Use Trident
Trident

NetApp
January 14, 2026

This PDF was generated from https://docs.netapp.com/us-en/trident-2410/trident-use/fcp.html on January
14, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Use Trident 1
Prepare the worker node 1
Selecting the right tools 1
Node service discovery 1
NFS volumes 2
iSCSI volumes 2
NVMe/TCP volumes 6
Install the FC tools 7
Fibre Channel (FC) support 9
Configure and manage backends 11
Configure backends 12
Azure NetApp Files 12
Google Cloud NetApp Volumes 29
Configure a Cloud Volumes Service for Google Cloud backend 43
Configure a NetApp HCI or SolidFire backend 54
ONTAP SAN drivers 60
ONTAP NAS drivers 86
Amazon FSx for NetApp ONTAP 117
Create backends with kubectl 149
Manage backends 156
Create and manage storage classes 165
Create a storage class 165
Manage storage classes 168
Provision and manage volumes 170
Provision a volume 170
Expand volumes 174
Import volumes 181
Customize volume names and labels 189
Share an NFS volume across namespaces 192
Replicate volumes using SnapMirror 196
Use CSI Topology 202

Work with snapshots 209

Use Trident

Prepare the worker node

All worker nodes in the Kubernetes cluster must be able to mount the volumes you have
provisioned for your pods. To prepare the worker nodes, you must install NFS, iSCSI,
NVMe/TCP, or FC tools based on your driver selection.

Selecting the right tools

If you are using a combination of drivers, you should install all required tools for your drivers. Recent versions
of RedHat CoreOS have the tools installed by default.

NFS tools

Install the NFS tools if you are using: ontap-nas, ontap-nas-economy, ontap-nas-flexgroup, azure-
netapp-files, gcp-cvs.

iSCSI tools

Install the iISCSI tools if you are using: ontap-san, ontap-san-economy, solidfire-san.

NVMe tools

Install the NVMe tools if you are using ontap-san for nonvolatile memory express (NVMe) over TCP
(NVMe/TCP) protocol.

@ We recommend ONTAP 9.12 or later for NVMe/TCP.

SCSl over FC tools
SCSI over Fibre Channel (FC) is a tech preview feature in the Trident 24.10 release.

Install the FC tools if you are using ontap-san with sanType fcp (SCSI over FC).

Refer to Ways to configure FC & FC-NVMe SAN hosts for more information.

Node service discovery

Trident attempts to automatically detect if the node can run iISCSI or NFS services.

Node service discovery identifies discovered services but does not guarantee services are
properly configured. Conversely, the absence of a discovered service does not guarantee the
volume mount will fail.

Review events
Trident creates events for the node to identify the discovered services. To review these events, run:

kubectl get event -A --field-selector involvedObject.name=<Kubernetes node

name>

https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html#nfs-volumes
https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html#install-the-iscsi-tools
https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html#nvmetcp-volumes
https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html#install-the-fc-tools
https://docs.netapp.com/us-en/ontap/san-config/configure-fc-nvme-hosts-ha-pairs-reference.html

Review discovered services
Trident identifies services enabled for each node on the Trident node CR. To view the discovered services, run:

tridentctl get node -o wide -n <Trident namespace>

NFS volumes

Install the NFS tools using the commands for your operating system. Ensure the NFS service is started up
during boot time.

RHEL 8+

sudo yum install -y nfs-utils

Ubuntu

sudo apt-get install -y nfs-common

(D Reboot your worker nodes after installing the NFS tools to prevent failure when attaching
volumes to containers.

iSCSI volumes

Trident can automatically establish an iSCSI session, scan LUNs, and discover multipath devices, format them,
and mount them to a pod.

iSCSI self-healing capabilities

For ONTAP systems, Trident runs iSCSI self-healing every five minutes to:

1. Identify the desired iSCSI session state and the current iISCSI session state.

2. Compare the desired state to the current state to identify needed repairs. Trident determines repair
priorities and when to preempt repairs.

3. Perform repairs required to return the current iSCSI session state to the desired iSCSI session state.

@ Logs of self-healing activity are located in the trident-main container on the respective
Daemonset pod. To view logs, you must have set debug to "true" during Trident installation.

Trident iISCSI self-healing capabilities can help prevent:

« Stale or unhealthy iSCSI sessions that could occur after a network connectivity issue. In the case of a stale
session, Trident waits seven minutes before logging out to reestablish the connection with a portal.

For example, if CHAP secrets were rotated on the storage controller and the network loses
connectivity, the old (stale) CHAP secrets could persist. Self-healing can recognize this and
automatically reestablish the session to apply the updated CHAP secrets.

* Missing iSCSI sessions
* Missing LUNs
Points to consider before upgrading Trident
* If only per-node igroups (introduced in 23.04+) are in use, iISCSI self-healing will initiate SCSI rescans for

all devices in the SCSI bus.

+ If only backend-scoped igroups (deprecated as of 23.04) are in use, iISCSI self-healing will initiate SCSI
rescans for exact LUN IDs in the SCSI bus.

« If a mix of per-node igroups and backend-scoped igroups are in use, iISCSI self-healing will initiate SCSI
rescans for exact LUN IDs in the SCSI bus.

Install the iSCSI tools

Install the iISCSI tools using the commands for your operating system.

Before you begin
« Each node in the Kubernetes cluster must have a unique IQN. This is a necessary prerequisite.
* If using RHCOS version 4.5 or later, or other RHEL-compatible Linux distribution, with the solidfire-
san driver and Element OS 12.5 or earlier, ensure that the CHAP authentication algorithm is set to MD5 in

/etc/iscsi/iscsid.conf. Secure FIPS-compliant CHAP algorithms SHA1, SHA-256, and SHA3-256
are available with Element 12.7.

sudo sed -i 's/”\(node.session.auth.chap algs\).*/\1 = MD5/'
/etc/iscsi/iscsid.conf

* When using worker nodes that run RHEL/RedHat CoreOS with iSCSI PVs, specify the discard
mountOption in the StorageClass to perform inline space reclamation. Refer to RedHat documentation.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems

RHEL 8+
1. Install the following system packages:

sudo yum install -y lsscsi iscsi-initiator-utils device-mapper-
multipath

2. Check that iscsi-initiator-utils version is 6.2.0.874-2.el7 or later:
rpm —-gq iscsi-initiator-utils
3. Enable multipathing:
sudo mpathconf --enable --with multipathd y --find multipaths n
(:) Ensure etc/multipath.conf contains find multipaths no under defaults.
4. Ensure that iscsid and multipathd are running:
sudo systemctl enable --now iscsid multipathd
5. Enable and start iscsi:

sudo systemctl enable --now iscsi

Ubuntu
1. Install the following system packages:

sudo apt-get install -y open-iscsi lsscsi sg3-utils multipath-tools
scsitools

2. Check that open-iscsi version is 2.0.874-5ubuntu2.10 or later (for bionic) or 2.0.874-7.1ubuntu6.1 or
later (for focal):

dpkg -1 open-iscsi

3. Set scanning to manual:

sudo sed -1 's/”\ (node.session.scan\).*/\1 = manual/'
/etc/iscsi/iscsid.conf

4. Enable multipathing:

sudo tee /etc/multipath.conf <<-EOF
defaults {
user friendly names yes
find multipaths no
}
EQF
sudo systemctl enable --now multipath-tools.service
sudo service multipath-tools restart

(:) Ensure etc/multipath.conf contains find multipaths no under defaults.

5. Ensure that open-iscsi and multipath-tools are enabled and running:

sudo systemctl status multipath-tools
sudo systemctl enable --now open-iscsi.service
sudo systemctl status open-iscsi

For Ubuntu 18.04, you must discover target ports with i scsiadm before starting
open-iscsi for the iISCSI daemon to start. You can alternatively modify the iscsi
service to start i scsid automatically.

Configure or disable iSCSI self healing

You can configure the following Trident iSCSI self-healing settings to fix stale sessions:

+ iSCSI self-healing interval: Determines the frequency at which iSCSI self-healing is invoked (default: 5
minutes). You can configure it to run more frequently by setting a smaller number or less frequently by
setting a larger number.

Setting the iISCSI self-healing interval to 0 stops iSCSI self-healing completely. We do not
@ recommend disabling iSCSI Self-healing; it should only be disabled in certain scenarios when
iISCSI self-healing is not working as intended or for debugging purposes.

+ iSCSI Self-Healing Wait Time: Determines the duration iSCSI self-healing waits before logging out of an
unhealthy session and trying to log in again (default: 7 minutes). You can configure it to a larger number so
that sessions that are identified as unhealthy have to wait longer before being logged out and then an
attempt is made to log back in, or a smaller number to log out and log in earlier.

Helm

To configure or change iSCSI self-healing settings, pass the iscsiSelfHealingInterval and
iscsiSelfHealingWaitTime parameters during the helm installation or helm update.

The following example sets the iSCSI self-healing interval to 3 minutes and self-healing wait time to 6
minutes:

helm install trident trident-operator-100.2410.0.tgz --set
iscsiSelfHealingInterval=3m0s --set iscsiSelfHealingWaitTime=6m0Os -n
trident

tridentctl

To configure or change iSCSI self-healing settings, pass the iscsi-self-healing-interval and
iscsi-self-healing-wait-time parameters during the tridentctl installation or update.

The following example sets the iISCSI self-healing interval to 3 minutes and self-healing wait time to 6
minutes:

tridentctl install --iscsi-self-healing-interval=3m0Os --iscsi-self
-healing-wait-time=6m0Os -n trident

NVMe/TCP volumes

Install the NVMe tools using the commands for your operating system.

* NVMe requires RHEL 9 or later.

@ * If the kernel version of your Kubernetes node is too old or if the NVMe package is not
available for your kernel version, you might have to update the kernel version of your node
to one with the NVMe package.

RHEL 9

sudo yum install nvme-cli
sudo yum install linux-modules-extra-$ (uname -r)
sudo modprobe nvme-tcp

Ubuntu

sudo apt install nvme-cli
sudo apt -y install linux-modules-extra-$ (uname -r)
sudo modprobe nvme-tcp

Verify installation

After installation, verify that each node in the Kubernetes cluster has a unique NQN using the command:

cat /etc/nvme/hostngn

@ Trident modifies the ctrl device tmo value to ensure NVMe doesn'’t give up on the path if it
goes down. Do not change this setting.

Install the FC tools

Install the FC tools using the commands for your operating system.

* When using worker nodes that run RHEL/RedHat CoreOS with FC PVs, specify the discard mountOption
in the StorageClass to perform inline space reclamation. Refer to RedHat documentation.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems

RHEL 8+
1. Install the following system packages:

sudo yum install -y lsscsi device-mapper-multipath
2. Enable multipathing:

sudo mpathconf --enable --with multipathd y --find multipaths n

(:) Ensure etc/multipath.conf contains find multipaths no under defaults.

3. Ensure that multipathd is running:

sudo systemctl enable --now multipathd

Ubuntu
1. Install the following system packages:

sudo apt-get install -y lsscsi sg3-utils multipath-tools scsitools
2. Enable multipathing:

sudo tee /etc/multipath.conf <<-EOF
defaults {

user friendly names yes

find multipaths no

}

EOF

sudo systemctl enable --now multipath-tools.service
sudo service multipath-tools restart

(:) Ensure etc/multipath.conf contains find multipaths no under defaults.

3. Ensure that multipath-tools is enabled and running:

sudo systemctl status multipath-tools

Fibre Channel (FC) support

You can now use the Fibre Channel (FC) protocol with Trident to provision and manage
storage resources on ONTAP system.

SCSI over Fibre Channel (FC) is a tech preview feature in the Trident 24.10 release.

Fibre Channel is a widely adopted protocol in enterprise storage environments due to its high performance,
reliability, and scalability. It provides a robust and efficient communication channel for storage devices,
enabling fast and secure data transfers.

By using SCSI over Fibre Channel, you can leverage their existing SCSI-based storage infrastructure while
benefiting from the high-performance and long-distance capabilities of Fibre Channel. It enables the
consolidation of storage resources and the creation of scalable and efficient storage area networks (SANs) that
can handle large amounts of data with low latency.

Using the FC feature with Trident, you can do the following:

* Dynamically provision PVCs using a deployment spec.

» Take volume snapshots and create a new volume from the snapshot.
* Clone an existing FC-PVC.

* Resize an already deployed volume.

Prerequisites

Configure the required network and node settings for FC.

Network settings

1. Get the WWPN of the target interfaces. Refer to network interface show for more information.
2. Get the WWPN for the interfaces on initiator (Host).

Refer to the corresponding host operating system utilities.

3. Configure zoning on the FC switch using WWPNs of the Host and target.
Refer to the respecive switch vendor documentation for information.
Refer to the following ONTAP documentation for details:

o Fibre Channel and FCoE zoning overview

o Ways to configure FC & FC-NVMe SAN hosts

Prepare the worker node

All worker nodes in the Kubernetes cluster must be able to mount the volumes you have provisioned for your
pods. To prepare the worker nodes for FC, you must install the required tools.

Install the FC tools
Install the FC tools using the commands for your operating system.

* When using worker nodes that run RHEL/RedHat CoreOS with FC PVs, specify the discard mountOption
in the StorageClass to perform inline space reclamation. Refer to RedHat documentation.

https://docs.netapp.com/us-en/ontap-cli//network-interface-show.html
https://docs.netapp.com/us-en/ontap/san-config/fibre-channel-fcoe-zoning-concept.html
https://docs.netapp.com/us-en/ontap/san-config/configure-fc-nvme-hosts-ha-pairs-reference.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems

10

RHEL 8+
1. Install the following system packages:

sudo yum install -y lsscsi device-mapper-multipath
2. Enable multipathing:

sudo mpathconf --enable --with multipathd y --find multipaths n

(:) Ensure etc/multipath.conf contains find multipaths no under defaults.

3. Ensure that multipathd is running:

sudo systemctl enable --now multipathd

Ubuntu
1. Install the following system packages:

sudo apt-get install -y lsscsi sg3-utils multipath-tools scsitools
2. Enable multipathing:

sudo tee /etc/multipath.conf <<-EOF
defaults {

user friendly names yes

find multipaths no

}

EOF

sudo systemctl enable --now multipath-tools.service
sudo service multipath-tools restart

(:) Ensure etc/multipath.conf contains find multipaths no under defaults.

