNDNDN -

N NN DNDNDNDDNDDNDNDNDNDNDNDDNDNDNDNDNDNDDNDNDNDNDN-_2S2D 2 A O A A A A A
O N NNOOO OO O o s~ S~ bboowdMNMNOOOGOAaoOag b DD oODMNMNDN-= OO

Prepare the worker node
Selecting the right tools
Node service discovery
NFS volumes
iISCSI volumes
NVMe/TCP volumes
Install the FC tools
Fibre Channel (FC) support
Configure and manage backends
Configure backends
Azure NetApp Files
Google Cloud NetApp Volumes
Configure a Cloud Volumes Service for Google Cloud backend
Configure a NetApp HCI or SolidFire backend
ONTAP SAN drivers
ONTAP NAS drivers
Amazon FSx for NetApp ONTAP
Create backends with kubectl
Manage backends
Create and manage storage classes
Create a storage class
Manage storage classes
Provision and manage volumes
Provision a volume
Expand volumes
Import volumes
Customize volume names and labels
Share an NFS volume across namespaces
Replicate volumes using SnapMirror
Use CSI Topology
Work with snapshots
Manage and monitor Trident
Upgrade Trident
Upgrade Trident
Upgrade with the operator
Upgrade with tridentctl
Manage Trident using tridentctl
Commands and global flags
Command options and flags
Plugin support
Monitor Trident
Overview
Step 1: Define a Prometheus target
Step 2: Create a Prometheus ServiceMonitor
Step 3: Query Trident metrics with PromQL

28
28
28
29
29
33
34
36
38
39
39
56
70
81
87
113
144
176
183
192
192
195
197
197
201
208
216
219
223
229
236
245
245
245
246
251
251
251
253
258
258
258
258
259
259

Learn about Trident AutoSupport telemetry
Disable Trident metrics
Uninstall Trident
Determine the original installation method
Uninstall a Trident operator installation
Uninstall a tridentctl installation
Trident for Docker
Prerequisites for deployment
Verify the requirements
NVMe tools
Deploy Trident
Docker managed plugin method (version 1.13/17.03 and later)
Traditional method (version 1.12 or earlier)
Start Trident at system startup
Upgrade or uninstall Trident
Upgrade
Uninstall
Work with volumes
Create a volume
Remove a volume
Clone a volume
Access externally created volumes
Driver-specific volume options
Collect logs
Collect logs for troubleshooting
General troubleshooting tips
Manage multiple Trident instances
Steps for Docker managed plugin (version 1.13/17.03 or later)
Steps for traditional (version 1.12 or earlier)
Storage configuration options
Global configuration options
ONTAP configuration
Element software configuration
Known issues and limitations
Upgrading Trident Docker Volume Plugin to 20.10 and later from older versions results in upgrade
failure with the no such file or directory error.
Volume names must be a minimum of 2 characters in length.
Docker Swarm has certain behaviors that prevent Trident from supporting it with every storage and
driver combination.
If a FlexGroup is being provisioned, ONTAP does not provision a second FlexGroup if the second
FlexGroup has one or more aggregates in common with the FlexGroup being provisioned.
Best practices and recommendations
Deployment
Deploy to a dedicated namespace
Use quotas and range limits to control storage consumption

260
261
261
262
262
263
264
264
264
266
267
267
269
271
272
272
273
273
274
274
274
276
276
281
281
282
282
282
283
283
283
284
292
293

293
294

294

294
295
295
295
295

Storage configuration
Platform overview
ONTAP and Cloud Volumes ONTAP best practices
SolidFire best practices
Where to find more information?

Integrate Trident
Driver selection and deployment
Storage class design
Virtual pool design
Volume operations
Deploy OpenShift services
Metrics service

Data protection and disaster recovery
Trident replication and recovery
SVM replication and recovery
Volume replication and recovery
Snapshot data protection

Security
Security
Linux Unified Key Setup (LUKS)
Kerberos in-flight encryption

Protect applications with Trident Protect

Learn about Trident Protect
What's next?

Install Trident Protect
Trident Protect requirements
Install and configure Trident Protect
Install the Trident Protect CLI plugin

Manage Trident Protect
Manage Trident Protect authorization and access control
Generate a Trident Protect support bundle
Upgrade Trident Protect

Manage and protect applications
Use Trident Protect AppVault objects to manage buckets
Define an application for management with Trident Protect
Protect applications using Trident Protect
Restore applications using Trident Protect
Replicate applications using NetApp SnapMirror and Trident Protect
Migrate applications using Trident Protect
Manage Trident Protect execution hooks

Uninstall Trident Protect

Knowledge and support

Frequently asked questions
General questions
Install and use Trident on a Kubernetes cluster

295
295
295
300
301
302
302
305
306
307
309
311
312
312
313
314
314
314
314
315
321
329
329
329
329
329
332
338
342
342
348
350
350
350
358
359
368
384
396
400
405
406
406
406
406

Troubleshooting and support 407

Upgrade Trident 408
Manage backends and volumes 409
Troubleshooting 412
General troubleshooting 413
Unsuccessful Trident deployment using the operator 414
Unsuccessful Trident deployment using tridentctl 416
Completely remove Trident and CRDs 416
NVMe node unstaging failure with RWX raw block namespaces o Kubernetes 1.26 417
Support 418
Trident support lifecycle 418
Self-support 419
Community support 419
NetApp technical support 419
For more information 419
Reference 420
Trident ports 420
Trident ports 420
Trident REST API 420
When to use the REST API 420
Using REST API 420
Command-line options 421
Logging 421
Kubernetes 421
Docker 422
REST 422
Kubernetes and Trident objects 422
How do the objects interact with one another? 422
Kubernetes PersistentVolumeClaim objects 423
Kubernetes PersistentVolume objects 424
Kubernetes storageClass objects 425
Kubernetes VolumeSnapshotClass objects 428
Kubernetes VolumeSnapshot objects 429
Kubernetes VolumeSnapshotContent objects 429
Kubernetes CustomResourceDefinition objects 430
Trident StorageClass objects 430
Trident backend objects 430
Trident StoragePool objects 431
Trident Volume objects 431
Trident Snapshot objects 432
Trident ResourceQuota object 433
Pod Security Standards (PSS) and Security Context Constraints (SCC) 434
Required Kubernetes Security Context and Related Fields 434

Pod Security Standards (PSS) 435

Pod Security Policies (PSP)
Security Context Constraints (SCC)
Legal notices

Copyright

Trademarks

Patents

Privacy policy

Open source

435
437
439
439
439
439
439
439

Trident 24.10 documentation

Release notes

What’s new

Release Notes provide information about new features, enhancements, and bug fixes in
the latest version of Trident.

The tridentctl binary for Linux that is provided in the installer zip file is the tested and
supported version. Be aware that the macos binary provided in the /extras part of the zip file
is not tested or supported.

What’s new in 24.10

Enhancements

* Google Cloud NetApp Volumes driver is now generally available for NFS volumes and supports zone-
aware provisioning.

* GCP Workload Identity will be used as Cloud Identity for Google Cloud NetApp Volumes with GKE.

* Added formatOptions configuration parameter to ONTAP-SAN and ONTAP-SAN-Economy drivers to
allow users to specify LUN format options.

* Reduced Azure NetApp Files minimum volume size to 50 GiB. Azure new minimum size expected to be
generally available in November.

* Added denyNewVolumePools configuration parameter to restrict ONTAP-NAS-Economy and ONTAP-
SAN-Economy drivers to preexisting Flexvol pools.

» Added detection for the addition, removal, or renaming of aggregates from the SVM across all ONTAP
drivers.

» Added 18MiB overhead to LUKS LUNSs to ensure reported PVC size is usable.

* Improved ONTAP-SAN and ONTAP-SAN-Economy node stage and unstage error handling to allow
unstage to remove devices after a failed stage.

» Added a custom role generator allowing customers to create a minimalistic role for Trident in ONTAP.

* Added additional logging for troubleshooting 1sscsi (Issue #792).

Kubernetes

» Added new Trident features for Kubernetes-native workflows:
o Data protection
o Data migration
o Disaster recovery

o Application mobility
Learn more about Trident Protect.

* Added a new flag --k8s_api gps to installers to set the QPS value used by Trident to communicate with
the Kubernetes API server.

* Added --node-prep flag to installers for automatic management of storage protocol dependencies on

https://github.com/NetApp/trident/issues/792

Kubernetes cluster nodes. Tested and verified compatibility with Amazon Linux 2023 iSCSI storage
protocol

» Added support for force detach for ONTAP-NAS-Economy volumes during Non-Graceful Node Shutdown
scenarios.

* New ONTAP-NAS-Economy NFS volumes will use per-qtree export policies when using
autoExportPolicy backend option. Qtrees will only be mapped to node restrictive export policies at time
of publish to improve access control and security. Existing gtrees will be switched to the new export policy
model when Trident unpublishes the volume from all nodes to do so without impacting active workloads.

» Added support for Kubernetes 1.31.

Experimental Enhancements

» Added tech preview for Fibre Channel support on ONTAP-SAN driver. Refer to Fibre Channel support.

Fixes

* Kubernetes:
> Fixed Rancher admission webhook preventing Trident Helm installations (Issue #839).
> Fixed Affinity key in helm chart values (Issue #898).

o Fixed tridentControllerPluginNodeSelector/tridentNodePluginNodeSelector won’t work with "true" value
(Issue #899).

> Deleted ephemeral snapshots created during cloning (Issue #901).
* Added support for Windows Server 2019.
* Fixed "go mod tidy'in Trident repo (Issue #767).

Deprecations

* Kubernetes:
o Updated minimum supported Kubernetes to 1.25.

o Removed support for POD Security Policy.

Product rebranding

Beginning with the 24.10 release, Astra Trident is rebranded to Trident (Netapp Trident). This rebranding does
not affect any features, platforms supported, or interoperability for Trident.

Changes in 24.06

Enhancements

* IMPORTANT: The 1imitVolumeSize parameter now limits qtree/LUN sizes in the ONTAP economy
drivers. Use the new 1imitVolumePoolSize parameter to control Flexvol sizes in those drivers. (Issue
#341).

» Added ability for iSCSI self-healing to initiate SCSI scans by exact LUN ID if deprecated igroups are in use
(Issue #883).

« Added support for volume clone and resize operations to be allowed even when the backend is in
suspended mode.

https://github.com/NetApp/trident/issues/839
https://github.com/NetApp/trident/issues/898
https://github.com/NetApp/trident/issues/899
https://github.com/NetApp/trident/issues/901
https://github.com/NetApp/trident/issues/767
https://github.com/NetApp/trident/issues/341
https://github.com/NetApp/trident/issues/341
https://github.com/NetApp/trident/issues/883

« Added ability for user-configured log settings for the Trident controller to be propagated to Trident node
pods.

» Added support in Trident to use REST by default instead of ZAPI for ONTAP versions 9.15.1 and later.

» Added support for custom volume names and metadata on the ONTAP storage backends for new
persistent volumes.

* Enhanced the azure-netapp-files (ANF) driver to automatically enable the snapshot directory by
default when the NFS mount options are set to use NFS version 4.x.

» Added Bottlerocket support for NFS volumes.
* Added technical preview support for Google Cloud NetApp Volumes.

Kubernetes

» Added support for Kubernetes 1.30.

» Added ability for Trident DaemonSet to clean zombie mounts and residual tracking files at startup (Issue
#883).

* Added PVC annotation trident.netapp.io/luksEncryption for dynamically importing LUKS
volumes (Issue #849).

* Added topology awareness to ANF driver.

» Added support for Windows Server 2022 nodes.

Fixes

* Fixed Trident installation failures due to stale transactions.
* Fixed tridentctl to ignore warning messages from Kubernetes (Issue #892).

* Changed Trident controller SecurityContextConstraint priority to 0 (Issue #887).

ONTAP drivers now accept volume sizes below 20MiB (Issue[#885).
 Fixed Trident to prevent shrinking of Flexvols during resize operation for the ONTAP-SAN driver.
» Fixed ANF volume import failure with NFS v4.1.

Changes in 24.02

Enhancements

* Added support for Cloud Identity.

o AKS with ANF - Azure Workload Identity will be used as Cloud identity.

o EKS with FSxN - AWS IAM role will be used as Cloud identity.
» Added support to install Trident as an add-on on EKS cluster from EKS console.
» Added ability to configure and disable iSCSI self-healing (Issue #864).

* Added FSx personality to ONTAP drivers to enable integration with AWS IAM and SecretsManager, and to
enable Trident to delete FSx volumes with backups (Issue #453).

Kubernetes

» Added support for Kubernetes 1.29.

https://github.com/NetApp/trident/issues/883
https://github.com/NetApp/trident/issues/883
https://github.com/NetApp/trident/issues/849
https://github.com/NetApp/trident/issues/892
https://github.com/NetApp/trident/issues/887
https://github.com/NetApp/trident/issues/885
https://github.com/NetApp/trident/issues/864
https://github.com/NetApp/trident/issues/453

Fixes

» Fixed ACP warning messages, when ACP is not enabled (Issue #866).

+ Added a 10-second delay before performing a clone split during snapshot delete for ONTAP drivers, when
a clone is associated with the snapshot.

Deprecations

» Removed in-toto attestations framework from multi-platform image manifests.

Changes in 23.10

Fixes

 Fixed volume expansion if a new requested size is smaller than the total volume size for ontap-nas and
ontap-nas-flexgroup storage drivers (Issue #834).

* Fixed volume size to display only usable size of the volume during import for ontap-nas and ontap-nas-
flexgroup storage drivers (Issue #722).

* Fixed FlexVol name conversion for ONTAP-NAS-Economy.

* Fixed Trident initialization issue on a windows node when node is rebooted.
Enhancements
Kubernetes

Added support for Kubernetes 1.28.

Trident

» Added support for using Azure Managed Identities (AMI) with azure-netapp-files storage driver.
* Added support for NVMe over TCP for the ONTAP-SAN driver.

+ Added ability to pause the provisioning of a volume when backend is set to suspended state by user (Issue
#558).

Changes in 23.07.1

Kubernetes: Fixed daemonset deletion to support zero-downtime upgrades (Issue #740).

Changes in 23.07

Fixes

Kubernetes

* Fixed Trident upgrade to disregard old pods stuck in terminating state (Issue #740).

» Added toleration to "transient-trident-version-pod" definition (Issue #795).

Trident

* Fixed ONTAP ZAPI requests to ensure LUN serial numbers are queried when getting LUN attributes to
identify and fix ghost iISCSI devices during Node Staging operations.

https://github.com/NetApp/trident/issues/866
https://github.com/NetApp/trident/issues/834
https://github.com/NetApp/trident/issues/722
https://github.com/NetApp/trident/issues/558
https://github.com/NetApp/trident/issues/558
https://github.com/NetApp/trident/issues/740
https://github.com/NetApp/trident/issues/740
https://github.com/NetApp/trident/issues/795

* Fixed error handling in storage driver code (Issue #816).
* Fixed quota resize when using ONTAP drivers with use-rest=true.
* Fixed LUN clone creation in ontap-san-economy.

* Revert publish info field from rawDevicePath to devicePath; added logic to populate and recover (in
some cases) devicePath field.

Enhancements

Kubernetes

» Added support for importing pre-provisioned snapshots.

» Minimized deployment and daemonset linux permissions (Issue #817).

Trident

* No longer reporting the state field for "online" volumes and snapshots.

» Updates the backend state if the ONTAP backend is offline (Issues #801, #543).

* LUN Serial Number is always retrieved and published during the ControllerVolumePublish workflow.
» Added additional logic to verify iISCSI multipath device serial number and size.

+ Additional verification for iISCSI volumes to ensure correct multipath device is unstaged.

Experimental Enhancement

Added tech preview support for NVMe over TCP for the ONTAP-SAN driver.

Documentation

Many organizational and formatting improvements have been made.

Deprecations

Kubernetes

* Removed support for vibeta1 snapshots.
* Removed support for pre-CSI volumes and storage classes.

» Updated minimum supported Kubernetes to 1.22.

Changes in 23.04

Force volume detach for ONTAP-SAN-* volumes is supported only with Kubernetes versions
with the Non-Graceful Node Shutdown feature gate enabled. Force detach must be enabled at
install time using the --enable-force-detach Trident installer flag.

Fixes

 Fixed Trident Operator to use IPv6 localhost for installation when specified in spec.
* Fixed Trident Operator cluster role permissions to be in sync with the bundle permissions (Issue #799).

* Fixed issue with attaching raw block volume on multiple nodes in RWX mode.

https://github.com/NetApp/trident/issues/816
https://github.com/NetApp/trident/issues/817
https://github.com/NetApp/trident/issues/801
https://github.com/NetApp/trident/issues/543
https://github.com/NetApp/trident/issues/799

* Fixed FlexGroup cloning support and volume import for SMB volumes.

* Fixed issue where Trident controller could not shut down immediately (Issue #811).

» Added fix to list all igroup names associated with a specified LUN provisioned with ontap-san-* drivers.
* Added a fix to allow external processes to run to completion.

* Fixed compilation error for s390 architecture (Issue #537).

* Fixed incorrect logging level during volume mount operations (Issue #781).

* Fixed potential type assertion error (Issue #802).

Enhancements

» Kubernetes:
o Added support for Kubernetes 1.27.
> Added support for importing LUKS volumes.
o Added support for ReadWriteOncePod PVC access mode.

o Added support for force detach for ONTAP-SAN-* volumes during Non-Graceful Node Shutdown
scenarios.

o All ONTAP-SAN-* volumes will now use per-node igroups. LUNs will only be mapped to igroups while
actively published to those nodes to improve our security posture. Existing volumes will be
opportunistically switched to the new igroup scheme when Trident determines it is safe to do so without
impacting active workloads (Issue #758).

o Improved Trident security by cleaning up unused Trident-managed igroups from ONTAP-SAN-*
backends.

» Added support for SMB volumes with Amazon FSx to the ontap-nas-economy and ontap-nas-flexgroup
storage drivers.

» Added support for SMB shares with the ontap-nas, ontap-nas-economy and ontap-nas-flexgroup storage
drivers.

* Added support for arm64 nodes (Issue #732).
* Improved Trident shutdown procedure by deactivating API servers first (Issue #811).

* Added cross-platform build support for Windows and arm64 hosts to Makefile; see BUILD.md.

Deprecations

Kubernetes: Backend-scoped igroups will no longer be created when configuring ontap-san and ontap-san-
economy drivers (Issue #758).

Changes in 23.01.1

Fixes

» Fixed Trident Operator to use IPv6 localhost for installation when specified in spec.

* Fixed Trident Operator cluster role permissions to be in sync with the bundle permissions Issue #799.
» Added a fix to allow external processes to run to completion.

 Fixed issue with attaching raw block volume on multiple nodes in RWX mode.

* Fixed FlexGroup cloning support and volume import for SMB volumes.

https://github.com/NetApp/trident/issues/811
https://github.com/NetApp/trident/issues/537
https://github.com/NetApp/trident/issues/781
https://github.com/NetApp/trident/issues/802
https://github.com/NetApp/trident/issues/758
https://github.com/NetApp/trident/issues/732
https://github.com/NetApp/trident/issues/811
https://github.com/NetApp/trident/issues/758
https://github.com/NetApp/trident/issues/799

Changes in 23.01

@ Kubernetes 1.27 is now supported in Trident. Please upgrade Trident prior to upgrading
Kubernetes.

Fixes

» Kubernetes: Added options to exclude Pod Security Policy creation to fix Trident installations via Helm
(Issues #783, #794).

Enhancements
Kubernetes
» Added support for Kubernetes 1.26.
* Improved overall Trident RBAC resource utilization (Issue #757).
» Added automation to detect and fix broken or stale iSCSI sessions on host nodes.
» Added support for expanding LUKS encrypted volumes.

* Kubernetes: Added credential rotation support for LUKS encrypted volumes.

Trident
* Added support for SMB volumes with Amazon FSx for ONTAP to the ontap-nas storage driver.

* Added support for NTFS permissions when using SMB volumes.
» Added support for storage pools for GCP volumes with CVS service level.

» Added support for optional use of flexgroupAggregateList when creating FlexGroups with the ontap-nas-
flexgroup storage driver.

* Improved performance for the ontap-nas-economy storage driver when managing multiple FlexVols.
« Enabled dataLIF updates for all ONTAP NAS storage drivers.

» Updated the Trident Deployment and DaemonSet naming convention to reflect the host node OS.

Deprecations

» Kubernetes: Updated minimum supported Kubernetes to 1.21.

* Data LIFs should no longer be specified when configuring ontap-san or ontap-san—-economy drivers.

Changes in 22.10

You must read the following critical information before upgrading to Trident 22.10.

https://github.com/NetApp/trident/issues/794
https://github.com/NetApp/trident/issues/757

Critical information about Trident 22.10

» Kubernetes 1.25 is now supported in Trident. You must upgrade Trident to 22.10 prior to
upgrading to Kubernetes 1.25.

 Trident now strictly enforces the use of multipathing configuration in SAN environments, with
@ a recommended value of find multipaths: no in multipath.conf file.

Use of non-multipathing configuration or use of find multipaths: yes or
find multipaths: smart value in multipath.conf file will result in mount failures. Trident
has recommended the use of find multipaths: no since the 21.07 release.

Fixes

* Fixed issue specific to ONTAP backend created using credentials field failing to come online during
22.07.0 upgrade (Issue #759).

» Docker: Fixed an issue causing the Docker volume plugin to fail to start in some environments (Issue #548
and Issue #760).

* Fixed SLM issue specific to ONTAP SAN backends to ensure only subset of data LIFs belonging to
reporting nodes are published.

* Fixed performance issue where unnecessary scans for iISCSI LUNs happened when attaching a volume.
* Removed granular retries within the Trident iSCSI workflow to fail fast and reduce external retry intervals.

 Fixed issue where an error was returned when flushing an iSCSI device when the corresponding multipath
device was already flushed.

Enhancements

* Kubernetes:

o Added support for Kubernetes 1.25. You must upgrade Trident to 22.10 prior to upgrading to
Kubernetes 1.25.

o Added a separate ServiceAccount, ClusterRole, and ClusterRoleBinding for the Trident Deployment
and DaemonSet to allow future permissions enhancements.

o Added support for cross-namespace volume sharing.
* All Trident ontap-* storage drivers now work with the ONTAP REST API.

* Added new operator yaml (bundle post 1 25.yaml) withouta PodSecurityPolicy to support
Kubernetes 1.25.

* Added support for LUKS-encrypted volumes for ontap-san and ontap-san-economy storage drivers.
* Added support for Windows Server 2019 nodes.
* Added support for SMB volumes on Windows nodes through the azure-netapp-files storage driver.

» Automatic MetroCluster switchover detection for ONTARP drivers is now generally available.

Deprecations

* Kubernetes: Updated minimum supported Kubernetes to 1.20.
» Removed Astra Data Store (ADS) driver.

* Removed support for yes and smart options for find multipaths when configuring worker node

https://github.com/NetApp/trident/issues/759
https://github.com/NetApp/trident/issues/548
https://github.com/NetApp/trident/issues/760
https://docs.netapp.com/us-en/trident/trident-use/volume-share.html
https://docs.netapp.com/us-en/trident/trident-reco/security-luks.html
https://docs.netapp.com/us-en/trident/trident-use/anf.html

multipathing for iSCSI.

Changes in 22.07

Fixes

Kubernetes

* Fixed issue to handle boolean and number values for node selector when configuring Trident with Helm or
the Trident Operator. (GitHub issue #700)

 Fixed issue in handling errors from non-CHAP path, so that kubelet will retry if it fails. GitHub issue #736)

Enhancements

* Transition from k8s.gcr.io to registry.k8s.io as default registry for CSl images

* ONTAP-SAN volumes will now use per-node igroups and only map LUNSs to igroups while actively
published to those nodes to improve our security posture. Existing volumes will be opportunistically
switched to the new igroup scheme when Trident determines it is safe to do so without impacting active
workloads.

* Included a ResourceQuota with Trident installations to ensure Trident DaemonSet is scheduled when
PriorityClass consumption is limited by default.

» Added support for Network Features to Azure NetApp Files driver. (GitHub issue #717)
» Added tech preview automatic MetroCluster switchover detection to ONTAP drivers. (GitHub issue #228)

Deprecations
* Kubernetes: Updated minimum supported Kubernetes to 1.19.
» Backend config no longer allows multiple authentication types in single config.

Removals

* AWS CVS driver (deprecated since 22.04) has been removed.
* Kubernetes
o Removed unnecessary SYS_ADMIN capability from node pods.

° Reduces nodeprep down to simple host info and active service discovery to do a best-effort
confirmation that NFS/iSCSI services are available on worker nodes.

Documentation

A new Pod Security Standards (PSS) section has been added detailing permissions enabled by Trident on
installation.

Changes in 22.04

NetApp is continually improving and enhancing its products and services. Here are some of the latest features
in Trident. For previous releases, Refer to Earlier versions of documentation.

@ If you are upgrading from any previous Trident release and use Azure NetApp Files, the
location config parameter is now a mandatory, singleton field.

10

https://github.com/NetApp/trident/issues/700
https://github.com/NetApp/trident/issues/736
https://github.com/NetApp/trident/issues/717
https://github.com/NetApp/trident/issues/228
https://docs.netapp.com/us-en/trident/trident-reference/pod-security.html
https://docs.netapp.com/us-en/trident/earlier-versions.html

Fixes

 Improved parsing of iSCSI initiator names. (GitHub issue #681)

 Fixed issue where CSI storage class parameters weren'’t allowed. (GitHub issue #598)
* Fixed duplicate key declaration in Trident CRD. (GitHub issue #671)

* Fixed inaccurate CSI Snapshot logs. (GitHub issue #629))

* Fixed issue with unpublishing volumes on deleted nodes. (GitHub issue #691)

» Added handling of filesystem inconsistencies on block devices. (GitHub issue #656)

* Fixed issue pulling auto-support images when setting the imageRegistry flag during installation. (GitHub
issue #715)

* Fixed issue where Azure NetApp Files driver failed to clone a volume with multiple export rules.

Enhancements

* Inbound connections to Trident’s secure endpoints now require a minimum of TLS 1.3. (GitHub issue #698)
 Trident now adds HSTS headers to responses from its secure endpoints.
» Trident now attempts to enable the Azure NetApp Files unix permissions feature automatically.

* Kubernetes: Trident daemonset now runs at system-node-critical priority class. (GitHub issue #694)

Removals

E-Series driver (disabled since 20.07) has been removed.

Changes in 22.01.1

Fixes

 Fixed issue with unpublishing volumes on deleted nodes. (GitHub issue #691)

 Fixed panic when accessing nil fields for aggregate space in ONTAP API responses.

Changes in 22.01.0

Fixes

* Kubernetes: Increase node registration backoff retry time for large clusters.
* Fixed issue where azure-netapp-files driver could be confused by multiple resources with the same name.
* ONTAP SAN IPv6 Data LIFs now work if specified with brackets.

* Fixed issue where attempting to import an already imported volume returns EOF leaving PVC in pending
state. (GitHub issue #489)

 Fixed issue when Trident performance slows down when > 32 snapshots are created on a SolidFire
volume.

* Replaced SHA-1 with SHA-256 in SSL certificate creation.
» Fixed Azure NetApp Files driver to allow duplicate resource names and limit operations to a single location.

* Fixed Azure NetApp Files driver to allow duplicate resource names and limit operations to a single location.

11

https://github.com/NetApp/trident/issues/681
https://github.com/NetApp/trident/issues/598
https://github.com/NetApp/trident/issues/671
https://github.com/NetApp/trident/issues/629
https://github.com/NetApp/trident/issues/691
https://github.com/NetApp/trident/issues/656
https://github.com/NetApp/trident/issues/715
https://github.com/NetApp/trident/issues/715
https://github.com/NetApp/trident/issues/698
https://github.com/NetApp/trident/issues/694
https://github.com/NetApp/trident/issues/691
https://github.com/NetApp/trident/issues/489

Enhancements

* Kubernetes enhancements:
o Added support for Kubernetes 1.23.

> Add scheduling options for Trident pods when installed via Trident Operator or Helm. (GitHub issue
#651)

* Allow cross-region volumes in GCP driver. (GitHub issue #633)

» Added support for 'unixPermissions' option to Azure NetApp Files volumes. (GitHub issue #666)

Deprecations

Trident REST interface can listen and serve only at 127.0.0.1 or [::1] addresses

Changes in 21.10.1

The v21.10.0 release has an issue that can put the Trident controller into a CrashLoopBackOff
state when a node is removed and then added back to the Kubernetes cluster. This issue is
fixed in v21.10.1 (GitHub issue 669).

Fixes

 Fixed potential race condition when importing a volume on a GCP CVS backend resulting in failure to
import.

* Fixed an issue that can put the Trident controller into a CrashLoopBackOff state when a node is removed
and then added back to the Kubernetes cluster (GitHub issue 669).

* Fixed issue where SVMs were no longer discovered if no SVM name was specified (GitHub issue 612).

Changes in 21.10.0

Fixes

» Fixed issue where clones of XFS volumes could not be mounted on the same node as the source volume
(GitHub issue 514).

 Fixed issue where Trident logged a fatal error on shutdown (GitHub issue 597).
» Kubernetes-related fixes:

° Return a volume’s used space as the minimum restoreSize when creating snapshots with ontap-nas
and ontap-nas-flexgroup drivers (GitHub issue 645).

° Fixed issue where Failed to expand filesystem error was logged after volume resize (GitHub
issue 560).

° Fixed issue where a pod could get stuck in Terminating state (GitHub issue 572).

° Fixed the case where an ontap-san-economy FlexVol might be full of snapshot LUNs (GitHub issue
533).

> Fixed custom YAML installer issue with different image (GitHub issue 613).
> Fixed snapshot size calculation (GitHub issue 611).

> Fixed issue where all Trident installers could identify plain Kubernetes as OpenShift (GitHub issue
639).

12

https://github.com/NetApp/trident/issues/651
https://github.com/NetApp/trident/issues/651
https://github.com/NetApp/trident/issues/633
https://github.com/NetApp/trident/issues/666

> Fixed the Trident operator to stop reconciliation if the Kubernetes API server is unreachable (GitHub
issue 599).

Enhancements

* Added support for unixPermissions option to GCP-CVS Performance volumes.
» Added support for scale-optimized CVS volumes in GCP in the range 600 GiB to 1 TiB.
» Kubernetes-related enhancements:
o Added support for Kubernetes 1.22.
> Enabled the Trident operator and Helm chart to work with Kubernetes 1.22 (GitHub issue 628).

° Added operator image to tridentctl images command (GitHub issue 570).

Experimental enhancements

* Added support for volume replication in the ontap-san driver.

* Added tech preview REST support for the ontap-nas-flexgroup, ontap-san, and ontap-nas-
economy drivers.

Known issues
Known issues identify problems that might prevent you from using the product successfully.

» When upgrading a Kubernetes cluster from 1.24 to 1.25 or later that has Trident installed, you must update
values.yaml to set excludePodSecurityPolicy to true or add --set
excludePodSecurityPolicy=true to the helm upgrade command before you can upgrade the
cluster.

* Trident now enforces a blank £sType (fsType="") for volumes that do not have the £sType specified in
their StorageClass. When working with Kubernetes 1.17 or later, Trident supports providing a blank
fsType for NFS volumes. For iSCSI volumes, you are required to set the fsType on your StorageClass
when enforcing an £sGroup using a Security Context.

* When using a backend across multiple Trident instances, each backend configuration file should have a
different storagePrefix value for ONTAP backends or use a different TenantName for SolidFire
backends. Trident cannot detect volumes that other instances of Trident have created. Attempting to create
an existing volume on either ONTAP or SolidFire backends succeeds, because Trident treats volume
creation as an idempotent operation. If storagePrefix or TenantName do not differ, there might be
name collisions for volumes created on the same backend.

* When installing Trident (using tridentctl or the Trident Operator) and using tridentctl to manage
Trident, you should ensure the KUBECONFIG environment variable is set. This is necessary to indicate the
Kubernetes cluster that tridentctl should work against. When working with multiple Kubernetes
environments, you should ensure that the KUBECONF IG file is sourced accurately.

 To perform online space reclamation for iISCSI PVs, the underlying OS on the worker node might require
mount options to be passed to the volume. This is true for RHEL/RedHat CoreOS instances, which require
the discard mount option; ensure that the discard mountOption is included in your StorageClass to
support online block discard.

* If you have more than one instance of Trident per Kubernetes cluster, Trident cannot communicate with
other instances and cannot discover other volumes that they have created, which leads to unexpected and
incorrect behavior if more than one instance runs within a cluster. There should be only one instance of
Trident per Kubernetes cluster.

13

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems
https://kubernetes.io/docs/concepts/storage/storage-classes/

* If Trident-based StorageClass objects are deleted from Kubernetes while Trident is offline, Trident does
not remove the corresponding storage classes from its database when it comes back online. You should
delete these storage classes using tridentctl or the REST API.

« If a user deletes a PV provisioned by Trident before deleting the corresponding PVC, Trident does not
automatically delete the backing volume. You should remove the volume via tridentctl or the REST
API.

* ONTAP cannot concurrently provision more than one FlexGroup at a time unless the set of aggregates are
unigue to each provisioning request.

* When using Trident over IPv6, you should specify managementLIF and dataLIF in the backend
definition within square brackets. For example, [£d20:8ble:b258:2000:£816:3eff:feec:0].

@ You cannot specify dataLIF on an ONTAP SAN backend. Trident discovers all available
iSCSI LIFs and uses them to establish the multipath session.

* If using the solidfire-san driver with OpenShift 4.5, ensure that the underlying worker nodes use MD5
as the CHAP authentication algorithm. Secure FIPS-compliant CHAP algorithms SHA1, SHA-256, and
SHAS3-256 are available with Element 12.7.

Find more information

 Trident GitHub
+ Trident blogs

Earlier versions of documentation

If you aren’t running Trident 24.10, the documentation for previous releases is available
based on the Trident support lifecycle.

* Trident 24.06
* Trident 24.02
* Trident 23.10
+ Trident 23.07
+ Trident 23.04
 Trident 23.01
* Trident 22.10
* Trident 22.07
+ Trident 22.04

14

https://github.com/NetApp/trident
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://docs.netapp.com/us-en/trident-2406/index.html
https://docs.netapp.com/us-en/trident-2402/index.html
https://docs.netapp.com/us-en/trident-2310/index.html
https://docs.netapp.com/us-en/trident-2307/index.html
https://docs.netapp.com/us-en/trident-2304/index.html
https://docs.netapp.com/us-en/trident-2301/index.html
https://docs.netapp.com/us-en/trident-2210/index.html
https://docs.netapp.com/us-en/trident-2207/index.html
https://docs.netapp.com/us-en/trident-2204/index.html

Get started

Learn about Trident

Learn about Trident

Trident is a fully-supported open source project maintained by NetApp. It has been
designed to help you meet your containerized application’s persistence demands using
industry-standard interfaces, such as the Container Storage Interface (CSl).

What is Trident?

Netapp Trident enables consumption and management of storage resources across all popular NetApp storage

platforms, in the public cloud or on premises, including ONTAP (AFF, FAS, Select, Cloud, Amazon FSx for
NetApp ONTAP), Element software (NetApp HCI, SolidFire), Azure NetApp Files service, and Cloud Volumes
Service on Google Cloud.

Trident is a Container Storage Interface (CSI) compliant dynamic storage orchestrator that natively integrates
with Kubernetes. Trident runs as a single Controller Pod plus a Node Pod on each worker node in the cluster.
Refer to Trident architecture for details.

Trident also provides direct integration with the Docker ecosystem for NetApp storage platforms. The NetApp
Docker Volume Plugin (nDVP) supports the provisioning and management of storage resources from the
storage platform to Docker hosts. Refer to Deploy Trident for Docker for details.

@ If this is your first time using Kubernetes, you should familiarize yourself with the Kubernetes
concepts and tools.
Kubernetes integration with NetApp products

The NetApp portfolio of storage products integrates with many aspects of a Kubernetes cluster, providing
advanced data management capabilities, which enhance the functionality, capability, performance, and
availability of the Kubernetes deployment.

Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP is a fully managed AWS service that lets you launch and run file systems
powered by the NetApp ONTAP storage operating system.

Azure NetApp Files

Azure NetApp Files is an enterprise-grade Azure file share service, powered by NetApp. You can run your
most demanding file-based workloads in Azure natively, with the performance and rich data management
you expect from NetApp.

15

https://kubernetes.io/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://www.netapp.com/aws/fsx-ontap/
https://www.netapp.com/azure/azure-netapp-files/

Cloud Volumes ONTAP

Cloud Volumes ONTAP is a software-only storage appliance that runs the ONTAP data management
software in the cloud.

Google Cloud NetApp Volumes

Google Cloud NetApp Volumes is a fully managed file storage service in Google Cloud that provides high-
performance, enterprise-grade file storage.

Element software

Element enables the storage administrator to consolidate workloads by guaranteeing performance and
enabling a simplified and streamlined storage footprint.

NetApp HCI

NetApp HCI simplifies the management and scale of the datacenter by automating routine tasks and
enabling infrastructure administrators to focus on more important functions.

Trident can provision and manage storage devices for containerized applications directly against the
underlying NetApp HCI storage platform.

NetApp ONTAP

NetApp ONTAP is the NetApp multiprotocol, unified storage operating system that provides advanced
data management capabilities for any application.

ONTAP systems have all-flash, hybrid, or all-HDD configurations and offer many different deployment
models, including engineered hardware (FAS and AFF), white-box (ONTAP Select), and cloud-only
(Cloud Volumes ONTAP). Trident supports these ONTAP deployment models.

Trident architecture

Trident runs as a single Controller Pod plus a Node Pod on each worker node in the
cluster. The node pod must be running on any host where you want to potentially mount a
Trident volume.

Understanding controller pods and node pods

Trident deploys as a single Trident Controller Pod and one or more Trident Node Pods on the Kubernetes
cluster and uses standard Kubernetes CS/ Sidecar Containers to simplify the deployment of CSI plugins.
Kubernetes CSI Sidecar Containers are maintained by the Kubernetes Storage community.

Kubernetes node selectors and tolerations and taints are used to constrain a pod to run on a specific or

preferred node. You can configure node selectors and tolerations for controller and node pods during Trident
installation.

16

https://www.netapp.com/cloud-services/cloud-volumes-ontap/
https://bluexp.netapp.com/google-cloud-netapp-volumes?utm_source=GitHub&utm_campaign=Trident
https://www.netapp.com/data-management/element-software/
https://docs.netapp.com/us-en/hci/docs/concept_hci_product_overview.html
https://docs.netapp.com/us-en/ontap/index.html
https://kubernetes-csi.github.io/docs/sidecar-containers.html
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

* The controller plugin handles volume provisioning and management, such as snapshots and resizing.

* The node plugin handles attaching the storage to the node.

Kubernetes Cluster

Control-Plane

” HTTP

A Control-Plane

P

I Control-Plane Worker Worker

S
4——HTTP =— Trident Controller HTTP Trident Node Trident Node
—
Management T T
':HTTP] Data Data
1 (SAN/NAS)) (SAN/NAS)

NetApp Storage

Figure 1. Trident deployed on the Kubernetes cluster

Trident Controller Pod
The Trident Controller Pod is a single Pod running the CSI Controller plugin.
* Responsible for provisioning and managing volumes in NetApp storage

* Managed by a Kubernetes Deployment

« Can run on the control-plane or worker nodes, depending on installation parameters.

Trident Controller Pod
i ST e e T I
: Trident Containers ! CSl Sidecars
1 1
: Trident ASUP : provisioner
l :
[}]
: ‘ : attacher
| Trident REST (HTTP) |
: 1 : resizer
' :
: Trident Main '1:—CSI (gRPC) s snapshotter

Figure 2. Trident Controller Pod diagram
Trident Node Pods
Trident Node Pods are privileged Pods running the CSI Node plugin.

* Responsible for mounting and unmounting storage for Pods running on the host
* Managed by a Kubernetes DaemonSet

* Must run on any node that will mount NetApp storage

18

Trident Node Pod

1
1
I .
I CSl Sidecars
1
: Trident Main ~ ====CS| (QRPC) = _
i : registrar
! I
I I
T
Figure 3. Trident Node Pod diagram
Supported Kubernetes cluster architectures
Trident is supported with the following Kubernetes architectures:
Kubernetes cluster architectures Supported Default install
Single master, compute Yes Yes
Multiple master, compute Yes Yes
Master, etcd, compute Yes Yes
Master, infrastructure, compute Yes Yes

Concepts

Provisioning

Provisioning in Trident has two primary phases. The first phase associates a storage
class with the set of suitable backend storage pools and occurs as a necessary
preparation before provisioning. The second phase includes the volume creation itself
and requires choosing a storage pool from those associated with the pending volume’s
storage class.

Storage class association

Associating backend storage pools with a storage class relies on both the storage class’s requested attributes
and its storagePools, additionalStoragePools, and excludeStoragePools lists. When you create a
storage class, Trident compares the attributes and pools offered by each of its backends to those requested by

19

the storage class. If a storage pool’s attributes and name match all of the requested attributes and pool names,
Trident adds that storage pool to the set of suitable storage pools for that storage class. In addition, Trident
adds all storage pools listed in the additionalStoragePools list to that set, even if their attributes do not
fulfill all or any of the storage class’s requested attributes. You should use the excludeStoragePools list to
override and remove storage pools from use for a storage class. Trident performs a similar process every time
you add a new backend, checking whether its storage pools satisfy those of the existing storage classes and
removing any that have been marked as excluded.

Volume creation

Trident then uses the associations between storage classes and storage pools to determine where to provision
volumes. When you create a volume, Trident first gets the set of storage pools for that volume’s storage class,
and, if you specify a protocol for the volume, Trident removes those storage pools that cannot provide the
requested protocol (for example, a NetApp HCI/SolidFire backend cannot provide a file-based volume while an
ONTAP NAS backend cannot provide a block-based volume). Trident randomizes the order of this resulting
set, to facilitate an even distribution of volumes, and then iterates through it, attempting to provision the volume
on each storage pool in turn. If it succeeds on one, it returns successfully, logging any failures encountered in
the process. Trident returns a failure only if it fails to provision on all the storage pools available for the
requested storage class and protocol.

Volume snapshots

Learn more about how Trident handles the creation of volume snapshots for its drivers.

Learn about volume snapshot creation

* Forthe ontap—-nas, ontap-san, gcp-cvs, and azure-netapp-files drivers, each Persistent Volume
(PV) maps to a FlexVol. As a result, volume snapshots are created as NetApp snapshots. NetApp
snapshot technology delivers more stability, scalability, recoverability, and performance than competing
snapshot technologies. These snapshot copies are extremely efficient both in the time needed to create
them and in storage space.

* Forthe ontap-nas-flexgroup driver, each Persistent Volume (PV) maps to a FlexGroup. As a result,
volume snapshots are created as NetApp FlexGroup snapshots. NetApp snapshot technology delivers
more stability, scalability, recoverability, and performance than competing snapshot technologies. These
snapshot copies are extremely efficient both in the time needed to create them and in storage space.

* For the ontap-san-economy driver, PVs map to LUNs created on shared FlexVols. VolumeSnapshots of
PVs are achieved by performing FlexClones of the associated LUN. ONTAP FlexClone technology makes
it possible to create copies of even the largest datasets almost instantaneously. Copies share data blocks
with their parents, consuming no storage except what is required for metadata.

* For the solidfire-san driver, each PV maps to a LUN created on the NetApp Element software/NetApp
HCI cluster. VolumeSnapshots are represented by Element snapshots of the underlying LUN. These
snapshots are point-in-time copies and only take up a small amount of system resources and space.

* When working with the ontap-nas and ontap-san drivers, ONTAP snapshots are point-in-time copies of
the FlexVol and consume space on the FlexVol itself. This can result in the amount of writable space in the
volume to reduce with time as snapshots are created/scheduled. One simple way of addressing this is to
grow the volume by resizing through Kubernetes. Another option is to delete snapshots that are no longer
required. When a VolumeSnapshot created through Kubernetes is deleted, Trident will delete the
associated ONTAP snapshot. ONTAP snapshots that were not created through Kubernetes can also be
deleted.

With Trident, you can use VolumeSnapshots to create new PVs from them. Creating PVs from these snapshots
is performed by using the FlexClone technology for supported ONTAP and CVS backends. When creating a

20

PV from a snapshot, the backing volume is a FlexClone of the snapshot’s parent volume. The solidfire-

san driver uses Element software volume clones to create PVs from snapshots. Here it creates a clone from
the Element snapshot.

Virtual pools

Virtual pools provide a layer of abstraction between Trident storage backends and
Kubernetes storageClasses. They allow an administrator to define aspects, such as
location, performance, and protection for each backend in a common, backend-agnostic

way without making a StorageClass specify which physical backend, backend pool, or
backend type to use to meet desired criteria.

Learn about virtual pools

The storage administrator can define virtual pools on any of the Trident backends in a JSON or YAML definition

file.

. St

Premium =

: Standard Storage Classes
Extra Protect|
- Rrotesion

\ |
|I |

[Abstraction layer)

i - . . - Virtual Storage Pools

Multiple Backend Types

AWS Region 1 ANF Region 1

Any aspect specified outside the virtual pools list is global to the backend and will apply to all the virtual pools,
while each virtual pool might specify one or more aspects individually (overriding any backend-global aspects).

* When defining virtual pools, do not attempt to rearrange the order of existing virtual pools in
@ a backend definition.
» We advise against modifying attributes for an existing virtual pool. You should define a new
virtual pool to make changes.

Most aspects are specified in backend-specific terms. Crucially, the aspect values are not exposed outside the
backend’s driver and are not available for matching in StorageClasses. Instead, the administrator defines

21

one or more labels for each virtual pool. Each label is a key:value pair, and labels might be common across
unique backends. Like aspects, labels can be specified per-pool or global to the backend. Unlike aspects,
which have predefined names and values, the administrator has full discretion to define label keys and values
as needed. For convenience, storage administrators can define labels per virtual pool and group volumes by
label.

A storageClass identifies which virtual pool to use by referencing the labels within a selector parameter.
Virtual pool selectors support the following operators:

Operator Example A pool’s label value must:
= performance=premium Match

= performance!=extreme Not match

in location in (east, west) Be in the set of values
notin performance notin (silver, bronze) Not be in the set of values
<key> protection Exist with any value

I <key> Iprotection Not exist

Volume access groups

Learn more about how Trident uses volume access groups.

Ignore this section if you are using CHAP, which is recommended to simplify management and
avoid the scaling limit described below. In addition, if you are using Trident in CSI mode, you can
ignore this section. Trident uses CHAP when installed as an enhanced CSI provisioner.

Learn about volume access groups

Trident can use volume access groups to control access to the volumes that it provisions. If CHAP is disabled,
it expects to find an access group called trident unless you specify one or more access group IDs in the
configuration.

While Trident associates new volumes with the configured access groups, it does not create or otherwise
manage access groups themselves. The access groups must exist before the storage backend is added to
Trident, and they need to contain the iISCSI IQNs from every node in the Kubernetes cluster that could
potentially mount the volumes provisioned by that backend. In most installations, that includes every worker
node in the cluster.

For Kubernetes clusters with more than 64 nodes, you should use multiple access groups. Each access group
may contain up to 64 IQNs, and each volume can belong to four access groups. With the maximum four
access groups configured, any node in a cluster up to 256 nodes in size will be able to access any volume. For
latest limits on volume access groups, refer to here.

If you're modifying the configuration from one that is using the default t rident access group to one that uses
others as well, include the ID for the trident access group in the list.

Quick start for Trident

You can install Trident and start managing storage resources in a few steps. Before

22

https://docs.netapp.com/us-en/element-software/concepts/concept_solidfire_concepts_volume_access_groups.html
https://docs.netapp.com/us-en/element-software/concepts/concept_solidfire_concepts_volume_access_groups.html

getting started, review Trident requirements.

@ For Docker, refer to Trident for Docker.

o Prepare the worker node

All worker nodes in the Kubernetes cluster must be able to mount the volumes you have provisioned for your
pods.

Prepare the worker node

e Install Trident

Trident offers several installation methods and modes optimized for a variety of environments and
organizations.

Install Trident

e Create a backend

A backend defines the relationship between Trident and a storage system. It tells Trident how to communicate
with that storage system and how Trident should provision volumes from it.

Configure a backend for your storage system

o Create a Kubernetes StorageClass

The Kubernetes StorageClass object specifies Trident as the provisioner and allows you to create a storage
class to provision volumes with customizable attributes. Trident creates a matching storage class for
Kubernetes objects that specify the Trident provisioner.

Create a storage class

e Provision a volume

A PersistentVolume (PV) is a physical storage resource provisioned by the cluster administrator on a
Kubernetes cluster. The PersistentVolumeClaim (PVC) is a request for access to the PersistentVolume on the
cluster.

Create a PersistentVolume (PV) and a PersistentVolumeClaim (PVC) that uses the configured Kubernetes
StorageClass to request access to the PV. You can then mount the PV to a pod.

Provision a volume

What’s next?

You can now add additional backends, manage storage classes, manage backends, and perform volume
operations.

23

https://docs.netapp.com/us-en/trident-2410/trident-get-started/kubernetes-deploy.html

Requirements

Before installing Trident you should review these general system requirements. Specific
backends might have additional requirements.

Critical information about Trident

You must read the following critical information about Trident.

Critical information about Trident

* Kubernetes 1.32 is now supported in Trident. Upgrade Trident prior to upgrading Kubernetes.

« Trident strictly enforces the use of multipathing configuration in SAN environments, with a
recommended value of find multipaths: no in multipath.conf file.

Use of non-multipathing configuration or use of find multipaths: yesor
find multipaths: smart value in multipath.conf file will result in mount failures. Trident has
recommended the use of find multipaths: no since the 21.07 release.

Supported frontends (orchestrators)

Trident supports multiple container engines and orchestrators, including the following:

* Anthos On-Prem (VMware) and Anthos on bare metal 1.16
* Kubernetes 1.25 - 1.32

* OpenShift 4.10 - 4.17

* Rancher Kubernetes Engine 2 (RKE2) v1.28.5+rke2r1

The Trident operator is supported with these releases:

* Anthos On-Prem (VMware) and Anthos on bare metal 1.16
* Kubernetes 1.25 - 1.32
* OpenShift 4.10 - 4.17
* Rancher Kubernetes Engine 2 (RKE2) v1.28.5+rke2r1
Trident also works with a host of other fully-managed and self-managed Kubernetes offerings, including

Google Kubernetes Engine (GKE), Amazon Elastic Kubernetes Services (EKS), Azure Kubernetes Service
(AKS), Mirantis Kubernetes Engine (MKE), and VMWare Tanzu Portfolio.

Trident and ONTAP can be used as a storage provider for KubeVirt.

@ Before upgrading a Kubernetes cluster from 1.24 to 1.25 or later that has Trident installed, refer
to Upgrade a Helm installation.

24

https://kubevirt.io/

Supported backends (storage)

To use Trident, you need one or more of the following supported backends:

» Amazon FSx for NetApp ONTAP

* Azure NetApp Files
* Cloud Volumes ONTAP

* Google Cloud NetApp Volumes

* On-premises FAS, AFF, or ASA r2 cluster versions under NetApp’s limited support. See Software Version

Support.

* NetApp All SAN Array (ASA)

* NetApp HCI/Element software 11 or above

Feature requirements

The table below summarizes the features available with this release of Trident and the versions of Kubernetes

it supports.

Feature

Trident

Volume Snapshots

PVC from Volume Snapshots

iSCSI PV resize

ONTAP Bidirectional CHAP

Dynamic Export Policies

Trident Operator

CSI Topology

Kubernetes version

1.25-1.32

1.25-1.32

1.25-1.32

1.25-1.32

1.25-1.32

1.25-1.32

1.25-1.32

1.25-1.32

Tested host operating systems

Though Trident does not officially support specific operating systems, the following are known to work:

* RedHat CoreOS (RHCOS) versions as supported by OpenShift Container Platform (AMD64 and ARM64)
* RHEL 8+ (AMD64 and ARM64)

(i) NVMe/TCP requires RHEL 9 or later.

* Ubuntu 22.04 or later (AMD64 and ARM64)

Feature gates required?

No

No

No

No

No

No

No

No

25

https://mysupport.netapp.com/site/info/version-support
https://mysupport.netapp.com/site/info/version-support

* Windows Server 2022

By default, Trident runs in a container and will, therefore, run on any Linux worker. However, those workers
need to be able to mount the volumes that Trident provides using the standard NFS client or iSCSI initiator,
depending on the backends you are using.

The tridentctl utility also runs on any of these distributions of Linux.

Host configuration

All worker nodes in the Kubernetes cluster must be able to mount the volumes you have provisioned for your
pods. To prepare the worker nodes, you must install NFS, iSCSI, or NVMe tools based on your driver selection.

Prepare the worker node

Storage system configuration

Trident might require changes to a storage system before a backend configuration can use it.

Configure backends

Trident ports

Trident requires access to specific ports for communication.

Trident ports

Container images and corresponding Kubernetes versions

For air-gapped installations, the following list is a reference of container images needed to install Trident. Use
the tridentctl images command to verify the list of needed container images.

Kubernetes versions Container image

v1.25.0, v1.26.0, v1.27.0, v1.28.0, v1.29.0, v1.30.0, * docker.io/netapp/trident:24.10.0
v1.31.0,v1.32.0 + docker.io/netapp/trident-autosupport:24.10

* registry.k8s.io/sig-storage/csi-provisioner:v5.1.0
* registry.k8s.io/sig-storage/csi-attacher:v4.7.0

* registry.k8s.io/sig-storage/csi-resizer:v1.12.0

* registry.k8s.io/sig-storage/csi-snapshotter:v8.1.0

* registry.k8s.io/sig-storage/csi-node-driver-
registrar:v2.12.0

+ docker.io/netapp/trident-operator:24.10.0
(optional)

26

Install Trident
Install using Trident operator

Install using tridentctl

27

Use Trident

Prepare the worker node

All worker nodes in the Kubernetes cluster must be able to mount the volumes you have
provisioned for your pods. To prepare the worker nodes, you must install NFS, iSCSI,
NVMe/TCP, or FC tools based on your driver selection.

Selecting the right tools

If you are using a combination of drivers, you should install all required tools for your drivers. Recent versions
of RedHat CoreOS have the tools installed by default.

NFS tools

Install the NFS tools if you are using: ontap-nas, ontap-nas-economy, ontap-nas-flexgroup, azure-
netapp-files, gcp-cvs.

iSCSI tools

Install the iISCSI tools if you are using: ontap-san, ontap-san-economy, solidfire-san.

NVMe tools

Install the NVMe tools if you are using ontap-san for nonvolatile memory express (NVMe) over TCP
(NVMe/TCP) protocol.

@ We recommend ONTAP 9.12 or later for NVMe/TCP.

SCSl over FC tools
SCSI over Fibre Channel (FC) is a tech preview feature in the Trident 24.10 release.

Install the FC tools if you are using ontap-san with sanType fcp (SCSI over FC).

Refer to Ways to configure FC & FC-NVMe SAN hosts for more information.

Node service discovery

Trident attempts to automatically detect if the node can run iISCSI or NFS services.

Node service discovery identifies discovered services but does not guarantee services are
properly configured. Conversely, the absence of a discovered service does not guarantee the
volume mount will fail.

Review events
Trident creates events for the node to identify the discovered services. To review these events, run:

kubectl get event -A --field-selector involvedObject.name=<Kubernetes node

name>

28

https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html#nfs-volumes
https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html#install-the-iscsi-tools
https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html#nvmetcp-volumes
https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html#install-the-fc-tools
https://docs.netapp.com/us-en/ontap/san-config/configure-fc-nvme-hosts-ha-pairs-reference.html

Review discovered services
Trident identifies services enabled for each node on the Trident node CR. To view the discovered services, run:

tridentctl get node -o wide -n <Trident namespace>

NFS volumes

Install the NFS tools using the commands for your operating system. Ensure the NFS service is started up
during boot time.

RHEL 8+

sudo yum install -y nfs-utils

Ubuntu

sudo apt-get install -y nfs-common

(D Reboot your worker nodes after installing the NFS tools to prevent failure when attaching
volumes to containers.
iSCSI volumes

Trident can automatically establish an iSCSI session, scan LUNs, and discover multipath devices, format them,
and mount them to a pod.

iSCSI self-healing capabilities

For ONTAP systems, Trident runs iSCSI self-healing every five minutes to:

1. Identify the desired iSCSI session state and the current iISCSI session state.

2. Compare the desired state to the current state to identify needed repairs. Trident determines repair
priorities and when to preempt repairs.

3. Perform repairs required to return the current iSCSI session state to the desired iSCSI session state.

@ Logs of self-healing activity are located in the trident-main container on the respective
Daemonset pod. To view logs, you must have set debug to "true" during Trident installation.

Trident iISCSI self-healing capabilities can help prevent:

« Stale or unhealthy iSCSI sessions that could occur after a network connectivity issue. In the case of a stale
session, Trident waits seven minutes before logging out to reestablish the connection with a portal.

29

For example, if CHAP secrets were rotated on the storage controller and the network loses
connectivity, the old (stale) CHAP secrets could persist. Self-healing can recognize this and
automatically reestablish the session to apply the updated CHAP secrets.

* Missing iSCSI sessions
* Missing LUNs
Points to consider before upgrading Trident
* If only per-node igroups (introduced in 23.04+) are in use, iISCSI self-healing will initiate SCSI rescans for

all devices in the SCSI bus.

+ If only backend-scoped igroups (deprecated as of 23.04) are in use, iISCSI self-healing will initiate SCSI
rescans for exact LUN IDs in the SCSI bus.

« If a mix of per-node igroups and backend-scoped igroups are in use, iISCSI self-healing will initiate SCSI
rescans for exact LUN IDs in the SCSI bus.

Install the iSCSI tools

Install the iISCSI tools using the commands for your operating system.

Before you begin
« Each node in the Kubernetes cluster must have a unique IQN. This is a necessary prerequisite.
* If using RHCOS version 4.5 or later, or other RHEL-compatible Linux distribution, with the solidfire-
san driver and Element OS 12.5 or earlier, ensure that the CHAP authentication algorithm is set to MD5 in

/etc/iscsi/iscsid.conf. Secure FIPS-compliant CHAP algorithms SHA1, SHA-256, and SHA3-256
are available with Element 12.7.

sudo sed -i 's/”\(node.session.auth.chap algs\).*/\1 = MD5/'
/etc/iscsi/iscsid.conf

* When using worker nodes that run RHEL/RedHat CoreOS with iSCSI PVs, specify the discard
mountOption in the StorageClass to perform inline space reclamation. Refer to RedHat documentation.

30

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems

RHEL 8+
1. Install the following system packages:

sudo yum install -y lsscsi iscsi-initiator-utils device-mapper-
multipath

2. Check that iscsi-initiator-utils version is 6.2.0.874-2.el7 or later:
rpm —-gq iscsi-initiator-utils
3. Enable multipathing:
sudo mpathconf --enable --with multipathd y --find multipaths n
(:) Ensure etc/multipath.conf contains find multipaths no under defaults.
4. Ensure that iscsid and multipathd are running:
sudo systemctl enable --now iscsid multipathd
5. Enable and start iscsi:

sudo systemctl enable --now iscsi

Ubuntu
1. Install the following system packages:

sudo apt-get install -y open-iscsi lsscsi sg3-utils multipath-tools
scsitools

2. Check that open-iscsi version is 2.0.874-5ubuntu2.10 or later (for bionic) or 2.0.874-7.1ubuntu6.1 or
later (for focal):

dpkg -1 open-iscsi

3. Set scanning to manual:

31

sudo sed -1 's/”\ (node.session.scan\).*/\1 = manual/'
/etc/iscsi/iscsid.conf

4. Enable multipathing:

sudo tee /etc/multipath.conf <<-EOF
defaults {
user friendly names yes
find multipaths no
}
EQF
sudo systemctl enable --now multipath-tools.service
sudo service multipath-tools restart

(:) Ensure etc/multipath.conf contains find multipaths no under defaults.

5. Ensure that open-iscsi and multipath-tools are enabled and running:

sudo systemctl status multipath-tools
sudo systemctl enable --now open-iscsi.service
sudo systemctl status open-iscsi

For Ubuntu 18.04, you must discover target ports with i scsiadm before starting
open-iscsi for the iISCSI daemon to start. You can alternatively modify the iscsi
service to start i scsid automatically.

Configure or disable iSCSI self healing

You can configure the following Trident iSCSI self-healing settings to fix stale sessions:

+ iSCSI self-healing interval: Determines the frequency at which iSCSI self-healing is invoked (default: 5
minutes). You can configure it to run more frequently by setting a smaller number or less frequently by
setting a larger number.

Setting the iISCSI self-healing interval to 0 stops iSCSI self-healing completely. We do not
@ recommend disabling iSCSI Self-healing; it should only be disabled in certain scenarios when
iISCSI self-healing is not working as intended or for debugging purposes.

+ iSCSI Self-Healing Wait Time: Determines the duration iSCSI self-healing waits before logging out of an
unhealthy session and trying to log in again (default: 7 minutes). You can configure it to a larger number so
that sessions that are identified as unhealthy have to wait longer before being logged out and then an
attempt is made to log back in, or a smaller number to log out and log in earlier.

32

Helm

To configure or change iSCSI self-healing settings, pass the iscsiSelfHealingInterval and
iscsiSelfHealingWaitTime parameters during the helm installation or helm update.

The following example sets the iSCSI self-healing interval to 3 minutes and self-healing wait time to 6
minutes:

helm install trident trident-operator-100.2410.0.tgz --set
iscsiSelfHealingInterval=3m0s --set iscsiSelfHealingWaitTime=6m0Os -n
trident

tridentctl

To configure or change iSCSI self-healing settings, pass the iscsi-self-healing-interval and
iscsi-self-healing-wait-time parameters during the tridentctl installation or update.

The following example sets the iISCSI self-healing interval to 3 minutes and self-healing wait time to 6
minutes:

tridentctl install --iscsi-self-healing-interval=3m0Os --iscsi-self
-healing-wait-time=6m0Os -n trident

NVMe/TCP volumes

Install the NVMe tools using the commands for your operating system.

* NVMe requires RHEL 9 or later.

@ * If the kernel version of your Kubernetes node is too old or if the NVMe package is not
available for your kernel version, you might have to update the kernel version of your node
to one with the NVMe package.

RHEL 9

sudo yum install nvme-cli
sudo yum install linux-modules-extra-$ (uname -r)
sudo modprobe nvme-tcp

Ubuntu

sudo apt install nvme-cli
sudo apt -y install linux-modules-extra-$ (uname -r)
sudo modprobe nvme-tcp

33

Verify installation

After installation, verify that each node in the Kubernetes cluster has a unique NQN using the command:

cat /etc/nvme/hostngn

@ Trident modifies the ctrl device tmo value to ensure NVMe doesn'’t give up on the path if it
goes down. Do not change this setting.

Install the FC tools

Install the FC tools using the commands for your operating system.

* When using worker nodes that run RHEL/RedHat CoreOS with FC PVs, specify the discard mountOption
in the StorageClass to perform inline space reclamation. Refer to RedHat documentation.

34

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems

RHEL 8+
1. Install the following system packages:

sudo yum install -y lsscsi device-mapper-multipath

2. Enable multipathing:

sudo mpathconf --enable --with multipathd y --find multipaths n

(:) Ensure etc/multipath.conf contains find multipaths no under defaults.

3. Ensure that multipathd is running:

sudo systemctl enable --now multipathd

Ubuntu
1. Install the following system packages:

sudo apt-get install -y lsscsi sg3-utils multipath-tools scsitools

2. Enable multipathing:

sudo tee /etc/multipath.conf <<-EOF
defaults {
user friendly names yes
find multipaths no
}
EOF
sudo systemctl enable --now multipath-tools.service
sudo service multipath-tools restart

(:) Ensure etc/multipath.conf contains find multipaths no under defaults.

3. Ensure that multipath-tools is enabled and running:

sudo systemctl status multipath-tools

35

Fibre Channel (FC) support

You can now use the Fibre Channel (FC) protocol with Trident to provision and manage
storage resources on ONTAP system.

SCSI over Fibre Channel (FC) is a tech preview feature in the Trident 24.10 release.

Fibre Channel is a widely adopted protocol in enterprise storage environments due to its high performance,
reliability, and scalability. It provides a robust and efficient communication channel for storage devices,
enabling fast and secure data transfers.

By using SCSI over Fibre Channel, you can leverage their existing SCSI-based storage infrastructure while
benefiting from the high-performance and long-distance capabilities of Fibre Channel. It enables the
consolidation of storage resources and the creation of scalable and efficient storage area networks (SANs) that
can handle large amounts of data with low latency.

Using the FC feature with Trident, you can do the following:

* Dynamically provision PVCs using a deployment spec.

» Take volume snapshots and create a new volume from the snapshot.
* Clone an existing FC-PVC.

* Resize an already deployed volume.

Prerequisites

Configure the required network and node settings for FC.

Network settings

1. Get the WWPN of the target interfaces. Refer to network interface show for more information.
2. Get the WWPN for the interfaces on initiator (Host).

Refer to the corresponding host operating system utilities.

3. Configure zoning on the FC switch using WWPNs of the Host and target.
Refer to the respecive switch vendor documentation for information.
Refer to the following ONTAP documentation for details:

o Fibre Channel and FCoE zoning overview
o Ways to configure FC & FC-NVMe SAN hosts
Prepare the worker node

All worker nodes in the Kubernetes cluster must be able to mount the volumes you have provisioned for your
pods. To prepare the worker nodes for FC, you must install the required tools.

Install the FC tools
Install the FC tools using the commands for your operating system.

* When using worker nodes that run RHEL/RedHat CoreOS with FC PVs, specify the discard mountOption
in the StorageClass to perform inline space reclamation. Refer to RedHat documentation.

36

https://docs.netapp.com/us-en/ontap-cli//network-interface-show.html
https://docs.netapp.com/us-en/ontap/san-config/fibre-channel-fcoe-zoning-concept.html
https://docs.netapp.com/us-en/ontap/san-config/configure-fc-nvme-hosts-ha-pairs-reference.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems

RHEL 8+
1. Install the following system packages:

sudo yum install -y lsscsi device-mapper-multipath

2. Enable multipathing:

sudo mpathconf --enable --with multipathd y --find multipaths n

(:) Ensure etc/multipath.conf contains find multipaths no under defaults.

3. Ensure that multipathd is running:

sudo systemctl enable --now multipathd

Ubuntu
1. Install the following system packages:

sudo apt-get install -y lsscsi sg3-utils multipath-tools scsitools

2. Enable multipathing:

sudo tee /etc/multipath.conf <<-EOF
defaults {
user friendly names yes
find multipaths no
}
EOF
sudo systemctl enable --now multipath-tools.service
sudo service multipath-tools restart

(:) Ensure etc/multipath.conf contains find multipaths no under defaults.

3. Ensure that multipath-tools is enabled and running:

sudo systemctl status multipath-tools

37

Create a backend configuration
Create a Trident backend for ontap-san driver and fcp as the sanType.
Refer to:

* Prepare to configure backend with ONTAP SAN drivers
« ONTAP SAN configuration options and examples

Backend configuration example with FC

apivVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:

name: backend-tbc-ontap-san
spec:

version: 1

backendName: ontap-san-backend

storageDriverName: ontap-san

managementLIF: 10.0.0.1

sanType: fcp

svm: trident svm

credentials:

name: backend-tbc-ontap-san-secret

Create a storage class

For more information, refer to:
+ Storage configuration options

Storage class example

apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata:
name: fcp-sc

provisioner: csi.trident.netapp.io

parameters:
backendType: "ontap-san"
storagePools: "ontap-san-backend:.*"
fsType: "ext4d"

allowVolumeExpansion: True

Configure and manage backends

38

https://docs.netapp.com/us-en/trident-2410/trident-use/..trident-use/ontap-san-prep.html
https://docs.netapp.com/us-en/trident-2410/trident-use/..trident-use/ontap-san-examples.html
https://docs.netapp.com/us-en/trident-2410/trident-use/..trident-docker/stor-config.html

Configure backends

A backend defines the relationship between Trident and a storage system. It tells Trident
how to communicate with that storage system and how Trident should provision volumes
from it.

Trident automatically offers up storage pools from backends that match the requirements defined by a storage
class. Learn how to configure the backend for your storage system.

+ Configure an Azure NetApp Files backend

+ Configure a Google Cloud NetApp Volumes backend

* Configure a Cloud Volumes Service for Google Cloud Platform backend

» Configure a NetApp HCI or SolidFire backend

+ Configure a backend with ONTAP or Cloud Volumes ONTAP NAS drivers

+ Configure a backend with ONTAP or Cloud Volumes ONTAP SAN drivers

* Use Trident with Amazon FSx for NetApp ONTAP

Azure NetApp Files

Configure an Azure NetApp Files backend

You can configure Azure NetApp Files as the backend for Trident. You can attach NFS
and SMB volumes using an Azure NetApp Files backend. Trident also supports credential
management using managed identities for Azure Kubernetes Services (AKS) clusters.

Azure NetApp Files driver details

Trident provides the following Azure NetApp Files storage drivers to communicate with the cluster. Supported
access modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX),
ReadWriteOncePod (RWOP).

Driver Protocol volumeMod Access modes File systems supported
e supported
azure-netapp-files NFS Filesystem RWO, ROX, RWX, RWOP nfs, smb
SMB

Considerations

* The Azure NetApp Files service does not support volumes smaller than 50 GiB. Trident automatically
creates 50-GiB volumes if a smaller volume is requested.

* Trident supports SMB volumes mounted to pods running on Windows nodes only.

Managed identities for AKS

Trident supports managed identities for Azure Kubernetes Services clusters. To take advantage of streamlined
credential management offered by managed identities, you must have:

* A Kubernetes cluster deployed using AKS

39

https://learn.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview

* Managed identities configured on the AKS kubernetes cluster

* Trident installed that includes the cloudProvider to specify "Azure".

Trident operator

To install Trident using the Trident operator, edit tridentorchestrator cr.yaml to set
cloudProvider to "Azure". For example:

apivVersion: trident.netapp.io/vl
kind: TridentOrchestrator
metadata:
name: trident
spec:
debug: true
namespace: trident
imagePullPolicy: IfNotPresent
cloudProvider: "Azure"

Helm

The following example installs Trident sets cloudProvider to Azure using the environment variable
SCP:

helm install trident trident-operator-100.2410.0.tgz --create
-namespace —--namespace <trident-namespace> --set cloudProvider=S$CP

tridentctl

The following example installs Trident and sets the cloudProvider flag to Azure:

tridentctl install --cloud-provider="Azure" -n trident

Cloud identity for AKS

Cloud identity enables Kubernetes pods to access Azure resources by authenticating as a workload identity
instead of by providing explicit Azure credentials.

To take advantage of cloud identity in Azure, you must have:

* A Kubernetes cluster deployed using AKS
* Workload identity and oidc-issuer configured on the AKS Kubernetes cluster

* Trident installed that includes the cloudProvider to specify "Azure" and cloudIdentity specifying
workload identity

40

Trident operator

To install Trident using the Trident operator, edit tridentorchestrator cr.yaml to set
cloudProvider to "Azure" and set cloudIdentity t0o azure.workload.identity/client-
1d: XXXXXXXX—KXXXX-XXXX-XXXX-XXXXXXXXXKXX.

For example:

apiVersion: trident.netapp.io/vl
kind: TridentOrchestrator
metadata:
name: trident
spec:
debug: true
namespace: trident
imagePullPolicy: IfNotPresent
cloudProvider: "Azure"
*cloudIdentity: 'azure.workload.identity/client-id: XXXXXXXX—XXXX-—

KXXX—XXXKX—XXXXXXKXKXXXX " *

Helm

Set the values for cloud-provider (CP) and cloud-identity (Cl) flags using the following environment
variables:

export CP="Azure"
export CI="'azure.workload.identity/client-id: XXXXXXXX-XXXX-XXXX—XXXX—

XXXXXXXKXXXX""

The following example installs Trident and sets cloudProvider to Azure using the environment
variable sCP and sets the cloudIdentity using the environment variable $CT:

helm install trident trident-operator-100.2410.0.tgz --set
cloudProvider=$CP --set cloudIdentity="S$CI"

tridentctl

Set the values for cloud provider and cloud identity flags using the following environment variables:
export CP="Azure"

export CI="azure.workload.identity/client-id: XXXXXXXX-XXXX-XXXX—XXXX—

)19:9:9:9:9:9:9.0:0:0: 4l

The following example installs Trident and sets the cloud-provider flag to $CP, and cloud-
identity to $CI:

41

tridentctl install --cloud-provider=$CP --cloud-identity="$CI" -n
trident

Prepare to configure an Azure NetApp Files backend

Before you can configure your Azure NetApp Files backend, you need to ensure the
following requirements are met.

Prerequisites for NFS and SMB volumes

If you are using Azure NetApp Files for the first time or in a new location, some initial configuration is required
to set up Azure NetApp files and create an NFS volume. Refer to Azure: Set up Azure NetApp Files and create
an NFS volume.

To configure and use an Azure NetApp Files backend, you need the following:

* subscriptionID, tenantID, clientID, location, and clientSecret are optional
@ when using managed identities on an AKS cluster.

* tenantID, clientID, and clientSecret are optional when using a cloud identity on an
AKS cluster.

A capacity pool. Refer to Microsoft: Create a capacity pool for Azure NetApp Files.
» A subnet delegated to Azure NetApp Files. Refer to Microsoft: Delegate a subnet to Azure NetApp Files.

* subscriptionID from an Azure subscription with Azure NetApp Files enabled.

* tenantID, clientID, and clientSecret from an App Registration in Azure Active Directory with
sufficient permissions to the Azure NetApp Files service. The App Registration should use either:

o The Owner or Contributor role predefined by Azure.

° A custom Contributor role at the subscription level (assignableScopes) with the following
permissions that are limited to only what Trident requires. After creating the custom role, assign the
role using the Azure portal.