3. Ensure that multipath-tools is enabled and running:

sudo systemctl status multipath-tools

Create a backend configuration

Create a Trident backend for ontap-san driver and fcp as the sanType.

Refer to:

* Prepare to configure backend with ONTAP SAN drivers
« ONTAP SAN configuration options and examples

Backend configuration example with FC

apivVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:

name: backend-tbc-ontap-san
spec:

version: 1

backendName: ontap-san-backend

storageDriverName: ontap-san

managementLIF: 10.0.0.1

sanType: fcp

svm: trident svm

credentials:

name: backend-tbc-ontap-san-secret

Create a storage class

For more information, refer to:
+ Storage configuration options

Storage class example

apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata:
name: fcp-sc

provisioner: csi.trident.netapp.io

parameters:
backendType: "ontap-san"
storagePools: "ontap-san-backend:.*"
fsType: "ext4d"

allowVolumeExpansion: True

Configure and manage backends

11

https://docs.netapp.com/us-en/trident-2410/trident-use/..trident-use/ontap-san-prep.html
https://docs.netapp.com/us-en/trident-2410/trident-use/..trident-use/ontap-san-examples.html
https://docs.netapp.com/us-en/trident-2410/trident-use/..trident-docker/stor-config.html

Configure backends

A backend defines the relationship between Trident and a storage system. It tells Trident
how to communicate with that storage system and how Trident should provision volumes
from it.

Trident automatically offers up storage pools from backends that match the requirements defined by a storage
class. Learn how to configure the backend for your storage system.

+ Configure an Azure NetApp Files backend

+ Configure a Google Cloud NetApp Volumes backend

* Configure a Cloud Volumes Service for Google Cloud Platform backend

» Configure a NetApp HCI or SolidFire backend

+ Configure a backend with ONTAP or Cloud Volumes ONTAP NAS drivers

+ Configure a backend with ONTAP or Cloud Volumes ONTAP SAN drivers

* Use Trident with Amazon FSx for NetApp ONTAP

Azure NetApp Files

Configure an Azure NetApp Files backend

You can configure Azure NetApp Files as the backend for Trident. You can attach NFS
and SMB volumes using an Azure NetApp Files backend. Trident also supports credential
management using managed identities for Azure Kubernetes Services (AKS) clusters.

Azure NetApp Files driver details

Trident provides the following Azure NetApp Files storage drivers to communicate with the cluster. Supported
access modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX),
ReadWriteOncePod (RWOP).

Driver Protocol volumeMod Access modes File systems supported
e supported
azure-netapp-files NFS Filesystem RWO, ROX, RWX, RWOP nfs, smb
SMB

Considerations

* The Azure NetApp Files service does not support volumes smaller than 50 GiB. Trident automatically
creates 50-GiB volumes if a smaller volume is requested.

* Trident supports SMB volumes mounted to pods running on Windows nodes only.

Managed identities for AKS

Trident supports managed identities for Azure Kubernetes Services clusters. To take advantage of streamlined
credential management offered by managed identities, you must have:

* A Kubernetes cluster deployed using AKS

12

https://learn.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview

* Managed identities configured on the AKS kubernetes cluster

* Trident installed that includes the cloudProvider to specify "Azure".

Trident operator

To install Trident using the Trident operator, edit tridentorchestrator cr.yaml to set
cloudProvider to "Azure". For example:

apivVersion: trident.netapp.io/vl
kind: TridentOrchestrator
metadata:
name: trident
spec:
debug: true
namespace: trident
imagePullPolicy: IfNotPresent
cloudProvider: "Azure"

Helm

The following example installs Trident sets cloudProvider to Azure using the environment variable
SCP:

helm install trident trident-operator-100.2410.0.tgz --create
-namespace —--namespace <trident-namespace> --set cloudProvider=S$CP

tridentctl

The following example installs Trident and sets the cloudProvider flag to Azure:

tridentctl install --cloud-provider="Azure" -n trident

Cloud identity for AKS

Cloud identity enables Kubernetes pods to access Azure resources by authenticating as a workload identity
instead of by providing explicit Azure credentials.

To take advantage of cloud identity in Azure, you must have:

* A Kubernetes cluster deployed using AKS
* Workload identity and oidc-issuer configured on the AKS Kubernetes cluster

* Trident installed that includes the cloudProvider to specify "Azure" and cloudIdentity specifying
workload identity

13

14

Trident operator

To install Trident using the Trident operator, edit tridentorchestrator cr.yaml to set
cloudProvider to "Azure" and set cloudIdentity t0o azure.workload.identity/client-
1d: XXXXXXXX—KXXXX-XXXX-XXXX-XXXXXXXXXKXX.

For example:

apiVersion: trident.netapp.io/vl
kind: TridentOrchestrator
metadata:
name: trident
spec:
debug: true
namespace: trident
imagePullPolicy: IfNotPresent
cloudProvider: "Azure"
*cloudIdentity: 'azure.workload.identity/client-id: XXXXXXXX—XXXX-—

KXXX—XXXKX—XXXXXXKXKXXXX " *

Helm

Set the values for cloud-provider (CP) and cloud-identity (Cl) flags using the following environment
variables:

export CP="Azure"
export CI="'azure.workload.identity/client-id: XXXXXXXX-XXXX-XXXX—XXXX—

XXXXXXXKXXXX""

The following example installs Trident and sets cloudProvider to Azure using the environment
variable sCP and sets the cloudIdentity using the environment variable $CT:

helm install trident trident-operator-100.2410.0.tgz --set
cloudProvider=$CP --set cloudIdentity="S$CI"

tridentctl

Set the values for cloud provider and cloud identity flags using the following environment variables:

export CP="Azure"
export CI="azure.workload.identity/client-id: XXXXXXXX-XXXX-XXXX—XXXX—
XXXXXXXXXKX"

The following example installs Trident and sets the cloud-provider flag to $CP, and cloud-
identity to $CI:

tridentctl install --cloud-provider=$CP --cloud-identity="$CI" -n
trident

Prepare to configure an Azure NetApp Files backend

Before you can configure your Azure NetApp Files backend, you need to ensure the
following requirements are met.

Prerequisites for NFS and SMB volumes

If you are using Azure NetApp Files for the first time or in a new location, some initial configuration is required
to set up Azure NetApp files and create an NFS volume. Refer to Azure: Set up Azure NetApp Files and create
an NFS volume.

To configure and use an Azure NetApp Files backend, you need the following:

* subscriptionID, tenantID, clientID, location, and clientSecret are optional
@ when using managed identities on an AKS cluster.

* tenantID, clientID, and clientSecret are optional when using a cloud identity on an
AKS cluster.

A capacity pool. Refer to Microsoft: Create a capacity pool for Azure NetApp Files.
» A subnet delegated to Azure NetApp Files. Refer to Microsoft: Delegate a subnet to Azure NetApp Files.

* subscriptionID from an Azure subscription with Azure NetApp Files enabled.

* tenantID, clientID, and clientSecret from an App Registration in Azure Active Directory with
sufficient permissions to the Azure NetApp Files service. The App Registration should use either:

o The Owner or Contributor role predefined by Azure.

° A custom Contributor role at the subscription level (assignableScopes) with the following
permissions that are limited to only what Trident requires. After creating the custom role, assign the
role using the Azure portal.

15

https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://azure.microsoft.com/en-us/services/netapp/
https://learn.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-set-up-capacity-pool
https://learn.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://learn.microsoft.com/en-us/azure/role-based-access-control/custom-roles-portal
https://learn.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal
https://learn.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal

Custom contributor role

"id": "/subscriptions/<subscription-
id>/providers/Microsoft.Authorization/roleDefinitions/<role-
definition-id>",

"properties": ({
"roleName": "custom-role-with-limited-perms",
"description": "custom role providing limited

permissions",
"assignableScopes": [
"/subscriptions/<subscription-id>"

1y
"permissions": [
{

"actions": [
"Microsoft.NetApp/netAppAccounts/capacityPools/read",
"Microsoft.NetApp/netAppAccounts/capacityPools/write",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/read",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/write",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/delete”,

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/

read",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/

write",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/
delete",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/MountTarge
ts/read",
"Microsoft.Network/virtualNetworks/read",

"Microsoft.Network/virtualNetworks/subnets/read",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrat

ions/read",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrat

ions/write",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrat
ions/delete",
"Microsoft.Features/features/read",
"Microsoft.Features/operations/read",
"Microsoft.Features/providers/features/read",

"Microsoft.Features/providers/features/register/action",
"Microsoft.Features/providers/features/unregister/action",

"Microsoft.Features/subscriptionFeatureRegistrations/read"

1y
"notActions": [],
"dataActions": [],

"notDataActions": []

* The Azure location that contains at least one delegated subnet. As of Trident 22.01, the 1ocation
parameter is a required field at the top level of the backend configuration file. Location values specified in
virtual pools are ignored.

* Touse Cloud Identity, getthe client ID from a user-assigned managed identity and specify that ID
inazure.workload.identity/client-id: XXXXXXXX—XXXX-XXXX~XXXX-XXXXXXXXXXX.

Additional requirements for SMB volumes

To create an SMB volume, you must have:
« Active Directory configured and connected to Azure NetApp Files. Refer to Microsoft: Create and manage
Active Directory connections for Azure NetApp Files.

* A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows
Server 2022. Trident supports SMB volumes mounted to pods running on Windows nodes only.

» At least one Trident secret containing your Active Directory credentials so Azure NetApp Files can
authenticate to Active Directory. To generate secret smbcreds:

kubectl create secret generic smbcreds --from-literal username=user
-—-from-literal password='password'

* A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or
GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

17

https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet
https://learn.microsoft.com/en-us/entra/identity/managed-identities-azure-resources/how-manage-user-assigned-managed-identities
https://learn.microsoft.com/en-us/azure/azure-netapp-files/create-active-directory-connections
https://learn.microsoft.com/en-us/azure/azure-netapp-files/create-active-directory-connections
https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md

Azure NetApp Files backend configuration options and examples

Learn about NFS and SMB backend configuration options for Azure NetApp Files and
review configuration examples.

Backend configuration options

Trident uses your backend configuration (subnet, virtual network, service level, and location), to create Azure
NetApp Files volumes on capacity pools that are available in the requested location and match the requested
service level and subnet.

@ Trident does not support Manual QoS capacity pools.

Azure NetApp Files backends provide these configuration options.

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver "azure-netapp-files"

backendName Custom name or the storage Driver name + "_" + random
backend characters

subscriptionID The subscription ID from your

Azure subscription

Optional when managed identities
is enabled on an AKS cluster.

tenantID The tenant ID from an App
Registration

Optional when managed identities
or cloud identity is used on an AKS
cluster.

clientID The client ID from an App
Registration

Optional when managed identities
or cloud identity is used on an AKS
cluster.

clientSecret The client secret from an App
Registration

Optional when managed identities
or cloud identity is used on an AKS
cluster.

serviceLevel One of Standard, Premium, or " (random)
Ultra

18

Parameter

location

resourceGroups

netappAccounts

capacityPools

virtualNetwork

subnet

networkFeatures

nfsMountOptions

limitVolumeSize

Description

Name of the Azure location where
the new volumes will be created

Optional when managed identities
is enabled on an AKS cluster.

List of resource groups for filtering
discovered resources

List of NetApp accounts for filtering
discovered resources

List of capacity pools for filtering
discovered resources

Name of a virtual network with a
delegated subnet

Name of a subnet delegated to
Microsoft.Netapp/volumes

Set of VNet features for a volume,
may be Basic or Standard.

Network Features is not available in
all regions and might have to be
enabled in a subscription.
Specifying networkFeatures
when the functionality is not
enabled causes volume
provisioning to fail.

Fine-grained control of NFS mount
options.

Ignored for SMB volumes.

To mount volumes using NFS
version 4.1, include nfsvers=4 in

the comma-delimited mount options

list to choose NFS v4.1.

Mount options set in a storage
class definition override mount
options set in backend
configuration.

Fail provisioning if the requested
volume size is above this value

Default

"[I" (no filter)

"" (no filter)

"[I" (no filter, random)

"nfsvers=3"

" (not enforced by default)

19

Parameter Description Default

debugTraceFlags Debug flags to use when null
troubleshooting. Example,
\{"api": false, "method":
true, "discovery": true}.
Do not use this unless you are
troubleshooting and require a
detailed log dump.

nasType Configure NFS or SMB volumes nfs
creation.

Options are nfs, smb or null.
Setting to null defaults to NFS
volumes.

supportedTopologies Represents a list of regions and
zones that are supported by this
backend.

For more information, refer to Use
CSI Topology.

@ For more information on Network Features, refer to Configure network features for an Azure
NetApp Files volume.

Required permissions and resources

If you receive a “No capacity pools found” error when creating a PVC, it is likely your app registration doesn’t
have the required permissions and resources (subnet, virtual network, capacity pool) associated. If debug is

enabled, Trident will log the Azure resources discovered when the backend is created. Verify an appropriate

role is being used.

The values for resourceGroups, netappAccounts, capacityPools, virtualNetwork, and subnet
can be specified using short or fully-qualified names. Fully-qualified names are recommended in most
situations as short names can match multiple resources with the same name.

The resourceGroups, netappAccounts, and capacityPools values are filters that restrict the set of
discovered resources to those available to this storage backend and may be specified in any combination.
Fully-qualified names follow this format:

Type Format

Resource group <resource group>

NetApp account <resource group>/<netapp account>

Capacity pool <resource group>/<netapp account>/<capacity pool>
Virtual network <resource group>/<virtual network>

Subnet <resource group>/<virtual network>/<subnet>

20

https://docs.microsoft.com/en-us/azure/azure-netapp-files/configure-network-features
https://docs.microsoft.com/en-us/azure/azure-netapp-files/configure-network-features

Volume provisioning

You can control default volume provisioning by specifying the following options in a special section of the
configuration file. Refer to Example configurations for details.

Parameter Description Default

exportRule Export rules for new volumes. "0.0.0.0/0"

exportRule must be a comma-
separated list of any combination of
IPv4 addresses or IPv4 subnets in
CIDR notation.

Ignored for SMB volumes.

snapshotDir Controls visibility of the .snapshot "true" for NFSv4

directory "false" for NFSv3
size The default size of new volumes "100G"
unixPermissions The unix permissions of new "" (preview feature, requires

volumes (4 octal digits). whitelisting in subscription)

Ignored for SMB volumes.

Example configurations

The following examples show basic configurations that leave most parameters to default. This is the easiest
way to define a backend.

21

Minimal configuration

This is the absolute minimum backend configuration. With this configuration, Trident discovers all of your
NetApp accounts, capacity pools, and subnets delegated to Azure NetApp Files in the configured
location, and places new volumes on one of those pools and subnets randomly. Because nasType is
omitted, the nfs default applies and the backend will provision for NFS volumes.

This configuration is ideal when you are just getting started with Azure NetApp Files and trying things out,
but in practice you are going to want to provide additional scoping for the volumes you provision.

apivVersion: trident.netapp.io/vl

kind: TridentBackendConfig

metadata:
name: backend-tbc-anf-1
namespace: trident

spec:
version: 1
storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721add45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865ee56ct
clientID: dd043f63-bf8e-fake-8076-8de91le5713aa
clientSecret: SECRET

location: eastus

Managed identities for AKS

This backend configuration omits subscriptionID, tenantID, clientID, and clientSecret, which
are optional when using managed identities.

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: backend-tbc-anf-1
namespace: trident
spec:
version: 1

storageDriverName: azure-netapp-files

capacityPools: ["ultra-pool"]
resourceGroups: ["aks-ami-eastus-rg"]
netappAccounts: ["smb-na"]

virtualNetwork: eastus-prod-vnet
subnet: eastus-anf-subnet

22

Cloud identity for AKS

This backend configuration omits tenantID, clientID, and clientSecret, which are optional when
using a cloud identity.

apivVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: backend-tbc-anf-1
namespace: trident
spec:
version: 1
storageDriverName: azure-netapp-files

capacityPools: ["ultra-pool"]
resourceGroups: ["aks-ami-eastus-rg"]
netappAccounts: ["smb-na"]

virtualNetwork: eastus-prod-vnet

subnet: eastus—-anf-subnet

location: eastus

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

Specific service level configuration with capacity pool filters

This backend configuration places volumes in Azure’s eastus location in an Ul tra capacity pool.
Trident automatically discovers all of the subnets delegated to Azure NetApp Files in that location and
places a new volume on one of them randomly.

version: 1

storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721add45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865ee56ct
clientID: dd043f63-bf8e-fake-8076-8de91e5713aa
clientSecret: SECRET

location: eastus

servicelLevel: Ultra

capacityPools:

- application—-group-1/account-1/ultra-1

- application-group-1/account-1/ultra-2

Advanced configuration

This backend configuration further reduces the scope of volume placement to a single subnet, and also
modifies some volume provisioning defaults.

version: 1
storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721add45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865eeb6ct
clientID: dd043f63-bf8e-fake-8076-8de9%1le5713aa
clientSecret: SECRET
location: eastus
servicelevel: Ultra
capacityPools:
- application-group-1/account-1/ultra-1
- application-group-1/account-1/ultra-2
virtualNetwork: my-virtual-network
subnet: my-subnet
networkFeatures: Standard
nfsMountOptions: vers=3,proto=tcp,timeo=600
limitVolumeSize: 500Gi
defaults:
exportRule: 10.0.0.0/24,10.0.1.0/24,10.0.2.100
snapshotDir: 'true'
size: 200Gi

unixPermissions: '0777"'

24

Virtual pool configuration

This backend configuration defines multiple storage pools in a single file. This is useful when you have
multiple capacity pools supporting different service levels and you want to create storage classes in
Kubernetes that represent those. Virtual pool labels were used to differentiate the pools based on
performance.

version: 1
storageDriverName: azure-netapp-files
subscriptionID: 9f87c765-4774-fake-ae98-a721ladd45451
tenantID: 68e4f836-edcl-fake-bff9-b2d865ee56ct
clientID: dd043f63-bf8e-fake-8076-8de9%1e5713aa
clientSecret: SECRET
location: eastus
resourceGroups:
- application-group-1
networkFeatures: Basic
nfsMountOptions: vers=3,proto=tcp,timeo=600
labels:
cloud: azure
storage:
- labels:
performance: gold
servicelevel: Ultra
capacityPools:
- ultra-1
- ultra-2
networkFeatures: Standard
- labels:
performance: silver
servicelevel: Premium
capacityPools:
- premium-1
- labels:
performance: bronze
servicelevel: Standard
capacityPools:
- standard-1
- standard-2

25

Supported topologies configuration

Trident facilitates provisioning of volumes for workloads based on regions and availability zones. The
supportedTopologies block in this backend configuration is used to provide a list of regions and
zones per backend. The region and zone values specified here must match the region and zone values
from the labels on each Kubernetes cluster node. These regions and zones represent the list of
permissible values that can be provided in a storage class. For storage classes that contain a subset of
the regions and zones provided in a backend, Trident creates volumes in the mentioned region and zone.
For more information, refer to Use CSI Topology.

version: 1

storageDriverName: azure-netapp-files

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

tenantID: 68e4f836-edcl-fake-bff9-b2d865ee56ct

clientID: dd043f63-bf8e-fake-8076-8de9%1e5713aa

clientSecret: SECRET

location: eastus

servicelLevel: Ultra

capacityPools:

- application-group-1/account-1/ultra-1

- application—-group-1/account-1/ultra-2

supportedTopologies:

- topology.kubernetes.io/region: eastus
topology.kubernetes.io/zone: eastus-1

- topology.kubernetes.io/region: eastus
topology.kubernetes.io/zone: eastus-2

Storage class definitions

The following StorageClass definitions refer to the storage pools above.

Example definitions using parameter.selector field

Using parameter.selector you can specify for each StorageClass the virtual pool that is used to host a
volume. The volume will have the aspects defined in the chosen pool.

26

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: gold
provisioner: csi.trident.netapp.io
parameters:

selector: "performance=gold"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: silver
provisioner: csi.trident.netapp.io
parameters:

selector: "performance=silver"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: bronze
provisioner: csi.trident.netapp.io
parameters:

selector: "performance=bronze"

allowVolumeExpansion: true

Example definitions for SMB volumes

Using nasType, node-stage-secret-name, and node-stage-secret-namespace, You can specify an
SMB volume and provide the required Active Directory credentials.

27

Basic configuration on default namespace

apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata:
name: anf-sc-smb

provisioner: csi.trident.netapp.io

parameters:
backendType: "azure-netapp-files"
trident.netapp.io/nasType: "smb"
csi.storage.k8s.io/node-stage-secret-name: "smbcreds"
csi.storage.k8s.io/node-stage-secret-namespace: "default"

Using different secrets per namespace

apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata:
name: anf-sc-smb

provisioner: csi.trident.netapp.io

parameters:
backendType: "azure-netapp-files"
trident.netapp.io/nasType: "smb"
csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

Using different secrets per volume

apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata:
name: anf-sc-smb

provisioner: csi.trident.netapp.io

parameters:
backendType: "azure-netapp-files"
trident.netapp.io/nasType: "smb"
csi.storage.k8s.io/node-stage-secret-name: ${pvc.name}
csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

28

(D nasType: smb filters for pools which support SMB volumes. nasType: nfs or nasType:
null filters for NFS pools.

Create the backend

After you create the backend configuration file, run the following command:
tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to
determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Google Cloud NetApp Volumes

Configure a Google Cloud NetApp Volumes backend

You can now configure Google Cloud NetApp Volumes as the backend for Trident. You
can attach NFS volumes using a Google Cloud NetApp Volumes backend.

Google Cloud NetApp Volumes driver details

Trident provides the google-cloud-netapp-volumes driver to communicate with the cluster. Supported
access modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX),
ReadWriteOncePod (RWOP).

Driver Protocol volumeMod Access modes File systems supported
e supported
google-cloud- NFS Filesystem RWO, ROX, RWX, RWOP nfs

netapp-volumes

Cloud identity for GKE

Cloud identity enables Kubernetes pods to access Google Cloud resources by authenticating as a workload
identity instead of by providing explicit Google Cloud credentials.

To take advantage of cloud identity in Google Cloud, you must have:

* A Kubernetes cluster deployed using GKE.
* Workload identity configured on the GKE cluster and GKE MetaData Server configured on the node pools.

* A GCP Service account with the Google Cloud NetApp Volumes Admin (roles/netapp.admin) role or a
custom role.

* Trident installed that includes the cloudProvider to specify "GCP" and cloudldentity specifying the new GCP
service account. An example is given below.

29

30

Trident operator

To install Trident using the Trident operator, edit tridentorchestrator cr.yaml to set
cloudProvider to "GCP" and set cloudIdentity to iam.gke.io/gcp-service-account:
cloudvolumes-admin-sal@mygcpproject.iam.gserviceaccount.com.

For example:

apiVersion: trident.netapp.io/vl
kind: TridentOrchestrator
metadata:
name: trident
spec:
debug: true
namespace: trident
imagePullPolicy: IfNotPresent
cloudProvider: "GCP"
cloudIdentity: 'iam.gke.io/gcp-service-account: cloudvolumes-
admin-sa@mygcpproject.iam.gserviceaccount.com'

Helm

Set the values for cloud-provider (CP) and cloud-identity (Cl) flags using the following environment
variables:

export CP="GCP"
export ANNOTATION="iam.gke.io/gcp-service-account: cloudvolumes-admin-
sal@mygcpproject.iam.gserviceaccount.com"

The following example installs Trident and sets cloudProvider to GCP using the environment
variable $CP and sets the cloudIdentity using the environment variable SANNOTATION:

helm install trident trident-operator-100.2406.0.tgz --set
cloudProvider=$CP --set cloudIdentity="$SANNOTATION"

tridentctl

Set the values for cloud provider and cloud identity flags using the following environment variables:

export CP="GCP"
export ANNOTATION="iam.gke.io/gcp-service-account: cloudvolumes—-admin-
sa@mygcpproject.iam.gserviceaccount.com"

The following example installs Trident and sets the cloud-provider flag to $CP, and cloud-
identity to SANNOTATION:

tridentctl install --cloud-provider=$CP --cloud
-identity="SANNOTATION" -n trident

Prepare to configure a Google Cloud NetApp Volumes backend

Before you can configure your Google Cloud NetApp Volumes backend, you need to
ensure the following requirements are met.

Prerequisites for NFS volumes

If you are using Google Cloud NetApp Volumes for the first time or in a new location, some initial configuration
is required to set up Google Cloud NetApp Volumes and create an NFS volume. Refer to Before you begin.

Ensure that you have the following before configuring Google Cloud NetApp Volumes backend:

* A Google Cloud account configured with Google Cloud NetApp Volumes service. Refer to Google Cloud
NetApp Volumes.
* Project number of your Google Cloud account. Refer to Identifying projects.

* A Google Cloud service account with the NetApp Volumes Admin (roles/netapp.admin) role. Refer to
Identity and Access Management roles and permissions.

» API key file for your GCNV account. Refer to Create a service account key

» A storage pool. Refer to Storage pools overview .

For more information about how to set up access to Google Cloud NetApp Volumes, refer to Set up access to
Google Cloud NetApp Volumes.

Google Cloud NetApp Volumes backend configuration options and examples

Learn about NFS backend configuration options for Google Cloud NetApp Volumes and
review configuration examples.

Backend configuration options

Each backend provisions volumes in a single Google Cloud region. To create volumes in other regions, you
can define additional backends.

Parameter Description Default
version Always 1
storageDriverName Name of the storage driver The value of

storageDriverName
must be specified as
"google-cloud-netapp-
volumes".

backendName (Optional) Custom name of the storage backend Driver name + + part

of API key

31

https://cloud.google.com/netapp/volumes/docs/before-you-begin/application-resilience
https://cloud.google.com/netapp-volumes
https://cloud.google.com/netapp-volumes
https://cloud.google.com/resource-manager/docs/creating-managing-projects#identifying_projects
https://cloud.google.com/netapp/volumes/docs/get-started/configure-access/iam#roles_and_permissions
https://cloud.google.com/iam/docs/keys-create-delete#creating
https://cloud.google.com/netapp/volumes/docs/configure-and-use/storage-pools/overview
https://cloud.google.com/netapp/volumes/docs/get-started/configure-access/workflow#before_you_begin
https://cloud.google.com/netapp/volumes/docs/get-started/configure-access/workflow#before_you_begin

Parameter

storagePools

projectNumber

location

apiKey

nfsMountOptions

limitVolumeSize

servicelLevel

network

debugTraceFlags

supportedTopologies

32

Description

Optional parameter used to specify storage pools for
volume creation.

Google Cloud account project number. The value is
found on the Google Cloud portal home page.

The Google Cloud location where Trident creates
GCNYV volumes. When creating cross-region
Kubernetes clusters, volumes created in a 1location
can be used in workloads scheduled on nodes across
multiple Google Cloud regions.

Cross-region traffic incurs an additional cost.

API key for the Google Cloud service account with the
netapp.admin role.

It includes the JSON-formatted contents of a Google
Cloud service account’s private key file (copied
verbatim into the backend configuration file).

The apiKey must include key-value pairs for the
following keys: type, project id, client email,
client id, auth uri, token uri,

auth provider x509 cert url,and
client x509 cert url.

Fine-grained control of NFS mount options.

Fail provisioning if the requested volume size is above
this value.

The service level of a storage pool and its volumes.
The values are flex, standard, premium, or
extreme.

Google Cloud network used for GCNV volumes.

Debug flags to use when troubleshooting. Example,
{"api":false, "method":true}.

Do not use this unless you are troubleshooting and
require a detailed log dump.

Represents a list of regions and zones that are
supported by this backend.

For more information, refer to Use CSI Topology.

For example:

supportedTopologies:

- topology.kubernetes.io/region: asia-
eastl

topology.kubernetes.io/zone: asia-eastl-
a

Default

"nfsvers=3"

default)

null

(not enforced by

Volume provisioning options

You can control default volume provisioning in the defaults section of the configuration file.

Parameter

exportRule

snapshotDir

snapshotReserve

unixPermissions

Example configurations

Description

The export rules for new volumes.
Must be a comma-separated list of
any combination of IPv4 addresses.