42

https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://azure.microsoft.com/en-us/services/netapp/
https://learn.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-set-up-capacity-pool
https://learn.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://learn.microsoft.com/en-us/azure/role-based-access-control/custom-roles-portal
https://learn.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal
https://learn.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal

Custom contributor role

"id": "/subscriptions/<subscription-
id>/providers/Microsoft.Authorization/roleDefinitions/<role-
definition-id>",

"properties": ({
"roleName": "custom-role-with-limited-perms",
"description": "custom role providing limited

permissions",
"assignableScopes": [
"/subscriptions/<subscription-id>"

1y
"permissions": [
{

"actions": [
"Microsoft.NetApp/netAppAccounts/capacityPools/read",
"Microsoft.NetApp/netAppAccounts/capacityPools/write",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/read",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/write",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/delete”,

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/

read",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/

write",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/
delete",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/MountTarge
ts/read",
"Microsoft.Network/virtualNetworks/read",

"Microsoft.Network/virtualNetworks/subnets/read",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrat

ions/read",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrat

ions/write",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrat
ions/delete",
"Microsoft.Features/features/read",
"Microsoft.Features/operations/read",
"Microsoft.Features/providers/features/read",

"Microsoft.Features/providers/features/register/action",
"Microsoft.Features/providers/features/unregister/action",

"Microsoft.Features/subscriptionFeatureRegistrations/read"

1y
"notActions": [],
"dataActions": [],

"notDataActions": []

* The Azure location that contains at least one delegated subnet. As of Trident 22.01, the 1ocation
parameter is a required field at the top level of the backend configuration file. Location values specified in
virtual pools are ignored.

* Touse Cloud Identity, getthe client ID from a user-assigned managed identity and specify that ID
inazure.workload.identity/client-id: XXXXXXXX—XXXX-XXXX~XXXX-XXXXXXXXXXX.

Additional requirements for SMB volumes

To create an SMB volume, you must have:
« Active Directory configured and connected to Azure NetApp Files. Refer to Microsoft: Create and manage
Active Directory connections for Azure NetApp Files.

* A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows
Server 2022. Trident supports SMB volumes mounted to pods running on Windows nodes only.

» At least one Trident secret containing your Active Directory credentials so Azure NetApp Files can
authenticate to Active Directory. To generate secret smbcreds:

kubectl create secret generic smbcreds --from-literal username=user
-—-from-literal password='password'

* A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or
GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

44

https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet
https://learn.microsoft.com/en-us/entra/identity/managed-identities-azure-resources/how-manage-user-assigned-managed-identities
https://learn.microsoft.com/en-us/azure/azure-netapp-files/create-active-directory-connections
https://learn.microsoft.com/en-us/azure/azure-netapp-files/create-active-directory-connections
https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md

Azure NetApp Files backend configuration options and examples

Learn about NFS and SMB backend configuration options for Azure NetApp Files and
review configuration examples.

Backend configuration options

Trident uses your backend configuration (subnet, virtual network, service level, and location), to create Azure
NetApp Files volumes on capacity pools that are available in the requested location and match the requested
service level and subnet.

@ Trident does not support Manual QoS capacity pools.

Azure NetApp Files backends provide these configuration options.

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver "azure-netapp-files"

backendName Custom name or the storage Driver name + "_" + random
backend characters

subscriptionID The subscription ID from your

Azure subscription

Optional when managed identities
is enabled on an AKS cluster.

tenantID The tenant ID from an App
Registration

Optional when managed identities
or cloud identity is used on an AKS
cluster.

clientID The client ID from an App
Registration

Optional when managed identities
or cloud identity is used on an AKS
cluster.

clientSecret The client secret from an App
Registration

Optional when managed identities
or cloud identity is used on an AKS
cluster.

serviceLevel One of Standard, Premium, or (random)

Ultra

45

Parameter

location

resourceGroups

netappAccounts

capacityPools

virtualNetwork

subnet

networkFeatures

nfsMountOptions

limitVolumeSize

46

Description

Name of the Azure location where
the new volumes will be created

Optional when managed identities
is enabled on an AKS cluster.

List of resource groups for filtering
discovered resources

List of NetApp accounts for filtering
discovered resources

List of capacity pools for filtering
discovered resources

Name of a virtual network with a
delegated subnet

Name of a subnet delegated to
Microsoft.Netapp/volumes

Set of VNet features for a volume,
may be Basic or Standard.

Network Features is not available in
all regions and might have to be
enabled in a subscription.
Specifying networkFeatures
when the functionality is not
enabled causes volume
provisioning to fail.

Fine-grained control of NFS mount
options.

Ignored for SMB volumes.

To mount volumes using NFS
version 4.1, include nfsvers=4 in
the comma-delimited mount options
list to choose NFS v4.1.

Mount options set in a storage
class definition override mount
options set in backend
configuration.

Fail provisioning if the requested
volume size is above this value

Default

o

ot

o

" (no filter)

" (no filter)

" (no filter, random)

"nfsvers=3"

(not enforced by default)

Parameter Description Default

debugTraceFlags Debug flags to use when null
troubleshooting. Example,
\{"api": false, "method":
true, "discovery": true}.
Do not use this unless you are
troubleshooting and require a
detailed log dump.

nasType Configure NFS or SMB volumes nfs
creation.

Options are nfs, smb or null.
Setting to null defaults to NFS
volumes.

supportedTopologies Represents a list of regions and
zones that are supported by this
backend.

For more information, refer to Use
CSI Topology.

@ For more information on Network Features, refer to Configure network features for an Azure
NetApp Files volume.

Required permissions and resources

If you receive a “No capacity pools found” error when creating a PVC, it is likely your app registration doesn’t
have the required permissions and resources (subnet, virtual network, capacity pool) associated. If debug is

enabled, Trident will log the Azure resources discovered when the backend is created. Verify an appropriate

role is being used.

The values for resourceGroups, netappAccounts, capacityPools, virtualNetwork, and subnet
can be specified using short or fully-qualified names. Fully-qualified names are recommended in most
situations as short names can match multiple resources with the same name.

The resourceGroups, netappAccounts, and capacityPools values are filters that restrict the set of
discovered resources to those available to this storage backend and may be specified in any combination.
Fully-qualified names follow this format:

Type Format

Resource group <resource group>

NetApp account <resource group>/<netapp account>

Capacity pool <resource group>/<netapp account>/<capacity pool>
Virtual network <resource group>/<virtual network>

Subnet <resource group>/<virtual network>/<subnet>

47

https://docs.microsoft.com/en-us/azure/azure-netapp-files/configure-network-features
https://docs.microsoft.com/en-us/azure/azure-netapp-files/configure-network-features

Volume provisioning

You can control default volume provisioning by specifying the following options in a special section of the
configuration file. Refer to Example configurations for details.

Parameter Description Default

exportRule Export rules for new volumes. "0.0.0.0/0"

exportRule must be a comma-
separated list of any combination of
IPv4 addresses or IPv4 subnets in
CIDR notation.

Ignored for SMB volumes.

snapshotDir Controls visibility of the .snapshot "true" for NFSv4

directory "false" for NFSv3
size The default size of new volumes "100G"
unixPermissions The unix permissions of new "" (preview feature, requires

volumes (4 octal digits). whitelisting in subscription)

Ignored for SMB volumes.

Example configurations

The following examples show basic configurations that leave most parameters to default. This is the easiest
way to define a backend.

48

Minimal configuration

This is the absolute minimum backend configuration. With this configuration, Trident discovers all of your
NetApp accounts, capacity pools, and subnets delegated to Azure NetApp Files in the configured
location, and places new volumes on one of those pools and subnets randomly. Because nasType is
omitted, the nfs default applies and the backend will provision for NFS volumes.

This configuration is ideal when you are just getting started with Azure NetApp Files and trying things out,
but in practice you are going to want to provide additional scoping for the volumes you provision.

apivVersion: trident.netapp.io/vl

kind: TridentBackendConfig

metadata:
name: backend-tbc-anf-1
namespace: trident

spec:
version: 1
storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721add45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865ee56ct
clientID: dd043f63-bf8e-fake-8076-8de91le5713aa
clientSecret: SECRET

location: eastus

Managed identities for AKS

This backend configuration omits subscriptionID, tenantID, clientID, and clientSecret, which
are optional when using managed identities.

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: backend-tbc-anf-1
namespace: trident
spec:
version: 1

storageDriverName: azure-netapp-files

capacityPools: ["ultra-pool"]
resourceGroups: ["aks-ami-eastus-rg"]
netappAccounts: ["smb-na"]

virtualNetwork: eastus-prod-vnet
subnet: eastus-anf-subnet

Cloud identity for AKS

This backend configuration omits tenantID, clientID, and clientSecret, which are optional when
using a cloud identity.

apivVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: backend-tbc-anf-1
namespace: trident
spec:
version: 1
storageDriverName: azure-netapp-files

capacityPools: ["ultra-pool"]
resourceGroups: ["aks-ami-eastus-rg"]
netappAccounts: ["smb-na"]

virtualNetwork: eastus-prod-vnet

subnet: eastus—-anf-subnet

location: eastus

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

Specific service level configuration with capacity pool filters

This backend configuration places volumes in Azure’s eastus location in an Ul tra capacity pool.
Trident automatically discovers all of the subnets delegated to Azure NetApp Files in that location and
places a new volume on one of them randomly.

version: 1

storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721add45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865ee56ct
clientID: dd043f63-bf8e-fake-8076-8de91e5713aa
clientSecret: SECRET

location: eastus

servicelLevel: Ultra

capacityPools:

- application—-group-1/account-1/ultra-1

- application-group-1/account-1/ultra-2

50

Advanced configuration

This backend configuration further reduces the scope of volume placement to a single subnet, and also
modifies some volume provisioning defaults.

version: 1
storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721add45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865eeb6ct
clientID: dd043f63-bf8e-fake-8076-8de9%1le5713aa
clientSecret: SECRET
location: eastus
servicelevel: Ultra
capacityPools:
- application-group-1/account-1/ultra-1
- application-group-1/account-1/ultra-2
virtualNetwork: my-virtual-network
subnet: my-subnet
networkFeatures: Standard
nfsMountOptions: vers=3,proto=tcp,timeo=600
limitVolumeSize: 500Gi
defaults:
exportRule: 10.0.0.0/24,10.0.1.0/24,10.0.2.100
snapshotDir: 'true'
size: 200Gi

unixPermissions: '0777"'

Virtual pool configuration

This backend configuration defines multiple storage pools in a single file. This is useful when you have
multiple capacity pools supporting different service levels and you want to create storage classes in
Kubernetes that represent those. Virtual pool labels were used to differentiate the pools based on
performance.

version: 1
storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721ladd45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865ee56ct
clientID: dd043f63-bf8e-fake-8076-8de9%1e5713aa
clientSecret: SECRET
location: eastus
resourceGroups:
- application-group-1
networkFeatures: Basic
nfsMountOptions: vers=3,proto=tcp,timeo=600
labels:
cloud: azure
storage:
- labels:
performance: gold
servicelevel: Ultra
capacityPools:
- ultra-1
- ultra-2
networkFeatures: Standard
- labels:
performance: silver
servicelevel: Premium
capacityPools:
- premium-1
- labels:
performance: bronze
servicelevel: Standard
capacityPools:
- standard-1
- standard-2

52

Supported topologies configuration

Trident facilitates provisioning of volumes for workloads based on regions and availability zones. The
supportedTopologies block in this backend configuration is used to provide a list of regions and

zones per backend. The region and zone values specified here must match the region and zone values

from the labels on each Kubernetes cluster node. These regions and zones represent the list of

permissible values that can be provided in a storage class. For storage classes that contain a subset of
the regions and zones provided in a backend, Trident creates volumes in the mentioned region and zone.

For more information, refer to Use CSI Topology.

version: 1

storageDriverName: azure-netapp-files

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

tenantID: 68e4f836-edcl-fake-bff9-b2d865ee56ct

clientID: dd043f63-bf8e-fake-8076-8de9%1e5713aa

clientSecret: SECRET

location: eastus

servicelLevel: Ultra

capacityPools:

- application-group-1/account-1/ultra-1

- application—-group-1/account-1/ultra-2

supportedTopologies:

- topology.kubernetes.io/region: eastus
topology.kubernetes.io/zone: eastus-1

- topology.kubernetes.io/region: eastus
topology.kubernetes.io/zone: eastus-2

Storage class definitions

The following StorageClass definitions refer to the storage pools above.

Example definitions using parameter.selector field

Using parameter.selector you can specify for each StorageClass the virtual pool that is used to host a

volume. The volume will have the aspects defined in the chosen pool.

53

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: gold
provisioner: csi.trident.netapp.io
parameters:

selector: "performance=gold"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: silver
provisioner: csi.trident.netapp.io
parameters:

selector: "performance=silver"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: bronze
provisioner: csi.trident.netapp.io
parameters:

selector: "performance=bronze"

allowVolumeExpansion: true

Example definitions for SMB volumes

Using nasType, node-stage-secret-name, and node-stage-secret-namespace, You can specify an
SMB volume and provide the required Active Directory credentials.

54

Basic configuration on default namespace

apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata:
name: anf-sc-smb

provisioner: csi.trident.netapp.io

parameters:
backendType: "azure-netapp-files"
trident.netapp.io/nasType: "smb"
csi.storage.k8s.io/node-stage-secret-name: "smbcreds"
csi.storage.k8s.io/node-stage-secret-namespace: "default"

Using different secrets per namespace

apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata:
name: anf-sc-smb

provisioner: csi.trident.netapp.io

parameters:
backendType: "azure-netapp-files"
trident.netapp.io/nasType: "smb"
csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

Using different secrets per volume

apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata:
name: anf-sc-smb

provisioner: csi.trident.netapp.io

parameters:
backendType: "azure-netapp-files"
trident.netapp.io/nasType: "smb"
csi.storage.k8s.io/node-stage-secret-name: ${pvc.name}
csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

(D nasType: smb filters for pools which support SMB volumes. nasType: nfs or nasType:
null filters for NFS pools.

Create the backend

After you create the backend configuration file, run the following command:
tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to
determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Google Cloud NetApp Volumes

Configure a Google Cloud NetApp Volumes backend

You can now configure Google Cloud NetApp Volumes as the backend for Trident. You
can attach NFS volumes using a Google Cloud NetApp Volumes backend.

Google Cloud NetApp Volumes driver details

Trident provides the google-cloud-netapp-volumes driver to communicate with the cluster. Supported
access modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX),
ReadWriteOncePod (RWOP).

Driver Protocol volumeMod Access modes File systems supported
e supported
google-cloud- NFS Filesystem RWO, ROX, RWX, RWOP nfs

netapp-volumes

Cloud identity for GKE

Cloud identity enables Kubernetes pods to access Google Cloud resources by authenticating as a workload
identity instead of by providing explicit Google Cloud credentials.

To take advantage of cloud identity in Google Cloud, you must have:

* A Kubernetes cluster deployed using GKE.
* Workload identity configured on the GKE cluster and GKE MetaData Server configured on the node pools.

* A GCP Service account with the Google Cloud NetApp Volumes Admin (roles/netapp.admin) role or a
custom role.

* Trident installed that includes the cloudProvider to specify "GCP" and cloudldentity specifying the new GCP
service account. An example is given below.

56

Trident operator

To install Trident using the Trident operator, edit tridentorchestrator cr.yaml to set
cloudProvider to "GCP" and set cloudIdentity to iam.gke.io/gcp-service-account:
cloudvolumes-admin-sal@mygcpproject.iam.gserviceaccount.com.

For example:

apiVersion: trident.netapp.io/vl
kind: TridentOrchestrator
metadata:
name: trident
spec:
debug: true
namespace: trident
imagePullPolicy: IfNotPresent
cloudProvider: "GCP"
cloudIdentity: 'iam.gke.io/gcp-service-account: cloudvolumes-
admin-sa@mygcpproject.iam.gserviceaccount.com'

Helm

Set the values for cloud-provider (CP) and cloud-identity (Cl) flags using the following environment
variables:

export CP="GCP"
export ANNOTATION="iam.gke.io/gcp-service-account: cloudvolumes-admin-
sal@mygcpproject.iam.gserviceaccount.com"

The following example installs Trident and sets cloudProvider to GCP using the environment

variable $CP and sets the cloudIdentity using the environment variable SANNOTATION:

helm install trident trident-operator-100.2406.0.tgz --set
cloudProvider=$CP --set cloudIdentity="$SANNOTATION"

tridentctl

Set the values for cloud provider and cloud identity flags using the following environment variables:
export CP="GCP"

export ANNOTATION="iam.gke.io/gcp-service-account: cloudvolumes—-admin-

sa@mygcpproject.iam.gserviceaccount.com"

The following example installs Trident and sets the cloud-provider flag to $CP, and cloud-
identity to SANNOTATION:

57

tridentctl install --cloud-provider=$CP --cloud
-identity="SANNOTATION" -n trident

Prepare to configure a Google Cloud NetApp Volumes backend

Before you can configure your Google Cloud NetApp Volumes backend, you need to
ensure the following requirements are met.

Prerequisites for NFS volumes

If you are using Google Cloud NetApp Volumes for the first time or in a new location, some initial configuration
is required to set up Google Cloud NetApp Volumes and create an NFS volume. Refer to Before you begin.

Ensure that you have the following before configuring Google Cloud NetApp Volumes backend:

* A Google Cloud account configured with Google Cloud NetApp Volumes service. Refer to Google Cloud
NetApp Volumes.
* Project number of your Google Cloud account. Refer to Identifying projects.

* A Google Cloud service account with the NetApp Volumes Admin (roles/netapp.admin) role. Refer to
Identity and Access Management roles and permissions.

» API key file for your GCNV account. Refer to Create a service account key

» A storage pool. Refer to Storage pools overview .

For more information about how to set up access to Google Cloud NetApp Volumes, refer to Set up access to
Google Cloud NetApp Volumes.

Google Cloud NetApp Volumes backend configuration options and examples

Learn about NFS backend configuration options for Google Cloud NetApp Volumes and
review configuration examples.

Backend configuration options

Each backend provisions volumes in a single Google Cloud region. To create volumes in other regions, you
can define additional backends.

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver The value of
storageDriverName

must be specified as
"google-cloud-netapp-
volumes".

backendName (Optional) Custom name of the storage backend Driver name +"_" + part
of API key

58

https://cloud.google.com/netapp/volumes/docs/before-you-begin/application-resilience
https://cloud.google.com/netapp-volumes
https://cloud.google.com/netapp-volumes
https://cloud.google.com/resource-manager/docs/creating-managing-projects#identifying_projects
https://cloud.google.com/netapp/volumes/docs/get-started/configure-access/iam#roles_and_permissions
https://cloud.google.com/iam/docs/keys-create-delete#creating
https://cloud.google.com/netapp/volumes/docs/configure-and-use/storage-pools/overview
https://cloud.google.com/netapp/volumes/docs/get-started/configure-access/workflow#before_you_begin
https://cloud.google.com/netapp/volumes/docs/get-started/configure-access/workflow#before_you_begin

Parameter

storagePools

projectNumber

location

apiKey

nfsMountOptions

limitVolumeSize

servicelLevel

network

debugTraceFlags

supportedTopologies

Description

Optional parameter used to specify storage pools for
volume creation.

Google Cloud account project number. The value is
found on the Google Cloud portal home page.

The Google Cloud location where Trident creates
GCNYV volumes. When creating cross-region
Kubernetes clusters, volumes created in a 1location
can be used in workloads scheduled on nodes across
multiple Google Cloud regions.

Cross-region traffic incurs an additional cost.

API key for the Google Cloud service account with the
netapp.admin role.

It includes the JSON-formatted contents of a Google
Cloud service account’s private key file (copied
verbatim into the backend configuration file).

The apiKey must include key-value pairs for the
following keys: type, project id, client email,
client id, auth uri, token uri,

auth provider x509 cert url,and
client x509 cert url.

Fine-grained control of NFS mount options.

Fail provisioning if the requested volume size is above
this value.

The service level of a storage pool and its volumes.
The values are flex, standard, premium, or
extreme.

Google Cloud network used for GCNV volumes.

Debug flags to use when troubleshooting. Example,
{"api":false, "method":true}.

Do not use this unless you are troubleshooting and
require a detailed log dump.

Represents a list of regions and zones that are
supported by this backend.

For more information, refer to Use CSI Topology.

For example:

supportedTopologies:

- topology.kubernetes.io/region: asia-
eastl

topology.kubernetes.io/zone: asia-eastl-
a

Default

"nfsvers=3"

default)

null

(not enforced by

59

Volume provisioning options

You can control default volume provisioning in the defaults section of the configuration file.

Parameter Description Default
exportRule The export rules for new volumes. "0.0.0.0/0"
Must be a comma-separated list of
any combination of IPv4 addresses.
snapshotDir Access to the . snapshot directory "true" for NFSv4
"false" for NFSv3
snapshotReserve Percentage of volume reserved for "" (accept default of 0)
shapshots
unixPermissions The unix permissions of new

volumes (4 octal digits).
Example configurations

The following examples show basic configurations that leave most parameters to default. This is the easiest
way to define a backend.

60

Minimal configuration

This is the absolute minimum backend configuration. With this configuration, Trident discovers all of your
storage pools delegated to Google Cloud NetApp Volumes in the configured location, and places new
volumes on one of those pools randomly. Because nasType is omitted, the nfs default applies and the
backend will provision for NFS volumes.

This configuration is ideal when you are just getting started with Google Cloud NetApp Volumes and
trying things out, but in practice you will most likely need to provide additional scoping for the volumes you
provision.

apiVersion: vl

kind: Secret

metadata:
name: backend-tbc-gcnv-secret

type: Opaque

stringData:
private key id: 'f2cb6ted6d7ccl0c453£7d3406£c700c5df0ab9ec’
private key: |

znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gp8B4Kws8zX507)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50])Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50])Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/qp8B4Kws8zX50)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNChRAGz1zZE4jK3bl/gp8B4Kws82zX507Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/qp8B4Kws8zX50)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gp8B4Kws82zX507Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50])Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gp8B4Kws82zX507Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50])Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX50)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gp8B4Kws8zX507Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50])Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNChRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m\n

62

XsYgogyxy4zg701lwWgLwGa==\n

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: backend-tbc-gcnv
spec:
version: 1
storageDriverName: google-cloud-netapp-volumes
projectNumber: '123455380079'
location: europe-westb
servicelevel: premium
apiKey:
type: service account
project id: my-gcnv-project
client email: myproject-prodlmy-gcnv-
project.iam.gserviceaccount.com
client id: '103346282737811234567"'
auth uri: https://accounts.google.com/o/ocauth2/auth
token uri: https://oauth2.googleapis.com/token
auth provider x509 cert url:
https://www.googleapis.com/ocauth2/vl/certs
client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/myproject-prod%40my-
gcnv-project.iam.gserviceaccount.com
credentials:
name: backend-tbc-gcnv-secret

Configuration with StoragePools filter

apiVersion: vl

kind: Secret

metadata:
name: backend-tbc-gcnv-secret

type: Opaque

stringData:
private key id: 'f2cb6ed6d7ccl0c453£7d3406£fc700c5df0ab%ec’
private key: |

znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE47K3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3bl/gqp8BR4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
XsYgbgyxy4zg701lwWgLwGa==

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:

name: backend-tbc-gcnv

spec:

64

version: 1
storageDriverName: google-cloud-netapp-volumes
projectNumber: '123455380079"
location: europe-westo6
servicelevel: premium
storagePools:
- premium-pooll-europe-west6
- premium-pool2-europe-westb6
apiKey:
type: service account
project id: my-gcnv-project
client email: myproject-prod@my-gcnv-
project.iam.gserviceaccount.com
client id: '103346282737811234567"
auth uri: https://accounts.google.com/o/oauth2/auth
token uri: https://oauth2.googleapis.com/token
auth provider x509 cert url:
https://www.googleapis.com/ocauth2/vl/certs
client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/myproject-prod%40my-
gcnv-project.iam.gserviceaccount.com
credentials:

name: backend-tbc-gcnv-secret

Virtual pool configuration

This backend configuration defines multiple virtual pools in a single file. Virtual pools are defined in the
storage section. They are useful when you have multiple storage pools supporting different service
levels and you want to create storage classes in Kubernetes that represent those. Virtual pool labels are
used to differentiate the pools. For instance, in the example below performance label and
servicelLevel type is used to differentiate virtual pools.

You can also set some default values to be applicable to all virtual pools, and overwrite the default values
for individual virtual pools. In the following example, snapshotReserve and exportRule serve as
defaults for all virtual pools.

For more information, refer to Virtual pools.

apiVersion: vl

kind: Secret

metadata:
name: backend-tbc-gcnv-secret

type: Opaque

stringData:
private key id: 'f2cb6ed6d7ccl0c453£7d3406£c700c5df0ablec’
private key: |

znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y%m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m

66

znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
XsYgoegyxy4zg701lwWgLwGa==

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: backend-tbc-gcnv
spec:
version: 1
storageDriverName: google-cloud-netapp-volumes
projectNumber: '123455380079'
location: europe-westb6
apiKey:
type: service account
project id: my-gcnv-project
client email: myproject-prod@my-gcnv-
project.iam.gserviceaccount.com
client id: '103346282737811234567"'
auth uri: https://accounts.google.com/o/oauth2/auth
token uri: https://ocauth2.googleapis.com/token
auth provider x509 cert url:
https://www.googleapis.com/oauth2/vl/certs
client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/myproject-prod%40my-
gcnv-project.iam.gserviceaccount.com
credentials:
name: backend-tbc-gcnv-secret

defaults:
snapshotReserve: '10'
exportRule: 10.0.0.0/24
storage:
- labels:

performance: extreme

servicelLevel: extreme

defaults:
snapshotReserve: '5'
exportRule: 0.0.0.0/0
- labels:

performance: premium
servicelevel: premium
- labels:

performance: standard
servicelLevel: standard

Cloud identity for GKE

apivVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: backend-tbc-gcp-gcnv
spec:
version: 1
storageDriverName: google-cloud-netapp-volumes
projectNumber: '012345678901"
network: gcnv-network
location: us-west?2
servicelevel: Premium

storagePool: pool-premiuml

Supported topologies configuration

Trident facilitates provisioning of volumes for workloads based on regions and availability zones. The
supportedTopologies block in this backend configuration is used to provide a list of regions and
zones per backend. The region and zone values specified here must match the region and zone values
from the labels on each Kubernetes cluster node. These regions and zones represent the list of
permissible values that can be provided in a storage class. For storage classes that contain a subset of
the regions and zones provided in a backend, Trident creates volumes in the mentioned region and zone.
For more information, refer to Use CSI Topology.

version: 1

storageDriverName: google-cloud-netapp-volumes

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

tenantID: 68e4f836-edcl-fake-bff9-b2d865ee56ct

clientID: dd043f63-bf8e-fake-8076-8de9%1le5713aa

clientSecret: SECRET

location: asia-eastl

servicelevel: flex

supportedTopologies:

- topology.kubernetes.io/region: asia-eastl
topology.kubernetes.io/zone: asia-eastl-a

- topology.kubernetes.io/region: asia-eastl
topology.kubernetes.io/zone: asia-eastl-Db

67

What’s next?

After you create the backend configuration file, run the following command:

kubectl create -f <backend-file>

To verify that the backend is successfully created, run the following command:

kubectl get tridentbackendconfig

NAME BACKEND NAME BACKEND UUID

PHASE STATUS

backend-tbc-gcnv backend-tbc-gcnv b2fd1£f£f9-b234-477e-88£d-713913294£65
Bound Success

If the backend creation fails, something is wrong with the backend configuration. You can describe the backend
using the kubectl get tridentbackendconfig <backend-name> command or view the logs to
determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can delete the backend and run the
create command again.

More examples

Storage class definition examples

The following is a basic StorageClass definition that refers to the backend above.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: gcnv-nfs-sc
provisioner: csi.trident.netapp.io
parameters:

backendType: "google-cloud-netapp-volumes"

Example definitions using the parameter. selector field:

Using parameter.selector you can specify for each StorageClass the virtual pool that is used to host a
volume. The volume will have the aspects defined in the chosen pool.

68

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: extreme-sc
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=extreme"
backendType: "google-cloud-netapp-volumes"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: premium-sc
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=premium"
backendType: "google-cloud-netapp-volumes"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: standard-sc
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=standard"
backendType: "google-cloud-netapp-volumes"

For more details on storage classes, refer to Create a storage class.

PVC definition example

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: gcnv-nfs-pvc
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 100Gi
storageClassName: gcnv-nfs-sc

To verify if the PVC is bound, run the following command:

69

kubectl get pvc gcnv-nfs-pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

gecnv-nfs-pve Bound pvc-b00£f2414-e229-40e6-9b16-ee03eb79%9a213 100Gi
RWX gcnv-—nfs-sc 1m

Configure a Cloud Volumes Service for Google Cloud backend

Learn how to configure NetApp Cloud Volumes Service for Google Cloud as the backend
for your Trident installation using the sample configurations provided.

Google Cloud driver details

Trident provides the gcp-cvs driver to communicate with the cluster. Supported access modes are:
ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWriteOncePod (RWOP).
Driver Protocol volumeMode Access modes supported File systems supported

gcp-cvs NFS Filesystem RWO, ROX, RWX, RWOP nfs

Learn about Trident support for Cloud Volumes Service for Google Cloud

Trident can create Cloud Volumes Service volumes in one of two service types:

» CVS-Performance: The default Trident service type. This performance-optimized service type is best
suited for production workloads that value performance. The CVS-Performance service type is a hardware
option supporting volumes with a minimum 100 GiB size. You can choose one of three service levels:

° standard
° premium

° extreme

* CVS: The CVS service type provides high zonal availability with limited to moderate performance levels.
The CVS service type is a software option that uses storage pools to support volumes as small as 1 GiB.
The storage pool can contain up to 50 volumes where all volumes share the capacity and performance of
the pool. You can choose one of two service levels:

° standardsw
° zoneredundantstandardsw

What you’ll need
To configure and use the Cloud Volumes Service for Google Cloud backend, you need the following:

* A Google Cloud account configured with NetApp Cloud Volumes Service
* Project number of your Google Cloud account

* Google Cloud service account with the netappcloudvolumes.admin role

70

https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-types
https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-levels#service_levels_for_the_cvs-performance_service_type
https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-levels#service_levels_for_the_cvs_service_type
https://cloud.netapp.com/cloud-volumes-service-for-gcp?utm_source=NetAppTrident_ReadTheDocs&utm_campaign=Trident

* API key file for your Cloud Volumes Service account

Backend configuration options

Each backend provisions volumes in a single Google Cloud region. To create volumes in other regions, you
can define additional backends.

Parameter
version
storageDriverName

backendName

storageClass

storagePools

projectNumber

hostProjectNumber

apiRegion

apiKey

proxyURL

Description Default
Always 1
Name of the storage driver "gcp-cvs"

Custom name or the storage backend Driver name +" " + part

of API key

Optional parameter used to specify the CVS service
type.

Use software to select the CVS service type.
Otherwise, Trident assumes CVS-Performance
service type (hardware).

CVS service type only. Optional parameter used to
specify storage pools for volume creation.

Google Cloud account project number. The value is
found on the Google Cloud portal home page.

Required if using a shared VPC network. In this
scenario, projectNumber is the service project, and
hostProjectNumber is the host project.

The Google Cloud region where Trident creates Cloud
Volumes Service volumes. When creating cross-
region Kubernetes clusters, volumes created in an
apiRegion can be used in workloads scheduled on
nodes across multiple Google Cloud regions.

Cross-region traffic incurs an additional cost.

API key for the Google Cloud service account with the
netappcloudvolumes.admin role.

It includes the JSON-formatted contents of a Google
Cloud service account’s private key file (copied
verbatim into the backend configuration file).

Proxy URL if proxy server required to connect to CVS
account. The proxy server can either be an HTTP
proxy or an HTTPS proxy.

For an HTTPS proxy, certificate validation is skipped
to allow the usage of self-signed certificates in the
proxy server.

Proxy servers with authentication enabled are not
supported.

71

Parameter
nfsMountOptions

limitVolumeSize

servicelevel

network

debugTraceFlags

allowedTopologies

Description Default

Fine-grained control of NFS mount options. "nfsvers=3"

Fail provisioning if the requested volume size is above " (not enforced by
this value. default)

The CVS-Performance or CVS service level for new CVS-Performance default
volumes. is "standard".

CVS-Performance values are standard, premium, CVS defaultis
or extreme. "standardsw".

CVS values are standardsw or
zoneredundantstandardsw.

Google Cloud network used for Cloud Volumes "default"
Service volumes.

Debug flags to use when troubleshooting. Example, null
\{"api":false, "method":true}

Do not use this unless you are troubleshooting and
require a detailed log dump.

To enable cross-region access, your StorageClass
definition for allowedTopologies must include all
regions.

For example:

- key: topology.kubernetes.io/region
values:

- us-eastl

- europe-westl

Volume provisioning options

You can control default volume provisioning in the defaults section of the configuration file.

Parameter

exportRule

snapshotDir

snapshotReserve

size

72

Description Default

The export rules for new volumes. "0.0.0.0/0"
Must be a comma-separated list of

any combination of IPv4 addresses

or IPv4 subnets in CIDR notation.

Access to the . snapshot directory “false”

Percentage of volume reserved for " (accept CVS default of 0)
snapshots

The size of new volumes. CVS-Performance service type
defaults to "100GiB".

CVS-Performance minimum is 100

GiB. CVS service type does not set a
default but requires a 1 GiB
CVS minimum is 1 GiB. minimum.

CVS-Performance service type examples

The following examples provide sample configurations for the CVS-Performance service type.

Example 1: Minimal configuration

This is the minimum backend configuration using default CVS-Performance service type with the default
"standard" service level.

version: 1

storageDriverName: gcp-cvs

projectNumber: '012345678901"'

apiRegion: us-west?2

apiKey:
type: service account
project id: my-gcp-project
private key id: "<id value>"
private key: |

client email: cloudvolumes-admin-sal@my-gcp-
project.iam.gserviceaccount.com

client id: '123456789012345678901"

auth uri: https://accounts.google.com/o/oauth2/auth

token uri: https://ocauth2.googleapis.com/token

auth provider x509 cert url:
https://www.googleapis.com/ocauth2/vl/certs

client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—admin-
sa%$40my-gcp-project.iam.gserviceaccount.com

73

Example 2: Service level configuration

This sample illustrates backend configuration options, including service level, and volume defaults.

version: 1
storageDriverName: gcp-cvs
projectNumber: '012345678901"
apiRegion: us-west2
apiKey:
type: service account
project id: my-gcp-project
private key id: "<id value>"

private key: |

client email: cloudvolumes-admin-sal@my-gcp-
project.iam.gserviceaccount.com

client id: '123456789012345678901"

auth uri: https://accounts.google.com/o/oauth2/auth

token uri: https://oauth2.googleapis.com/token

auth provider x509 cert url:
https://www.googleapis.com/ocauth2/vl/certs

client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes-admin-
sa%$40my-gcp-project.iam.gserviceaccount.com
proxyURL: http://proxy-server-hostname/
nfsMountOptions: vers=3,proto=tcp,timeo=600
limitVolumeSize: 10Ti
servicelevel: premium
defaults:

snapshotDir: 'true'

snapshotReserve: '5'

exportRule: 10.0.0.0/24,10.0.1.0/24,10.0.2.100

size: 5Ti1i

74

Example 3: Virtual pool configuration

This sample uses storage to configure virtual pools and the StorageClasses that refer back to them.

Refer to Storage class definitions to see how the storage classes were defined.

Here, specific defaults are set for all virtual pools, which set the snapshotReserve at 5% and the
exportRule to 0.0.0.0/0. The virtual pools are defined in the storage section. Each individual virtual
pool defines its own serviceLevel, and some pools overwrite the default values. Virtual pool labels
were used to differentiate the pools based on performance and protection.

version: 1
storageDriverName: gcp-cvs
projectNumber: '012345678901"
apiRegion: us-west2
apiKey:
type: service account
project id: my-gcp-project
private key id: "<id value>"

private key: |

client email: cloudvolumes-admin-sal@my-gcp-
project.iam.gserviceaccount.com
client id: '123456789012345678901"
auth uri: https://accounts.google.com/o/oauth2/auth
token uri: https://oauth2.googleapis.com/token
auth provider x509 cert url:
https://www.googleapis.com/ocauth2/vl/certs
client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes-admin-
sa%$40my-gcp-project.iam.gserviceaccount.com
nfsMountOptions: vers=3,proto=tcp,timeo=600
defaults:
snapshotReserve: '5'
exportRule: 0.0.0.0/0
labels:
cloud: gcp
region: us-west2
storage:
- labels:
performance: extreme
protection: extra
servicelevel: extreme
defaults:
snapshotDir: 'true'

75

snapshotReserve: '10'
exportRule: 10.0.0.0/24
- labels:
performance: extreme
protection: standard
servicelevel: extreme
- labels:
performance: premium
protection: extra
servicelevel: premium
defaults:
snapshotDir: 'true'
snapshotReserve: '10'
- labels:
performance: premium
protection: standard
servicelevel: premium
- labels:
performance: standard
servicelevel: standard

Storage class definitions

The following StorageClass definitions apply to the virtual pool configuration example. Using
parameters.selector, you can specify for each StorageClass the virtual pool used to host a volume. The
volume will have the aspects defined in the chosen pool.

76

Storage class example

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs—-extreme-extra-protection
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=extreme; protection=extra"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-extreme-standard-protection
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=premium; protection=standard"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-premium-extra-protection
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=premium; protection=extra"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-premium
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=premium; protection=standard"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-standard
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=standard"
allowVolumeExpansion: true

77

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: cvs-extra-protection
provisioner: csi.trident.netapp.io
parameters:

selector: "protection=extra"
allowVolumeExpansion: true

* The first StorageClass (cvs-extreme-extra-protection) maps to the first virtual pool. This is the only
pool offering extreme performance with a snapshot reserve of 10%.

* The last StorageClass (cvs-extra-protection) calls out any storage pool which provides a snapshot
reserve of 10%. Trident decides which virtual pool is selected and ensures that the snapshot reserve
requirement is met.

CVS service type examples

The following examples provide sample configurations for the CVS service type.

78

Example 1: Minimum configuration

This is the minimum backend configuration using storageClass to specify the CVS service type and
default standardsw service level.

version: 1
storageDriverName: gcp-cvs
projectNumber: '012345678901"
storageClass: software
apiRegion: us-eastd
apiKey:
type: service account
project id: my-gcp-project
private key id: "<id value>"
private key: |

client email: cloudvolumes-admin-sa@my-gcp-
project.iam.gserviceaccount.com

client id: '123456789012345678901"

auth uri: https://accounts.google.com/o/oauth2/auth

token uri: https://oauth2.googleapis.com/token

auth provider x509 cert url:
https://www.googleapis.com/ocauth2/vl/certs

client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—admin-
sa%40my—-gcp-project.iam.gserviceaccount.com
servicelevel: standardsw

79

Example 2: Storage pool configuration

This sample backend configuration uses storagePools to configure a storage pool.

version: 1
storageDriverName: gcp-cvs
backendName: gcp-std-so-with-pool
projectNumber: '531265380079"'
apiRegion: europe-westl
apiKey:
type: service account
project id: cloud-native-data
private key id: "<id value>"
private key: |-

client email: cloudvolumes-admin-sa@cloud-native-
data.iam.gserviceaccount.com
client id: '107071413297115343396"
auth uri: https://accounts.google.com/o/ocauth2/auth
token uri: https://oauth2.googleapis.com/token
auth provider x509 cert url:
https://www.googleapis.com/ocauth2/vl/certs
client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—admin-
sa%$40cloud-native-data.iam.gserviceaccount.com
storageClass: software
zone: europe-westl-Db
network: default
storagePools:
- 1bc7£380-3314-6005-45e9-c7dc8c2d7509

servicelevel: Standardsw

What’s next?

After you create the backend configuration file, run the following command:

tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to
determine the cause by running the following command:

80

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Configure a NetApp HCI or SolidFire backend

Learn how to create and use an Element backend with your Trident installation.

Element driver details

Trident provides the solidfire-san storage driver to communicate with the cluster. Supported access
modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWriteOncePod
(RWOP).

The solidfire-san storage driver supports file and block volume modes. For the Filesystem
volumeMode, Trident creates a volume and creates a filesystem. The filesystem type is specified by the
StorageClass.

Driver Protocol VolumeMode Access modes File systems
supported supported

solidfire-san iISCSI Block RWO, ROX, RWX, No Filesystem. Raw
RWOP block device.

solidfire-san iSCSI Filesystem RWO, RWOP xfs, ext3, ext4

Before you begin

You'll need the following before creating an Element backend.

* A supported storage system that runs Element software.
* Credentials to a NetApp HCI/SolidFire cluster admin or tenant user that can manage volumes.

+ All of your Kubernetes worker nodes should have the appropriate iSCSI tools installed. Refer to worker
node preparation information.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver Always “solidfire-san”

backendName Custom name or the storage “solidfire_” + storage (iISCSI) IP
backend address

Endpoint MVIP for the SolidFire cluster with

tenant credentials

81

Parameter Description Default

SVIP Storage (iISCSI) IP address and
port
labels Set of arbitrary JSON-formatted
labels to apply on volumes.
TenantName Tenant name to use (created if not
found)
InitiatorIFace Restrict iSCSI traffic to a specific “default”
host interface
UseCHAP Use CHAP to authenticate iSCSI. true
Trident uses CHAP.
AccessGroups List of Access Group IDs to use Finds the ID of an access group
named “trident”
Types QoS specifications
limitVolumeSize Fail provisioning if requested “ (not enforced by default)

volume size is above this value

debugTraceFlags Debug flags to use when null
troubleshooting. Example,
{“api”:false, “method”:true}

@ Do not use debugTraceFlags unless you are troubleshooting and require a detailed log dump.

Example 1: Backend configuration for solidfire-san driver with three volume types

This example shows a backend file using CHAP authentication and modeling three volume types with specific
QoS guarantees. Most likely you would then define storage classes to consume each of these using the T0PS
storage class parameter.

82

version: 1
storageDriverName: solidfire-san
Endpoint: https://<user>:<password>@<mvip>/json-rpc/8.0
SVIP: "<svip>:3260"
TenantName: "<tenant>"
labels:
k8scluster: devl
backend: devl-element-cluster
UseCHAP: true
Types:
- Type: Bronze
Qos:
minIOPS: 1000
maxIOPS: 2000
burstIOPS: 4000
- Type: Silver
Qos:
minIOPS: 4000
maxIOPS: 6000
burstIOPS: 8000
- Type: Gold
Qos:
minIOPS: 6000
maxIOPS: 8000
burstIOPS: 10000

Example 2: Backend and storage class configuration for solidfire-san driver with virtual pools

This example shows the backend definition file configured with virtual pools along with StorageClasses that
refer back to them.

Trident copies labels present on a storage pool to the backend storage LUN at provisioning. For convenience,
storage administrators can define labels per virtual pool and group volumes by label.

In the sample backend definition file shown below, specific defaults are set for all storage pools, which set the
type at Silver. The virtual pools are defined in the storage section. In this example, some of the storage
pools set their own type, and some pools override the default values set above.

version: 1

storageDriverName: solidfire-san

Endpoint: https://<user>:<password>@<mvip>/json-rpc/8.0
SVIP: "<svip>:3260"

TenantName: "<tenant>"

UseCHAP: true

83

Types:
- Type: Bronze
Qos:
minIOPS: 1000
maxIOPS: 2000
burstIOPS: 4000
- Type: Silver
Qos:
minIOPS: 4000
maxIOPS: 6000
burstIOPS: 8000
- Type: Gold
Qos:
minIOPS: 6000
maxIOPS: 8000
burstIOPS: 10000
type: Silver
labels:
store: solidfire
k8scluster: dev-l-cluster
region: us-east-1

storage:

- labels:
performance: gold
cost: '4'

zone: us-east-la
type: Gold

- labels:
performance: silver
cost: '3"

zone: us-east-1b
type: Silver

- labels:
performance: bronze
cost: '2'"

zone: us-east-1c
type: Bronze

- labels:
performance: silver
cost: '1"

zone: us-east-1d

The following StorageClass definitions refer to the above virtual pools. Using the parameters.selector
field, each StorageClass calls out which virtual pool(s) can be used to host a volume. The volume will have the
aspects defined in the chosen virtual pool.

84

The first StorageClass (solidfire-gold-four) will map to the first virtual pool. This is the only pool offering
gold performance with a Vvolume Type QoS of Gold. The last StorageClass (solidfire-silver) calls out
any storage pool which offers a silver performance. Trident will decide which virtual pool is selected and
ensures the storage requirement is met.

85

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: solidfire-gold-four
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=gold; cost=4"
fsType: "ext4d"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: solidfire-silver-three
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=silver; cost=3"
fsType: "ext4d"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: solidfire-bronze-two
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=bronze; cost=2"
fsType: "ext4d"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: solidfire-silver-one
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=silver; cost=1"
fsType: "extd"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: solidfire-silver
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=silver"

fsType: "ext4d"

86

Find more information

* Volume access groups

ONTAP SAN drivers

ONTAP SAN driver overview

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP

SAN drivers.

ONTAP SAN driver details

Trident provides the following SAN storage drivers to communicate with the ONTAP cluster. Supported access
modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWriteOncePod

(RWOP).

Driver

ontap-san

ontap-san

ontap-san

ontap-san

Protocol

iISCSI
SCSI over
FC (tech
preview in
Trident
24.10)

iISCSI
SCSI over
FC (tech
preview in
Trident
24.10)

NVMe/TCP

Refer to
Additional
consideratio
ns for
NVMe/TCP.

NVMe/TCP

Refer to
Additional
consideratio
ns for
NVMe/TCP.

volumeMod Access modes

e

Block

Filesystem

Block

Filesystem

supported

RWO, ROX, RWX, RWOP No filesystem; raw block
device

RWO, RWOP xfs, ext3, ext4

ROX and RWX are not
available in Filesystem
volume mode.

RWO, ROX, RWX, RWOP No filesystem; raw block
device

RWO, RWOP xfs, ext3, ext4d

ROX and RWX are not
available in Filesystem
volume mode.

File systems supported

87

Driver Protocol volumeMod Access modes File systems supported

e supported
ontap-san-economy iSCSI Block RWO, ROX, RWX, RWOP No filesystem; raw block
device
Ontap—san—economy iSCSI Filesystem RWO, RWOP XfS, ext3, ext4

ROX and RWX are not
available in Filesystem
volume mode.

* Use ontap-san-economy only if persistent volume usage count is expected to be higher
than supported ONTAP volume limits.

@ * Use ontap-nas-economy only if persistent volume usage count is expected to be higher
than supported ONTAP volume limits and the ontap-san-economy driver cannot be used.

* Do not use use ontap-nas-economy if you anticipate the need for data protection,
disaster recovery, or mobility.

User permissions

Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster user or a
vsadmin SVM user, or a user with a different name that has the same role. For Amazon FSx for NetApp
ONTAP deployments, Trident expects to be run as either an ONTAP or SVM administrator, using the cluster
fsxadmin user or a vsadmin SVM user, or a user with a different name that has the same role. The
fsxadmin user is a limited replacement for the cluster admin user.

If you use the 1imitAggregateUsage parameter, cluster admin permissions are required.

@ When using Amazon FSx for NetApp ONTAP with Trident, the 1imitAggregateUsage
parameter will not work with the vsadmin and fsxadmin user accounts. The configuration
operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don't
recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,
making upgrades difficult and error-prone.

Additional considerations for NVMe/TCP

Trident supports the non-volatile memory express (NVMe) protocol using the ontap-san driver including:

* IPv6
» Snapshots and clones of NVMe volumes
* Resizing an NVMe volume

 Importing an NVMe volume that was created outside of Trident so that its lifecycle can be managed by
Trident

* NVMe-native multipathing

» Graceful or ungraceful shutdown of the K8s nodes (24.06)

88

https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html
https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html

Trident does not support:

* DH-HMAC-CHAP that is supported by natively by NVMe
* Device mapper (DM) multipathing
* LUKS encryption

Prepare to configure backend with ONTAP SAN drivers

Understand the requirements and authentication options for configuring an ONTAP
backend with ONTAP SAN drivers.

Requirements

For all ONTAP backends, Trident requires at least one aggregate assigned to the SVM.

Remember that you can also run more than one driver, and create storage classes that point to one or the
other. For example, you could configure a san-dev class that uses the ontap-san driver and a san-
default class that uses the ontap-san-economy one.

All your Kubernetes worker nodes must have the appropriate iSCSI tools installed. Refer to Prepare the worker
node for details.

Authenticate the ONTAP backend

Trident offers two modes of authenticating an ONTAP backend.

* Credential-based: The username and password to an ONTAP user with the required permissions. It is
recommended to use a pre-defined security login role, such as admin or vsadmin to ensure maximum
compatibility with ONTAP versions.

* Certificate-based: Trident can also communicate with an ONTAP cluster using a certificate installed on the
backend. Here, the backend definition must contain Base64-encoded values of the client certificate, key,
and the trusted CA certificate if used (recommended).

You can update existing backends to move between credential-based and certificate-based methods. However,
only one authentication method is supported at a time. To switch to a different authentication method, you must
remove the existing method from the backend configuration.

@ If you attempt to provide both credentials and certificates, backend creation will fail with an
error that more than one authentication method was provided in the configuration file.
Enable credential-based authentication

Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the ONTAP
backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin. This
ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by future
Trident releases. A custom security login role can be created and used with Trident, but is not recommended.

A sample backend definition will look like this:

89

YAML

version: 1

backendName: ExampleBackend
storageDriverName: ontap-san
managementLIF: 10.0.0.1

svm: svm nfs

username: vsadmin

password: password

JSON

"version": 1,

"backendName": "ExampleBackend",
"storageDriverName": "ontap-san",
"managementLIF": "10.0.0.1",
"svm": "svm nfs",

"username": "vsadmin",

"password": "password"

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the
backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The
creation or update of a backend is the only step that requires knowledge of the credentials. As such, it is an
admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three
parameters are required in the backend definition.
« clientCertificate: Base64-encoded value of client certificate.
« clientPrivateKey: Base64-encoded value of associated private key.
« trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter
must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to
authenticate as.

90

openssl reqg -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key
-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=admin"

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage
administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-
name> -vserver <vserver—-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled
true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-
name> -vserver <vserver—-name>
security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name admin -application ontapi
—-authentication-method cert
security login create -user-or-group-name admin -application http

—authentication-method cert

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>
with Management LIF IP and SVM name.

curl -X POST -Lk https://<ONTAP-Management-
LIF>/servlets/netapp.servlets.admin.XMLrequest filer --key k8senv.key
--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp
xmlns="http://www.netapp.com/filer/admin" version="1.21"
vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert base64
base64 -w 0 k8senv.key >> key base64
base64 -w 0 trustedca.pem >> trustedca base6t4

7. Create backend using the values obtained from the previous step.

91

cat cert-backend.json

{

"version": 1,

"storageDriverName": "ontap-san",

"backendName": "SanBackend",

"managementLIF": "1.2.3.4",

"svm": "vserver test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",
"clientPrivateKey": "LSOtFaKE...0VaLuESOtLSOK",
"trustedCACertificate": "QNFinfO...SigOyN",
"storagePrefix": "myPrefix "

}

tridentctl create backend -f cert-backend.json -n trident

femsmmmmmm== R fes==s=ssssscscscssossssssssssssss=sa==
from e fr e +

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

I S e e e e e
e fremmmeme== iF

| SanBackend | ontap-san | 586blcd5-8cf8-428d-a76c-2872713612cl |
online | 0 |

fessmmmmeme== frememesessess==== fessssssssssssesessaososssssssssss o=
f=mm==== fememema== +

Update authentication methods or rotate credentials

You can update an existing backend to use a different authentication method or to rotate their credentials. This
works both ways: backends that make use of username/password can be updated to use certificates;
backends that utilize certificates can be updated to username/password based. To do this, you must remove
the existing authentication method and add the new authentication method. Then use the updated
backend.json file containing the required parameters to execute tridentctl backend update.

92

cat cert-backend-updated.json

{

"version": 1,
"storageDriverName": "ontap-san",
"backendName": "SanBackend",
"managementLIF": "1.2.3.4",
"svm": "vserver test",
"username": "vsadmin",
"password": "password",
"storagePrefix": "myPrefix "

}

#Update backend with tridentctl
tridentctl update backend SanBackend -f cert-backend-updated.json -n
trident

e fom e o
e fremmmeme== W+

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

R femsmemessess==== fesssssmes s e s ss s osessssss s ess
fmmm==== femememm== 4

| SanBackend | ontap-san | 586blcd5-8cf8-428d-a76c-2872713612cl |
online | 9 |

femmmmmmmma== R fessssssssssssesessosssssasssssssasaaaa
e e 1

When rotating passwords, the storage administrator must first update the password for the user

(D on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates
can be added to the user. The backend is then updated to use the new certificate, following
which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume
connections made after. A successful backend update indicates that Trident can communicate with the ONTAP
backend and handle future volume operations.

Create custom ONTAP role for Trident

You can create an ONTAP cluster role with minimum privileges so that you do not have to use the ONTAP
admin role to perform operations in Trident. When you include the username in a Trident backend
configuration, Trident uses the ONTAP cluster role you created to perform the operations.

Refer to Trident custom-role generator for more information about creating Trident custom roles.

93

https://github.com/NetApp/trident/tree/master/contrib/ontap/trident_role

Using ONTAP CLI
1. Create a new role using the following command:

security login role create <role name\> -cmddirname "command" -access all
-vserver <svm name\>

2. Create a usename for the Trident user:

security login create -username <user name\> -application ontapi
-—authmethod <password\> -role <name of role in step 1\> -vserver
<svm_name\> -comment "user description”

3. Map the role to the user:

security login modify username <user name\> —-vserver <svm name\> -role
<role name\> -application ontapi -application console -authmethod
<password\>

Using System Manager
Perform the following steps in ONTAP System Manager:

1. Create a custom role:
a. To create a custom role at the cluster-level, select Cluster > Settings.
(Or) To create a custom role at the SVM level, select Storage > Storage VMs > required SVM>
Settings > Users and Roles.
b. Select the arrow icon (—) next to Users and Roles.
c. Select +Add under Roles.
d. Define the rules for the role and click Save.

2. Map the role to the Trident user:
+ Perform the following steps on the Users and Roles page:

a. Select Add icon + under Users.
b. Select the required username, and select a role in the drop-down menu for Role.

c. Click Save.

Refer to the following pages for more information:

» Custom roles for administration of ONTAP or Define custom roles

* Work with roles and users

Authenticate connections with bidirectional CHAP

Trident can authenticate iISCSI sessions with bidirectional CHAP for the ontap-san and ontap-san-
economy drivers. This requires enabling the useCHAP option in your backend definition. When set to true,
Trident configures the SVM'’s default initiator security to bidirectional CHAP and set the username and secrets
from the backend file. NetApp recommends using bidirectional CHAP to authenticate connections. See the
following sample configuration:

94

https://kb.netapp.com/on-prem/ontap/Ontap_OS/OS-KBs/FAQ__Custom_roles_for_administration_of_ONTAP
https://docs.netapp.com/us-en/ontap/authentication/define-custom-roles-task.html
https://docs.netapp.com/us-en/ontap-automation/rest/rbac_roles_users.html#rest-api

version: 1

storageDriverName: ontap-san
backendName: ontap san chap
managementLIF: 192.168.0.135

svm: ontap iscsi svm

useCHAP: true

username: vsadmin

password: password
chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz

@ The useCHAP parameter is a Boolean option that can be configured only once. It is set to false
by default. After you set it to true, you cannot set it to false.

In addition to useCHAP=true, the chapInitiatorSecret, chapTargetInitiatorSecret,
chapTargetUsername, and chapUsername fields must be included in the backend definition. The secrets
can be changed after a backend is created by running tridentctl update.

How it works

By setting useCHAP to true, the storage administrator instructs Trident to configure CHAP on the storage
backend. This includes the following:

 Setting up CHAP on the SVM:

o If the SVM’s default initiator security type is none (set by default) and there are no pre-existing LUNs
already present in the volume, Trident will set the default security type to CHAP and proceed to
configuring the CHAP initiator and target username and secrets.

o If the SVM contains LUNs, Trident will not enable CHAP on the SVM. This ensures that access to
LUNSs that are already present on the SVM isn’t restricted.

» Configuring the CHAP initiator and target username and secrets; these options must be specified in the
backend configuration (as shown above).

After the backend is created, Trident creates a corresponding tridentbackend CRD and stores the CHAP
secrets and usernames as Kubernetes secrets. All PVs that are created by Trident on this backend will be
mounted and attached over CHAP.

Rotate credentials and update backends

You can update the CHAP credentials by updating the CHAP parameters in the backend. json file. This will
require updating the CHAP secrets and using the tridentctl update command to reflect these changes.

When updating the CHAP secrets for a backend, you must use tridentctl to update the
backend. Do not update the credentials on the storage cluster through the CLI/ONTAP Ul as
Trident will not be able to pick up these changes.

95

cat backend-san.json

"version": 1,

"storageDriverName": "ontap-san",
"backendName": "ontap san chap",
"managementLIF": "192.168.0.135",

"svm": "ontap iscsi svm",

"useCHAP": true,

"username": "vsadmin",

"password": "password",
"chapInitiatorSecret": "cl9gxUpDaTeD",
"chapTargetInitiatorSecret": "rgxigXgkeUpDaTeD",
"chapTargetUsername": "iJF4heBRTOTCwxyz",
"chapUsername": "uh2aNCLSd6cNwxyz",

./tridentctl update backend ontap san chap -f backend-san.json -n trident

- e +

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

o Fom e
- o +

| ontap san chap | ontap-san | aad458f3b-ad2d-4378-8a33-1a472ffbeb5c |
online | T

e —— e — e e ettt
t——— R +

Existing connections will remain unaffected; they will continue to remain active if the credentials are updated by
Trident on the SVM. New connections use the updated credentials and existing connections continue to remain
active. Disconnecting and reconnecting old PVs will result in them using the updated credentials.

ONTAP SAN configuration options and examples

Learn how to create and use ONTAP SAN drivers with your Trident installation. This
section provides backend configuration examples and details for mapping backends to
StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

96

Parameter

storageDrive
rName

backendName

managementLI
F

datalLlIF

svm

useCHAP

chapInitiato
rSecret

labels

Description Default

Name of the storage driver ontap-nas, ontap-nas-
economy, ontap-nas-
flexgroup, ontap-san, ontap-
san—-economy

Custom name or the storage backend Driver name +"_" + dataLIF

IP address of a cluster or SVM management LIF. “10.0.0.17, “[2001:1234:abcd::fefe]”

A fully-qualified domain name (FQDN) can be
specified.

Can be set to use IPv6 addresses if Trident was
installed using the IPv6 flag. IPv6 addresses must be
defined in square brackets, such as
[28e8:d9fb:a825:b7bf:69%9a8:d02f:9e7b:3555
1.

For seamless MetroCluster switchover, see the [mcc-
best].

IP address of protocol LIF. Derived by the SVM

Can be set to use IPv6 addresses if Trident was
installed using the IPv6 flag. IPv6 addresses must be
defined in square brackets, such as
[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555

1.

Do not specify for iSCSI. Trident uses ONTAP
Selective LUN Map to discover the iSCI LIFs needed
to establish a multi path session. A warning is
generated if dataLIF is explicitly defined.

Omit for Metrocluster. See the [mcc-best].

Storage virtual machine to use Derived if an SVM
managementLIF is specified

Omit for Metrocluster. See the [mcc-best].

Use CHAP to authenticate iSCSI for ONTAP SAN false
drivers [Boolean].

Set to true for Trident to configure and use
bidirectional CHAP as the default authentication for
the SVM given in the backend. Refer to Prepare to
configure backend with ONTAP SAN drivers for
details.

CHAP initiator secret. Required if useCHAP=true

Set of arbitrary JSON-formatted labels to apply on
volumes

97

https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html
https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html

Parameter

chapTargetIn
itiatorSecre
t

chapUsername

chapTargetUs
ername

clientCertif
icate

clientPrivat
eKey

trustedCACer
tificate
username
password

svm

storagePrefi
X

aggregate

98

Description

CHAP target initiator secret. Required if
useCHAP=true

Inbound username. Required if useCHAP=true

Target username. Required if useCHAP=true

Base64-encoded value of client certificate. Used for
certificate-based auth

Base64-encoded value of client private key. Used for
certificate-based auth

Base64-encoded value of trusted CA certificate.
Optional. Used for certificate-based authentication.

Username needed to communicate with the ONTAP
cluster. Used for credential-based authentication.

Password needed to communicate with the ONTAP
cluster. Used for credential-based authentication.

Storage virtual machine to use

Prefix used when provisioning new volumes in the
SVM.

Cannot be modified later. To update this parameter,
you will need to create a new backend.

Aggregate for provisioning (optional; if set, must be
assigned to the SVM). For the ontap-nas-
flexgroup driver, this option is ignored. If not
assigned, any of the available aggregates can be
used to provision a FlexGroup volume.

When the aggregate is updated in
SVM, it is updated in Trident
automatically by polling SVM without
having to restart the Trident Controller.
When you have configured a specific
aggregate in Trident to provision
volumes, if the aggregate is renamed
or moved out of the SVM, the backend
will move to failed state in Trident while
polling the SVM aggregate. You must
either change the aggregate to one that
is present on the SVM or remove it
altogether to bring the backend back
online.

Default

Derived if an SVM
managementLIF is specified

trident

Parameter Description Default

limitAggrega Fail provisioning if usage is above this percentage. " (not enforced by default)
teUsage

If you are using an Amazon FSx for NetApp ONTAP

backend, do not specify 1imitAggregateUsage.

The provided fsxadmin and vsadmin do not contain

the permissions required to retrieve aggregate usage

and limit it using Trident.

limitVolumes Fail provisioning if requested volume size is above " (not enforced by default)
ize this value.

Also restricts the maximum size of the volumes it
manages for LUNs.

lunsPerFlexv Maximum LUNs per Flexvol, must be in range [50, 100
ol 200]

debugTraceFl Debug flags to use when troubleshooting. Example, null
ags {"api":false, "method":true}

Do not use unless you are troubleshooting and require
a detailed log dump.

useREST Boolean parameter to use ONTAP REST APIs. true for ONTAP 9.15.1 or later,
otherwise false.
useREST When set to true, Trident uses ONTAP
REST APIs to communicate with the backend; when
setto false, Trident uses ONTAP ZAPI calls to
communicate with the backend. This feature requires
ONTAP 9.11.1 and later. In addition, the ONTAP login
role used must have access to the ontap application.
This is satisfied by the pre-defined vsadmin and
cluster-admin roles. Beginning with the Trident
24.06 release and ONTAP 9.15.1 or later, useREST is
set to true by default; change useREST to false to
use ONTAP ZAPI calls.

useREST is fully qualified for NVMe/TCP.

sanType Use to select iscsi for iISCSI, nvme for NVMe/TCP iscsi if blank
or fcp for SCSI over Fibre Channel (FC).

'fcp’ (SCSI over FC) is a tech preview feature in the
Trident 24.10 release.

Parameter Description Default

formatOption Use formatOptions to specify command line

s arguments for the mkfs command, which will be
applied whenever a volume is formatted. This allows
you to format the volume according to your
preferences. Make sure to specify the formatOptions
similar to that of the mkfs command options,
excluding the device path.
Example: "-E nodiscard"

Supported for ontap-san and ontap-san-
economy drivers only.

limitVolumeP Maximum requestable FlexVol size when using LUNs (not enforced by default)

oolSize in ontap-san-economy backend.

denyNewVolum Restricts ontap-san-economy backends from

ePools creating new FlexVol volumes to contain their LUNs.
Only preexisting Flexvols are used for provisioning
new PVs.

Recommendations for using formatOptions

Trident recommends the following option to expedite the formatting process:
-E nodiscard:

* Keep, do not attempt to discard blocks at mkfs time (discarding blocks initially is useful on solid state
devices and sparse / thin-provisioned storage). This replaces the deprecated option “-K” and it is applicable
to all the file systems (xfs, ext3, and ext4).

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an
example, see the configuration examples below.

Parameter Description Default

spaceAllocat Space-allocation for LUNs "true”

ion

spaceReserve Space reservation mode; "none" (thin) or "volume" "none"
(thick)

snapshotPoli Snapshot policy to use "none"

cy

100

Parameter

gosPolicy

adaptiveQosP
olicy

snapshotRese
rve

splitOnClone

encryption

luksEncrypti
on

securityStyl
e

tieringPolic
y

nameTemplate

Description Default

QoS policy group to assign for volumes created.
Choose one of qosPolicy or adaptiveQosPolicy per
storage pool/backend.

Using QoS policy groups with Trident requires ONTAP
9.8 or later. You should use a non-shared QoS policy
group and ensuring the policy group is applied to each
constituent individually. A shared QoS policy group
enforces the ceiling for the total throughput of all
workloads.

Adaptive QoS policy group to assign for volumes
created. Choose one of qosPolicy or
adaptiveQosPolicy per storage pool/backend

Percentage of volume reserved for snapshots

Split a clone from its parent upon creation "false"

Enable NetApp Volume Encryption (NVE) on the new "false"
volume; defaults to false. NVE must be licensed and
enabled on the cluster to use this option.

If NAE is enabled on the backend, any volume
provisioned in Trident will be NAE enabled.

For more information, refer to: How Trident works with
NVE and NAE.

Enable LUKS encryption. Refer to Use Linux Unified
Key Setup (LUKS).

LUKS encryption is not supported for NVMe/TCP.

Security style for new volumes unix

Tiering policy to use "none"

Template to create custom volume names.

Volume provisioning examples

Here’s an example with defaults defined:

"0" if snapshotPolicy is "none",
otherwise

"snapshot-only" for pre-ONTAP 9.5
SVM-DR configuration

101

version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
svm: trident svm
username: admin
password: <password>
labels:
k8scluster: dev2
backend: dev2-sanbackend
storagePrefix: alternate-trident
debugTraceFlags:
api: false
method: true
defaults:
spaceReserve: volume
qgosPolicy: standard
spaceAllocation: 'false'
snapshotPolicy: default
snapshotReserve: '10'

For all volumes created using the ontap-san driver, Trident adds an extra 10 percent capacity
to the FlexVol to accommodate the LUN metadata. The LUN will be provisioned with the exact

@ size that the user requests in the PVC. Trident adds 10 percent to the FlexVol (shows as
Available size in ONTAP). Users will now get the amount of usable capacity they requested. This
change also prevents LUNs from becoming read-only unless the available space is fully utilized.
This does not apply to ontap-san-economy.

For backends that define snapshotReserve, Trident calculates the size of volumes as follows:

Total volume size = [(PVC requested size) / (1 - (snapshotReserve
percentage) / 100)] * 1.1

The 1.1 is the extra 10 percent Trident adds to the FlexVol to accommodate the LUN metadata. For
snapshotReserve = 5%, and PVC request = 5GiB, the total volume size is 5.79GiB and the available size is
5.5GiB. The volume show command should show results similar to this example:

Aggregate State i Available Used%

_pvc_B89f1c156_3801_4ded4_979d_034d54c395f4
online RW 18GB 5.88GB
_pvc_ed42ecbfe_3baa_4afb6_996d_134adbbbB8ebd
online RW 5.79GB 5.50GB
_pvc_eB372153_9ad9_474a_951a_0Bael5elc@ba
online RW 1GB 511.8MB
3 entries were displayed.

102

Currently, resizing is the only way to use the new calculation for an existing volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest
way to define a backend.

@ If you are using Amazon FSx on NetApp ONTAP with Trident, we recommend you specify DNS
names for LIFs instead of IP addresses.

ONTAP SAN example

This is a basic configuration using the ontap-san driver.

version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
svm: svm_iscsi
labels:
k8scluster: test-cluster-1
backend: testclusterl-sanbackend
username: vsadmin

password: <password>

ONTAP SAN economy example

version: 1

storageDriverName: ontap-san-economy
managementLIF: 10.0.0.1

svm: svm_iscsi eco

username: vsadmin

password: <password>

1. example

103

You can configure the backend to avoid having to manually update the backend definition after switchover
and switchback during SVM replication and recovery.

For seamless switchover and switchback, specify the SVM using managementLIF and omit the
dataLIF and svm parameters. For example:

version: 1
storageDriverName: ontap-san
managementLIF: 192.168.1.66
username: vsadmin

password: password

Certificate-based authentication example

In this basic configuration example clientCertificate, clientPrivateKey, and
trustedCACertificate (optional, if using trusted CA) are populated in backend. json and take the
base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

version: 1

storageDriverName: ontap-san

backendName: DefaultSANBackend

managementLIF: 10.0.0.1

svm: svm_iscsi

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz
clientCertificate: ZXR0OZXJwYXB...ICMgJd3BhcGVyc2
clientPrivateKey: vciwKIyAgZG...0cnksIGR1c2NyaX
trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz

104

Bidirectional CHAP examples

These examples create a backend with useCHAP set to true.

ONTAP SAN CHAP example

version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
svm: svm _iscsi
labels:

k8scluster: test-cluster-1

backend: testclusterl-sanbackend
useCHAP: true
chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: 1JF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz
username: vsadmin

password: <password>

ONTAP SAN economy CHAP example

version: 1

storageDriverName: ontap-san-economy
managementLIF: 10.0.0.1

svm: svm_iscsi eco

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

105

NVMe/TCP example

You must have an SVM configured with NVMe on your ONTAP backend. This is a basic backend
configuration for NVMe/TCP.

version: 1

backendName: NVMeBackend
storageDriverName: ontap-san
managementLIF: 10.0.0.1

Svm: Svm_nvme

username: vsadmin

password: password

sanType: nvme

useREST: true

Backend configuration example with nameTemplate

version: 1
storageDriverName: ontap-san
backendName: ontap-san-backend
managementLIF: <ip address>
svm: svm0
username: <admin>
password: <password>
defaults: {
"nameTemplate":
"{{.volume.Name}} {{.labels.cluster}} {{.volume.Namespace}} {{.volume.R
equestName} } "
bo
"labels": {"cluster": "ClusterA", "PVC":
"{{.volume.Namespace}} {{.volume.RequestName}}"}

106

formatOptions example for ontap-san-economy driver

version: 1
storageDriverName: ontap-san-—-economy
managementLIF: "'
svm: svml
username: ''
password: "!"
storagePrefix: whelk
debugTraceFlags:
method: true
api: true
defaults:
formatOptions: "-E nodiscard"

Examples of backends with virtual pools

In these sample backend definition files, specific defaults are set for all storage pools, such as spaceReserve
at none, spaceAllocation atfalse, and encryption at false. The virtual pools are defined in the storage
section.

Trident sets provisioning labels in the "Comments" field. Comments are set on the FlexVol. Trident copies all
labels present on a virtual pool to the storage volume at provisioning. For convenience, storage administrators
can define labels per virtual pool and group volumes by label.

In these examples, some of the storage pools set their own spaceReserve, spaceAllocation, and
encryption values, and some pools override the default values.

107

ONTAP SAN example

108

version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1

svm: svm iscsi

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: 1JF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

defaults:
spaceAllocation: 'false'
encryption: 'false'

gosPolicy: standard
labels:
store: san store

kubernetes-cluster: prod-cluster-1

region: us east 1
storage:
- labels:
protection: gold
creditpoints: '40000"
zone: us_east la
defaults:
spaceAllocation: 'true'

encryption: 'true'

adaptiveQosPolicy: adaptive-extreme

- labels:
protection: silver
creditpoints: '20000'
zone: us_east 1b

defaults:
spaceAllocation: 'false'
encryption: 'true'

qosPolicy: premium
- labels:
protection: bronze
creditpoints: '5000'
zone: us_east lc
defaults:
spaceAllocation: 'true'

encryption: 'false'

109

ONTAP SAN economy example

version: 1

storageDriverName: ontap-san-economy
managementLIF: 10.0.0.1

svm: svm_iscsi eco

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

defaults:
spaceAllocation: 'false'
encryption: 'false'
labels:

store: san_economy store
region: us east 1
storage:
- labels:
app: oracledb
cost: '30'
zone: us_ east la
defaults:
spaceAllocation: 'true'
encryption: 'true'
- labels:
app: postgresdb
cost: '20"'
zone: us_east 1b
defaults:
spaceAllocation: 'false'
encryption: 'true'
- labels:
app: mysqgldb
cost: '10"
zone: us_east lc
defaults:
spaceAllocation: 'true'
encryption: 'false'
- labels:
department: legal
creditpoints: '5000'
zone: us_east lc

110

defaults:
spaceAllocation: 'true'

encryption: 'false'

NVMe/TCP example

version:

1

storageDriverName: ontap-san

sanType:

nvme

managementLIF: 10.0.0.1

svm: nvme Ssvin

username:

password:

useREST:

defaults:

vsadmin
<password>
true

spaceAllocation: 'false'

encryption: 'true'

storage:

- labels:

app:

cost:

testApp
IZOI

defaults:
spaceAllocation: 'false'

encryption: 'false'

Map backends to StorageClasses

The following StorageClass definitions refer to the Examples of backends with virtual pools. Using the

parameters.selector field, each StorageClass calls out which virtual pools can be used to host a volume.

The volume will have the aspects defined in the chosen virtual pool.

* The protection—-gold StorageClass will map to the first virtual pool in the ontap-san backend. This is
the only pool offering gold-level protection.

apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata:

name:

protection-gold

provisioner: csi.trident.netapp.io

parameters:

selector: "protection=gold"

fsType: "ext4d"

1M

* The protection-not-gold StorageClass will map to the second and third virtual pool in ontap-san
backend. These are the only pools offering a protection level other than gold.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-not-gold
provisioner: csi.trident.netapp.io
parameters:
selector: "protection!=gold"
fsType: "ext4d"

* The app-mysqgldb StorageClass will map to the third virtual pool in ontap-san-economy backend. This
is the only pool offering storage pool configuration for the mysqldb type app.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: app-mysqgldb
provisioner: csi.trident.netapp.io
parameters:

selector: "app=mysqgldb"

fsType: "ext4d"

* The protection-silver-creditpoints-20k StorageClass will map to the second virtual pool in
ontap-san backend. This is the only pool offering silver-level protection and 20000 creditpoints.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-silver-creditpoints-20k
provisioner: csi.trident.netapp.io
parameters:
selector: "protection=silver; creditpoints=20000"

fsType: "ext4d"

* The creditpoints-5k StorageClass will map to the third virtual pool in ontap-san backend and the
fourth virtual pool in the ontap-san-economy backend. These are the only pool offerings with 5000
creditpoints.

112

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: creditpoints-5k
provisioner: csi.trident.netapp.io
parameters:
selector: "creditpoints=5000"
fsType: "ext4d"

* The my-test-app-sc StorageClass will map to the testAPP virtual pool in the ontap-san driver with
sanType: nvme. This is the only pool offering testApp.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: my-test-app-sc
provisioner: csi.trident.netapp.io
parameters:

selector: "app=testApp"

fsType: "ext4d"

Trident will decide which virtual pool is selected and ensures the storage requirement is met.

ONTAP NAS drivers

ONTAP NAS driver overview

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP
NAS drivers.