Access to the . snapshot directory

Percentage of volume reserved for
shapshots

The unix permissions of new
volumes (4 octal digits).

Default
"0.0.0.0/0"

"true" for NFSv4
"false" for NFSv3

"" (accept default of 0)

The following examples show basic configurations that leave most parameters to default. This is the easiest

way to define a backend.

33

Minimal configuration

This is the absolute minimum backend configuration. With this configuration, Trident discovers all of your
storage pools delegated to Google Cloud NetApp Volumes in the configured location, and places new
volumes on one of those pools randomly. Because nasType is omitted, the nfs default applies and the
backend will provision for NFS volumes.

This configuration is ideal when you are just getting started with Google Cloud NetApp Volumes and
trying things out, but in practice you will most likely need to provide additional scoping for the volumes you
provision.

apiVersion: vl

kind: Secret

metadata:
name: backend-tbc-gcnv-secret

type: Opaque

stringData:
private key id: 'f2cb6ted6d7ccl0c453£7d3406£c700c5df0ab9ec’
private key: |

znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gp8B4Kws8zX507)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50])Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50])Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/qp8B4Kws8zX50)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNChRAGz1zZE4jK3bl/gp8B4Kws82zX507Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/qp8B4Kws8zX50)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gp8B4Kws82zX507Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50])Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gp8B4Kws82zX507Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50])Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX50)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gp8B4Kws8zX507Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX50])Y9m\n
znHczZsrrtHisIsAbOguSaPIKeyAZNChRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m\n

34

XsYgogyxy4zg701lwWgLwGa==\n

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: backend-tbc-gcnv
spec:
version: 1
storageDriverName: google-cloud-netapp-volumes
projectNumber: '123455380079'
location: europe-westb
servicelevel: premium
apiKey:
type: service account
project id: my-gcnv-project
client email: myproject-prodlmy-gcnv-
project.iam.gserviceaccount.com
client id: '103346282737811234567"'
auth uri: https://accounts.google.com/o/ocauth2/auth
token uri: https://oauth2.googleapis.com/token
auth provider x509 cert url:
https://www.googleapis.com/ocauth2/vl/certs
client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/myproject-prod%40my-
gcnv-project.iam.gserviceaccount.com
credentials:
name: backend-tbc-gcnv-secret

35

Configuration with StoragePools filter

apiVersion: vl

kind: Secret

metadata:
name: backend-tbc-gcnv-secret

type: Opaque

stringData:
private key id: 'f2cb6ed6d7ccl0c453£7d3406£fc700c5df0ab%ec’
private key: |

znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE47K3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3bl/gqp8BR4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
XsYgbgyxy4zg701lwWgLwGa==

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:

name: backend-tbc-gcnv

spec:

36

version: 1
storageDriverName: google-cloud-netapp-volumes
projectNumber: '123455380079"
location: europe-westo6
servicelevel: premium
storagePools:
- premium-pooll-europe-west6
- premium-pool2-europe-westb6
apiKey:
type: service account
project id: my-gcnv-project
client email: myproject-prod@my-gcnv-
project.iam.gserviceaccount.com
client id: '103346282737811234567"
auth uri: https://accounts.google.com/o/oauth2/auth
token uri: https://oauth2.googleapis.com/token
auth provider x509 cert url:
https://www.googleapis.com/ocauth2/vl/certs
client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/myproject-prod%40my-
gcnv-project.iam.gserviceaccount.com
credentials:

name: backend-tbc-gcnv-secret

37

Virtual pool configuration

This backend configuration defines multiple virtual pools in a single file. Virtual pools are defined in the
storage section. They are useful when you have multiple storage pools supporting different service
levels and you want to create storage classes in Kubernetes that represent those. Virtual pool labels are
used to differentiate the pools. For instance, in the example below performance label and
servicelLevel type is used to differentiate virtual pools.

You can also set some default values to be applicable to all virtual pools, and overwrite the default values
for individual virtual pools. In the following example, snapshotReserve and exportRule serve as
defaults for all virtual pools.

For more information, refer to Virtual pools.

apiVersion: vl

kind: Secret

metadata:
name: backend-tbc-gcnv-secret

type: Opaque

stringData:
private key id: 'f2cb6ed6d7ccl0c453£7d3406£c700c5df0ablec’
private key: |

znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/gqp8B4Kws82zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNCchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jJK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507Y%m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws8zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3b1l/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m

38

https://docs.netapp.com/us-en/trident-2410/trident-concepts/virtual-storage-pool.html

znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/gqp8B4Kws8zX507Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGz1zZE4jK3bl/qp8B4Kws82zX507)Y9m
XsYgoegyxy4zg701lwWgLwGa==

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: backend-tbc-gcnv
spec:
version: 1
storageDriverName: google-cloud-netapp-volumes
projectNumber: '123455380079'
location: europe-westb6
apiKey:
type: service account
project id: my-gcnv-project
client email: myproject-prod@my-gcnv-
project.iam.gserviceaccount.com
client id: '103346282737811234567"'
auth uri: https://accounts.google.com/o/oauth2/auth
token uri: https://ocauth2.googleapis.com/token
auth provider x509 cert url:
https://www.googleapis.com/oauth2/vl/certs
client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/myproject-prod%40my-
gcnv-project.iam.gserviceaccount.com
credentials:
name: backend-tbc-gcnv-secret

defaults:
snapshotReserve: '10'
exportRule: 10.0.0.0/24
storage:
- labels:

performance: extreme

servicelLevel: extreme

defaults:
snapshotReserve: '5'
exportRule: 0.0.0.0/0
- labels:

performance: premium
servicelevel: premium
- labels:

39

performance: standard
servicelLevel: standard

Cloud identity for GKE

apivVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: backend-tbc-gcp-gcnv
spec:
version: 1
storageDriverName: google-cloud-netapp-volumes
projectNumber: '012345678901"
network: gcnv-network
location: us-west?2
servicelevel: Premium

storagePool: pool-premiuml

Supported topologies configuration

Trident facilitates provisioning of volumes for workloads based on regions and availability zones. The
supportedTopologies block in this backend configuration is used to provide a list of regions and
zones per backend. The region and zone values specified here must match the region and zone values
from the labels on each Kubernetes cluster node. These regions and zones represent the list of
permissible values that can be provided in a storage class. For storage classes that contain a subset of
the regions and zones provided in a backend, Trident creates volumes in the mentioned region and zone.
For more information, refer to Use CSI Topology.

version: 1

storageDriverName: google-cloud-netapp-volumes

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

tenantID: 68e4f836-edcl-fake-bff9-b2d865ee56ct

clientID: dd043f63-bf8e-fake-8076-8de9%1le5713aa

clientSecret: SECRET

location: asia-eastl

servicelevel: flex

supportedTopologies:

- topology.kubernetes.io/region: asia-eastl
topology.kubernetes.io/zone: asia-eastl-a

- topology.kubernetes.io/region: asia-eastl
topology.kubernetes.io/zone: asia-eastl-Db

40

What’s next?

After you create the backend configuration file, run the following command:

kubectl create -f <backend-file>

To verify that the backend is successfully created, run the following command:

kubectl get tridentbackendconfig

NAME BACKEND NAME BACKEND UUID

PHASE STATUS

backend-tbc-gcnv backend-tbc-gcnv b2fd1£f£f9-b234-477e-88£d-713913294£65
Bound Success

If the backend creation fails, something is wrong with the backend configuration. You can describe the backend
using the kubectl get tridentbackendconfig <backend-name> command or view the logs to
determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can delete the backend and run the
create command again.

More examples

Storage class definition examples

The following is a basic StorageClass definition that refers to the backend above.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: gcnv-nfs-sc
provisioner: csi.trident.netapp.io
parameters:
backendType: "google-cloud-netapp-volumes"

Example definitions using the parameter. selector field:

Using parameter.selector you can specify for each StorageClass the virtual pool that is used to host a
volume. The volume will have the aspects defined in the chosen pool.

41

https://docs.netapp.com/us-en/trident-2410/trident-concepts/virtual-storage-pool.html

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: extreme-sc
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=extreme"
backendType: "google-cloud-netapp-volumes"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: premium-sc
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=premium"
backendType: "google-cloud-netapp-volumes"
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: standard-sc
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=standard"
backendType: "google-cloud-netapp-volumes"

For more details on storage classes, refer to Create a storage class.

PVC definition example

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: gcnv-nfs-pvc
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 100Gi
storageClassName: gcnv-nfs-sc

To verify if the PVC is bound, run the following command:

42

kubectl get pvc gcnv-nfs-pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

gecnv-nfs-pve Bound pvc-b00£f2414-e229-40e6-9b16-ee03eb79%9a213 100Gi
RWX gcnv-—nfs-sc 1m

Configure a Cloud Volumes Service for Google Cloud backend

Learn how to configure NetApp Cloud Volumes Service for Google Cloud as the backend
for your Trident installation using the sample configurations provided.

Google Cloud driver details

Trident provides the gcp-cvs driver to communicate with the cluster. Supported access modes are:
ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWriteOncePod (RWOP).
Driver Protocol volumeMode Access modes supported File systems supported

gcp-cvs NFS Filesystem RWO, ROX, RWX, RWOP nfs

Learn about Trident support for Cloud Volumes Service for Google Cloud

Trident can create Cloud Volumes Service volumes in one of two service types:

» CVS-Performance: The default Trident service type. This performance-optimized service type is best
suited for production workloads that value performance. The CVS-Performance service type is a hardware
option supporting volumes with a minimum 100 GiB size. You can choose one of three service levels:

° standard
° premium

° extreme

* CVS: The CVS service type provides high zonal availability with limited to moderate performance levels.
The CVS service type is a software option that uses storage pools to support volumes as small as 1 GiB.
The storage pool can contain up to 50 volumes where all volumes share the capacity and performance of
the pool. You can choose one of two service levels:

° standardsw
° zoneredundantstandardsw

What you’ll need
To configure and use the Cloud Volumes Service for Google Cloud backend, you need the following:

* A Google Cloud account configured with NetApp Cloud Volumes Service
* Project number of your Google Cloud account

* Google Cloud service account with the netappcloudvolumes.admin role

43

https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-types
https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-levels#service_levels_for_the_cvs-performance_service_type
https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-levels#service_levels_for_the_cvs_service_type
https://cloud.netapp.com/cloud-volumes-service-for-gcp?utm_source=NetAppTrident_ReadTheDocs&utm_campaign=Trident

* API key file for your Cloud Volumes Service account

Backend configuration options

Each backend provisions volumes in a single Google Cloud region. To create volumes in other regions, you
can define additional backends.

Parameter
version
storageDriverName

backendName

storageClass

storagePools

projectNumber

hostProjectNumber

apiRegion

apiKey

proxyURL

44

Description Default
Always 1
Name of the storage driver "gcp-cvs"

Custom name or the storage backend Driver name +" " + part

of API key

Optional parameter used to specify the CVS service
type.

Use software to select the CVS service type.
Otherwise, Trident assumes CVS-Performance
service type (hardware).

CVS service type only. Optional parameter used to
specify storage pools for volume creation.

Google Cloud account project number. The value is
found on the Google Cloud portal home page.

Required if using a shared VPC network. In this
scenario, projectNumber is the service project, and
hostProjectNumber is the host project.

The Google Cloud region where Trident creates Cloud
Volumes Service volumes. When creating cross-
region Kubernetes clusters, volumes created in an
apiRegion can be used in workloads scheduled on
nodes across multiple Google Cloud regions.

Cross-region traffic incurs an additional cost.

API key for the Google Cloud service account with the
netappcloudvolumes.admin role.

It includes the JSON-formatted contents of a Google
Cloud service account’s private key file (copied
verbatim into the backend configuration file).

Proxy URL if proxy server required to connect to CVS
account. The proxy server can either be an HTTP
proxy or an HTTPS proxy.

For an HTTPS proxy, certificate validation is skipped
to allow the usage of self-signed certificates in the
proxy server.

Proxy servers with authentication enabled are not
supported.

Parameter
nfsMountOptions

limitVolumeSize

servicelevel

network

debugTraceFlags

allowedTopologies

Description Default

Fine-grained control of NFS mount options. "nfsvers=3"

Fail provisioning if the requested volume size is above " (not enforced by
this value. default)

The CVS-Performance or CVS service level for new CVS-Performance default
volumes. is "standard".

CVS-Performance values are standard, premium, CVS defaultis
or extreme. "standardsw".

CVS values are standardsw or
zoneredundantstandardsw.

Google Cloud network used for Cloud Volumes "default"
Service volumes.

Debug flags to use when troubleshooting. Example, null
\{"api":false, "method":true}

Do not use this unless you are troubleshooting and
require a detailed log dump.

To enable cross-region access, your StorageClass
definition for allowedTopologies must include all
regions.

For example:

- key: topology.kubernetes.io/region
values:

- us-eastl

- europe-westl

Volume provisioning options

You can control default volume provisioning in the defaults section of the configuration file.

Parameter

exportRule

snapshotDir

snapshotReserve

size

Description Default

The export rules for new volumes. "0.0.0.0/0"
Must be a comma-separated list of

any combination of IPv4 addresses

or IPv4 subnets in CIDR notation.

Access to the . snapshot directory “false”

Percentage of volume reserved for " (accept CVS default of 0)
snapshots

The size of new volumes. CVS-Performance service type
defaults to "100GiB".

CVS-Performance minimum is 100

GiB. CVS service type does not set a
default but requires a 1 GiB
CVS minimum is 1 GiB. minimum.

45

CVS-Performance service type examples

The following examples provide sample configurations for the CVS-Performance service type.