ONTAP NAS driver details

Trident provides the following NAS storage drivers to communicate with the ONTAP cluster. Supported access
modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWrite OncePod
(RWOP).

Driver Protocol volumeMod Access modes File systems supported
e supported
ontap-nas NFS Filesystem RWO, ROX, RWX, RWOP " nfs, smb
SMB
ontap-nas-economy NFS Filesystem RWO, ROX, RWX, RWOP ™ nfs, smb

SMB

113

Driver Protocol volumeMod Access modes File systems supported
e supported

ontap-nas-flexgroup NFS Filesystem RWO, ROX, RWX, RWOP "™ nfs, smb
SMB

* Use ontap-san-economy only if persistent volume usage count is expected to be higher
than supported ONTAP volume limits.

@ * Use ontap-nas—-economy only if persistent volume usage count is expected to be higher
than supported ONTAP volume limits and the ontap-san-economy driver cannot be used.

* Do not use use ontap-nas-economny if you anticipate the need for data protection,
disaster recovery, or mobility.

User permissions

Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster user or a
vsadmin SVM user, or a user with a different name that has the same role.

For Amazon FSx for NetApp ONTAP deployments, Trident expects to be run as either an ONTAP or SVM
administrator, using the cluster fsxadmin user or a vsadmin SVM user, or a user with a different name that
has the same role. The fsxadmin user is a limited replacement for the cluster admin user.

If you use the 1imitAggregateUsage parameter, cluster admin permissions are required.

@ When using Amazon FSx for NetApp ONTAP with Trident, the 1imitAggregateUsage
parameter will not work with the vsadmin and fsxadmin user accounts. The configuration
operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don’t
recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,
making upgrades difficult and error-prone.

Prepare to configure a backend with ONTAP NAS drivers

Understand the requirements, authentication options, and export policies for configuring
an ONTAP backend with ONTAP NAS drivers.

Requirements

» For all ONTAP backends, Trident requires at least one aggregate assigned to the SVM.

* You can run more than one driver, and create storage classes that point to one or the other. For example,
you could configure a Gold class that uses the ontap-nas driver and a Bronze class that uses the
ontap—nas—economy one.

 All your Kubernetes worker nodes must have the appropriate NFS tools installed. Refer to here for more
details.

* Trident supports SMB volumes mounted to pods running on Windows nodes only. Refer to Prepare to
provision SMB volumes for details.

114

https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html
https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html

Authenticate the ONTAP backend

Trident offers two modes of authenticating an ONTAP backend.

» Credential-based: This mode requires sufficient permissions to the ONTAP backend. It is recommended to
use an account associated with a pre-defined security login role, such as admin or vsadmin to ensure
maximum compatibility with ONTAP versions.

* Certificate-based: This mode requires a certificate installed on the backend for Trident to communicate with
an ONTAP cluster. Here, the backend definition must contain Base64-encoded values of the client
certificate, key, and the trusted CA certificate if used (recommended).

You can update existing backends to move between credential-based and certificate-based methods. However,
only one authentication method is supported at a time. To switch to a different authentication method, you must
remove the existing method from the backend configuration.

@ If you attempt to provide both credentials and certificates, backend creation will fail with an
error that more than one authentication method was provided in the configuration file.
Enable credential-based authentication

Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the ONTAP
backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin. This
ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by future
Trident releases. A custom security login role can be created and used with Trident, but is not recommended.

A sample backend definition will look like this:

115

YAML

version: 1

backendName: ExampleBackend
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2

svm: svm nfs

username: vsadmin

password: password

JSON

"version": 1,

"backendName": "ExampleBackend",
"storageDriverName": "ontap-nas",
"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.2",

"svm": "svm nfs",

"username": "vsadmin",

"password": "password"

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the
backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The
creation/updation of a backend is the only step that requires knowledge of the credentials. As such, it is an
admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based Authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three
parameters are required in the backend definition.
« clientCertificate: Base64-encoded value of client certificate.
« clientPrivateKey: Base64-encoded value of associated private key.
« trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter
must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to
authenticate as.

116

openssl reqg -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key
-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=vsadmin"

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage
administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-
name> -vserver <vserver—-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled
true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-
name> -vserver <vserver—-name>
security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name vsadmin -application ontapi
—authentication-method cert -vserver <vserver-name>
security login create -user-or-group-name vsadmin -application http

—authentication-method cert -vserver <vserver-name>

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>
with Management LIF IP and SVM name. You must ensure the LIF has its service policy set to default-
data-management.

curl -X POST -Lk https://<ONTAP-Management-
LIF>/servlets/netapp.servlets.admin.XMLrequest filer --key k8senv.key
--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp
xmlns="http://www.netapp.com/filer/admin" version="1.21"
vfiler="<vserver-name>"><vserver-get></vserver—-get></netapp>"'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert baseb64
base64 -w 0 k8senv.key >> key base64
base64 -w 0 trustedca.pem >> trustedca baset4

117

7. Create backend using the values obtained from the previous step.

cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "NasBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",
"clientPrivateKey": "LSOtFaKE...O0VaLuESOtLSOK",
"storagePrefix": "myPrefix "

}

#Update backend with tridentctl
tridentctl update backend NasBackend -f cert-backend-updated.json -n

trident

o e Rt bt
o to——————— +

| NAME | STORAGE DRIVER | UulbD

STATE | VOLUMES |

o —— o ettt b L e PP
- F—m +

| NasBackend | ontap-nas | 98el9%b74-aec7-4a3d-8dcf-128e5033b214 |
online | 9 |

e —— - Bt it e e P
o F——— +

Update authentication methods or rotate credentials

You can update an existing backend to use a different authentication method or to rotate their credentials. This
works both ways: backends that make use of username/password can be updated to use certificates;
backends that utilize certificates can be updated to username/password based. To do this, you must remove
the existing authentication method and add the new authentication method. Then use the updated
backend.json file containing the required parameters to execute tridentctl update backend.

118

cat cert-backend-updated.json
{

"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "NasBackend",
"managementLIF": "1.2.3.4",
"dataLIF": "1.2.3.8",

"svm": "vserver test",
"username": "vsadmin",
"password": "password",
"storagePrefix": "myPrefix "

}

#Update backend with tridentctl
tridentctl update backend NasBackend -f cert-backend-updated.json -n
trident

Pommmmmmmmm== Fommmemcemmes=e== B e
Fommmmmoe e +

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

Fommmmmmmomo= S e e Fommmmmmmmesrrrrrrrre e reme s e mmm o
Fommmmme Pommmmmme= +

| NasBackend | ontap-nas | 98el9b74-aec7/-4a3d-8dcf-128e5033b214 |
online | 9 |

P e Fommmmememesesesese s s s s e eses
o= Fommmemm== +

When rotating passwords, the storage administrator must first update the password for the user

@ on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates
can be added to the user. The backend is then updated to use the new certificate, following
which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume
connections made after. A successful backend update indicates that Trident can communicate with the ONTAP
backend and handle future volume operations.

Create custom ONTAP role for Trident

You can create an ONTAP cluster role with minimum privileges so that you do not have to use the ONTAP
admin role to perform operations in Trident. When you include the username in a Trident backend
configuration, Trident uses the ONTAP cluster role you created to perform the operations.

Refer to Trident custom-role generator for more information about creating Trident custom roles.

119

https://github.com/NetApp/trident/tree/master/contrib/ontap/trident_role

Using ONTAP CLI
1. Create a new role using the following command:

security login role create <role name\> -cmddirname "command" -access all
-vserver <svm name\>

2. Create a usename for the Trident user:

security login create -username <user name\> -application ontapi
-—authmethod <password\> -role <name of role in step 1\> -vserver
<svm_name\> -comment "user description”

3. Map the role to the user:

security login modify username <user name\> —-vserver <svm name\> -role
<role name\> -application ontapi -application console -authmethod
<password\>

Using System Manager
Perform the following steps in ONTAP System Manager:

1. Create a custom role:

a. To create a custom role at the cluster-level, select Cluster > Settings.

(Or) To create a custom role at the SVM level, select Storage > Storage VMs > required SVM>
Settings > Users and Roles.

b. Select the arrow icon (—) next to Users and Roles.
c. Select +Add under Roles.

d. Define the rules for the role and click Save.

2. Map the role to the Trident user:
+ Perform the following steps on the Users and Roles page:

a. Select Add icon + under Users.
b. Select the required username, and select a role in the drop-down menu for Role.

c. Click Save.

Refer to the following pages for more information:

» Custom roles for administration of ONTAP or Define custom roles

* Work with roles and users

Manage NFS export policies
Trident uses NFS export policies to control access to the volumes that it provisions.
Trident provides two options when working with export policies:

 Trident can dynamically manage the export policy itself; in this mode of operation, the storage administrator

120

https://kb.netapp.com/on-prem/ontap/Ontap_OS/OS-KBs/FAQ__Custom_roles_for_administration_of_ONTAP
https://docs.netapp.com/us-en/ontap/authentication/define-custom-roles-task.html
https://docs.netapp.com/us-en/ontap-automation/rest/rbac_roles_users.html#rest-api

specifies a list of CIDR blocks that represent admissible IP addresses. Trident adds applicable node IPs
that fall in these ranges to the export policy automatically at publish time. Alternatively, when no CIDRs are
specified, all global-scoped unicast IPs found on the node that the volume being published to will be added
to the export policy.

» Storage administrators can create an export policy and add rules manually. Trident uses the default export
policy unless a different export policy name is specified in the configuration.

Dynamically manage export policies

Trident provides the ability to dynamically manage export policies for ONTAP backends. This provides the
storage administrator the ability to specify a permissible address space for worker node IPs, rather than
defining explicit rules manually. It greatly simplifies export policy management; modifications to the export
policy no longer require manual intervention on the storage cluster. Moreover, this helps restrict access to the
storage cluster only to worker nodes that are mounting volumes and have IPs in the range specified,
supporting a fine-grained and automated management.

Do not use Network Address Translation (NAT) when using dynamic export policies. With NAT,
(D the storage controller sees the frontend NAT address and not the actual IP host address, so
access will be denied when no match is found in the export rules.

In Trident 24.10, ontap-nas storage driver will continue to work as in the earlier releases; no
(D change has been made for ontap-nas driver. Only the ontap-nas-economy storage driver will
have volume based granular access control in Trident 24.10.

Example

There are two configuration options that must be used. Here’s an example backend definition:

version: 1

storageDriverName: ontap-nas—-economy
backendName: ontap nas auto export
managementLIF: 192.168.0.135

svm: svml

username: vsadmin

password: password

autoExportCIDRs:

- 192.168.0.0/24

autoExportPolicy: true

When using this feature, you must ensure that the root junction in your SVM has a previously

(D created export policy with an export rule that permits the node CIDR block (such as the default
export policy). Always follow NetApp recommended best practice to dedicate an SVM for
Trident.

Here is an explanation of how this feature works using the example above:

* autoExportPolicy is setto true. This indicates that Trident creates an export policy for each volume
provisioned with this backend for the svm1 SVM and handle the addition and deletion of rules using

121

autoexportCIDRs address blocks. Until a volume is attached to a node, the volume uses an empty
export policy with no rules to prevent unwanted access to that volume. When a volume is published to a
node Trident creates an export policy with the same name as the underlying gtree containing the node IP
within the specified CIDR block. These IPs will also be added to the export policy used by the parent
FlexVol.

o For example:
= backend UUID 403b5326-8482-40db-96d0-d83fb3f4daec
" autoExportPolicy setto true
= storage prefix trident
= PVC UUID a79bcf5f-7b6d-4a40-9876-e2551f159c1c

= gtree named trident_pvc_a79bcf5f _7b6d_4a40_ 9876 _e2551f159c1c creates an export policy for
the FlexVol named trident-403b5326-8482-40dbPB6d0-d83fb3f4daec , an export policy for
the gtree named
trident pvc a79bcf5f 7b6d 4a40 9876 e2551f159clc, and an empty export policy
named trident empty on the SVM. The rules for the FlexVol export policy will be a superset of
any rules contained in the gtree export policies. The empty export policy will be reused by any
volumes that are not attached.

* autoExportCIDRs contains a list of address blocks. This field is optional and it defaults to ["0.0.0.0/0",
"::/0"]. If not defined, Trident adds all globally-scoped unicast addresses found on the worker nodes with
publications.

In this example, the 192.168.0.0/24 address space is provided. This indicates that Kubernetes node IPs
that fall within this address range with publications will be added to the export policy that Trident creates. When
Trident registers a node it runs on, it retrieves the IP addresses of the node and checks them against the
address blocks provided in autoExportCIDRs. At publish time, after filtering the IPs, Trident creates the
export policy rules for the client IPs for the node it is publishing to.

You can update autoExportPolicy and autoExportCIDRs for backends after you create them. You can
append new CIDRs for a backend that is automatically managed or delete existing CIDRs. Exercise care when
deleting CIDRs to ensure that existing connections are not dropped. You can also choose to disable
autoExportPolicy for a backend and fall back to a manually created export policy. This will require setting
the exportPolicy parameter in your backend config.

After Trident creates or updates a backend, you can check the backend using tridentctl or the
corresponding tridentbackend CRD:

122

./tridentctl get backends ontap nas auto export -n trident -o yaml

items:
- backendUUID: 403b5326-8482-40db-96d0-d83fb3f4daec
config:
aggregate: ""
autoExportCIDRs:

- 192.168.0.0/24
autoExportPolicy: true
backendName: ontap nas auto export
chapInitiatorSecret: ""
chapTargetInitiatorSecret: ""
chapTargetUsername: ""
chapUsername: ""
datalLIF: 192.168.0.135
debug: false
debugTraceFlags: null
defaults:
encryption: "false"
exportPolicy: <automatic>
fileSystemType: extd

When a node is removed, Trident checks all export policies to remove the access rules corresponding to the
node. By removing this node IP from the export policies of managed backends, Trident prevents rogue mounts,
unless this IP is reused by a new node in the cluster.

For previously existing backends, updating the backend with tridentctl update backend ensures that
Trident manages the export policies automatically. This creates two new export policies named after the
backend’s UUID and gtree name when they are needed. Volumes that are present on the backend will use the
newly created export policies after they are unmounted and mounted again.

Deleting a backend with auto-managed export policies will delete the dynamically created export
@ policy. If the backend is re-created, it is treated as a new backend and will result in the creation
of a new export policy.

If the IP address of a live node is updated, you must restart the Trident pod on the node. Trident will then
update the export policy for backends it manages to reflect this IP change.

Prepare to provision SMB volumes

With a little additional preparation, you can provision SMB volumes using ontap-nas drivers.

You must configure both NFS and SMB/CIFS protocols on the SVM to create an ontap-nas-
@ economy SMB volume for ONTAP on-premises. Failure to configure either of these protocols
will cause SMB volume creation to fail.

@ autoExportPolicy is not supported for SMB volumes.

123

Before you begin
Before you can provision SMB volumes, you must have the following.

* A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows
Server 2022. Trident supports SMB volumes mounted to pods running on Windows nodes only.

* At least one Trident secret containing your Active Directory credentials. To generate secret smbcreds:

kubectl create secret generic smbcreds --from-literal username=user

-—-from-literal password='password'

* A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or
GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

Steps
1. For on-premises ONTAP, you can optionally create an SMB share or Trident can create one for you.

@ SMB shares are required for Amazon FSx for ONTAP.

You can create the SMB admin shares in one of two ways either using the Microsoft Management Console
Shared Folders snap-in or using the ONTAP CLI. To create the SMB shares using the ONTAP CLI:

a. If necessary, create the directory path structure for the share.

The vserver cifs share create command checks the path specified in the -path option during
share creation. If the specified path does not exist, the command fails.

b. Create an SMB share associated with the specified SVM:

vserver cifs share create -vserver vserver name -share-name
share name -path path [-share-properties share properties,...]

[other attributes] [-comment text]

c. Verify that the share was created:

vserver cifs share show -share-name share name

@ Refer to Create an SMB share for full details.

2. When creating the backend, you must configure the following to specify SMB volumes. For all FSx for
ONTAP backend configuration options, refer to FSx for ONTAP configuration options and examples.

124

https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console
https://docs.netapp.com/us-en/ontap/smb-config/create-share-task.html
https://docs.netapp.com/us-en/trident-2410/trident-use/trident-fsx-examples.html

Parameter

smbShare

nasType

securityStyle

unixPermissions

Description Example

You can specify one of the following: the name of an smb-share
SMB share created using the Microsoft

Management Console or ONTAP CLI; a name to

allow Trident to create the SMB share; or you can

leave the parameter blank to prevent common share

access to volumes.

This parameter is optional for on-premises ONTAP.

This parameter is required for Amazon FSx for

ONTAP backends and cannot be blank.
Must set to smb. If null, defaults to nfs. smb

ntfs or mixed for SMB
volumes

Security style for new volumes.

Must be set to ntfs or mixed for SMB volumes.

Mode for new volumes. Must be left empty for
SMB volumes.

ONTAP NAS configuration options and examples

Learn to create and use ONTAP NAS drivers with your Trident installation. This section
provides backend configuration examples and details for mapping backends to

StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default
version Always 1
storageDrive Name of the storage driver "ontap-nas", "ontap-nas-economy",

rName

backendName

Custom name or the storage backend

"ontap-nas-flexgroup”,
"ontap-san-economy"

ontap-san",

Driver name +"_" + dataLIF

125

Parameter

managementLI
F

datalLlIF

svm

autoExportPo
licy

autoExportCI
DRs

126

Description Default

IP address of a cluster or SVM management LIF “10.0.0.17, “[2001:1234:abcd::fefe]”

A fully-qualified domain name (FQDN) can be
specified.

Can be set to use IPv6 addresses if Trident was
installed using the IPv6 flag. IPv6 addresses must be
defined in square brackets, such as
[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555
].

For seamless MetroCluster switchover, see the [mcc-
best].

IP address of protocol LIF. Specified address or derived from
SVM, if not specified (not

We recommend specifying dataLIF. If not provided, recommended)

Trident fetches data LIFs from the SVM. You can

specify a fully-qualified domain name (FQDN) to be

used for the NFS mount operations, allowing you to

create a round-robin DNS to load-balance across

multiple data LIFs.

Can be changed after initial setting. Refer to Update
dataLIF after initial configuration.

Can be set to use IPv6 addresses if Trident was
installed using the IPv6 flag. IPv6 addresses must be
defined in square brackets, such as
[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555
].

Omit for Metrocluster. See the [mcc-best].

Storage virtual machine to use Derived if an SVM
managementLIF is specified

Omit for Metrocluster. See the [mcc-best].

Enable automatic export policy creation and updating false
[Boolean].

Using the autoExportPolicy and
autoExportCIDRs options, Trident can manage
export policies automatically.

List of CIDRs to filter Kubernetes' node IPs against ['0.0.0.0/0", "::/0"T
when autoExportPolicy is enabled.

Using the autoExportPolicy and
autoExportCIDRs options, Trident can manage
export policies automatically.

Parameter

labels

clientCertif
icate

clientPrivat
eKey

trustedCACer
tificate
username

password

storagePrefi
X

aggregate

limitAggrega
teUsage

Description

Set of arbitrary JSON-formatted labels to apply on
volumes

Base64-encoded value of client certificate. Used for
certificate-based auth

Base64-encoded value of client private key. Used for
certificate-based auth

Baseb64-encoded value of trusted CA certificate.
Optional. Used for certificate-based auth

Username to connect to the cluster/SVM. Used for
credential-based auth

Password to connect to the cluster/SVM. Used for
credential-based auth

Prefix used when provisioning new volumes in the
SVM. Cannot be updated after you set it

When using ontap-nas-economy and a
storagePrefix that is 24 or more

@ characters, the gtrees will not have the
storage prefix embedded, though it will
be in the volume name.

Aggregate for provisioning (optional; if set, must be
assigned to the SVM). For the ontap-nas-
flexgroup driver, this option is ignored. If not
assigned, any of the available aggregates can be
used to provision a FlexGroup volume.

When the aggregate is updated in
SVM, it is updated in Trident
automatically by polling SVM without
having to restart the Trident Controller.
When you have configured a specific
aggregate in Trident to provision

@ volumes, if the aggregate is renamed
or moved out of the SVM, the backend
will move to failed state in Trident while
polling the SVM aggregate. You must
either change the aggregate to one that
is present on the SVM or remove it
altogether to bring the backend back
online.

Fail provisioning if usage is above this percentage.

Does not apply to Amazon FSx for ONTAP

Default

"trident"

(not enforced by default)

127

Parameter

flexgroupAggreg
ateList

limitVolumeS
ize

debugTraceFl
ags

nasType

nfsMountOpti
ons

128

Description

List of aggregates for provisioning (optional; if set,
must be assigned to the SVM). All aggregates
assigned to the SVM are used to provision a
FlexGroup volume. Supported for the ontap-nas-
flexgroup storage driver.

When the aggregate list is updated in
SVM, the list is updated in Trident
automatically by polling SVM without
having to restart the Trident Controller.
When you have configured a specific
aggregate list in Trident to provision

@ volumes, if the aggregate list is
renamed or moved out of SVM, the
backend will move to failed state in
Trident while polling the SVM
aggregate. You must either change the
aggregate list to one that is present on
the SVM or remove it altogether to
bring the backend back online.

Fail provisioning if requested volume size is above
this value.

Also restricts the maximum size of the volumes it
manages for gtrees, and the gtreesPerFlexvol
option allows customizing the maximum number of
gtrees per FlexVol.

Debug flags to use when troubleshooting. Example,
{"api":false, "method":true}

Do not use debugTraceFlags unless you are
troubleshooting and require a detailed log dump.

Configure NFS or SMB volumes creation.

Options are nfs, smb or null. Setting to null defaults
to NFS volumes.

Comma-separated list of NFS mount options.

The mount options for Kubernetes-persistent volumes

are normally specified in storage classes, but if no

mount options are specified in a storage class, Trident

will fall back to using the mount options specified in
the storage backend’s configuration file.

If no mount options are specified in the storage class
or the configuration file, Trident will not set any mount

options on an associated persistent volume.

Default

(not enforced by default)

null

nfs

Parameter

gtreesPerfFle
xvol

smbShare

useREST

limitVolumeP
oolSize

denyNewVolum
ePools

Description Default

Maximum Qtrees per FlexVol, must be in range [50, "200"
300]

You can specify one of the following: the name ofan smb-share
SMB share created using the Microsoft Management

Console or ONTAP CLI; a name to allow Trident to

create the SMB share; or you can leave the parameter

blank to prevent common share access to volumes.

This parameter is optional for on-premises ONTAP.

This parameter is required for Amazon FSx for
ONTAP backends and cannot be blank.

Boolean parameter to use ONTAP REST APIs. true for ONTAP 9.15.1 or later,
otherwise false.

useREST When set to true, Trident uses ONTAP

REST APIs to communicate with the backend; when

setto false, Trident uses ONTAP ZAPI calls to

communicate with the backend. This feature requires

ONTAP 9.11.1 and later. In addition, the ONTAP login

role used must have access to the ontap application.

This is satisfied by the pre-defined vsadmin and

cluster-admin roles.

Beginning with the Trident 24.06 release and ONTAP

9.15.1 or later, useREST is set to true by default;

change useREST to false to use ONTAP ZAPI calls.

Maximum requestable FlexVol size when using Qtrees
in ontap-nas-economy backend.

(not enforced by default)

Restricts ontap-nas-economy backends from
creating new FlexVol volumes to contain their Qtrees.
Only preexisting Flexvols are used for provisioning
new PVs.

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an
example, see the configuration examples below.

Parameter

spaceAllocat
ion

spaceReserve

snapshotPoli
cy

Description Default
Space-allocation for Qtrees "true"
Space reservation mode; "none" (thin) or "volume" "none"
(thick)

Snapshot policy to use "none"

129

Parameter

gosPolicy

adaptiveQosP
olicy

snapshotRese
rve

splitOnClone

encryption

tieringPolic
y

unixPermissi
ons

snapshotDir

exportPolicy

securityStyl
e

nameTemplate

Description

QoS policy group to assign for volumes created.
Choose one of qosPolicy or adaptiveQosPolicy per
storage pool/backend

Adaptive QoS policy group to assign for volumes
created. Choose one of qosPolicy or
adaptiveQosPolicy per storage pool/backend.

Not supported by ontap-nas-economy.

Percentage of volume reserved for snapshots

Split a clone from its parent upon creation

Enable NetApp Volume Encryption (NVE) on the new
volume; defaults to false. NVE must be licensed and
enabled on the cluster to use this option.

If NAE is enabled on the backend, any volume
provisioned in Trident will be NAE enabled.

For more information, refer to: How Trident works with
NVE and NAE.

Tiering policy to use "none"

Mode for new volumes

Controls access to the . snapshot directory

Export policy to use

Security style for new volumes.
NFS supports mixed and unix security styles.

SMB supports mixed and nt fs security styles.

Template to create custom volume names.

Default

"0" if snapshotPolicy is "none",
otherwise "

"false'

"false

"snapshot-only" for pre-ONTAP 9.5
SVM-DR configuration

"777" for NFS volumes; empty (not
applicable) for SMB volumes

"true" for NFSv4
"false" for NFSv3

"default"

NFS default is unix.

SMB default is ntfs.

Using QoS policy groups with Trident requires ONTAP 9.8 or later. You should use a non-shared
QoS policy group and ensure the policy group is applied to each constituent individually. A
shared QoS policy group enforces the ceiling for the total throughput of all workloads.

Volume provisioning examples

Here’s an example with defaults defined:

130

version: 1
storageDriverName: ontap-nas
backendName: customBackendName
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2
labels:
k8scluster: devl
backend: devl-nasbackend
svm: trident svm
username: cluster-admin
password: <password>
limitAggregateUsage: 80%
limitVolumeSize: 50Gi
nfsMountOptions: nfsvers=4
debugTraceFlags:
api: false
method: true
defaults:
spaceReserve: volume
gosPolicy: premium
exportPolicy: myk8scluster
snapshotPolicy: default
snapshotReserve: '10'

For ontap-nas and ontap-nas—-flexgroups, Trident now uses a new calculation to ensure that the FlexVol
is sized correctly with the snapshotReserve percentage and PVC. When the user requests a PVC, Trident
creates the original FlexVol with more space by using the new calculation. This calculation ensures that the
user receives the writable space they requested for in the PVC, and not lesser space than what they
requested. Before v21.07, when the user requests a PVC (for example, 5GiB), with the snapshotReserve to 50
percent, they get only 2.5GiB of writeable space. This is because what the user requested for is the whole
volume and snapshotReserve is a percentage of that. With Trident 21.07, what the user requests for is the
writeable space and Trident defines the snapshotReserve number as the percentage of the whole volume.
This does not apply to ontap-nas-economy. See the following example to see how this works:

The calculation is as follows:

Total volume size = (PVC requested size) / (1 - (snapshotReserve
percentage) / 100)

For snapshotReserve = 50%, and PVC request = 5GiB, the total volume size is 2/.5 = 10GiB and the available
size is 5GiB, which is what the user requested in the PVC request. The volume show command should show
results similar to this example:

131

Vserver Volume Aggregate State 'pe Size Available Used%

_pvc_89f1lcl56 3801 4ded4 9f9d _034d54c395f74
online Rw 18GB

_pvc_eB372153_9ad9_474a_95la_@8ael5elc@ba
online RW

2 entries were displayed.

Existing backends from previous installs will provision volumes as explained above when upgrading Trident.
For volumes that you created before upgrading, you should resize their volumes for the change to be
observed. For example, a 2GiB PVC with snapshotReserve=50 earlier resulted in a volume that provides
1GiB of writable space. Resizing the volume to 3GiB, for example, provides the application with 3GiB of
writable space on a 6 GiB volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest
way to define a backend.

@ If you are using Amazon FSx on NetApp ONTAP with Trident, the recommendation is to specify
DNS names for LIFs instead of IP addresses.

ONTAP NAS economy example

version: 1

storageDriverName: ontap-nas—economy
managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm nfs

username: vsadmin

password: password

ONTAP NAS Flexgroup example

version: 1

storageDriverName: ontap-nas-flexgroup
managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm nfs

username: vsadmin

password: password

132

MetroCluster example

You can configure the backend to avoid having to manually update the backend definition after switchover
and switchback during SVM replication and recovery.

For seamless switchover and switchback, specify the SVM using managementLIF and omit the
dataLIF and svm parameters. For example:

version: 1
storageDriverName: ontap-nas
managementLIF: 192.168.1.66
username: vsadmin

password: password

SMB volumes example

version: 1

backendName: ExampleBackend
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
nasType: smb

securityStyle: ntfs
unixPermissions: ""
datalLIF: 10.0.0.2
svm: svm nfs
username: vsadmin
password: password

133

Certificate-based authentication example

This is a minimal backend configuration example. clientCertificate, clientPrivateKey, and
trustedCACertificate (optional, if using trusted CA) are populated in backend. json and take the
base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

version: 1

backendName: DefaultNASBackend
storageDriverName: ontap-nas

managementLIF: 10.0.0.1

datalLIF: 10.0.0.15

svm: nfs svm

clientCertificate: ZXROZXJwYXB...ICMgJd3BhcGVyc2
clientPrivateKey: vciwKIyAgZG...0cnksIGR1c2NyaX
trustedCACertificate: zcyBbaG...b3Igb3dulIGNsYXNz
storagePrefix: myPrefix

Auto export policy example

This example shows you how you can instruct Trident to use dynamic export policies to create and
manage the export policy automatically. This works the same for the ontap-nas-economy and ontap-
nas-flexgroup drivers.

version: 1
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2
svm: svm nfs
labels:
k8scluster: test-cluster-east-1la
backend: testl-nasbackend
autoExportPolicy: true
autoExportCIDRs:
- 10.0.0.0/24
username: admin
password: password
nfsMountOptions: nfsvers=4

134

IPv6 addresses example

This example shows managementLIF using an IPv6 address.

version: 1
storageDriverName: ontap-nas
backendName: nas ipv6 backend

managementLIF: "[5c5d:5edf:8f:7657:bef8:109b:1b41:d491]"

labels:
k8scluster: test-cluster-east-1la
backend: testl-ontap-ipv6

svm: nas_ipv6_ svm

username: vsadmin

password: password

Amazon FSx for ONTAP using SMB volumes example

The smbShare parameter is required for FSx for ONTAP using SMB volumes.

version: 1

backendName: SMBBackend

storageDriverName: ontap-nas

managementLIF: example.mgmt.fqgdn.aws.com
nasType: smb

datalLIF: 10.0.0.15

svm: nfs svm

smbShare: smb-share

clientCertificate: ZXROZXJIJwYXB...ICMgJd3BhcGVyc2
clientPrivateKey: vciwKIyAgZG...0cnksIGR1c2NyaX
trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz
storagePrefix: myPrefix

135

Backend configuration example with nameTemplate

version: 1
storageDriverName: ontap-nas
backendName: ontap-nas-backend
managementLIF: <ip address>
svm: svmO
username: <admin>
password: <password>
defaults: {
"nameTemplate":
"{{.volume.Name}} {{.labels.cluster}} {{.volume.Namespace}} {{.volume.R
equestName} } "
by
"labels": {"cluster": "ClusterA", "PVC":
"{{.volume.Namespace}} {{.volume.RequestName}}"}

Examples of backends with virtual pools

In the sample backend definition files shown below, specific defaults are set for all storage pools, such as
spaceReserve at none, spaceAllocation at false, and encryption at false. The virtual pools are defined
in the storage section.

Trident sets provisioning labels in the "Comments" field. Comments are set on FlexVol for ontap-nas or
FlexGroup for ontap-nas-flexgroup. Trident copies all labels present on a virtual pool to the storage
volume at provisioning. For convenience, storage administrators can define labels per virtual pool and group
volumes by label.

In these examples, some of the storage pools set their own spaceReserve, spaceAllocation, and
encryption values, and some pools override the default values.

136

ONTAP NAS example

version: 1
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
svm: svm nfs
username: admin
password: <password>
nfsMountOptions: nfsvers=4
defaults:
spaceReserve: none
encryption: 'false'
qgosPolicy: standard
labels:
store: nas_ store
k8scluster: prod-cluster-1
region: us_east 1
storage:
- labels:
app: msoffice
cost: '100"
zone: us_east la
defaults:
spaceReserve: volume
encryption: 'true'
unixPermissions: '0755'
adaptiveQosPolicy: adaptive-premium
- labels:
app: slack
cost: '75"
zone: us_east 1b
defaults:
spaceReserve: none
encryption: 'true'
unixPermissions: '0755'
- labels:
department: legal
creditpoints: '5000'
zone: us_east 1b
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0755"
- labels:

app: wordpress

137

138

cost: '50'
zone: us_east lc
defaults:
spaceReserve: none

encryption: 'true'
unixPermissions: '0775'
labels:
app: mysqgldb
cost: '25"
zone: us_east 1d
defaults:
spaceReserve: volume
encryption: 'false'
unixPermissions: '0775'

ONTAP NAS FlexGroup example

version: 1
storageDriverName: ontap-nas-flexgroup
managementLIF: 10.0.0.1
svm: svm nfs
username: vsadmin
password: <password>
defaults:
spaceReserve: none
encryption: 'false'
labels:
store: flexgroup store
k8scluster: prod-cluster-1
region: us east 1
storage:
- labels:
protection: gold
creditpoints: '50000"'
zone: us_east la
defaults:
spaceReserve: volume

encryption: 'true'
unixPermissions: '0755'
- labels:

protection: gold

creditpoints: '30000'
zone: us_east 1b
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0755'
- labels:

protection: silver

creditpoints: '20000"
zone: us_east lc
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0775"
- labels:

protection: bronze

creditpoints: '10000"'
zone: us_east 1d
defaults:

139

spaceReserve: volume
encryption: 'false'

unixPermissions: '0775"

140

ONTAP NAS economy example

version: 1
storageDriverName: ontap-nas-economy
managementLIF: 10.0.0.1
svm: svm nfs
username: vsadmin
password: <password>
defaults:
spaceReserve: none
encryption: 'false'
labels:
store: nas_economy store
region: us east 1
storage:
- labels:
department: finance
creditpoints: '6000"
zone: us_east la
defaults:

spaceReserve: volume

encryption: 'true'
unixPermissions: '0755"
- labels:

protection: bronze

creditpoints: '5000'
zone: us_east 1b
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0755"
- labels:

department: engineering

creditpoints: '3000'
zone: us_east lc
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0775"
- labels:

department: humanresource
creditpoints: '2000'
zone: us_ east 1d
defaults:
spaceReserve: volume

141

encryption: 'false'
unixPermissions: '0775'

Map backends to StorageClasses

The following StorageClass definitions refer to Examples of backends with virtual pools. Using the
parameters.selector field, each StorageClass calls out which virtual pools can be used to host a volume.
The volume will have the aspects defined in the chosen virtual pool.

* The protection-gold StorageClass will map to the first and second virtual pool in the ontap-nas-
flexgroup backend. These are the only pools offering gold level protection.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-gold
provisioner: csi.trident.netapp.io
parameters:
selector: "protection=gold"
fsType: "ext4d"

* The protection-not-gold StorageClass will map to the third and fourth virtual pool in the ontap-
nas-flexgroup backend. These are the only pools offering protection level other than gold.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-not-gold
provisioner: csi.trident.netapp.io
parameters:
selector: "protection!=gold"
fsType: "ext4d"

* The app-mysqgldb StorageClass will map to the fourth virtual pool in the ontap-nas backend. This is the
only pool offering storage pool configuration for mysqldb type app.

142

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: app-mysqgldb
provisioner: csi.trident.netapp.io
parameters:

selector: "app=mysgldb"

fsType: "ext4d"

* TThe protection-silver-creditpoints-20k StorageClass will map to the third virtual pool in the
ontap-nas-flexgroup backend. This is the only pool offering silver-level protection and 20000
creditpoints.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-silver-creditpoints-20k
provisioner: csi.trident.netapp.io
parameters:
selector: "protection=silver; creditpoints=20000"

fsType: "ext4d"

* The creditpoints-5k StorageClass will map to the third virtual pool in the ontap-nas backend and the
second virtual pool in the ontap-nas-economy backend. These are the only pool offerings with 5000
creditpoints.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: creditpoints-5k
provisioner: csi.trident.netapp.io
parameters:
selector: "creditpoints=5000"
fsType: "ext4d"

Trident will decide which virtual pool is selected and ensures the storage requirement is met.

Update dataLIF after initial configuration

You can change the data LIF after initial configuration by running the following command to provide the new
backend JSON file with updated data LIF.

143

tridentctl update backend <backend-name> -f <path-to-backend-json-file-
with-updated-dataLIF>

@ If PVCs are attached to one or multiple pods, you must bring down all corresponding pods and
then bring them back up in order to for the new data LIF to take effect.

Amazon FSx for NetApp ONTAP

Use Trident with Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP is a fully managed AWS service that enables customers
to launch and run file systems powered by the NetApp ONTAP storage operating system.
FSx for ONTAP enables you to leverage NetApp features, performance, and
administrative capabilities you are familiar with, while taking advantage of the simplicity,
agility, security, and scalability of storing data on AWS. FSx for ONTAP supports ONTAP
file system features and administration APIs.

You can integrate your Amazon FSx for NetApp ONTAP file system with Trident to ensure Kubernetes clusters
running in Amazon Elastic Kubernetes Service (EKS) can provision block and file persistent volumes backed
by ONTAP.

A file system is the primary resource in Amazon FSx, analogous to an ONTAP cluster on premises. Within
each SVM you can create one or multiple volumes, which are data containers that store the files and folders in
your file system. With Amazon FSx for NetApp ONTAP, Data ONTAP will be provided as a managed file
system in the cloud. The new file system type is called NetApp ONTAP.

Using Trident with Amazon FSx for NetApp ONTAP, you can ensure Kubernetes clusters running in Amazon
Elastic Kubernetes Service (EKS) can provision block and file persistent volumes backed by ONTAP.

Requirements

In addition to Trident requirements, to integrate FSx for ONTAP with Trident, you need:

* An existing Amazon EKS cluster or self-managed Kubernetes cluster with kubect1 installed.

» An existing Amazon FSx for NetApp ONTAP file system and storage virtual machine (SVM) that is
reachable from your cluster’s worker nodes.

» Worker nodes that are prepared for NFS or iSCSI.

@ Ensure you follow the node preparation steps required for Amazon Linux and Ubuntu
Amazon Machine Images (AMIs) depending on your EKS AMI type.

Considerations
* SMB volumes:
° SMB volumes are supported using the ontap-nas driver only.

> SMB volumes are not supported with Trident EKS add-on.

o Trident supports SMB volumes mounted to pods running on Windows nodes only. Refer to Prepare to

144

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

provision SMB volumes for details.

* Prior to Trident 24.02, volumes created on Amazon FSx file systems that have automatic backups enabled,
could not be deleted by Trident. To prevent this issue in Trident 24.02 or later, specify the

fsxFilesystemID, AWS apiRegion, AWS apikey, and AWS secretKey in the backend configuration
file for AWS FSx for ONTAP.

If you are specifying an IAM role to Trident, then you can omit specifying the apiRegion,
apiKey, and secretKey fields to Trident explicitly. For more information, refer to FSx for
ONTAP configuration options and examples.

Authentication

Trident offers two modes of authentication.

* Credential-based(Recommended): Stores credentials securely in AWS Secrets Manager. You can use the
fsxadmin user for your file system or the vsadmin user configured for your SVM.

Trident expects to be run as a vsadmin SVM user or as a user with a different name that
@ has the same role. Amazon FSx for NetApp ONTAP has an fsxadmin user that is a limited

replacement of the ONTAP admin cluster user. We strongly recommend using vsadmin
with Trident.

« Certificate-based: Trident will communicate with the SVM on your FSx file system using a certificate
installed on your SVM.

For details on enabling authentication, refer to the authentication for your driver type:
* ONTAP NAS authentication
* ONTAP SAN authentication

Tested Amazon Machine Images (AMis)

EKS cluster supports various operating systems, but AWS has optimized certain Amazon Machine Images
(AMls) for containers and EKS. The following AMIs have been tested with Trident 24.10.

AMI NAS NAS-economy SAN SAN-economy
AL2023 x86 64 ST Yes Yes Yes Yes
ANDARD

AL2 x86 64 Yes Yes Yes** Yes*™™
BOTTLEROCKET_x Yes* Yes N/A N/A
86_64

AL2023_ARM_64 S Yes Yes Yes Yes
TANDARD

AL2_ARM_64 Yes Yes Yes™™ Yes**
BOTTLEROCKET_A Yes* Yes N/A N/A
RM_64

* *Must use “nolock” in mount options.

145

https://docs.netapp.com/us-en/trident-2410/trident-use/trident-fsx-examples.html
https://docs.netapp.com/us-en/trident-2410/trident-use/trident-fsx-examples.html

« ** Unable to delete the PV without restarting the node

@ If your desired AMI is not listed here, it does not mean that it is not supported; it simply means it
has not been tested. This list serves as a guide for AMIs known to work.

Tests performed with:

» EKS version: 1.30

* Installation Method: Helm and as an AWS add-On
» For NAS both NFSv3 and NFSv4.1 were tested.

* For SAN only iSCSI was tested, not NVMe-oF.

Tests performed:

* Create: Storage Class, pvc, pod

* Delete: pod, pvc (regular, gtree/lun — economy, NAS with AWS backup)
Find more information

* Amazon FSx for NetApp ONTAP documentation

* Blog post on Amazon FSx for NetApp ONTAP

Create an IAM role and AWS Secret

You can configure Kubernetes pods to access AWS resources by authenticating as an
AWS IAM role instead of by providing explicit AWS credentials.

@ To authenticate using an AWS IAM role, you must have a Kubernetes cluster deployed using
EKS.

Create AWS Secret Manager secret

This example creates an AWS Secret Manager secret to store Trident CSI credentials:

aws secretsmanager create-secret --name trident-secret --description
"Trident CSI credentials™\
-—-secret-string

"{\"username\" :\"vsadmin\", \"password\":\"<svmpassword>\"}"

Create IAM Policy

The following examples creates an IAM policy using the AWS CLI:

146

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://www.netapp.com/blog/amazon-fsx-for-netapp-ontap/

aws lam create-policy —--policy-name AmazonFSxNCSIDriverPolicy --policy

-document file://policy.json

-—-description "This policy grants access to Trident CSI to FSxN and

Secret manager"

Policy JSON file:

policy.json:

{

"Statement": |
{
"Action": [
"fsx:DescribeFileSystems",
"fsx:DescribeVolumes",
"fsx:CreateVolume",
"fsx:RestoreVolumeFromSnapshot",
"fsx:DescribeStorageVirtualMachines",
"fsx:UntagResource",
"fsx:UpdateVolume",
"fsx:TagResource",
"fsx:DeleteVolume"
1,
"Effect": "Allow",
"Resource": "*x"
b
{
"Action": "secretsmanager:GetSecretValue",
"Effect": "Allow",
"Resource":

id>:secret:<aws-secret-manager-name>*"

}
1,

"Version": "2012-

10-17"

Create an IAM role for the service account

"arn:aws:secretsmanager:<aws-region>:<aws—-account-

147

AWS CLI

aws lam create-role --role-name trident-controller \
-—assume-role-policy-document file://trust-relationship.json

trust-relationship.json file:

"Version": "2012-10-17",
"Statement": [
{ "Effect": "Allow",
"Principal": {
"Federated":
provider/<oidc provider>"
by

"Action":

"arn:aws:iam: :<account id>:oidc-

"sts:AssumeRoleWithWebIdentity",
"Condition": {
"StringEquals": {
"<oidc provider>:aud":
"<oidc provider>:sub":

"system:serviceaccount:trident:trident-controller"

}

"sts.amazonaws.com",

Update the following values in the trust-relationship. json file:
» <account_id> - Your AWS account ID
» <oidc_provider> - The OIDC of your EKS cluster. You can obtain the oidc_provider by running:
aws eks describe-cluster --name my-cluster --query

"cluster.identity.oidc.issuer"\

--output text | sed -e "s/“https:\/\///"

Attach the IAM role with the IAM policy:

Once the role has been created, attach the policy (that was created in the step above) to the role using
this command:

aws iam attach-role-policy --role-name my-role --policy-arn <IAM policy
ARN>

148

Verify OICD provider is associated:

Verify that your OIDC provider is associated with your cluster. You can verify it using this command:
aws iam list-open-id-connect-providers | grep $oidc id | cut -d "/" -f4
Use the following command to associate IAM OIDC to your cluster:

eksctl utils associate-iam-oidc-provider --cluster Scluster name
-—approve

eksctl
The following example creates an IAM role for service account in EKS:

eksctl create iamserviceaccount --name trident-controller --namespace
trident \

-—cluster <my-cluster> --role-name <AmazonEKS FSxN CSI DriverRole>
--role-only \

-—attach-policy-arn <IAM-Policy ARN> --approve

Install Trident

Trident streamlines Amazon FSx for NetApp ONTAP storage management in Kubernetes
to enable your developers and administrators focus on application deployment.

You can install Trident using one of the following methods:

e Helm
« EKS add-on

If you want to make use of the snapshot functionality, install the CSI snapshot controller add-on. Refer to
Enable snapshot functionality for CSI volumes for more information.

Install Trident via helm

1. Download the Trident installer package

The Trident installer package contains everything you need to deploy the Trident operator and install
Trident. Download and extract the latest version of the Trident installer from the Assets section on GitHub.
wget https://github.com/NetApp/trident/releases/download/v24.10.0/trident-
installer-24.10.0.tar.gz

tar -xf trident-installer-24.10.0.tar.gz

cd trident-installer/helm

2. Set the values for cloud provider and cloud identity flags using the following environment variables:

149

https://docs.aws.amazon.com/eks/latest/userguide/csi-snapshot-controller.html
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz

The following example installs Trident and sets the cloud-provider flag to $CP, and cloud-identity
to sCI:

helm install trident trident-operator-100.2410.0.tgz --set
cloudProvider="AWS" \

--set cloudIdentity=""'eks.amazonaws.com/role-arn:

arn:aws:iam::<accountID>:role/<AmazonEKS FSxN CSI DriverRole>'" \

-—namespace trident --create-namespace

You can use the helm 1ist command to review installation details such as name, namespace, chart,
status, app version, and revision number.

helm list -n trident

NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION
trident-operator trident 1 2024-10-14 14:31:22.463122
+0300 IDT deployed trident-operator-100.2410.0 24.10.0

Install Trident via the EKS add-on

The Trident EKS add-on includes the latest security patches, bug fixes, and is validated by AWS to work with
Amazon EKS. The EKS add-on enables you to consistently ensure that your Amazon EKS clusters are secure
and stable and reduce the amount of work that you need to do in order to install, configure, and update add-
ons.

Prerequisites

Ensure that you have the following before configuring the Trident add-on for AWS EKS:

* An Amazon EKS cluster account with add-on subscription

* AWS permissions to the AWS marketplace:
"aws-marketplace:ViewSubscriptions",
"aws-marketplace:Subscribe",
"aws-marketplace:Unsubscribe

* AMI type: Amazon Linux 2 (AL2_x86_64) or Amazon Linux 2 Arm(AL2_ARM_64)
* Node type: AMD or ARM
» An existing Amazon FSx for NetApp ONTAP file system

Enable the Trident add-on for AWS

150

eksctl
The following example commands install the Trident EKS add-on:

eksctl create addon --name netapp trident-operator --cluster
<cluster name> \
--service-account-role-arn

arn:aws:iam::<account id>:role/<role name> --force

Management console
1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. On the left navigation pane, click Clusters.
3. Click the name of the cluster that you want to configure the NetApp Trident CSI add-on for.
4. Click Add-ons and then click Get more add-ons.
5. On the Select add-ons page, do the following:
a. In the AWS Marketplace EKS-addons section, select the Trident by NetApp check box.
b. Click Next.
6. On the Configure selected add-ons settings page, do the following:
a. Select the Version you would like to use.
b. For Select IAM role, leave at Not set.

c. Expand the Optional configuration settings, follow the Add-on configuration schema and set
the configurationValues parameter on the Configuration values section to the role-arn you
created on the previous step (value should be in the following format:
eks.amazonaws.com/role-arn:
arn:aws:iam::464262061435:role/AmazonEKS FSXN CSI DriverRole). If you select
Override for the Conflict resolution method, one or more of the settings for the existing add-on can
be overwritten with the Amazon EKS add-on settings. If you don’t enable this option and there’s a
conflict with your existing settings, the operation fails. You can use the resulting error message to
troubleshoot the conflict. Before selecting this option, make sure that the Amazon EKS add-on
doesn’t manage settings that you need to self-manage.

7. Choose Next.

8. On the Review and add page, choose Create.

After the add-on installation is complete, you see your installed add-on.

AWS CLI
1. Create the add-on. json file:

151

https://console.aws.amazon.com/eks/home#/clusters

add-on.json

{

"clusterName": "<eks-cluster>",

"addonName": "netapp trident-operator",

"addonVersion": "v24.10.0-eksbuild.1l",

"serviceAccountRoleArn": "<arn:aws:iam::123456:role/astratrident-
role>",

"configurationValues": "{"cloudIdentity":
"'eks.amazonaws.com/role-arn:
<arn:aws:iam::123456:role/astratrident-role>"'",

"cloudProvider": "AWS"}"

2. Install the Trident EKS add-on"

aws eks create-addon --cli-input-json file://add-on.Jjson

Update the Trident EKS add-on

152

file://add-on.json

eksctl

* Check the current version of your FSxN Trident CSI| add-on. Replace my-cluster with your cluster
name.
eksctl get addon --name netapp trident-operator --cluster my-cluster

Example output:

NAME VERSION STATUS ISSUES
IAMROLE UPDATE AVAILABLE CONFIGURATION VALUES

netapp trident-operator v24.10.0-eksbuild.1l ACTIVE 0
{"cloudIdentity":"'eks.amazonaws.com/role—-arn:

arn:aws:iam::139763910815:role/AmazonEKS FSXN CSI DriverRole'"}

» Update the add-on to the version returned under UPDATE AVAILABLE in the output of the previous
step.
eksctl update addon --name netapp trident-operator --version v24.10.0-
eksbuild.l --cluster my-cluster --force

If you remove the —-force option and any of the Amazon EKS add-on settings conflict with your
existing settings, then updating the Amazon EKS add-on fails; you receive an error message to help
you resolve the conflict. Before specifying this option, make sure that the Amazon EKS add-on does
not manage settings that you need to manage, because those settings are overwritten with this
option.

For more information about other options for this setting, see Addons.

For more information about Amazon EKS Kubernetes field management, see Kubernetes field
management.

Management console

1. Open the Amazon EKS console https://console.aws.amazon.com/eks/home#/clusters.
On the left navigation pane, click Clusters.

Click the name of the cluster that you want to update the NetApp Trident CSI add-on for.
Click the Add-ons tab.

Click Trident by NetApp and then click Edit.

© o k~ w0 N

On the Configure Trident by NetApp page, do the following:
a. Select the Version you would like to use.
b. Expand the Optional configuration settings and modify as needed.

c. Click Save changes.

AWS CLI
The following example updates the EKS add-on:

153

https://eksctl.io/usage/addons/
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-field-management.html
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-field-management.html
https://console.aws.amazon.com/eks/home#/clusters

aws eks update-addon --cluster-name my-cluster netapp trident-operator
vpc-cni --addon-version v24.6.l-eksbuild.1l \

--service-account-role-arn arn:aws:iam::111122223333:role/role-name
--configuration-values '{}' --resolve-conflicts --preserve

Uninstall/remove the Trident EKS add-on

You have two options for removing an Amazon EKS add-on:

* Preserve add-on software on your cluster — This option removes Amazon EKS management of any
settings. It also removes the ability for Amazon EKS to notify you of updates and automatically update the
Amazon EKS add-on after you initiate an update. However, it preserves the add-on software on your
cluster. This option makes the add-on a self-managed installation, rather than an Amazon EKS add-on.

With this option, there’s no downtime for the add-on. Retain the —-preserve option in the command to
preserve the add-on.

* Remove add-on software entirely from your cluster — We recommend that you remove the Amazon
EKS add-on from your cluster only if there are no resources on your cluster that are dependent on it.
Remove the —--preserve option from the delete command to remove the add-on.

@ If the add-on has an IAM account associated with it, the IAM account is not removed.

eksctl
The following command uninstalls the Trident EKS add-on:

eksctl delete addon --cluster K8s-arm —--name netapp trident-operator

Management console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.
In the left navigation pane, click Clusters.
Click the name of the cluster that you want to remove the NetApp Trident CSI add-on for.
Click the Add-ons tab and then click Trident by NetApp.*

Click Remove.

o gk~ WD

In the Remove netapp_trident-operator confirmation dialog, do the following:

a. If you want Amazon EKS to stop managing settings for the add-on, select Preserve on cluster.
Do this if you want to retain the add-on software on your cluster so that you can manage all of the
settings of the add-on on your own.

b. Enter netapp_trident-operator.

c. Click Remove.

AWS CLI

Replace my-cluster with the name of your cluster, and then run the following command.

aws eks delete-addon --cluster-name my-cluster --addon-name netapp trident-
operator --preserve

154

https://console.aws.amazon.com/eks/home#/clusters

Configure the Storage Backend

ONTAP SAN and NAS driver integration

To create a storage backend, you need to create a configuration file in either JSON or YAML format. The file
needs to specify the type of storage you want (NAS or SAN), the file system, and SVM to get it from and how
to authenticate with it. The following example shows how to define NAS-based storage and using an AWS
secret to store the credentials to the SVM you want to use:

155

YAML

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: backend-tbc-ontap-nas
namespace: trident
spec:
version: 1
storageDriverName: ontap-nas
backendName: tbc-ontap-nas
svm: svm-name
aws:
fsxFilesystemID: fS—-XXXXXXXXXX
credentials:
name: "arn:aws:secretsmanager:us-west-2:XXXXXXXX:secret:secret-
name"

type: awsarn

JSON
{
"apiVersion": "trident.netapp.io/v1l",
"kind": "TridentBackendConfig",
"metadata": {
"name": "backend-tbc-ontap-nas"
"namespace": "trident"
by
"spec": {
"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "tbc-ontap-nas",
"svm": "svm-name",
"aws": {
"fsxFilesystemID": "fs—-XXXXXXXXXX"
b
"managementLIF": null,
"credentials": {
"name": "arn:aws:secretsmanager:us-west-2:XXXXXXXX:secret:secret-
name",
"type": "awsarn"

156

Run the following commands to create and validate the Trident Backend Configuration (TBC):

* Create trident backend configuration (TBC) from yaml file and run the following command:

kubectl create -f backendconfig.yaml -n trident

tridentbackendconfig.trident.netapp.io/backend-tbc-ontap-nas created

+ Validate the trident backend configuration (TBC) was created successfully:

Kubectl get tbc -n trident

NAME BACKEND NAME BACKEND UUID
PHASE STATUS

backend-tbc-ontap-nas tbc-ontap-nas 933e0071-66ce-4324-
b9ff-£f96d916acbe9 Bound Success

FSx for ONTAP driver details

You can integrate Trident with Amazon FSx for NetApp ONTAP using the following drivers:

* ontap-san: Each PV provisioned is a LUN within its own Amazon FSx for NetApp ONTAP volume.
Recommended for block storage.

* ontap-nas: Each PV provisioned is a full Amazon FSx for NetApp ONTAP volume. Recommended for
NFS and SMB.

* ontap-san-economy: Each PV provisioned is a LUN with a configurable number of LUNs per Amazon
FSx for NetApp ONTAP volume.

* ontap-nas-economy: Each PV provisioned is a qgtree, with a configurable number of gtrees per Amazon
FSx for NetApp ONTAP volume.

* ontap-nas-flexgroup: Each PV provisioned is a full Amazon FSx for NetApp ONTAP FlexGroup
volume.

For driver details, refer to NAS drivers and SAN drivers.

Once the configuration file has been created, run this command to create it within your EKS:

kubectl create -f configuration file

To verify the status, run this command:

157

kubectl get tbc -n trident

NAME
PHASE STATUS

backend-fsx-ontap-nas

£2£f4c87£a629

BACKEND NAME

backend-fsx-ontap-nas

Success

Backend advanced configuration and examples

See the following table for the backend configuration options:

Parameter
version

storageDriverName

backendName

managementLIF

158

Description

Name of the storage driver

Custom name or the storage
backend

IP address of a cluster or SVM
management LIF

A fully-qualified domain name
(FQDN) can be specified.

Can be set to use IPv6 addresses if
Trident was installed using the IPv6
flag. IPv6 addresses must be
defined in square brackets, such as
[28€8:d9fb:a825:b7bf:69a8:d02f:9e
7b:3555].

If you provide the
fsxFilesystemID under the aws
field, you need not to provide the
managementLIF because Trident
retrieves the SVM
managementLIF information from
AWS. So, you must provide
credentials for a user under the
SVM (For example: vsadmin) and
the user must have the vsadmin
role.

BACKEND UUID

7a551921-997c-4c37-aldl-

Example

Always 1

ontap-nas, ontap-nas-
economy, ontap—-nas-
flexgroup, ontap-san, ontap-
san-economy

Driver name + “_” + dataLIF

“10.0.0.17, “[2001:1234:abcd::fefe]”

Parameter

dataLlIF

autoExportPolicy

autoExportCIDRs

labels

clientCertificate

Description

IP address of protocol LIF.

ONTAP NAS drivers: We
recommend specifying dataLIF. If
not provided, Trident fetches data
LIFs from the SVM. You can specify
a fully-qualified domain name
(FQDN) to be used for the NFS
mount operations, allowing you to
create a round-robin DNS to load-
balance across multiple data LIFs.
Can be changed after initial setting.
Refer to Update dataLIF after
initial configuration.

ONTAP SAN drivers: Do not
specify for iSCSI. Trident uses
ONTAP Selective LUN Map to
discover the iSCI LIFs needed to
establish a multi path session. A
warning is generated if dataLIF is
explicitly defined.

Can be set to use IPv6 addresses if
Trident was installed using the IPv6
flag. IPv6 addresses must be
defined in square brackets, such as
[28€8:d9fb:a825:b7bf:69a8:d02f:9e
7b:3555].

Enable automatic export policy
creation and updating [Boolean].

Using the autoExportPolicy
and autoExportCIDRs options,
Trident can manage export policies
automatically.

List of CIDRs to filter Kubernetes'
node IPs against when
autoExportPolicy is enabled.

Using the autoExportPolicy
and autoExportCIDRs options,
Trident can manage export policies
automatically.

Set of arbitrary JSON-formatted
labels to apply on volumes

Base64-encoded value of client
certificate. Used for certificate-
based auth

Example

false

"[“0.0.0.0/07, “:/0"]"

159

Parameter Description Example

clientPrivateKey Base64-encoded value of client
private key. Used for certificate-
based auth
trustedCACertificate Base64-encoded value of trusted

CA certificate. Optional. Used for
certificate-based authentication.

username Username to connect to the cluster
or SVM. Used for credential-based
authentication. For example,
vsadmin.

password Password to connect to the cluster
or SVM. Used for credential-based
authentication.

svm Storage virtual machine to use Derived if an SVM managementLIF
is specified.

storagePrefix Prefix used when provisioning new trident
volumes in the SVM.

Cannot be modified after creation.
To update this parameter, you will
need to create a new backend.

limitAggregateUsage Do not specify for Amazon FSx Do not use.
for NetApp ONTAP.

The provided fsxadmin and
vsadmin do not contain the
permissions required to retrieve
aggregate usage and limit it using
Trident.

limitVolumeSize Fail provisioning if requested
volume size is above this value.

(not enforced by default)

Also restricts the maximum size of
the volumes it manages for gtrees
and LUNs, and the
gtreesPerFlexvol option allows
customizing the maximum number
of gtrees per FlexVol.

lunsPerFlexvol Maximum LUNs per Flexvol, must “100”
be in range [50, 200].

SAN only.

160

Parameter

debugTraceFlags

nfsMountOptions

nasType

gtreesPerFlexvol

smbShare

Description Example

Debug flags to use when null
troubleshooting. Example,
{“api”:false, “method”:true}

Do not use debugTraceFlags
unless you are troubleshooting and
require a detailed log dump.

Comma-separated list of NFS
mount options.

The mount options for Kubernetes-
persistent volumes are normally
specified in storage classes, but if
no mount options are specified in a
storage class, Trident will fall back
to using the mount options
specified in the storage backend’s
configuration file.

If no mount options are specified in
the storage class or the
configuration file, Trident will not set
any mount options on an
associated persistent volume.

Configure NFS or SMB volumes nfs
creation.

Options are nfs, smb, or null.

Must set to smb for SMB
volumes. Setting to null defaults to
NFS volumes.

Maximum Qtrees per FlexVol, must "200"
be in range [50, 300]

You can specify one of the smb-share

following: the name of an SMB
share created using the Microsoft
Management Console or ONTAP
CLI or a name to allow Trident to
create the SMB share.

This parameter is required for
Amazon FSx for ONTAP backends.

161

Parameter Description Example

useREST Boolean parameter to use ONTAP false
REST APIs. Tech preview

useREST is provided as a tech
preview that is recommended for
test environments and not for
production workloads. When set to
true, Trident will use ONTAP
REST APIs to communicate with
the backend.

This feature requires ONTAP 9.11.1
and later. In addition, the ONTAP
login role used must have access to
the ontap application. This is
satisfied by the pre-defined
vsadmin and cluster-admin
roles.

aws You can specify the following in the
configuration file for AWS FSx for
ONTAP:
- fsxFilesystemID: Specify the
ID of the AWS FSx file system. nn
- apiRegion: AWS API region Ul
name. o
- apikey: AWS API key.
- secretKey: AWS secret key.

credentials Specify the FSx SVM credentials to
store in AWS Secret Manager.
- name: Amazon Resource Name
(ARN) of the secret, which contains
the credentials of SVM.
- type: Setto awsarn.
Refer to Create an AWS Secrets
Manager secret for more
information.

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an
example, see the configuration examples below.

Parameter Description Default
spaceAllocation Space-allocation for LUNs true
spaceReserve Space reservation mode; “none” none

(thin) or “volume” (thick)

snapshotPolicy Snapshot policy to use none

162

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Parameter Description Default

@

gosPolicy QoS policy group to assign for
volumes created. Choose one of
gosPolicy or adaptiveQosPolicy per
storage pool or backend.

Using QoS policy groups with
Trident requires ONTAP 9.8 or later.

You should use a non-shared QoS
policy group and ensuring the
policy group is applied to each
constituent individually. A shared
QoS policy group enforces the
ceiling for the total throughput of all
workloads.

adaptiveQosPolicy Adaptive QoS policy group to
assign for volumes created.
Choose one of qosPolicy or
adaptiveQosPolicy per storage pool
or backend.

Not supported by ontap-nas-
economy.

snapshotReserve Percentage of volume reserved for If snapshotPolicy is none, else
snapshots “0”

splitOnClone Split a clone from its parent upon false
creation
encryption Enable NetApp Volume Encryption false

(NVE) on the new volume; defaults
to false. NVE must be licensed
and enabled on the cluster to use
this option.

If NAE is enabled on the backend,
any volume provisioned in Trident
will be NAE enabled.

For more information, refer to: How
Trident works with NVE and NAE.

luksEncryption Enable LUKS encryption. Referto ™
Use Linux Unified Key Setup
(LUKS).
SAN only.
tieringPolicy Tiering policy to use none snapshot-only for pre-ONTAP

9.5 SVM-DR configuration

163

Parameter Description Default

unixPermissions Mode for new volumes.

Leave empty for SMB volumes.

securityStyle Security style for new volumes. NFS default is unix.

NFS supports mixed and unix SMB default is ntfs.
security styles.

SMB supports mixed and ntfs
security styles.

Prepare to provision SMB volumes

You can provision SMB volumes using the ontap-nas driver. Before you complete ONTAP SAN and NAS
driver integration complete the following steps.

Before you begin
Before you can provision SMB volumes using the ontap-nas driver, you must have the following.

* A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows
Server 2019. Trident supports SMB volumes mounted to pods running on Windows nodes only.

* At least one Trident secret containing your Active Directory credentials. To generate secret smbcreds:

kubectl create secret generic smbcreds --from-literal username=user

-—-from-literal password='password'

* A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or
GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

Steps

1. Create SMB shares. You can create the SMB admin shares in one of two ways either using the Microsoft
Management Console Shared Folders snap-in or using the ONTAP CLI. To create the SMB shares using
the ONTAP CLI:

a. If necessary, create the directory path structure for the share.

The vserver cifs share create command checks the path specified in the -path option during
share creation. If the specified path does not exist, the command fails.

b. Create an SMB share associated with the specified SVM:

vserver cifs share create -vserver vserver name -share-name
share name -path path [-share-properties share properties,...]
[other attributes] [-comment text]

c. Verify that the share was created:

164

https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console

vserver cifs share show -share-name share name

@ Refer to Create an SMB share for full details.

2. When creating the backend, you must configure the following to specify SMB volumes. For all FSx for
ONTAP backend configuration options, refer to FSx for ONTAP configuration options and examples.

Parameter Description Example

smbShare You can specify one of the smb-share
following: the name of an SMB
share created using the Microsoft
Management Console or ONTAP
CLI or a name to allow Trident to
create the SMB share.

This parameter is required for
Amazon FSx for ONTAP

backends.
nasType Must set to smb. If null, defaults smb
to nfs.
securityStyle Security style for new volumes. ntfs ormixed for SMB volumes

Must be set to ntfs or mixed
for SMB volumes.

unixPermissions Mode for new volumes. Must be
left empty for SMB volumes.

Configure a storage class and PVC

Configure a Kubernetes StorageClass object and create the storage class to instruct
Trident how to provision volumes. Create a PersistentVolume (PV) and a
PersistentVolumeClaim (PVC) that uses the configured Kubernetes StorageClass to
request access to the PV. You can then mount the PV to a pod.

Create a storage class

Configure a Kubernetes StorageClass object

The Kubernetes StorageClass object identifies Trident as the provisioner that is used for that class instructs
Trident how to provision a volume. For example:

165

https://docs.netapp.com/us-en/ontap/smb-config/create-share-task.html
https://docs.netapp.com/us-en/trident-2410/trident-use/trident-fsx-examples.html
https://kubernetes.io/docs/concepts/storage/storage-classes/

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: ontap-gold
provisioner: csi.trident.netapp.io
parameters:
backendType: "ontap-nas"
media: "ssd"
provisioningType: "thin"
snapshots: "true"

Refer to Kubernetes and Trident objects for details on how storage classes interact with the
PersistentVolumeClaim and parameters for controlling how Trident provisions volumes.

Create a storage class

Steps
1. This is a Kubernetes object, so use kubectl to create it in Kubernetes.

kubectl create -f storage-class-ontapnas.yaml

2. You should now see a basic-csi storage class in both Kubernetes and Trident, and Trident should have
discovered the pools on the backend.

kubectl get sc basic-csi
NAME PROVISIONER AGE
basic-csi csi.trident.netapp.io 15h

Create the PV and PVC

A PersistentVolume (PV) is a physical storage resource provisioned by the cluster administrator on a
Kubernetes cluster. The PersistentVolumeClaim (PVC) is a request for access to the PersistentVolume on the
cluster.

The PVC can be configured to request storage of a certain size or access mode. Using the associated
StorageClass, the cluster administrator can control more than PersistentVolume size and access mode—such
as performance or service level.

After you create the PV and PVC, you can mount the volume in a pod.

Sample manifests

166

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes

PersistentVolume sample manifest

This sample manifest shows a basic PV of 10Gi that is associated with StorageClass basic-csi.

apiVersion: vl
kind: PersistentVolume
metadata:
name: pv-storage
labels:
type: local
spec:
storageClassName: basic-csi
capacity:
storage: 10Gi
accessModes:
- ReadWriteMany
hostPath:
path: "/my/host/path"

167

PersistentVolumeClaim sample manifests

These examples show basic PVC configuration options.

PVC with RWX access

This example shows a basic PVC with RWX access that is associated with a StorageClass named
basic-csi.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-storage
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 1Gi
storageClassName: basic-csi

PVC with NVMe/TCP

This example shows a basic PVC for NVMe/TCP with RWO access that is associated with a
StorageClass named protection-gold.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-san-nvme
spec:
accessModes:

- ReadWriteMany
resources:

requests:

storage: 300Mi

storageClassName: protection-gold

Create the PV and PVC
Steps
1. Create the PV.

kubectl create -f pv.yaml

168

2. Verify the PV status.

kubectl get pv

NAME CAPACITY
STORAGECLASS REASON
pv-storage 4Gi

Ts

3. Create the PVC.

ACCESS MODES
AGE
RWO

kubectl create -f pvc.yaml

4. Verify the PVC status.

kubectl get pvc
NAME

STATUS VOLUME

pvc-storage Bound pv-name 2Gi

RECLAIM POLICY

Retain

RWO

STATUS

Available

Refer to Kubernetes and Trident objects for details on how storage classes interact with the

PersistentVolumeClaim and parameters for controlling how Trident provisions volumes.

Trident attributes

CLAIM

CAPACITY ACCESS MODES STORAGECLASS AGE

5m

These parameters determine which Trident-managed storage pools should be utilized to provision volumes of

a given type.
Attribute Type
media’ string

provisioningType string

Values

hdd, hybrid, ssd

thin, thick

Offer

Pool contains
media of this
type; hybrid
means both

Pool supports
this provisioning
method

Request

Media type
specified

Provisioning
method specified

Supported by

ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
solidfire-san

thick: all ontap;
thin: all ontap &
solidfire-san

169

Attribute
backendType

snapshots

clones

encryption

IOPS

Type

string

bool

bool

bool

int

Values

ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
solidfire-san,
gcp-cvs, azure-
netapp-files,
ontap-san-
economy

true, false

true, false

true, false

positive integer

' Not supported by ONTAP Select systems

Deploy sample application

Deploy sample application.

Steps

1. Mount the volume in a pod.

kubectl create -f pv-pod.yaml

These examples show basic configurations to attach the PVC to a pod:
Basic configuration:

170

Offer

Pool belongs to
this type of
backend

Pool supports
volumes with
shapshots

Pool supports
cloning volumes

Pool supports
encrypted
volumes

Pool is capable
of guaranteeing
IOPS in this
range

Request

Backend
specified

Volume with
snapshots
enabled

Volume with
clones enabled

Volume with
encryption
enabled

Volume
guaranteed
these IOPS

Supported by

All drivers

ontap-nas,
ontap-san,
solidfire-san,
gcp-cvs

ontap-nas,
ontap-san,
solidfire-san,
gcp-cvs

ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroups,
ontap-san

solidfire-san

kind: Pod
apiVersion: vl
metadata:
name: pv-pod
spec:
volumes:
- name: pv-storage
persistentVolumeClaim:
claimName: basic
containers:
- name: pv-container
image: nginx
ports:
- containerPort: 80
name: "http-server"
volumeMounts:
- mountPath: "/my/mount/path"

name: pv-storage

(D You can monitor the progress using kubectl get pod --watch.

2. Verify that the volume is mounted on /my/mount /path.

kubectl exec -it pv-pod -- df -h /my/mount/path

Filesystem Size
Used Avail Use% Mounted on
192.168.188.78:/trident pvc aed45ed05 3ace 4e7c 9080 d2a83ae03d06 1.1G
320K 1.0G 1% /my/mount/path

You can now delete the Pod. The Pod application will no longer exist, but the volume will remain.

kubectl delete pod pv-pod

Configure the Trident EKS add-on on an EKS cluster

NetApp Trident streamlines Amazon FSx for NetApp ONTAP storage management in
Kubernetes to enable your developers and administrators focus on application
deployment. The NetApp Trident EKS add-on includes the latest security patches, bug
fixes, and is validated by AWS to work with Amazon EKS. The EKS add-on enables you
to consistently ensure that your Amazon EKS clusters are secure and stable and reduce

171

the amount of work that you need to do in order to install, configure, and update add-ons.

Prerequisites

Ensure that you have the following before configuring the Trident add-on for AWS EKS:

* An Amazon EKS cluster account with permissions to work with add-ons. Refer to Amazon EKS add-ons.

* AWS permissions to the AWS marketplace:
"aws-marketplace:ViewSubscriptions",
"aws-marketplace:Subscribe",
"aws-marketplace:Unsubscribe

* AMI type: Amazon Linux 2 (AL2_x86_64) or Amazon Linux 2 Arm(AL2_ARM_64)
* Node type: AMD or ARM
» An existing Amazon FSx for NetApp ONTAP file system

Steps

1. Make sure to create IAM role and AWS secret to enable EKS pods to access AWS resources. For
instructions, see Create an IAM role and AWS Secret.

2. On your EKS Kubernetes cluster, navigate to the Add-ons tab.

tri-env-eks @ (Delete cluster) (Upgrade version) \I;%'

(@ End of standard support for Kubernetes version 1.30 is July 28, 2025. On that date, your cluster will enter the extended support period with additional fees. For more Upgrade now

information, see the pricing page [,

¥ Cluster info info

Status Kubernetes version Info Support period Provider
® Active 1.30 ® §t§nd_ard_ support L!n;.il Jp_ly 28, 2025 EKS
Cluster health issues Upgrade insights

Overview Resources Compute Networking Add-ons [§) Access Observability Update history Tags

[(i) New versions are available for 1 add-on.

Add-ons (3) i View details Edit Remove

[Q Find add-on] [Any categ... ¥] [Any status ¥] 3 matches ¢ 1

3. Go to AWS Marketplace add-ons and choose the storage category.

172

https://docs.aws.amazon.com/eks/latest/userguide/eks-add-ons.html

AWS Marketplace add-ons (1) @

Discover, subscribe to and configure EKS add-ons to enhance your EKS clusters.

[Q Find add-on]

Filtering options

(J\ny category ¥] [NetApp, Inc. ¥] [Any pricing model ¥) (Clear filters)

NetApp, Inc, X < 1 >
n NetApp NetApp Triden_t _ O
NetApp Trident streamlines Amazon FSx for NetApp ONTAP storage management in Kubernetes to let your developers and
administrators focus on application deployment. FSx for ONTAP flexibility, scalability, and integration capabilities make it the

ideal choice for organizati king efficient containerized ge workflows. Product details [?
—_—
Category Listed by Supported versions Pricing starting at
storage NetApp, Inc. [2 1.31, 1.30, 1.29, 1.28, View pricing details [
1.27,1.26, 1.25, 1.24,
1.23

4. Locate NetApp Trident and select the checkbox for the Trident add-on, and click Next.

5. Choose the desired version of the add-on.

NetApp Trident Remove add-on
Listed by Category Status
1 NetApp: storage %) Ready to install
You're subscribed to this software View subscription X
You can view the terms and pricing details for this product or choose
another offer if one is available.
Version
Selact the version for this add-on,
| v24.10.0-eksbuild.1 v |
Select 1AM role
Select an (AM role to use with this add-on. To owate a new custom role, follow the instructions in the Amazon EKS User Guide [,
Not set M | [C |

¢ Optional configuration settings

Cancel Previaus -

173

6. Select the IAM role option to inherit from the node.

Review and add

Step 1: Select add-ons

Selected add-ons (1)

| Q, Find add-on | 1
Add-on name a Type v Status
netapp_trident-operator storage) Ready to install

Step 2: Configure selected add-ons settings

Selected add-ons version (1)

Add-on name & Version v IAM role for service account (IRSA)

netapp_trident-operator v24.10.0-eksbuild.1 Not set

EKS Pod Identity (0)

Add-on name a IAM role [3 v Service account v

No Pod Identity associations

None of the selected add-on(s) have Pod Identity associations.

7. Configure any Optional configuration settings as required and select Next.

Follow the Add-on configuration schema and set the Configuration Values parameter on the
Configuration values section to the role-arn you created on the previous step(Step 1) (value should be in
the following format: eks.amazonaws.com/role-arn:
arn:aws:iam::464262061435:role/AmazonEKS FSXN CSI DriverRole).

NOTE: If you select Override for the Conflict resolution method, one or more of the settings for the existing
add-on can be overwritten with the Amazon EKS add-on settings. If you don’t enable this option and there’s
a conflict with your existing settings, the operation fails. You can use the resulting error message to
troubleshoot the conflict. Before selecting this option, make sure that the Amazon EKS add-on doesn’t
manage settings that you need to self-manage.

174

¥ Optional configuration settings

Add-on configuration schema
Refer to the JSON schema below. The configuration values entered in the code editor will be validated against this schema.

(VL TRV IV U St ¥

"examples”: [
{
"cloudIdentity": ""
1
15

"properties": {
"cloudIdentity": {
"defoult": "",
"examples": [

1,
"title": "The cloudIdentity Schema",
"type": "string”

}

Configuration values Info
Specify any additional JSON or YAML configurations that should be applied to the add-on.

1v {
2 "cloudIdentity”: "'eks.omazonaws.com/role-arn: arn:aws:iam

: 1186785786363 : role/tri-env-eks—trident-controller-rolel' "
i}

8. Select Create.
9. Verify that the status of the add-on is Active.

Add-ons (1) View details Edit Remove

[Q netapp X] [Anycateg... v J [Anystatus v J 1 match o |

nNetapp NetApp Trident

NetApp Trident streamlines Amazon FSx for NetApp ONTAP storage management in Kubernetes to let your developers and administrators focus on application deployment. FSx for

ONTAP flexibility, scalability, and integration capabilities make it the ideal chaice for organizations seeking efficient inerized starage Product details [
Category Status Version EKS Pod Identity 1AM role for service account
storage @ Active v24.10.0-eksbuild.1 - (IRSA)
Not set
Listed by

NetApp, Inc. [3

View subscription

10. Run the following command to verify that Trident is properly installed on the cluster:

kubectl get pods -n trident

11. Continue the setup and configure the storage backend. For information, see Configure the Storage
Backend.

Install/uninstall the Trident EKS add-on using CLI

Install the NetApp Trident EKS add-on using CLI:
The following example command installs the Trident EKS add-on:

175

eksctl create addon --name aws-ebs-csi-driver --cluster <cluster name>
--service-account-role-arn arn:aws:iam::<account id>:role/<role name>

-—force

Uninstall the NetApp Trident EKS add-on using CLI:
The following command uninstalls the Trident EKS add-on:

eksctl delete addon --cluster K8s-arm --name netapp trident-operator

Create backends with kubectl

A backend defines the relationship between Trident and a storage system. It tells Trident
how to communicate with that storage system and how Trident should provision volumes
from it. After Trident is installed, the next step is to create a backend. The
TridentBackendConfig Custom Resource Definition (CRD) enables you to create and
manage Trident backends directly through the Kubernetes interface. You can do this by
using kubect1 or the equivalent CLI tool for your Kubernetes distribution.

TridentBackendConfig

TridentBackendConfig (tbc, tbconfig, tbackendconfig)is a frontend, namespaced CRD that
enables you to manage Trident backends using kubect1. Kubernetes and storage admins can now create
and manage backends directly through the Kubernetes CLI without requiring a dedicated command-line utility
(tridentctl).

Upon the creation of a TridentBackendConfig object, the following happens:

» A backend is created automatically by Trident based on the configuration you provide. This is represented
internally as a TridentBackend (tbe, tridentbackend) CR.

* The TridentBackendConfig is uniquely bound to a TridentBackend that was created by Trident.

Each TridentBackendConfig maintains a one-to-one mapping with a TridentBackend. The former is the
interface provided to the user to design and configure backends; the latter is how Trident represents the actual
backend object.

TridentBackend CRs are created automatically by Trident. You should not modify them. If
you want to make updates to backends, do this by modifying the TridentBackendConfig
object.

See the following example for the format of the TridentBackendConfig CR:

176

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:

name: backend-tbc-ontap-san
spec:

version: 1

backendName: ontap-san-backend

storageDriverName: ontap-san

managementLIF: 10.0.0.1

datalLIF: 10.0.0.2

svm: trident svm

credentials:

name: backend-tbc-ontap-san-secret

You can also take a look at the examples in the trident-installer directory for sample configurations for the
desired storage platform/service.

The spec takes backend-specific configuration parameters. In this example, the backend uses the ontap-
san storage driver and uses the configuration parameters that are tabulated here. For the list of configuration
options for your desired storage driver, refer to the backend configuration information for your storage driver.

The spec section also includes credentials and deletionPolicy fields, which are newly introduced in
the TridentBackendConfig CR:

* credentials: This parameter is a required field and contains the credentials used to authenticate with
the storage system/service. This is set to a user-created Kubernetes Secret. The credentials cannot be
passed in plain text and will result in an error.

* deletionPolicy: This field defines what should happen when the TridentBackendConfig is deleted.
It can take one of two possible values:

° delete: This results in the deletion of both TridentBackendConfig CR and the associated
backend. This is the default value.

° retain: When a TridentBackendConfig CR is deleted, the backend definition will still be present
and can be managed with tridentctl. Setting the deletion policy to retain lets users downgrade to
an earlier release (pre-21.04) and retain the created backends. The value for this field can be updated
after a TridentBackendConfig is created.

The name of a backend is set using spec.backendName. If unspecified, the name of the
(D backend is set to the name of the TridentBackendConfig object (metadata.name). It is
recommended to explicitly set backend names using spec.backendName.

Backends that were created with tridentctl do not have an associated
TridentBackendConfig object. You can choose to manage such backends with kubect1 by

creating a TridentBackendConfig CR. Care must be taken to specify identical config
parameters (such as spec.backendName, spec.storagePrefix
spec.storageDriverName, and so on). Trident will automatically bind the newly-created
TridentBackendConfig with the pre-existing backend.

177

https://github.com/NetApp/trident/tree/stable/v21.07/trident-installer/sample-input/backends-samples

Steps overview
To create a new backend by using kubect1, you should do the following:

1. Create a Kubernetes Secret. The secret contains the credentials Trident needs to communicate with the
storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and
references the secret created in the previous step.

After you create a backend, you can observe its status by using kubectl get tbc <tbc-name> -n
<trident-namespace> and gather additional details.

Step 1: Create a Kubernetes Secret

Create a Secret that contains the access credentials for the backend. This is unique to each storage
service/platform. Here’s an example:

kubectl -n trident create -f backend-tbc-ontap-san-secret.yaml
apiVersion: vl
kind: Secret
metadata:
name: backend-tbc-ontap-san-secret
type: Opaque
stringData:
username: cluster-admin

password: password

This table summarizes the fields that must be included in the Secret for each storage platform:

Storage platform Secret Fields Secret Fields description
description
Azure NetApp Files clientlD The client ID from an app

registration

Cloud Volumes Service for GCP private_key _id ID of the private key. Part of API
key for GCP Service Account with
CVS admin role

Cloud Volumes Service for GCP private_key Private key. Part of API key for
GCP Service Account with CVS
admin role

Element (NetApp HCI/SolidFire) Endpoint MVIP for the SolidFire cluster with

tenant credentials

178

https://kubernetes.io/docs/concepts/configuration/secret/

Storage platform Secret Fields Secret Fields description
description

ONTAP username Username to connect to the
cluster/SVM. Used for credential-
based authentication

ONTAP password Password to connect to the
cluster/SVM. Used for credential-
based authentication

ONTAP clientPrivateKey Base64-encoded value of client
private key. Used for certificate-
based authentication

ONTAP chapUsername Inbound username. Required if
useCHAP=true. For ontap-san
and ontap-san-economy

ONTAP chaplnitiatorSecret CHAP initiator secret. Required if
useCHAP=true. For ontap-san
and ontap-san-economy

ONTAP chapTargetUsername Target username. Required if
useCHAP=true. For ontap-san
and ontap-san-economy

ONTAP chapTargetlnitiatorSecret CHAP target initiator secret.
Required if useCHAP=true. For
ontap-san and ontap-san-
economy

The Secret created in this step will be referenced in the spec.credentials field of the
TridentBackendConfig object that is created in the next step.

Step 2: Create the TridentBackendConfig CR
You are now ready to create your TridentBackendConfig CR. In this example, a backend that uses the

ontap-san driver is created by using the TridentBackendConfig object shown below:

kubectl -n trident create -f backend-tbc-ontap-san.yaml

179

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:

name: backend-tbc-ontap-san
spec:

version: 1

backendName: ontap-san-backend

storageDriverName: ontap-san

managementLIF: 10.0.0.1

datalLIF: 10.0.0.2

svm: trident svm

credentials:

name: backend-tbc-ontap-san-secret

Step 3: Verify the status of the TridentBackendConfig CR

Now that you created the TridentBackendConfig CR, you can verify the status. See the following example:

kubectl -n trident get tbc backend-tbc-ontap-san

NAME BACKEND NAME BACKEND UUID
PHASE STATUS
backend-tbc-ontap-san ontap-san-backend 8d24fce7-6£60-4d4a-8ef6-

bab2699%e6ab8 Bound Success

A backend was successfully created and bound to the TridentBackendConfig CR.
Phase can take one of the following values:

* Bound: The TridentBackendConfig CR is associated with a backend, and that backend contains
configRef setto the TridentBackendConfig CR’s uid.

* Unbound: Represented using "". The TridentBackendConfig object is not bound to a backend. All
newly created TridentBackendConfig CRs are in this phase by default. After the phase changes, it
cannot revert to Unbound again.

* Deleting: The TridentBackendConfig CR's deletionPolicy was set to delete. When the
TridentBackendConfig CRis deleted, it transitions to the Deleting state.

° If no persistent volume claims (PVCs) exist on the backend, deleting the TridentBackendConfig
will result in Trident deleting the backend as well as the TridentBackendConfig CR.

o If one or more PVCs are present on the backend, it goes to a deleting state. The
TridentBackendConfig CR subsequently also enters deleting phase. The backend and
TridentBackendConfig are deleted only after all PVCs are deleted.

* Lost: The backend associated with the TridentBackendConfig CR was accidentally or deliberately
deleted and the TridentBackendConfig CR still has a reference to the deleted backend. The
TridentBackendConfig CR can still be deleted irrespective of the deletionPolicy value.

180

* Unknown: Trident is unable to determine the state or existence of the backend associated with the
TridentBackendConfig CR. For example, if the API server is not responding or if the
tridentbackends.trident.netapp.io CRD is missing. This might require intervention.

At this stage, a backend is successfully created! There are several operations that can additionally be handled,
such as backend updates and backend deletions.

(Optional) Step 4: Get more details

You can run the following command to get more information about your backend:

kubectl -n trident get tbc backend-tbc-ontap-san -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8d24fce7-6£f60-4d4a-8ef6-
bab269%¢6ab8 Bound Success ontap-san delete

In addition, you can also obtain a YAML/JSON dump of TridentBackendConfig.

kubectl -n trident get tbc backend-tbc-ontap-san -o yaml

181

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
creationTimestamp: "2021-04-21T20:45:112Z"
finalizers:
- trident.netapp.io
generation: 1
name: backend-tbc-ontap-san
namespace: trident

resourceVersion: "947143"
uid: 35b9d777-109f-43d5-8077-c74a4559d09c
spec:

backendName: ontap-san-backend
credentials:
name: backend-tbc-ontap-san-secret
managementLIF: 10.0.0.1
datalLIF: 10.0.0.2
storageDriverName: ontap-san
svm: trident svm
version: 1
status:
backendInfo:
backendName: ontap-san-backend
backendUUID: 8d24fce7-6f60-4d4a-8ef6-bab2699e6ab8
deletionPolicy: delete
lastOperationStatus: Success
message: Backend 'ontap-san-backend' created
phase: Bound

backendInfo contains the backendName and the backendUUID of the backend that got created in
response to the TridentBackendConfig CR. The lastOperationStatus field represents the status of
the last operation of the TridentBackendConfig CR, which can be user-triggered (for example, user
changed something in spec) or triggered by Trident (for example, during Trident restarts). It can either be
Success or Failed. phase represents the status of the relation between the TridentBackendConfig CR
and the backend. In the example above, phase has the value Bound, which means that the
TridentBackendConfig CR is associated with the backend.

You can run the kubectl -n trident describe tbc <tbc-cr-name> command to get details of the
event logs.

You cannot update or delete a backend which contains an associated
TridentBackendConfig object using tridentctl. To understand the steps involved in
switching between tridentctl and TridentBackendConfig, see here.

182

Manage backends
Perform backend management with kubectl

Learn about how to perform backend management operations by using kubectl1.

Delete a backend

By deleting a TridentBackendConfig, you instruct Trident to delete/retain backends (based on
deletionPolicy). To delete a backend, ensure that deletionPolicy is set to delete. To delete just the
TridentBackendConfig, ensure that deletionPolicy is set to retain. This ensures the backend is still
present and can be managed by using tridentctl.

Run the following command:

kubectl delete tbc <tbc—-name> -n trident

Trident does not delete the Kubernetes Secrets that were in use by TridentBackendConfig. The
Kubernetes user is responsible for cleaning up secrets. Care must be taken when deleting secrets. You should
delete secrets only if they are not in use by the backends.

View the existing backends

Run the following command:

kubectl get tbc -n trident

You can also run tridentctl get backend -n trident or tridentctl get backend -o yaml -n
trident to obtain a list of all backends that exist. This list will also include backends that were created with
tridentctl.

Update a backend
There can be multiple reasons to update a backend:
» Credentials to the storage system have changed. To update credentials, the Kubernetes Secret that is used

in the TridentBackendConfig object must be updated. Trident will automatically update the backend
with the latest credentials provided. Run the following command to update the Kubernetes Secret:

kubectl apply -f <updated-secret-file.yaml> -n trident

« Parameters (such as the name of the ONTAP SVM being used) need to be updated.

° You can update TridentBackendConfig objects directly through Kubernetes using the following
command:

kubectl apply -f <updated-backend-file.yaml>

183

° Alternatively, you can make changes to the existing TridentBackendConfig CR using the following
command:

kubectl edit tbc <tbc-name> -n trident

* If a backend update fails, the backend continues to remain in its last known configuration.
You can view the logs to determine the cause by running kubectl get tbc <tbc-name>
(D -0 yaml -n trident or kubectl describe tbc <tbc-name> -n trident.

« After you identify and correct the problem with the configuration file, you can re-run the
update command.

Perform backend management with tridentctl

Learn about how to perform backend management operations by using tridentctl.

Create a backend

After you create a backend configuration file, run the following command:
tridentctl create backend -f <backend-file> -n trident

If backend creation fails, something was wrong with the backend configuration. You can view the logs to
determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the create command
again.

Delete a backend

To delete a backend from Trident, do the following:

1. Retrieve the backend name:
tridentctl get backend -n trident
2. Delete the backend:

tridentctl delete backend <backend-name> -n trident

184

If Trident has provisioned volumes and snapshots from this backend that still exist, deleting the

@ backend prevents new volumes from being provisioned by it. The backend will continue to exist
in a “Deleting” state and Trident will continue to manage those volumes and snapshots until they
are deleted.

View the existing backends

To view the backends that Trident knows about, do the following:

* To get a summary, run the following command:
tridentctl get backend -n trident
* To get all the details, run the following command:

tridentctl get backend -o json -n trident

Update a backend

After you create a new backend configuration file, run the following command:
tridentctl update backend <backend-name> -f <backend-file> -n trident

If backend update fails, something was wrong with the backend configuration or you attempted an invalid
update. You can view the logs to determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the update command
again.

Identify the storage classes that use a backend

This is an example of the kind of questions you can answer with the JSON that tridentct1 outputs for
backend objects. This uses the jq utility, which you need to install.

tridentctl get backend -o json | jg '[.items[] | {backend: .name,
storageClasses: [.storage[].storageClasses] |unique}]’

This also applies for backends that were created by using TridentBackendConfig.

Move between backend management options

Learn about the different ways of managing backends in Trident.

185

Options for managing backends

With the introduction of TridentBackendConfig, administrators now have two unique ways of managing
backends. This poses the following questions:

* Can backends created using tridentctl be managed with TridentBackendConfig?

* Can backends created using TridentBackendConfig be managed using tridentctl?

Manage tridentctl backends using TridentBackendConfig

This section covers the steps required to manage backends that were created using tridentctl directly
through the Kubernetes interface by creating TridentBackendConfig objects.

This will apply to the following scenarios:

* Pre-existing backends, that don’t have a TridentBackendConfig because they were created with
tridentctl.

* New backends that were created with tridentctl, while other TridentBackendConfig objects exist.

In both scenarios, backends will continue to be present, with Trident scheduling volumes and operating on
them. Administrators have one of two choices here:

* Continue using tridentctl to manage backends that were created using it.

* Bind backends created using tridentctl to a new TridentBackendConfig object. Doing so would
mean the backends will be managed using kubectl and not tridentctl.

To manage a pre-existing backend using kubect1, you will need to create a TridentBackendConfig that
binds to the existing backend. Here is an overview of how that works:

1. Create a Kubernetes Secret. The secret contains the credentials Trident needs to communicate with the
storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and
references the secret created in the previous step. Care must be taken to specify identical config
parameters (such as spec.backendName, spec.storagePrefix, spec.storageDriverName, and
S0 on). spec.backendName must be set to the name of the existing backend.

Step 0: Identify the backend

To create a TridentBackendConfig that binds to an existing backend, you will need to obtain the backend
configuration. In this example, let us assume a backend was created using the following JSON definition:

tridentctl get backend ontap-nas-backend -n trident

o e e o e
fessssssssssssesessososssssssssss o= fremmm==== e +

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

e e fossmmsm=s===m===

fesmsee e s se s e me s e s e e e femmmm=== fommmmm=as 4

| ontap-nas-backend | ontap-nas | 52f2ebl0-e4c6-4160-99fc-

186

96b3beb5abbd7 | online | 25 |

cat ontap-nas-backend.json

"version": 1,

"storageDriverName": "ontap-nas",
"managementLIF": "10.10.10.1",
"dataLIF": "10.10.10.2",
"backendName": "ontap-nas-backend",

"svm": "trident svm",
"username": "cluster-admin",

"password": "admin-password",

"defaults": {

"spaceReserve": "none",
"encryption": "false"
by
"labels":{"store":"nas store"},
"region": "us east 1",
"storage": [

{
"labels": {"app":"msoffice",
"zone":"us east la",
"defaults": {
"spaceReserve": "volume

"encryption": "true",

"cost":"100"},

"w
’

"unixPermissions": "0755"

"labels":{"app":"mysgldb",
"zone":"us east 1d",
"defaults": {

"COSt" . "25"},

"spaceReserve": "volume",
"encryption": "false",
"unixPermissions": "0775"

187

Step 1: Create a Kubernetes Secret

Create a Secret that contains the credentials for the backend, as shown in this example:

cat tbc-ontap-nas-backend-secret.yaml

apiVersion: vl
kind: Secret
metadata:
name: ontap-nas-backend-secret
type: Opaque
stringData:
username: cluster-admin

password: admin-password

kubectl create -f tbc-ontap-nas-backend-secret.yaml -n trident
secret/backend-tbc-ontap-san-secret created

Step 2: Create a TridentBackendConfig CR

The next step is to create a TridentBackendConfig CR that will automatically bind to the pre-existing
ontap-nas-backend (as in this example). Ensure the following requirements are met:

* The same backend name is defined in spec.backendName.
« Configuration parameters are identical to the original backend.
« Virtual pools (if present) must retain the same order as in the original backend.

* Credentials are provided through a Kubernetes Secret and not in plain text.

In this case, the TridentBackendConfig will look like this:

188

cat backend-tbc-ontap-nas.yaml
apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: tbc-ontap-nas-backend
spec:
version: 1
storageDriverName: ontap-nas
managementLIF: 10.10.10.1
datalLIF: 10.10.10.2
backendName: ontap-nas-backend
svm: trident svm
credentials:
name: mysecret
defaults:
spaceReserve: none
encryption: 'false'
labels:
store: nas_ store
region: us east 1
storage:
- labels:
app: msoffice
cost: '100"
zone: us_east la
defaults:
spaceReserve: volume
encryption: 'true'
unixPermissions: '0755'
- labels:
app: mysqgldb
cost: '25"
zone: us_east 1d
defaults:
spaceReserve: volume
encryption: 'false'

unixPermissions: '0775"

kubectl create -f backend-tbc-ontap-nas.yaml -n trident
tridentbackendconfig.trident.netapp.io/tbc-ontap-nas-backend created

Step 3: Verify the status of the TridentBackendConfig CR

After the TridentBackendConfig has been created, its phase must be Bound. It should also reflect the
same backend name and UUID as that of the existing backend.

189

kubectl get tbc tbc-ontap-nas-backend -n trident

NAME BACKEND NAME BACKEND UUID
PHASE STATUS
tbc-ontap-nas-backend ontap-nas-backend 52f2ebl10-e4c6-4160-99fc-

96b3beb5ab5d7 Bound Success

#confirm that no new backends were created (i.e., TridentBackendConfig did
not end up creating a new backend)
tridentctl get backend -n trident

fmm e fom e

Rt ettt F—————— o — +

| NAME | STORAGE DRIVER | UuID

| STATE | VOLUMES |

et e T o

e - e b +

| ontap-nas-backend | ontap-nas | 52f2ebl0-ed4c6-4160-99fc—-
96b3bebab5d7 | online | 25 |

e o
e - +————— +

The backend will now be completely managed using the tbc-ontap-nas-backend
TridentBackendConfig object.

Manage TridentBackendConfig backends using tridentctl

tridentctl can be used to list backends that were created using TridentBackendConfig. In addition,
administrators can also choose to completely manage such backends through tridentctl by deleting
TridentBackendConfig and making sure spec.deletionPolicyis setto retain

Step 0: Identify the backend

For example, let us assume the following backend was created using TridentBackendConfig:

190

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8labcb27-ea63-49bb-b606-
0a5315ach5£f82 Bound Success ontap-san delete

tridentctl get backend ontap-san-backend -n trident

P memssesem== P m===
R Fommomome Fomomomom= +

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

Fommmmmmmmemeoeoeoos Fommmmmmomeomomm=
et Fom—————— fom——————— +

| ontap-san-backend | ontap-san | 8labcb27-ea63-49%bb-b606-
0a5315ac5f82 | online | 33 |

Fommmmcmemcmsosmsmss Fommmmmmsmemsmse=
B e o= Pommmmmm== +

From the output, it is seen that TridentBackendConfig was created successfully and is bound to a
backend [observe the backend’s UUID].

Step 1: Confirm deletionPolicy is setto retain

Let us take a look at the value of deletionPolicy. This needs to be set to retain. This ensures that when
a TridentBackendConfig CRis deleted, the backend definition will still be present and can be managed
with tridentctl.

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8labcb27-ea63-49bb-b606-
0a5315ac5£82 Bound Success ontap-san delete

Patch value of deletionPolicy to retain
kubectl patch tbc backend-tbc-ontap-san --type=merge -p
"{"spec":{"deletionPolicy":"retain"}}' -n trident

tridentbackendconfig.trident.netapp.io/backend-tbc-ontap-san patched

#Confirm the value of deletionPolicy

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8labcb27-ea63-49bb-b606-
0ab5315ac5f82 Bound Success ontap-san retain

191

(D Do not proceed to the next step unless deletionPolicy is setto retain.

Step 2: Delete the TridentBackendConfig CR

The final step is to delete the TridentBackendConfig CR. After confirming the deletionPolicy is set to
retain, you can go ahead with the deletion:

kubectl delete tbc backend-tbc-ontap-san -n trident
tridentbackendconfig.trident.netapp.io "backend-tbc-ontap-san" deleted

tridentctl get backend ontap-san-backend -n trident

fomm e fom -
Rt bt PP t——————— Fo———— +

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

o o

e it ettt PP +—————— o +

| ontap-san-backend | ontap-san | 8labcb27-ea63-49bb-b606-
0a5315ac5f82 | online | 33 |

o o

Rt et ettt et - +—————— +

Upon the deletion of the TridentBackendConfig object, Trident simply removes it without actually deleting
the backend itself.

Create and manage storage classes

Create a storage class

Configure a Kubernetes StorageClass object and create the storage class to instruct
Trident how to provision volumes.

Configure a Kubernetes StorageClass object

The Kubernetes StorageClass object identifies Trident as the provisioner that is used for that class and
instructs Trident how to provision a volume. For example:

192

https://kubernetes.io/docs/concepts/storage/storage-classes/

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: <Name>
provisioner: csi.trident.netapp.io
mountOptions: <Mount Options>
parameters:

<Trident Parameters>
allowVolumeExpansion: true
volumeBindingMode: Immediate

Refer to Kubernetes and Trident objects for details on how storage classes interact with the
PersistentVolumeClaim and parameters for controlling how Trident provisions volumes.

Create a storage class

After you create the StorageClass object, you can create the storage class. Storage class samples provides
some basic samples you can use or modify.

Steps
1. This is a Kubernetes object, so use kubectl to create it in Kubernetes.

kubectl create -f sample-input/storage-class-basic-csi.yaml

2. You should now see a basic-csi storage class in both Kubernetes and Trident, and Trident should have
discovered the pools on the backend.

193

kubectl get sc basic-csi
NAME PROVISIONER AGE

basic-csi csi.trident.netapp.io 15h

./tridentctl -n trident get storageclass basic-csi -o json

{

"items": [
{

"Config": {
"version": "1V,
"name": "basic-csi",
"attributes": {

"backendType": "ontap-nas"

by
"storagePools": null,
"additionalStoragePools": null

by

"storage": {

"ontapnas 10.0.0.1": [
"aggrl",
"aggrz",
"aggr3",
"aggrd"

Storage class samples

Trident provides simple storage class definitions for specific backends.

Alternatively, you can edit sample-input/storage-class-csi.yaml.templ file that comes with the
installer and replace BACKEND TYPE with the storage driver name.

194

https://github.com/NetApp/trident/tree/master/trident-installer/sample-input/storage-class-samples

./tridentctl -n trident get backend

e o T bt
o F—————— +

| NAME | STORAGE DRIVER | UuID

STATE | VOLUMES |

o —— o T et it
- F—m————— +

| nas-backend | ontap-nas | 98el9b74-aec7-4a3d-8dcf-128e5033b214 |
online | 0 |

o —— e it PP T ittt
- F—————— +

cp sample-input/storage-class-csi.yaml.templ sample-input/storage-class-
basic-csi.yaml

Modify = BACKEND TYPE with the storage driver field above (e.g.,
ontap-nas)
vi sample-input/storage-class-basic-csi.yaml

Manage storage classes

You can view existing storage classes, set a default storage class, identify the storage
class backend, and delete storage classes.

View the existing storage classes

» To view existing Kubernetes storage classes, run the following command:
kubectl get storageclass

» To view Kubernetes storage class detail, run the following command:

kubectl get storageclass <storage-class> -o json

 To view Trident’s synchronized storage classes, run the following command:
tridentctl get storageclass

» To view Trident’s synchronized storage class detail, run the following command:

tridentctl get storageclass <storage-class> -0 json

195

Set a default storage class

Kubernetes 1.6 added the ability to set a default storage class. This is the storage class that will be used to
provision a Persistent Volume if a user does not specify one in a Persistent Volume Claim (PVC).

* Define a default storage class by setting the annotation storageclass.kubernetes.io/is-

default-class to true in the storage class definition. According to the specification, any other value or
absence of the annotation is interpreted as false.

* You can configure an existing storage class to be the default storage class by using the following
command:

kubectl patch storageclass <storage-class-name> -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}"'

« Similarly, you can remove the default storage class annotation by using the following command:

kubectl patch storageclass <storage-class-name> -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}}"

There are also examples in the Trident installer bundle that include this annotation.

There should be only one default storage class in your cluster at a time. Kubernetes does not
technically prevent you from having more than one, but it will behave as if there is no default
storage class at all.

Identify the backend for a storage class

This is an example of the kind of questions you can answer with the JSON that tridentctl outputs for
Trident backend objects. This uses the - q utility, which you may need to install first.

tridentctl get storageclass -o json | jg '[.items[] | {storageClass:
.Config.name, backends: [.storage] |unique}]’

Delete a storage class

To delete a storage class from Kubernetes, run the following command:

kubectl delete storageclass <storage-class>
<storage-class> should be replaced with your storage class.

Any persistent volumes that were created through this storage class will remain untouched, and Trident will
continue to manage them.

196

Trident enforces a blank £sType for the volumes it creates. For iSCSI backends, it is
recommended to enforce parameters. fsType in the StorageClass. You should delete
existing StorageClasses and re-create them with parameters. fsType specified.

Provision and manage volumes

Provision a volume

Create a PersistentVolume (PV) and a PersistentVolumeClaim (PVC) that uses the
configured Kubernetes StorageClass to request access to the PV. You can then mount
the PV to a pod.

Overview

A PersistentVolume (PV) is a physical storage resource provisioned by the cluster administrator on a
Kubernetes cluster. The PersistentVolumeClaim (PVC) is a request for access to the PersistentVolume on the
cluster.

The PVC can be configured to request storage of a certain size or access mode. Using the associated
StorageClass, the cluster administrator can control more than PersistentVolume size and access mode—such
as performance or service level.

After you create the PV and PVC, you can mount the volume in a pod.

Sample manifests

PersistentVolume sample manifest

This sample manifest shows a basic PV of 10Gi that is associated with StorageClass basic-csi.

apiVersion: vl
kind: PersistentVolume
metadata:
name: pv-storage
labels:
type: local
spec:
storageClassName: basic-csi
capacity:
storage: 10Gi
accessModes:
- ReadWriteOnce
hostPath:
path: "/my/host/path"

197

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes

PersistentVolumeClaim sample manifests

These examples show basic PVC configuration options.

PVC with RWO access

This example shows a basic PVC with RWO access that is associated with a StorageClass named
basic-csi.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-storage
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: basic-csi

PVC with NVMe/TCP

This example shows a basic PVC for NVMe/TCP with RWO access that is associated with a
StorageClass named protection-gold

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-san-nvme
spec:
accessModes:

- ReadWriteOnce
resources:

requests:

storage: 300Mi

storageClassName: protection-gold

198

Pod manifest samples

These examples show basic configurations to attach the PVC to a pod.

Basic configuration

kind: Pod
apiVersion: vl
metadata:
name: pv-pod
spec:
volumes:
- name: pv-storage
persistentVolumeClaim:
claimName: basic
containers:
- name: pv-container
image: nginx
ports:
- containerPort: 80
name: "http-server"
volumeMounts:
- mountPath: "/my/mount/path"

name: pv-storage

199

Basic NVMe/TCP configuration

apiVersion: vl

kind: Pod

metadata:
creationTimestamp: null
labels:

run: nginx

name: nginx
spec:
containers:

- image: nginx
name: nginx
resources: {}
volumeMounts:

- mountPath: "/usr/share/nginx/html"

name: task-pv-storage
dnsPolicy: ClusterFirst
restartPolicy: Always
volumes:
- name: task-pv-storage
persistentVolumeClaim:

claimName: pvc-san-nvme

Create the PV and PVC

Steps
1. Create the PV.
kubectl create -f pv.yaml

2. Verify the PV status.

kubectl get pv

NAME CAPACITY ACCESS MODES
STORAGECLASS REASON AGE
pv-storage 4Gi RWO

7s

3. Create the PVC.

200

RECLAIM POLICY

Retain

STATUS

Available

CLAIM

kubectl create -f pvc.yaml
4. Verify the PVC status.

kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
pvc-storage Bound pv-name 2Gi RWO 5m

5. Mount the volume in a pod.

kubectl create -f pv-pod.yaml

@ You can monitor the progress using kubectl get pod --watch.

6. Verify that the volume is mounted on /my/mount/path.
kubectl exec -it task-pv-pod -- df -h /my/mount/path
7. You can now delete the Pod. The Pod application will no longer exist, but the volume will remain.

kubectl delete pod pv-pod

Refer to Kubernetes and Trident objects for details on how storage classes interact with the
PersistentVolumeClaim and parameters for controlling how Trident provisions volumes.

Expand volumes

Trident provides Kubernetes users the ability to expand their volumes after they are
created. Find information about the configurations required to expand iISCSI and NFS
volumes.

Expand an iSCSI volume

You can expand an iSCSI Persistent Volume (PV) by using the CSI provisioner.

(D iSCSI volume expansion is supported by the ontap-san, ontap-san-economy, solidfire-
san drivers and requires Kubernetes 1.16 and later.

Step 1: Configure the StorageClass to support volume expansion

Edit the StorageClass definition to set the allowVolumeExpansion field to true.

201

cat storageclass-ontapsan.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontap-san
provisioner: csi.trident.netapp.io
parameters:

backendType: "ontap-san"
allowVolumeExpansion: True

For an already existing StorageClass, edit it to include the allowVolumeExpansion parameter.

Step 2: Create a PVC with the StorageClass you created

Edit the PVC definition and update the spec.resources.requests. storage to reflect the newly desired
size, which must be greater than the original size.

cat pvc-ontapsan.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: san—-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: ontap-san

Trident creates a Persistent Volume (PV) and associates it with this Persistent Volume Claim (PVC).

202

kubectl get pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82£2885db671 1Gi

RWO ontap-san 8s

kubectl get pv

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-8a814d62-bd58-4253-b0d1-82£2885db671 1G1i RWO

Delete Bound default/san-pvc ontap-san 10s

Step 3: Define a pod that attaches the PVC

Attach the PV to a pod for it to be resized. There are two scenarios when resizing an iISCSI PV:

« If the PV is attached to a pod, Trident expands the volume on the storage backend, rescans the device,
and resizes the filesystem.

* When attempting to resize an unattached PV, Trident expands the volume on the storage backend. After
the PVC is bound to a pod, Trident rescans the device and resizes the filesystem. Kubernetes then
updates the PVC size after the expand operation has successfully completed.

In this example, a pod is created that uses the san-pvc.

kubectl get pod
NAME READY STATUS RESTARTS AGE
ubuntu-pod 1/1 Running 0 65s

kubectl describe pvc san-pvc

Name: san-pvc

Namespace: default

StorageClass: ontap-san

Status: Bound

Volume: pvc-8a814d62-bd58-4253-b0d1-82£2885db671
Labels: <none>

Annotations: pv.kubernetes.io/bind-completed: yes

pv.kubernetes.io/bound-by-controller: yes
volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers: [kubernetes.io/pvc-protection]
Capacity: 1Gi

Access Modes: RWO

VolumeMode: Filesystem

Mounted By: ubuntu-pod

203

Step 4: Expand the PV

To resize the PV that has been created from 1Gi to 2Gi, edit the PVC definition and update the
spec.resources.requests.storage to 2Gi.

kubectl edit pvc san-pvc

Please edit the object below. Lines beginning with a '#' will be
ignored,

and an empty file will abort the edit. If an error occurs while saving
this file will be

reopened with the relevant failures.

#

apiVersion: vl

kind: PersistentVolumeClaim

metadata:
annotations:
pv.kubernetes.io/bind-completed: "yes"
pv.kubernetes.io/bound-by-controller: "yes"

volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
creationTimestamp: "2019-10-10T17:32:292Z"
finalizers:
- kubernetes.io/pvc-protection
name: san-pvc
namespace: default
resourceVersion: "16609"
selflLink: /api/vl/namespaces/default/persistentvolumeclaims/san-pvc
uid: 8a814d62-bd58-4253-b0d1-82f2885db671

spec:

accessModes:
- ReadWriteOnce
resources:

requests:

storage: 2Gi

Step 5: Validate the expansion

You can validate the expansion worked correctly by checking the size of the PVC, PV, and the Trident volume:

204

kubectl get pvc san-pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82£2885db671 2Gi

RWO ontap-san 1lm

kubectl get pv

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-8a814d62-bd58-4253-b0d1-82£2885db671 2G1 RWO

Delete Bound default/san-pvc ontap-san 12m

tridentctl get volumes -n trident

fos=s=ss=s=ssscsessssssssosossssss=s=sssa=s fememe==== e

e L T s frommmem e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

o o e e o o e o o e e o o 5 D) e e i e e frommmom e e

fremmmm=a==s frememsesessss s s s m s s e o s = = e fremememm=s I
| pvc-8a814d62-bd58-4253-b0d1-82£2885db671 | 2.0 GiB | ontap-san |
block | a%7bfff-0505-4e31-b6c5-59£492e02d33 | online | true |

fomssssess s s s s o s e o s sss s osss fremmmemm=s frememesmeeeeaaa=

fem======== e Bt fmm====== fememe==== 4

Expand an NFS volume

Trident supports volume expansion for NFS PVs provisioned on ontap-nas, ontap-nas—-economy, ontap-
nas-flexgroup, gcp-cvs, and azure-netapp-files backends.

Step 1: Configure the StorageClass to support volume expansion

To resize an NFS PV, the admin first needs to configure the storage class to allow volume expansion by setting
the allowVolumeExpansion field to true:

cat storageclass-ontapnas.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontapnas
provisioner: csi.trident.netapp.io
parameters:

backendType: ontap-nas
allowVolumeExpansion: true

If you have already created a storage class without this option, you can simply edit the existing storage class
by using kubectl edit storageclass to allow volume expansion.

205

Step 2: Create a PVC with the StorageClass you created

cat pvc-ontapnas.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: ontapnas20mb
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 20Mi
storageClassName: ontapnas

Trident should create a 20MiB NFS PV for this PVC:

kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08£f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi

RWO ontapnas 9s

kubectl get pv pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLATIM STORAGECLASS REASON
AGE

pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7 20Mi RWO

Delete Bound default/ontapnas20mb ontapnas

2mé2s

Step 3: Expand the PV

To resize the newly created 20MiB PV to 1GiB, edit the PVC and set spec.resources.requests.storage
to 1GiB

206

kubectl edit pvc ontapnas20mb

Please edit the object below. Lines beginning with a '#' will be
ignored,

and an empty file will abort the edit. If an error occurs while saving
this file will be

reopened with the relevant failures.

#

apiVersion: vl

kind: PersistentVolumeClaim

metadata:
annotations:
pv.kubernetes.io/bind-completed: "yes"
pv.kubernetes.io/bound-by-controller: "yes"

volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
creationTimestamp: 2018-08-21T18:26:447%
finalizers:
- kubernetes.io/pvc-protection
name: ontapnas20mb
namespace: default
resourceVersion: "1958015"
selflLink: /api/vl/namespaces/default/persistentvolumeclaims/ontapnas20mb
uid: clbd7fab5-a56f-11e8-b8d7-fal63e59%eaab

spec:

accessModes:
- ReadWriteOnce
resources:

requests:

storage: 1Gi

Step 4: Validate the expansion

You can validate the resize worked correctly by checking the size of the PVC, PV, and the Trident volume:

207

kubectl get pvc ontapnas20mb

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08£f3d561-b199-11e9-8d9£f-5254004dfdb7 1G1i
RWO ontapnas 4médds

kubectl get pv pvc-08£3d561-b199-11e9-8d9£-5254004dfdb7

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON
AGE

pvc-08£3d561-0199-11e9-8d9£f-5254004dfdb7 1Gi RWO

Delete Bound default/ontapnas20mb ontapnas

5m35s

tridentctl get volume pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

o e Fomm -
fom - o fom - fom— +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

- fom o
fom - o fomm - fomm - +
| pvc-08£3d561-b199-11e9-8d9£-5254004dfdb7 | 1.0 GiB | ontapnas |
file | cS5abf6ad-b052-423b-80d4-8fb491alda22 | online | true |

et ittt L fommm - fom e
fom - oo fom - e +

Import volumes

You can import existing storage volumes as a Kubernetes PV using tridentctl
import.

Overview and considerations

You might import a volume into Trident to:

« Containerize an application and reuse its existing data set
* Use a clone of a data set for an ephemeral application
» Rebuild a failed Kubernetes cluster

» Migrate application data during disaster recovery

Considerations
Before importing a volume, review the following considerations.

 Trident can import RW (read-write) type ONTAP volumes only. DP (data protection) type volumes are

SnapMirror destination volumes. You should break the mirror relationship before importing the volume into
Trident.

208

* We suggest importing volumes without active connections. To import an actively-used volume, clone the
volume and then perform the import.

This is especially important for block volumes as Kubernetes would be unaware of the
@ previous connection and could easily attach an active volume to a pod. This can result in
data corruption.

* Though storageClass must be specified on a PVC, Trident does not use this parameter during import.
Storage classes are used during volume creation to select from available pools based on storage
characteristics. Because the volume already exists, no pool selection is required during import. Therefore,
the import will not fail even if the volume exists on a backend or pool that does not match the storage class
specified in the PVC.

* The existing volume size is determined and set in the PVC. After the volume is imported by the storage
driver, the PV is created with a ClaimRef to the PVC.

° The reclaim policy is initially set to retain in the PV. After Kubernetes successfully binds the PVC and
PV, the reclaim policy is updated to match the reclaim policy of the Storage Class.

° If the reclaim policy of the Storage Class is delete, the storage volume will be deleted when the PV is
deleted.

* By default, Trident manages the PVC and renames the FlexVol and LUN on the backend. You can pass the
--no-manage flag to import an unmanaged volume. If you use --no-manage, Trident does not perform
any additional operations on the PVC or PV for the lifecycle of the objects. The storage volume is not
deleted when the PV is deleted and other operations such as volume clone and volume resize are also
ignored.

This option is useful if you want to use Kubernetes for containerized workloads but
otherwise want to manage the lifecycle of the storage volume outside of Kubernetes.

» An annotation is added to the PVC and PV that serves a dual purpose of indicating that the volume was
imported and if the PVC and PV are managed. This annotation should not be modified or removed.

Import a volume
You can use tridentctl import to import a volume.

Steps

1. Create the Persistent Volume Claim (PVC) file (for example, pvc . yaml) that will be used to create the
PVC. The PVC file should include name, namespace, accessModes, and storageClassName.
Optionally, you can specify unixPermissions in your PVC definition.

The following is an example of a minimum specification:

209

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: my claim
namespace: my namespace
spec:
accessModes:
- ReadWriteOnce
storageClassName: my storage class

(D Don’t include additional parameters such as PV name or volume size. This can cause the
import command to fail.

2. Use the tridentctl import command to specify the name of the Trident backend containing the
volume and the name that uniquely identifies the volume on the storage (for example: ONTAP FlexVol,
Element Volume, Cloud Volumes Service path). The -f argument is required to specify the path to the
PVC file.

tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-
file>

Examples

Review the following volume import examples for supported drivers.

ONTAP NAS and ONTAP NAS FlexGroup

Trident supports volume import using the ontap-nas and ontap-nas-flexgroup drivers.

* The ontap-nas-economy driver cannot import and manage qtrees.
(D * The ontap-nas and ontap-nas-flexgroup drivers do not allow duplicate volume
names.

Each volume created with the ontap-nas driver is a FlexVol on the ONTAP cluster. Importing FlexVols with
the ontap-nas driver works the same. A FlexVol that already exists on an ONTAP cluster can be imported as
a ontap-nas PVC. Similarly, FlexGroup vols can be imported as ontap-nas-flexgroup PVCs.

ONTAP NAS examples
The following show an example of a managed volume and an unmanaged volume import.

210

Managed volume

The following example imports a volume named managed volume on a backend named ontap nas:

tridentctl import volume ontap nas managed volume -f <path-to-pvc-file>

fossssss=s=ssscscssssssesosossssssss==ssa=s fememe==== fememmmsaemaaa=a
T e e e e e e S D e fro— e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

L fr e fr e e
fress=m=m==s fremeosesesssssss e s s s s s o s e fremememm=s I
| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |
file | cba6f6ad-b052-423b-80d4-8fb491ald4a22 | online | true |
fossssssssssssesessssoees oo ssssss s s s e e
femm======a femessesessss s e e se s e eessssaa s fmmm==== femememm== 4

Unmanaged volume

When using the --no-manage argument, Trident does not rename the volume.

The following example imports unmanaged volume on the ontap nas backend:

tridentctl import volume nas blog unmanaged volume -f <path-to-pvc-
file> --no-manage

o fomm - Fomm -
fomm - o fom - fomm - +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
e ittt L e fomm - fomm e
Fommcmmomo= B e Fommcomo= oo +
| pvc-df07d542-afbc-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |
file | c5a6f6ad-b052-423b-80d4-8fb491aldaz22 | online | false |
o Fommm - Fomm -
fom - o fom— - e +

ONTAP SAN

Trident supports volume import using the ontap-san and ontap-san-economy drivers.

Trident can import ONTAP SAN FlexVols that contain a single LUN. This is consistent with the ontap-san
driver, which creates a FlexVol for each PVC and a LUN within the FlexVol. Trident imports the FlexVol and
associates it with the PVC definition.

ONTAP SAN examples

211

The following show an example of a managed volume and an unmanaged volume import.

212

Managed volume

For managed volumes, Trident renames the FlexVol to the pvc-<uuid> format and the LUN within the
FlexVol to 1uno.

The following example imports the ontap-san-managed FlexVol that is present on the
ontap san default backend:

tridentctl import volume ontapsan san default ontap-san-managed -f pvc-

basic-import.yaml -n trident -d

Fommmmmmmmsmeososorreroememememe oo memmm o Frommomoms Fommmmmmomoomoms
Fommemmomo= o memererserererr s eseee s ee e Focmcomo= ommmcemos +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
e e et rommmmom= Fommcmmccmeoeo=e
Fommmmmmm== e Fommmmm== o= +
| pvc-d6eedf54-4e40-4454-92£fd-d00£c228d74a | 20 MiB | basic |
block | cd394786-ddd5-4470-adc3-10c5ced4ca’57 | online | true |
Fommmmmmemsmssesese s s s s s e e i Fommmmmmemememe=
Fommmomomme Fommememerossrsreemenessosoeseoomomoms Fomomomme Fommomomos +

Unmanaged volume

The following example imports unmanaged example volume onthe ontap san backend:

tridentctl import volume -n trident san blog unmanaged example volume
-f pvc-import.yaml --no-manage

Fommmmmmemssesesese s s s s e e e P o=
Fommmmmomo= B e e e Fommmmmoe e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
i e et ommmmomos e e
Pommmmmmm== ettt Fommmmm== o= +
| pvc-1£c999c9-ce8c-459c-82e4-ed4380a4b228 | 1.0 GiB | san-blog

block | €3275890-7d80-4af6-90cc-c7a0759£555a | online | false |
et P P
Fommmmmmm== e et Fommmmm== o= +

213

If you have LUNS mapped to igroups that share an IQN with a Kubernetes node IQN, as
shown in the following example, you will receive the error: LUN already mapped to
initiator(s) in this group. You will need to remove the initiator or unmap the LUN
to import the volume.

(::) Vserver Igroup Protocol 0S Type Initiators

k8s-nodename. example. com-fe5d36f2-cded-4138-9eb@-c7719fc2193

iscsi linux iqn.1994-05.com.redhat:4c2elcf35e0

unmanaged-example-igroup
mixed linux ign.1994-05.com.redhat:4c2elcf35e0

Element

Trident supports NetApp Element software and NetApp HCI volume import using the solidfire-san driver.

The Element driver supports duplicate volume names. However, Trident returns an error if there
are duplicate volume names. As a workaround, clone the volume, provide a unique volume
name, and import the cloned volume.

Element example

The following example imports an element-managed volume on backend element default.

tridentctl import volume element default element-managed -f pvc-basic-
import.yaml -n trident -d

Fommmmmcrmsmerrrrrrrrrre s me e eeemm o Fommmmom= Fommemmcemeomoes
Fommmmmmm== ettt fommmmm== o= +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
Fommmmmmemsmesesese s s s s e o= fommmmmmemememe=
Fommmomomme Fommomemeressrsreemenessosoeseeoomomoms Fomommmme e e +
| pvc-970celca-2096-4ecd-8545-ac7/edc24a8fe | 10 GiB | basic-element |
block | d3bal47a-ealb-43£9-9¢c42-e38e58301c49 | online | true |
Fommmmmmemsmeosormrrerosmememe oo oeoememmm o Fommomome Fommmmmmemoomoos
Fommmmmmmos FosmsmsmsrorsrsrossoosososEsEeneses oo o Fommmmmos Fosmmmmmes +

Google Cloud Platform

Trident supports volume import using the gcp-cvs driver.

To import a volume backed by the NetApp Cloud Volumes Service in Google Cloud Platform,
identify the volume by its volume path. The volume path is the portion of the volume’s export

@ path after the : /. For example, if the export pathis 10.0.0.1:/adroit-jolly-swift, the
volume path is adroit-jolly-swift.

214

Google Cloud Platform example

The following example imports a gcp-cvs volume on backend gcpcvs YEppr with the volume path of
adroit-jolly-swift.

tridentctl import volume gcpcvs YEppr adroit-jolly-swift -f <path-to-pvc-
file> -n trident

- fom—————— e

fom - o fom—m - fommm - +

| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

o fomm - fomm -

fom - o fom - e +

| pvc-ad6ccab7-44aa-4433-94bl-e47fc8c0fa55 | 93 GiB | gcp-storage | file
| €la6e65b-299e-4568-ad05-4£0a105c888f | online | true |
o fom—————— o

fom - o fomm - fomm - +

Azure NetApp Files

Trident supports volume import using the azure-netapp-files driver.

To import an Azure NetApp Files volume, identify the volume by its volume path. The volume
@ path is the portion of the volume’s export path after the : /. For example, if the mount path is
10.0.0.2:/importvoll, the volume path is importvoll.

Azure NetApp Files example

The following example imports an azure-netapp-files volume on backend azurenetappfiles 40517
with the volume path importvoll.

tridentctl import volume azurenetappfiles 40517 importvoll -f <path-to-
pvc-file> -n trident

Fommmmmmemsmssesesese s s s s e o= o=
Fommmmmomme R e S e e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

Fommmmmmmmsmeososorreroememerene oo memmm o Frommmmomos Fomcmmemememonos
S et Fosmsmsosoossrsrosososososmsoonososos o Pommmmms e i +
| pvc-0ee95d60-£d5¢c-448d-b505-b72901b3adab | 100 GiB | anf-storage |
file | 1c01274f-d94b-44a3-98a3-04c953c9%a5le | online | true |

ARGttt Fosmsmsmss Focosmsmsosssoss
Pommmmmmm== P mes e e s s s s s s s ee s Fommmmm== o= +

215

Customize volume names and labels

With Trident, you can assign meaningful names and labels to volumes you create. This
helps you identify and easily map volumes to their respective Kubernetes resources
(PVCs). You can also define templates at the backend level for creating custom volume
names and custom labels; any volumes that you create, import, or clone will adhere to
the templates.

Before you begin

Customizable volume names and labels support:

1. Volume create, import, and clone operations.

2. In the case of ontap-nas-economy driver, only the name of the Qtree volume complies with the name
template.

3. In the case of ontap-san-economy driver, only the LUN name complies with the name template.
Limitations

1. Customizable volume names are compatible with ONTAP on-premises drivers only.

2. Customizable volume names do not apply to existing volumes.

Key behaviors of customizable volume names

1. If a failure occurs due to invalid syntax in a name template, the backend creation fails. However, if the
template application fails, the volume will be named according to existing naming convention.

2. Storage prefix is not applicable when a volume is named using a name template from the backend
configuration. Any desired prefix value may be directly added to the template.

Backend configuration examples with name template and labels

Custom name templates can be defined at the root and/or pool level.

216

Root level example

{

"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "ontap-nfs-backend",
"managementLIF": "<ip address>",
"svm": "svmQO",
"username": "<admin>",
"password": "<password>",
"defaults": {

"nameTemplate":

"{{.volume.Name}} {{.labels.cluster}} {{.volume.Namespace}} {{.volume.Requ
estName} } "

by

"labels": {"cluster": "ClusterA", "PVC":

"{{.volume.Namespace}} {{.volume.RequestName}}"}

}

217

Pool level example

"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "ontap-nfs-backend",
"managementLIF": "<ip address>",
"svm": "svmQO",
"username": "<admin>",
"password": "<password>",
"useREST": true,
"storage": [
{
"labels":{"labelname":"labell", "name": "{{ .volume.Name }}"},
"defaults":
{
"nameTemplate": "poolOl {{ .volume.Name }} {{ .labels.cluster

1Y _{{ .volume.Namespace }} {{ .volume.RequestName }}"
}
iy

"labels":{"cluster":"label2", "name": "{{ .volume.Name }}"},
"defaults":
{

"nameTemplate": "pool02 {{ .volume.Name }} {{ .labels.cluster

}} _{{ .volume.Namespace }} {{ .volume.RequestName }}"

}

Name template examples

Example 1:

"nameTemplate": "{{ .config.StoragePrefix }} {{ .volume.Name }} {{

.config.BackendName }}"

Example 2:

"nameTemplate": "pool {{ .config.StoragePrefix }} {{ .volume.Name }} {{
slice .volume.RequestName 1 5 }}""

218

Points to consider

1. In the case of volume imports, the labels are updated only if the existing volume has labels in a specific
format. For example: {"provisioning":{"Cluster":"ClusterA", "PVC": "pvcname"}}.

2. In the case of managed volume imports, the volume name follows the name template defined at the root
level in the backend definition.

3. Trident does not support the use of a slice operator with the storage prefix.

4. If the templates do not result in unique volume names, Trident will append a few random characters to
create unique volume names.

5. If the custom name for a NAS economy volume exceeds 64 characters in length, Trident will name the
volumes according to the existing naming convention. For all other ONTAP drivers, if the volume name
exceeds the name limit, the volume creation process fails.

Share an NFS volume across namespaces

Using Trident, you can create a volume in a primary namespace and share it in one or
more secondary namespaces.

Features

The TridentVolumeReference CR allows you to securely share ReadWriteMany (RWX) NFS volumes across
one or more Kubernetes namespaces. This Kubernetes-native solution has the following benefits:

» Multiple levels of access control to ensure security
» Works with all Trident NFS volume drivers

* No reliance on tridentctl or any other non-native Kubernetes feature

This diagram illustrates NFS volume sharing across two Kubernetes namespaces.

219

................. : Primary PV Secondary PV

npl"il'l'"lar}f" o . Q = :,’

1T Trident T g %
namespace

primary

Vo TVel e——>

TridentVolumeReference

O [
H

primary/pvci

Slorage = tt-cecemecsecosno-e
Volume

Quick start

You can set up NFS volume sharing in just a few steps.

o Configure source PVC to share the volume
The source namespace owner grants permission to access the data in the source PVC.

9 Grant permission to create a CR in the destination namespace

The cluster administrator grants permission to the owner of the destination namespace to create the
TridentVolumeReference CR.

e Create TridentVolumeReference in the destination namespace
The owner of the destination namespace creates the TridentVolumeReference CR to refer to the source PVC.

o Create the subordinate PVC in the destination namespace

The owner of the destination namespace creates the subordinate PVC to use the data source from the source
PVC.

Configure the source and destination namespaces

To ensure security, cross namespace sharing requires collaboration and action by the source namespace

220

owner, cluster administrator, and destination namespace owner. The user role is designated in each step.

Steps

1. Source namespace owner: Create the PVC (pvc1) in the source namespace that grants permission to
share with the destination namespace (namespace?) using the shareToNamespace annotation.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvcl
namespace: namespacel
annotations:

trident.netapp.io/shareToNamespace: namespace?

spec:
accessModes:

- ReadWriteMany
storageClassName: trident-csi
resources:

requests:

storage: 100Gi

Trident creates the PV and its backend NFS storage volume.

> You can share the PVC to multiple namespaces using a comma-delimited list. For
example, trident.netapp.io/shareToNamespace:
namespace?2, namespace3, namespace4.

@ ° You can share to all namespaces using *. For example,
trident.netapp.io/shareToNamespace: *

° You can update the PVC to include the shareToNamespace annotation at any time.

2. Cluster admin: Create the custom role and kubeconfig to grant permission to the destination namespace
owner to create the TridentVolumeReference CR in the destination namespace.

3. Destination namespace owner: Create a TridentVolumeReference CR in the destination namespace that
refers to the source namespace pvcl.

apiVersion: trident.netapp.io/vl
kind: TridentVolumeReference
metadata:

name: my-first-tvr

namespace: namespace?2
spec:

pvcName: pvcl

pvcNamespace: namespacel

221

4. Destination namespace owner: Create a PVC (pvc2) in destination namespace (namespace?2) using
the shareFromPVC annotation to designate the source PVC.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:

annotations:

trident.netapp.io/shareFromPVC: namespacel/pvcl
name: pvc2
namespace: namespace?2

spec:
accessModes:

- ReadWriteMany
storageClassName: trident-csi
resources:

requests:

storage: 100Gi

@ The size of the destination PVC must be less than or equal than the source PVC.

Results

Trident reads the shareFromPVC annotation on the destination PVC and creates the destination PV as a
subordinate volume with no storage resource of its own that points to the source PV and shares the source PV
storage resource. The destination PVC and PV appear bound as normal.

Delete a shared volume

You can delete a volume that is shared across multiple namespaces. Trident will remove access to the volume
on the source namespace and maintain access for other namespaces that share the volume. When all
namespaces that reference the volume are removed, Trident deletes the volume.

Use tridentctl get to query subordinate volumes
Using the tridentctl utility, you can run the get command to get subordinate volumes. For more

information, refer to tridentctl commands and options.

Usage:
tridentctl get [option]
Flags:

* "-h, --help: Help for volumes.
* ——parentOfSubordinate string: Limit query to subordinate source volume.

* ——subordinateOf string: Limit query to subordinates of volume.

222

https://docs.netapp.com/us-en/trident-2410/trident-reference/tridentctl.html
https://docs.netapp.com/us-en/trident-2410/trident-reference/tridentctl.html

Limitations

 Trident cannot prevent destination namespaces from writing to the shared volume. You should use file
locking or other processes to prevent overwriting shared volume data.

* You cannot revoke access to the source PVC by removing the shareToNamespace or
shareFromNamespace annotations or deleting the TridentvVolumeReference CR. To revoke access,
you must delete the subordinate PVC.

» Snapshots, clones, and mirroring are not possible on subordinate volumes.

For more information

To learn more about cross-namespace volume access:

* Visit Sharing volumes between namespaces: Say hello to cross-namespace volume access.

* Watch the demo on NetAppTV.

Replicate volumes using SnapMirror

Trident supports mirror relationships between a source volume on one cluster and the
destination volume on the peered cluster for replicating data for disaster recovery. You
can use a namespaced Custom Resource Definition (CRD) to perform the following
operations:

* Create mirror relationships between volumes (PVCs)

* Remove mirror relationships between volumes

* Break the mirror relationships

» Promote the secondary volume during disaster conditions (failovers)

» Perform lossless transition of applications from cluster to cluster (during planned failovers or migrations)

Replication prerequisites
Ensure that the following prerequisites are met before you begin:

ONTAP clusters

* Trident: Trident version 22.10 or later must exist on both the source and destination Kubernetes clusters
that utilize ONTAP as a backend.

* Licenses: ONTAP SnapMirror asynchronous licenses using the Data Protection bundle must be enabled
on both the source and destination ONTAP clusters. Refer to SnapMirror licensing overview in ONTAP for
more information.

Peering
* Cluster and SVM: The ONTAP storage backends must be peered. Refer to Cluster and SVM peering
overview for more information.

@ Ensure that the SVM names used in the replication relationship between two ONTAP
clusters are unique.

» Trident and SVM: The peered remote SVMs must be available to Trident on the destination cluster.

223

https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html

Supported drivers
» Volume replication is supported for the ontap-nas and ontap-san drivers.

Create a mirrored PVC

Follow these steps and use the CRD examples to create mirror relationship between primary and secondary
volumes.

Steps
1. Perform the following steps on the primary Kubernetes cluster:

a. Create a StorageClass object with the trident.netapp.io/replication: true parameter.

Example

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: csi-nas
provisioner: csi.trident.netapp.io
parameters:
backendType: "ontap-nas"
fsType: "nfs"
trident.netapp.io/replication: "true"

b. Create a PVC with previously created StorageClass.

Example

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: csi-nas
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 1Gi
storageClassName: csi-nas

c. Create a MirrorRelationship CR with local information.

224

Example

kind: TridentMirrorRelationship
apiVersion: trident.netapp.io/vl
metadata:
name: csi-nas
spec:
state: promoted
volumeMappings:
- localPVCName: csi-nas

Trident fetches the internal information for the volume and the volume’s current data protection (DP)
state, then populates the status field of the MirrorRelationship.

d. Get the TridentMirrorRelationship CR to obtain the internal name and SVM of the PVC.

kubectl get tmr csi-nas

kind: TridentMirrorRelationship
apiVersion: trident.netapp.io/vl
metadata:
name: csi-nas
generation: 1
spec:
state: promoted
volumeMappings:
- localPVCName: csi-nas
status:
conditions:
- state: promoted
localVolumeHandle:
"datavserver:trident pvc 3bedd23c 46a8 4384 bl2b 3c38b313clel”
localPVCName: csi-nas

observedGeneration: 1

2. Perform the following steps on the secondary Kubernetes cluster:

a. Create a StorageClass with the trident.netapp.io/replication: true parameter.

225

Example

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: csi-nas
provisioner: csi.trident.netapp.io
parameters:
trident.netapp.io/replication: true

b. Create a MirrorRelationship CR with destination and source information.

Example

kind: TridentMirrorRelationship
apivVersion: trident.netapp.io/vl
metadata:

name: csi-nas

spec:
state: established
volumeMappings:

- localPVCName: csi-nas
remoteVolumeHandle:
"datavserver:trident pvc 3bedd23c 46a8 4384 bl2b 3c38b313clel"”

Trident will create a SnapMirror relationship with the configured relationship policy name (or default for
ONTAP) and initialize it.

c. Create a PVC with previously created StorageClass to act as the secondary (SnapMirror destination).

Example

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: csi-nas
annotations:
trident.netapp.io/mirrorRelationship: csi-nas
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 1Gi
storageClassName: csi-nas

Trident will check for the TridentMirrorRelationship CRD and fail to create the volume if the relationship

226

does not exist. If the relationship exists, Trident will ensure the new FlexVol volume is placed onto an
SVM that is peered with the remote SVM defined in the MirrorRelationship.

Volume Replication States

A Trident Mirror Relationship (TMR) is a CRD that represents one end of a replication relationship between
PVCs. The destination TMR has a state, which tells Trident what the desired state is. The destination TMR has
the following states:
» Established: the local PVC is the destination volume of a mirror relationship, and this is a new relationship.
* Promoted: the local PVC is ReadWrite and mountable, with no mirror relationship currently in effect.

» Reestablished: the local PVC is the destination volume of a mirror relationship and was also previously in
that mirror relationship.

o The reestablished state must be used if the destination volume was ever in a relationship with the
source volume because it overwrites the destination volume contents.

> The reestablished state will fail if the volume was not previously in a relationship with the source.
Promote secondary PVC during an unplanned failover

Perform the following step on the secondary Kubernetes cluster:

* Update the spec.state field of TridentMirrorRelationship to promoted.

Promote secondary PVC during a planned failover
During a planned failover (migration), perform the following steps to promote the secondary PVC:

Steps
1. On the primary Kubernetes cluster, create a snapshot of the PVC and wait until the snapshot is created.

2. On the primary Kubernetes cluster, create the Snapshotinfo CR to obtain internal details.

Example

kind: SnapshotInfo
apiVersion: trident.netapp.io/vl
metadata:
name: csi-nas
spec:
snapshot-name: csi-nas-snapshot

3. On secondary Kubernetes cluster, update the spec.state field of the TridentMirrorRelationship CR to
promoted and spec.promotedSnapshotHandle to be the internalName of the snapshot.

4. On secondary Kubernetes cluster, confirm the status (status.state field) of TridentMirrorRelationship to
promoted.

Restore a mirror relationship after a failover

Before restoring a mirror relationship, choose the side that you want to make as the new primary.

227

Steps

1. On the secondary Kubernetes cluster, ensure that the values for the spec.remoteVolumeHandle field on
the TridentMirrorRelationship is updated.

2. On secondary Kubernetes cluster, update the spec.mirror field of TridentMirrorRelationship to
reestablished.
Additional operations

Trident supports the following operations on the primary and secondary volumes:

Replicate primary PVC to a new secondary PVC

Ensure that you already have a primary PVC and a secondary PVC.

Steps

1. Delete the PersistentVolumeClaim and TridentMirrorRelationship CRDs from the established secondary
(destination) cluster.

2. Delete the TridentMirrorRelationship CRD from the primary (source) cluster.

3. Create a new TridentMirrorRelationship CRD on the primary (source) cluster for the new secondary
(destination) PVC you want to establish.

Resize a mirrored, primary or secondary PVC

The PVC can be resized as normal, ONTAP will automatically expand any destination flevxols if the amount of
data exceeds the current size.

Remove replication from a PVC

To remove replication, perform one of the following operations on the current secondary volume:

» Delete the MirrorRelationship on the secondary PVC. This breaks the replication relationship.

* Or, update the spec.state field to promoted.

Delete a PVC (that was previously mirrored)

Trident checks for replicated PVCs, and releases the replication relationship before attempting to delete the
volume.

Delete a TMR

Deleting a TMR on one side of a mirrored relationship causes the remaining TMR to transition to promoted
state before Trident completes the deletion. If the TMR selected for deletion is already in promoted state, there
is no existing mirror relationship and the TMR will be removed and Trident will promote the local PVC to
ReadWrite. This deletion releases SnapMirror metadata for the local volume in ONTAP. If this volume is used
in @ mirror relationship in the future, it must use a new TMR with an established volume replication state when
creating the new mirror relationship.

Update mirror relationships when ONTAP is online

Mirror relationships can be updated any time after they are established. You can use the state: promoted
or state: reestablished fields to update the relationships.

When promoting a destination volume to a regular ReadWrite volume, you can use promotedSnapshotHandle
to specify a specific snapshot to restore the current volume to.

228

Update mirror relationships when ONTAP is offline

You can use a CRD to perform a SnapMirror update without Trident having direct connectivity to the ONTAP
cluster. Refer to the following example format of the TridentActionMirrorUpdate:

Example

apiVersion: trident.netapp.io/vl
kind: TridentActionMirrorUpdate
metadata:
name: update-mirror-b
spec:
snapshotHandle: "pvc-1234/snapshot-1234"

tridentMirrorRelationshipName: mirror-b

status.state reflects the state of the TridentActionMirrorUpdate CRD. It can take a value from Succeeded,
In Progress, or Failed.

Use CSI Topology

Trident can selectively create and attach volumes to nodes present in a Kubernetes
cluster by making use of the CSI Topology feature.

Overview

Using the CSI Topology feature, access to volumes can be limited to a subset of nodes, based on regions and
availability zones. Cloud providers today enable Kubernetes administrators to spawn nodes that are zone
based. Nodes can be located in different availability zones within a region, or across various regions. To
facilitate the provisioning of volumes for workloads in a multi-zone architecture, Trident uses CSI Topology.

Learn more about the CSI Topology feature here.

Kubernetes provides two unique volume binding modes:

* With VolumeBindingMode set to Immediate, Trident creates the volume without any topology
awareness. Volume binding and dynamic provisioning are handled when the PVC is created. This is the
default volumeBindingMode and is suited for clusters that do not enforce topology constraints. Persistent
Volumes are created without having any dependency on the requesting pod’s scheduling requirements.

* With VolumeBindingMode set to WaitForFirstConsumer, the creation and binding of a Persistent
Volume for a PVC is delayed until a pod that uses the PVC is scheduled and created. This way, volumes
are created to meet the scheduling constraints that are enforced by topology requirements.

@ The WaitForFirstConsumer binding mode does not require topology labels. This can be
used independent of the CSI Topology feature.

What you’ll need
To make use of CSI Topology, you need the following:

« A Kubernetes cluster running a supported Kubernetes version

229

https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/

kubectl version

Client Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"1el1le4a2108024935ecfcb2912226cedeafd99df",
GitTreeState:"clean", BuildDate:"2020-10-14T12:50:192",
GoVersion:"gol.15.2", Compiler:"gc", Platform:"linux/amdoc4"}
Server Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"1elled4a2108024935ecfcb2912226cedeafd99df"”,
GitTreeState:"clean", BuildDate:"2020-10-14T12:41:492",
GoVersion:"gol.15.2", Compiler:"gc", Platform:"linux/amd64"}

* Nodes in the cluster should have labels that introduce topology awareness
(topology.kubernetes.io/region and topology.kubernetes.io/zone). These labels should
be present on nodes in the cluster before Trident is installed for Trident to be topology aware.

kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{ .metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"
[nodel,
{"beta.kubernetes.io/arch":"amdo64", "beta.kubernetes.io/os":"1linux", "kube

rnetes.io/arch":"amd64", "kubernetes.io/hostname" :"nodel", "kubernetes.io/
os":"linux", "node-
role.kubernetes.io/master":"","topology.kubernetes.io/region":"us-
eastl", "topology.kubernetes.io/zone":"us-eastl-a"}]

[node?2,

{"beta.kubernetes.io/arch":"amdo64", "beta.kubernetes.io/os":"1linux", "kube
rnetes.io/arch":"amd64", "kubernetes.io/hostname" :"node2", "kubernetes.io/
os":"linux", "node-
role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-
eastl", "topology.kubernetes.io/zone":"us-eastl-b"}]

[node3,

{"beta.kubernetes.io/arch":"amdo64", "beta.kubernetes.io/os":"1linux", "kube
rnetes.io/arch":"amd64", "kubernetes.io/hostname" :"node3", "kubernetes.io/
os":"linux", "node-
role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-
eastl", "topology.kubernetes.io/zone":"us-eastl-c"}]

Step 1: Create a topology-aware backend

Trident storage backends can be designed to selectively provision volumes based on availability zones. Each
backend can carry an optional supportedTopologies block that represents a list of zones and regions that
are supported. For StorageClasses that make use of such a backend, a volume would only be created if
requested by an application that is scheduled in a supported region/zone.

Here is an example backend definition:

230

YAML

version: 1

storageDriverName: ontap-san

backendName: san-backend-us-eastl

managementLIF: 192.168.27.5

svm: iscsi svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-eastl
topology.kubernetes.io/zone: us-eastl-a

- topology.kubernetes.io/region: us-eastl
topology.kubernetes.io/zone: us-eastl-Db

JSON
{
"version": 1,
"storageDriverName": "ontap-san",
"backendName": "san-backend-us-eastl",
"managementLIF": "192.168.27.5",
"svm": "iscsi svm",
"username": "admin",
"password": "password",
"supportedTopologies™: [
{"topology.kubernetes.io/region": "us-eastl",
"topology.kubernetes.io/zone": "us-eastl-a"},
{"topology.kubernetes.io/region": "us-eastl",
"topology.kubernetes.io/zone": "us-eastl-b"}

]
}

supportedTopologies is used to provide a list of regions and zones per backend. These

@ regions and zones represent the list of permissible values that can be provided in a
StorageClass. For StorageClasses that contain a subset of the regions and zones provided in a
backend, Trident creates a volume on the backend.

You can define supportedTopologies per storage pool as well. See the following example:

231

version:
storageDriverName:
backendName:
managementLIF:

1

ontap

172.16.23

svm: nfs svm

username:

admin

password: password

supportedTopologies:

topology. kubernetes.io

topology. kubernetes.io
topology.kubernetes.io

topology. kubernetes.io

storage:

In this example, the region and zone labels stand for the location of the storage pool.
topology.kubernetes.io/region and topology.kubernetes.io/zone dictate where the storage

labels:
workload: production
supportedTopologies:
- topology.kubernetes.
topology.kubernetes.
labels:
workload: dev
supportedTopologies:
- topology.kubernetes.
topology.kubernetes.

pools can be consumed from.

—nas

nas-backend-us-centrall

8.5

/region: us-centrall
/zone: us—-centrall-a
/region: us-centrall

/zone: us-centrall-b

io/region: us-centrall

io/zone: us-centrall-a

io/region: us-centrall

io/zone: us-centrall-b

Step 2: Define StorageClasses that are topology aware

Based on the topology labels that are provided to the nodes in the cluster, StorageClasses can be defined to
contain topology information. This will determine the storage pools that serve as candidates for PVC requests
made, and the subset of nodes that can make use of the volumes provisioned by Trident.

See the following example:

232

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: netapp-san-us-eastl
provisioner: csi.trident.netapp.io
volumeBindingMode: WaitForFirstConsumer
allowedTopologies:
- matchLabelExpressions:
- key: topology.kubernetes.io/zone
values:
- us-eastl-a
- us-eastl-b
- key: topology.kubernetes.io/region
values:
- us-eastl
parameters:
fsType: "ext4d"

In the StorageClass definition provided above, volumeBindingMode is set to WaitForFirstConsumer.
PVCs that are requested with this StorageClass will not be acted upon until they are referenced in a pod. And,
allowedTopologies provides the zones and region to be used. The netapp-san-us-eastl1 StorageClass
creates PVCs on the san-backend-us-east1 backend defined above.

Step 3: Create and use a PVC

With the StorageClass created and mapped to a backend, you can now create PVCs.