Example 1: Minimal configuration

This is the minimum backend configuration using default CVS-Performance service type with the default
"standard" service level.

version: 1

storageDriverName: gcp-cvs

projectNumber: '012345678901"'

apiRegion: us-west?2

apiKey:
type: service account
project id: my-gcp-project
private key id: "<id value>"
private key: |

client email: cloudvolumes-admin-sal@my-gcp-
project.iam.gserviceaccount.com

client id: '123456789012345678901"

auth uri: https://accounts.google.com/o/oauth2/auth

token uri: https://ocauth2.googleapis.com/token

auth provider x509 cert url:
https://www.googleapis.com/ocauth2/vl/certs

client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—admin-
sa%$40my-gcp-project.iam.gserviceaccount.com

46

Example 2: Service level configuration

This sample illustrates backend configuration options, including service level, and volume defaults.

version: 1
storageDriverName: gcp-cvs
projectNumber: '012345678901"
apiRegion: us-west2
apiKey:
type: service account
project id: my-gcp-project
private key id: "<id value>"

private key: |

client email: cloudvolumes-admin-sal@my-gcp-
project.iam.gserviceaccount.com

client id: '123456789012345678901"

auth uri: https://accounts.google.com/o/oauth2/auth

token uri: https://oauth2.googleapis.com/token

auth provider x509 cert url:
https://www.googleapis.com/ocauth2/vl/certs

client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes-admin-
sa%$40my-gcp-project.iam.gserviceaccount.com
proxyURL: http://proxy-server-hostname/
nfsMountOptions: vers=3,proto=tcp,timeo=600
limitVolumeSize: 10Ti
servicelevel: premium
defaults:

snapshotDir: 'true'

snapshotReserve: '5'

exportRule: 10.0.0.0/24,10.0.1.0/24,10.0.2.100

size: 5Ti1i

47

Example 3: Virtual pool configuration

48

This sample uses storage to configure virtual pools and the StorageClasses that refer back to them.
Refer to Storage class definitions to see how the storage classes were defined.

Here, specific defaults are set for all virtual pools, which set the snapshotReserve at 5% and the
exportRule to 0.0.0.0/0. The virtual pools are defined in the storage section. Each individual virtual
pool defines its own serviceLevel, and some pools overwrite the default values. Virtual pool labels
were used to differentiate the pools based on performance and protection.

version: 1
storageDriverName: gcp-cvs
projectNumber: '012345678901"
apiRegion: us-west2
apiKey:
type: service account
project id: my-gcp-project
private key id: "<id value>"

private key: |

client email: cloudvolumes-admin-sal@my-gcp-
project.iam.gserviceaccount.com
client id: '123456789012345678901"
auth uri: https://accounts.google.com/o/oauth2/auth
token uri: https://oauth2.googleapis.com/token
auth provider x509 cert url:
https://www.googleapis.com/ocauth2/vl/certs
client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes-admin-
sa%$40my-gcp-project.iam.gserviceaccount.com
nfsMountOptions: vers=3,proto=tcp,timeo=600
defaults:
snapshotReserve: '5'
exportRule: 0.0.0.0/0
labels:
cloud: gcp
region: us-west2
storage:
- labels:
performance: extreme
protection: extra
servicelevel: extreme
defaults:
snapshotDir: 'true'

snapshotReserve: '10'
exportRule: 10.0.0.0/24
- labels:
performance: extreme
protection: standard
servicelevel: extreme
- labels:
performance: premium
protection: extra
servicelevel: premium
defaults:
snapshotDir: 'true'
snapshotReserve: '10'
- labels:
performance: premium
protection: standard
servicelevel: premium
- labels:
performance: standard
servicelevel: standard

Storage class definitions

The following StorageClass definitions apply to the virtual pool configuration example. Using
parameters.selector, you can specify for each StorageClass the virtual pool used to host a volume. The
volume will have the aspects defined in the chosen pool.

49

Storage class example

50

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs—-extreme-extra-protection
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=extreme; protection=extra"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-extreme-standard-protection
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=premium; protection=standard"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-premium-extra-protection
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=premium; protection=extra"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-premium
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=premium; protection=standard"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: cvs-standard
provisioner: csi.trident.netapp.io
parameters:
selector: "performance=standard"
allowVolumeExpansion: true

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: cvs-extra-protection
provisioner: csi.trident.netapp.io
parameters:

selector: "protection=extra"
allowVolumeExpansion: true

* The first StorageClass (cvs-extreme-extra-protection) maps to the first virtual pool. This is the only
pool offering extreme performance with a snapshot reserve of 10%.

* The last StorageClass (cvs-extra-protection) calls out any storage pool which provides a snapshot
reserve of 10%. Trident decides which virtual pool is selected and ensures that the snapshot reserve
requirement is met.

CVS service type examples

The following examples provide sample configurations for the CVS service type.

51

Example 1: Minimum configuration

This is the minimum backend configuration using storageClass to specify the CVS service type and
default standardsw service level.

version: 1
storageDriverName: gcp-cvs
projectNumber: '012345678901"
storageClass: software
apiRegion: us-eastd
apiKey:
type: service account
project id: my-gcp-project
private key id: "<id value>"
private key: |

client email: cloudvolumes-admin-sa@my-gcp-
project.iam.gserviceaccount.com

client id: '123456789012345678901"

auth uri: https://accounts.google.com/o/oauth2/auth

token uri: https://oauth2.googleapis.com/token

auth provider x509 cert url:
https://www.googleapis.com/ocauth2/vl/certs

client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—admin-
sa%40my—-gcp-project.iam.gserviceaccount.com
servicelevel: standardsw

52

Example 2: Storage pool configuration

This sample backend configuration uses storagePools to configure a storage pool.

version: 1
storageDriverName: gcp-cvs
backendName: gcp-std-so-with-pool
projectNumber: '531265380079"'
apiRegion: europe-westl
apiKey:
type: service account
project id: cloud-native-data
private key id: "<id value>"
private key: |-

client email: cloudvolumes-admin-sa@cloud-native-
data.iam.gserviceaccount.com
client id: '107071413297115343396"
auth uri: https://accounts.google.com/o/ocauth2/auth
token uri: https://oauth2.googleapis.com/token
auth provider x509 cert url:
https://www.googleapis.com/ocauth2/vl/certs
client x509 cert url:
https://www.googleapis.com/robot/vl/metadata/x509/cloudvolumes—admin-
sa%$40cloud-native-data.iam.gserviceaccount.com
storageClass: software
zone: europe-westl-Db
network: default
storagePools:
- 1bc7£380-3314-6005-45e9-c7dc8c2d7509
servicelevel: Standardsw

What’s next?

After you create the backend configuration file, run the following command:

tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to
determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Configure a NetApp HCI or SolidFire backend

Learn how to create and use an Element backend with your Trident installation.

Element driver details

Trident provides the solidfire-san storage driver to communicate with the cluster. Supported access
modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWriteOncePod
(RWOP).

The solidfire-san storage driver supports file and block volume modes. For the Filesystem
volumeMode, Trident creates a volume and creates a filesystem. The filesystem type is specified by the
StorageClass.

Driver Protocol VolumeMode Access modes File systems
supported supported

solidfire-san iISCSI Block RWO, ROX, RWX, No Filesystem. Raw
RWOP block device.

solidfire-san iSCSI Filesystem RWO, RWOP xfs, ext3, ext4

Before you begin

You'll need the following before creating an Element backend.

* A supported storage system that runs Element software.
* Credentials to a NetApp HCI/SolidFire cluster admin or tenant user that can manage volumes.

+ All of your Kubernetes worker nodes should have the appropriate iSCSI tools installed. Refer to worker
node preparation information.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver Always “solidfire-san”

backendName Custom name or the storage “solidfire_” + storage (iISCSI) IP
backend address

Endpoint MVIP for the SolidFire cluster with

tenant credentials

54

Parameter Description

SVIP Storage (iISCSI) IP address and
port

labels Set of arbitrary JSON-formatted
labels to apply on volumes.

TenantName Tenant name to use (created if not
found)

InitiatorIFace Restrict iSCSI traffic to a specific
host interface

UseCHAP Use CHAP to authenticate iSCSI.
Trident uses CHAP.

AccessGroups List of Access Group IDs to use

Types QoS specifications

limitVolumeSize Fail provisioning if requested

volume size is above this value

debugTraceFlags Debug flags to use when null
troubleshooting. Example,
{“api”:false, “method”:true}
@ Do not use debugTraceFlags unless you are troubleshooting and require a detailed log dump.

Default

“default”

true

Finds the ID of an access group
named “trident”

“w

(not enforced by default)

Example 1: Backend configuration for solidfire-san driver with three volume types

This example shows a backend file using CHAP authentication and modeling three volume types with specific
QoS guarantees. Most likely you would then define storage classes to consume each of these using the T0PS

storage class parameter.

55

version: 1
storageDriverName: solidfire-san
Endpoint: https://<user>:<password>@<mvip>/json-rpc/8.0
SVIP: "<svip>:3260"
TenantName: "<tenant>"
labels:
k8scluster: devl
backend: devl-element-cluster
UseCHAP: true
Types:
- Type: Bronze
Qos:
minIOPS: 1000
maxIOPS: 2000
burstIOPS: 4000
- Type: Silver
Qos:
minIOPS: 4000
maxIOPS: 6000
burstIOPS: 8000
- Type: Gold
Qos:
minIOPS: 6000
maxIOPS: 8000
burstIOPS: 10000

Example 2: Backend and storage class configuration for solidfire-san driver with virtual pools

This example shows the backend definition file configured with virtual pools along with StorageClasses that
refer back to them.

Trident copies labels present on a storage pool to the backend storage LUN at provisioning. For convenience,
storage administrators can define labels per virtual pool and group volumes by label.

In the sample backend definition file shown below, specific defaults are set for all storage pools, which set the
type at Silver. The virtual pools are defined in the storage section. In this example, some of the storage
pools set their own type, and some pools override the default values set above.

version: 1

storageDriverName: solidfire-san

Endpoint: https://<user>:<password>@<mvip>/json-rpc/8.0
SVIP: "<svip>:3260"

TenantName: "<tenant>"

UseCHAP: true

56

Types:
- Type: Bronze
Qos:
minIOPS: 1000
maxIOPS: 2000
burstIOPS: 4000
- Type: Silver
Qos:
minIOPS: 4000
maxIOPS: 6000
burstIOPS: 8000
- Type: Gold
Qos:
minIOPS: 6000
maxIOPS: 8000
burstIOPS: 10000
type: Silver
labels:
store: solidfire
k8scluster: dev-l-cluster
region: us-east-1

storage:

- labels:
performance: gold
cost: '4'

zone: us-east-la
type: Gold

- labels:
performance: silver
cost: '3"

zone: us-east-1b
type: Silver

- labels:
performance: bronze
cost: '2'"

zone: us-east-1c
type: Bronze

- labels:
performance: silver
cost: '1"

zone: us-east-1d

The following StorageClass definitions refer to the above virtual pools. Using the parameters.selector
field, each StorageClass calls out which virtual pool(s) can be used to host a volume. The volume will have the
aspects defined in the chosen virtual pool.

57

The first StorageClass (solidfire-gold-four) will map to the first virtual pool. This is the only pool offering
gold performance with a Vvolume Type QoS of Gold. The last StorageClass (solidfire-silver) calls out
any storage pool which offers a silver performance. Trident will decide which virtual pool is selected and
ensures the storage requirement is met.

58

apiVersion:

storage.k8s.io/vl

kind: StorageClass

metadata:

name: solidfire-gold-four

provisioner:
parameters:
selector:

csi.trident.netapp.io

"performance=gold; cost=4"

fsType: "ext4d"

apiVersion:

storage.k8s.io/vl1

kind: StorageClass

metadata:

name: solidfire-silver-three

provisioner:
parameters:
selector:

csi.trident.netapp.io

"performance=silver; cost=3"

fsType: "ext4d"

apiVersion:

storage.k8s.io/vl

kind: StorageClass

metadata:

name: solidfire-bronze-two

provisioner:
parameters:
selector:

csi.trident.netapp.io

"performance=bronze; cost=2"

fsType: "ext4d"

apiVersion:

storage.k8s.io/vl

kind: StorageClass

metadata:

name: solidfire-silver-one

provisioner:
parameters:
selector:

csi.trident.netapp.io

"performance=silver; cost=1"

fsType: "extd"

apiVersion:

storage.k8s.io/vl

kind: StorageClass

metadata:

name: solidfire-silver

provisioner:
parameters:
selector:

csi.trident.netapp.io

"performance=silver"

fsType: "ext4d"

59

Find more information

* Volume access groups

ONTAP SAN drivers

ONTAP SAN driver overview

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP
SAN drivers.

ONTAP SAN driver details

Trident provides the following SAN storage drivers to communicate with the ONTAP cluster. Supported access
modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWriteOncePod
(RWOP).

Driver Protocol volumeMod Access modes File systems supported
e supported
ontap-san iSCSI Block RWO, ROX, RWX, RWOP No filesystem; raw block
SCSl over device
FC (tech
preview in
Trident
24.10)
ontap-san iSCSI Filesystem RWO, RWOP xfs, ext3, ext4d
SCSI over
FC (tech ROX and RWX are not
preview in available in Filesystem
Trident volume mode.
24.10)
ontap-san NVMe/TCP Block RWO, ROX, RWX, RWOP No filesystem; raw block
device
Refer to
Additional
consideratio
ns for
NVMe/TCP.
ontap-san NVMe/TCP Filesystem RWO, RWOP xfs, ext3, ext4
Refer to ROX and RWX are not
Additional available in Filesystem
consideratio volume mode.
ns for
NVMe/TCP.

60

https://docs.netapp.com/us-en/trident-2410/trident-concepts/vol-access-groups.html

Driver Protocol volumeMod Access modes File systems supported

e supported
ontap-san-economy iSCSI Block RWO, ROX, RWX, RWOP No filesystem; raw block
device
Ontap—san—economy iSCSI Filesystem RWO, RWOP XfS, ext3, ext4

ROX and RWX are not
available in Filesystem
volume mode.

* Use ontap-san-economy only if persistent volume usage count is expected to be higher
than supported ONTAP volume limits.

@ * Use ontap-nas-economy only if persistent volume usage count is expected to be higher
than supported ONTAP volume limits and the ontap-san-economy driver cannot be used.

* Do not use use ontap-nas-economy if you anticipate the need for data protection,
disaster recovery, or mobility.

User permissions

Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster user or a
vsadmin SVM user, or a user with a different name that has the same role. For Amazon FSx for NetApp
ONTAP deployments, Trident expects to be run as either an ONTAP or SVM administrator, using the cluster
fsxadmin user or a vsadmin SVM user, or a user with a different name that has the same role. The
fsxadmin user is a limited replacement for the cluster admin user.

If you use the 1imitAggregateUsage parameter, cluster admin permissions are required.