See the example spec below:

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-san
spec:
accessModes:

- ReadWriteOnce
resources:

requests:

storage: 300Mi

storageClassName: netapp-san-us-eastl

Creating a PVC using this manifest would result in the following:

233

kubectl create -f pvc.yaml
persistentvolumeclaim/pvc-san created
kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

AGE

pvc-san Pending netapp-san-us-eastl

2s

kubectl describe pvc

Name: pvc-san

Namespace: default

StorageClass: netapp-san-us-eastl

Status: Pending

Volume:

Labels: <none>

Annotations: <none>

Finalizers: [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode: Filesystem

Mounted By: <none>

Events:
Type Reason Age From Message
Normal WaitForFirstConsumer ©6s persistentvolume-controller waiting

for first consumer to be created before binding

For Trident to create a volume and bind it to the PVC, use the PVC in a pod. See the following example:

234

apiVersion: vl
kind: Pod
metadata:
name: app-pod-1
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: topology.kubernetes.io/region
operator: In
values:
- us-eastl
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
preference:
matchExpressions:
- key: topology.kubernetes.io/zone
operator: In
values:
- us-eastl-a
- us-eastl-b
securityContext:
runAsUser: 1000
runAsGroup: 3000
fsGroup: 2000
volumes:
- name: voll
persistentVolumeClaim:
claimName: pvc-san
containers:
- name: sec-ctx-demo
image: busybox
command: ["sh", "-c", "sleep 1h"]
volumeMounts:
- name: voll
mountPath: /data/demo
securityContext:
allowPrivilegeEscalation: false

This podSpec instructs Kubernetes to schedule the pod on nodes that are present in the us-east1 region,
and choose from any node that is present in the us-eastl-a or us-eastl-b zones.

See the following output:

235

kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES

app-pod-1 1/1 Running 0 19s 192.168.25.131 node?2
<none> <none>

kubectl get pvc -o wide

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE VOLUMEMODE

pvc-san Bound pvc-ecblelal0-840c-463b-8b65-b3d033e2e62b 300Mi
RWO netapp-san-us-eastl 48s Filesystem

Update backends to include supportedTopologies

Pre-existing backends can be updated to include a list of supportedTopologies using tridentctl
backend update. This will not affect volumes that have already been provisioned, and will only be used for
subsequent PVCs.

Find more information

* Manage resources for containers
* nodeSelector
« Affinity and anti-affinity

¢ Taints and Tolerations

Work with snapshots

Kubernetes volume snapshots of Persistent Volumes (PVs) enable point-in-time copies of
volumes. You can create a snapshot of a volume created using Trident, import a snapshot
created outside of Trident, create a new volume from an existing snapshot, and recover
volume data from snapshots.

Overview

Volume snapshot is supported by ontap-nas, ontap-nas-flexgroup, ontap-san, ontap-san-
economy, solidfire-san, gcp-cvs, and azure-netapp-files drivers.

Before you begin

You must have an external snapshot controller and Custom Resource Definitions (CRDs) to work with
snapshots. This is the responsibility of the Kubernetes orchestrator (for example: Kubeadm, GKE, OpenShift).

If your Kubernetes distribution does not include the snapshot controller and CRDs, refer to Deploy a volume
shapshot controller.

(D Don’t create a snapshot controller if creating on-demand volume snapshots in a GKE
environment. GKE uses a built-in, hidden snapshot controller.

236

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Create a volume snapshot

Steps
1. Create a VolumeSnapshotClass. For more information, refer to VolumeSnapshotClass.

° The driver points to the Trident CSI driver.

° deletionPolicy can be Delete or Retain. When set to Retain, the underlying physical snapshot
on the storage cluster is retained even when the volumeSnapshot object is deleted.

Example

cat snap-sc.yaml
apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshotClass
metadata:

name: csi-snapclass
driver: csi.trident.netapp.io
deletionPolicy: Delete

2. Create a snapshot of an existing PVC.

Examples
o This example creates a snapshot of an existing PVC.

cat snap.yaml
apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshot
metadata:
name: pvcl-snap
spec:
volumeSnapshotClassName: csi-snapclass
source:
persistentVolumeClaimName: pvcl

° This example creates a volume snapshot object for a PVC named pvcl and the name of the snapshot
is set to pvcl-snap. A VolumeSnapshot is analogous to a PVC and is associated with a
VolumeSnapshotContent object that represents the actual snapshot.

kubectl create -f snap.yaml
volumesnapshot.snapshot.storage.k8s.io/pvcl-snap created

kubectl get volumesnapshots
NAME AGE
pvcl-snap 50s

° You can identify the volumeSnapshotContent object for the pvcl-snap VolumeSnapshot by

237

describing it. The Snapshot Content Name identifies the VolumeSnapshotContent object which
serves this snapshot. The Ready To Use parameter indicates that the snapshot can be used to
create a new PVC.

kubectl describe volumesnapshots pvcl-snap

Name: pvcl-snap
Namespace: default
Spec:
Snapshot Class Name: pvcl-snap
Snapshot Content Name: snapcontent-e8d8a0ca-9826-11e9-9807-
525400£3£660
Source:
API Group:
Kind: PersistentVolumeClaim
Name: pvcl
Status:
Creation Time: 2019-06-26T15:27:29%
Ready To Use: true
Restore Size: 3Gi

Create a PVC from a volume snapshot

You can use dataSource to create a PVC using a VolumeSnapshot named <pvc-name> as the source of the
data. After the PVC is created, it can be attached to a pod and used just like any other PVC.

@ The PVC will be created in the same backend as the source volume. Refer to KB: Creating a
PVC from a Trident PVC Snapshot cannot be created in an alternate backend.

The following example creates the PVC using pvcl-snap as the data source.

238

https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend

cat pvc-from-snap.yaml
apiVersion: vl
kind: PersistentVolumeClaim
metadata:

name: pvc-from-snap
spec:

accessModes:

- ReadWriteOnce
storageClassName: golden
resources:

requests:

storage: 3Gi
dataSource:

name: pvcl-snap

kind: VolumeSnapshot

apiGroup: snapshot.storage.k8s.io

Import a volume snapshot

Trident supports the Kubernetes pre-provisioned snapshot process to enable the cluster administrator to create
a VolumeSnapshotContent object and import snapshots created outside of Trident.

Before you begin
Trident must have created or imported the snapshot’s parent volume.

Steps

1. Cluster admin: Create a VolumeSnapshotContent object that references the backend snapshot. This
initiates the snapshot workflow in Trident.

° Specify the name of the backend snapshot in annotations as
trident.netapp.io/internalSnapshotName: <"backend-snapshot—-name">.

° Specify <name-of-parent-volume-in-trident>/<volume-snapshot-content-name> in
snapshotHandle. This is the only information provided to Trident by the external snapshotter in the
ListSnapshots call.

(D The <volumeSnapshotContentName> cannot always match the backend snapshot
name due to CR naming constraints.

Example

The following example creates a VolumeSnapshotContent object that references backend snapshot
snap-01.

239

https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static

apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshotContent
metadata:
name: import-snap-content
annotations:
trident.netapp.io/internalSnapshotName: "snap-01" # This is the
name of the snapshot on the backend
spec:
deletionPolicy: Retain
driver: csi.trident.netapp.io
source:
snapshotHandle: pvc-£71223b5-23b9-4235-bbfe-e269%9ac7b84b0/import-
snap-content # <import PV name or source PV name>/<volume-snapshot-
content—-name>
volumeSnapshotRef:
name: import-snap

namespace: default

2. Cluster admin: Create the VolumeSnapshot CR that references the volumeSnapshotContent object.
This requests access to use the VolumeSnapshot in a given namespace.

Example

The following example creates a VolumeSnapshot CR named import-snap that references the
VolumeSnapshotContent named import-snap-content.

apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshot
metadata:

name: import-snap
spec:

volumeSnapshotClassName: csi-snapclass (not required for pre-
provisioned or imported snapshots)

source:

volumeSnapshotContentName: import-snap-content

3. Internal processing (no action required): The external snapshotter recognizes the newly created
VolumeSnapshotContent and runs the ListSnapshots call. Trident creates the TridentSnapshot.

° The external snapshotter sets the VolumeSnapshotContent to readyToUse and the
VolumeSnapshot to true.

° Trident returns readyToUse=true.

4. Any user: Create a PersistentVolumeClaim to reference the new VvolumeSnapshot, where the
spec.dataSource (Or spec.dataSourceRef) name is the VolumeSnapshot name.

Example

240

The following example creates a PVC referencing the VolumeSnapshot named import-snap.

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: pvc-from-snap
spec:
accessModes:

- ReadWriteOnce
storageClassName: simple-sc
resources:

requests:

storage: 1Gi
dataSource:

name: import-snap

kind: VolumeSnapshot

apiGroup: snapshot.storage.k8s.io

Recover volume data using snapshots

The snapshot directory is hidden by default to facilitate maximum compatibility of volumes provisioned using
the ontap-nas and ontap-nas-economy drivers. Enable the . snapshot directory to recover data from
snapshots directly.

Use the volume snapshot restore ONTAP CLI to to restore a volume to a state recorded in a prior snapshot.

clusterl::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3 snap archive

@ When you restore a snapshot copy, the existing volume configuration is overwritten. Changes
made to volume data after the snapshot copy was created are lost.
In-place volume restoration from a snapshot

Trident provides rapid, in-place volume restoration from a snapshot using the
TridentActionSnapshotRestore (TASR) CR. This CR functions as an imperative Kubernetes action and
does not persist after the operation completes.

Trident supports snapshot restore on the ontap-san, ontap-san-economy, ontap-nas, ontap-nas-
flexgroup, azure-netapp-files, gcp-cvs, google-cloud-netapp-volumes, and solidfire-san
drivers.

Before you begin
You must have a bound PVC and available volume snapshot.

« Verify the PVC status is bound.

241

kubectl get pvc
« Verify the volume snapshot is ready to use.

kubectl get vs

Steps
1. Create the TASR CR. This example creates a CR for PVC pvc1 and volume snapshot pvcl-snapshot.

@ The TASR CR must be in a namespace where the PVC & VS exist.

cat tasr-pvcl-snapshot.yaml

apiVersion: trident.netapp.io/vl
kind: TridentActionSnapshotRestore
metadata:

name: trident-snap

namespace: trident
spec:

pvcName: pvcl

volumeSnapshotName: pvcl-snapshot

1. Apply the CR to restore from the snapshot. This example restores from snapshot pvci.

kubectl create -f tasr-pvcl-snapshot.yaml

tridentactionsnapshotrestore.trident.netapp.io/trident-snap created

Results
Trident restores the data from the snapshot. You can verify the snapshot restore status.

242

kubectl get tasr -o yaml

apiVersion: trident.netapp.io/vl
items:
- apiVersion: trident.netapp.io/vl
kind: TridentActionSnapshotRestore
metadata:
creationTimestamp: "2023-04-14T00:20:332Z"
generation: 3
name: trident-snap

namespace: trident

resourceVersion: "3453847"
uid: <uid>
spec:

pvcName: pvcl
volumeSnapshotName: pvcl-snapshot
status:

startTime: "2023-04-14T00:20:34z2"
completionTime: "2023-04-14T00:20:372"
state: Succeeded

kind: List

metadata:

resourceVersion:

* In most cases, Trident will not automatically retry the operation in case of failure. You will
(D need to perform the operation again.

* Kubernetes users without admin access might have to be granted permission by the admin
to create a TASR CR in their application namespace.
Delete a PV with associated snapshots

When deleting a Persistent Volume with associated snapshots, the corresponding Trident volume is updated to
a “Deleting state”. Remove the volume snapshots to delete the Trident volume.

Deploy a volume snapshot controller

If your Kubernetes distribution does not include the snapshot controller and CRDs, you can deploy them as
follows.

Steps
1. Create volume snapshot CRDs.

243

cat snapshot-setup.sh

#!/bin/bash

Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshotclasses.yaml
kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshotcontents.yam
1

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshots.yaml

2. Create the snapshot controller.

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-
controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-
controller/setup-snapshot-controller.yaml

(:) If necessary, open deploy/kubernetes/snapshot-controller/rbac-snapshot-
controller.yaml and update namespace to your namespace.

Related links

* Volume snapshots

* VolumeSnapshotClass

244

Manage and monitor Trident

Upgrade Trident

Upgrade Trident

Beginning with the 24.02 release, Trident follows a four-month release cadence,
delivering three major releases every calendar year. Each new release builds on the
previous releases and provides new features, performance enhancements, bug fixes, and
improvements. We encourage you to upgrade at least once a year to take advantage of
the new features in Trident.

Considerations before upgrading

When upgrading to the latest release of Trident, consider the following:
» There should be only one Trident instance installed across all the namespaces in a given Kubernetes
cluster.
* Trident 23.07 and later requires v1 volume snapshots and no longer supports alpha or beta snapshots.

* If you created Cloud Volumes Service for Google Cloud in the CVS service type, you must update the
backend configuration to use the standardsw or zoneredundantstandardsw service level when
upgrading from Trident 23.01. Failure to update the servicelLevel in the backend could cause volumes
to fail. Refer to CVS service type samples for details.

* When upgrading, it is important you provide parameter. fsType in StorageClasses used by Trident.
You can delete and re-create StorageClasses without disrupting pre-existing volumes.

o This is a requirement for enforcing security contexts for SAN volumes.

° The sample input directory contains examples, such as storage-class-basic.yaml.templ and
storage-class-bronze-default.yaml.

o For more information, refer to Known Issues.

Step 1: Select a version

Trident versions follow a date-based YY .MM naming convention, where "YY" is the last two digits of the year
and "MM" is the month. Dot releases follow a YY.MM. X convention, where "X" is the patch level. You will select
the version to upgrade to based on the version you are upgrading from.

* You can perform a direct upgrade to any target release that is within a four-release window of your installed
version. For example, you can directly upgrade from 23.04 (or any 23.04 dot release) to 24.06.

« If you are upgrading from a release outside of the four-release window, perform a multi-step upgrade. Use
the upgrade instructions for the earlier version you are upgrading from to upgrade to the most recent
release that fits the four-release window. For example, if you are running 22.01 and want to upgrade to
24.06:

1. First upgrade from 22.07 to 23.04.
2. Then upgrade from 23.04 to 24.06.

245

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://github.com/NetApp/trident/tree/master/trident-installer/sample-input
https://github.com/NetApp/trident/blob/master/trident-installer/sample-input/storage-class-samples/storage-class-basic.yaml.templ
https://github.com/NetApp/trident/blob/master/trident-installer/sample-input/storage-class-samples/storage-class-bronze-default.yaml

When upgrading using the Trident operator on OpenShift Container Platform, you should
upgrade to Trident 21.01.1 or later. The Trident operator released with 21.01.0 contains a known
issue that has been fixed in 21.01.1. For more details, refer to the issue details on GitHub.

Step 2: Determine the original installation method

To determine which version you used to originally install Trident:

1. Use kubectl get pods -n trident to examine the pods.

° If there is no operator pod, Trident was installed using tridentctl.

o If there is an operator pod, Trident was installed using the Trident operator either manually or using
Helm.

2. If there is an operator pod, use kubectl describe torc to determine if Trident was installed using
Helm.

o If there is a Helm label, Trident was installed using Helm.

o If there is no Helm label, Trident was installed manually using the Trident operator.

Step 3: Select an upgrade method

Generally, you should upgrade using the same method you used for the initial installation, however you can
move between installation methods. There are two options to upgrade Trident.

» Upgrade using the Trident operator

We suggest you review Understand the operator upgrade workflow before upgrading with
the operator.

* Upgrade using tridentctl

Upgrade with the operator

Understand the operator upgrade workflow

Before using the Trident operator to upgrade Trident, you should understand the
background processes that occur during upgrade. This includes changes to the Trident
controller, controller Pod and node Pods, and node DaemonSet that enable rolling
updates.

Trident operator upgrade handling

One of the many benefits of using the Trident operator to install and upgrade Trident is the automatic handling
of Trident and Kubernetes objects without disrupting existing mounted volumes. In this way, Trident can
support upgrades with zero downtime, or rolling updates. In particular, the Trident operator communicates with
the Kubernetes cluster to:

* Delete and recreate the Trident Controller deployment and node DaemonSet.

* Replace the Trident Controller Pod and Trident Node Pods with new versions.

o If a node is not updated, it does not prevent remaining nodes from being updated.

246

https://github.com/NetApp/trident/issues/517
https://docs.netapp.com/us-en/trident-2410/trident-get-started/kubernetes-deploy.html#moving-between-installation-methods
https://docs.netapp.com/us-en/trident-2410/trident-get-started/kubernetes-deploy.html
https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/

> Only nodes with a running Trident Node Pod can mount volumes.

For more information about Trident architecture on the Kubernetes cluster, refer to Trident
architecture.

Operator upgrade workflow

When you initiate an upgrade using the Trident operator:

1. The Trident operator:
a. Detects the currently installed version of Trident (version n).
b. Updates all Kubernetes objects including CRDs, RBAC, and Trident SVC.
c. Deletes the Trident Controller deployment for version n.
d. Creates the Trident Controller deployment for version n+17.
2. Kubernetes creates Trident Controller Pod for n+1.
3. The Trident operator:
a. Deletes the Trident Node DaemonSet for n. The operator does not wait for Node Pod termination.
b. Creates the Trident Node Daemonset for n+17.

4. Kubernetes creates Trident Node Pods on nodes not running Trident Node Pod n. This ensures there is
never more than one Trident Node Pod, of any version, on a node.

Upgrade a Trident installation using Trident operator or Helm

You can upgrade Trident using the Trident operator either manually or using Helm. You
can upgrade from a Trident operator installation to another Trident operator installation or
upgrade from a tridentctl installation to a Trident operator version. Review Select an
upgrade method before upgrading a Trident operator installation.

Upgrade a manual installation

You can upgrade from a cluster-scoped Trident operator installation to another cluster-scoped Trident operator
installation. All Trident versions 21.01 and above use a cluster-scoped operator.

@ To upgrade from Trident that was installed using the namespace-scoped operator (versions
20.07 through 20.10), use the upgrade instructions for your installed version of Trident.

About this task

Trident provides a bundle file you can use to install the operator and create associated objects for your
Kubernetes version.

* For clusters running Kubernetes 1.24, use bundle pre 1 25.yaml.

* For clusters running Kubernetes 1.25 or later, use bundle_post 1 25.yaml.

Before you begin
Ensure you are using a Kubernetes cluster running a supported Kubernetes version.

Steps

247

https://docs.netapp.com/us-en/trident-2410/trident-managing-k8s/trident-concepts/intro.html#trident-architecture
https://docs.netapp.com/us-en/trident-2410/trident-managing-k8s/trident-concepts/intro.html#trident-architecture
https://github.com/NetApp/trident/tree/stable/v24.10/deploy/bundle_pre_1_25.yaml
https://github.com/NetApp/trident/tree/stable/v24.10/deploy/bundle_post_1_25.yaml

. Verify your Trident version:

./tridentctl -n trident version

. Delete the Trident operator that was used to install the current Trident instance. For example, if you are

upgrading from 23.07, run the following command:

kubectl delete -f 23.07.0/trident-installer/deploy/<bundle.yaml> -n
trident

If you customized your initial installation using TridentOrchestrator attributes, you can edit the
TridentOrchestrator object to modify the installation parameters. This might include changes made to
specify mirrored Trident and CSI image registries for offline mode, enable debug logs, or specify image pull
secrets.

Install Trident using the correct bundle YAML file for your environment, where <bundle.yaml> is
bundle pre 1 25.yaml orbundle post 1 25.yaml based on your Kubernetes version. For
example, if you are installing Trident 24.10, run the following command:

kubectl create -f 24.10.0/trident-installer/deploy/<bundle.yaml> -n
trident

Upgrade a Helm installation

You can upgrade a Trident Helm installation.

When upgrading a Kubernetes cluster from 1.24 to 1.25 or later that has Trident installed, you

(D must update values.yaml to set excludePodSecurityPolicy to true oradd --set

excludePodSecurityPolicy=true tothe helm upgrade command before you can
upgrade the cluster.

If you have already upgraded your Kubernetes cluster from 1.24 to 1.25 without upgrading the Trident helm,

the

1.
2.

3.

248

helm upgrade fails. For the helm upgrade to go through, perform these steps as pre-requisites:

Install the helm-mapkubeapis plugin from https://github.com/helm/helm-mapkubeapis.

Perform a dry run for the Trident release in the namespace where Trident is installed. This lists out the
resources, which will be cleaned up.

helm mapkubeapis --dry-run trident --namespace trident

Perform a full run with helm to do the cleanup.

helm mapkubeapis trident --namespace trident

https://github.com/helm/helm-mapkubeapis

Steps

1. If you installed Trident using Helm, you can use helm upgrade trident netapp-
trident/trident-operator --version 100.2410.0 to upgrade in one step. If you did not add the
Helm repo or cannot use it to upgrade:

a. Download the latest Trident release from the Assets section on GitHub.

b. Use the helm upgrade command where trident-operator-24.10.0.tgz reflects the version
that you want to upgrade to.

helm upgrade <name> trident-operator-24.10.0.tgz

If you set custom options during the initial installation (such as specifying private,

(D mirrored registries for Trident and CSl images), append the helm upgrade command
using —-set to ensure those options are included in the upgrade command, otherwise
the values will reset to default.

2. Run helm 1list to verify that the chart and app version have both been upgraded. Run tridentctl
logs to review any debug messages.

Upgrade from a tridentctl installation to Trident operator

You can upgrade to the latest release of the Trident operator from a tridentctl installation. The existing
backends and PVCs will automatically be available.

(D Before switching between installation methods, review Moving between installation methods.

Steps
1. Download the latest Trident release.

Download the release required [24.10.0]

mkdir 24.10.0

cd 24.10.0

wget
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-
installer-24.10.0.tar.gz

tar -xf trident-installer-24.10.0.tar.gz

cd trident-installer

2. Create the tridentorchestrator CRD from the manifest.

kubectl create -f
deploy/crds/trident.netapp.io tridentorchestrators crd postl.l6.yaml

3. Deploy the cluster-scoped operator in the same namespace.

249

https://docs.netapp.com/us-en/trident-2410/trident-get-started/kubernetes-deploy-helm.html#deploy-the-trident-operator-and-install-trident-using-helm
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest
https://docs.netapp.com/us-en/trident-2410/trident-get-started/kubernetes-deploy.html#moving-between-installation-methods

kubectl create -f deploy/<bundle-name.yaml>

serviceaccount/trident-operator created

clusterrole.rbac.authorization.k8s.io/trident-operator created

clusterrolebinding.rbac.authorization.k8s.io/trident-operator created

deployment.apps/trident-operator created
podsecuritypolicy.policy/tridentoperatorpods created

#Examine the pods in the Trident namespace

NAME READY STATUS RESTARTS
trident-controller-79df798bdc-m79dc 6/6 Running 0
trident-node-linux-xrst8 2/2 Running 0
trident-operator-5574dbbc68-nthijv 1/1 Running 0

4. Create a TridentOrchestrator CR for installing Trident.

cat deploy/crds/tridentorchestrator cr.yaml
apiVersion: trident.netapp.io/vl
kind: TridentOrchestrator
metadata:
name: trident
spec:
debug: true
namespace: trident

kubectl create -f deploy/crds/tridentorchestrator cr.yaml

#Examine the pods in the Trident namespace

NAME READY STATUS RESTARTS
trident-csi-79d£f798bdc-m79dc 6/6 Running 0
trident-csi-xrst8 2/2 Running 0
trident-operator-5574dbbc68-nthijv 1/1 Running 0

5. Confirm Trident was upgraded to the intended version.

250

kubectl describe torc trident | grep Message -A 3

Message: Trident installed
Namespace: trident

Status: Installed
Version: v24.10.0

AGE
150d
150d
1m30s

AGE
Im
Im
5m4dls

Upgrade with tridentctl
You can easily upgrade an existing Trident installation using tridentctl.

About this task

Uninstalling and reinstalling Trident acts as an upgrade. When you uninstall Trident, the Persistent Volume
Claim (PVC) and Persistent Volume (PV) used by the Trident deployment are not deleted. PVs that have
already been provisioned will remain available while Trident is offline, and Trident will provision volumes for any
PVCs that are created in the interim after it is back online.

Before you begin

Review Select an upgrade method before upgrading using tridentctl.

Steps

1. Run the uninstall command in tridentctl to remove all of the resources associated with Trident except
for the CRDs and related objects.

./tridentctl uninstall -n <namespace>

2. Reinstall Trident. Refer to Install Trident using tridentctl.

@ Do not interrupt the upgrade process. Ensure the installer runs to completion.

Manage Trident using tridentctl

The Trident installer bundle includes the tridentctl command-line utility to provide
simple access to Trident. Kubernetes users with sufficient privileges can use it to install
Trident or manage the namespace that contains the Trident pod.

Commands and global flags

You canrun tridentctl help to get a list of available commands for tridentctl or append the --help
flag to any command to get a list of options and flags for that specific command.

tridentctl [command] [--optional-flag]

The Trident tridentctl utility supports the following commands and global flags.

251

https://docs.netapp.com/us-en/trident-2410/trident-get-started/kubernetes-deploy-tridentctl.html
https://github.com/NetApp/trident/releases

Commands

create

Add a resource to Trident.

delete
Remove one or more resources from Trident.

get
Get one or more resources from Trident.

help
Help about any command.

images

Print a table of the container images Trident needs.

import

Import an existing resource to Trident.

install

Install Trident.

logs
Print the logs from Trident.

send

Send a resource from Trident.

uninstall

Uninstall Trident.

update
Modify a resource in Trident.

update backend state
Temporarily suspend backend operations.

upgrade
Upgrade a resource in Trident.

version

Print the version of Trident.

252

Global flags

-d, --debug
Debug output.

-h, --help
Help for tridentctl.

-k, -—kubeconfig string

Specify the KUBECONFIG path to run commands locally or from one Kubernetes cluster to another.

@ Alternatively, you can export the KUBECONFIG variable to point to a specific Kubernetes

cluster and issue tridentctl commands to that cluster.

-n, --namespace string

Namespace of Trident deployment.

-0, ——output string

Output format. One of json|yaml|name|wide|ps (default).

-s, --server string

Address/port of Trident REST interface.

(D Trident REST interface can be configured to listen and serve at 127.0.0.1 (for IPv4) or

[::1] (for IPv6) only.

Command options and flags

create

Use the create command to add a resource to Trident.
tridentctl create [option]

Options
backend: Add a backend to Trident.

delete

Use the delete command to remove one or more resources from Trident.
tridentctl delete [option]

Options

backend: Delete one or more storage backends from Trident.
snapshot: Delete one or more volume snapshots from Trident.
storageclass: Delete one or more storage classes from Trident.
volume: Delete one or more storage volumes from Trident.

253

get

Use the get command to get one or more resources from Trident.
tridentctl get [option]

Options

backend: Get one or more storage backends from Trident.
snapshot: Get one or more snapshots from Trident.
storageclass: Get one or more storage classes from Trident.
volume: Get one or more volumes from Trident.

Flags

-h, --help: Help for volumes.
--parentOfSubordinate string: Limit query to subordinate source volume.
--subordinateOf string: Limit query to subordinates of volume.

images
Use images flags to print a table of the container images Trident needs.
tridentctl images [flags]

Flags

-h, ——help: Help for images.
-v, --k8s-version string: Semantic version of Kubernetes cluster.

import volume

Use the import volume command to import an existing volume to Trident.
tridentctl import volume <backendName> <volumeName> [flags]

Aliases

volume, v

Flags

-f, --filename string: Path to YAML or JSON PVC file.
-h, -—help: Help for volume.
--no-manage: Create PV/PVC only. Don’t assume volume lifecycle management.

install
Use the install flags to install Trident.
tridentctl install [flags]

Flags

--autosupport-image string: The container image for Autosupport Telemetry (default "netapp/trident
autosupport:<current-version>").
--autosupport-proxy string: The address/port of a proxy for sending Autosupport Telemetry.

254

--enable-node-prep: Attempt to install required packages on nodes.

--generate-custom-yaml: Generate YAML files without installing anything.

-h, --help: Help for install.

--http-request-timeout: Override the HTTP request timeout for Trident controller's REST API (default
1m30s).

--image-registry string: The address/port of an internal image registry.

--k8s-timeout duration: The timeout for all Kubernetes operations (default 3m0s).
--kubelet-dir string: The host location of kubelet’s internal state (default "/var/lib/kubelet").
--log-format string: The Trident logging format (text, json) (default "text").

--node-prep: Enables Trident to prepare the nodes of the Kubernetes cluster to manage volumes using
the specified data storage protocol. Currently, iscsi is the only value supported.

--pv string: The name of the legacy PV used by Trident, makes sure this doesn’t exist (default
"trident").

--pvc string: The name of the legacy PVC used by Trident, makes sure this doesn’t exist (default
"trident").

--silence-autosupport: Don't send autosupport bundles to NetApp automatically (default true).
--silent: Disable most output during installation.

--trident-image string: The Trident image to install.

--use-custom-yaml: Use any existing YAML files that exist in setup directory.

--use-ipvé6: Use IPv6 for Trident's communication.

logs
Use logs flags to print the logs from Trident.
tridentctl logs [flags]

Flags

-a, ——archive: Create a support archive with all logs unless otherwise specified.

-h, -—help: Help for logs.

-1, -—-log string: Trident log to display. One of trident|auto|trident-operator|all (default "auto").
--node string: The Kubernetes node name from which to gather node pod logs.

-p, ——previous: Get the logs for the previous container instance if it exists.

--sidecars: Get the logs for the sidecar containers.

send
Use the send command to send a resource from Trident.
tridentctl send [option]

Options
autosupport: Send an Autosupport archive to NetApp.

uninstall

Use uninstall flags to uninstall Trident.

tridentctl uninstall [flags]

255

Flags

-h, --help: Help for uninstall.
--silent: Disable most output during uninstall.

update

Use the update command to modify a resource in Trident.
tridentctl update [option]

Options
backend: Update a backend in Trident.

update backend state

Use the update backend state command to suspend or resume backend operations.

tridentctl update backend state <backend-name> [flag]

Points to consider

« If a backend is created using a TridentBackendConfig (tbc), the backend cannot be updated using a
backend. json file.

* If the userState has been set in a tbc, it cannot be modified using the tridentctl update backend
state <backend-name> --user-state suspended/normal command.

* To regain the ability to set the usersState via tridentctl after it has been set via tbc, the userstate field
must be removed from the tbc. This can be done using the kubectl edit tbc command. After the
userState field is removed, you can use the tridentctl update backend state command to
change the userState of a backend.

* Use the tridentctl update backend state to change the userState. You can also update the
userState using TridentBackendConfig or backend. json file; this triggers a complete re-
initialization of the backend and can be time-consuming.

Flags

-h, --help: Help for backend state.
--user-state: Setto suspended to pause backend operations. Set to normal to resume backend
operations. When set to suspended:

* AddVolume and Import Volume are paused.

®* CloneVolume, ResizeVolume, PublishVolume, UnPublishVolume, CreateSnapshot,
GetSnapshot, RestoreSnapshot, DeleteSnapshot, RemoveVolume, GetVolumeExternal,
ReconcileNodeAccess remain available.

You can also update the backend state using userState field in the backend configuration file
TridentBackendConfig or backend. json.

For more information, refer to Options for managing backends and Perform backend management with
kubectl.

Example:

256

JSON

Follow these steps to update the userState using the backend. json file:

1. Edit the backend. json file to include the usersState field with its value set to 'suspended'.

2. Update the backend using the tridentctl backend update command and the path to the
updated backend. json file.

Example: tridentctl backend update -f /<path to backend JSON
file>/backend. json

"version": 1,
"storageDriverName": "ontap-nas",
"managementLIF": "<redacted>",
"svm": "nas-svm",

"backendName": "customBackend",
"username": "<redacted>",
"password": "<redacted>",
"userState": "suspended",

YAML

You can edit the tbc after it has been applied using the kubectl edit <tbc-name> -n
<namespace> command

The following example updates the backend state to suspend using the userState: suspended
option:

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: backend-ontap-nas
spec:
version: 1
backendName: customBackend
storageDriverName: ontap-nas
managementLIF: <redacted>
svm: nas-svm
userState: suspended
credentials:
name: backend-tbc-ontap-nas-secret

257

version

Use version flags to print the version of tridentctl and the running Trident service.
tridentctl version [flags]

Flags

--client: Client version only (no server required).
-h, --help: Help for version.

Plugin support

Tridentctl supports plugins similar to kubectl. Tridentctl detects a plugin if the plugin binary file name follows the
scheme "tridentctl-<plugin>", and the binary is located in a folder listed the PATH environment variable. All the
detected plugins are listed in the plugin section of the tridentctl help. Optionally, you can also limit the search
by specifying a plugin folder in the the enviornment variable TRIDENTCTL_PLUGIN_PATH (Example:
TRIDENTCTL PLUGIN PATH=~/tridentctl-plugins/). If the variable is used, tridenctl searches only in
the specified folder.

Monitor Trident

Trident provides a set of Prometheus metrics endpoints that you can use to monitor
Trident performance.

Overview
The metrics provided by Trident enable you to do the following:
» Keep tabs on Trident’s health and configuration. You can examine how successful operations are and if it

can communicate with the backends as expected.

* Examine backend usage information and understand how many volumes are provisioned on a backend
and the amount of space consumed, and so on.

* Maintain a mapping of the amount of volumes provisioned on available backends.

« Track performance. You can take a look at how long it takes for Trident to communicate to backends and
perform operations.

@ By default, Trident’'s metrics are exposed on the target port 8001 at the /metrics endpoint.
These metrics are enabled by default when Trident is installed.

What you’ll need
* A Kubernetes cluster with Trident installed.

* A Prometheus instance. This can be a containerized Prometheus deployment or you can choose to run
Prometheus as a native application.

Step 1: Define a Prometheus target

You should define a Prometheus target to gather the metrics and obtain information about the backends
Trident manages, the volumes it creates, and so on. This blog explains how you can use Prometheus and
Grafana with Trident to retrieve metrics. The blog explains how you can run Prometheus as an operator in your
Kubernetes cluster and the creation of a ServiceMonitor to obtain Trident metrics.

258

https://github.com/prometheus-operator/prometheus-operator
https://prometheus.io/download/
https://netapp.io/2020/02/20/prometheus-and-trident/

Step 2: Create a Prometheus ServiceMonitor

To consume the Trident metrics, you should create a Prometheus ServiceMonitor that watches the trident-
csi service and listens on the metrics port. A sample ServiceMonitor looks like this:

apiVersion: monitoring.coreos.com/v1l
kind: ServiceMonitor
metadata:

name: trident-sm

namespace: monitoring

labels:

release: prom-operator

spec:
jobLabel: trident
selector:
matchLabels:

app: controller.csi.trident.netapp.io
namespaceSelector:
matchNames:
- trident
endpoints:
- port: metrics

interval: 15s

This ServiceMonitor definition retrieves metrics returned by the trident-csi service and specifically looks
for the metrics endpoint of the service. As a result, Prometheus is now configured to understand Trident’s

metrics.
In addition to metrics available directly from Trident, kubelet exposes many kubelet volume * metrics via

it's own metrics endpoint. Kubelet can provide information about the volumes that are attached, and pods and
other internal operations it handles. Refer to here.

Step 3: Query Trident metrics with PromQL
PromQL is good for creating expressions that return time-series or tabular data.

Here are some PromQL queries that you can use:

Get Trident health information

* Percentage of HTTP 2XX responses from Trident

(sum (trident rest ops seconds total count{status code=~"2.."} OR on()
vector (0)) / sum (trident rest ops seconds total count)) * 100

* Percentage of REST responses from Trident via status code

259

https://kubernetes.io/docs/concepts/cluster-administration/monitoring/

(sum (trident rest ops seconds total count) by (status code) / scalar
(sum (trident rest ops seconds_ total count))) * 100

* Average duration in ms of operations performed by Trident

sum by (operation)

(trident operation duration milliseconds sum{success="true"}) / sum by
(operation)

(trident operation duration milliseconds_ count{success="true"})

Get Trident usage information

* Average volume size
trident volume allocated bytes/trident volume count
» Total volume space provisioned by each backend

sum (trident volume allocated bytes) by (backend uuid)

Get individual volume usage

(D This is enabled only if kubelet metrics are also gathered.

* Percentage of used space for each volume

kubelet volume stats used bytes / kubelet volume stats capacity bytes *
100

Learn about Trident AutoSupport telemetry

By default, Trident sends Prometheus metrics and basic backend information to NetApp on a daily cadence.

 To stop Trident from sending Prometheus metrics and basic backend information to NetApp, pass the
--silence-autosupport flag during Trident installation.

* Trident can also send container logs to NetApp Support on-demand via tridentctl send
autosupport. You will need to trigger Trident to upload it's logs. Before you submit logs, you should
accept NetApp’s
privacy policy.

* Unless specified, Trident fetches the logs from the past 24 hours.

* You can specify the log retention time frame with the --since flag. For example: tridentctl send
autosupport --since=1h. This information is collected and sent via a trident-autosupport

260

https://www.netapp.com/company/legal/privacy-policy/

container
that is installed alongside Trident. You can obtain the container image at Trident AutoSupport.

 Trident AutoSupport does not gather or transmit Personally Identifiable Information (PIl) or Personal
Information. It comes with a EULA that is not applicable to the Trident container image itself. You can learn
more about NetApp’s commitment to data security and trust here.

An example payload sent by Trident looks like this:

items:
- backendUUID: ff£f3852el-18a5-4df4-b2d3-£59f829627ed
protocol: file
config:
version: 1
storageDriverName: ontap-nas
debug: false
debugTraceFlags:
disableDelete: false
serialNumbers:
- nwkvzfanek SN
limitVolumeSize: "'
state: online

online: true

* The AutoSupport messages are sent to NetApp’s AutoSupport endpoint. If you are using a private registry
to store container images, you can use the --image-registry flag.

* You can also configure proxy URLs by generating the installation YAML files. This can be done by using
tridentctl install --generate-custom-yaml to create the YAML files and adding the --proxy
—-url argument for the trident-autosupport containerin trident-deployment.yaml.

Disable Trident metrics

To disable metrics from being reported, you should generate custom YAMLs (using the -—generate-custom
-yaml flag) and edit them to remove the --metrics flag from being invoked for the trident-main
container.

Uninstall Trident

You should use the same method to uninstall Trident that you used to install Trident.

About this task

« If you need a fix for bugs observed after an upgrade, dependency issues, or an unsuccessful or incomplete
upgrade, you should uninstall Trident and reinstall the earlier version using the specific instructions for that
version. This is the only recommended way to downgrade to an earlier version.

* For easy upgrade and reinstallation, uninstalling Trident does not remove the CRDs or related objects
created by Trident. If you need to completely remove Trident and all of its data, refer to Completely remove
Trident and CRDs.

261

https://hub.docker.com/r/netapp/trident-autosupport
https://www.netapp.com/us/media/enduser-license-agreement-worldwide.pdf
https://www.netapp.com/pdf.html?item=/media/14114-enduserlicenseagreementworldwidepdf.pdf

Before you begin

If you are decommissioning Kubernetes clusters, you must delete all applications that use volumes created by
Trident prior to uninstalling. This ensures that PVCs are unpublished on Kubernetes nodes before they are
deleted.

Determine the original installation method

You should use the same method to uninstall Trident that you used to install it. Before uninstalling, verify which
version you used to originally install Trident.

1. Use kubectl get pods -n trident to examine the pods.
° If there is no operator pod, Trident was installed using tridentctl.

o If there is an operator pod, Trident was installed using the Trident operator either manually or using
Helm.

2. If there is an operator pod, use kubectl describe tproc trident to determine if Trident was
installed using Helm.

o If there is a Helm label, Trident was installed using Helm.

o If there is no Helm label, Trident was installed manually using the Trident operator.

Uninstall a Trident operator installation

You can uninstall a trident operator installation manually or using Helm.

Uninstall manual installation

If you installed Trident using the operator, you can uninstall it by doing one of the following:
1. Edit TridentOrchestrator CR and set the uninstall flag:

kubectl patch torc <trident-orchestrator-name> --type=merge -p
'"{"spec":{"uninstall":true}}"'

When the uninstall flag is set to true, the Trident operator uninstalls Trident, but does not remove the
TridentOrchestrator itself. You should clean up the TridentOrchestrator and create a new one if you want to
install Trident again.

2. Delete TridentOrchestrator: By removing the TridentOrchestrator CR that was used to deploy
Trident, you instruct the operator to uninstall Trident. The operator processes the removal of

TridentOrchestrator and proceeds to remove the Trident deployment and daemonset, deleting the
Trident pods it had created as part of the installation.

kubectl delete -f deploy/<bundle.yaml> -n <namespace>

Uninstall Helm installation

If you installed Trident by using Helm, you can uninstall it by using helm uninstall.

262

#List the Helm release corresponding to the Trident install.
helm 1ls -n trident

NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION

trident trident 1 2021-04-20
00:26:42.417764794 +0000 UTC deployed trident-operator-21.07.1
21.07.1

#Uninstall Helm release to remove Trident
helm uninstall trident -n trident
release "trident" uninstalled

Uninstall a tridentctl installation

Use the uninstall command in tridentctl to remove all of the resources associated with Trident except
for the CRDs and related objects:

./tridentctl uninstall -n <namespace>

263

Trident for Docker

Prerequisites for deployment

You have to install and configure the necessary protocol prerequisites on your host before
you can deploy Trident.

Verify the requirements

« Verify that your deployment meets all of the requirements.

« Verify that you have a supported version of Docker installed. If your Docker version is out of date, install or
update it.

docker —--version

« Verify that the protocol prerequisites are installed and configured on your host.

NFS tools

Install the NFS tools using the commands for your operating system.

RHEL 8+

sudo yum install -y nfs-utils

Ubuntu

sudo apt-get install -y nfs-common

(D Reboot your worker nodes after installing the NFS tools to prevent failure when attaching
volumes to containers.

iSCSI tools

Install the iISCSI tools using the commands for your operating system.

264

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

RHEL 8+
1. Install the following system packages:

sudo yum install -y lsscsi iscsi-initiator-utils sg3 utils device-
mapper-multipath

2. Check that iscsi-initiator-utils version is 6.2.0.874-2.el7 or later:
rpm —-gq iscsi-initiator-utils
3. Set scanning to manual:

sudo sed -i 's/"\ (node.session.scan\).*/\1 = manual/'
/etc/iscsi/iscsid.conf

4. Enable multipathing:

sudo mpathconf --enable --with multipathd y --find multipaths n

(:) Ensure etc/multipath.conf contains find multipaths no under defaults.

5. Ensure that iscsid and multipathd are running:
sudo systemctl enable --now iscsid multipathd
6. Enable and start iscsi:

sudo systemctl enable --now iscsi

Ubuntu
1. Install the following system packages:

sudo apt-get install -y open-iscsi lsscsi sg3-utils multipath-tools
scsitools

2. Check that open-iscsi version is 2.0.874-5ubuntu2.10 or later (for bionic) or 2.0.874-7.1ubuntu6.1 or
later (for focal):

265

dpkg -1 open-iscsi
3. Set scanning to manual:

sudo sed -1 's/”\ (node.session.scan\).*/\1 = manual/'

/etc/iscsi/iscsid.conf
4. Enable multipathing:

sudo tee /etc/multipath.conf <<-EOF
defaults {

user friendly names yes

find multipaths no

}

EQOF

sudo systemctl enable --now multipath-tools.service
sudo service multipath-tools restart

(:) Ensure etc/multipath.conf contains find multipaths no under defaults.

5. Ensure that open-iscsi and multipath-tools are enabled and running:

sudo systemctl status multipath-tools
sudo systemctl enable --now open-iscsi.service
sudo systemctl status open-iscsi

NVMe tools

Install the NVMe tools using the commands for your operating system.

* NVMe requires RHEL 9 or later.

@ « If the kernel version of your Kubernetes node is too old or if the NVMe package is not
available for your kernel version, you might have to update the kernel version of your node
to one with the NVMe package.

266

RHEL 9

sudo yum install nvme-cli
sudo yum install linux-modules-extra-$ (uname -r)

sudo modprobe nvme-tcp

Ubuntu

sudo apt install nvme-cli
sudo apt -y install linux-modules-extra-$ (uname -r)
sudo modprobe nvme-tcp

Deploy Trident

Trident for Docker provides direct integration with the Docker ecosystem for NetApp
storage platforms. It supports the provisioning and management of storage resources
from the storage platform to Docker hosts, with a framework for adding additional
platforms in the future.

Multiple instances of Trident can run concurrently on the same host. This allows simultaneous connections to
multiple storage systems and storage types, with the ablity to customize the storage used for the Docker

volumes.

What you’ll need

See the prerequisites for deployment. After you ensure the prerequisites are met, you are ready to deploy
Trident.

Docker managed plugin method (version 1.13/17.03 and later)

Before you begin

@ If you have used Trident pre Docker 1.13/17.03 in the traditional daemon method, ensure that
you stop the Trident process and restart your Docker daemon before using the managed plugin
method.

1. Stop all running instances:

pkill /usr/local/bin/netappdvp
pkill /usr/local/bin/trident

2. Restart Docker.

systemctl restart docker

267

3. Ensure that you have Docker Engine 17.03 (new 1.13) or later installed.

docker —--version

If your version is out of date, install or update your installation.

Steps
1. Create a configuration file and specify the options as follows:

° config: The default filename is config. json, however you can use any name you choose by
specifying the config option with the filename. The configuration file must be located in the
/etc/netappdvp directory on the host system.

° log-level: Specify the logging level (debug, info, warn, error, fatal). The defaultis info.

° debug: Specify whether debug logging is enabled. Default is false. Overrides log-level if true.

a. Create a location for the configuration file:

sudo mkdir -p /etc/netappdvp

b. Create the configuration file:

cat << EOF > /etc/netappdvp/config.json

"version": 1,
"storageDriverName": "ontap-nas",
"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.2",

"svm": "svm nfs",

"username": "vsadmin",
"password": "password",
"aggregate": "aggrl"

EOF

2. Start Trident using the managed plugin system. Replace <version> with the plugin version (xxx.xx.x) you
are using.

docker plugin install --grant-all-permissions --alias netapp
netapp/trident-plugin:<version> config=myConfigFile.json

3. Begin using Trident to consume storage from the configured system.

a. Create a volume named "firstVolume":

268

https://docs.docker.com/engine/install/

docker volume create -d netapp --name firstVolume
b. Create a default volume when the container starts:

docker run --rm -it --volume-driver netapp --volume
secondVolume:/my vol alpine ash

c. Remove the volume "firstVolume":
docker volume rm firstVolume

Traditional method (version 1.12 or earlier)

Before you begin
1. Ensure that you have Docker version 1.10 or later.

docker --version
If your version is out of date, update your installation.
curl -fsSL https://get.docker.com/ | sh

Or, follow the instructions for your distribution.

2. Ensure that NFS and/or iSCSI is configured for your system.

Steps
1. Install and configure the NetApp Docker Volume Plugin:

a. Download and unpack the application:

wget

https://github.com/NetApp/trident/releases/download/v24.10.0/trident-
installer-24.10.0.tar.gz

tar zxf trident-installer-24.10.0.tar.gz

b. Move to a location in the bin path:

269

https://docs.docker.com/engine/install/

sudo mv trident-installer/extras/bin/trident /usr/local/bin/
sudo chown root:root /usr/local/bin/trident
sudo chmod 755 /usr/local/bin/trident

c. Create a location for the configuration file:

sudo mkdir -p /etc/netappdvp

d. Create the configuration file:

cat << EOF > /etc/netappdvp/ontap-nas.json
{

"version": 1,
"storageDriverName": "ontap-nas",
"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.2",

"svm": "svm nfs",

"username": "vsadmin",
"password": "password",
"aggregate": "aggrl"

EOF

2. After placing the binary and creating the configuration file, start the Trident daemon using the desired
configuration file.

sudo trident --config=/etc/netappdvp/ontap-nas.json

@ Unless specified, the default name for the volume driver is "netapp".

After the daemon is started, you can create and manage volumes by using the Docker CLlI interface

3. Create a volume:
docker volume create -d netapp --name trident 1
4. Provision a Docker volume when starting a container:
docker run --rm -it --volume-driver netapp --volume trident 2:/my vol

alpine ash

270

5. Remove a Docker volume:

docker volume rm trident 1
docker volume rm trident 2

Start Trident at system startup

A sample unit file for systemd based systems can be found at contrib/trident.service.example in the
Git repo. To use the file with RHEL, do the following:

1. Copy the file to the correct location.

You should use unique names for the unit files if you have more than one instance running.

cp contrib/trident.service.example
/usr/lib/systemd/system/trident.service

2. Edit the file, change the description (line 2) to match the driver name and the configuration file path (line 9)
to reflect your environment.

3. Reload systemd for it to ingest changes:
systemctl daemon-reload

4. Enable the service.

This name varies depending on what you named the file in the /usr/1ib/systemd/system directory.
systemctl enable trident
5. Start the service.
systemctl start trident
6. View the status.

systemctl status trident

@ Any time you modify the unit file, run the systemctl daemon-reload command for it to be
aware of the changes.

271

Upgrade or uninstall Trident

You can safely upgrade Trident for Docker without any impact to volumes that are in use.
During the upgrade process there will be a brief period where docker volume
commands directed at the plugin will not succeed, and applications will be unable to
mount volumes until the plugin is running again. Under most circumstances, this is a
matter of seconds.

Upgrade

Perform the steps below to upgrade Trident for Docker.

Steps
1. List the existing volumes:

docker volume ls
DRIVER VOLUME NAME
netapp:latest my volume

2. Disable the plugin:

docker plugin disable -f netapp:latest
docker plugin 1s

ID NAME DESCRIPTION
ENABLED
7067£39%9a5d£5 netapp:latest nDVP - NetApp Docker Volume

Plugin false

3. Upgrade the plugin:

docker plugin upgrade --skip-remote-check --grant-all-permissions
netapp:latest netapp/trident-plugin:21.07

(D The 18.01 release of Trident replaces the nDVP. You should upgrade directly from the
netapp/ndvp-plugin image to the netapp/trident-plugin image

4. Enable the plugin:
docker plugin enable netapp:latest

5. Verify that the plugin is enabled:

272

docker plugin 1ls

ID NAME DESCRIPTION

ENABLED

7067£39a5df5 netapp:latest Trident - NetApp Docker Volume
Plugin true

6. Verify that the volumes are visible:

docker volume ls
DRIVER VOLUME NAME
netapp:latest my volume

If you are upgrading from an old version of Trident (pre-20.10) to Trident 20.10 or later, you
might run into an error. For more information, refer to Known Issues. If you run into the error, you
should first disable the plugin, then remove the plugin, and then install the required Trident

@ version by passing an extra config parameter: docker plugin install
netapp/trident-plugin:20.10 --alias netapp --grant-all-permissions
config=config.json

Uninstall

Perform the steps below to uninstall Trident for Docker.

Steps
1. Remove any volumes that the plugin created.

2. Disable the plugin:

docker plugin disable netapp:latest
docker plugin 1ls

ID NAME DESCRIPTION
ENABLED
7067£3%a5df5 netapp:latest nDVP - NetApp Docker Volume

Plugin false
3. Remove the plugin:

docker plugin rm netapp:latest

Work with volumes

You can easily create, clone, and remove volumes using the standard docker volume

273

commands with the Trident driver name specified when needed.

Create a volume

» Create a volume with a driver using the default name:
docker volume create -d netapp --name firstVolume
* Create a volume with a specific Trident instance:

docker volume create -d ntap bronze --name bronzeVolume

(D If you do not specify any options, the defaults for the driver are used.

» Override the default volume size. See the following example to create a 20GiB volume with a driver:

docker volume create -d netapp --name my vol --opt size=20G

Volume sizes are expressed as strings containing an integer value with optional units

(example: 10G, 20GB, 3TiB). If no units are specified, the default is G. Size units can be
expressed either as powers of 2 (B, KiB, MiB, GiB, TiB) or powers of 10 (B, KB, MB, GB,
TB). Shorthand units use powers of 2 (G = GiB, T=TiB, ...).

Remove a volume

* Remove the volume just like any other Docker volume:

docker volume rm firstVolume

@ When using the solidfire-san driver, the above example deletes and purges the
volume.

Perform the steps below to upgrade Trident for Docker.

Clone a volume
When using the ontap-nas, ontap-san, solidfire-san, and gcp-cvs storage drivers, Trident can
clone volumes. When using the ontap-nas-flexgroup Or ontap-nas—-economny drivers, cloning is not

supported. Creating a new volume from an existing volume will result in a new snapshot being created.

* Inspect the volume to enumerate snapshots:

274

docker volume inspect <volume name>

* Create a new volume from an existing volume. This will result in a new snapshot being created:

docker volume create -d <driver name> --name <new name> -0
from=<source docker volume>

* Create a new volume from an existing snapshot on a volume. This will not create a new snapshot:

docker volume create -d <driver name> --name <new name> -0
from=<source docker volume> -o fromSnapshot=<source snap name>

Example

275

docker volume inspect firstVolume

"Driver": "ontap-nas",
"Labels": null,
"Mountpoint": "/var/lib/docker-volumes/ontap-

nas/netappdvp firstvVolume",
"Name": "firstVolume",

"Options": {1},

"Scope": "global",
"Status": {
"Snapshots": [

{
"Created": "2017-02-10T19:05:002z",
"Name": "hourly.2017-02-10 1505"

docker volume create -d ontap-nas --name clonedVolume -o from=firstVolume
clonedVolume

docker volume rm clonedVolume

docker volume create -d ontap-nas --name volFromSnap -o from=firstVolume
-o fromSnapshot=hourly.2017-02-10 1505
volFromSnap

docker volume rm volFromSnap

Access externally created volumes

You can access externally created block devices (or their clones) by containers using Trident only if they have
no partitions and if their filesystem is supported by Trident (for example: an ext4-formatted /dev/sdc1 will
not be accessible via Trident).

Driver-specific volume options

Each storage driver has a different set of options, which you can specify at volume
creation time to customize the outcome. See below for options that apply to your
configured storage system.

Using these options during the volume create operation is simple. Provide the option and the value using the
-o operator during the CLI operation. These override any equivalent values from the JSON configuration file.

276

ONTAP volume options

Volume create options for both NFS and iSCSI include the following:

Option

size

spaceReserve

snapshotPolicy

snapshotReserve

splitOnClone

encryption

Description

The size of the volume, defaults to 1 GiB.

Thin or thick provision the volume, defaults to thin.
Valid values are none (thin provisioned) and volume
(thick provisioned).

This will set the snapshot policy to the desired value.
The default is none, meaning no snapshots will
automatically be created for the volume. Unless
modified by your storage administrator, a policy
named “default” exists on all ONTAP systems which
creates and retains six hourly, two daily, and two
weekly snapshots. The data preserved in a snapshot
can be recovered by browsing to the . snapshot
directory in any directory in the volume.

This will set the snapshot reserve to the desired
percentage. The default is no value, meaning ONTAP
will select the snapshotReserve (usually 5%) if you
have selected a snapshotPolicy, or 0% if the
snapshotPolicy is none. You can set the default
snapshotReserve value in the config file for all
ONTAP backends, and you can use it as a volume
creation option for all ONTAP backends except ontap-
nas-economy.

When cloning a volume, this will cause ONTAP to
immediately split the clone from its parent. The default
is false. Some use cases for cloning volumes are
best served by splitting the clone from its parent
immediately upon creation, because there is unlikely
to be any opportunity for storage efficiencies. For
example, cloning an empty database can offer large
time savings but little storage savings, so it's best to
split the clone immediately.

Enable NetApp Volume Encryption (NVE) on the new
volume; defaults to false. NVE must be licensed
and enabled on the cluster to use this option.

If NAE is enabled on the backend, any volume
provisioned in Trident will be NAE enabled.

For more information, refer to: How Trident works with
NVE and NAE.

277

Option

tieringPolicy

The following additional options are for NFS only:

Option

unixPermissions

snapshotDir

exportPolicy

securityStyle

The following additional options are for iISCSI only:

Option

fileSystemType

spaceAllocation

Examples

See the examples below:

» Create a 10GiB volume:

278

Description

Sets the tiering policy to be used for the volume. This
decides whether data is moved to the cloud tier when
it becomes inactive (cold).

Description

This controls the permission set for the volume itself.
By default the permissions will be setto " ---rwxr-
xr-x, or in numerical notation 0755, and root will be
the owner. Either the text or numerical format will
work.

Setting this to true will make the . snapshot
directory visible to clients accessing the volume. The
default value is false, meaning that visibility of the
.snapshot directory is disabled by default. Some
images, for example the official MySQL image, don’t
function as expected when the . snapshot directory
is visible.

Sets the export policy to be used for the volume. The
defaultis default

Sets the security style to be used for access to the
volume. The default is unix. Valid values are unix
and mixed.

Description

Sets the file system used to format iISCSI volumes.
The default is ext 4. Valid values are ext3, ext4,
and xfs.

Setting this to false will turn off the LUN’s space-
allocation feature. The default value is t rue, meaning
ONTAP notifies the host when the volume has run out
of space and the LUN in the volume cannot accept
writes. This option also enables ONTAP to reclaim
space automatically when your host deletes data.

docker volume create -d netapp --name demo -o size=10G -o
encryption=true

* Create a 100GiB volume with snapshots:

docker volume create -d netapp --name demo -o size=100G -o
snapshotPolicy=default -o snapshotReserve=10

» Create a volume which has the setUID bit enabled:

docker volume create -d netapp --name demo -0 unixPermissions=4755

The minimum volume size is 20MiB.
If the snapshot reserve is not specified and the snapshot policy is none, Trident use a snapshot reserve of 0%.

» Create a volume with no snapshot policy and no snapshot reserve:

docker volume create -d netapp --name my vol --opt snapshotPolicy=none

* Create a volume with no snapshot policy and a custom snapshot reserve of 10%:

docker volume create -d netapp --name my vol --opt snapshotPolicy=none

--opt snapshotReserve=10

» Create a volume with a snapshot policy and a custom snapshot reserve of 10%:

docker volume create -d netapp --name my vol --opt
snapshotPolicy=myPolicy —--opt snapshotReserve=10

» Create a volume with a snapshot policy, and accept ONTAP’s default snapshot reserve (usually 5%):

docker volume create -d netapp --name my vol --opt
snapshotPolicy=myPolicy

Element software volume options

The Element software options expose the size and quality of service (QoS) policies associated with the
volume. When the volume is created, the QoS policy associated with it is specified using the -o
type=service level nomenclature.

279

The first step to defining a QoS service level with the Element driver is to create at least one type and specify
the minimum, maximum, and burst IOPS associated with a name in the configuration file.

Other Element software volume create options include the following:

Option Description

size The size of the volume, defaults to 1GiB or config
entry ... "defaults": {"size": "5G"}.

blocksize Use either 512 or 4096, defaults to 512 or config entry
DefaultBlockSize.

Example

See the following sample configuration file with QoS definitions:

"Types": [
{
"Type": "Bronze",
"Qos": |
"minIOPS": 1000,
"maxIOPS": 2000,
"burstIOPS": 4000

"Type": "Silver",
"Qos": {
"minIOPS": 4000,
"maxIOPS": 6000,
"burstIOPS": 8000

"Type": "Gold",

"Qos": {
"minIOPS": 6000,
"maxIOPS": 8000,
"burstIOPS": 10000

280

In the above configuration, we have three policy definitions: Bronze, Silver, and Gold. These names are
arbitrary.

 Create a 10GiB Gold volume:
docker volume create -d solidfire --name sfGold -o type=Gold -o size=10G
» Create a 100GiB Bronze volume:

docker volume create -d solidfire --name sfBronze -o type=Bronze -o
size=100G

Collect logs

You can collect logs for help with troubleshooting. The method you use to collect the logs
varies based on how you are running the Docker plugin.
Collect logs for troubleshooting

Steps

1. If you are running Trident using the recommended managed plugin method (i.e., using docker plugin
commands), view them as follows:

docker plugin 1ls

ID NAME DESCRIPTION
ENABLED
4fb97d2b956b netapp:latest nDVP - NetApp Docker Volume

Plugin false
journalctl -u docker | grep 4fb97d2b956b

The standard logging level should allow you to diagnose most issues. If you find that’s not enough, you can
enable debug logging.

2. To enable debug logging, install the plugin with debug logging enabled:

docker plugin install netapp/trident-plugin:<version> --alias <alias>
debug=true

Or, enable debug logging when the plugin is already installed:

281

docker plugin disable <plugin>
docker plugin set <plugin> debug=true
docker plugin enable <plugin>

3. If you are running the binary itself on the host, logs are available in the host’s /var/log/netappdvp
directory. To enable debug logging, specify —~debug when you run the plugin.

General troubleshooting tips

« The most common problem new users run into is a misconfiguration that prevents the plugin from
initializing. When this happens you will likely see a message such as this when you try to install or enable
the plugin:

Error response from daemon: dial unix /run/docker/plugins/<id>/netapp.sock:
connect: no such file or directory

This means that the plugin failed to start. Luckily, the plugin has been built with a comprehensive logging
capability that should help you diagnose most of the issues you are likely to come across.

* If there are problems with mounting a PV to a container, ensure that rpcbind is installed and running. Use

the required package manager for the host OS and check if rpcbind is running. You can check the status
of the rpcbind service by running a systemctl status rpcbind orits equivalent.

Manage multiple Trident instances

Multiple instances of Trident are needed when you desire to have multiple storage
configurations available simultaneously. The key to multiple instances is to give them
different names using the —--alias option with the containerized plugin, or --volume
-driver option when instantiating Trident on the host.

Steps for Docker managed plugin (version 1.13/17.03 or later)

1. Launch the first instance specifying an alias and configuration file.

docker plugin install --grant-all-permissions --alias silver
netapp/trident-plugin:21.07 config=silver.json

2. Launch the second instance, specifying a different alias and configuration file.

docker plugin install --grant-all-permissions --alias gold
netapp/trident-plugin:21.07 config=gold.json

3. Create volumes specifying the alias as the driver name.

For example, for gold volume:

282

docker volume create -d gold --name ntapGold
For example, for silver volume:
docker volume create -d silver --name ntapSilver
Steps for traditional (version 1.12 or earlier)
1. Launch the plugin with an NFS configuration using a custom driver ID:

sudo trident --volume-driver=netapp-nas --config=/path/to/config
-nfs.json

2. Launch the plugin with an iISCSI configuration using a custom driver ID:

sudo trident --volume-driver=netapp-san --config=/path/to/config
-iscsi.json

3. Provision Docker volumes for each driver instance:

For example, for NFS:
docker volume create -d netapp-nas --name my nfs vol
For example, for iSCSI:

docker volume create -d netapp-san --name my iscsi vol

Storage configuration options

See the configuration options available for your Trident configurations.

Global configuration options

These configuration options apply to all Trident configurations, regardless of the storage platform being used.

Option Description Example

version Config file version number 1

283

Option Description Example

storageDriverName Name of storage driver ontap-nas, ontap-san, ontap-
nas-economy,
ontap—-nas-flexgroup,
solidfire-san

storagePrefix Optional prefix for volume names. staging
Default: netappdvp_.

limitVolumeSize Optional restriction on volume 10g
sizes. Default: "™ (not enforced)

Do not use storagePrefix (including the default) for Element backends. By default, the
solidfire-san driver will ignore this setting and not use a prefix. We recommend using either

a specific tenantID for Docker volume mapping or using the attribute data which is populated
with the Docker version, driver info, and raw name from Docker in cases where any name
munging may have been used.

Default options are available to avoid having to specify them on every volume you create. The size option is
available for all the controller types. See the ONTAP configuration section for an example of how to set the
default volume size.

Option Description Example

size Optional default size for new 10G
volumes. Default: 1G

ONTAP configuration

In addition to the global configuration values above, when using ONTAP, the following top-level options are
available.
Option Description Example

managementLIF IP address of ONTAP management 10.0.0.1
LIF. You can specify a fully-qualified
domain name (FQDN).

284

Option

dataLlIF

svm

username

password

aggregate

limitAggregateUsage

nfsMountOptions

Description

IP address of protocol LIF.

ONTAP NAS drivers: We
recommend specifying dataLIF. If
not provided, Trident fetches data
LIFs from the SVM. You can
specify a fully-qualified domain
name (FQDN) to be used for the
NFS mount operations, allowing
you to create a round-robin DNS to
load-balance across multiple data
LIFs.

ONTAP SAN drivers: Do not
specify for iISCSI. Trident uses
ONTAP Selective LUN Map to
discover the iSCI LIFs needed to
establish a multi path session. A
warning is generated if dataLIF is
explicitly defined.

Storage virtual machine to use
(required, if management LIF is a
cluster LIF)

Username to connect to the
storage device

Password to connect to the storage
device

Aggregate for provisioning
(optional; if set, must be assigned
to the SVM). For the ontap-nas-
flexgroup driver, this option is
ignored. All aggregates assigned to
the SVM are used to provision a
FlexGroup volume.

Optional, fail provisioning if usage
is above this percentage

Fine grained control of NFS mount
options; defaults to “-o nfsvers=3".
Available only for the ontap-nas
and ontap-nas-economy
drivers. See NFS host
configuration information here.

Example

10.0.0.2

svm_nfs

vsadmin

secret

aggrl

-0 nfsvers=4

285

https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html
https://www.netapp.com/pdf.html?item=/media/10720-tr-4067.pdf
https://www.netapp.com/pdf.html?item=/media/10720-tr-4067.pdf

Option

igroupName

limitVolumeSize

gtreesPerFlexvol

sanType

limitVolumePoolSize

Description

Trident creates and manages per-
node igroups as netappdvp.

This value cannot be changed or
omitted.

Available only for the ontap-san

driver.

Maximum requestable volume size.

Maximum gtrees per FlexVol, must
be in range [50, 300], default is
200.

For the ontap-nas-economy
driver, this option allows
customizing the maximum
number of gtrees per FlexVol.

Supported for ontap-san driver
only.

Use to select iscsi for iSCSI,
nvme for NVMe/TCP or fcp for
SCSI over Fibre Channel (FC).

'fcp’ (SCSI over FC) is a tech
preview feature in the Trident
2410 release.

Supported for ontap-san-
economy and ontap-san-
economy drivers only.

Limits FlexVol sizes in ONTAP
ontap-nas-economy and ontap-
SAN-economy drivers.

Example

netappdvp

300g

300

iscsi if blank

300g

Default options are available to avoid having to specify them on every volume you create:

Option Description

spaceReserve Space reservation mode; none (thin provisioned) or

volume (thick)

snapshotPoli Snapshot policy to use, default is none

cy

286

Example

none

none

Option
snapshotRese

rve

splitOnClone

encryption

unixPermissi
ons

snapshotDir

exportPolicy

securityStyl
e

fileSystemTy
pe

tieringPolic
y

Scaling options

Description

@

Snapshot reserve percentage, default is
the ONTAP default

to accept

Split a clone from its parent upon creation, defaults to
false

Enables NetApp Volume Encryption (NVE) on the
new volume; defaults to false. NVE must be
licensed and enabled on the cluster to use this option.

If NAE is enabled on the backend, any volume
provisioned in Trident will be NAE enabled.

For more information, refer to: How Trident works with
NVE and NAE.

NAS option for provisioned NFS volumes, defaults to
777

NAS option for access to the . snapshot directory.

NAS option for the NFS export policy to use, defaults
to default

NAS option for access to the provisioned NFS
volume.

NFS supports mixed and unix security styles. The
default is unix.

SAN option to select the file system type, defaults to
extd

Tiering policy to use, default is none; snapshot-
only for pre-ONTAP 9.5 SVM-DR configuration

Example

10

false

true

777

"true" for NFSv4

"false" for NFSv3

default

unix

xfs

none

The ontap-nas and ontap-san drivers create an ONTAP FlexVol for each Docker volume. ONTAP supports
up to 1000 FlexVols per cluster node with a cluster maximum of 12,000 FlexVols. If your Docker volume
requirements fit within that limitation, the ontap-nas driver is the preferred NAS solution due to the additional
features offered by FlexVols, such as Docker-volume-granular snapshots and cloning.

If you need more Docker volumes than can be accommodated by the FlexVol limits, choose the ontap-nas-
economy or the ontap-san-economy driver.

287

The ontap-nas-economy driver creates Docker volumes as ONTAP Qtrees within a pool of automatically
managed FlexVols. Qtrees offer far greater scaling, up to 100,000 per cluster node and 2,400,000 per cluster,
at the expense of some features. The ontap-nas-economy driver does not support Docker-volume-granular
snapshots or cloning.

@ The ontap-nas-economy driver is not currently supported in Docker Swarm, because Swarm
does not orchestrate volume creation across multiple nodes.

The ontap-san-economy driver creates Docker volumes as ONTAP LUNs within a shared pool of
automatically managed FlexVols. This way, each FlexVol is not restricted to only one LUN and it offers better
scalability for SAN workloads. Depending on the storage array, ONTAP supports up to 16384 LUNs per cluster.
Because the volumes are LUNs underneath, this driver supports Docker-volume-granular snapshots and
cloning.

Choose the ontap-nas-flexgroup driver to increase parallelism to a single volume that can grow into the
petabyte range with billions of files. Some ideal use cases for FlexGroups include Al/ML/DL, big data and
analytics, software builds, streaming, file repositories, and so on. Trident uses all aggregates assigned to an
SVM when provisioning a FlexGroup volume. FlexGroup support in Trident also has the following
considerations:

* Requires ONTAP version 9.2 or greater.

* As of this writing, FlexGroups only support NFS v3.

* Recommended to enable the 64-bit NFSv3 identifiers for the SVM.

* The minimum recommended FlexGroup member/volume size is 100GiB.

* Cloning is not supported for FlexGroup volumes.

For information about FlexGroups and workloads that are appropriate for FlexGroups see the NetApp
FlexGroup volume Best Practices and Implementation Guide.

To get advanced features and huge scale in the same environment, you can run multiple instances of the
Docker Volume Plugin, with one using ontap-nas and another using ontap-nas-economy.

Custom ONTAP role for Trident

You can create an ONTAP cluster role with minimum privileges so that you do not have to use the ONTAP
admin role to perform operations in Trident. When you include the username in a Trident backend
configuration, Trident uses the ONTAP cluster role you created to perform the operations.

Refer to Trident custom-role generator for more information about creating Trident custom roles.

288

https://www.netapp.com/pdf.html?item=/media/12385-tr4571pdf.pdf
https://www.netapp.com/pdf.html?item=/media/12385-tr4571pdf.pdf
https://github.com/NetApp/trident/tree/master/contrib/ontap/trident_role

Using ONTAP CLI
1. Create a new role using the following command:

security login role create <role name\> -cmddirname "command" -access all
-vserver <svm name\>

2. Create a usename for the Trident user:

security login create -username <user name\> -application ontapi
—authmethod password -role <name of role in step 1\> -vserver <svm name\>
—-comment "user description"

security login create -username <user name\> -application http -authmethod
password -role <name of role in step 1\> -vserver <svm name\> -comment
"user description”

3. Map the role to the user:

security login modify username <user name\> -vserver <svm name\> -role
<role name\> -application ontapi -application console -authmethod
<password\>

Using System Manager
Perform the following steps in ONTAP System Manager:

1. Create a custom role:

a. To create a custom role at the cluster-level, select Cluster > Settings.

(Or) To create a custom role at the SVM level, select Storage > Storage VMs > required SVM>
Settings > Users and Roles.

b. Select the arrow icon (—) next to Users and Roles.
c. Select +Add under Roles.
d. Define the rules for the role and click Save.

2. Map the role to the Trident user:
+ Perform the following steps on the Users and Roles page:

a. Select Add icon + under Users.
b. Select the required username, and select a role in the drop-down menu for Role.

c. Click Save.

Refer to the following pages for more information:

¢ Custom roles for administration of ONTAP or Define custom roles

« Work with roles and users

Example ONTAP configuration files

289

https://kb.netapp.com/on-prem/ontap/Ontap_OS/OS-KBs/FAQ__Custom_roles_for_administration_of_ONTAP
https://docs.netapp.com/us-en/ontap/authentication/define-custom-roles-task.html
https://docs.netapp.com/us-en/ontap-automation/rest/rbac_roles_users.html#rest-api

NFS example for ontap-nas driver

"version": 1,
"storageDriverName": "ontap-nas",
"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.2",
"svm": "svm nfs",
"username": "vsadmin",
"password": "password",
"aggregate": "aggrl",
"defaults": {

"size": "10G",

"spaceReserve": "none",

"exportPolicy": "default"

NFS example for ontap-nas-flexgroup driver

"version": 1,
"storageDriverName": "ontap-nas-flexgroup",
"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.2",
"svm": "svm nfs",
"username": "vsadmin",
"password": "password",
"defaults": {

"size": "100G",

"spaceReserve": "none",

"exportPolicy": "default"

290

NFS example for ontap-nas-economy driver

"version": 1,

"storageDriverName":

"ontap-nas-economy",

"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.2",
"svm": "svm nfs",
"username": "vsadmin",
"password": "password",
"aggregate": "aggrl"

iSCSI example for ontap-san driver

"version": 1,

"storageDriverName":

"ontap-san",

"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.3",
"svm": "svm iscsi",
"username": "vsadmin",
"password": "password",
"aggregate": "aggrl",
"igroupName": "netappdvp"

NFS example for ontap-san-economy driver

"version": 1,

"storageDriverName":

"ontap-san-economy",

"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.3",
"svm": "svm iscsi eco",
"username": "vsadmin",
"password": "password",
"aggregate": "aggrl",
"igroupName": "netappdvp"

291

NVMe/TCP example for ontap-san driver

"version": 1,
"backendName" :
"storageDriverName":
"10.

"svm nvme",

"managementLIF":

"svm" :

"username" :"vsadmin",

"NVMeBackend",

"ontap-san",
0.0.1",

"password" :"password",

"sanType": "nvme",

"useREST": true

Element software configuration

In addition to the global configuration values, when using Element software (NetApp HCI/SolidFire), these

options are available.

Option

Endpoint

SVIP

TenantName

InitiatorIFace

Types

LegacyNamePrefix

Description

https://<login>:<password>@<mvip
>/json-rpc/<element-version>

iSCSI IP address and port

SolidFireF Tenant to use (created if
not found)

Specify interface when restricting
iSCSI traffic to non-default interface

QoS specifications

Prefix for upgraded Trident installs.
If you used a version of Trident
prior to 1.3.2 and perform an
upgrade with existing volumes,
you'll need to set this value to
access your old volumes that were
mapped via the volume-name
method.

The solidfire-san driver does not support Docker Swarm.

292

Example
https://admin:admin@192.168.160.
3/json-rpc/8.0

10.0.0.7:3260

docker

default

See example below

netappdvp-

Example Element software configuration file

"version": 1,

"storageDriverName": "solidfire-san",

"Endpoint": "https://admin:admin@192.168.160.3/json-rpc/8.0",
"SVIP": "10.0.0.7:3260",

"TenantName": "docker",
"InitiatorIFace": "default",
"Types": [
{
"Type": "Bronze",
"Qos": {

"minIOPS": 1000,
"maxIOPS": 2000,
"burstIOPS": 4000

"Type": "Silver",
"Qos": |
"minIOPS": 4000,
"maxIOPS": 6000,
"burstIOPS": 8000

"Type": "Gold",

"Qos": |
"minIOPS": 6000,
"maxIOPS": 8000,
"burstIOPS": 10000

Known issues and limitations

Find information about known issues and limitations when using Trident with Docker.

Upgrading Trident Docker Volume Plugin to 20.10 and later from older versions
results in upgrade failure with the no such file or directory error.

Workaround

293

1. Disable the plugin.
docker plugin disable -f netapp:latest
2. Remove the plugin.

docker plugin rm -f netapp:latest
3. Reinstall the plugin by providing the extra config parameter.

docker plugin install netapp/trident-plugin:20.10 --alias netapp --grant
-all-permissions config=config.json

Volume names must be a minimum of 2 characters in length.

(D This is a Docker client limitation. The client will interpret a single character name as being a
Windows path. See bug 25773.

Docker Swarm has certain behaviors that prevent Trident from supporting it with
every storage and driver combination.
» Docker Swarm presently makes use of volume name instead of volume ID as its unique volume identifier.

* Volume requests are simultaneously sent to each node in a Swarm cluster.
* Volume plugins (including Trident) must run independently on each node in a Swarm cluster.

Due to the way ONTAP works and how the ontap-nas and ontap-san drivers function, they are the only
ones that happen to be able to operate within these limitations.

The rest of the drivers are subject to issues like race conditions that can result in the creation of a large
number of volumes for a single request without a clear “winner”; for example, Element has a feature that allows
volumes to have the same name but different IDs.

NetApp has provided feedback to the Docker team, but does not have any indication of future recourse.

If a FlexGroup is being provisioned, ONTAP does not provision a second
FlexGroup if the second FlexGroup has one or more aggregates in common with
the FlexGroup being provisioned.

294

https://github.com/moby/moby/issues/25773

Best practices and recommendations

Deployment

Use the recommendations listed here when you deploy Trident.

Deploy to a dedicated namespace

Namespaces provide administrative separation between different applications and are a barrier for resource
sharing. For example, a PVC from one namespace cannot be consumed from another. Trident provides PV
resources to all the namespaces in the Kubernetes cluster and consequently leverages a service account
which has elevated privileges.

Additionally, access to the Trident pod might enable a user to access storage system credentials and other
sensitive information. It is important to ensure that application users and management applications do not have
the ability to access the Trident object definitions or the pods themselves.

Use quotas and range limits to control storage consumption

Kubernetes has two features which, when combined, provide a powerful mechanism for limiting the resource
consumption by applications. The storage quota mechanism enables the administrator to implement global,
and storage class specific, capacity and object count consumption limits on a per-namespace basis. Further,
using a range limit ensures that the PVC requests are within both a minimum and maximum value before the
request is forwarded to the provisioner.

These values are defined on a per-namespace basis, which means that each namespace should have values
defined which fall in line with their resource requirements. See here for information about how to leverage
quotas.

Storage configuration

Each storage platform in the NetApp portfolio has unique capabilities that benefit
applications, containerized or not.
Platform overview

Trident works with ONTAP and Element. There is not one platform which is better suited for all applications and
scenarios than another, however, the needs of the application and the team administering the device should be
taken into account when choosing a platform.

You should follow the baseline best practices for the host operating system with the protocol that you are

leveraging. Optionally, you might want to consider incorporating application best practices, when available, with
backend, storage class, and PVC settings to optimize storage for specific applications.

ONTAP and Cloud Volumes ONTAP best practices
Learn the best practices for configuring ONTAP and Cloud Volumes ONTAP for Trident.
The following recommendations are guidelines for configuring ONTAP for containerized workloads, which

consume volumes that are dynamically provisioned by Trident. Each should be considered and evaluated for
appropriateness in your environment.

295

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/policy/resource-quotas/#storage-resource-quota
https://kubernetes.io/docs/tasks/administer-cluster/limit-storage-consumption/#limitrange-to-limit-requests-for-storage
https://netapp.io/2017/06/09/self-provisioning-storage-kubernetes-without-worry
https://netapp.io/2017/06/09/self-provisioning-storage-kubernetes-without-worry

Use SVM(s) dedicated to Trident

Storage Virtual Machines (SVMs) provide isolation and administrative separation between tenants on an
ONTAP system. Dedicating an SVM to applications enables the delegation of privileges and enables applying
best practices for limiting resource consumption.

There are several options available for the management of the SVM:

» Provide the cluster management interface in the backend configuration, along with appropriate credentials,
and specify the SVM name.

* Create a dedicated management interface for the SVM by using ONTAP System Manager or the CLI.

» Share the management role with an NFS data interface.

In each case, the interface should be in DNS, and the DNS name should be used when configuring Trident.
This helps to facilitate some DR scenarios, for example, SVM-DR without the use of network identity retention.

There is no preference between having a dedicated or shared management LIF for the SVM, however, you
should ensure that your network security policies align with the approach you choose. Regardless, the
management LIF should be accessible via DNS to facilitate maximum flexibility should SVM-DR be used in
conjunction with Trident.

Limit the maximum volume count

ONTAP storage systems have a maximum volume count, which varies based on the software version and
hardware platform. Refer to NetApp Hardware Universe for your specific platform and ONTAP version to
determine the exact limits. When the volume count is exhausted, provisioning operations fail not only for
Trident, but for all the storage requests.

Trident’'s ontap-nas and ontap-san drivers provision a FlexVolume for each Kubernetes Persistent Volume
(PV) that is created. The ontap-nas-economy driver creates approximately one FlexVolume for every 200
PVs (configurable between 50 and 300). The ontap-san-economy driver creates approximately one
FlexVolume for every 100 PVs (configurable between 50 and 200). To prevent Trident from consuming all the
available volumes on the storage system, you should set a limit on the SVM. You can do this from the
command line:

vserver modify -vserver <svm name> -max-volumes <num of volumes>

The value for max-volumes varies based on several criteria specific to your environment:

* The number of existing volumes in the ONTAP cluster
* The number of volumes you expect to provision outside of Trident for other applications
» The number of persistent volumes expected to be consumed by Kubernetes applications
The max-volumes value is the total volumes provisioned across all the nodes in the ONTAP cluster, and not

on an individual ONTAP node. As a result, you might encounter some conditions where an ONTAP cluster
node might have far more or less Trident provisioned volumes than another node.

For example, a two-node ONTAP cluster has the ability to host a maximum of 2000 FlexVolumes. Having the
maximum volume count set to 1250 appears very reasonable. However, if only aggregates from one node are
assigned to the SVM, or the aggregates assigned from one node are unable to be provisioned against (for
example, due to capacity), then the other node becomes the target for all Trident provisioned volumes. This

296

https://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-dap/GUID-B9E36563-1C7A-48F5-A9FF-1578B99AADA9.html
https://hwu.netapp.com/
https://library.netapp.com/ecmdocs/ECMP1368859/html/GUID-3AC7685D-B150-4C1F-A408-5ECEB3FF0011.html

means that the volume limit might be reached for that node before the max-volumes value is reached,
resulting in impacting both Trident and other volume operations that use that node. You can avoid this
situation by ensuring that aggregates from each node in the cluster are assigned to the SVM used by
Trident in equal numbers.

Limit the maximum size of volumes created by Trident

To configure the maximum size for volumes that can be created by Trident, use the 1imitvolumeSize
parameter in your backend. json definition.

In addition to controlling the volume size at the storage array, you should also leverage Kubernetes
capabilities.

Limit the maximum size of FlexVols created by Trident

To configure the maximum size for FlexVols used as pools for ontap-san-economy and ontap-nas-economy
drivers, use the 1imitVolumePoolSize parameter in your backend. json definition.

Configure Trident to use bidirectional CHAP

You can specify the CHAP initiator and target usernames and passwords in your backend definition and have
Trident enable CHAP on the SVM. Using the useCHAP parameter in your backend configuration, Trident
authenticates iISCSI connections for ONTAP backends with CHAP.

Create and use an SVM QoS policy

Leveraging an ONTAP QoS policy, applied to the SVM, limits the number of IOPS consumable by the Trident
provisioned volumes. This helps to prevent a bully or out-of-control container from affecting workloads outside
of the Trident SVM.

You can create a QoS policy for the SVM in a few steps. See the documentation for your version of ONTAP for
the most accurate information. The example below creates a QoS policy that limits the total IOPS available to
the SVM to 5000.

create the policy group for the SVM
gos policy-group create -policy-group <policy name> -vserver <svm name>
-max-throughput 5000iops

assign the policy group to the SVM, note this will not work
if volumes or files in the SVM have existing QoS policies
vserver modify -vserver <svm name> -gos-policy-group <policy name>

Additionally, if your version of ONTAP supports it, you can consider using a QoS minimum to guarantee an
amount of throughput to containerized workloads. Adaptive QoS is not compatible with an SVM level policy.

The number of IOPS dedicated to the containerized workloads depends on many aspects. Among other things,
these include:

» Other workloads using the storage array. If there are other workloads, not related to the Kubernetes
deployment, utilizing the storage resources, care should be taken to ensure that those workloads are not
accidentally adversely impacted.

297

http://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-perf-mon/GUID-77DF9BAF-4ED7-43F6-AECE-95DFB0680D2F.html?cp=7_1_2_1_2

* Expected workloads running in containers. If workloads which have high IOPS requirements will be running
in containers, a low QoS policy results in a bad experience.

It's important to remember that a QoS policy assigned at the SVM level results in all the volumes provisioned to
the SVM sharing the same IOPS pool. If one, or a small number, of the containerized applications have a high
IOPS requirement, it could become a bully to the other containerized workloads. If this is the case, you might
want to consider using external automation to assign per-volume QoS policies.

@ You should assign the QoS policy group to the SVM only if your ONTAP version is earlier than
9.8.

Create QoS policy groups for Trident

Quality of service (QoS) guarantees that performance of critical workloads is not degraded by competing
workloads. ONTAP QoS policy groups provide QoS options for volumes, and enable users to define the
throughput ceiling for one or more workloads. For more information about QoS, refer to Guaranteeing
throughput with QoS.

You can specify QoS policy groups in the backend or in a storage pool, and they are applied to each volume
created in that pool or backend.

ONTAP has two kinds of QoS policy groups: traditional and adaptive. Traditional policy groups provide a flat
maximum (or minimum, in later versions) throughput in IOPS. Adaptive QoS automatically scales the
throughput to workload size, maintaining the ratio of IOPS to TBs|GBs as the size of the workload changes.
This provides a significant advantage when you are managing hundreds or thousands of workloads in a large
deployment.

Consider the following when you create QoS policy groups:

* You should set the gosPolicy key in the defaults block of the backend configuration. See the following
backend configuration example:

298

https://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-perf-mon/GUID-77DF9BAF-4ED7-43F6-AECE-95DFB0680D2F.html
https://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-perf-mon/GUID-77DF9BAF-4ED7-43F6-AECE-95DFB0680D2F.html

version: 1
storageDriverName: ontap-nas
managementLIF: 0.0.0.0
datalLIF: 0.0.0.0
svm: svm0
username: user
password: pass
defaults:
gosPolicy: standard-pg
storage:
- labels:
performance: extreme
defaults:
adaptiveQosPolicy: extremely-adaptive-pg
- labels:
performance: premium
defaults:
gosPolicy: premium-pg

* You should apply the policy groups per volume, so that each volume gets the entire throughput as specified
by the policy group. Shared policy groups are not supported.

For more information about QoS policy groups, refer to ONTAP 9.8 QoS commands.

Limit storage resource access to Kubernetes cluster members

Limiting access to the NFS volumes and iSCSI LUNs created by Trident is a critical component of the security
posture for your Kubernetes deployment. Doing so prevents hosts that are not a part of the Kubernetes cluster
from accessing the volumes and potentially modifying data unexpectedly.

It's important to understand that namespaces are the logical boundary for resources in Kubernetes. The
assumption is that resources in the same namespace are able to be shared, however, importantly, there is no
cross-namespace capability. This means that even though PVs are global objects, when bound to a PVC they
are only accessible by pods which are in the same namespace. It is critical to ensure that namespaces are
used to provide separation when appropriate.

The primary concern for most organizations with regard to data security in a Kubernetes context is that a
process in a container can access storage mounted to the host, but which is not intended for the container.
Namespaces are designed to prevent this type of compromise. However, there is one exception: privileged
containers.

A privileged container is one that is run with substantially more host-level permissions than normal. These are
not denied by default, so ensure that you disable the capability by using pod security policies.

For volumes where access is desired from both Kubernetes and external hosts, the storage should be
managed in a traditional manner, with the PV introduced by the administrator and not managed by Trident. This
ensures that the storage volume is destroyed only when both the Kubernetes and external hosts have
disconnected and are no longer using the volume. Additionally, a custom export policy can be applied, which
enables access from the Kubernetes cluster nodes and targeted servers outside of the Kubernetes cluster.

299

https://docs.netapp.com/ontap-9/topic/com.netapp.doc.dot-cm-cmpr-980/TOC__qos.html
https://en.wikipedia.org/wiki/Linux_namespaces
https://kubernetes.io/docs/concepts/policy/pod-security-policy/

For deployments which have dedicated infrastructure nodes (for example, OpenShift) or other nodes which are
unable to schedule user applications, separate export policies should be used to further limit access to storage
resources. This includes creating an export policy for services which are deployed to those infrastructure
nodes (for example, the OpenShift Metrics and Logging services), and standard applications which are
deployed to non-infrastructure nodes.

Use a dedicated export policy

You should ensure that an export policy exists for each backend that only allows access to the nodes present
in the Kubernetes cluster. Trident can automatically create and manage export policies. This way, Trident limits
access to the volumes it provisions to the nodes in the Kubernetes cluster and simplifies the addition/deletion
of nodes.

Alternatively, you can also create an export policy manually and populate it with one or more export rules that
process each node access request:

* Use the vserver export-policy create ONTAP CLI command to create the export policy.

* Add rules to the export policy by using the vserver export-policy rule create ONTAP CLI
command.

Running these commands enables you to restrict which Kubernetes nodes have access to the data.

Disable showmount for the application SVM

The showmount feature enables an NFS client to query the SVM for a list of available NFS exports. A pod
deployed to the Kubernetes cluster can issue the showmount -e command against the data LIF and receive
a list of available mounts, including those which it does not have access to. While this, by itself, is not a
security compromise, it does provide unnecessary information potentially aiding an unauthorized user with
connecting to an NFS export.

You should disable showmount by using the SVM-level ONTAP CLI command:

vserver nfs modify -vserver <svm name> -showmount disabled

SolidFire best practices

Learn the best practices for configuring SolidFire storage for Trident.

Create Solidfire Account

Each SolidFire account represents a unique volume owner and receives its own set of Challenge-Handshake
Authentication Protocol (CHAP) credentials. You can access volumes assigned to an account either by using

the account name and the relative CHAP credentials or through a volume access group. An account can have
up to two-thousand volumes assigned to it, but a volume can belong to only one account.

Create a QoS policy

Use SolidFire Quality of Service (QoS) policies if you want to create and save a standardized quality of service
setting that can be applied to many volumes.

You can set QoS parameters on a per-volume basis. Performance for each volume can be assured by setting

300

three configurable parameters that define the QoS: Min IOPS, Max IOPS, and Burst IOPS.

Here are the possible minimum, maximum, and burst IOPS values for the 4Kb block size.

IOPS parameter Definition Min. value Default value Max. value(4Kb)
Min IOPS The guaranteed 50 50 15000
level of performance
for a volume.
Max IOPS The performance 50 15000 200,000
will not exceed this
limit.
Burst IOPS Maximum IOPS 50 15000 200,000

allowed in a short
burst scenario.

@ Although the Max IOPS and Burst IOPS can be set as high as 200,000, the real-world maximum
performance of a volume is limited by cluster usage and per-node performance.

Block size and bandwidth have a direct influence on the number of IOPS. As block sizes increase, the system
increases bandwidth to a level necessary to process the larger block sizes. As bandwidth increases, the
number of IOPS the system is able to attain decreases. Refer to SolidFire Quality of Service for more
information about QoS and performance.

SolidFire authentication

Element supports two methods for authentication: CHAP and Volume Access Groups (VAG). CHAP uses the
CHAP protocol to authenticate the host to the backend. Volume Access Groups controls access to the volumes
it provisions. NetApp recommends using CHAP for authentication as it's simpler and has no scaling limits.

@ Trident with the enhanced CSI provisioner supports the use of CHAP authentication. VAGs
should only be used in the traditional non-CSI| mode of operation.

CHAP authentication (verification that the initiator is the intended volume user) is supported only with account-
based access control. If you are using CHAP for authentication, two options are available: unidirectional CHAP
and bidirectional CHAP. Unidirectional CHAP authenticates volume access by using the SolidFire account
name and initiator secret. The bidirectional CHAP option provides the most secure way of authenticating the
volume because the volume authenticates the host through the account name and the initiator secret, and then
the host authenticates the volume through the account name and the target secret.

However, if CHAP cannot be enabled and VAGs are required, create the access group and add the host

initiators and volumes to the access group. Each IQN that you add to an access group can access each

volume in the group with or without CHAP authentication. If the iSCSI initiator is configured to use CHAP
authentication, account-based access control is used. If the iISCSI initiator is not configured to use CHAP
authentication, then Volume Access Group access control is used.

Where to find more information?

Some of the best practices documentation is listed below. Search the NetApp library for the most current
versions.

301

https://www.netapp.com/pdf.html?item=/media/10502-tr-4644pdf.pdf
https://www.netapp.com/search/

ONTAP

* NFS Best Practice and Implementation Guide
* SAN Administration Guide (for iISCSI)
+ iSCSI Express Configuration for RHEL

Element software
+ Configuring SolidFire for Linux
NetApp HCI

* NetApp HCI deployment prerequisites
* Access the NetApp Deployment Engine

Application best practices information

* Best practices for MySQL on ONTAP

» Best practices for MySQL on SolidFire
* NetApp SolidFire and Cassandra
 Oracle best practices on SolidFire

» PostgreSQL best practices on SolidFire

Not all applications have specific guidelines, it's important to work with your NetApp team and to use the
NetApp library to find the most up-to-date documentation.

Integrate Trident

To integrate Trident, the following design and architectural elements require integration:
driver selection and deployment, storage class design, virtual pool design, Persistent
Volume Claim (PVC) impacts on storage provisioning, volume operations, and OpenShift
services deployment using Trident.

Driver selection and deployment

Select and deploy a backend driver for your storage system.

ONTAP backend drivers

ONTAP backend drivers are differentiated by the protocol used and how the volumes are provisioned on the
storage system. Therefore, give careful consideration when deciding which driver to deploy.

At a higher level, if your application has components which need shared storage (multiple pods accessing the
same PVC), NAS-based drivers would be the default choice, while the block-based iSCSI drivers meet the
needs of non-shared storage. Choose the protocol based on the requirements of the application and the
comfort level of the storage and infrastructure teams. Generally speaking, there is little difference between
them for most applications, so often the decision is based upon whether or not shared storage (where more
than one pod will need simultaneous access) is needed.

The available ONTAP backend drivers are:

302

https://www.netapp.com/pdf.html?item=/media/10720-tr-4067.pdf
http://docs.netapp.com/ontap-9/topic/com.netapp.doc.dot-cm-sanag/home.html
http://docs.netapp.com/ontap-9/topic/com.netapp.doc.exp-iscsi-rhel-cg/home.html
https://www.netapp.com/pdf.html?item=/media/10507-tr4639pdf.pdf
https://docs.netapp.com/us-en/hci/docs/hci_prereqs_overview.html
https://docs.netapp.com/us-en/hci/docs/concept_nde_access_overview.html
https://docs.netapp.com/us-en/ontap-apps-dbs/mysql/mysql-overview.html
https://www.netapp.com/pdf.html?item=/media/10510-tr-4605.pdf
https://www.netapp.com/pdf.html?item=/media/10513-tr-4635pdf.pdf
https://www.netapp.com/pdf.html?item=/media/10511-tr4606pdf.pdf
https://www.netapp.com/pdf.html?item=/media/10512-tr-4610pdf.pdf
https://www.netapp.com/search/

* ontap-nas: Each PV provisioned is a full ONTAP FlexVolume.

* ontap-nas-economy: Each PV provisioned is a qtree, with a configurable number of gtrees per

FlexVolume (default is 200).

* ontap-nas-flexgroup: Each PV provisioned as a full ONTAP FlexGroup, and all aggregates assigned

to a SVM are used.

* ontap-san: Each PV provisioned is a LUN within its own FlexVolume.

* ontap-san-economy: Each PV provisioned is a LUN, with a configurable number of LUNs per

FlexVolume (default is 100).

Choosing between the three NAS drivers has some ramifications to the features, which are made available to

the application.

Note that, in the tables below, not all of the capabilities are exposed through Trident. Some must be applied by
the storage administrator after provisioning if that functionality is desired. The superscript footnotes distinguish

the functionality per feature and driver.

ONTAP NAS drivers Snapshot Clones Dynamic Multi- QoS
s export attach
policies
ontap-nas Yes Yes Yes [5] Yes Yes [1]
ontap-nas—-economy NO [3] NO [3] Yes [5] Yes NO [3]
ontap-nas- Yes [1] NO Yes [5] Yes Yes [1]
flexgroup

Trident offers 2 SAN drivers for ONTAP, whose capabilities are shown below.

ONTAP SAN drivers Snapshot Clones Multi- Bi- QoS
s attach directiona
| CHAP
ontap-san Yes Yes Yes [4] Yes Yes [1]
ontap-san-economy Yes Yes Yes [4] Yes NO [3]

Footnote for the above tables:

Yes [1]: Not managed by Trident

Yes [2]: Managed by Trident, but not PV granular
Yes [3]: Not managed by Trident and not PV granular
Yes [4]: Supported for raw-block volumes

Yes [5]: Supported by Trident

Resize

Yes
Yes

Yes

Resize

Yes

Yes

Replicatio
n

Yes [1]
NO [3]
Yes [1]

Replicatio
n

Yes [1]
NO [3]

The features that are not PV granular are applied to the entire FlexVolume and all of the PVs (that is, gtrees or

303

LUNSs in shared FlexVols) will share a common schedule.

As we can see in the above tables, much of the functionality between the ontap-nas and ontap-nas-
economy is the same. However, because the ontap-nas-economy driver limits the ability to control the
schedule at per-PV granularity, this can affect your disaster recovery and backup planning in particular. For
development teams which desire to leverage PVC clone functionality on ONTAP storage, this is only possible
when using the ontap-nas, ontap-san or ontap-san-economy drivers.

@ The solidfire-san driver is also capable of cloning PVCs.

Cloud Volumes ONTAP backend drivers

Cloud Volumes ONTAP provides data control along with enterprise-class storage features for various use
cases, including file shares and block-level storage serving NAS and SAN protocols (NFS, SMB / CIFS, and
iSCSI). The compatible drivers for Cloud Volume ONTAP are ontap-nas, ontap-nas-economy, ontap-
san and ontap-san-economy. These are applicable for Cloud Volume ONTAP for Azure, Cloud Volume
ONTAP for GCP.

Amazon FSx for ONTAP backend drivers

Amazon FSx for NetApp ONTAP lets you leverage NetApp features, performance, and administrative
capabilities you're familiar with, while taking advantage of the simplicity, agility, security, and scalability of
storing data on AWS. FSx for ONTAP supports many ONTAP file system features and administration APIs. The
compatible drivers for Cloud Volume ONTAP are ontap-nas, ontap-nas-economy, ontap-nas-
flexgroup, ontap-san and ontap-san-economy.

NetApp HCI/SolidFire backend drivers

The solidfire-san driver used with the NetApp HCI/SolidFire platforms, helps the admin configure an
Element backend for Trident on the basis of QoS limits. If you would like to design your backend to set the
specific QoS limits on the volumes provisioned by Trident, use the type parameter in the backend file. The
admin also can restrict the volume size that could be created on the storage using the 1imitVolumeSize
parameter. Currently, Element storage features like volume resize and volume replication are not supported
through the solidfire-san driver. These operations should be done manually through Element Software
web UL.

SolidFire Driver Snapshot Clones Multi- CHAP QoS Resize Replicatio
s attach n
solidfire-san Yes Yes Yes [2] Yes Yes Yes Yes [1]
Footnote:

Yes [1]: Not managed by Trident
Yes [2]: Supported for raw-block volumes

Azure NetApp Files backend drivers

Trident uses the azure—-netapp-files driver to manage the Azure NetApp Files service.

304

https://azure.microsoft.com/en-us/services/netapp/

More information about this driver and how to configure it can be found in Trident backend configuration for
Azure NetApp Files.

Azure NetApp Files Snapshots Clones Multi-attach QoS Expand Replication

Driver

azure-netapp-files Yes Yes Yes Yes Yes Yes [1]
Footnote:

Yes [1]: Not managed by Trident

Cloud Volumes Service on Google Cloud backend driver

Trident uses the gcp-cvs driver to link with the Cloud Volumes Service on Google Cloud.

The gcp-cvs driver uses virtual pools to abstract the backend and allow Trident to determine volume
placement. The administrator defines the virtual pools in the backend. json files. Storage classes use
selectors to identify virtual pools by label.

« If virtual pools are defined in the backend, Trident will try to create a volume in the Google Cloud storage
pools to which those virtual pools are limited.

« If virtual pools are not defined in the backend, Trident will select a Google Cloud storage pool from the
available storage pools in the region.

To configure the Google Cloud backend on Trident, you must specify projectNumber, apiRegion, and
apiKey in the backend file. You can find the project number in the Google Cloud console. The API key is

taken from the service account private key file you created when setting up APl access for Cloud Volumes
Service on Google Cloud.

For details on Cloud Volumes Service on Google Cloud service types and service levels, refer to Learn about
Trident support for CVS for GCP.

Cloud Volumes Service Snapshots Clones Multi-attach QoS Expand Replication

for Google Cloud driver

gcp-cvs Yes Yes Yes Yes Yes Available on
CVS-
Performanc
e service
type only.

Replication notes
@ * Replication is not managed by Trident.

* The clone will be created in the same storage pool as the source volume.

Storage class design

Individual Storage classes need to be configured and applied to create a Kubernetes Storage Class object.
This section discusses how to design a storage class for your application.

305

https://docs.netapp.com/us-en/trident/trident-use/anf.html
https://docs.netapp.com/us-en/trident/trident-use/anf.html

Specific backend utilization

Filtering can be used within a specific storage class object to determine which storage pool or set of pools are
to be used with that specific storage class. Three sets of filters can be set in the Storage Class:
storagePools, additionalStoragePools, and/or excludeStoragePools.

The storagePools parameter helps restrict storage to the set of pools that match any specified attributes.
The additionalStoragePools parameter is used to extend the set of pools that Trident use for
provisioning along with the set of pools selected by the attributes and storagePools parameters. You can
use either parameter alone or both together to make sure that the appropriate set of storage pools are
selected.

The excludeStoragePools parameter is used to specifically exclude the listed set of pools that match the
attributes.

Emulate QoS policies

If you would like to design Storage Classes to emulate Quality of Service policies, create a Storage Class with
the media attribute as hdd or ssd. Based on the media attribute mentioned in the storage class, Trident will
select the appropriate backend that serves hdd or ssd aggregates to match the media attribute and then direct
the provisioning of the volumes on to the specific aggregate. Therefore we can create a storage class
PREMIUM which would have medi a attribute set as ssd which could be classified as the PREMIUM QoS
policy. We can create another storage class STANDARD which would have the media attribute set as "hdd'
which could be classified as the STANDARD QoS policy. We could also use the "IOPS" attribute in the storage
class to redirect provisioning to an Element appliance which can be defined as a QoS Policy.

Utilize backend based on specific features

Storage classes can be designed to direct volume provisioning on a specific backend where features such as
thin and thick provisioning, snapshots, clones, and encryption are enabled. To specify which storage to use,
create Storage Classes that specify the appropriate backend with the required feature enabled.

Virtual pools

Virtual pools are available for all Trident backends. You can define virtual pools for any backend, using any
driver that Trident provides.

Virtual pools allow an administrator to create a level of abstraction over backends which can be referenced
through Storage Classes, for greater flexibility and efficient placement of volumes on backends. Different
backends can be defined with the same class of service. Moreover, multiple storage pools can be created on
the same backend but with different characteristics. When a Storage Class is configured with a selector with
the specific labels, Trident chooses a backend which matches all the selector labels to place the volume. If the
Storage Class selector labels matches multiple storage pools, Trident will choose one of them to provision the
volume from.

Virtual pool design

While creating a backend, you can generally specify a set of parameters. It was impossible for the
administrator to create another backend with the same storage credentials and with a different set of
parameters. With the introduction of virtual pools, this issue has been alleviated. Virtual pools is a level
abstraction introduced between the backend and the Kubernetes Storage Class so that the administrator can
define parameters along with labels which can be referenced through Kubernetes Storage Classes as a
selector, in a backend-agnostic way. Virtual pools can be defined for all supported NetApp backends with
Trident. That list includes SolidFire/NetApp HCI, ONTAP, Cloud Volumes Service on GCP, as well as Azure

306

NetApp Files.

When defining virtual pools, it is recommended to not attempt to rearrange the order of existing
virtual pools in a backend definition. It is also advisable to not edit/modify attributes for an
existing virtual pool and define a new virtual pool instead.

Emulating different service levels/QoS

It is possible to design virtual pools for emulating service classes. Using the virtual pool implementation for
Cloud Volume Service for Azure NetApp Files, let us examine how we can setup up different service classes.
Configure the Azure NetApp Files backend with multiple labels, representing different performance levels. Set
servicelevel aspect to the appropriate performance level and add other required aspects under each
labels. Now create different Kubernetes Storage Classes that would map to different virtual pools. Using the
parameters.selector field, each StorageClass calls out which virtual pools may be used to host a volume.

Assigning specific set of aspects

Multiple virtual pools with a specific set of aspects can be designed from a single storage backend. For doing
so, configure the backend with multiple labels and set the required aspects under each label. Now create
different Kubernetes Storage Classes using the parameters.selector field that would map to different
virtual pools. The volumes that get provisioned on the backend will have the aspects defined in the chosen
virtual pool.

PVC characteristics which affect storage provisioning

Some parameters beyond the requested storage class may affect the Trident provisioning decision process
when creating a PVC.

Access mode

When requesting storage via a PVC, one of the mandatory fields is the access mode. The mode desired may
affect the backend selected to host the storage request.

Trident will attempt to match the storage protocol used with the access method specified according to the
following matrix. This is independent of the underlying storage platform.

ReadWriteOnce ReadOnlyMany ReadWriteMany
iISCSI Yes Yes Yes (Raw block)
NFS Yes Yes Yes

A request for a ReadWriteMany PVC submitted to a Trident deployment without an NFS backend configured
will result in no volume being provisioned. For this reason, the requestor should use the access mode which is
appropriate for their application.

Volume operations

Modify persistent volumes

Persistent volumes are, with two exceptions, immutable objects in Kubernetes. Once created, the reclaim
policy and the size can be modified. However, this doesn’t prevent some aspects of the volume from being
modified outside of Kubernetes. This may be desirable in order to customize the volume for specific
applications, to ensure that capacity is not accidentally consumed, or simply to move the volume to a different

307

storage controller for any reason.

@ Kubernetes in-tree provisioners do not support volume resize operations for NFS or iSCSI PVs
at this time. Trident supports expanding both NFS and iSCSI volumes.

The connection details of the PV cannot be modified after creation.

Create on-demand volume snhapshots

Trident supports on-demand volume snapshot creation and the creation of PVCs from snapshots using the CSI
framework. Snapshots provide a convenient method of maintaining point-in-time copies of the data and have a
lifecycle independent of the source PV in Kubernetes. These snapshots can be used to clone PVCs.

Create volumes from snapshots

Trident also supports the creation of PersistentVolumes from volume snapshots. To accomplish this, just create
a PersistentVolumeClaim and mention the datasource as the required snapshot from which the volume
needs to be created. Trident will handle this PVC by creating a volume with the data present on the snapshot.
With this feature, it is possible to duplicate data across regions, create test environments, replace a damaged
or corrupted production volume in its entirety, or retrieve specific files and directories and transfer them to
another attached volume.

Move volumes in the cluster

Storage administrators have the ability to move volumes between aggregates and controllers in the ONTAP
cluster non-disruptively to the storage consumer. This operation does not affect Trident or the Kubernetes
cluster, as long as the destination aggregate is one which the SVM that Trident is using has access to.
Importantly, if the aggregate has been newly added to the SVM, the backend will need to be refreshed by re-
adding it to Trident. This will trigger Trident to reinventory the SVM so that the new aggregate is recognized.

However, moving volumes across backends is not supported automatically by Trident. This includes between
SVMs in the same cluster, between clusters, or onto a different storage platform (even if that storage system is
one which is connected to Trident).

If a volume is copied to another location, the volume import feature may be used to import current volumes into
Trident.

Expand volumes

Trident supports resizing NFS and iSCSI PVs. This enables users to resize their volumes directly through the
Kubernetes layer. Volume expansion is possible for all major NetApp storage platforms, including ONTAP,
SolidFire/NetApp HCI and Cloud Volumes Service backends. To allow possible expansion later, set
allowVolumeExpansion to true in your StorageClass associated with the volume. Whenever the
Persistent Volume needs to be resized, edit the spec.resources.requests.storage annotation in the
Persistent Volume Claim to the required volume size. Trident will automatically take care of resizing the volume
on the storage cluster.

Import an existing volume into Kubernetes

Volume import provides the ability to import an existing storage volume into a Kubernetes environment. This is
currently supported by the ontap-nas, ontap-nas-flexgroup, solidfire-san, azure-netapp-
files, and gcp-cvs drivers. This feature is useful when porting an existing application into Kubernetes or
during disaster recovery scenarios.

308

When using the ONTAP and solidfire-san drivers, use the command tridentctl import volume
<backend-name> <volume-name> —-f /path/pvc.yaml toimportan existing volume into Kubernetes to
be managed by Trident. The PVC YAML or JSON file used in the import volume command points to a storage
class which identifies Trident as the provisioner. When using a NetApp HCI/SolidFire backend, ensure the
volume names are unique. If the volume names are duplicated, clone the volume to a unique name so the
volume import feature can distinguish between them.

If the azure-netapp-files or gcp-cvs driver is used, use the command tridentctl import volume
<backend-name> <volume path> -f /path/pvc.yaml toimportthe volume into Kubernetes to be
managed by Trident. This ensures a unique volume reference.

When the above command is executed, Trident will find the volume on the backend and read its size. It will
automatically add (and overwrite if necessary) the configured PVC’s volume size. Trident then creates the new
PV and Kubernetes binds the PVC to the PV.

If a container was deployed such that it required the specific imported PVC, it would remain in a pending state
until the PVC/PV pair are bound via the volume import process. After the PVC/PV pair are bound, the container
should come up, provided there are no other issues.

Deploy OpenShift services

The OpenShift value-add cluster services provide important functionality to cluster administrators and the
applications being hosted. The storage which these services use can be provisioned using the node-local
resources, however, this often limits the capacity, performance, recoverability, and sustainability of the service.
Leveraging an enterprise storage array to provide the capacity to these services can enable dramatically
improved service, however, as with all applications, the OpenShift and storage administrators should work
closely together to determine the best options for each. The Red Hat documentation should be leveraged
heavily to determine the requirements and ensure that sizing and performance needs are met.

Registry service

Deploying and managing storage for the registry has been documented on netapp.io in the blog.

Logging service

Like other OpenShift services, the logging service is deployed using Ansible with configuration parameters
supplied by the inventory file, a.k.a. hosts, provided to the playbook. There are two installation methods which
will be covered: deploying logging during initial OpenShift install and deploying logging after OpenShift has
been

installed.

As of Red Hat OpenShift version 3.9, the official documentation recommends against NFS for
the logging service due to concerns around data corruption. This is based on Red Hat testing of

@ their products. The ONTAP NFS server does not have these issues, and can easily back a
logging deployment. Ultimately, the choice of protocol for the logging service is up to you, just
know that both will work great when using NetApp platforms and there is no reason to avoid
NFS if that is your preference.

If you choose to use NFS with the logging service, you will need to set the Ansible variable
openshift enable unsupported configurations to true to prevent the installer from failing.

309

https://netapp.io/
https://netapp.io/2017/08/24/deploying-the-openshift-registry-using-netapp-storage/

Get started

The logging service can, optionally, be deployed for both applications as well as for the core operations of the
OpenShift cluster itself. If you choose to deploy operations logging, by specifying the variable

openshift logging use ops as true, two instances of the service will be created. The variables which
control the logging instance for operations contain "ops" in them, whereas the instance for applications does
not.

Configuring the Ansible variables according to the deployment method is important to ensure that the correct
storage is utilized by the underlying services. Let’s look at the options for each of the deployment methods.

The tables below contain only the variables relevant for storage configuration as it relates to the
logging service. You can find other options in RedHat OpenShift logging documentation which
should be reviewed, configured, and used according to your deployment.

The variables in the below table will result in the Ansible playbook creating a PV and PVC for the logging
service using the details provided. This method is significantly less flexible than using the component
installation playbook after OpenShift installation, however, if you have existing volumes available, it is an
option.

Variable Details

openshift logging storage kind Set to nfs to have the installer create an NFS PV for
the logging service.

openshift logging storage host The hostname or IP address of the NFS host. This
should be set to the data LIF for your virtual machine.

openshift logging storage nfs directory The mount path for the NFS export. For example, if
the volume is junctioned as /openshift logging,
you would use that path for this variable.

openshift logging storage volume name The name, e.g. pv_ose logs, of the PV to create.
openshift logging storage volume size The size of the NFS export, for example 100Gi.
If your OpenShift cluster is already running, and therefore Trident has been deployed and configured, the

installer can use dynamic provisioning to create the volumes. The following variables will need to be
configured.

Variable Details

openshift logging es pvc dynamic Set to true to use dynamically provisioned volumes.
openshift logging es pvc_ storage class _n The name of the storage class which will be used in
ame the PVC.

openshift logging es pvc size The size of the volume requested in the PVC.
openshift logging es pvc prefix A prefix for the PVCs used by the logging service.
openshift logging es ops pvc dynamic Set to true to use dynamically provisioned volumes

for the ops logging instance.

openshift logging es ops pvc storage cla The name of the storage class for the ops logging
Ss name instance.

openshift logging es ops pvc size The size of the volume request for the ops instance.

310

https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging.html

Variable

openshift logging es ops pvc prefix

Deploy the logging stack

Details

A prefix for the ops instance PVCs.

If you are deploying logging as a part of the initial OpenShift install process, then you only need to follow the
standard deployment process. Ansible will configure and deploy the needed services and OpenShift objects so
that the service is available as soon as Ansible completes.

However, if you are deploying after the initial installation, the component playbook will need to be used by
Ansible. This process may change slightly with different versions of OpenShift, so be sure to read and follow
RedHat OpenShift Container Platform 3.11 documentation for your version.

Metrics service

The metrics service provides valuable information to the administrator regarding the status, resource utilization,
and availability of the OpenShift cluster. It is also necessary for pod auto-scale functionality and many
organizations use data from the metrics service for their charge back and/or show back applications.

Like with the logging service, and OpenShift as a whole, Ansible is used to deploy the metrics service. Also,
like the logging service, the metrics service can be deployed during an initial setup of the cluster or after its
operational using the component installation method. The following tables contain the variables which are
important when configuring persistent storage for the metrics service.

The tables below only contain the variables which are relevant for storage configuration as it
relates to the metrics service. There are many other options found in the documentation which
should be reviewed, configured, and used according to your deployment.

Variable

openshift metrics_ storage kind

openshift metrics storage host

openshift metrics storage nfs directory

openshift metrics storage volume name

openshift metrics_ storage volume size

Details

Set to nfs to have the installer create an NFS PV for
the logging service.

The hostname or IP address of the NFS host. This
should be set to the data LIF for your SVM.

The mount path for the NFS export. For example, if
the volume is junctioned as /openshift metrics,
you would use that path for this variable.

The name,
e.g. pv_ose metrics, of the PV to create.

The size of the NFS export, for example 100Gi.

If your OpenShift cluster is already running, and therefore Trident has been deployed and configured, the
installer can use dynamic provisioning to create the volumes. The following variables will need to be

configured.

Variable
openshift metrics cassandra pvc prefix

openshift metrics cassandra pvc size

Details
A prefix to use for the metrics PVCs.

The size of the volumes to request.

311

https://docs.openshift.com/container-platform/3.11/welcome/index.html

Variable Details

openshift metrics cassandra storage type The type of storage to use for metrics, this must be
set to dynamic for Ansible to create PVCs with the
appropriate storage class.

openshift metrics cassanda pvc storage c The name of the storage class to use.
lass name
Deploy the metrics service

With the appropriate Ansible variables defined in your hosts/inventory file, deploy the service using Ansible. If
you are deploying at OpenShift install time, then the PV will be created and used automatically. If you're
deploying using the component playbooks, after OpenShift install, then Ansible creates any PVCs which are
needed and, after Trident has provisioned storage for them, deploy the service.

The variables above, and the process for deploying, may change with each version of OpenShift. Ensure you
review and follow RedHat’'s OpenShift deployment guide for your version so that it is configured for your
environment.

Data protection and disaster recovery

Learn about protection and recovery options for Trident and volumes created using
Trident. You should have a data protection and recovery strategy for each application with
a persistence requirement.

Trident replication and recovery

You can create a backup to restore Trident in the event of a disaster.

Trident replication

Trident uses Kubernetes CRDs to store and manage its own state and the Kubernetes cluster etcd to store its
metadata.

Steps
1. Back up the Kubernetes cluster etcd using Kubernetes: Backing up an etcd cluster.

2. Place the backup artifacts on a FlexVol.

@ We recommend you protect the SVM where the FlexVol resides with a SnapMirror
relationship to another SVM.

Trident recovery

Using Kubernetes CRDs and the Kubernetes cluster etcd snapshot, you can recover Trident.

Steps

1. From the destination SVM, mount the volume which contains the Kubernetes etcd data files and certificates
on to the host which will be set up as a master node.

2. Copy all required certificates pertaining to the Kubernetes cluster under /etc/kubernetes/pki and the

312

https://docs.openshift.com/container-platform/3.11/install_config/cluster_metrics.html
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#backing-up-an-etcd-cluster

etcd member files under /var/lib/etcd.
3. Restore the Kubernetes cluster from the etcd backup using Kubernetes: Restoring an etcd cluster.

4. Run kubectl get crd to verify all Trident custom resources have come up and retrieve the Trident
objects to verify all data is available.

SVM replication and recovery

Trident cannot configure replication relationships, however, the storage administrator can use ONTAP
SnapMirror to replicate an SVM.

In the event of a disaster, you can activate the SnapMirror destination SVM to start serving data. You can
switch back to the primary when systems are restored.

About this task
Consider the following when using the SnapMirror SVM Replication feature:

* You should create a distinct backend for each SVM with SVM-DR enabled.

« Configure the storage classes to select the replicated backends only when needed to avoid having
volumes which do not need replication provisioned onto the backends that support SVM-DR.

* Application administrators should understand the additional cost and complexity associated with replication
and carefully consider their recovery plan prior to beginning this process.

SVM replication

You can use ONTAP: SnapMirror SVM replication to create the SVM replication relationship.

SnapMirror allows you to set options to control what to replicate. You'll need to know which options you
selected when preforming SVM recovery using Trident.

* -identity-preserve true replicates the entire SVM configuration.
« -discard-configs network excludes LIFs and related network settings.

* -identity-preserve false replicates only the volumes and security configuration.

SVM recovery using Trident

Trident does not automatically detect SVM failures. In the event of a disaster, the administrator can manually
initiate Trident failover to the new SVM.

Steps

1. Cancel scheduled and ongoing SnapMirror transfers, break the replication relationship, stop the source
SVM and then activate the SnapMirror destination SVM.

2. If you specified ~identity-preserve false or -discard-config network when configuring your
SVM replication, update the managementLIF and dataLIF in the Trident backend definition file.

3. Confirm storagePrefix is present in the Trident backend definition file. This parameter cannot be
changed. Omitting storagePrefix will cause the backend update to fail.

4. Update all the required backends to reflect the new destination SVM name using:

313

https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#restoring-an-etcd-cluster
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-svm-replication-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-svm-replication-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-svm-replication-workflow-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/replicate-entire-svm-config-task.html
https://docs.netapp.com/us-en/ontap/data-protection/exclude-lifs-svm-replication-task.html
https://docs.netapp.com/us-en/ontap/data-protection/exclude-network-name-service-svm-replication-task.html

./tridentctl update backend <backend-name> -f <backend-json-file> -n
<namespace>

9. If you specified -identity-preserve false or discard-config network, you must bounce all
application pods.

@ If you specified -identity-preserve true, all volumes provisioned by Trident start
serving data when the destination SVM is activated.

Volume replication and recovery

Trident cannot configure SnapMirror replication relationships, however, the storage administrator can use
ONTAP SnapMirror replication and recovery to replicate volumes created by Trident.

You can then import the recovered volumes into Trident using tridentctl volume import.

@ Import is not supported on ontap-nas-economy, ontap-san-economy, Of ontap-
flexgroup—-economy drivers.

Snapshot data protection
You can protect and restore data using:

* An external snapshot controller and CRDs to create Kubernetes volume snapshots of Persistent Volumes
(PVs).

Volume snapshots

* ONTAP Snapshots to restore the entire contents of a volume or to recover individual files or LUNSs.

ONTAP Snapshots

Security

Security

Use the recommendations listed here to ensure your Trident installation is secure.

Run Trident in its own namespace

It is important to prevent applications, application administrators, users, and management applications from
accessing Trident object definitions or the pods to ensure reliable storage and block potential malicious activity.

To separate the other applications and users from Trident, always install Trident in its own Kubernetes
namespace (trident). Putting Trident in its own namespace assures that only the Kubernetes administrative
personnel have access to the Trident pod and the artifacts (such as backend and CHAP secrets if applicable)
stored in the namespaced CRD objects.

You should ensure that you allow only administrators access to the Trident namespace and thus access to the
tridentctl application.

314

https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-disaster-recovery-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/manage-local-snapshot-copies-concept.html

Use CHAP authentication with ONTAP SAN backends

Trident supports CHAP-based authentication for ONTAP SAN workloads (using the ontap-san and ontap-
san-economy drivers). NetApp recommends using bidirectional CHAP with Trident for authentication between
a host and the storage backend.

For ONTAP backends that use the SAN storage drivers, Trident can set up bidirectional CHAP and manage
CHAP usernames and secrets through tridentctl.

Refer to Prepare to configure backend with ONTAP SAN drivers to understand how Trident configures CHAP
on ONTAP backends.

Use CHAP authentication with NetApp HCI and SolidFire backends

NetApp recommends deploying bidirectional CHAP to ensure authentication between a host and the NetApp
HCI and SolidFire backends. Trident uses a secret object that includes two CHAP passwords per tenant. When
Trident is installed, it manages the CHAP secrets and stores them in a tridentvolume CR object for the
respective PV. When you create a PV, Trident uses the CHAP secrets to initiate an iSCSI session and
communicate with the NetApp HCI and SolidFire system over CHAP.

@ The volumes that are created by Trident are not associated with any Volume Access Group.

Use Trident with NVE and NAE

NetApp ONTAP provides data-at-rest encryption to protect sensitive data in the event a disk is stolen, returned,
or repurposed. For details, refer to Configure NetApp Volume Encryption overview.

* If NAE is enabled on the backend, any volume provisioned in Trident will be NAE-enabled.

« If NAE is not enabled on the backend, any volume provisioned in Trident will be NVE-enabled unless you
set the NVE encryption flag to false in the backend configuration.

Volumes created in Trident on an NAE-enabled backend must be NVE or NAE encrypted.

* You can set the NVE encryption flag to true in the Trident backend configuration to override
@ the NAE encryption and use a specific encryption key on a per volume basis.

* Setting the NVE encryption flag to false on an NAE-enabled backend creates an NAE-
enabled volume. You cannot disable NAE encryption by setting the NVE encryption flag to
false.

* You can manually create an NVE volume in Trident by explicitly setting the NVE encryption flag to true.
For more information on backend configuration options, refer to:

* ONTAP SAN configuration options
* ONTAP NAS configuration options

Linux Unified Key Setup (LUKS)

You can enable Linux Unified Key Setup (LUKS) to encrypt ONTAP SAN and ONTAP
SAN ECONOMY volumes on Trident. Trident supports passphrase rotation and volume
expansion for LUKS-encrypted volumes.

315

https://docs.netapp.com/us-en/ontap/encryption-at-rest/configure-netapp-volume-encryption-concept.html

In Trident, LUKS-encrypted volumes use the aes-xts-plain64 cypher and mode, as recommended by NIST.

Before you begin

* Worker nodes must have cryptsetup 2.1 or higher (but lower than 3.0) installed. For more information, visit
Gitlab: cryptsetup.

* For performance reasons, we recommend that worker nodes support Advanced Encryption Standard New
Instructions (AES-NI). To verify AES-NI support, run the following command:

grep "aes" /proc/cpuinfo

If nothing is returned, your processor does not support AES-NI. For more information on AES-NI, visit:
Intel: Advanced Encryption Standard Instructions (AES-NI).

Enable LUKS encryption

You can enable per-volume, host-side encryption using Linux Unified Key Setup (LUKS) for ONTAP SAN and
ONTAP SAN ECONOMY volumes.

Steps

1. Define LUKS encryption attributes in the backend configuration. For more information on backend
configuration options for ONTAP SAN, refer to ONTAP SAN configuration options.

"storage": [
{
"labels":{"1luks": "true"},
"zone":"us east la",
"defaults": {
"luksEncryption": "true"

"labels":{"luks": "false"},

"zone":"us east la",

"defaults": {
"luksEncryption": "false"

by

2. Use parameters.selector to define the storage pools using LUKS encryption. For example:

316

https://csrc.nist.gov/publications/detail/sp/800-38e/final
https://gitlab.com/cryptsetup/cryptsetup
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: luks
provisioner: csi.trident.netapp.io
parameters:
selector: "luks=true"
csi.storage.k8s.io/node-stage-secret-name: luks-${pvc.name}
csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

3. Create a secret that contains the LUKS passphrase. For example:

kubectl -n trident create -f luks-pvcl.yaml
apiVersion: vl
kind: Secret
metadata:
name: luks-pvcl
stringData:
luks-passphrase—-name: A
luks-passphrase: secretA

Limitations

LUKS-encrypted volumes cannot take advantage of ONTAP deduplication and compression.

Backend configuration for importing LUKS volumes

To import a LUKS volume, you must set 1uksEncryption to true on the backend. The 1uksEncryption
option tells Trident if the volume is LUKS-compliant (t rue) or not LUKS-compliant (false) as shown in the
following example.

version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
datalLIF: 10.0.0.2

svm: trident svm

username: admin

password: password

defaults:
luksEncryption: 'true'
spaceAllocation: 'false'

snapshotPolicy: default
snapshotReserve: '10'

317

PVC configuration for importing LUKS volumes

To import LUKS volumes dynamically, set the annotation trident.netapp.io/luksEncryption to true
and include a LUKS-enabled storage class in the PVC as shown in this example.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: luks-pvc
namespace: trident
annotations:
trident.netapp.io/luksEncryption: "true"
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: luks-sc

Rotate a LUKS passphrase

You can rotate the LUKS passphrase and confirm rotation.

Do not forget a passphrase until you have verified it is no longer referenced by any volume,
snapshot, or secret. If a referenced passphrase is lost, you might be unable to mount the
volume and the data will remain encrypted and inaccessible.

About this task
LUKS passphrase rotation occurs when a pod that mounts the volume is created after a new LUKS
passphrase is specified. When a new pod is created, Trident compares the LUKS passphrase on the volume to
the active passphrase in the secret.

« If the passphrase on the volume does not match the active passphrase in the secret, rotation occurs.

* If the passphrase on the volume matches the active passphrase in the secret, the previous-luks-
passphrase parameter is ignored.

Steps

1. Add the node-publish-secret-name and node-publish-secret-namespace StorageClass
parameters. For example:

318

apiVersion:

kind:

StorageClass

metadata:

name: csi-san

provisioner:

parameters:

storage.k8s.io/vl1

csi.trident.netapp.io

trident.netapp.io/backendType: "ontap-san"

csi.
csi.
csi.

csi.

storage.k8s.
storage.k8s.

storage.k8s

storage.k8s.

io/node-stage-secret—-name: luks
io/node-stage-secret-namespace: S${pvc.namespace}

.1o0/node-publish-secret-name: luks

io/node-publish-secret-namespace: ${pvc.namespace}

2. ldentify existing passphrases on the volume or snapshot.

Volume

tridentctl -d get volume luks-pvcl
GET http://127.0.0.1:8000/trident/v1/volume/<volumeID>

...luksPassphraseNames: ["A"]

Snapshot

tridentctl -d get snapshot luks-pvcl
GET http://127.0.0.1:8000/trident/v1/volume/<volumelID>/<snapshotID>

...luksPassphraseNames: ["A"]

3. Update the LUKS secret for the volume to specify the new and previous passphrases. Ensure previous-
luke-passphrase-name and previous-luks-passphrase match the previous passphrase.

apiVersion: vl

kind:

Secret

metadata:

name: luks-pvcl

stringData:

luks-passphrase—-name: B

luks-passphrase:

secretB

previous-luks-passphrase-name: A

previous-luks-passphrase: secretA

4. Create a new pod mounting the volume. This is required to initiate the rotation.

5. Verify the the passphrase was rotated.

319

Volume

tridentctl -d get volume luks-pvcl
GET http://127.0.0.1:8000/trident/v1/volume/<volumelD>

...luksPassphraseNames: ["B"]

Snapshot

tridentctl -d get snapshot luks-pvcl
GET http://127.0.0.1:8000/trident/v1/volume/<volumelID>/<snapshotID>

...luksPassphraseNames: ["B"]

Results
The passphrase was rotated when only the new passphrase is returned on the volume and snapshot.

(D If two passphrases are returned, for example luksPassphraseNames: ["B", "A"], the
rotation is incomplete. You can trigger a new pod to attempt to complete the rotation.

Enable volume expansion

You can enable volume expansion on a LUKS-encrypted volume.

Steps

1. Enable the CSINodeExpandSecret feature gate (beta 1.25+). Refer to Kubernetes 1.25: Use Secrets for
Node-Driven Expansion of CSI Volumes for details.

2. Add the node-expand-secret-name and node-expand-secret-namespace StorageClass
parameters. For example:

apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata:
name: luks

provisioner: csi.trident.netapp.io

parameters:
selector: "luks=true"
csi.storage.k8s.io/node-stage-secret-name: luks-${pvc.name}
csi.storage.k8s.io/node-stage-secret—-namespace: ${pvc.namespace}
csi.storage.k8s.io/node-expand-secret-name: luks-${pvc.name}
csi.storage.k8s.io/node-expand-secret—-namespace: ${pvc.namespace}

allowVolumeExpansion: true

Results
When you initiate online storage expansion, the kubelet passes the appropriate credentials to the driver.

320

https://kubernetes.io/blog/2022/09/21/kubernetes-1-25-use-secrets-while-expanding-csi-volumes-on-node-alpha/
https://kubernetes.io/blog/2022/09/21/kubernetes-1-25-use-secrets-while-expanding-csi-volumes-on-node-alpha/

Kerberos in-flight encryption

Using Kerberos in-flight encryption, you can improve data access security by enabling
encryption for the traffic between your managed cluster and the storage backend.

Trident supports Kerberos encryption for ONTAP as a storage backend:

* On-premise ONTAP - Trident supports Kerberos encryption over NFSv3 and NFSv4 connections from Red
Hat OpenShift and upstream Kubernetes clusters to on-premise ONTAP volumes.

You can create, delete, resize, snapshot, clone, read-only clone, and import volumes that use NFS encryption.

Configure in-flight Kerberos encryption with on-premise ONTAP volumes

You can enable Kerberos encryption on the storage traffic between your managed cluster and an on-premise
ONTAP storage backend.

@ Kerberos encryption for NFS traffic with on-premise ONTAP storage backends is only supported
using the ontap-nas storage driver.

Before you begin
* Ensure that you have access to the tridentctl utility.
* Ensure you have administrator access to the ONTAP storage backend.

* Ensure you know the name of the volume or volumes you will be sharing from the ONTAP storage
backend.

» Ensure that you have prepared the ONTAP storage VM to support Kerberos encryption for NFS volumes.
Refer to Enable Kerberos on a data LIF for instructions.

* Ensure that any NFSv4 volumes you use with Kerberos encryption are configured correctly. Refer to the
NetApp NFSv4 Domain Configuration section (page 13) of the NetApp NFSv4 Enhancements and Best
Practices Guide.

Add or modify ONTAP export policies

You need to add rules to existing ONTAP export policies or create new export polices that support Kerberos
encryption for the ONTAP storage VM root volume as well as any ONTAP volumes shared with the upstream
Kubernetes cluster. The export policy rules you add, or new export policies you create, need to support the
following access protocols and access permissions:

Access protocols
Configure the export policy with NFS, NFSv3, and NFSv4 access protocols.

Access details

You can configure one of three different versions of Kerberos encryption, depending on your needs for the
volume:

» Kerberos 5 - (authentication and encryption)
» Kerberos 5i - (authentication and encryption with identity protection)

» Kerberos 5p - (authentication and encryption with identity and privacy protection)

Configure the ONTAP export policy rule with the appropriate access permissions. For example, if clusters will

321

https://docs.netapp.com/us-en/ontap/nfs-config/create-kerberos-config-task.html
https://www.netapp.com/media/16398-tr-3580.pdf
https://www.netapp.com/media/16398-tr-3580.pdf

be mounting the NFS volumes with a mixture of Kerberos 5i and Kerberos 5p encryption, use the following
access settings:

Type Read-only access Read/Write access Superuser access
UNIX Enabled Enabled Enabled
Kerberos 5i Enabled Enabled Enabled
Kerberos 5p Enabled Enabled Enabled

Refer to the following documentation for how to create ONTAP export policies and export policy rules:

* Create an export policy

» Add a rule to an export policy

Create a storage backend

You can create a Trident storage backend configuration that includes Kerberos encryption capability.

About this task

When you create a storage backend configuration file that configures Kerberos encryption, you can specify one
of three different versions of Kerberos encryption using the spec.nfsMountOptions parameter:

* spec.nfsMountOptions: sec=krbb5 (authentication and encryption)
* spec.nfsMountOptions: sec=krb5i (authentication and encryption with identity protection)

* spec.nfsMountOptions: sec=krb5p (authentication and encryption with identity and privacy
protection)

Specify only one Kerberos level. If you specify more than one Kerberos encryption level in the parameter list,
only the first option is used.

Steps

1. On the managed cluster, create a storage backend configuration file using the following example. Replace
values in brackets <> with information from your environment:

322

https://docs.netapp.com/us-en/ontap/nfs-config/create-export-policy-task.html
https://docs.netapp.com/us-en/ontap/nfs-config/add-rule-export-policy-task.html

apiVersion: vl

kind: Secret

metadata:
name: backend-ontap-nas-secret

type: Opaque

stringData:
clientID: <CLIENT ID>
clientSecret: <CLIENT SECRET>

apiVersion: trident.netapp.io/vl

kind: TridentBackendConfig

metadata:
name: backend-ontap-nas

spec:
version: 1
storageDriverName: "ontap-nas"
managementLIF: <STORAGE VM MGMT LIF IP ADDRESS>
dataLIF: <PROTOCOL LIF FQDN OR IP ADDRESS>
svm: <STORAGE VM NAME>
username: <STORAGE VM USERNAME CREDENTIAL>
password: <STORAGE VM PASSWORD CREDENTIAL>
nasType: nfs
nfsMountOptions: ["sec=krb5i"] #can be krb5, krb5i, or krb5Sp
gtreesPerFlexvol:
credentials:

name: backend-ontap-nas-secret

2. Use the configuration file you created in the previous step to create the backend:

tridentctl create backend -f <backend-configuration-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to
determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command
again.

Create a storage class

You can create a storage class to provision volumes with Kerberos encryption.

About this task

323

When you create a storage class object, you can specify one of three different versions of Kerberos encryption
using the mountOptions parameter:

* mountOptions: sec=krb5 (authentication and encryption)

* mountOptions: sec=krb5i (authentication and encryption with identity protection)

* mountOptions: sec=krb5p (authentication and encryption with identity and privacy protection)

Specify only one Kerberos level. If you specify more than one Kerberos encryption level in the parameter list,
only the first option is used. If the level of encryption you specified in the storage backend configuration is
different than the level you specify in the storage class object, the storage class object takes precedence.

Steps

1. Create a StorageClass Kubernetes object, using the following example:

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontap-nas-sc
provisioner: csi.trident.netapp.io
mountOptions: ["sec=krb5i"] #can be krb5,
parameters:

backendType: "ontap-nas"

storagePools: "ontapnas pool"

trident.netapp.io/nasType: "nfs"

allowVolumeExpansion: True

2. Create the storage class:

krb5i, or krbbp

kubectl create -f sample-input/storage-class-ontap-nas-sc.yaml

3. Make sure that the storage class has been created:

kubectl get sc ontap—-nas-sc

You should see output similar to the following:

NAME AGE

ontap-nas-sc

PROVISIONER
csi.trident.netapp.io

Provision volumes

15h

After you create a storage backend and a storage class, you can now provision a volume. For instructions,
refer to Provision a volume.

324

https://docs.netapp.com/us-en/trident/trident-use/vol-provision.html

Configure in-flight Kerberos encryption with Azure NetApp Files volumes

You can enable Kerberos encryption on the storage traffic between your managed cluster and a single Azure
NetApp Files storage backend or a virtual pool of Azure NetApp Files storage backends.

Before you begin
* Ensure that you have enabled Trident on the managed Red Hat OpenShift cluster.
* Ensure that you have access to the tridentctl utility.

* Ensure that you have prepared the Azure NetApp Files storage backend for Kerberos encryption by noting
the requirements and following the instructions in Azure NetApp Files documentation.

» Ensure that any NFSv4 volumes you use with Kerberos encryption are configured correctly. Refer to the
NetApp NFSv4 Domain Configuration section (page 13) of the NetApp NFSv4 Enhancements and Best
Practices Guide.

Create a storage backend

You can create an Azure NetApp Files storage backend configuration that includes Kerberos encryption
capability.

About this task

When you create a storage backend configuration file that configures Kerberos encryption, you can define it so
that it should be applied at one of two possible levels:

* The storage backend level using the spec. kerberos field

* The virtual pool level using the spec.storage.kerberos field

When you define the configuration at the virtual pool level, the pool is selected using the label in the storage
class.

At either level, you can specify one of three different versions of Kerberos encryption:

* kerberos: sec=krb5 (authentication and encryption)
* kerberos: sec=krb5i (authentication and encryption with identity protection)
* kerberos: sec=krb5p (authentication and encryption with identity and privacy protection)

Steps

1. On the managed cluster, create a storage backend configuration file using one of the following examples,
depending on where you need to define the storage backend (storage backend level or virtual pool level).
Replace values in brackets <> with information from your environment:

325

https://learn.microsoft.com/en-us/azure/azure-netapp-files/configure-kerberos-encryption
https://www.netapp.com/media/16398-tr-3580.pdf
https://www.netapp.com/media/16398-tr-3580.pdf

Storage backend level example

apiVersion: vl
kind: Secret
metadata:
name: backend-tbc-secret
type: Opaque
stringData:
clientID: <CLIENT ID>
clientSecret: <CLIENT SECRET>
apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: backend-tbc
spec:
version: 1
storageDriverName: azure-netapp-files
subscriptionID: <SUBSCRIPTION ID>
tenantID: <TENANT ID>
location: <AZURE REGION LOCATION>
servicelevel: Standard
networkFeatures: Standard
capacityPools: <CAPACITY POOL>
resourceGroups: <RESOURCE GROUP>
netappAccounts: <NETAPP ACCOUNT>
virtualNetwork: <VIRTUAL NETWORK>
subnet: <SUBNET>
nasType: nfs
kerberos: sec=krbbi #can be krb5, krb5i, or krbbp
credentials:

name: backend-tbc-secret

Virtual pool level example

326

apiVersion: vl
kind: Secret
metadata:
name: backend-tbc-secret
type: Opaque
stringData:
clientID: <CLIENT ID>
clientSecret: <CLIENT SECRET>
apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: backend-tbc
spec:
version: 1
storageDriverName: azure-netapp-files
subscriptionID: <SUBSCRIPTION ID>
tenantID: <TENANT ID>
location: <AZURE REGION LOCATION>
servicelevel: Standard
networkFeatures: Standard
capacityPools: <CAPACITY POOL>
resourceGroups: <RESOURCE GROUP>
netappAccounts: <NETAPP ACCOUNT>
virtualNetwork: <VIRTUAL NETWORK>
subnet: <SUBNET>
nasType: nfs
storage:
- labels:
type: encryption
kerberos: sec=krbbi #can be krb5, krb5i, or krbbp
credentials:
name: backend-tbc-secret

2. Use the configuration file you created in the previous step to create the backend:

tridentctl create backend -f <backend-configuration-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to
determine the cause by running the following command:

tridentctl logs

327

After you identify and correct the problem with the configuration file, you can run the create command
again.

Create a storage class
You can create a storage class to provision volumes with Kerberos encryption.

Steps
1. Create a StorageClass Kubernetes object, using the following example:

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: sc-nfs
provisioner: csi.trident.netapp.io
parameters:
backendType: "azure-netapp-files"
trident.netapp.io/nasType: "nfs"
selector: "type=encryption"

2. Create the storage class:
kubectl create -f sample-input/storage-class-sc-nfs.yaml
3. Make sure that the storage class has been created:
kubectl get sc -sc-nfs
You should see output similar to the following:

NAME PROVISIONER AGE
sc-nfs csi.trident.netapp.io 15h

Provision volumes

After you create a storage backend and a storage class, you can now provision a volume. For instructions,
refer to Provision a volume.

328

https://docs.netapp.com/us-en/trident/trident-use/vol-provision.html

Protect applications with Trident Protect

Learn about Trident Protect

NetApp Trident Protect provides advanced application data management capabilities that
enhance the functionality and availability of stateful Kubernetes applications backed by
NetApp ONTAP storage systems and the NetApp Trident CSI storage provisioner. Trident
Protect simplifies the management, protection, and movement of containerized workloads
across public clouds and on-premises environments. It also offers automation capabilities
through its APl and CLI.

You can protect applications with Trident Protect by creating custom resources (CRs) or by using the Trident
Protect CLI.

What’s next?

You can learn about Trident Protect requirements before you install it:

* Trident Protect requirements

Install Trident Protect

Trident Protect requirements

Get started by verifying the readiness of your operational environment, application
clusters, applications, and licenses. Ensure that your environment meets these
requirements to deploy and operate Trident Protect.

Trident Protect Kubernetes cluster compatibility

Trident Protect is compatible with a wide range of fully managed and self-managed Kubernetes offerings,
including:

* Amazon Elastic Kubernetes Service (EKS)

* Google Kubernetes Engine (GKE)

* Microsoft Azure Kubernetes Service (AKS)

* Red Hat OpenShift

» SUSE Rancher

* VMware Tanzu Portfolio

* Upstream Kubernetes

@ Ensure that the cluster on which you install Trident Protect is configured with a running snapshot
controller and the related CRDs. To install a snapshot controller, refer to these instructions.

329

https://docs.netapp.com/us-en/trident/trident-use/vol-snapshots.html#deploy-a-volume-snapshot-controller

Trident Protect storage backend compatibility

Trident Protect supports the following storage backends:

* Amazon FSx for NetApp ONTAP
» Cloud Volumes ONTAP

* ONTAP storage arrays

» Google Cloud NetApp Volumes
* Azure NetApp Files

Ensure that your storage backend meets the following requirements:
* Ensure that NetApp storage connected to the cluster is using Astra Trident 24.02 or newer (Trident 24.10 is

recommended).

o If Astra Trident is older than version 24.06.1 and you plan to use NetApp SnapMirror disaster recovery
functionality, you need to manually enable Astra Control Provisioner.

» Ensure that you have the latest Astra Control Provisioner (installed and enabled by default as of Astra
Trident 24.06.1).

* Ensure that you have a NetApp ONTAP storage backend.
» Ensure that you have configured an object storage bucket for storing backups.

» Create any application namespaces that you plan to use for applications or application data management
operations. Trident Protect does not create these namespaces for you; if you specify a nonexistent
namespace in a custom resource, the operation will fail.

Requirements for nas-economy volumes

Trident Protect supports backup and restore operations to nas-economy volumes. Snapshots, clones, and
SnapMirror replication to nas-economy volumes are not currently supported. You need to enable a snapshot
directory for each nas-economy volume you plan to use with Trident Protect.

Some applications are not compatible with volumes that use a snapshot directory. For these
applications, you need to hide the snapshot directory by running the following command on the
ONTAP storage system:

®

nfs modify -vserver <svm> -v3-hide-snapshot enabled

You can enable the snapshot directory by running the following command for each nas-economy volume,
replacing <volume-UUID> with the UUID of the volume you want to change:

tridentctl update volume <volume-UUID> --snapshot-dir=true --pool-level
=true -n trident

@ You can enable snapshot directories by default for new volumes by setting the Trident backend
configuration option snapshotDir to true. Existing volumes are not affected.

330

Protecting data with KubeVirt VMs

Trident Protect 24.10 and 24.10.1 and newer have different behavior when you protect applications running on
KubeVirt VMs. For both versions, you can enable or disable filesystem freezing and unfreezing during data
protection operations.

For all Trident Protect versions, to enable or disable automatic freeze functionality in OpenShift
environments, you might need to grant the application namespace privileged permissions. For
example:

®

oc adm policy add-scc-to-user privileged -z default -n

<application-namespace>

Trident Protect 24.10

Trident Protect 24.10 does not automatically ensure a consistent state for KubeVirt VM filesystems during data
protection operations. If you want to protect your KubeVirt VM data using Trident Protect 24.10, you need to
manually enable the freeze/unfreeze functionality for the filesystems before the data protection operation. This
ensures that the filesystems are in a consistent state.

You can configure Trident Protect 24.10 to manage the freezing and unfreezing of the VM filesystem during
data protection operations by configuring virtualization and then using the following command:

kubectl set env deployment/trident-protect-controller-manager
NEPTUNE VM FREEZE=true -n trident-protect

Trident Protect 24.10.1 and newer

Beginning with Trident Protect 24.10.1, Trident Protect automatically freezes and unfreezes KubeVirt
filesystems during data protection operations. Optionally, you can disable this automatic behavior using the
following command:

kubectl set env deployment/trident-protect-controller-manager
NEPTUNE VM FREEZE=false -n trident-protect

Requirements for SnapMirror replication

NetApp SnapMirror is available for use with Trident Protect for the following ONTAP solutions:

* NetApp ASA

* NetApp AFF

* NetApp FAS

* NetApp ONTAP Select

* NetApp Cloud Volumes ONTAP
* Amazon FSx for NetApp ONTAP

331

https://docs.openshift.com/container-platform/4.16/virt/install/installing-virt.html

ONTAP cluster requirements for SnapMirror replication

Ensure your ONTAP cluster meets the following requirements if you plan to use SnapMirror replication:

» Astra Control Provisioner or Trident: Astra Control Provisioner or Trident must exist on both the source
and destination Kubernetes clusters that utilize ONTAP as a backend. Trident Protect supports replication
with NetApp SnapMirror technology using storage classes backed by the following drivers:

° ontap-nas
° ontap-san

» Licenses: ONTAP SnapMirror asynchronous licenses using the Data Protection bundle must be enabled
on both the source and destination ONTAP clusters. Refer to SnapMirror licensing overview in ONTAP for
more information.

Peering considerations for SnapMirror replication

Ensure your environment meets the following requirements if you plan to use storage backend peering:

* Cluster and SVM: The ONTAP storage backends must be peered. Refer to Cluster and SVM peering
overview for more information.

@ Ensure that the SVM names used in the replication relationship between two ONTAP
clusters are unique.

* Astra Control Provisioner or Trident and SVM: The peered remote SVMs must be available to Astra
Control Provisioner or Trident on the destination cluster.

* Managed backends: You need to add and manage ONTAP storage backends in Trident Protect to create
a replication relationship.

* NVMe over TCP: Trident Protect does not support NetApp SnapMirror replication for storage backends
that are using the NVMe over TCP protocol.

Trident / ONTAP configuration for SnapMirror replication

Trident Protect requires that you configure at least one storage backend that supports replication for both the
source and destination clusters. If the source and destination clusters are the same, the destination application
should use a different storage backend than the source application for the best resiliency.

Install and configure Trident Protect

If your environment meets the requirements for Trident Protect, you can follow these
steps to install Trident Protect on your cluster. You can obtain Trident Protect from
NetApp, or install it from your own private registry. Installing from a private registry is
helpful if your cluster cannot access the Internet.

By default, Trident Protect collects support information that helps with any NetApp support cases
that you might open, including logs, metrics, and topology information about clusters and

@ managed applications. Trident Protect sends these support bundles to NetApp on a daily
schedule. You can optionally disable this support bundle collection when you install Trident
Protect. You can manually generate a support bundle at any time.