@ When using Amazon FSx for NetApp ONTAP with Trident, the 1imitAggregateUsage
parameter will not work with the vsadmin and fsxadmin user accounts. The configuration
operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don't
recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,
making upgrades difficult and error-prone.

Additional considerations for NVMe/TCP

Trident supports the non-volatile memory express (NVMe) protocol using the ontap-san driver including:

* IPv6
» Snapshots and clones of NVMe volumes
* Resizing an NVMe volume

 Importing an NVMe volume that was created outside of Trident so that its lifecycle can be managed by
Trident

* NVMe-native multipathing

» Graceful or ungraceful shutdown of the K8s nodes (24.06)

61

https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html
https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html

Trident does not support:

* DH-HMAC-CHAP that is supported by natively by NVMe
* Device mapper (DM) multipathing
* LUKS encryption

Prepare to configure backend with ONTAP SAN drivers

Understand the requirements and authentication options for configuring an ONTAP
backend with ONTAP SAN drivers.

Requirements

For all ONTAP backends, Trident requires at least one aggregate assigned to the SVM.

Remember that you can also run more than one driver, and create storage classes that point to one or the
other. For example, you could configure a san-dev class that uses the ontap-san driver and a san-
default class that uses the ontap-san-economy one.

All your Kubernetes worker nodes must have the appropriate iSCSI tools installed. Refer to Prepare the worker
node for details.

Authenticate the ONTAP backend

Trident offers two modes of authenticating an ONTAP backend.

* Credential-based: The username and password to an ONTAP user with the required permissions. It is
recommended to use a pre-defined security login role, such as admin or vsadmin to ensure maximum
compatibility with ONTAP versions.

* Certificate-based: Trident can also communicate with an ONTAP cluster using a certificate installed on the
backend. Here, the backend definition must contain Base64-encoded values of the client certificate, key,
and the trusted CA certificate if used (recommended).

You can update existing backends to move between credential-based and certificate-based methods. However,
only one authentication method is supported at a time. To switch to a different authentication method, you must
remove the existing method from the backend configuration.

@ If you attempt to provide both credentials and certificates, backend creation will fail with an
error that more than one authentication method was provided in the configuration file.
Enable credential-based authentication

Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the ONTAP
backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin. This
ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by future
Trident releases. A custom security login role can be created and used with Trident, but is not recommended.

A sample backend definition will look like this:

62

YAML

version: 1

backendName: ExampleBackend
storageDriverName: ontap-san
managementLIF: 10.0.0.1

svm: svm nfs

username: vsadmin

password: password

JSON

"version": 1,

"backendName": "ExampleBackend",
"storageDriverName": "ontap-san",
"managementLIF": "10.0.0.1",
"svm": "svm nfs",

"username": "vsadmin",

"password": "password"

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the
backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The
creation or update of a backend is the only step that requires knowledge of the credentials. As such, it is an
admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three
parameters are required in the backend definition.

« clientCertificate: Base64-encoded value of client certificate.

« clientPrivateKey: Base64-encoded value of associated private key.

« trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter

must be provided. This can be ignored if no trusted CA is used.
A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to
authenticate as.

63

openssl reqg -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key
-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=admin"

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage
administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-
name> -vserver <vserver—-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled
true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-
name> -vserver <vserver—-name>
security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name admin -application ontapi
—-authentication-method cert
security login create -user-or-group-name admin -application http

—authentication-method cert

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>
with Management LIF IP and SVM name.

curl -X POST -Lk https://<ONTAP-Management-
LIF>/servlets/netapp.servlets.admin.XMLrequest filer --key k8senv.key
--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp
xmlns="http://www.netapp.com/filer/admin" version="1.21"
vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert base64
base64 -w 0 k8senv.key >> key base64
base64 -w 0 trustedca.pem >> trustedca base6t4

7. Create backend using the values obtained from the previous step.

64

cat cert-backend.json

{

"version": 1,

"storageDriverName": "ontap-san",

"backendName": "SanBackend",

"managementLIF": "1.2.3.4",

"svm": "vserver test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",
"clientPrivateKey": "LSOtFaKE...0VaLuESOtLSOK",
"trustedCACertificate": "QNFinfO...SigOyN",
"storagePrefix": "myPrefix "

}

tridentctl create backend -f cert-backend.json -n trident

femsmmmmmm== R fes==s=ssssscscscssossssssssssssss=sa==
from e fr e +

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

I S e e e e e
e fremmmeme== iF

| SanBackend | ontap-san | 586blcd5-8cf8-428d-a76c-2872713612cl |
online | 0 |

fessmmmmeme== frememesessess==== fessssssssssssesessaososssssssssss o=
f=mm==== fememema== +

Update authentication methods or rotate credentials

You can update an existing backend to use a different authentication method or to rotate their credentials. This
works both ways: backends that make use of username/password can be updated to use certificates;
backends that utilize certificates can be updated to username/password based. To do this, you must remove
the existing authentication method and add the new authentication method. Then use the updated
backend.json file containing the required parameters to execute tridentctl backend update.

65

cat cert-backend-updated.json

{

"version": 1,
"storageDriverName": "ontap-san",
"backendName": "SanBackend",
"managementLIF": "1.2.3.4",
"svm": "vserver test",
"username": "vsadmin",
"password": "password",
"storagePrefix": "myPrefix "

}

#Update backend with tridentctl
tridentctl update backend SanBackend -f cert-backend-updated.json -n
trident

e fom e o
e fremmmeme== W+

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

R femsmemessess==== fesssssmes s e s ss s osessssss s ess
fmmm==== femememm== 4

| SanBackend | ontap-san | 586blcd5-8cf8-428d-a76c-2872713612cl |
online | 9 |

femmmmmmmma== R fessssssssssssesessosssssasssssssasaaaa
e e 1

When rotating passwords, the storage administrator must first update the password for the user

(D on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates
can be added to the user. The backend is then updated to use the new certificate, following
which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume
connections made after. A successful backend update indicates that Trident can communicate with the ONTAP
backend and handle future volume operations.

Create custom ONTAP role for Trident

You can create an ONTAP cluster role with minimum privileges so that you do not have to use the ONTAP
admin role to perform operations in Trident. When you include the username in a Trident backend
configuration, Trident uses the ONTAP cluster role you created to perform the operations.

Refer to Trident custom-role generator for more information about creating Trident custom roles.

66

https://github.com/NetApp/trident/tree/master/contrib/ontap/trident_role

Using ONTAP CLI
1. Create a new role using the following command:

security login role create <role name\> -cmddirname "command" -access all
-vserver <svm name\>

2. Create a usename for the Trident user:

security login create -username <user name\> -application ontapi
-—authmethod <password\> -role <name of role in step 1\> -vserver
<svm_name\> -comment "user description”

3. Map the role to the user:

security login modify username <user name\> —-vserver <svm name\> -role
<role name\> -application ontapi -application console -authmethod
<password\>

Using System Manager
Perform the following steps in ONTAP System Manager:

1. Create a custom role:
a. To create a custom role at the cluster-level, select Cluster > Settings.
(Or) To create a custom role at the SVM level, select Storage > Storage VMs > required SVM>
Settings > Users and Roles.
b. Select the arrow icon (—) next to Users and Roles.
c. Select +Add under Roles.
d. Define the rules for the role and click Save.

2. Map the role to the Trident user:
+ Perform the following steps on the Users and Roles page:

a. Select Add icon + under Users.
b. Select the required username, and select a role in the drop-down menu for Role.

c. Click Save.

Refer to the following pages for more information:

» Custom roles for administration of ONTAP or Define custom roles

* Work with roles and users

Authenticate connections with bidirectional CHAP

Trident can authenticate iISCSI sessions with bidirectional CHAP for the ontap-san and ontap-san-
economy drivers. This requires enabling the useCHAP option in your backend definition. When set to true,
Trident configures the SVM'’s default initiator security to bidirectional CHAP and set the username and secrets
from the backend file. NetApp recommends using bidirectional CHAP to authenticate connections. See the
following sample configuration:

67

https://kb.netapp.com/on-prem/ontap/Ontap_OS/OS-KBs/FAQ__Custom_roles_for_administration_of_ONTAP
https://docs.netapp.com/us-en/ontap/authentication/define-custom-roles-task.html
https://docs.netapp.com/us-en/ontap-automation/rest/rbac_roles_users.html#rest-api

version: 1

storageDriverName: ontap-san
backendName: ontap san chap
managementLIF: 192.168.0.135

svm: ontap iscsi svm

useCHAP: true

username: vsadmin

password: password
chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz

@ The useCHAP parameter is a Boolean option that can be configured only once. It is set to false
by default. After you set it to true, you cannot set it to false.

In addition to useCHAP=true, the chapInitiatorSecret, chapTargetInitiatorSecret,
chapTargetUsername, and chapUsername fields must be included in the backend definition. The secrets
can be changed after a backend is created by running tridentctl update.

How it works

By setting useCHAP to true, the storage administrator instructs Trident to configure CHAP on the storage
backend. This includes the following:

 Setting up CHAP on the SVM:

o If the SVM’s default initiator security type is none (set by default) and there are no pre-existing LUNs
already present in the volume, Trident will set the default security type to CHAP and proceed to
configuring the CHAP initiator and target username and secrets.

o If the SVM contains LUNs, Trident will not enable CHAP on the SVM. This ensures that access to
LUNSs that are already present on the SVM isn’t restricted.

» Configuring the CHAP initiator and target username and secrets; these options must be specified in the
backend configuration (as shown above).

After the backend is created, Trident creates a corresponding tridentbackend CRD and stores the CHAP
secrets and usernames as Kubernetes secrets. All PVs that are created by Trident on this backend will be
mounted and attached over CHAP.

Rotate credentials and update backends

You can update the CHAP credentials by updating the CHAP parameters in the backend. json file. This will
require updating the CHAP secrets and using the tridentctl update command to reflect these changes.

When updating the CHAP secrets for a backend, you must use tridentctl to update the
backend. Do not update the credentials on the storage cluster through the CLI/ONTAP Ul as
Trident will not be able to pick up these changes.

68

cat backend-san.json

"version": 1,

"storageDriverName": "ontap-san",
"backendName": "ontap san chap",
"managementLIF": "192.168.0.135",

"svm": "ontap iscsi svm",

"useCHAP": true,

"username": "vsadmin",

"password": "password",
"chapInitiatorSecret": "cl9gxUpDaTeD",
"chapTargetInitiatorSecret": "rgxigXgkeUpDaTeD",
"chapTargetUsername": "iJF4heBRTOTCwxyz",
"chapUsername": "uh2aNCLSd6cNwxyz",

./tridentctl update backend ontap san chap -f backend-san.json -n trident

- e +

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

o Fom e
- o +

| ontap san chap | ontap-san | aad458f3b-ad2d-4378-8a33-1a472ffbeb5c |
online | T

e —— e — e e ettt
t——— R +

Existing connections will remain unaffected; they will continue to remain active if the credentials are updated by
Trident on the SVM. New connections use the updated credentials and existing connections continue to remain
active. Disconnecting and reconnecting old PVs will result in them using the updated credentials.

ONTAP SAN configuration options and examples

Learn how to create and use ONTAP SAN drivers with your Trident installation. This
section provides backend configuration examples and details for mapping backends to
StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

69

Parameter

storageDrive
rName

backendName

managementLI
F

datalLlIF

svm

useCHAP

chapInitiato
rSecret

labels

70

Description Default

Name of the storage driver ontap-nas, ontap-nas-
economy, ontap-nas-
flexgroup, ontap-san, ontap-
san—-economy

Custom name or the storage backend Driver name +"_" + dataLIF

IP address of a cluster or SVM management LIF. “10.0.0.17, “[2001:1234:abcd::fefe]”

A fully-qualified domain name (FQDN) can be
specified.

Can be set to use IPv6 addresses if Trident was
installed using the IPv6 flag. IPv6 addresses must be
defined in square brackets, such as
[28e8:d9fb:a825:b7bf:69%9a8:d02f:9e7b:3555
1.

For seamless MetroCluster switchover, see the [mcc-
best].

IP address of protocol LIF. Derived by the SVM

Can be set to use IPv6 addresses if Trident was
installed using the IPv6 flag. IPv6 addresses must be
defined in square brackets, such as
[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555

1.

Do not specify for iSCSI. Trident uses ONTAP
Selective LUN Map to discover the iSCI LIFs needed
to establish a multi path session. A warning is
generated if dataLIF is explicitly defined.

Omit for Metrocluster. See the [mcc-best].

Storage virtual machine to use Derived if an SVM
managementLIF is specified

Omit for Metrocluster. See the [mcc-best].

Use CHAP to authenticate iSCSI for ONTAP SAN false
drivers [Boolean].

Set to true for Trident to configure and use
bidirectional CHAP as the default authentication for
the SVM given in the backend. Refer to Prepare to
configure backend with ONTAP SAN drivers for
details.

CHAP initiator secret. Required if useCHAP=true

Set of arbitrary JSON-formatted labels to apply on
volumes

https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html
https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html

Parameter

chapTargetIn
itiatorSecre
t

chapUsername

chapTargetUs
ername

clientCertif
icate

clientPrivat
eKey

trustedCACer
tificate
username
password

svm

storagePrefi
X

aggregate

Description

CHAP target initiator secret. Required if
useCHAP=true

Inbound username. Required if useCHAP=true

Target username. Required if useCHAP=true

Base64-encoded value of client certificate. Used for
certificate-based auth

Base64-encoded value of client private key. Used for
certificate-based auth

Base64-encoded value of trusted CA certificate.
Optional. Used for certificate-based authentication.

Username needed to communicate with the ONTAP
cluster. Used for credential-based authentication.

Password needed to communicate with the ONTAP
cluster. Used for credential-based authentication.

Storage virtual machine to use

Prefix used when provisioning new volumes in the
SVM.

Cannot be modified later. To update this parameter,
you will need to create a new backend.

Aggregate for provisioning (optional; if set, must be
assigned to the SVM). For the ontap-nas-
flexgroup driver, this option is ignored. If not
assigned, any of the available aggregates can be
used to provision a FlexGroup volume.

When the aggregate is updated in
SVM, it is updated in Trident
automatically by polling SVM without
having to restart the Trident Controller.
When you have configured a specific
aggregate in Trident to provision
volumes, if the aggregate is renamed
or moved out of the SVM, the backend
will move to failed state in Trident while
polling the SVM aggregate. You must
either change the aggregate to one that
is present on the SVM or remove it
altogether to bring the backend back
online.

Default

Derived if an SVM
managementLIF is specified

trident

71

Parameter Description Default

limitAggrega Fail provisioning if usage is above this percentage. " (not enforced by default)
teUsage

If you are using an Amazon FSx for NetApp ONTAP

backend, do not specify 1imitAggregateUsage.

The provided fsxadmin and vsadmin do not contain

the permissions required to retrieve aggregate usage

and limit it using Trident.

limitVolumes Fail provisioning if requested volume size is above " (not enforced by default)
ize this value.

Also restricts the maximum size of the volumes it
manages for LUNs.

lunsPerFlexv Maximum LUNs per Flexvol, must be in range [50, 100
ol 200]

debugTraceFl Debug flags to use when troubleshooting. Example, null
ags {"api":false, "method":true}

Do not use unless you are troubleshooting and require
a detailed log dump.

useREST Boolean parameter to use ONTAP REST APIs. true for ONTAP 9.15.1 or later,
otherwise false.
useREST When set to true, Trident uses ONTAP
REST APIs to communicate with the backend; when
setto false, Trident uses ONTAP ZAPI calls to
communicate with the backend. This feature requires
ONTAP 9.11.1 and later. In addition, the ONTAP login
role used must have access to the ontap application.
This is satisfied by the pre-defined vsadmin and
cluster-admin roles. Beginning with the Trident
24.06 release and ONTAP 9.15.1 or later, useREST is
set to true by default; change useREST to false to
use ONTAP ZAPI calls.

useREST is fully qualified for NVMe/TCP.

sanType Use to select iscsi for iISCSI, nvme for NVMe/TCP iscsi if blank
or fcp for SCSI over Fibre Channel (FC).

'fcp’ (SCSI over FC) is a tech preview feature in the
Trident 24.10 release.

72

Parameter Description Default

formatOption Use formatOptions to specify command line

s arguments for the mkfs command, which will be
applied whenever a volume is formatted. This allows
you to format the volume according to your
preferences. Make sure to specify the formatOptions
similar to that of the mkfs command options,
excluding the device path.
Example: "-E nodiscard"

Supported for ontap-san and ontap-san-
economy drivers only.

limitVolumeP Maximum requestable FlexVol size when using LUNs (not enforced by default)

oolSize in ontap-san-economy backend.

denyNewVolum Restricts ontap-san-economy backends from

ePools creating new FlexVol volumes to contain their LUNs.
Only preexisting Flexvols are used for provisioning
new PVs.

Recommendations for using formatOptions

Trident recommends the following option to expedite the formatting process:
-E nodiscard:

* Keep, do not attempt to discard blocks at mkfs time (discarding blocks initially is useful on solid state
devices and sparse / thin-provisioned storage). This replaces the deprecated option “-K” and it is applicable
to all the file systems (xfs, ext3, and ext4).

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an
example, see the configuration examples below.

Parameter Description Default

spaceAllocat Space-allocation for LUNs "true”

ion

spaceReserve Space reservation mode; "none" (thin) or "volume" "none"
(thick)

snapshotPoli Snapshot policy to use "none"

cy

73

Parameter

gosPolicy

adaptiveQosP
olicy

snapshotRese
rve

splitOnClone

encryption

luksEncrypti
on

securityStyl
e

tieringPolic
y

nameTemplate

Description

QoS policy group to assign for volumes created.
Choose one of qosPolicy or adaptiveQosPolicy per
storage pool/backend.

Using QoS policy groups with Trident requires ONTAP
9.8 or later. You should use a non-shared QoS policy
group and ensuring the policy group is applied to each
constituent individually. A shared QoS policy group
enforces the ceiling for the total throughput of all

workloads.

Adaptive QoS policy group to assign for volumes
created. Choose one of qosPolicy or
adaptiveQosPolicy per storage pool/backend

Percentage of volume reserved for snapshots

Split a clone from its parent upon creation

Enable NetApp Volume Encryption (NVE) on the new
volume; defaults to false. NVE must be licensed and
enabled on the cluster to use this option.

If NAE is enabled on the backend, any volume
provisioned in Trident will be NAE enabled.

For more information, refer to: How Trident works with

NVE and NAE.

Enable LUKS encryption. Refer to Use Linux Unified
Key Setup (LUKS).

LUKS encryption is not supported for NVMe/TCP.

Security style for new volumes

Tiering policy to use "none"

Template to create custom volume names.

Volume provisioning examples

Here’s an example with defaults defined:

74

Default

"0" if snapshotPolicy is "none",
otherwise "

"false"

"false"

unix

"snapshot-only" for pre-ONTAP 9.5
SVM-DR configuration

https://docs.netapp.com/us-en/trident-2410/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2410/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2410/trident-reco/security-luks.html
https://docs.netapp.com/us-en/trident-2410/trident-reco/security-luks.html

version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
svm: trident svm
username: admin
password: <password>
labels:
k8scluster: dev2
backend: dev2-sanbackend
storagePrefix: alternate-trident
debugTraceFlags:
api: false
method: true
defaults:
spaceReserve: volume
qgosPolicy: standard
spaceAllocation: 'false'
snapshotPolicy: default
snapshotReserve: '10'

For all volumes created using the ontap-san driver, Trident adds an extra 10 percent capacity
to the FlexVol to accommodate the LUN metadata. The LUN will be provisioned with the exact

@ size that the user requests in the PVC. Trident adds 10 percent to the FlexVol (shows as
Available size in ONTAP). Users will now get the amount of usable capacity they requested. This
change also prevents LUNs from becoming read-only unless the available space is fully utilized.
This does not apply to ontap-san-economy.

For backends that define snapshotReserve, Trident calculates the size of volumes as follows:

Total volume size = [(PVC requested size) / (1 - (snapshotReserve
percentage) / 100)] * 1.1

The 1.1 is the extra 10 percent Trident adds to the FlexVol to accommodate the LUN metadata. For
snapshotReserve = 5%, and PVC request = 5GiB, the total volume size is 5.79GiB and the available size is
5.5GiB. The volume show command should show results similar to this example:

Aggregate State i Available Used%

_pvc_B89f1c156_3801_4ded4_979d_034d54c395f4
online RW 18GB 5.88GB
_pvc_ed42ecbfe_3baa_4afb6_996d_134adbbbB8ebd
online RW 5.79GB 5.50GB
_pvc_eB372153_9ad9_474a_951a_0Bael5elc@ba
online RW 1GB 511.8MB
3 entries were displayed.

75

Currently, resizing is the only way to use the new calculation for an existing volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest
way to define a backend.

@ If you are using Amazon FSx on NetApp ONTAP with Trident, we recommend you specify DNS
names for LIFs instead of IP addresses.

ONTAP SAN example

This is a basic configuration using the ontap-san driver.

version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
svm: svm_iscsi
labels:
k8scluster: test-cluster-1
backend: testclusterl-sanbackend
username: vsadmin

password: <password>

ONTAP SAN economy example

version: 1

storageDriverName: ontap-san-economy
managementLIF: 10.0.0.1

svm: svm_iscsi eco

username: vsadmin

password: <password>

1. example

76

You can configure the backend to avoid having to manually update the backend definition after switchover
and switchback during SVM replication and recovery.

For seamless switchover and switchback, specify the SVM using managementLIF and omit the
dataLIF and svm parameters. For example:

version: 1
storageDriverName: ontap-san
managementLIF: 192.168.1.66
username: vsadmin

password: password

Certificate-based authentication example

In this basic configuration example clientCertificate, clientPrivateKey, and
trustedCACertificate (optional, if using trusted CA) are populated in backend. json and take the
base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

version: 1

storageDriverName: ontap-san

backendName: DefaultSANBackend

managementLIF: 10.0.0.1

svm: svm_iscsi

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz
clientCertificate: ZXR0OZXJwYXB...ICMgJd3BhcGVyc2
clientPrivateKey: vciwKIyAgZG...0cnksIGR1c2NyaX
trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz

https://docs.netapp.com/us-en/trident-2410/trident-reco/backup.html#svm-replication-and-recovery

Bidirectional CHAP examples

These examples create a backend with useCHAP set to true.

78

ONTAP SAN CHAP example

version: 1
storageDriverName: ontap-san
managementLIF: 10.0.0.1
svm: svm _iscsi
labels:

k8scluster: test-cluster-1

backend: testclusterl-sanbackend
useCHAP: true
chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: 1JF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz
username: vsadmin

password: <password>

ONTAP SAN economy CHAP example

version: 1

storageDriverName: ontap-san-economy
managementLIF: 10.0.0.1

svm: svm_iscsi eco

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

NVMe/TCP example

You must have an SVM configured with NVMe on your ONTAP backend. This is a basic backend
configuration for NVMe/TCP.

version: 1

backendName: NVMeBackend
storageDriverName: ontap-san
managementLIF: 10.0.0.1

Svm: Svm_nvme

username: vsadmin

password: password

sanType: nvme

useREST: true

Backend configuration example with nameTemplate

version: 1
storageDriverName: ontap-san
backendName: ontap-san-backend
managementLIF: <ip address>
svm: svm0
username: <admin>
password: <password>
defaults: {
"nameTemplate":
"{{.volume.Name}} {{.labels.cluster}} {{.volume.Namespace}} {{.volume.R
equestName} } "
bo
"labels": {"cluster": "ClusterA", "PVC":
"{{.volume.Namespace}} {{.volume.RequestName}}"}

formatOptions example for ontap-san-economy driver

version: 1
storageDriverName: ontap-san-—-economy
managementLIF: "'
svm: svml
username: ''
password: "!"
storagePrefix: whelk
debugTraceFlags:
method: true
api: true
defaults:
formatOptions: "-E nodiscard"

Examples of backends with virtual pools

In these sample backend definition files, specific defaults are set for all storage pools, such as spaceReserve
at none, spaceAllocation atfalse, and encryption at false. The virtual pools are defined in the storage
section.

Trident sets provisioning labels in the "Comments" field. Comments are set on the FlexVol. Trident copies all
labels present on a virtual pool to the storage volume at provisioning. For convenience, storage administrators
can define labels per virtual pool and group volumes by label.

In these examples, some of the storage pools set their own spaceReserve, spaceAllocation, and
encryption values, and some pools override the default values.

80

ONTAP SAN example

81

version: 1

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: svm iscsi

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: 1JF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

defaults:
spaceAllocation: 'false'
encryption: 'false'

gosPolicy: standard
labels:
store: san store
kubernetes-cluster: prod-cluster-1
region: us east 1
storage:
- labels:
protection: gold
creditpoints: '40000"
zone: us_east la
defaults:
spaceAllocation: 'true'
encryption: 'true'
adaptiveQosPolicy: adaptive-extreme
- labels:
protection: silver
creditpoints: '20000'
zone: us_east 1b

defaults:
spaceAllocation: 'false'
encryption: 'true'

qosPolicy: premium
- labels:
protection: bronze
creditpoints: '5000'
zone: us_east lc
defaults:
spaceAllocation: 'true'

encryption: 'false'

ONTAP SAN economy example

version: 1

storageDriverName: ontap-san-economy
managementLIF: 10.0.0.1

svm: svm_iscsi eco

useCHAP: true

chapInitiatorSecret: cl9gxIm36DKyawxy
chapTargetInitiatorSecret: rgxigXgkesIpwxyz
chapTargetUsername: iJF4heBRTOTCwxyz
chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

defaults:
spaceAllocation: 'false'
encryption: 'false'
labels:

store: san_economy store
region: us east 1
storage:
- labels:
app: oracledb
cost: '30'
zone: us_ east la
defaults:
spaceAllocation: 'true'
encryption: 'true'
- labels:
app: postgresdb
cost: '20"'
zone: us_east 1b
defaults:
spaceAllocation: 'false'
encryption: 'true'
- labels:
app: mysqgldb
cost: '10"
zone: us_east lc
defaults:
spaceAllocation: 'true'
encryption: 'false'
- labels:
department: legal
creditpoints: '5000'
zone: us_east lc

defaults:
spaceAllocation: 'true'
encryption: 'false'

NVMe/TCP example

version: 1
storageDriverName: ontap-san
sanType: nvme
managementLIF: 10.0.0.1
Svm: nvme_Svm
username: vsadmin
password: <password>
useREST: true
defaults:
spaceAllocation: 'false'
encryption: 'true'
storage:
- labels:
app: testApp
cost: '20'
defaults:
spaceAllocation: 'false'
encryption: 'false'

Map backends to StorageClasses

The following StorageClass definitions refer to the Examples of backends with virtual pools. Using the
parameters.selector field, each StorageClass calls out which virtual pools can be used to host a volume.
The volume will have the aspects defined in the chosen virtual pool.

* The protection—-gold StorageClass will map to the first virtual pool in the ontap-san backend. This is
the only pool offering gold-level protection.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-gold
provisioner: csi.trident.netapp.io
parameters:
selector: "protection=gold"
fsType: "ext4d"

84

* The protection-not-gold StorageClass will map to the second and third virtual pool in ontap-san
backend. These are the only pools offering a protection level other than gold.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-not-gold
provisioner: csi.trident.netapp.io
parameters:
selector: "protection!=gold"
fsType: "ext4d"

* The app-mysqgldb StorageClass will map to the third virtual pool in ontap-san-economy backend. This

is the only pool offering storage pool configuration for the mysqldb type app.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: app-mysqgldb
provisioner: csi.trident.netapp.io
parameters:

selector: "app=mysqgldb"

fsType: "ext4d"

* The protection-silver-creditpoints-20k StorageClass will map to the second virtual pool in
ontap-san backend. This is the only pool offering silver-level protection and 20000 creditpoints.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-silver-creditpoints-20k
provisioner: csi.trident.netapp.io
parameters:
selector: "protection=silver; creditpoints=20000"

fsType: "ext4d"

* The creditpoints-5k StorageClass will map to the third virtual pool in ontap-san backend and the
fourth virtual pool in the ontap-san-economy backend. These are the only pool offerings with 5000
creditpoints.