332

https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/peering/index.html
https://docs.netapp.com/us-en/ontap/peering/index.html

Install Trident Protect

333

Install Trident Protect from NetApp
Steps
1. Add the Trident Helm repository:

helm repo add netapp-trident-protect
https://netapp.github.io/trident-protect-helm-chart

2. Install the Trident Protect CRDs:

helm install trident-protect-crds netapp-trident-protect/trident-
protect-crds —--version 100.2410.1 --create-namespace —--namespace

trident-protect

3. Use Helm to install Trident Protect using one of the following commands. Replace
<name of cluster> with a cluster name, which will be assigned to the cluster and used to identify
the cluster’s backups and snapshots:

o Install Trident Protect normally:

helm install trident-protect netapp-trident-protect/trident-
protect --set clusterName=<name of cluster> --version 100.2410.1

--create-namespace --namespace trident-protect

o Install Trident Protect and disable the scheduled daily Trident Protect AutoSupport support bundle
uploads:

helm install trident-protect netapp-trident-protect/trident-
protect --set autoSupport.enabled=false --set
clusterName=<name of cluster> --version 100.2410.1 --create
-namespace --namespace trident-protect

Install Trident Protect from a private registry

You can install Trident Protect from a private image registry if your Kubernetes cluster is unable to access
the Internet. In these examples, replace values in brackets with information from your environment:

Steps

1. Pull the following images to your local machine, update the tags, and then push them to your private
registry:

334

netapp/controller:24.10.1
netapp/restic:24.10.1
netapp/kopia:24.10.1
netapp/trident-autosupport:24.10.0
netapp/exechook:24.10.1
netapp/resourcebackup:24.10.1
netapp/resourcerestore:24.10.1
netapp/resourcedelete:24.10.1
bitnami/kubectl:1.30.2
kubebuilder/kube-rbac-proxy:v0.16.0

For example:

docker pull netapp/controller:24.10.1

docker tag netapp/controller:24.10.1 <private-registry-
url>/controller:24.10.1

docker push <private-registry-url>/controller:24.10.1

2. Create the Trident Protect system namespace:

kubectl create ns trident-protect

3. Log in to the registry:

helm registry login <private-registry-url> -u <account-id> -p <api-
token>

4. Create a pull secret to use for private registry authentication:

kubectl create secret docker-registry regcred --docker
-username=<registry-username> --docker-password=<api-token> -n
trident-protect --docker-server=<private-registry-url>

5. Add the Trident Helm repository:

335

helm repo add netapp-trident-protect
https://netapp.github.io/trident-protect-helm-chart

6. Create a file named protectvalues.yaml. Ensure that it contains the following Trident Protect
settings:

image:
registry: <private-registry-url>
imagePullSecrets:
- name: regcred
controller:
image:
registry: <private-registry-url>
rbacProxy:
image:
registry: <private-registry-url>
crCleanup:
imagePullSecrets:
- name: regcred
webhooksCleanup:
imagePullSecrets:

- name: regcred

7. Install the Trident Protect CRDs:

helm install trident-protect-crds netapp-trident-protect/trident-
protect-crds --version 100.2410.1 --create-namespace --namespace

trident-protect

8. Use Helm to install Trident Protect using one of the following commands. Replace
<name of cluster> with a cluster name, which will be assigned to the cluster and used to identify
the cluster’s backups and snapshots:

o Install Trident Protect normally:

helm install trident-protect netapp-trident-protect/trident-
protect --set clusterName=<name of cluster> --version 100.2410.1
--create-namespace --namespace trident-protect -£f
protectValues.yaml

o Install Trident Protect and disable the scheduled daily Trident Protect AutoSupport support bundle
uploads:

336

helm install trident-protect netapp-trident-protect/trident-
protect —--set autoSupport.enabled=false --set

clusterName=<name of cluster> --version 100.2410.1 --create
-namespace --namespace trident-protect -f protectValues.yaml

Specify Trident Protect container resource limits

You can use a configuration file to specify resource limits for Trident Protect containers after you install Trident
Protect. Setting resource limits enables you to control how much of the cluster’s resources are consumed by
Trident Protect operations.

Steps

1. Create a file named resourceLimits.yaml.

2. Populate the file with resource limit options for Trident Protect containers according to the needs of your
environment.

The following example configuration file shows the available settings and contains the default vaules for
each resource limit:

JjobResources:

defaults:
limits:
cpu: 8000m
memory: 10000Mi
ephemeralStorage: ""
requests:
cpu: 100m

memory: 100Mi

mn

ephemeralStorage:
resticVolumeBackup:
limits:
cpu: ""
memory: ""
ephemeralStorage: ""
requests:

mn

cpu:
memory: ""
ephemeralStorage: ""
resticVolumeRestore:
limits:
cpu: ""

nmn

memory:

mnmn

ephemeralStorage:

337

requests:

mwn

cpu:

nmn

memory:
ephemeralStorage: ""
kopiaVolumeBackup:
limits:
cpu: ""

memory: ""

ephemeralStorage: ""

requests:

CpU. . mwn

nmnn

memory:

ephemeralStorage: ""

kopiaVolumeRestore:
limits:

cpu: ""

memory: ""
ephemeralStorage: ""

requests:

mwn

cpu:

nmn

memory:

mn

ephemeralStorage:

3. Apply the values from the resourceLimits.yaml file:

helm upgrade trident-protect -n trident-protect -f <resourcelLimits.yaml>
--reuse-values

Install the Trident Protect CLI plugin

You can use the Trident Protect command line plugin, which is an extension of the Trident
tridentctl utility, to create and interact with Trident Protect custom resources (CRs).

Install the Trident Protect CLI plugin

Before using the command line utility, you need to install it on the machine you use to access your cluster.
Follow these steps, depending on if your machine uses an x64 or ARM CPU.

338

Download plugin for Linux AMD64 CPUs
Steps
1. Download the Trident Protect CLI plugin:

curl -L -o tridentctl-protect https://github.com/NetApp/tridentctl-
protect/releases/download/24.10.1/tridentctl-protect-linux-amd64

Download plugin for Linux ARM64 CPUs
Steps
1. Download the Trident Protect CLI plugin:

curl -L -o tridentctl-protect https://github.com/NetApp/tridentctl-
protect/releases/download/24.10.1/tridentctl-protect-linux—-armé64

Download plugin for Mac AMD64 CPUs
Steps
1. Download the Trident Protect CLI plugin:

curl -L -o tridentctl-protect https://github.com/NetApp/tridentctl-
protect/releases/download/24.10.1/tridentctl-protect-macos-amd64

Download plugin for Mac ARM64 CPUs
Steps
1. Download the Trident Protect CLI plugin:

curl -L -o tridentctl-protect https://github.com/NetApp/tridentctl-
protect/releases/download/24.10.1/tridentctl-protect-macos—-armé64

2. Enable execute permissions for the plugin binary:

chmod +x tridentctl-protect

3. Copy the plugin binary to a location that is defined in your PATH variable. For example, /usr/bin or
/usr/local/bin (you might need elevated privileges):

cp ./tridentctl-protect /usr/local/bin/

339

4. Optionally, you can copy the plugin binary to a location in your home directory. In this case, it is
recommended to ensure the location is part of your PATH variable:

cp ./tridentctl-protect ~/bin/

@ Copying the plugin to a location in your PATH variable enables you to use the plugin by typing
tridentctl-protect or tridentctl protect from any location.

View Trident CLI plugin help
You can use the built-in plugin help features to get detailed help on the capabilities of the plugin:

Steps
1. Use the help function to view usage guidance:

tridentctl-protect help

Enable command auto-completion

After you have installed the Trident Protect CLI plugin, you can enable auto-completion for certain commands.

340

Enable auto-completion for the Bash shell
Steps
1. Download the completion script:

curl -L -0 https://github.com/NetApp/tridentctl-
protect/releases/download/24.10.1/tridentctl-completion.bash

2. Make a new directory in your home directory to contain the script:

mkdir -p ~/.bash/completions

3. Move the downloaded script to the ~/ .bash/completions directory:

mv tridentctl-completion.bash ~/.bash/completions/

4. Add the following line to the ~/ .bashrc file in your home directory:

source ~/.bash/completions/tridentctl-completion.bash

Enable auto-completion for the Z shell
Steps
1. Download the completion script:

curl -L -0 https://github.com/NetApp/tridentctl-
protect/releases/download/24.10.1/tridentctl-completion.zsh

2. Make a new directory in your home directory to contain the script:

mkdir -p ~/.zsh/completions

3. Move the downloaded script to the ~/ . zsh/completions directory:

mv tridentctl-completion.zsh ~/.zsh/completions/

4. Add the following line to the ~/ . zprofile file in your home directory:

source ~/.zsh/completions/tridentctl-completion.zsh

341

Result
Upon your next shell login, you can use command auto-completion with the tridentctl-protect plugin.

Manage Trident Protect

Manage Trident Protect authorization and access control

Trident Protect uses the Kubernetes model of role-based access control (RBAC). By
default, Trident Protect provides a single system namespace and its associated default
service account. If you have an organization with many users or specific security needs,
you can use the RBAC features of Trident Protect to gain more granular control over
access to resources and namespaces.

The cluster administrator always has access to resources in the default trident-protect namespace, and
can also access resources in all other namespaces. To control access to resources and applications, you need
to create additional namespaces and add resources and applications to those namespaces.

Note that no users can create application data management CRs in the default trident-protect
namespace. You need to create application data management CRs in an application namespace (as a best
practice, create application data management CRs in the same namespace as their associated application).

Only administrators should have access to privileged Trident Protect custom resource objects,
which include:

» AppVault: Requires bucket credential data
@ » AutoSupportBundle: Collects metrics, logs, and other sensitive Trident Protect data

» AutoSupportBundleSchedule: Manages log collection schedules

As a best practice, use RBAC to restrict access to privileged objects to administrators.

For more information about how RBAC regulates access to resources and namespaces, refer to the
Kubernetes RBAC documentation.

Fore information about service accounts, refer to the Kubernetes service account documentation.

Example: Manage access for two groups of users

For example, an organization has a cluster administrator, a group of engineering users, and a group of
marketing users. The cluster administrator would complete the following tasks to create an environment where
the engineering group and the marketing group each have access to only the resources assigned to their
respective namespaces.

Step 1: Create a namespace to contain resources for each group

Creating a namespace enables you to logically separate resources and better control who has access to those
resources.

Steps
1. Create a namespace for the engineering group:

342

https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/

kubectl create ns engineering-ns

2. Create a namespace for the marketing group:

kubectl create ns marketing-ns

Step 2: Create new service accounts to interact with resources in each namespace

Each new namespace you create comes with a default service account, but you should create a service
account for each group of users so that you can further divide privileges between groups in the future if
necessary.

Steps

1. Create a service account for the engineering group:

apiVersion: vl
kind: ServiceAccount
metadata:

name: eng-user

namespace: engineering-ns

2. Create a service account for the marketing group:

apiVersion: vl
kind: ServiceAccount
metadata:

name: mkt-user

namespace: marketing-ns

Step 3: Create a secret for each new service account

A service account secret is used to authenticate with the service account, and can easily be deleted and
recreated if compromised.

Steps

1. Create a secret for the engineering service account:

343

apiVersion: vl
kind: Secret
metadata:
annotations:
kubernetes.io/service—-account.name: eng-user
name: eng-user-secret
namespace: engineering-ns

type: kubernetes.io/service-account-token

2. Create a secret for the marketing service account:

apiVersion: vl
kind: Secret
metadata:
annotations:
kubernetes.io/service-account.name: mkt-user
name: mkt-user-secret
namespace: marketing-ns

type: kubernetes.io/service-account-token

Step 4: Create a RoleBinding object to bind the ClusterRole object to each new service account

A default ClusterRole object is created when you install Trident Protect. You can bind this ClusterRole to the
service account by creating and applying a RoleBinding object.

Steps
1. Bind the ClusterRole to the engineering service account:

apiVersion: rbac.authorization.k8s.io/vl
kind: RoleBinding
metadata:
name: engineering-ns-tenant-rolebinding
namespace: engineering-ns
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: trident-protect-tenant-cluster-role
subjects:
- kind: ServiceAccount
name: eng-user

namespace: engineering-ns

2. Bind the ClusterRole to the marketing service account:

344

apiVersion: rbac.authorization.k8s.io/vl
kind: RoleBinding
metadata:
name: marketing-ns-tenant-rolebinding
namespace: marketing-ns
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: trident-protect-tenant-cluster-role
subjects:
- kind: ServiceAccount
name: mkt-user

namespace: marketing-ns

Step 5: Test permissions

Test that the permissions are correct.

Steps
1. Confirm that engineering users can access engineering resources:

kubectl auth can-i --as=system:serviceaccount:engineering-ns:eng-user

get applications.protect.trident.netapp.io —-n engineering-ns

2. Confirm that engineering users cannot access marketing resources:

kubectl auth can-i --as=system:serviceaccount:engineering-ns:eng-user

get applications.protect.trident.netapp.io -n marketing-ns

Step 6: Grant access to AppVault objects

To perform data management tasks such as backups and snapshots, the cluster administrator needs to grant
access to AppVault objects to individual users.

Steps

1. Create and apply an AppVault and secret combination YAML file that grants a user access to an AppVault.
For example, the following CR grants access to an AppVault to the user eng-user:

345

apiVersion: vl
data:
accessKeyID: <ID value>
secretAccessKey: <key value>
kind: Secret
metadata:
name: appvault-for-eng-user-only-secret
namespace: trident-protect
type: Opaque
apiVersion: protect.trident.netapp.io/vl
kind: AppVault
metadata:
name: appvault-for-eng-user-only
namespace: trident-protect # Trident Protect system namespace
spec:
providerConfig:
azure:
accountName: ""
bucketName: ""
endpoint: ""
gcp:
bucketName: ""
projectID: ""
s3:
bucketName: testbucket
endpoint: 192.168.0.1:30000
secure: "false"
skipCertValidation: "true"
providerCredentials:
accessKeyID:
valueFromSecret:
key: accessKeyID
name: appvault-for-eng-user-only-secret
secretAccessKey:
valueFromSecret:
key: secretAccessKey
name: appvault-for-eng-user-only-secret
providerType: GenericS3

2. Create and apply a Role CR to enable cluster administrators to grant access to specific resources in a
namespace. For example:

346

apiVersion: rbac.authorization.k8s.io/vl
kind: Role
metadata:
name: eng-user-appvault-reader
namespace: trident-protect
rules:
- apiGroups:
- protect.trident.netapp.io
resourceNames:
- appvault-for-enguser-only
resources:
- appvaults
verbs:

- get

3. Create and apply a RoleBinding CR to bind the permissions to the user eng-user. For example:

apiVersion: rbac.authorization.k8s.io/v1l
kind: RoleBinding
metadata:
name: eng-user-read-appvault-binding
namespace: trident-protect
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: eng-user-appvault-reader
subjects:
- kind: ServiceAccount
name: eng-user

namespace: engineering-ns

4. Verify that the permissions are correct.

a. Attempt to retrieve AppVault object information for all namespaces:

kubectl get appvaults -n trident-protect

-—as=system:serviceaccount:engineering-ns:eng-user

You should see output similar to the following:

347

Error from server (Forbidden): appvaults.protect.trident.netapp.io is
forbidden: User "system:serviceaccount:engineering-ns:eng-user"
cannot list resource "appvaults" in API group
"protect.trident.netapp.io" in the namespace "trident-protect"

b. Test to see if the user can get the AppVault information that they now have permission to access:

kubectl auth can-i --as=system:serviceaccount:engineering-ns:eng-user
get appvaults.protect.trident.netapp.io/appvault-for-eng-user-only -n
trident-protect

You should see output similar to the following:

yes

Result

The users you have granted AppVault permissions to should be able to use authorized AppVault objects for
application data management operations, and should not be able to access any resources outside of the
assigned namespaces or create new resources that they do not have access to.

Generate a Trident Protect support bundle

Trident Protect enables administrators to generate bundles that include information useful
to NetApp Support, including logs, metrics, and topology information about the clusters
and apps under management. If you are connected to the Internet, you can upload
support bundles to the NetApp Support Site (NSS) using a custom resource (CR) file.

348

Create
Steps

a support bundle using a CR

1. Create the custom resource (CR) file and name it (for example, trident-protect-support-

bu

ndle.yaml).

2. Configure the following attributes:

o

metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

o spec.triggerType: (Required) Determines whether the support bundle is generated immediately,

or scheduled. Scheduled bundle generation happens at 12AM UTC. Possible values:
= Scheduled

= Manual

> spec.uploadEnabled: (Optional) Controls whether the support bundle should be uploaded to the

NetApp Support Site after it is generated. If not specified, defaults to false. Possible values:
= true

= false (default)

o spec.dataWindowsStart: (Optional) A date string in RFC 3339 format that specifies the date and

time that the window of included data in the support bundle should begin. If not specified, defaults
to 24 hours ago. The earliest window date you can specify is 7 days ago.

Example YAML:

apiVersion: protect.trident.netapp.io/vl
kind: AutoSupportBundle
metadata:

name: trident-protect-support-bundle
spec:

triggerType: Manual

uploadEnabled: true

dataWindowStart: 2024-05-05T12:30:00%

3. After you populate the astra-support-bundle.yaml file with the correct values, apply the CR:

kubectl apply -f trident-protect-support-bundle.yaml

Create a support bundle using the CLI

Steps

1. Create the support bundle, replacing values in brackets with information from your environment. The
trigger-type determines whether the bundle is created immediately or if creation time is dictated

by

the schedule, and can be Manual or Scheduled. The default setting is Manual.

For example:

349

tridentctl-protect create autosupportbundle <my bundle name>

-—trigger-type <trigger type>

Upgrade Trident Protect

You can upgrade Trident Protect to the latest version to take advantage of new features
or bug fixes.

To upgrade Trident Protect, perform the following steps.

Steps
1. Update the Trident Helm repository:

helm repo update
2. Upgrade the Trident Protect CRDs:

helm upgrade trident-protect-crds netapp-trident-protect/trident-

protect-crds --version 100.2410.1 --namespace trident-protect

3. Upgrade Trident Protect:

helm upgrade trident-protect netapp-trident-protect/trident-protect

--version 100.2410.1 --namespace trident-protect

Manage and protect applications

Use Trident Protect AppVault objects to manage buckets

The bucket custom resource (CR) for Trident Protect is known as an AppVault. AppVault
objects are the declarative Kubernetes workflow representation of a storage bucket. An
AppVault CR contains the configurations necessary for a bucket to be used in protection
operations, such as backups, snapshots, restore operations, and SnapMirror replication.
Only administrators can create AppVaults.

Key generation and AppVault definition examples

When defining an AppVault CR, you need to include credentials to access the resources hosted by the
provider. How you generate the keys for the credentials will differ depending on the provider. The following are
command line key generation examples for several providers, followed by example AppVault definitions for
each provider.

350

Key generation examples

You can use the following examples to create keys for the credentials of each cloud provider.

Google Cloud

kubectl create secret generic <secret-name> --from-file=credentials
=<mycreds-file.json> -n trident-protect

Amazon S3 (AWS)

kubectl create secret generic <secret-name> --from-literal=accessKeyID
=<objectstorage-accesskey> --from-literal=secretAccessKey=<generic-s3-
trident-protect-src-bucket-secret> -n trident-protect

Microsoft Azure

kubectl create secret generic <secret-name> --from-literal=accountKey
=<secret-name> -n trident-protect

Generic S3
kubectl create secret generic <secret-name> --from-literal=accessKeyID
=<objectstorage-accesskey> --from-literal=secretAccessKey=<generic-s3-

trident-protect-src-bucket-secret> -n trident-protect

ONTAP S3

kubectl create secret generic <secret-name> --from-literal=accessKeyID
=<objectstorage-accesskey> --from-literal=secretAccessKey=<generic-s3-
trident-protect-src-bucket-secret> -n trident-protect

StorageGrid S3

kubectl create secret generic <secret-name> --from-literal=
accessKeylID=<objectstorage-accesskey> --from-literal=secretAccessKey
=<generic-s3-trident-protect-src-bucket-secret> -n trident-protect

AppVault CR examples

You can use the following CR examples to create AppVault objects for each cloud provider.

351

Google Cloud

apiVersion: protect.trident.netapp.io/vl
kind: AppVault
metadata:
name: gcp-trident-protect-src-bucket-b643cc50-0429-4ad5-971f-
ac4a83621922
namespace: trident-protect
spec:
providerType: GCP
providerConfig:
gcp:
bucketName: trident-protect-src-bucket
projectID: project-id
providerCredentials:
credentials:
valueFromSecret:
key: credentials
name: gcp-trident-protect-src-bucket-secret

Amazon S3 (AWS)

apiVersion: protect.trident.netapp.io/vl
kind: AppVault
metadata:
name: amazon-s3-trident-protect-src-bucket-b643cc50-0429-4ad5-971f-
ac4a83621922
namespace: trident-protect
spec:
providerType: AWS
providerConfig:
s3:
bucketName: trident-protect-src-bucket
endpoint: s3.example.com
providerCredentials:
accessKeyID:
valueFromSecret:
key: accessKeyID
name: s3
secretAccessKey:
valueFromSecret:
key: secretAccessKey

name: s3

Microsoft Azure

352

apiVersion: protect.trident.netapp.io/vl
kind: AppVault
metadata:
name: azure-trident-protect-src-bucket-b643cc50-0429-4ad5-971f-
ac4aB83621922
namespace: trident-protect
spec:
providerType: Azure
providerConfig:
azure:
accountName: account-name
bucketName: trident-protect-src-bucket
providerCredentials:
accountKey:
valueFromSecret:
key: accountKey
name: azure-trident-protect-src-bucket-secret

Generic S3

apiVersion: protect.trident.netapp.io/vl
kind: AppVault
metadata:
name: generic-s3-trident-protect-src-bucket-b643cc50-0429-4ad5-971f-
ac4a83621922
namespace: trident-protect
spec:
providerType: GenericS3
providerConfig:
s3:
bucketName: trident-protect-src-bucket
endpoint: s3.example.com
providerCredentials:
accessKeyID:
valueFromSecret:
key: accessKeyID
name: s3
secretAccessKey:
valueFromSecret:
key: secretAccessKey

name: s3

ONTAP S3

353

apiVersion: protect.trident.netapp.io/vl
kind: AppVault
metadata:
name: ontap-s3-trident-protect-src-bucket-b643cc50-0429-4ad5-971f-
ac4aB83621922
namespace: trident-protect
spec:
providerType: OntapS3
providerConfig:
s3:
bucketName: trident-protect-src-bucket
endpoint: s3.example.com
providerCredentials:
accessKeyID:
valueFromSecret:
key: accessKeyID
name: s3
secretAccessKey:
valueFromSecret:
key: secretAccessKey

name: s3

StorageGrid S3

354

apiVersion: protect.trident.netapp.io/vl
kind: AppVault
metadata:
name: storagegrid-s3-trident-protect-src-bucket-b643cc50-0429-4ad5-
971f-ac4a83621922
namespace: trident-protect
spec:
providerType: StorageGridS3
providerConfig:
s3:
bucketName: trident-protect-src-bucket
endpoint: s3.example.com
providerCredentials:
accessKeyID:
valueFromSecret:
key: accessKeyID
name: s3
secretAccessKey:
valueFromSecret:
key: secretAccessKey

name: s3

AppVault creation examples using the Trident Protect CLI

You can use the following CLI command examples to create AppVault CRs for each provider.

355

Google Cloud

tridentctl-protect create vault GCP my-new-vault --bucket mybucket
--project my-gcp-project --secret <gcp-creds>/<credentials>

Amazon S3 (AWS)

tridentctl-protect create vault AWS <vault-name> --bucket <bucket-name>
--secret <secret-name> --endpoint <s3-endpoint>

Microsoft Azure

tridentctl-protect create vault Azure <vault-name> --account <account-
name> —--bucket <bucket-name> --secret <secret-name>

Generic S3

tridentctl-protect create vault GenericS3 <vault-name> --bucket
<bucket-name> --secret <secret-name> --endpoint <s3-endpoint>

ONTAP S3

tridentctl-protect create vault OntapS3 <vault-name> --bucket <bucket-
name> --secret <secret-name> --endpoint <s3-endpoint>

StorageGrid S3

tridentctl-protect create vault StorageGridS3 s3vault --bucket <bucket-
name> --secret <secret-name> --endpoint <s3-endpoint>

Use the AppVault browser to view AppVault information

You can use the Trident Protect CLI plugin to view information about AppVault objects that have been created
on the cluster.

Steps
1. View the contents of an AppVault object:

tridentctl-protect get appvaultcontent gcp-vault --show-resources all

Example output:

356

e e e L e L e P L et +

| CLUSTER | APP | TYPE | NAME

TIMESTAMP |

fom Fom————— fommm - e it T
R +

| | mysgl | snapshot | mysnap | 2024-

08-09 21:02:11 (UTC) |
| productionl | mysgl | snapshot | hourly-e7db6-20240815180300 | 2024-
08-15 18:03:06 (UTC) |
| productionl | mysgl | snapshot | hourly-e7db6-20240815190300 | 2024-
08-15 19:03:06 (UTC) |
| productionl | mysqgl | snapshot | hourly-e7db6-20240815200300 | 2024-
08-15 20:03:06 (UTC) |

| productionl | mysgl | backup | hourly-e7db6-20240815180300 | 2024-
08-15 18:04:25 (UTC) |

| productionl | mysgl | backup | hourly-e7db6-20240815190300 | 2024-
08-15 19:03:30 (UTC) |

| productionl | mysgl | backup | hourly-e7db6-20240815200300 | 2024-
08-15 20:04:21 (UTC) |

| productionl | mysgl | backup | mybackupb | 2024-
08-09 22:25:13 (UTC) |

| | mysgl | backup | mybackup | 2024-
08-09 21:02:52 (UTC) |

o —— - e e

et e P +

2. Optionally, to see the AppVaultPath for each resource, use the flag --show-paths.

The cluster name in the first column of the table is only available if a cluster name was specified in the
Trident Protect helm installation. For example: —-set clusterName=productionl.

Remove an AppVault
You can remove an AppVault object at any time.

Do not remove the finalizers key in the AppVault CR before deleting the AppVault object. If
you do so, it can result in residual data in the AppVault bucket and orphaned resources in the
cluster.

Before you begin
Ensure that you have deleted all snapshots and backups stored in the associated bucket.

357

Remove an AppVault using the Kubernetes CLI

1. Remove the AppVault object, replacing appvault name with the name of the AppVault object to
remove:

kubectl delete appvault <appvault name> -n trident-protect

Remove an AppVault using the Trident Protect CLI

1. Remove the AppVault object, replacing appvault name with the name of the AppVault object to
remove:

tridentctl-protect delete appvault <appvault name> -n trident-
protect

Define an application for management with Trident Protect

You can define an application that you want to manage with Trident Protect by creating an
application CR and an associated AppVault CR.
Create an AppVault CR

You need to create an AppVault CR that will be used when performing data protection operations on the
application, and the AppVault CR needs to reside on the cluster where Trident Protect is installed. The
AppVault CR is specific to your environment; for examples of AppVault CRs, refer to AppVault custom
resources.

Define an application

You need to define each application that you want to manage with Trident Protect. You can define an
application for management by either manually creating an application CR or by using the Trident Protect CLI.

358

Add an application using a CR
Steps
1. Create the destination application CR file:

a. Create the custom resource (CR) file and name it (for example, maria-app.yaml).

b. Configure the following attributes:

= metadata.name: (Required) The name of the application custom resource. Note the name
you choose because other CR files needed for protection operations refer to this value.

= spec.includedNamespaces: (Required) Use namespace labels or a namespace name to
specify namespaces that the application resources exist in. The application namespace must
be part of this list.

Example YAML:

apiVersion: protect.trident.netapp.io/vl
kind: Application
metadata:
name: maria
namespace: my-app-namespace
spec:
includedNamespaces:

- namespace: my-app-namespace
2. After you create the application CR to match your environment, apply the CR. For example:

kubectl apply -f maria-app.yaml

Add an application using the CLI
Steps

1. Create and apply the application definition, replacing values in brackets with information from your
environment. You can include namespaces and resources in the application definition using comma-
separated lists with the arguments shown in the following example:

tridentctl-protect create application <my new app cr name>
-—-namespaces <namespaces to include> --csr
<cluster scoped resources to include> --namespace <my-app-namespace>

Protect applications using Trident Protect

You can protect all apps managed by Trident Protect by taking snapshots and backups
using an automated protection policy or on an ad-hoc basis.

359

@ You can configure Trident Protect to freeze and unfreeze filesystems during data protection
operations. Learn more about configuring filesystem freezing with Trident Protect.

Create an on-demand snapshot

You can create an on-demand snapshot at any time.

360

Create a snapshot using a CR
Steps
1. Create the custom resource (CR) file and name it trident-protect-snapshot-cr.yaml.

2. In the file you created, configure the following attributes:

o metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

o spec.applicationRef: The Kubernetes name of the application to snapshot.

o spec.appVaultRef: (Required) The name of the AppVault where the snapshot contents
(metadata) should be stored.

> spec.reclaimPolicy: (Optional) Defines what happens to the AppArchive of a snapshot when the
snapshot CR is deleted. This means that even when set to Retain, the snapshot will be deleted.
Valid options:

* Retain (default)

" Delete

apiVersion: protect.trident.netapp.io/vl
kind: Snapshot
metadata:
namespace: my-app-namespace
name: my-cr-name
spec:
applicationRef: my-application
appVaultRef: appvault-name

reclaimPolicy: Delete

3. After you populate the trident-protect-snapshot-cr.yaml file with the correct values, apply
the CR:

kubectl apply -f trident-protect-snapshot-cr.yaml

Create a snapshot using the CLI
Steps

1. Create the snapshot, replacing values in brackets with information from your environment. For
example:

tridentctl-protect create snapshot <my snapshot name> --appvault
<my appvault name> --app <name of app to snapshot> -n
<application namespace>

361

Create an on-demand backup

You can back up an app at any time.

362

Create a backup using a CR

Steps
1. Create the custom resource (CR) file and name it trident-protect-backup-cr.yaml.
2. In the file you created, configure the following attributes:

o metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

> spec.applicationRef: (Required) The Kubernetes name of the application to back up.

o spec.appVaultRef: (Required) The name of the AppVault where the backup contents should be
stored.

> spec.dataMover: (Optional) A string indicating which backup tool to use for the backup operation.

Possible values (case sensitive):
" Restic
* Kopia (default)
> spec.reclaimPolicy: (Optional) Defines what happens to a backup when released from its claim.
Possible values:
" Delete
* Retain (default)

o Spec.snapshotRef: (Optional): Name of the snapshot to use as the source of the backup. If not
provided, a temporary snapshot will be created and backed up.

apiVersion: protect.trident.netapp.io/vl
kind: Backup
metadata:
namespace: my-app-nhamespace
name: my-cr-name
spec:
applicationRef: my-application
appVaultRef: appvault-name

dataMover: Kopia

3. After you populate the trident-protect-backup-cr.yanl file with the correct values, apply the
CR:

kubectl apply -f trident-protect-backup-cr.yaml

Create a backup using the CLI
Steps

1. Create the backup, replacing values in brackets with information from your environment. For example:

363

tridentctl-protect create backup <my backup name> --appvault <my-
vault-name> --app <name of app to back up> -n
<application namespace>

Create a data protection schedule

A protection policy protects an app by creating snapshots, backups, or both at a defined schedule. You can
choose to create snapshots and backups hourly, daily, weekly, and monthly, and you can specify the number of
copies to retain.

364

Create a schedule using a CR

Steps

1. Create the custom resource (CR) file and name it trident-protect-schedule-cr.yaml.

2. In the file you created, configure the following attributes:

o

o

metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

spec.dataMover: (Optional) A string indicating which backup tool to use for the backup operation.
Possible values (case sensitive):

" Restic
" Kopia (default)
spec.applicationRef: The Kubernetes name of the application to back up.

spec.appVaultRef: (Required) The name of the AppVault where the backup contents should be
stored.

spec.backupRetention: The number of backups to retain. Zero indicates that no backups should
be created.

spec.snapshotRetention: The number of snapshots to retain. Zero indicates that no snapshots
should be created.

spec.granularity: The frequency at which the schedule should run. Possible values, along with
required associated fields:

" hourly (requires that you specify spec.minute)

* daily (requires that you specify spec.minute and spec.hour)

* weekly (requires that you specify spec.minute, spec.hour, and spec.dayOfleek)

* monthly (requires that you specify spec.minute, spec.hour, and spec.dayOfMonth)

spec.dayOfMonth: (Optional) The day of the month (1 - 31) that the schedule should run. This
field is required if the granularity is set to monthly.

spec.dayOfWeek: (Optional) The day of the week (0 - 7) that the schedule should run. Values of
0 or 7 indicate Sunday. This field is required if the granularity is set to weekly.

spec.hour: (Optional) The hour of the day (0 - 23) that the schedule should run. This field is
required if the granularity is set to daily, weekly, ormonthly.

spec.minute: (Optional) The minute of the hour (0 - 59) that the schedule should run. This field is
required if the granularity is set to hourly, daily, weekly, ormonthly.

365

apiVersion: protect.trident.netapp.io/vl

kind: Schedule

metadata:
namespace: my-app-namespace
name: my-cr-name

spec:
dataMover: Kopia
applicationRef: my-application
appVaultRef: appvault-name
backupRetention: "15"
snapshotRetention: "15"
granularity: <monthly>
dayOfMonth: "1"
dayOfwWeek: "O"
hour: "O"

minute: "O"

3. After you populate the trident-protect-schedule-cr.yaml file with the correct values, apply
the CR:

kubectl apply -f trident-protect-schedule-cr.yaml

Create a schedule using the CLI

Steps

366

1. Create the protection schedule, replacing values in brackets with information from your environment.
For example:

@ You can use tridentctl-protect create schedule --help to view detailed
help information for this command.

tridentctl-protect create schedule <my schedule name> --appvault

<my appvault name> --app <name of app to snapshot> --backup
-retention <how many backups to retain> --data-mover
<kopia or restic> --day-of-month <day of month to run schedule>
--day-of-week <day of month to run schedule> --granularity
<frequency to run> --hour <hour of day to run> --minute
<minute of hour to run> --recurrence-rule <recurrence> --snapshot
-retention <how many snapshots to retain> -n <application namespace>

Delete a snapshot

Delete the scheduled or on-demand snapshots that you no longer need.

Steps
1. Remove the snapshot CR associated with the snapshot:

kubectl delete snapshot <snapshot name> -n my-app-namespace

Delete a backup

Delete the scheduled or on-demand backups that you no longer need.

Steps
1. Remove the backup CR associated with the backup:

kubectl delete backup <backup name> -n my-app-namespace

Check the status of a backup operation

You can use the command line to check the status of a backup operation that is in progress, has completed, or
has failed.

Steps

1. Use the following command to retrieve status of the backup operation, replacing values in brackes with
information from your environment:

kubectl get backup -n <namespace name> <my backup cr name> -o jsonpath

='{.status}'

Enable backup and restore for azure-netapp-files (ANF) operations

If you have installed Trident Protect, you can enable space-efficient backup and restore functionality for
storage backends that use the azure-netapp-files storage class and were created prior to Trident 24.06. This
funtionality works with NFSv4 volumes and does not consume additional space from the capacity pool.

Before you begin
Ensure the following:

* You have installed Trident Protect.

* You have defined an application in Trident Protect. This application will have limited protection functionality
until you complete this procedure.

* You have azure-netapp-files selected as the default storage class for your storage backend.

367

Expand for configuration steps

1. Do the following in Trident if the ANF volume was created prior to upgrading to Trident 24.10:

a. Enable the snapshot directory for each PV that is azure-netapp-files based and associated with
the application:

tridentctl update volume <pv name> --snapshot-dir=true -n trident
b. Confirm that the snapshot directory has been enabled for each associated PV:

tridentctl get volume <pv name> -n trident -o yaml | grep

snapshotDir
Response:
snapshotDirectory: "true"

When the snapshot directory is not enabled, Trident Protect chooses the regular backup
functionality, which temporarily consumes space in the capacity pool during the backup process.
In this case, ensure that sufficient space is available in the capacity pool to create a temporary
volume of the size of the volume being backed up.

Result

The application is ready for backup and restore using Trident Protect. Each PVC is also available to be
used by other applications for backups and restores.

Restore applications using Trident Protect

You can use Trident Protect to restore your application from a snapshot or backup.
Restoring from an existing snapshot will be faster when restoring the application to the
same cluster.

When you restore an application, all execution hooks configured for the application are restored
with the app. If a post-restore execution hook is present, it runs automatically as part of the
restore operation.

Namespace annotations and labels during restore and failover operations

During restore and failover operations, labels and annotations in the destination namespace are made to
match the labels and annotations in the source namespace. Labels or annotations from the source namespace
that don'’t exist in the destination namespace are added, and any labels or annotations that already exist are
overwritten to match the value from the source namespace. Labels or annotations that exist only on the
destination namespace remain unchanged.

368

If you use RedHat OpenShift, it's important to note the critical role of namespace annotations in
OpenShift environments. Namespace annotations ensure that restored pods adhere to the

@ appropriate permissions and security configurations defined by OpenShift security context
constraints (SCCs) and can access volumes without permission issues. For more information,
refer to the OpenShift security context constraints documentation.

You can prevent specific annotations in the destination namespace from being overwritten by setting the
Kubernetes environment variable RESTORE SKIP NAMESPACE ANNOTATIONS before you perform the
restore or failover operation. For example:

kubectl set env -n trident-protect deploy/trident-protect-controller-
manager

RESTORE SKIP NAMESPACE ANNOTATIONS=<annotation key to skip 1>,<annotation
key to skip 2>

If you installed the source application using Helm with the --create-namespace flag, special treatment is
given to the name label key. During the restore or failover process, Trident Protect copies this label to the
destination namespace, but updates the value to the destination namespace value if the value from source
matches the source namespace. If this value doesn’t match the source namespace it is copied to the
destination namespace with no changes.

Example

The following example presents a source and destination namespace, each with different annotations and
labels. You can see the state of the destination namespace before and after the operation, and how the
annotations and labels are combined or overwritten in the destination namespace.

Before the restore or failover operation

The following table illustrates the state of the example source and destination namespaces before the restore
or failover operation:

Namespace Annotations Labels
Namespace ns-1 * annotation.one/key: "updatedvalue” * environment=production
(source) annotation.two/key: "true" » compliance=hipaa
* name=ns-1
Namespace ns-2 * annotation.one/key: "true" * role=database

(destination) annotation.three/key: "false"

After the restore operation

The following table illustrates the state of the example destination namespace after the restore or failover
operation. Some keys have been added, some have been overwritten, and the name label has been updated
to match the destination namespace:

369

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html/authentication_and_authorization/managing-pod-security-policies

Namespace Annotations Labels

Namespace ns-2 annotation.one/key: "updatedvalue” * name=ns-2
(destination) annotation.two/key: "true" » compliance=hipaa
 annotation.three/key: "false" * environment=production

* role=database

Restore from a backup to a different namespace

When you restore a backup to a different namespace using a BackupRestore CR, Trident Protect restores the
application in a new namespace and creates an application CR for the restored application. To protect the
restored application, create on-demand backups or snapshots, or establish a protection schedule.

Restoring a backup to a different namespace with existing resources will not alter any resources
that share names with those in the backup. To restore all resources in the backup, either delete
and re-create the target namespace, or restore the backup to a new namespace.

370

Use aCR
Steps

1. Create the custom resource (CR) file and name it t rident-protect-backup-restore-
cr.yaml.

2. In the file you created, configure the following attributes:

o metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

o spec.appArchivePath: The path inside AppVault where the backup contents are stored. You can
use the following command to find this path:

kubectl get backups <BACKUP NAME> -n my-app-namespace -o
Jjsonpath='{.status.appArchivePath}'

o spec.appVaultRef: (Required) The name of the AppVault where the backup contents are stored.

> spec.namespaceMapping: The mapping of the source namespace of the restore operation to the
destination namespace. Replace my-source-namespace and my-destination-namespace
with information from your environment.

> spec.storageClassMapping: The mapping of the source storage class of the restore operation to
the destination storage class. Replace destinationStorageClass and
sourceStorageClass with information from your environment.

apiVersion: protect.trident.netapp.io/vl
kind: BackupRestore
metadata:
name: my-cr-name
namespace: my-destination-namespace
spec:
appArchivePath: my-backup-path
appVaultRef: appvault-name
namespaceMapping: [{"source": "my-source-namespace",
"destination": "my-destination-namespace"}]
storageClassMapping:
destination: "${destinationStorageClass}"

source: "S${sourceStorageClass}"

3. (Optional) If you need to select only certain resources of the application to restore, add filtering that
includes or excludes resources marked with particular labels:

° resourceFilter.resourceSelectionCriteria: (Required for filtering) Use Include or Exclude to
include or exclude a resource defined in resourceMatchers. Add the following resourceMatchers
parameters to define the resources to be included or excluded:

= resourceFilter.resourceMatchers: An array of resourceMatcher objects. If you define
multiple elements in this array, they match as an OR operation, and the fields inside each

371

element (group, kind, version) match as an AND operation.
= resourceMatchers[].group: (Optional) Group of the resource to be filtered.
= resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.
= resourceMatchers[].version: (Optional) Version of the resource to be filtered.

= resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of
the resource to be filtered.

= resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes
metadata.name field of the resource to be filtered.

= resourceMatchers[].labelSelectors: (Optional) Label selector string in the Kubernetes
metadata.name field of the resource as defined in the Kubernetes documentation. For
example: "trident.netapp.io/os=1linux".

For example:

spec:
resourceFilter:
resourceSelectionCriteria: "Include"
resourceMatchers:
- group: my-resource-group-1
kind: my-resource-kind-1
version: my-resource-version-1
names: ["my-resource-names"]
namespaces: ["my-resource-namespaces"]
labelSelectors: ["trident.netapp.io/os=linux"]
- group: my-resource-group-2
kind: my-resource-kind-2
version: my-resource-version-2
names: ["my-resource-names"]
namespaces: ["my-resource-namespaces"]

labelSelectors: ["trident.netapp.io/os=linux"]

4. After you populate the trident-protect-backup-restore-cr.yanl file with the correct values,
apply the CR:

kubectl apply -f trident-protect-backup-restore-cr.yaml

Use the CLI
Steps

372

1. Restore the backup to a different namespace, replacing values in brackets with information from your
environment. The namespace-mapping argument uses colon-separated namespaces to map
source namespaces to the correct destination namespaces in the format
sourcel:destl, source2:dest2. For example:

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

tridentctl-protect create backuprestore <my restore name> --backup
<backup namespace>/<backup to restore> --namespace-mapping
<source to destination namespace mapping> -n <application namespace>

Restore from a backup to the original namespace

You can restore a backup to the original namespace at any time.

373

Use a CR
Steps
1. Create the custom resource (CR) file and name it trident-protect-backup-ipr-cr.yaml.

2. In the file you created, configure the following attributes:

o metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

o spec.appArchivePath: The path inside AppVault where the backup contents are stored. You can
use the following command to find this path:

kubectl get backups <BACKUP NAME> -n my-app-namespace -o
jsonpath="'{.status.appArchivePath}"'

o spec.appVaultRef: (Required) The name of the AppVault where the backup contents are stored.

For example:

apiVersion: protect.trident.netapp.io/vl
kind: BackupInplaceRestore
metadata:
name: my-cr-name
namespace: my-app-namespace
spec:
appArchivePath: my-backup-path
appVaultRef: appvault-name

3. (Optional) If you need to select only certain resources of the application to restore, add filtering that
includes or excludes resources marked with particular labels:

° resourceFilter.resourceSelectionCriteria: (Required for filtering) Use Include or Exclude to
include or exclude a resource defined in resourceMatchers. Add the following resourceMatchers
parameters to define the resources to be included or excluded:

= resourceFilter.resourceMatchers: An array of resourceMatcher objects. If you define
multiple elements in this array, they match as an OR operation, and the fields inside each
element (group, kind, version) match as an AND operation.

= resourceMatchers[].group: (Optional) Group of the resource to be filtered.
= resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.
= resourceMatchers[].version: (Optional) Version of the resource to be filtered.

= resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of
the resource to be filtered.

= resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes
metadata.name field of the resource to be filtered.

= resourceMatchers[].labelSelectors: (Optional) Label selector string in the Kubernetes
metadata.name field of the resource as defined in the Kubernetes documentation. For

374

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

example: "trident.netapp.io/os=1linux".

For example:

spec:
resourceFilter:
resourceSelectionCriteria: "Include"
resourceMatchers:
- group: my-resource-group-1
kind: my-resource-kind-1
version: my-resource-version-1
names: ["my-resource-names"]
namespaces: ["my-resource-namespaces"]
labelSelectors: ["trident.netapp.io/os=linux"]
- group: my-resource-group-2
kind: my-resource-kind-2
version: my-resource-version-2
names: ["my-resource-names"]
namespaces: ["my-resource-namespaces"]

labelSelectors: ["trident.netapp.io/os=linux"]

4. After you populate the trident-protect-backup-ipr-cr.yaml file with the correct values,
apply the CR:

kubectl apply -f trident-protect-backup-ipr-cr.yaml

Use the CLI
Steps

1. Restore the backup to the original namespace, replacing values in brackets with information from your
environment. The backup argument uses a namespace and backup name in the format
<namespace>/<name>. For example:

tridentctl-protect create backupinplacerestore <my restore name>

--backup <namespace/backup to restore> -n <application namespace>

Restore from a backup to a different cluster

You can restore a backup to a different cluster if there is an issue with the original cluster.
Before you begin
Ensure the following prerequisites are met:

* The destination cluster has Trident Protect installed.

375

» The destination cluster has access to the bucket path of the same AppVault as the source cluster, where
the backup is stored.

Steps
1. Check the availability of the AppVault CR on the destination cluster using Trident Protect CLI plugin:

tridentctl-protect get appvault --context <destination cluster name>
(D Ensure that the namespace intended for the application restore exists on the destination
cluster.

2. View the backup contents of the available AppVault from the destination cluster:

tridentctl-protect get appvaultcontent <appvault name> --show-resources
backup --show-paths --context <destination cluster name>

Running this command displays the available backups in the AppVault, including their originating clusters,
corresponding application names, timestamps, and archive paths.

Example output:

e pom - o frmm e
oo fommm - +

| CLUSTER | APP | TYPE | NAME TIMESTAMP
| PATH |

fomm - fomm - tomm - From e
o tomm - +

| productionl | wordpress | backup | wordpress-bkup-1| 2024-10-30
08:37:40 (UTC) | backuppathl |
| productionl | wordpress | backup | wordpress-bkup-2| 2024-10-30
08:37:40 (UTC) | backuppath2 |

3. Restore the application to the destination cluster using the AppVault name and archive path:

376

Use aCR

4. Create the custom resource (CR) file and name it trident-protect-backup-restore-
cr.yaml.

5. In the file you created, configure the following attributes:

o metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

o spec.appVaultRef: (Required) The name of the AppVault where the backup contents are stored.

o spec.appArchivePath: The path inside AppVault where the backup contents are stored. You can
use the following command to find this path:

kubectl get backups <BACKUP NAME> -n my-app-namespace -o
Jjsonpath='{.status.appArchivePath}'

@ If BackupRestore CR is not available, you can use the command mentioned in step
2 to view the backup contents.

o spec.namespaceMapping: The mapping of the source namespace of the restore operation to the
destination namespace. Replace my-source-namespace and my-destination-namespace
with information from your environment.

For example:

apiVersion: protect.trident.netapp.io/vl
kind: BackupRestore
metadata:
name: my-cr-name
namespace: my-destination-namespace
spec:
appVaultRef: appvault-name
appArchivePath: my-backup-path
namespaceMapping: [{"source": "my-source-namespace",
"destination": "my-destination-namespace"}]

6. After you populate the trident-protect-backup-restore-cr.yaml file with the correct values,
apply the CR:

kubectl apply -f trident-protect-backup-restore-cr.yaml

Use the CLI

4. Use the following command to restore the application, replacing values in brackets with information
from your environment. The namespace-mapping argument uses colon-separated namespaces to
map source namespaces to the correct destination namespaces in the format
source1:dest1,source2:dest2. For example:

377

tridentctl-protect create backuprestore <restore name> --namespace
-mapping <source to destination namespace mapping> --appvault
<appvault name> --path <backup path> -n <application namespace>
--context <destination cluster name>

Restore from a snapshot to a different namespace

You can restore data from a snapshot using a custom resource (CR) file either to a different namespace or the
original source namespace. When you restore a snapshot to a different namespace using a SnapshotRestore
CR, Trident Protect restores the application in a new namespace and creates an application CR for the
restored application. To protect the restored application, create on-demand backups or snapshots, or establish
a protection schedule.

378

Use aCR
Steps

1. Create the custom resource (CR) file and name it trident-protect-snapshot-restore-
cr.yaml.

2. In the file you created, configure the following attributes:

o metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

o spec.appVaultRef: (Required) The name of the AppVault where the snapshot contents are
stored.

o spec.appArchivePath: The path inside AppVault where the snapshot contents are stored. You
can use the following command to find this path:

kubectl get snapshots <SNAPHOT NAME> -n my-app-namespace -0
jsonpath="'{.status.appArchivePath}'

> spec.namespaceMapping: The mapping of the source namespace of the restore operation to the
destination namespace. Replace my-source-namespace and my-destination-namespace
with information from your environment.

> spec.storageClassMapping: The mapping of the source storage class of the restore operation to
the destination storage class. Replace destinationStorageClass and
sourceStorageClass with information from your environment.

apiVersion: protect.trident.netapp.io/vl
kind: SnapshotRestore
metadata:
name: my-cr-name
namespace: my-app-namespace
spec:
appVaultRef: appvault-name
appArchivePath: my-snapshot-path
namespaceMapping: [{"source": "my-source-namespace",
"destination": "my-destination-namespace"}]
storageClassMapping:
destination: "${destinationStorageClass}"

source: "${sourceStorageClass}"

3. (Optional) If you need to select only certain resources of the application to restore, add filtering that
includes or excludes resources marked with particular labels:

° resourceFilter.resourceSelectionCriteria: (Required for filtering) Use Include or Exclude to
include or exclude a resource defined in resourceMatchers. Add the following resourceMatchers
parameters to define the resources to be included or excluded:

= resourceFilter.resourceMatchers: An array of resourceMatcher objects. If you define

379

multiple elements in this array, they match as an OR operation, and the fields inside each
element (group, kind, version) match as an AND operation.

resourceMatchers[].group: (Optional) Group of the resource to be filtered.
resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.
resourceMatchers]].version: (Optional) Version of the resource to be filtered.

resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of
the resource to be filtered.

resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes
metadata.name field of the resource to be filtered.

resourceMatchers]].labelSelectors: (Optional) Label selector string in the Kubernetes
metadata.name field of the resource as defined in the Kubernetes documentation. For
example: "trident.netapp.io/os=1linux".

For example:

spec:
resourceFilter:
resourceSelectionCriteria: "Include"
resourceMatchers:
- group: my-resource-group-1
kind: my-resource-kind-1
version: my-resource-version-1
names: ["my-resource-names"]
namespaces: ["my-resource-namespaces"]
labelSelectors: ["trident.netapp.io/os=linux"]
- group: my-resource-group-2
kind: my-resource-kind-2
version: my-resource-version-2
names: ["my-resource-names"]
namespaces: ["my-resource-namespaces"]

labelSelectors: ["trident.netapp.io/os=linux"]

4. After you populate the trident-protect-snapshot-restore-cr.yaml file with the correct
values, apply the CR:

kubectl apply -f trident-protect-snapshot-restore-cr.yaml

Use the CLI
Steps

1. Restore the snapshot to a different namespace, replacing values in brackets with information from
your environment.

° The snapshot argument uses a namespace and snapshot name in the format
<namespace>/<name>.

380

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

° The namespace-mapping argument uses colon-separated namespaces to map source
namespaces to the correct destination namespaces in the format
sourcel:destl, source?2:dest?2.

For example:

tridentctl-protect create snapshotrestore <my restore name>
--snapshot <namespace/snapshot to restore> --namespace-mapping
<source_ to destination namespace mapping> -n

<application namespace>

Restore from a snapshot to the original namespace

You can restore a snapshot to the original namespace at any time.

381

Use a CR
Steps
1. Create the custom resource (CR) file and name it trident-protect-snapshot-ipr-cr.yaml.

2. In the file you created, configure the following attributes:

o metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

o spec.appVaultRef: (Required) The name of the AppVault where the snapshot contents are
stored.

o spec.appArchivePath: The path inside AppVault where the snapshot contents are stored. You
can use the following command to find this path:

kubectl get snapshots <SNAPSHOT NAME> -n my-app-namespace -o
Jjsonpath='{.status.appArchivePath}'

apiVersion: protect.trident.netapp.io/vl
kind: SnapshotInplaceRestore
metadata:
name: my-cr-name
namespace: my-app-namespace
spec:
appVaultRef: appvault-name
appArchivePath: my-snapshot-path

3. (Optional) If you need to select only certain resources of the application to restore, add filtering that
includes or excludes resources marked with particular labels:

° resourceFilter.resourceSelectionCriteria: (Required for filtering) Use Include or Exclude to
include or exclude a resource defined in resourceMatchers. Add the following resourceMatchers
parameters to define the resources to be included or excluded:

= resourceFilter.resourceMatchers: An array of resourceMatcher objects. If you define
multiple elements in this array, they match as an OR operation, and the fields inside each
element (group, kind, version) match as an AND operation.

= resourceMatchers[].group: (Optional) Group of the resource to be filtered.
= resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.
= resourceMatchers[].version: (Optional) Version of the resource to be filtered.

= resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of
the resource to be filtered.

= resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes
metadata.name field of the resource to be filtered.

= resourceMatchers[].labelSelectors: (Optional) Label selector string in the Kubernetes
metadata.name field of the resource as defined in the Kubernetes documentation. For
example: "trident.netapp.io/os=1linux".

382

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

For example:

spec:
resourceFilter:
resourceSelectionCriteria: "Include"
resourceMatchers:
- group: my-resource-group-1
kind: my-resource-kind-1
version: my-resource-version-1
names: ["my-resource-names"]
namespaces: ["my-resource-namespaces"]
labelSelectors: ["trident.netapp.io/os=linux"]
- group: my-resource-group-2
kind: my-resource-kind-2
version: my-resource-version-2
names: ["my-resource-names"]
namespaces: ["my-resource-namespaces"]
labelSelectors: ["trident.netapp.io/os=linux"]

4. After you populate the trident-protect-snapshot-ipr-cr.yaml file with the correct values,
apply the CR:

kubectl apply -f trident-protect-snapshot-ipr-cr.yaml

Use the CLI
Steps

1. Restore the snapshot to the original namespace, replacing values in brackets with information from
your environment. For example:

tridentctl-protect create snapshotinplacerestore <my restore name>
--snapshot <snapshot to restore> -n <application namespace>

Check the status of a restore operation

You can use the command line to check the status of a restore operation that is in progress, has completed, or
has failed.

Steps

1. Use the following command to retrieve status of the restore operation, replacing values in brackes with
information from your environment:

383

kubectl get backuprestore -n <namespace name> <my restore cr name> -0

jsonpath="'{.status}'

Replicate applications using NetApp SnapMirror and Trident Protect

Using Trident Protect, you can use the asynchronous replication capabilities of NetApp
SnapMirror technology to replicate data and application changes from one storage
backend to another, on the same cluster or between different clusters.

Namespace annotations and labels during restore and failover operations

During restore and failover operations, labels and annotations in the destination namespace are made to
match the labels and annotations in the source namespace. Labels or annotations from the source namespace
that don’t exist in the destination namespace are added, and any labels or annotations that already exist are
overwritten to match the value from the source namespace. Labels or annotations that exist only on the
destination namespace remain unchanged.

If you use RedHat OpenShift, it's important to note the critical role of namespace annotations in
OpenShift environments. Namespace annotations ensure that restored pods adhere to the

@ appropriate permissions and security configurations defined by OpenShift security context
constraints (SCCs) and can access volumes without permission issues. For more information,
refer to the OpenShift security context constraints documentation.

You can prevent specific annotations in the destination namespace from being overwritten by setting the
Kubernetes environment variable RESTORE SKIP NAMESPACE ANNOTATIONS before you perform the
restore or failover operation. For example:

kubectl set env -n trident-protect deploy/trident-protect-controller-
manager

RESTORE SKIP NAMESPACE ANNOTATIONS=<annotation key to skip 1>,<annotation
key to skip 2>

If you installed the source application using Helm with the --create-namespace flag, special treatment is
given to the name label key. During the restore or failover process, Trident Protect copies this label to the
destination namespace, but updates the value to the destination namespace value if the value from source
matches the source namespace. If this value doesn’t match the source namespace it is copied to the
destination namespace with no changes.

Example

The following example presents a source and destination namespace, each with different annotations and
labels. You can see the state of the destination namespace before and after the operation, and how the
annotations and labels are combined or overwritten in the destination namespace.

Before the restore or failover operation

The following table illustrates the state of the example source and destination namespaces before the restore
or failover operation:

384

https://docs.redhat.com/en/documentation/openshift_container_platform/4.17/html/authentication_and_authorization/managing-pod-security-policies

Namespace Annotations Labels

Namespace ns-1 annotation.one/key: "updatedvalue” * environment=production
(source) annotation.two/key: "true" » compliance=hipaa

* name=ns-1
Namespace ns-2 * annotation.one/key: "true" * role=database

(destination) « annotation.three/key: "false"

After the restore operation

The following table illustrates the state of the example destination namespace after the restore or failover
operation. Some keys have been added, some have been overwritten, and the name label has been updated
to match the destination namespace:

Namespace Annotations Labels

Namespace ns-2 * annotation.one/key: "updatedvalue" * name=ns-2

(destination) * annotation.two/key: "true" » compliance=hipaa
 annotation.three/key: "false" * environment=production

* role=database

@ You can configure Trident Protect to freeze and unfreeze filesystems during data protection
operations. Learn more about configuring filesystem freezing with Trident Protect.

Set up a replication relationship

Setting up a replication relationship involves the following:
» Choosing how frequently you want Trident Protect to take an app snapshot (which includes the app’s
Kubernetes resources as well as the volume snapshots for each of the app’s volumes)
» Choosing the replication schedule (includes Kubernetes resources as well as persistent volume data)

 Setting the time for the snapshot to be taken

Steps

1. Create an AppVault for the source application on the source cluster. Depending on your storage provider,
modify an example in AppVault custom resources to fit your environment:

385

386

Create an AppVault using a CR

a. Create the custom resource (CR) file and name it (for example, trident-protect-appvault-
primary-source.yaml).

b. Configure the following attributes:

= metadata.name: (Required) The name of the AppVault custom resource. Make note of the
name you choose, because other CR files needed for a replication relationship refer to this
value.

= spec.providerConfig: (Required) Stores the configuration necessary to access the AppVault
using the specified provider. Choose a bucketName and any other necessary details for your
provider. Make note of the values you choose, because other CR files needed for a replication
relationship refer to these values. Refer to AppVault custom resources for examples of
AppVault CRs with other providers.

= spec.providerCredentials: (Required) Stores references to any credential required to access
the AppVault using the specified provider.

= spec.providerCredentials.valueFromSecret: (Required) Indicates that the credential
value should come from a secret.

= key: (Required) The valid key of the secret to select from.

= name: (Required) Name of the secret containing the value for this field. Must be in the
same namespace.

= spec.providerCredentials.secretAccessKey: (Required) The access key used to
access the provider. The name should match
spec.providerCredentials.valueFromSecret.name.

= spec.providerType: (Required) Determines what provides the backup; for example, NetApp
ONTAP S3, generic S3, Google Cloud, or Microsoft Azure. Possible values:

= aws
= azure

= gcp

= generic-s3

= ontap-s3

= storagegrid-s3

C. After you populate the trident-protect-appvault-primary-source.yaml file with the
correct values, apply the CR:

kubectl apply -f trident-protect-appvault-primary-source.yaml -n
trident-protect

Create an AppVault using the CLI
a. Create the AppVault, replacing values in brackets with information from your environment:

tridentctl-protect create vault Azure <vault-name> --account
<account-name> --bucket <bucket-name> --secret <secret-name>

2. Create the source application CR:

Create the source application using a CR

a. Create the custom resource (CR) file and name it (for example, trident-protect-app-
source.yaml).

b. Configure the following attributes:

= metadata.name: (Required) The name of the application custom resource. Make note of the
name you choose, because other CR files needed for a replication relationship refer to this
value.

= spec.includedNamespaces: (Required) An array of namespaces and associated labels. Use
namespace names and optionally narrow the scope of the namespaces with labels to specify
resources that exist in the namespaces listed here. The application namespace must be part
of this array.

Example YAML:

apiVersion: protect.trident.netapp.io/vl
kind: Application
metadata:

name: my-app-name

namespace: my-app-namespace
spec:

includedNamespaces:

- namespace: my-app-namespace
labelSelector: {}

C. After you populate the trident-protect-app-source.yaml file with the correct values, apply
the CR:

kubectl apply -f trident-protect-app-source.yaml -n my-app-

namespace

Create the source application using the CLI
a. Create the source application. For example:

tridentctl-protect create app <my-app-name> --namespaces
<namespaces-to-be-included> -n <my-app-namespace>

3. Optionally, take a snapshot of the source application. This snapshot is used as the basis for the application
on the destination cluster. If you skip this step, you'll need to wait for the next scheduled snapshot to run so

that you have a recent snapshot.

387

Take a snapshot using a CR
a. Create a replication schedule for the source application:

i. Create the custom resource (CR) file and name it (for example, trident-protect-
schedule.yaml).

i. Configure the following attributes:
= metadata.name: (Required) The name of the schedule custom resource.

= spec.AppVaultRef: (Required) This value must match the metadata.name field of the
AppVault for the source application.

= spec.ApplicationRef: (Required) This value must match the metadata.name field of the
source application CR.

= spec.backupRetention: (Required) This field is required, and the value must be set to 0.
= spec.enabled: Must be set to true.

* spec.granularity: Must be set to Custom.

= spec.recurrenceRule: Define a start date in UTC time and a recurrence interval.

= spec.snapshotRetention: Must be set to 2.

Example YAML.:

apiVersion: protect.trident.netapp.io/vl
kind: Schedule
metadata:
name: appmirror-schedule-0elf88ab-f013-4bce-8ae9-
6afed9df59%al
namespace: my-app-namespace
spec:
appVaultRef: generic-s3-trident-protect-src-bucket-
04b6bdec-46a3-420a-b351-45795elb5e34
applicationRef: my-app-name
backupRetention: "0O"
enabled: true
granularity: custom
recurrenceRule: |-
DTSTART:20220101T000200Z
RRULE : FREQ=MINUTELY; INTERVAL=5

snapshotRetention: "2"

ii. After you populate the trident-protect-schedule.yaml file with the correct values,
apply the CR:

388

kubectl apply -f trident-protect-schedule.yaml -n my-app-

namespace

Take a snapshot using the CLI

a. Create the snapshot, replacing values in brackets with information from your environment. For
example:

tridentctl-protect create snapshot <my snapshot name> --appvault
<my appvault name> --app <name of app to snapshot> -n
<application namespace>

4. Create a source application AppVault CR on the destination cluster that is identical to the AppVault CR you
applied on the source cluster and name it (for example, trident-protect-appvault-primary-
destination.yaml).

5. Apply the CR:

kubectl apply -f trident-protect-appvault-primary-destination.yaml -n

my-app-namespace

6. Create an AppVault for the destination application on the destination cluster. Depending on your storage
provider, modify an example in AppVault custom resources to fit your environment:

a. Create the custom resource (CR) file and name it (for example, trident-protect-appvault-
secondary-destination.yaml).

b. Configure the following attributes:

= metadata.name: (Required) The name of the AppVault custom resource. Make note of the name
you choose, because other CR files needed for a replication relationship refer to this value.

= spec.providerConfig: (Required) Stores the configuration necessary to access the AppVault using
the specified provider. Choose a bucketName and any other necessary details for your provider.
Make note of the values you choose, because other CR files needed for a replication relationship
refer to these values. Refer to AppVault custom resources for examples of AppVault CRs with other
providers.

= spec.providerCredentials: (Required) Stores references to any credential required to access the
AppVault using the specified provider.

= spec.providerCredentials.valueFromSecret: (Required) Indicates that the credential value
should come from a secret.

= key: (Required) The valid key of the secret to select from.

= name: (Required) Name of the secret containing the value for this field. Must be in the
same namespace.

= spec.providerCredentials.secretAccessKey: (Required) The access key used to access the
provider. The name should match spec.providerCredentials.valueFromSecret.name.

389

= spec.providerType: (Required) Determines what provides the backup; for example, NetApp
ONTAP S3, generic S3, Google Cloud, or Microsoft Azure. Possible values:

= aws
= azure

= gcp

= generic-s3

= ontap-s3

= storagegrid-s3

C. After you populate the trident-protect-appvault-secondary-destination.yaml file with
the correct values, apply the CR:

kubectl apply -f trident-protect-appvault-secondary-destination.yaml

-n my-app-hamespace

7. Create an AppMirrorRelationship CR file:

390

Create an AppMirrorRelationship using a CR

a. Create the custom resource (CR) file and name it (for example, trident-protect-
relationship.yaml).

b. Configure the following attributes:
= metadata.name: (Required) The name of the AppMirrorRelationship custom resource.

= spec.destinationAppVaultRef: (Required) This value must match the name of the AppVault
for the destination application on the destination cluster.

= spec.namespaceMapping: (Required) The destination and source namespaces must match
the application namespace defined in the respective application CR.

= spec.sourceAppVaultRef: (Required) This value must match the name of the AppVault for
the source application.

= spec.sourceApplicationName: (Required) This value must match the name of the source
application you defined in the source application CR.

= spec.storageClassName: (Required) Choose the name of a valid storage class on the
cluster. The storage class must be linked to an ONTAP storage VM that is peered with the
source environment.

= spec.recurrenceRule: Define a start date in UTC time and a recurrence interval.

Example YAML:

apiVersion: protect.trident.netapp.io/vl
kind: AppMirrorRelationship
metadata:
name: amr-16061e80-1b05-4e80-9d26-d326dcl1953d8
namespace: my-app-namespace
spec:
desiredState: Established
destinationAppVaultRef: generic-s3-trident-protect-dst-
bucket-8fe0b902-£369-4317-93d1-ad7f2edc02b5
namespaceMapping:
- destination: my-app-namespace
source: my-app-nhamespace
recurrenceRule: |-
DTSTART:20220101T000200%
RRULE : FREQ=MINUTELY; INTERVAL=5
sourceAppVaultRef: generic-s3-trident-protect-src-bucket-
b643cc50-0429-4ad5-971f-ac4a83621922
sourceApplicationName: my-app-name
sourceApplicationUID: 7498d32c-328e-4ddd-9029-122540866aeb

storageClassName: sc-vsim-2

C. After you populate the trident-protect-relationship.yaml file with the correct values,
apply the CR:

391

kubectl apply -f trident-protect-relationship.yaml -n my-app-

namespace

Create an AppMirrorRelationship using the CLI

a. Create and apply the AppMirrorRelationship object, replacing values in brackets with information
from your environment. For example:

tridentctl-protect create appmirrorrelationship

<name of appmirorrelationship> --destination-app-vault

<my vault name> --recurrence-rule <rule> --source-app

<my source app> --source-app-vault <my source app vault> -n

<application namespace>

8. (Optional) Check the state and status of the replication relationship:

kubectl get amr -n my-app-namespace <relationship name> -o=jsonpath

='{.status}' | Jjg

Fail over to destination cluster

Using Trident Protect, you can fail over replicated applications to a destination cluster. This procedure stops
the replication relationship and brings the app online on the destination cluster. Trident Protect does not stop
the app on the source cluster if it was operational.

Steps

1. Open the AppMirrorRelationship CR file (for example, trident-protect-relationship.yaml)and
change the value of spec.desiredState to Promoted.

2. Save the CR file.
3. Apply the CR:

kubectl apply -f trident-protect-relationship.yaml -n my-app-namespace

4. (Optional) Create any protection schedules that you need on the failed over application.

5. (Optional) Check the state and status of the replication relationship:

kubectl get amr -n my-app-namespace <relationship name> -o=jsonpath

='{.status}' | Jjg

392

Resync a failed over replication relationship

The resync operation re-establishes the replication relationship. After you perform a resync operation, the
original source application becomes the running application, and any changes made to the running application
on the destination cluster are discarded.

The process stops the app on the destination cluster before re-establishing replication.
@ Any data written to the destination application during failover will be lost.

Steps
1. Create a snapshot of the source application.

2. Open the AppMirrorRelationship CR file (for example, trident-protect-relationship.yaml)and
change the value of spec.desiredState to Established.

3. Save the CR file.
4. Apply the CR:

kubectl apply -f trident-protect-relationship.yaml -n my-app-namespace

5. If you created any protection schedules on the destination cluster to protect the failed over application,
remove them. Any schedules that remain cause volume snapshot failures.

Reverse resync a failed over replication relationship

When you reverse resync a failed over replication relationship, the destination application becomes the source
application, and the source becomes the destination. Changes made to the destination application during
failover are kept.

Steps

1. Delete the AppMirrorRelationship CR on the original destination cluster. This causes the destination to
become the source. If there are any protection schedules remaining on the new destination cluster, remove
them.

2. Set up a replication relationship by applying the CR files you originally used to set up the relationship to the
opposite clusters.

3. Ensure the AppVault CRs are ready on each cluster.

4. Set up a replication relationship on the opposite cluster, configuring values for the reverse direction.

Reverse application replication direction

When you reverse replication direction, Trident Protect moves the application to the destination storage
backend while continuing to replicate back to the original source storage backend. Trident Protect stops the
source application and replicates the data to the destination before failing over to the destination app.

In this situation, you are swapping the source and destination.

Steps
1. Create a shutdown snapshot:

393

394

Create a shutdown snapshot using a CR
a. Disable the protection policy schedules for the source application.

b. Create a ShutdownSnapshot CR file:

i. Create the custom resource (CR) file and name it (for example, trident-protect-
shutdownsnapshot.yaml).

i. Configure the following attributes:
= metadata.name: (Required) The name of the custom resource.

= spec.AppVaultRef: (Required) This value must match the metadata.name field of the
AppVault for the source application.

= spec.ApplicationRef: (Required) This value must match the metadata.name field of the
source application CR file.

Example YAML:

apiVersion: protect.trident.netapp.io/vl
kind: ShutdownSnapshot
metadata:

name: replication-shutdown-snapshot-afc4c564-e700-4b72-
86c3-c08abdbe844e

namespace: my-app-namespace
spec:

appVaultRef: generic-s3-trident-protect-src-bucket-
04be6b4dec-46a3-420a-b351-45795el1bbe34

applicationRef: my-app-name

C. After you populate the trident-protect-shutdownsnapshot.yaml file with the correct
values, apply the CR:

kubectl apply -f trident-protect-shutdownsnapshot.yaml -n my-app-

namespace

Create a shutdown snapshot using the CLI

a. Create the shutdown snapshot, replacing values in brackets with information from your
environment. For example:

tridentctl-protect create shutdownsnapshot <my shutdown snapshot>
--appvault <my vault> --app <app_to snapshot> -n
<application namespace>

2. After the snapshot completes, get the status of the snapshot:

kubectl get shutdownsnapshot -n my-app-namespace

<shutdown snapshot name> -o yaml

3. Find the value of shutdownsnapshot.status.appArchivePath using the following command, and record
the last part of the file path (also called the basename; this will be everything after the last slash):

k get shutdownsnapshot -n my-app-namespace <shutdown snapshot name> -o
jsonpath='{.status.appArchivePath}'

4. Perform a fail over from the destination cluster to the source cluster, with the following change:

In step 2 of the fail over procedure, include the spec.promotedSnapshot field in the
AppMirrorRelationship CR file, and set its value to the basename you recorded in step 3
above.

5. Perform the reverse resync steps in Reverse resync a failed over replication relationship.

6. Enable protection schedules on the new source cluster.

Result

The following actions occur because of the reverse replication:

* A snapshot is taken of the original source app’s Kubernetes resources.

» The original source app’s pods are gracefully stopped by deleting the app’s Kubernetes resources (leaving
PVCs and PVs in place).

« After the pods are shut down, snapshots of the app’s volumes are taken and replicated.
» The SnapMirror relationships are broken, making the destination volumes ready for read/write.

* The app’s Kubernetes resources are restored from the pre-shutdown snapshot, using the volume data
replicated after the original source app was shut down.

* Replication is re-established in the reverse direction.

Fail back applications to the original source cluster

Using Trident Protect, you can achieve "fail back" after a failover operation by using the following sequence of
operations. In this workflow to restore the original replication direction, Trident Protect replicates (resyncs) any
application changes back to the original source application before reversing the replication direction.

This process starts from a relationship that has completed a failover to a destination and involves the following
steps:

» Start with a failed over state.

* Reverse resync the replication relationship.

@ Do not perform a normal resync operation, as this will discard data written to the destination
cluster during the fail over procedure.

395

* Reverse the replication direction.

Steps
1. Perform the Reverse resync a failed over replication relationship steps.

2. Perform the Reverse application replication direction steps.

Delete a replication relationship

You can delete a replication relationship at any time. When you delete the application replication relationship, it
results in two separate applications with no relationship between them.

Steps
1. Delete the AppMirrorRelationship CR:

kubectl delete -f trident-protect-relationship.yaml -n my-app-namespace

Migrate applications using Trident Protect

You can migrate your applications between clusters or storage classes by restoring your
backup or snapshot data to a different cluster or storage class.

When you migrate an application, all execution hooks configured for the application are migrated
with the app. If a post-restore execution hook is present, it runs automatically as part of the
restore operation.

Backup and restore operations

To perform backup and restore operations for the following scenarios, you can automate specific backup and
restore tasks.

Clone to same cluster

To clone an application to the same cluster, create a snapshot or backup and restore the data to the same
cluster.

Steps
1. Do one of the following:

a. Create a snapshot.
b. Create a backup.

2. On the same cluster, do one of the following, depending on if you created a snapshot or a backup:
a. Restore your data from the snapshot.

b. Restore your data from the backup.

Clone to different cluster

To clone an application to a different cluster (perform a cross-cluster clone), create a backup on the source
cluster, and then restore the backup to a different cluster. Make sure that Trident Protect is installed on the
destination cluster.

396

@ You can replicate an application between different clusters using SnapMirror replication.

Steps
1. Create a backup.

2. Ensure that the AppVault CR for the object storage bucket that contains the backup has been configured
on the destination cluster.

3. On the destination cluster, restore your data from the backup.

Migrate applications from one storage class to another storage class

You can migrate applications from one storage class to a different storage class by restoring a snapshot to the

different destination storage class.

For example (excluding the secrets from the restore CR):

apiVersion: protect.trident.netapp.io/vl
kind: SnapshotRestore
metadata:
name: "${snapshotRestoreCRName}"
spec:
appArchivePath: "${snapshotArchivePath}"
appVaultRef: "${appVaultCRName}"
namespaceMapping:
destination: "${destinationNamespace}"
source: "S${sourceNamespace}"
storageClassMapping:
destination: "${destinationStorageClass}"
source: "S${sourceStorageClass}"
resourceFilter:
resourceMatchers:
kind: Secret
version: vl

resourceSelectionCriteria: exclude

397

Restore the snapshot using a CR
Steps

1. Create the custom resource (CR) file and name it trident-protect-snapshot-restore-
cr.yaml.

2. In the file you created, configure the following attributes:

o metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

o spec.appArchivePath: The path inside AppVault where the snapshot contents are stored. You
can use the following command to find this path:

kubectl get snapshots <my-snapshot-name> -n trident-protect -o
Jjsonpath='{.status.appArchivePath}'

o spec.appVaultRef: (Required) The name of the AppVault where the snapshot contents are
stored.

> spec.namespaceMapping: The mapping of the source namespace of the restore operation to the
destination namespace. Replace my-source-namespace and my-destination-namespace
with information from your environment.

apiVersion: protect.trident.netapp.io/vl
kind: SnapshotRestore
metadata:
name: my-cr-name
namespace: trident-protect
spec:
appArchivePath: my-snapshot-path
appVaultRef: appvault-name
namespaceMapping: [{"source": "my-source-namespace",
"destination": "my-destination-namespace"}]

3. Optionally, if you need to select only certain resources of the application to restore, add filtering that
includes or excludes resources marked with particular labels:

° resourceFilter.resourceSelectionCriteria: (Required for filtering) Use include or exclude
to include or exclude a resource defined in resourceMatchers. Add the following
resourceMatchers parameters to define the resources to be included or excluded:

= resourceFilter.resourceMatchers: An array of resourceMatcher objects. If you define
multiple elements in this array, they match as an OR operation, and the fields inside each
element (group, kind, version) match as an AND operation.

= resourceMatchers[].group: (Optional) Group of the resource to be filtered.
= resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.

= resourceMatchers[].version: (Optional) Version of the resource to be filtered.

398

= resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of

the resource to be filtered.

= resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes

metadata.name field of the resource to be filtered.

= resourceMatchers[].labelSelectors: (Optional) Label selector string in the Kubernetes
metadata.name field of the resource as defined in the Kubernetes documentation. For

example: "trident.netapp.io/os=1linux".

For example:

spec:

resourceFilter:

resourceSelectionCriteria: "include"

resourceMatchers:

group: my-resource-group-1

kind: my-resource-kind-1

version: my-resource-version-1

names: ["my-resource-names"]

namespaces: ["my-resource-namespaces"]
labelSelectors: ["trident.netapp.io/os=linux"]
group: my-resource-group-2

kind: my-resource-kind-2

version: my-resource-version-2

names: ["my-resource-names"]

namespaces: ["my-resource-namespaces"]
labelSelectors: ["trident.netapp.io/os=1linux"]

4. After you populate the trident-protect-snapshot-restore-cr.yaml file with the correct
values, apply the CR:

kubectl apply -f trident-protect-snapshot-restore-cr.yaml

Restore the snapshot using the CLI

Steps

1. Restore the snapshot to a different namespace, replacing values in brackets with information from

your environment.

° The snapshot argument uses a namespace and snapshot name in the format
<namespace>/<name>.

° The namespace-mapping argument uses colon-separated namespaces to map source
namespaces to the correct destination namespaces in the format
sourcel:destl, source2:dest?2.

For example:

399

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

tridentctl-protect create snapshotrestore <my restore name>
--snapshot <namespace/snapshot to restore> --namespace-mapping
<source to destination namespace mapping>

Manage Trident Protect execution hooks

An execution hook is a custom action that you can configure to run in conjunction with a
data protection operation of a managed app. For example, if you have a database app,
you can use an execution hook to pause all database transactions before a snapshot,
and resume transactions after the snapshot is complete. This ensures application-
consistent snapshots.

Types of execution hooks

Trident Protect supports the following types of execution hooks, based on when they can be run:

* Pre-snapshot
* Post-snapshot
* Pre-backup

» Post-backup

» Post-restore

» Post-failover

Order of execution

When a data protection operation is run, execution hook events take place in the following order:

1. Any applicable custom pre-operation execution hooks are run on the appropriate containers. You can
create and run as many custom pre-operation hooks as you need, but the order of execution of these
hooks before the operation is neither guaranteed nor configurable.

2. Filesystem freezes occur, if applicable. Learn more about configuring filesystem freezing with Trident
Protect.

3. The data protection operation is performed.
4. Frozen filesystems are unfrozen, if applicable.

5. Any applicable custom post-operation execution hooks are run on the appropriate containers. You can
create and run as many custom post-operation hooks as you need, but the order of execution of these
hooks after the operation is neither guaranteed nor configurable.

If you create multiple execution hooks of the same type (for example, pre-snapshot), the order of execution of
those hooks is not guaranteed. However, the order of execution of hooks of different types is guaranteed. For
example, the following is the order of execution of a configuration that has all of the different types of hooks:

1. Pre-snapshot hooks executed

2. Post-snapshot hooks executed

400

3. Pre-backup hooks executed

4. Post-backup hooks executed

@ The preceding order example only applies when you run a backup that does not use an existing
snapshot.

You should always test your execution hook scripts before enabling them in a production
environment. You can use the 'kubectl exec' command to conveniently test the scripts. After you

@ enable the execution hooks in a production environment, test the resulting snapshots and
backups to ensure they are consistent. You can do this by cloning the app to a temporary
namespace, restoring the snapshot or backup, and then testing the app.

Important notes about custom execution hooks

Consider the following when planning execution hooks for your apps.

* An execution hook must use a script to perform actions. Many execution hooks can reference the same
script.

« Trident Protect requires the scripts that execution hooks use to be written in the format of executable shell
scripts.

* Script size is limited to 96KB.

« Trident Protect uses execution hook settings and any matching criteria to determine which hooks are
applicable to a snapshot, backup, or restore operation.

Because execution hooks often reduce or completely disable the functionality of the application
they are running against, you should always try to minimize the time your custom execution

@ hooks take to run. If you start a backup or snapshot operation with associated execution hooks
but then cancel it, the hooks are still allowed to run if the backup or snapshot operation has
already begun. This means that the logic used in a post-backup execution hook cannot assume
that the backup was completed.

Execution hook filters

When you add or edit an execution hook for an application, you can add filters to the execution hook to
manage which containers the hook will match. Filters are useful for applications that use the same container
image on all containers, but might use each image for a different purpose (such as Elasticsearch). Filters allow
you to create scenarios where execution hooks run on some but not necessarily all identical containers. If you
create multiple filters for a single execution hook, they are combined with a logical AND operator. You can have
up to 10 active filters per execution hook.

Each filter you add to an execution hook uses a regular expression to match containers in your cluster. When a
hook matches a container, the hook will run its associated script on that container. Regular expressions for
filters use the Regular Expression 2 (RE2) syntax, which does not support creating a filter that excludes
containers from the list of matches. For information on the syntax that Trident Protect supports for regular
expressions in execution hook filters, see Regular Expression 2 (RE2) syntax support.

If you add a namespace filter to an execution hook that runs after a restore or clone operation
@ and the restore or clone source and destination are in different namespaces, the namespace
filter is only applied to the destination namespace.

401

https://github.com/google/re2/wiki/Syntax

Execution hook examples

Visit the NetApp Verda GitHub project to download real execution hooks for popular apps such as Apache
Cassandra and Elasticsearch. You can also see examples and get ideas for structuring your own custom
execution hooks.

Create an execution hook

You can create a custom execution hook for an app using Trident Protect. You need to have Owner, Admin, or
Member permissions to create execution hooks.

402

https://github.com/NetApp/Verda

Use aCR
Steps
1. Create the custom resource (CR) file and name it trident-protect-hook.yaml.
2. Configure the following attributes to match your Trident Protect environment and cluster configuration:

o metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

> spec.applicationRef: (Required) The Kubernetes name of the application for which to run the
execution hook.

> spec.stage: (Required) A string indicating which stage during the action that the execution hook
should run. Possible values:

= Pre
= Post

o spec.action: (Required) A string indicating which action the execution hook will take, assuming
any execution hook filters specified are matched. Possible values:

= Snapshot
= Backup
= Restore
= Failover

o spec.enabled: (Optional) Indicates whether this execution hook is enabled or disabled. If not
specified, the default value is true.

> spec.hookSource: (Required) A string containing the base64-encoded hook script.

o spec.timeout: (Optional) A number defining how long in minutes that the execution hook is
allowed to run. The minimum value is 1 minute, and the default value is 25 minutes if not
specified.

o spec.arguments: (Optional) A YAML list of arguments that you can specify for the execution
hook.

o spec.matchingCriteria: (Optional) An optional list of criteria key value pairs, each pair making up
an execution hook filter. You can add up to 10 filters per execution hook.

> spec.matchingCriteria.type: (Optional) A string identifying the execution hook filter type.
Possible values:

= Containerlmage
= ContainerName
= PodName
= PodLabel
= NamespaceName
o spec.matchingCriteria.value: (Optional) A string or regular expression identifying the execution

hook filter value.

Example YAML:

403

apiVersion: protect.trident.netapp.io/vl
kind: ExecHook
metadata:
name: example-hook-cr
namespace: my-app-namespace
annotations:
astra.netapp.io/astra-control-hook-source-id:
/account/test/hookSource/id
spec:
applicationRef: my-app-name
stage: Pre
action: Snapshot
enabled: true
hookSource: IyEvYmluL2Jhc2gKZWNobyAiZXhhbXBsZSBzY3JpcHQiCg==
timeout: 10
arguments:
- FirstExampleArg
— SecondExampleArg
matchingCriteria:
- type: containerName
value: mysqgl
- type: containerImage
value: bitnami/mysqgl
- type: podName
value: mysqgl
- type: namespaceName
value: mysqgl-a
- type: podLabel
value: app.kubernetes.io/component=primary
- type: podLabel
value: helm.sh/chart=mysqgl-10.1.0
- type: podLabel
value: deployment-type=production

3. After you populate the CR file with the correct values, apply the CR:

kubectl apply -f trident-protect-hook.yaml

Use the CLI
Steps

1. Create the execution hook, replacing values in brackets with information from your environment. For
example:

404

tridentctl-protect create exechook <my exec hook name> --action
<action type> --app <app to use hook> --stage <pre or post stage>
--source-file <script-file> -n <application namespace>

Uninstall Trident Protect

You might need to remove Trident Protect components if you are upgrading from a trial to
a full version of the product.

To remove Trident Protect, perform the following steps.

Steps
1. Remove the Trident Protect CR files:

helm uninstall -n trident-protect trident-protect-crds

2. Remove Trident Protect:

helm uninstall -n trident-protect trident-protect

3. Remove the Trident Protect namespace:

kubectl delete ns trident-protect

405

Knowledge and support

Frequently asked questions

Find answers to the frequently asked questions about installing, configuring, upgrading,
and troubleshooting Trident.

General questions

How frequently is Trident released?

Beginning with the 24.02 release, Trident is released every four months: February, June, and October.

Does Trident support all the features that are released in a particular version of Kubernetes?

Trident usually does not support alpha features in Kubernetes. Trident might support beta features within the
two Trident releases that follow the Kubernetes beta release.

Does Trident have any dependencies on other NetApp products for its functioning?

Trident does not have any dependencies on other NetApp software products and it works as a standalone
application. However, you should have a NetApp backend storage device.

How can | obtain complete Trident configuration details?

Use the tridentctl get command to obtain more information about your Trident configuration.

Can | obtain metrics on how storage is provisioned by Trident?

Yes. Prometheus endpoints that can be used to gather information about Trident operation, such as the
number of backends managed, the number of volumes provisioned, bytes consumed, and so on. You can also
use Cloud Insights for monitoring and analysis.

Does the user experience change when using Trident as a CSI Provisioner?

No. There are no changes as far as the user experience and functionalities are concerned. The provisioner
name used is csi.trident.netapp.io. This method of installing Trident is recommended if you want to
use all the new features provided by current and future releases.

Install and use Trident on a Kubernetes cluster

Does Trident support an offline install from a private registry?

Yes, Trident can be installed offline. Refer to Learn about Trident installation.

Can | install Trident be remotely?

Yes. Trident 18.10 and later support remote installation capability from any machine that has kubect1 access
to the cluster. After kubect1 access is verified (for example, initiate a kubectl get nodes command from
the remote machine to verify), follow the installation instructions.

406

https://docs.netapp.com/us-en/cloudinsights/
https://docs.netapp.com/us-en/trident-2410/../trident-get-started/kubernetes-deploy.html

Can | configure High Availability with Trident?

Trident is installed as a Kubernetes Deployment (ReplicaSet) with one instance, and so it has HA built in. You
should not increase the number of replicas in the deployment. If the node where Trident is installed is lost or
the pod is otherwise inaccessible, Kubernetes automatically re-deploys the pod to a healthy node in your
cluster. Trident is control-plane only, so currently mounted pods are not affected if Trident is re-deployed.

Does Trident need access to the kube-system namespace?

Trident reads from the Kubernetes API Server to determine when applications request new PVCs, so it needs
access to kube-system.

What are the roles and privileges used by Trident?

The Trident installer creates a Kubernetes ClusterRole, which has specific access to the cluster’s
PersistentVolume, PersistentVolumeClaim, StorageClass, and Secret resources of the Kubernetes cluster.
Refer to Customize tridentctl installation.

Can | locally generate the exact manifest files Trident uses for installation?

You can locally generate and modify the exact manifest files Trident uses for installation, if needed. Refer to
Customize tridentctl installation.

Can | share the same ONTAP backend SVM for two separate Trident instances for two separate
Kubernetes clusters?

Although it is not advised, you can use the same backend SVM for two Trident instances. Specify a unique
volume name for each instance during installation and/or specify a unique StoragePrefix parameter in the
setup/backend. json file. This is to ensure the same FlexVol is not used for both instances.

Is it possible to install Trident under ContainerLinux (formerly Core0S)?

Trident is simply a Kubernetes pod and can be installed wherever Kubernetes is running.

Can | use Trident with NetApp Cloud Volumes ONTAP?

Yes, Trident is supported on AWS, Google Cloud, and Azure.

Does Trident work with Cloud Volumes Services?

Yes, Trident supports the Azure NetApp Files service in Azure as well as the Cloud Volumes Service in GCP.

Troubleshooting and support

Does NetApp support Trident?

Although Trident is open source and provided for free, NetApp fully supports it provided your NetApp backend
is supported.

How do | raise a support case?

To raise a support case, do one of the following:

1. Contact your Support Account Manager and get help to raise a ticket.

407

https://docs.netapp.com/us-en/trident-2410/../trident-get-started/kubernetes-customize-deploy-tridentctl.html
https://docs.netapp.com/us-en/trident-2410/trident-get-started/kubernetes-customize-deploy-tridentctl.html

2. Raise a support case by contacting NetApp Support.

How do | generate a support log bundle?

You can create a support bundle by running tridentctl logs -a.In addition to the logs captured in the
bundle, capture the kubelet log to diagnose the mount problems on the Kubernetes side. The instructions to
get the kubelet log varies based on how Kubernetes is installed.

What do | do if | need to raise a request for a new feature?

Create an issue on Trident Github and mention RFE in the subject and description of the issue.

Where do | raise a defect?

Create an issue on Trident Github. Make sure to include all the necessary information and logs pertaining to
the issue.

What happens if | have quick question on Trident that | need clarification on? Is there a community or a
forum?

If you have any questions, issues, or requests, reach out to us through our Trident Discord channel or GitHub.

My storage system’s password has changed and Trident no longer works, how do | recover?

Update the backend’s password with tridentctl update backend myBackend -f
</path/to new backend.json> -n trident. Replace myBackend in the example with your backend
name, and " /path/to_new backend. json with the path to the correct backend. json file.

Trident cannot find my Kubernetes node. How do | fix this?

There are two likely scenarios why Trident cannot find a Kubernetes node. It can be because of a networking
issue within Kubernetes or a DNS issue. The Trident node daemonset that runs on each Kubernetes node
must be able to communicate with the Trident controller to register the node with Trident. If networking changes
occurred after Trident was installed, you encounter this problem only with new Kubernetes nodes that are
added to the cluster.

If the Trident pod is destroyed, will | lose the data?

Data will not be lost if the Trident pod is destroyed. Trident metadata is stored in CRD objects. All PVs that
have been provisioned by Trident will function normally.

Upgrade Trident

Can | upgrade from a older version directly to a newer version (skipping a few versions)?

NetApp supports upgrading Trident from one major release to the next immediate major release. You can
upgrade from version 18.xx to 19.xx, 19.xx to 20.xx, and so on. You should test upgrading in a lab before
production deployment.

Is it possible to downgrade Trident to a previous release?

If you need a fix for bugs observed after an upgrade, dependency issues, or an unsuccessful or incomplete
upgrade, you should uninstall Trident and reinstall the earlier version using the specific instructions for that
version. This is the only recommended way to downgrade to an earlier version.

408

https://www.netapp.com/company/contact-us/support/
https://github.com/NetApp/trident
https://github.com/NetApp/trident
https://discord.gg/NetApp

Manage backends and volumes

Do I need to define both Management and Data LIFs in an ONTAP backend definition file?

The management LIF is mandatory. Data LIF varies:

* ONTAP SAN: Do not specify for iSCSI. Trident uses ONTAP Selective LUN Map to discover the iSCI LIFs
needed to establish a multi path session. A warning is generated if dataLIF is explicitly defined. Refer to
ONTAP SAN configuration options and examples for details.

* ONTAP NAS: We recommend specifying dataLIF. If not provided, Trident fetches data LIFs from the
SVM. You can specify a fully-qualified domain name (FQDN) to be used for the NFS mount operations,
allowing you to create a round-robin DNS to load-balance across multiple data LIFs. Refer to ONTAP NAS
configuration options and examples for details

Can Trident configure CHAP for ONTAP backends?

Yes. Trident supports bidirectional CHAP for ONTAP backends. This requires setting useCHAP=true in your
backend configuration.

How do | manage export policies with Trident?

Trident can dynamically create and manage export policies from version 20.04 onwards. This enables the
storage administrator to provide one or more CIDR blocks in their backend configuration and have Trident add
node IPs that fall within these ranges to an export policy it creates. In this manner, Trident automatically
manages the addition and deletion of rules for nodes with IPs within the given CIDRs.

Can IPv6 addresses be used for the Management and Data LIFs?
Trident supports defining IPv6 addresses for:

* managementLIF and dataLIF for ONTAP NAS backends.

* managementLIF for ONTAP SAN backends. You cannot specify dataLIF on an ONTAP SAN backend.

Trident must be installed using the flag --use-ipvé6 (for tridentctl installation), Ipv6 (for Trident
operator), or tridentTPv6 (for Helm installation) for it to function over IPv6.

Is it possible to update the Management LIF on the backend?

Yes, it is possible to update the backend Management LIF using the tridentctl update backend
command.

Is it possible to update the Data LIF on the backend?

You can update the Data LIF on ontap-nas and ontap-nas-economy only.

Can | create multiple backends in Trident for Kubernetes?

Trident can support many backends simultaneously, either with the same driver or different drivers.

How does Trident store backend credentials?

Trident stores the backend credentials as Kubernetes Secrets.

409

https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html

How does Trident select a specific backend?

If the backend attributes cannot be used to automatically select the right pools for a class, the storagePools
and additionalStoragePools parameters are used to select a specific set of pools.

How do | ensure that Trident will not provision from a specific backend?

The excludeStoragePools parameter is used to filter the set of pools that Trident uses for provisioning and
will remove any pools that match.

If there are multiple backends of the same kind, how does Trident select which backend to use?

If there are multiple configured backends of the same type, Trident selects the appropriate backend based on
the parameters present in StorageClass and PersistentVolumeClaim. For example, if there are multiple
ontap-nas driver backends, Trident tries to match parameters in the StorageClass and
PersistentVolumeClaim combined and match a backend which can deliver the requirements listed in
StorageClass and PersistentVolumeClaim. If there are multiple backends that match the request,
Trident selects from one of them at random.

Does Trident support bi-directional CHAP with Element/SolidFire?

Yes.

How does Trident deploy Qtrees on an ONTAP volume? How many Qtrees can be deployed on a single
volume?

The ontap-nas-economy driver creates up to 200 Qtrees in the same FlexVol (configurable between 50 and
300), 100,000 Qtrees per cluster node, and 2.4M per cluster. When you enter a new
PersistentVolumeClaim thatis serviced by the economy driver, the driver looks to see if a FlexVol already
exists that can service the new Qtree. If the FlexVol does not exist that can service the Qtree, a new FlexVol is
created.

How can | set Unix permissions for volumes provisioned on ONTAP NAS?

You can set Unix permissions on the volume provisioned by Trident by setting a parameter in the backend
definition file.

How can | configure an explicit set of ONTAP NFS mount options while provisioning a volume?

By default, Trident does not set mount options to any value with Kubernetes. To specify the mount options in
the Kubernetes Storage Class, follow the example given here.

How do | set the provisioned volumes to a specific export policy?

To allow the appropriate hosts access to a volume, use the exportPolicy parameter configured in the
backend definition file.

How do | set volume encryption through Trident with ONTAP?

You can set encryption on the volume provisioned by Trident by using the encryption parameter in the backend
definition file. For more information, refer to: How Trident works with NVE and NAE

410

https://github.com/NetApp/trident/blob/master/trident-installer/sample-input/storage-class-samples/storage-class-ontapnas-k8s1.8-mountoptions.yaml

What is the best way to implement QoS for ONTAP through Trident?

Use StorageClasses to implement QoS for ONTAP.

How do | specify thin or thick provisioning through Trident?

The ONTAP drivers support either thin or thick provisioning. The ONTAP drivers default to thin provisioning. If
thick provisioning is desired, you should configure either the backend definition file or the StorageClass. If
both are configured, StorageClass takes precedence. Configure the following for ONTAP:

1. On StorageClass, set the provisioningType attribute as thick.

2. In the backend definition file, enable thick volumes by setting backend spaceReserve parameter as
volume.

How do | make sure that the volumes being used are not deleted even if | accidentally delete the PVC?

PVC protection is automatically enabled on Kubernetes starting from version 1.10.

Can | grow NFS PVCs that were created by Trident?

Yes. You can expand a PVC that has been created by Trident. Note that volume autogrow is an ONTAP feature
that is not applicable to Trident.

Can | import a volume while it is in SnapMirror Data Protection (DP) or offline mode?

The volume import fails if the external volume is in DP mode or is offline. You receive the following error
message:

Error: could not import volume: volume import failed to get size of
volume: volume <name> was not found (400 Bad Request) command terminated
with exit code 1.

Make sure to remove the DP mode or put the volume online before importing

the volume.

How is resource quota translated to a NetApp cluster?

Kubernetes Storage Resource Quota should work as long as NetApp storage has capacity. When the NetApp
storage cannot honor the Kubernetes quota settings due to lack of capacity, Trident tries to provision but errors
out.

Can | create Volume Snapshots using Trident?

Yes. Creating on-demand volume snapshots and Persistent Volumes from Snapshots are supported by Trident.
To create PVs from snapshots, ensure that the VolumeSnapshotDataSource feature gate has been
enabled.

What are the drivers that support Trident volume snapshots?

As of today, on-demand snapshot support is available for our ontap-nas, ontap-nas-flexgroup, ontap-
san, ontap-san-economy, solidfire-san, gcp-cvs, and azure-netapp-£files backend drivers.

411

How do | take a snapshot backup of a volume provisioned by Trident with ONTAP?

This is available on ontap-nas, ontap-san, and ontap-nas-flexgroup drivers. You can also specify a
snapshotPolicy for the ontap-san-economy driver at the FlexVol level.

This is also available on the ontap-nas-economy drivers but on the FlexVol level granularity and not on the
gtree level granularity. To enable the ability to snapshot volumes provisioned by Trident, set the backend
parameter option snapshotPolicy to the desired snapshot policy as defined on the ONTAP backend. Any
snapshots taken by the storage controller are not known by Trident.

Can | set a snapshot reserve percentage for a volume provisioned through Trident?

Yes, you can reserve a specific percentage of disk space for storing the snapshot copies through Trident by
setting the snapshotReserve attribute in the backend definition file. If you have configured
snapshotPolicy and snapshotReserve in the backend definition file, snapshot reserve percentage is set
according to the snapshotReserve percentage mentioned in the backend file. If the snapshotReserve
percentage number is not mentioned, ONTAP by default takes the snapshot reserve percentage as 5. If the
snapshotPolicy option is set to none, the snapshot reserve percentage is set to 0.

Can | directly access the volume snapshot directory and copy files?

Yes, you can access the snapshot directory on the volume provisioned by Trident by setting the snapshotDir
parameter in the backend definition file.

Can | set up SnapMirror for volumes through Trident?

Currently, SnapMirror has to be set externally by using ONTAP CLI or OnCommand System Manager.

How do | restore Persistent Volumes to a specific ONTAP snapshot?

To restore a volume to an ONTAP snapshot, perform the following steps:

1. Quiesce the application pod which is using the Persistent volume.
2. Revert to the required snapshot through ONTAP CLI or OnCommand System Manager.
3. Restart the application pod.

Can Trident provision volumes on SVMs that have a Load-Sharing Mirror configured?

Load-sharing mirrors can be created for root volumes of SVMs that serve data over NFS. ONTAP automatically
updates load-sharing mirrors for volumes that have been created by Trident. This may result in delays in
mounting volumes. When multiple volumes are created using Trident, provisioning a volume is dependent on
ONTAP updating the load-sharing mirror.

How can | separate out storage class usage for each customer/tenant?

Kubernetes does not allow storage classes in namespaces. However, you can use Kubernetes to limit usage of
a specific storage class per namespace by using Storage Resource Quotas, which are per namespace. To
deny a specific namespace access to specific storage, set the resource quota to 0 for that storage class.

Troubleshooting

Use the pointers provided here for troubleshooting issues you might encounter while

412

installing and using Trident.

General troubleshooting

« If the Trident pod fails to come up properly (for example, when the Trident pod is stuck in the
ContainerCreating phase with fewer than two ready containers), running kubectl -n trident
describe deployment trident and kubectl -n trident describe pod trident--** can
provide additional insights. Obtaining kubelet logs (for example, via journalctl -xeu kubelet)can
also be helpful.

If there is not enough information in the Trident logs, you can try enabling the debug mode for Trident by
passing the -d flag to the install parameter based on your installation option.

Then confirm debug is set using . /tridentctl logs -n trident and searching for level=debug
msq in the log.

Installed with Operator

kubectl patch torc trident -n <namespace> --type=merge -p
'{"spec":{"debug":true}}'

This will restart all Trident pods, which can take several seconds. You can check this by observing the
'AGE' column in the output of kubectl get pod -n trident.

For Trident 20.07 and 20.10 use tprov in place of torc.

Installed with Helm

helm upgrade <name> trident-operator-21.07.l-custom.tgz --set
tridentDebug=true’

Installed with tridentctl

./tridentctl uninstall -n trident
./tridentctl install -d -n trident

* You can also obtain debug logs for each backend by including debugTraceFlags in your backend
definition. For example, include debugTraceFlags: {“api”:true, “method”:true, } to obtain API
calls and method traversals in the Trident logs. Existing backends can have debugTraceFlags
configured with a tridentctl backend update.

* When using RedHat CoreOS, ensure that iscsid is enabled on the worker nodes and started by default.
This can be done using OpenShift MachineConfigs or by modifying the ignition templates.

« A common problem you could encounter when using Trident with Azure NetApp Files is when the tenant
and client secrets come from an app registration with insufficient permissions. For a complete list of Trident
requirements, Refer to Azure NetApp Files configuration.

* If there are problems with mounting a PV to a container, ensure that rpcbind is installed and running. Use
the required package manager for the host OS and check if rpcbind is running. You can check the status
of the rpcbind service by running a systemctl status rpcbind or its equivalent.

413

https://azure.microsoft.com/en-us/services/netapp/

* If a Trident backend reports that it is in the failed state despite having worked before, it is likely caused
by changing the SVM/admin credentials associated with the backend. Updating the backend information
using tridentctl update backend or bouncing the Trident pod will fix this issue.

* If you encounter permission issues when installing Trident with Docker as the container runtime, attempt
the installation of Trident with the -—-in cluster=false flag. This will not use an installer pod and avoid
permission troubles seen due to the trident-installer user.

* Use the uninstall parameter <Uninstalling Trident> for cleaning up after a failed run. By
default, the script does not remove the CRDs that have been created by Trident, making it safe to uninstall
and install again even in a running deployment.

* If you want to downgrade to an earlier version of Trident, first run the tridentctl uninstall command
to remove Trident. Download the desired Trident version and install using the tridentctl install
command.

* After a successful install, if a PVC is stuck in the Pending phase, running kubectl describe pvc can
provide additional information about why Trident failed to provision a PV for this PVC.

Unsuccessful Trident deployment using the operator
If you are deploying Trident using the operator, the status of TridentOrchestrator changes from

Installingto Installed. If you observe the Failed status, and the operator is unable to recover by itself,
you should check the logs of the operator by running following command:

tridentctl logs -1 trident-operator

Trailing the logs of the trident-operator container can point to where the problem lies. For example, one such
issue could be the inability to pull the required container images from upstream registries in an airgapped
environment.

To understand why the installation of Trident was unsuccessful, you
should take a look at the TridentOrchestrator status.

414

https://github.com/NetApp/trident/releases

kubectl describe torc trident-2

Name : trident-2
Namespace:

Labels: <none>
Annotations: <none>

API Version: trident.netapp.io/vl

Kind: TridentOrchestrator
Status:
Current Installation Params:
IPvo6:

Autosupport Hostname:
Autosupport Image:
Autosupport Proxy:
Autosupport Serial Number:
Debug:

Image Pull Secrets: <nil>
Image Registry:
k8sTimeout:

Kubelet Dir:

Log Format:

Silence Autosupport:
Trident Image:

Message: Trident is bound to another CR 'trident'
Namespace: trident-2
Status: Error
Version:

Events:
Type Reason Age From Message
Warning Error 16s (x2 over 16s) trident-operator.netapp.io Trident

is bound to another CR 'trident'

This error indicates that there already exists a TridentOrchestrator
that was used to install Trident. Since each Kubernetes cluster can only
have one instance of Trident, the operator ensures that at any given

time there only exists one active TridentOrchestrator thatit can
create.

In addition, observing the status of the Trident pods can often indicate if something is not right.

415

kubectl get pods -n trident

NAME READY STATUS RESTARTS
AGE

trident-csi-4p5kg 1/2 ImagePullBackOff 0
5ml8s

trident-csi-6f45bfd8b6-vfrkw 4/5 ImagePullBackOff 0
5ml9s

trident-csi-9g5xc 1/2 ImagePullBackOff 0
5ml18s

trident-csi-9v95z 1/2 ImagePullBackOff 0
5ml8s

trident-operator-766f7b8658-1dzsv 1/1 Running 0
8ml7s

You can clearly see that the pods are not able to initialize completely
because one or more container images were not fetched.

To address the problem, you should edit the TridentOrchestrator CR.
Alternatively, you can delete TridentOrchestrator, and create a new
one with the modified and accurate definition.

Unsuccessful Trident deployment using tridentctl

To help figure out what went wrong, you could run the installer again using the -d argument, which will turn on
debug mode and help you understand what the problem is:

./tridentctl install -n trident -d

After addressing the problem, you can clean up the installation as follows, and then run the tridentctl
install command again:

./tridentctl uninstall -n trident

INFO Deleted Trident deployment.

INFO Deleted cluster role binding.

INFO Deleted cluster role.

INFO Deleted service account.

INFO Removed Trident user from security context constraint.
INFO Trident uninstallation succeeded.

Completely remove Trident and CRDs

You can completely remove Trident and all created CRDs and associated custom resources.

416

@ This cannot be undone. Do not do this unless you want a completely fresh installation of Trident.
To uninstall Trident without removing CRDs, refer to Uninstall Trident.

Trident operator
To uninstall Trident and completely remove CRDs using the Trident operator:

kubectl patch torc <trident-orchestrator-name> --type=merge -p
"{"spec":{"wipeout":["crds"],"uninstall":true}}"'

Helm
To uninstall Trident and completely remove CRDs using Helm:

kubectl patch torc trident --type=merge -p
"{"spec":{"wipeout":["crds"],"uninstall":true}}"

tridentctl

To completely remove CRDs after uninstalling Trident using tridentctl

tridentctl obliviate crd

NVMe node unstaging failure with RWX raw block namespaces o Kubernetes 1.26

If you are running Kubernetes 1.26, node unstaging might fail when using NVMe/TCP with RWX raw block
namespaces. The following scenarios provide workaround to the failure. Alternatively, you can upgrade
Kubernetes to 1.27.

Deleted the namespace and pod

Consider a scenario where you have a Trident managed namespace (NVMe persistent volume) attached to a
pod. If you delete the namespace directly from the ONTAP backend, the unstaging process gets stuck after
you attempt to delete the pod. This scenario does not impact the Kubernetes cluster or other functioning.

Workaround
Unmount the persistent volume (corresponding to that namespace) from the respective node and delete it.

Blocked dataLIFs

If you block (or bring down) all the datalLIFs of the NVMe Trident backend,
the unstaging process gets stuck when you attempt to delete the pod. In
this scenario, you cannot run any NVMe CLI commands on the Kubernetes
node.

417

Workaround
Bring up the dataLIFS to restore full functionality.

Deleted namespace mapping

If you remove the "hostNQON' of the worker node from the corresponding
subsystem, the unstaging process gets stuck when you attempt to delete the
pod. In this scenario, you cannot run any NVMe CLI commands on the
Kubernetes node.

Workaround

Add the hostNQN back to the subsystem.

Support

NetApp provides support for Trident in a variety of ways. Extensive free self-support
options are available 24x7, such as knowledgebase (KB) articles and a Discord channel.

Trident support lifecycle

Trident provides three levels of support based on your version. Refer to NetApp software version support for
definitions.

Full support
Trident provides full support for twelve months from the release date.

Limited support
Trident provides limited support for months 13 - 24 from the release date.

Self-support
Trident documentation is available for months 25 - 36 from the release date.

Table 1. Trident version support schedule

Version Full support Limited support Self-support
2410 October 2025 October 2026 October 2027
24.06 June 2025 June 2026 June 2027
24.02 — February 2026 February 2027
23.10 — October 2025 October 2026
23.07 — July 2025 July 2026
23.04 — April 2025 April 2026

418

https://mysupport.netapp.com/site/info/version-support
https://mysupport.netapp.com/site/info/version-support
https://docs.netapp.com/us-en/trident/index.html
https://docs.netapp.com/us-en/trident-2406/index.html
https://docs.netapp.com/us-en/trident-2402/index.html
https://docs.netapp.com/us-en/trident-2310/index.html
https://docs.netapp.com/us-en/trident-2307/index.html
https://docs.netapp.com/us-en/trident-2304/index.html

Version Full support

23.01 —
22.10 —
22.07 —

22.04 —

Self-support

For a comprehensive list of troubleshooting articles, Refer to NetApp Knowledgebase (login required).

Community support

Limited support

Self-support
January 2026

October 2025

July 2025

April 2025

There is a vibrant public community of container users (including Trident developers) on our Discord channel.

This is a great place to ask general questions about the project and discuss related topics with like-minded

peers.

NetApp technical support

For help with Trident, create a support bundle using tridentctl logs -a -n trident and send itto

NetApp Support <Getting Help>.

For more information

¢ Trident resources

¢ Kubernetes Hub

419

https://docs.netapp.com/us-en/trident-2301/index.html
https://docs.netapp.com/us-en/trident-2210/index.html
https://docs.netapp.com/us-en/trident-2207/index.html
https://docs.netapp.com/us-en/trident-2204/index.html
https://kb.netapp.com/Advice_and_Troubleshooting/Cloud_Services/Trident_Kubernetes
https://discord.gg/NetApp
https://github.com/NetApp/trident
https://cloud.netapp.com/kubernetes-hub

Reference
Trident ports
Learn more about the ports that Trident uses for communication.

Trident ports

Trident communicates over the following ports:

Port Purpose

8443 Backchannel HTTPS

8001 Prometheus metrics endpoint

8000 Trident REST server

17546 Liveness/readiness probe port used by Trident daemonset pods

The liveness/readiness probe port can be changed during installation using the —-probe-port
flag. It is important to make sure this port isn’t being used by another process on the worker
nodes.

Trident REST API

While tridentctl commands and options are the easiest way to interact with the Trident
REST API, you can use the REST endpoint directly if you prefer.

When to use the REST API

REST APl is useful for advanced installations that use Trident as a standalone binary in non-Kubernetes
deployments.

For better security, the Trident REST APT is restricted to localhost by default when running inside a pod. To
change this behavior, you need to set Trident’'s —~address argument in its pod configuration.

Using REST API

For examples of how these APIs are called, pass the debug (-d) flag. For more information, refer to Manage
Trident using tridentctl.

The API works as follows:

GET

GET <trident-address>/trident/vl1/<object-type>
Lists all objects of that type.

420

https://docs.netapp.com/us-en/trident-2410/trident-reference/tridentctl.html

GET <trident-address>/trident/vl/<object-type>/<object-name>
Gets the details of the named object.

POST

POST <trident-address>/trident/vl1/<object-type>
Creates an object of the specified type.

» Requires a JSON configuration for the object to be created. For the specification of each object type,
refer to Manage Trident using tridentctl.

« If the object already exists, behavior varies: backends update the existing object, while all other object
types will fail the operation.

DELETE

DELETE <trident-address>/trident/vl/<object-type>/<object-name>
Deletes the named resource.

@ Volumes associated with backends or storage classes will continue to exist; these must be
deleted separately. For more information, refer to Manage Trident using tridentctl.

Command-line options

Trident exposes several command-line options for the Trident orchestrator. You can use
these options to modify your deployment.

Logging

-debug
Enables debugging output.

-loglevel <level>
Sets the logging level (debug, info, warn, error, fatal). Defaults to info.

Kubernetes

-k8s_pod

Use this option or -k8s_api server to enable Kubernetes support. Setting this causes Trident to use its
containing pod’s Kubernetes service account credentials to contact the API server. This only works when
Trident runs as a pod in a Kubernetes cluster with service accounts enabled.

-k8s_api_server <insecure-address:insecure-port>

Use this option or -k8s_pod to enable Kubernetes support. When specified, Trident connects to the
Kubernetes API server using the provided insecure address and port. This Enables Trident to be deployed
outside of a pod; however, it only supports insecure connections to the API server. To connect securely,
deploy Trident in a pod with the -k8s_pod option.

421

Docker

-volume driver <name>

Driver name used when registering the Docker plugin. Defaults to netapp.

-driver port <port-number>
Listen on this port rather than a UNIX domain socket.

-config <file>
Required; you must specify this path to a backend configuration file.

REST

-address <ip-or-host>

Specifies the address on which Trident's REST server should listen. Defaults to localhost. When listening
on localhost and running inside a Kubernetes pod, the REST interface isn’t directly accessible from outside
the pod. Use —address "" to make the REST interface accessible from the pod IP address.

@ Trident REST interface can be configured to listen and serve at 127.0.0.1 (for IPv4) or [::1]
(for IPv6) only.

-port <port-number>
Specifies the port on which Trident’'s REST server should listen. Defaults to 8000.

-rest
Enables the REST interface. Defaults to true.

Kubernetes and Trident objects

You can interact with Kubernetes and Trident using REST APIs by reading and writing
resource objects. There are several resource objects that dictate the relationship between
Kubernetes and Trident, Trident and storage, and Kubernetes and storage. Some of
these objects are managed through Kubernetes and the others are managed through
Trident.

How do the objects interact with one another?

Perhaps the easiest way to understand the objects, what they are for, and how they interact, is to follow a
single request for storage from a Kubernetes user:

1. Auser creates a PersistentVolumeClaim requesting a new PersistentVolume of a particular size
from a Kubernetes StorageClass that was previously configured by the administrator.

2. The Kubernetes StorageClass identifies Trident as its provisioner and includes parameters that tell
Trident how to provision a volume for the requested class.

3. Trident looks at its own StorageClass with the same name that identifies the matching Backends and
StoragePools that it can use to provision volumes for the class.

4. Trident provisions storage on a matching backend and creates two objects: a PersistentVolume in

422

Kubernetes that tells Kubernetes how to find, mount, and treat the volume, and a volume in Trident that
retains the relationship between the PersistentvVolume and the actual storage.

5. Kubernetes binds the PersistentVolumeClaim to the new PersistentVolume. Pods that include the
PersistentVolumeClaim mount that PersistentVolume on any host that it runs on.

6. A user creates a VolumeSnapshot of an existing PVC, using a VolumeSnapshotClass that points to

Trident.

7. Trident identifies the volume that is associated with the PVC and creates a snapshot of the volume on its
backend. It also creates a VolumeSnapshotContent that instructs Kubernetes on how to identify the

snapshot.

8. Auser can create a PersistentVolumeClaim using VolumeSnapshot as the source.

9. Trident identifies the required snapshot and performs the same set of steps involved in creating a
PersistentVolume and a Volume.

For further reading about Kubernetes objects, we highly recommend that you read the

Persistent Volumes section of the Kubernetes documentation.

Kubernetes PersistentVolumeClaim objects

A Kubernetes PersistentVolumeClaim object is a request for storage made by a Kubernetes cluster user.

In addition to the standard specification, Trident allows users to specify the following volume-specific
annotations if they want to override the defaults that you set in the backend configuration:

Annotation

trident.netapp.ioffileSystem

trident.netapp.io/cloneFromPVC

trident.netapp.io/splitOnClone
trident.netapp.io/protocol

trident.netapp.io/exportPolicy

trident.netapp.io/snapshotPolicy

trident.netapp.io/snapshotReserve

trident.netapp.io/snapshotDirectory

Volume Option

fileSystem

cloneSourceVolume

splitOnClone
protocol

exportPolicy

snapshotPolicy

snapshotReserve

snapshotDirectory

Supported Drivers

ontap-san, solidfire-san,ontap-san-
economy

ontap-nas,

ontap-san, solidfire-san, azure-
netapp-files, gcp-cvs,
ontap-san-economy

ontap-nas, ontap-san
any

ontap-nas,
ontap-nas-economy, ontap-nas-
flexgroup

ontap-nas,
ontap-nas-economy, ontap-nas-
flexgroup, ontap-san

ontap-nas,
ontap-nas-flexgroup, ontap-san,
gcp-cvs

ontap-nas,
ontap-nas-economy, ontap-nas-
flexgroup

423

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Annotation Volume Option Supported Drivers

trident.netapp.io/unixPermissions unixPermissions ontap-nas,
ontap-nas-economy, ontap-nas-
flexgroup

trident.netapp.io/blockSize blockSize solidfire-san

If the created PV has the Delete reclaim policy, Trident deletes both the PV and the backing volume when the
PV becomes released (that is, when the user deletes the PVC). Should the delete action fail, Trident marks the
PV as such and periodically retries the operation until it succeeds or the PV is manually deleted. If the PV uses
the Retain policy, Trident ignores it and assumes the administrator will clean it up from Kubernetes and the
backend, allowing the volume to be backed up or inspected before its removal. Note that deleting the PV does
not cause Trident to delete the backing volume. You should remove it using the REST API (tridentctl).

Trident supports the creation of Volume Snapshots using the CSI specification: you can create a Volume
Snapshot and use it as a Data Source to clone existing PVCs. This way, point-in-time copies of PVs can be
exposed to Kubernetes in the form of snapshots. The snapshots can then be used to create new PVs. Take a
look at On-Demand Volume Snapshots to see how this would work.

Trident also provides the cloneFromPVC and splitOnClone annotations for creating clones. You can use
these annotations to clone a PVC without having to use the CSI implementation.

Here is an example: If a user already has a PVC called mysql, the user can create a new PVC called
mysglclone by using the annotation, such as trident.netapp.io/cloneFromPVC: mysql. With this
annotation set, Trident clones the volume corresponding to the mysqgl PVC, instead of provisioning a volume
from scratch.

Consider the following points:

* We recommend cloning an idle volume.

* APVC and its clone should be in the same Kubernetes namespace and have the same storage class.

* With the ontap-nas and ontap-san drivers, it might be desirable to set the PVC annotation
trident.netapp.io/splitOnClone in conjunction with trident.netapp.io/cloneFromPVC. With
trident.netapp.io/splitOnClone setto true, Trident splits the cloned volume from the parent
volume and thus, completely decoupling the life cycle of the cloned volume from its parent at the expense
of losing some storage efficiency. Not setting trident.netapp.io/splitOnClone or setting it to
false results in reduced space consumption on the backend at the expense of creating dependencies
between the parent and clone volumes such that the parent volume cannot be deleted unless the clone is
deleted first. A scenario where splitting the clone makes sense is cloning an empty database volume where
it's expected for the volume and its clone to greatly diverge and not benefit from storage efficiencies offered
by ONTAP.

The sample-input directory contains examples of PVC definitions for use with Trident. Refer to Trident
Volume objects for a full description of the parameters and settings associated with Trident volumes.

Kubernetes PersistentVolume objects

A Kubernetes PersistentVolume object represents a piece of storage that is made available to the
Kubernetes cluster. It has a lifecycle that is independent of the pod that uses it.

424

Trident creates PersistentVolume objects and registers them with the Kubernetes cluster
automatically based on the volumes that it provisions. You are not expected to manage them
yourself.

When you create a PVC that refers to a Trident-based StorageClass, Trident provisions a new volume using
the corresponding storage class and registers a new PV for that volume. In configuring the provisioned volume
and corresponding PV, Trident follows the following rules:

 Trident generates a PV name for Kubernetes and an internal name that it uses to provision the storage. In
both cases, it is assuring that the names are unique in their scope.

* The size of the volume matches the requested size in the PVC as closely as possible, though it might be
rounded up to the nearest allocatable quantity, depending on the platform.

Kubernetes storageClass objects

Kubernetes storageClass objects are specified by name in PersistentVolumeClaims to provision
storage with a set of properties. The storage class itself identifies the provisioner to be used and defines that
set of properties in terms the provisioner understands.

It is one of two basic objects that need to be created and managed by the administrator. The other is the
Trident backend object.

A Kubernetes StorageClass object that uses Trident looks like this:

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: <Name>
provisioner: csi.trident.netapp.io
mountOptions: <Mount Options>
parameters:

<Trident Parameters>
allowVolumeExpansion: true
volumeBindingMode: Immediate

These parameters are Trident-specific and tell Trident how to provision volumes for the class.

The storage class parameters are:

Attribute Type Required Description

attributes map|[string]string no See the attributes section
below

storagePools map[string]StringList no Map of backend names to
lists

of storage pools within

425

Attribute

additionalStoragePools

excludeStoragePools

Type

map[string]StringList

map[string]StringList

Required

no

Description

Map of backend names
to lists of storage pools

within

Map of backend names to
lists of storage pools

within

Storage attributes and their possible values can be classified into storage pool selection attributes and

Kubernetes attributes.

Storage pool selection attributes

These parameters determine which Trident-managed storage pools should be utilized to provision volumes of

a given type.
Attribute Type
media’ string

provisioningType string

backendType string
snapshots bool
clones bool

426

Values

hdd, hybrid, ssd

thin, thick

ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
solidfire-san,
gcp-cvs, azure-
netapp-files,
ontap-san-
economy

true, false

true, false

Offer

Pool contains
media of this
type; hybrid
means both

Pool supports
this provisioning
method

Pool belongs to
this type of
backend

Pool supports
volumes with
snapshots

Pool supports
cloning volumes

Request

Media type
specified

Provisioning
method specified

Backend
specified

Volume with
shapshots
enabled

Volume with
clones enabled

Supported by

ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
solidfire-san

thick: all ontap;
thin: all ontap &
solidfire-san

All drivers

ontap-nas,
ontap-san,
solidfire-san,
gcp-cvs

ontap-nas,
ontap-san,
solidfire-san,
gcp-cvs

Attribute Type Values Offer Request Supported by

encryption bool true, false Pool supports Volume with ontap-nas,
encrypted encryption ontap-nas-
volumes enabled economy, ontap-
nas-flexgroups,
ontap-san
IOPS int positive integer Pool is capable Volume solidfire-san
of guaranteeing guaranteed
IOPS in this these IOPS
range

' Not supported by ONTAP Select systems

In most cases, the values requested directly influence provisioning; for instance, requesting thick provisioning
results in a thickly provisioned volume. However, an Element storage pool uses its offered IOPS minimum and
maximum to set QoS values, rather than the requested value. In this case, the requested value is used only to
select the storage pool.

Ideally, you can use attributes alone to model the qualities of the storage you need to satisfy the needs of a
particular class. Trident automatically discovers and selects storage pools that match all of the attributes
that you specify.

If you find yourself unable to use attributes to automatically select the right pools for a class, you can use
the storagePools and additionalStoragePools parameters to further refine the pools or even to select
a specific set of pools.

You can use the storagePools parameter to further restrict the set of pools that match any specified
attributes. In other words, Trident uses the intersection of pools identified by the attributes and
storagePools parameters for provisioning. You can use either parameter alone or both together.

You can use the additionalStoragePools parameter to extend the set of pools that Trident uses for
provisioning, regardless of any pools selected by the attributes and storagePools parameters.

You can use the excludeStoragePools parameter to filter the set of pools that Trident uses for provisioning.
Using this parameter removes any pools that match.

In the storagePools and additionalStoragePools parameters, each entry takes the form
<backend>:<storagePoolList>, where <storagePoolList> is a comma-separated list of storage pools
for the specified backend. For example, a value for additionalStoragePools might look like
ontapnas_192.168.1.100:aggrl,aggr2;solidfire 192.168.1.101:bronze.

These lists accept regex values for both the backend and list values. You can use tridentctl get
backend to get the list of backends and their pools.

Kubernetes attributes

These attributes have no impact on the selection of storage pools/backends by Trident during dynamic
provisioning. Instead, these attributes simply supply parameters supported by Kubernetes Persistent Volumes.
Worker nodes are responsible for filesystem create operations and might require filesystem utilities, such as
xfsprogs.

427

Attribute Type

fsType string

allowVolumeExp boolean
ansion

volumeBindingM string
ode

Values

extd, ext3, xfs

true, false

Immediate,
WaitForFirstCon
sumer

Description

The file system
type for block
volumes

Enable or
disable support
for growing the
PVC size

Choose when
volume binding
and dynamic
provisioning
occurs

Relevant
Drivers

solidfire-san,
ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
ontap-san-
economy

ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
ontap-san-
economy,
solidfire-san,
gcp-cvs, azure-
netapp-files

All

Kubernetes
Version

All

1.1+

1.19-1.26

* The £sType parameter is used to control the desired file system type for SAN LUNSs. In
addition, Kubernetes also uses the presence of £sType in a storage class to indicate a
filesystem exists. Volume ownership can be controlled using the fsGroup security context
of a pod only if £sType is set. Refer to Kubernetes: Configure a Security Context for a Pod
or Container for an overview on setting volume ownership using the £sGroup context.
Kubernetes will apply the £sGroup value only if:

° fsType is set in the storage class.

o The PVC access mode is RWO.

For NFS storage drivers, a filesystem already exists as part of the NFS export. In order to
use £sGroup the storage class still needs to specify a £sType. You can setitto nfs or any

non-null value.

Refer to Expand volumes for further details on volume expansion.

The Trident installer bundle provides several example storage class definitions for use with

Trident in sample-input/storage-class-*.yaml. Deleting a Kubernetes storage class
causes the corresponding Trident storage class to be deleted as well.

Kubernetes VolumeSnapshotClass objects

Kubernetes volumeSnapshotClass objects are analogous to StorageClasses. They help define multiple
classes of storage and are referenced by volume snapshots to associate the snapshot with the required
snapshot class. Each volume snapshot is associated with a single volume snapshot class.

428

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://docs.netapp.com/us-en/trident/trident-use/vol-expansion.html

AVvolumeSnapshotClass should be defined by an administrator in order to create snapshots. A volume
snapshot class is created with the following definition:

apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshotClass
metadata:

name: csi-snapclass
driver: csi.trident.netapp.io
deletionPolicy: Delete

The driver specifies to Kubernetes that requests for volume snapshots of the csi-snapclass class are
handled by Trident. The deletionPolicy specifies the action to be taken when a snapshot must be deleted.
When deletionPolicy is set to Delete, the volume snapshot objects as well as the underlying snapshot on
the storage cluster are removed when a snapshot is deleted. Alternatively, setting it to Retain means that
VolumeSnapshotContent and the physical snapshot are retained.

Kubernetes VolumeSnapshot objects

A Kubernetes VvolumeSnapshot object is a request to create a snapshot of a volume. Just as a PVC
represents a request made by a user for a volume, a volume snapshot is a request made by a user to create a
snapshot of an existing PVC.

When a volume snapshot request comes in, Trident automatically manages the creation of the snapshot for the
volume on the backend and exposes the snapshot by creating a unique

VolumeSnapshotContent object. You can create snapshots from existing PVCs and use the snapshots as a
DataSource when creating new PVCs.

The lifecyle of a VolumeSnapshot is independent of the source PVC: a snapshot persists even

(D after the source PVC is deleted. When deleting a PVC which has associated snapshots, Trident
marks the backing volume for this PVC in a Deleting state, but does not remove it completely.
The volume is removed when all the associated snapshots are deleted.

Kubernetes VvolumeSnapshotContent objects

A Kubernetes VvolumeSnapshotContent object represents a snapshot taken from an already provisioned
volume. It is analogous to a PersistentVolume and signifies a provisioned snapshot on the storage cluster.
Similar to PersistentVolumeClaim and PersistentVolume objects, when a snapshot is created, the
VolumeSnapshotContent object maintains a one-to-one mapping to the volumeSnapshot object, which
had requested the snapshot creation.

The volumeSnapshotContent object contains details that uniquely identify the snapshot, such as the
snapshotHandle. This snapshotHandle is a unique combination of the name of the PV and the name of
the VolumeSnapshotContent object.

When a snapshot request comes in, Trident creates the snapshot on the backend. After the snapshot is

created, Trident configures a VolumeSnapshotContent object and thus exposes the snapshot to the
Kubernetes API.

429

@ Typically, you do not need to manage the VvolumeSnapshotContent object. An exception to
this is when you want to import a volume snapshot created outside of Trident.

Kubernetes CustomResourceDefinition objects

Kubernetes Custom Resources are endpoints in the Kubernetes API that are defined by the administrator and
are used to group similar objects. Kubernetes supports the creation of custom resources for storing a collection
of objects. You can obtain these resource definitions by running kubectl get crds.

Custom Resource Definitions (CRDs) and their associated object metadata are stored by Kubernetes in its
metadata store. This eliminates the need for a separate store for Trident.

Trident uses CustomResourceDefinition objects to preserve the identity of Trident objects, such as
Trident backends, Trident storage classes, and Trident volumes. These objects are managed by Trident. In
addition, the CSI volume snapshot framework introduces some CRDs that are required to define volume
snapshots.

CRDs are a Kubernetes construct. Objects of the resources defined above are created by Trident. As a simple
example, when a backend is created using tridentctl, a corresponding tridentbackends CRD object is
created for consumption by Kubernetes.

Here are a few points to keep in mind about Trident’'s CRDs:

» When Trident is installed, a set of CRDs are created and can be used like any other resource type.

* When uninstalling Trident by using the tridentctl uninstall command, Trident pods are deleted but
the created CRDs are not cleaned up. Refer to Uninstall Trident to understand how Trident can be
completely removed and reconfigured from scratch.

Trident StorageClass objects

Trident creates matching storage classes for Kubernetes StorageClass objects that specify
csi.trident.netapp.io in their provisioner field. The storage class name matches that of the Kubernetes
StorageClass object it represents.

@ With Kubernetes, these objects are created automatically when a Kubernetes StorageClass
that uses Trident as a provisioner is registered.

Storage classes comprise a set of requirements for volumes. Trident matches these requirements with the
attributes present in each storage pool; if they match, that storage pool is a valid target for provisioning
volumes using that storage class.

You can create storage class configurations to directly define storage classes by using the REST API.
However, for Kubernetes deployments, we expect them to be created when registering new Kubernetes
StorageClass objects.

Trident backend objects

Backends represent the storage providers on top of which Trident provisions volumes; a single Trident instance
can manage any number of backends.

430

@ This is one of the two object types that you create and manage yourself. The other is the
Kubernetes StorageClass object.

For more information about how to construct these objects, refer to configuring backends.

Trident StoragePool objects

Storage pools represent the distinct locations available for provisioning on each backend. For ONTAP, these
correspond to aggregates in SVMs. For NetApp HCI/SolidFire, these correspond to administrator-specified
QoS bands. For Cloud Volumes Service, these correspond to cloud provider regions. Each storage pool has a
set of distinct storage attributes, which define its performance characteristics and data protection
characteristics.

Unlike the other objects here, storage pool candidates are always discovered and managed automatically.

Trident Vvolume objects

Volumes are the basic unit of provisioning, comprising backend endpoints, such as NFS shares and iSCSI
LUNSs. In Kubernetes, these correspond directly to PersistentVolumes. When you create a volume, ensure
that it has a storage class, which determines where that volume can be provisioned, along with a size.

 In Kubernetes, these objects are managed automatically. You can view them to see what
Trident provisioned.

@ « When deleting a PV with associated snapshots, the corresponding Trident volume is
updated to a Deleting state. For the Trident volume to be deleted, you should remove the
snapshots of the volume.

A volume configuration defines the properties that a provisioned volume should have.

Attribute Type Required Description

version string no Version of the Trident API
("1 ll)

name string yes Name of volume to create

storageClass string yes Storage class to use when
provisioning the volume

size string yes Size of the volume to
provision in bytes

protocol string no Protocol type to use; "file"
or "block"

internalName string no Name of the object on the

storage system;
generated by Trident

cloneSourceVolume string no ontap (nas, san) &
solidfire-*: Name of the
volume to clone from

splitOnClone string no ontap (nas, san): Split the
clone from its parent

431

Attribute Type Required Description

snapshotPolicy string no ontap-*: Snapshot policy
to use

snapshotReserve string no ontap-*: Percentage of
volume reserved for
shapshots

exportPolicy string no ontap-nas*: Export policy
to use

snapshotDirectory bool no ontap-nas*: Whether the
snapshot directory is
visible

unixPermissions string no ontap-nas*: Initial UNIX
permissions

blockSize string no solidfire-*: Block/sector
size

fileSystem string no File system type

Trident generates internalName when creating the volume. This consists of two steps. First, it prepends the
storage prefix (either the default trident or the prefix in the backend configuration) to the volume name,
resulting in a name of the form <prefix>-<volume-name>. It then proceeds to sanitize the name, replacing
characters not permitted in the backend. For ONTAP backends, it replaces hyphens with underscores (thus,
the internal name becomes <prefix> <volume-name>). For Element backends, it replaces underscores
with hyphens.

You can use volume configurations to directly provision volumes using the REST API, but in Kubernetes
deployments we expect most users to use the standard Kubernetes PersistentVolumeClaim method.
Trident creates this volume object automatically as part of the provisioning

process.

Trident Snapshot objects

Snapshots are a point-in-time copy of volumes, which can be used to provision new volumes or restore state.
In Kubernetes, these correspond directly to VolumeSnapshotContent objects. Each snapshot is associated
with a volume, which is the source of the data for the snapshot.

Each snapshot object includes the properties listed below:

Attribute Type Required Description

version String Yes Version of the Trident API
("1 ll)

name String Yes Name of the Trident

snapshot object

internalName String Yes Name of the Trident
snapshot object on the
storage system

432

Attribute Type Required Description

volumeName String Yes Name of the Persistent
Volume for which the
shapshot is created

volumelnternalName String Yes Name of the associated
Trident volume object on
the storage system

(D In Kubernetes, these objects are managed automatically. You can view them to see what Trident
provisioned.

When a Kubernetes VolumeSnapshot object request is created, Trident works by creating a snapshot object
on the backing storage system. The internalName of this snapshot object is generated by combining the
prefix snapshot- with the UID of the VolumeSnapshot object (for example, snapshot-e8d8alca-9826-
11e9-9807-525400£3£660). volumeName and volumeInternalName are populated by getting the details
of the backing

volume.

Trident ResourceQuota object

The Trident deamonset consumes a system-node-critical Priority Class—the highest Priority Class
available in Kubernetes—to ensure Trident can identify and clean up volumes during graceful node shutdown
and allow Trident daemonset pods to preempt workloads with a lower priority in clusters where there is high
resource pressure.

To accomplish this, Trident employs a ResourceQuota object to ensure a "system-node-critical" Priority Class
on the Trident daemonset is satisfied. Prior to deployment and daemonset creation, Trident looks for the
ResourceQuota object and, if not discovered, applies it.

If you need more control over the default Resource Quota and Priority Class, you can generate a
custom.yaml or configure the ResourceQuota object using Helm chart.

The following is an example of a 'ResourceQuota’object prioritizing the Trident daemonset.

apiVersion: <version>
kind: ResourceQuota
metadata:
name: trident-csi
labels:
app: node.csi.trident.netapp.io

spec:
scopeSelector:
matchExpressions:
- operator : In

scopeName: PriorityClass
values: ["system-node-critical"]

For more information on Resource Quotas, refer to Kubernetes: Resource Quotas.

433

https://kubernetes.io/docs/concepts/policy/resource-quotas/

Clean up ResourceQuota if installation fails

In the rare case where installation fails after the ResourceQuota object is created, first try uninstalling and
then reinstall.

If that doesn’t work, manually remove the ResourceQuota object.

Remove ResourceQuota

If you prefer to control your own resource allocation, you can remove the Trident ResourceQuota object using
the command:

kubectl delete quota trident-csi -n trident

Pod Security Standards (PSS) and Security Context
Constraints (SCC)

Kubernetes Pod Security Standards (PSS) and Pod Security Policies (PSP) define
permission levels and restrict the behavior of pods. OpenShift Security Context
Constraints (SCC) similarly define pod restriction specific to the OpenShift Kubernetes
Engine. To provide this customization, Trident enables certain permissions during
installation. The following sections detail the permissions set by Trident.

@ PSS replaces Pod Security Policies (PSP). PSP was deprecated in Kubernetes v1.21 and will
be removed in v1.25. For more information, Refer to Kubernetes: Security.

Required Kubernetes Security Context and Related Fields

Permission Description

Privileged CSI requires mount points to be Bidirectional, which
means the Trident node pod must run a privileged
container. For more information, refer to Kubernetes:
Mount propagation.

Host networking Required for the iISCSI daemon. iscsiadm manages
iSCSI mounts and uses host networking to
communicate with the iISCSI daemon.

Host IPC NFS uses interprocess communication (IPC) to
communicate with the NFSD.

Host PID Required to start rpc-statd for NFS. Trident queries
host processes to determine if rpc-statd is running
before mounting NFS volumes.

434

https://kubernetes.io/docs/concepts/security/
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation

Permission

Capabilities

Seccomp

SELinux

DAC

Pod Security Standards (PSS)

Label Description

Description

The SYS ADMIN capability is provided as part of the
default capabilities for privileged containers. For
example, Docker sets these capabilities for privileged
containers:

CapPrm: O0O0OOQO3fffffffff

CapkEff: 0000Q03fffffffff

Seccomp profile is always "Unconfined" in privileged
containers; therefore, it cannot be enabled in Trident.

On OpenShift, privileged containers are run in the
spc_t ("Super Privileged Container") domain, and
unprivileged containers are run in the container t
domain. On containerd, with container-
selinux installed, all containers are run in the spc_t
domain, which effectively disables SELinux.
Therefore, Trident does not add seLinuxOptions to
containers.

Privileged containers must be run as root. Non-
privileged containers run as root to access unix
sockets required by CSI.

Default

pod- Allows the Trident Controller and enforce: privileged
security.kubernetes.io/enf hodes to be admitted into the install

orce namespace. enforce-version: <version
of the current cluster or
pod- Do not change the namespace highest version of PSS

security.kubernetes.io/enf label.
orce-version

tested.>

Changing the namespace labels can result in pods not being scheduled, an "Error creating: ..."
or, "Warning: trident-csi-...". If this happens, check if the namespace label for privileged was

changed. If so, reinstall Trident.

Pod Security Policies (PSP)

Field Description Default

allowPrivilegeEscalation Privileged containers must allow true
privilege escalation.

allowedCSIDrivers Trident does not use inline CSI Empty

ephemeral volumes.

435

Field

allowedCapabilities

allowedFlexVolumes

allowedHostPaths

allowedProcMountTypes

allowedUnsafeSysctls

defaultAddCapabilities

defaultAllowPrivilegeEscal

ation
forbiddenSysctls
fsGroup

hostIPC

hostNetwork

hostPID

hostPorts

privileged

readOnlyRootFilesystem

requiredDropCapabilities

runAsGroup

runAsUser

436

Description

Non-privileged Trident containers
do not require more capabilities
than the default set and privileged

containers are granted all possible

capabilities.

Trident does not make use of a
FlexVolume driver, therefore they
are not included in the list of
allowed volumes.

The Trident node pod mounts the
node’s root filesystem, therefore

there is no benefit to setting this list.

Trident does not use any
ProcMountTypes.

Trident does not require any unsafe

sysctls.

No capabilities are required to be
added to privileged containers.

Allowing privilege escalation is
handled in each Trident pod.

No sysctls are allowed.
Trident containers run as root.

Mounting NFS volumes requires
host IPC to communicate with
nfsd

iscsiadm requires the host network

to communicate with the iISCSI
daemon.

Host PID is required to check if

rpc-statd is running on the node.

Trident does not use any host
ports.

Trident node pods must run a
privileged container in order to
mount volumes.

Trident node pods must write to the

node filesystem.

Trident node pods run a privileged
container and cannot drop
capabilities.

Trident containers run as root.

Trident containers run as root.

Default
Empty

Empty

Empty

Empty

Empty

Empty

false

Empty
RunAsAny

true

true

true

Empty

true

false

none

RunAsAny

runAsAny

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-storage/flexvolume.md

Field

runtimeClass

selLinux

supplementalGroups

volumes

Description

Trident does not use
RuntimeClasses.

Trident does not set
seLinuxOptions because there
are currently differences in how

container runtimes and Kubernetes

distributions handle SELinux.
Trident containers run as root.

Trident pods require these volume
plugins.

Security Context Constraints (SCC)

Labels

allowHostDirVolumePlugin

allowHostIPC

allowHostNetwork

allowHostPID

allowHostPorts

allowPrivilegeEscalation

allowPrivilegedContainer

allowedUnsafeSysctls

allowedCapabilities

defaultAddCapabilities

fsGroup

Description

Trident node pods mount the
node’s root filesystem.

Mounting NFS volumes requires
host IPC to communicate with
nfsd.

iscsiadm requires the host network

to communicate with the iISCSI
daemon.

Host PID is required to check if

rpc-statd is running on the node.

Trident does not use any host
ports.

Privileged containers must allow
privilege escalation.

Trident node pods must run a
privileged container in order to
mount volumes.

Trident does not require any unsafe

sysctls.

Non-privileged Trident containers
do not require more capabilities
than the default set and privileged

containers are granted all possible

capabilities.

No capabilities are required to be
added to privileged containers.

Trident containers run as root.

Default
Empty

Empty

RunAsAny

hostPath, projected,

emptyDir

Default

true

true

true

true

false

true

true

none

Empty

Empty

RunAsAny

437

Labels

groups

readOnlyRootFilesystem

requiredDropCapabilities

runAsUser

selLinuxContext

seccompProfiles

supplementalGroups

users

volumes

438

Description

This SCC is specific to Trident and

is bound to its user.

Trident node pods must write to the

node filesystem.

Trident node pods run a privileged

container and cannot drop
capabilities.

Trident containers run as root.

Trident does not set

seLinuxOptions because there
are currently differences in how
container runtimes and Kubernetes

distributions handle SELinux.

Privileged containers always run

"Unconfined".

Trident containers run as root.

One entry is provided to bind this

SCC to the Trident user in the
Trident namespace.

Trident pods require these volume

plugins.

Default
Empty

false

none

RunAsAny

Empty

Empty

RunAsAny

n/a

hostPath, downwardAPI,
projected, emptyDir

Legal notices
Legal notices provide access to copyright statements, trademarks, patents, and more.

Copyright

https://www.netapp.com/company/legal/copyright/

Trademarks

NETAPP, the NETAPP logo, and the marks listed on the NetApp Trademarks page are trademarks of NetApp,
Inc. Other company and product names may be trademarks of their respective owners.

https://www.netapp.com/company/legal/trademarks/

Patents
A current list of NetApp owned patents can be found at:

https://www.netapp.com/pdf.html?item=/media/11887-patentspage.pdf

Privacy policy

https://www.netapp.com/company/legal/privacy-policy/

Open source

You can review third-party copyright and licenses used in NetApp software for Trident in the notices file for
each release at https://github.com/NetApp/trident/.

439

https://www.netapp.com/company/legal/copyright/
https://www.netapp.com/company/legal/trademarks/
https://www.netapp.com/pdf.html?item=/media/11887-patentspage.pdf
https://www.netapp.com/company/legal/privacy-policy/
https://github.com/NetApp/trident/

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

440

http://www.netapp.com/TM

	Trident 24.10 documentation : Trident
	Table of Contents
	Trident 24.10 documentation
	Release notes
	What’s new
	What’s new in 24.10
	Changes in 24.06
	Changes in 24.02
	Changes in 23.10
	Changes in 23.07.1
	Changes in 23.07
	Changes in 23.04
	Changes in 23.01.1
	Changes in 23.01
	Changes in 22.10
	Changes in 22.07
	Changes in 22.04
	Changes in 22.01.1
	Changes in 22.01.0
	Changes in 21.10.1
	Changes in 21.10.0
	Known issues
	Find more information

	Earlier versions of documentation

	Get started
	Learn about Trident
	Learn about Trident
	Trident architecture
	Concepts

	Quick start for Trident
	What’s next?

	Requirements
	Critical information about Trident
	Supported frontends (orchestrators)
	Supported backends (storage)
	Feature requirements
	Tested host operating systems
	Host configuration
	Storage system configuration
	Trident ports
	Container images and corresponding Kubernetes versions

	Install Trident
	Install using Trident operator
	Install using tridentctl

	Use Trident
	Prepare the worker node
	Selecting the right tools
	Node service discovery
	NFS volumes
	iSCSI volumes
	NVMe/TCP volumes
	Install the FC tools
	Fibre Channel (FC) support

	Configure and manage backends
	Configure backends
	Azure NetApp Files
	Google Cloud NetApp Volumes
	Configure a Cloud Volumes Service for Google Cloud backend
	Configure a NetApp HCI or SolidFire backend
	ONTAP SAN drivers
	ONTAP NAS drivers
	Amazon FSx for NetApp ONTAP
	Create backends with kubectl
	Manage backends

	Create and manage storage classes
	Create a storage class
	Manage storage classes

	Provision and manage volumes
	Provision a volume
	Expand volumes
	Import volumes
	Customize volume names and labels
	Share an NFS volume across namespaces
	Replicate volumes using SnapMirror
	Use CSI Topology
	Work with snapshots

	Manage and monitor Trident
	Upgrade Trident
	Upgrade Trident
	Upgrade with the operator
	Upgrade with tridentctl

	Manage Trident using tridentctl
	Commands and global flags
	Command options and flags
	Plugin support

	Monitor Trident
	Overview
	Step 1: Define a Prometheus target
	Step 2: Create a Prometheus ServiceMonitor
	Step 3: Query Trident metrics with PromQL
	Learn about Trident AutoSupport telemetry
	Disable Trident metrics

	Uninstall Trident
	Determine the original installation method
	Uninstall a Trident operator installation
	Uninstall a tridentctl installation

	Trident for Docker
	Prerequisites for deployment
	Verify the requirements
	NVMe tools

	Deploy Trident
	Docker managed plugin method (version 1.13/17.03 and later)
	Traditional method (version 1.12 or earlier)
	Start Trident at system startup

	Upgrade or uninstall Trident
	Upgrade
	Uninstall

	Work with volumes
	Create a volume
	Remove a volume
	Clone a volume
	Access externally created volumes
	Driver-specific volume options

	Collect logs
	Collect logs for troubleshooting
	General troubleshooting tips

	Manage multiple Trident instances
	Steps for Docker managed plugin (version 1.13/17.03 or later)
	Steps for traditional (version 1.12 or earlier)

	Storage configuration options
	Global configuration options
	ONTAP configuration
	Element software configuration

	Known issues and limitations
	Upgrading Trident Docker Volume Plugin to 20.10 and later from older versions results in upgrade failure with the no such file or directory error.
	Volume names must be a minimum of 2 characters in length.
	Docker Swarm has certain behaviors that prevent Trident from supporting it with every storage and driver combination.
	If a FlexGroup is being provisioned, ONTAP does not provision a second FlexGroup if the second FlexGroup has one or more aggregates in common with the FlexGroup being provisioned.

	Best practices and recommendations
	Deployment
	Deploy to a dedicated namespace
	Use quotas and range limits to control storage consumption

	Storage configuration
	Platform overview
	ONTAP and Cloud Volumes ONTAP best practices
	SolidFire best practices
	Where to find more information?

	Integrate Trident
	Driver selection and deployment
	Storage class design
	Virtual pool design
	Volume operations
	Deploy OpenShift services
	Metrics service

	Data protection and disaster recovery
	Trident replication and recovery
	SVM replication and recovery
	Volume replication and recovery
	Snapshot data protection

	Security
	Security
	Linux Unified Key Setup (LUKS)
	Kerberos in-flight encryption

	Protect applications with Trident Protect
	Learn about Trident Protect
	What’s next?

	Install Trident Protect
	Trident Protect requirements
	Install and configure Trident Protect
	Install the Trident Protect CLI plugin

	Manage Trident Protect
	Manage Trident Protect authorization and access control
	Generate a Trident Protect support bundle
	Upgrade Trident Protect

	Manage and protect applications
	Use Trident Protect AppVault objects to manage buckets
	Define an application for management with Trident Protect
	Protect applications using Trident Protect
	Restore applications using Trident Protect
	Replicate applications using NetApp SnapMirror and Trident Protect
	Migrate applications using Trident Protect
	Manage Trident Protect execution hooks

	Uninstall Trident Protect

	Knowledge and support
	Frequently asked questions
	General questions
	Install and use Trident on a Kubernetes cluster
	Troubleshooting and support
	Upgrade Trident
	Manage backends and volumes

	Troubleshooting
	General troubleshooting
	Unsuccessful Trident deployment using the operator
	Unsuccessful Trident deployment using tridentctl
	Completely remove Trident and CRDs
	NVMe node unstaging failure with RWX raw block namespaces o Kubernetes 1.26

	Support
	Trident support lifecycle
	Self-support
	Community support
	NetApp technical support
	For more information

	Reference
	Trident ports
	Trident ports

	Trident REST API
	When to use the REST API
	Using REST API

	Command-line options
	Logging
	Kubernetes
	Docker
	REST

	Kubernetes and Trident objects
	How do the objects interact with one another?
	Kubernetes PersistentVolumeClaim objects
	Kubernetes PersistentVolume objects
	Kubernetes StorageClass objects
	Kubernetes VolumeSnapshotClass objects
	Kubernetes VolumeSnapshot objects
	Kubernetes VolumeSnapshotContent objects
	Kubernetes CustomResourceDefinition objects
	Trident StorageClass objects
	Trident backend objects
	Trident StoragePool objects
	Trident Volume objects
	Trident Snapshot objects
	Trident ResourceQuota object

	Pod Security Standards (PSS) and Security Context Constraints (SCC)
	Required Kubernetes Security Context and Related Fields
	Pod Security Standards (PSS)
	Pod Security Policies (PSP)
	Security Context Constraints (SCC)

	Legal notices
	Copyright
	Trademarks
	Patents
	Privacy policy
	Open source