85

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: creditpoints-5k
provisioner: csi.trident.netapp.io
parameters:
selector: "creditpoints=5000"
fsType: "ext4d"

* The my-test-app-sc StorageClass will map to the testAPP virtual pool in the ontap-san driver with
sanType: nvme. This is the only pool offering testApp.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: my-test-app-sc
provisioner: csi.trident.netapp.io
parameters:

selector: "app=testApp"

fsType: "ext4d"

Trident will decide which virtual pool is selected and ensures the storage requirement is met.

ONTAP NAS drivers

ONTAP NAS driver overview

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP
NAS drivers.

ONTAP NAS driver details

Trident provides the following NAS storage drivers to communicate with the ONTAP cluster. Supported access
modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWrite OncePod
(RWOP).

Driver Protocol volumeMod Access modes File systems supported
e supported
ontap-nas NFS Filesystem RWO, ROX, RWX, RWOP " nfs, smb
SMB
ontap-nas-economy NFS Filesystem RWO, ROX, RWX, RWOP ™ nfs, smb
SMB

86

Driver Protocol volumeMod Access modes File systems supported

e supported

ontap-nas-flexgroup NFS Filesystem RWO, ROX, RWX, RWOP "™ nfs, smb
SMB

* Use ontap-san-economy only if persistent volume usage count is expected to be higher
than supported ONTAP volume limits.

@ * Use ontap-nas—-economy only if persistent volume usage count is expected to be higher
than supported ONTAP volume limits and the ontap-san-economy driver cannot be used.

* Do not use use ontap-nas-economny if you anticipate the need for data protection,
disaster recovery, or mobility.

User permissions

Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster user or a

vsadmin SVM user, or a user with a different name that has the same role.

For Amazon FSx for NetApp ONTAP deployments, Trident expects to be run as either an ONTAP or SVM
administrator, using the cluster fsxadmin user or a vsadmin SVM user, or a user with a different name that
has the same role. The fsxadmin user is a limited replacement for the cluster admin user.

If you use the 1imitAggregateUsage parameter, cluster admin permissions are required.

@ When using Amazon FSx for NetApp ONTAP with Trident, the 1imitAggregateUsage
parameter will not work with the vsadmin and fsxadmin user accounts. The configuration
operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don’t
recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,
making upgrades difficult and error-prone.

Prepare to configure a backend with ONTAP NAS drivers

Understand the requirements, authentication options, and export policies for configuring
an ONTAP backend with ONTAP NAS drivers.

Requirements

» For all ONTAP backends, Trident requires at least one aggregate assigned to the SVM.

* You can run more than one driver, and create storage classes that point to one or the other. For example,
you could configure a Gold class that uses the ontap-nas driver and a Bronze class that uses the
ontap—nas—economy one.

 All your Kubernetes worker nodes must have the appropriate NFS tools installed. Refer to here for more
details.

* Trident supports SMB volumes mounted to pods running on Windows nodes only. Refer to Prepare to
provision SMB volumes for details.

87

https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html
https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html

Authenticate the ONTAP backend

Trident offers two modes of authenticating an ONTAP backend.

» Credential-based: This mode requires sufficient permissions to the ONTAP backend. It is recommended to
use an account associated with a pre-defined security login role, such as admin or vsadmin to ensure
maximum compatibility with ONTAP versions.

* Certificate-based: This mode requires a certificate installed on the backend for Trident to communicate with
an ONTAP cluster. Here, the backend definition must contain Base64-encoded values of the client
certificate, key, and the trusted CA certificate if used (recommended).

You can update existing backends to move between credential-based and certificate-based methods. However,
only one authentication method is supported at a time. To switch to a different authentication method, you must
remove the existing method from the backend configuration.

@ If you attempt to provide both credentials and certificates, backend creation will fail with an
error that more than one authentication method was provided in the configuration file.
Enable credential-based authentication

Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the ONTAP
backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin. This
ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by future
Trident releases. A custom security login role can be created and used with Trident, but is not recommended.

A sample backend definition will look like this:

88

YAML

version: 1

backendName: ExampleBackend
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2

svm: svm nfs

username: vsadmin

password: password

JSON

"version": 1,

"backendName": "ExampleBackend",
"storageDriverName": "ontap-nas",
"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.2",

"svm": "svm nfs",

"username": "vsadmin",

"password": "password"

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the
backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The
creation/updation of a backend is the only step that requires knowledge of the credentials. As such, it is an
admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based Authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three
parameters are required in the backend definition.
« clientCertificate: Base64-encoded value of client certificate.
« clientPrivateKey: Base64-encoded value of associated private key.
« trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter
must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to
authenticate as.

89

openssl reqg -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key
-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=vsadmin"

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage
administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-
name> -vserver <vserver—-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled
true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-
name> -vserver <vserver—-name>
security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name vsadmin -application ontapi
—authentication-method cert -vserver <vserver-name>
security login create -user-or-group-name vsadmin -application http

—authentication-method cert -vserver <vserver-name>

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>
with Management LIF IP and SVM name. You must ensure the LIF has its service policy set to default-
data-management.

curl -X POST -Lk https://<ONTAP-Management-
LIF>/servlets/netapp.servlets.admin.XMLrequest filer --key k8senv.key
--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp
xmlns="http://www.netapp.com/filer/admin" version="1.21"
vfiler="<vserver-name>"><vserver-get></vserver—-get></netapp>"'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert baseb64
base64 -w 0 k8senv.key >> key base64
base64 -w 0 trustedca.pem >> trustedca baset4

90

7. Create backend using the values obtained from the previous step.

cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "NasBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",
"clientPrivateKey": "LSOtFaKE...O0VaLuESOtLSOK",
"storagePrefix": "myPrefix "

}

#Update backend with tridentctl
tridentctl update backend NasBackend -f cert-backend-updated.json -n

trident

o e Rt bt
o to——————— +

| NAME | STORAGE DRIVER | UulbD

STATE | VOLUMES |

o —— o ettt b L e PP
- F—m +

| NasBackend | ontap-nas | 98el9%b74-aec7-4a3d-8dcf-128e5033b214 |
online | 9 |

e —— - Bt it e e P
o F——— +

Update authentication methods or rotate credentials

You can update an existing backend to use a different authentication method or to rotate their credentials. This
works both ways: backends that make use of username/password can be updated to use certificates;
backends that utilize certificates can be updated to username/password based. To do this, you must remove
the existing authentication method and add the new authentication method. Then use the updated
backend.json file containing the required parameters to execute tridentctl update backend.

91

cat cert-backend-updated.json
{

"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "NasBackend",
"managementLIF": "1.2.3.4",
"dataLIF": "1.2.3.8",

"svm": "vserver test",
"username": "vsadmin",
"password": "password",
"storagePrefix": "myPrefix "

}

#Update backend with tridentctl
tridentctl update backend NasBackend -f cert-backend-updated.json -n
trident

Pommmmmmmmm== Fommmemcemmes=e== B e
Fommmmmoe e +

| NAME | STORAGE DRIVER | UUID

STATE | VOLUMES |

Fommmmmmmomo= S e e Fommmmmmmmesrrrrrrrre e reme s e mmm o
Fommmmme Pommmmmme= +

| NasBackend | ontap-nas | 98el9b74-aec7/-4a3d-8dcf-128e5033b214 |
online | 9 |

P e Fommmmememesesesese s s s s e eses
o= Fommmemm== +

When rotating passwords, the storage administrator must first update the password for the user

@ on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates
can be added to the user. The backend is then updated to use the new certificate, following
which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume
connections made after. A successful backend update indicates that Trident can communicate with the ONTAP
backend and handle future volume operations.

Create custom ONTAP role for Trident

You can create an ONTAP cluster role with minimum privileges so that you do not have to use the ONTAP
admin role to perform operations in Trident. When you include the username in a Trident backend
configuration, Trident uses the ONTAP cluster role you created to perform the operations.

Refer to Trident custom-role generator for more information about creating Trident custom roles.

92

https://github.com/NetApp/trident/tree/master/contrib/ontap/trident_role

Using ONTAP CLI

1. Create a new role using the following command:

security login role create <role name\> -cmddirname "command" -access all
-vserver <svm name\>

2. Create a usename for the Trident user:

security login create -username <user name\> -application ontapi
-—authmethod <password\> -role <name of role in step 1\> -vserver
<svm_name\> -comment "user description”

3. Map the role to the user:

security login modify username <user name\> —-vserver <svm name\> -role
<role name\> -application ontapi -application console -authmethod
<password\>

Using System Manager
Perform the following steps in ONTAP System Manager:

1. Create a custom role:

a. To create a custom role at the cluster-level, select Cluster > Settings.

(Or) To create a custom role at the SVM level, select Storage > Storage VMs > required SVM>
Settings > Users and Roles.

b. Select the arrow icon (—) next to Users and Roles.
c. Select +Add under Roles.
d. Define the rules for the role and click Save.

2. Map the role to the Trident user:
+ Perform the following steps on the Users and Roles page:

a. Select Add icon + under Users.
b. Select the required username, and select a role in the drop-down menu for Role.

c. Click Save.

Refer to the following pages for more information:

» Custom roles for administration of ONTAP or Define custom roles

* Work with roles and users

Manage NFS export policies
Trident uses NFS export policies to control access to the volumes that it provisions.
Trident provides two options when working with export policies:

 Trident can dynamically manage the export policy itself; in this mode of operation, the storage administrator

93

https://kb.netapp.com/on-prem/ontap/Ontap_OS/OS-KBs/FAQ__Custom_roles_for_administration_of_ONTAP
https://docs.netapp.com/us-en/ontap/authentication/define-custom-roles-task.html
https://docs.netapp.com/us-en/ontap-automation/rest/rbac_roles_users.html#rest-api

specifies a list of CIDR blocks that represent admissible IP addresses. Trident adds applicable node IPs
that fall in these ranges to the export policy automatically at publish time. Alternatively, when no CIDRs are
specified, all global-scoped unicast IPs found on the node that the volume being published to will be added
to the export policy.

» Storage administrators can create an export policy and add rules manually. Trident uses the default export
policy unless a different export policy name is specified in the configuration.

Dynamically manage export policies

Trident provides the ability to dynamically manage export policies for ONTAP backends. This provides the
storage administrator the ability to specify a permissible address space for worker node IPs, rather than
defining explicit rules manually. It greatly simplifies export policy management; modifications to the export
policy no longer require manual intervention on the storage cluster. Moreover, this helps restrict access to the
storage cluster only to worker nodes that are mounting volumes and have IPs in the range specified,
supporting a fine-grained and automated management.

Do not use Network Address Translation (NAT) when using dynamic export policies. With NAT,
(D the storage controller sees the frontend NAT address and not the actual IP host address, so
access will be denied when no match is found in the export rules.

In Trident 24.10, ontap-nas storage driver will continue to work as in the earlier releases; no
(D change has been made for ontap-nas driver. Only the ontap-nas-economy storage driver will
have volume based granular access control in Trident 24.10.

Example

There are two configuration options that must be used. Here’s an example backend definition:

version: 1

storageDriverName: ontap-nas—-economy
backendName: ontap nas auto export
managementLIF: 192.168.0.135

svm: svml

username: vsadmin

password: password

autoExportCIDRs:

- 192.168.0.0/24

autoExportPolicy: true

When using this feature, you must ensure that the root junction in your SVM has a previously

(D created export policy with an export rule that permits the node CIDR block (such as the default
export policy). Always follow NetApp recommended best practice to dedicate an SVM for
Trident.

Here is an explanation of how this feature works using the example above:

* autoExportPolicy is setto true. This indicates that Trident creates an export policy for each volume
provisioned with this backend for the svm1 SVM and handle the addition and deletion of rules using

94

autoexportCIDRs address blocks. Until a volume is attached to a node, the volume uses an empty
export policy with no rules to prevent unwanted access to that volume. When a volume is published to a
node Trident creates an export policy with the same name as the underlying gtree containing the node IP
within the specified CIDR block. These IPs will also be added to the export policy used by the parent
FlexVol.

o For example:
= backend UUID 403b5326-8482-40db-96d0-d83fb3f4daec
" autoExportPolicy setto true
= storage prefix trident
= PVC UUID a79bcf5f-7b6d-4a40-9876-e2551f159c1c

= gtree named trident_pvc_a79bcf5f _7b6d_4a40_ 9876 _e2551f159c1c creates an export policy for
the FlexVol named trident-403b5326-8482-40dbPB6d0-d83fb3f4daec , an export policy for
the gtree named
trident pvc a79bcf5f 7b6d 4a40 9876 e2551f159clc, and an empty export policy
named trident empty on the SVM. The rules for the FlexVol export policy will be a superset of
any rules contained in the gtree export policies. The empty export policy will be reused by any
volumes that are not attached.

* autoExportCIDRs contains a list of address blocks. This field is optional and it defaults to ["0.0.0.0/0",
"::/0"]. If not defined, Trident adds all globally-scoped unicast addresses found on the worker nodes with
publications.

In this example, the 192.168.0.0/24 address space is provided. This indicates that Kubernetes node IPs
that fall within this address range with publications will be added to the export policy that Trident creates. When
Trident registers a node it runs on, it retrieves the IP addresses of the node and checks them against the
address blocks provided in autoExportCIDRs. At publish time, after filtering the IPs, Trident creates the
export policy rules for the client IPs for the node it is publishing to.

You can update autoExportPolicy and autoExportCIDRs for backends after you create them. You can
append new CIDRs for a backend that is automatically managed or delete existing CIDRs. Exercise care when
deleting CIDRs to ensure that existing connections are not dropped. You can also choose to disable
autoExportPolicy for a backend and fall back to a manually created export policy. This will require setting
the exportPolicy parameter in your backend config.

After Trident creates or updates a backend, you can check the backend using tridentctl or the
corresponding tridentbackend CRD:

95

./tridentctl get backends ontap nas auto export -n trident -o yaml

items:
- backendUUID: 403b5326-8482-40db-96d0-d83fb3f4daec
config:
aggregate: ""
autoExportCIDRs:

- 192.168.0.0/24
autoExportPolicy: true
backendName: ontap nas auto export
chapInitiatorSecret: ""
chapTargetInitiatorSecret: ""
chapTargetUsername: ""
chapUsername: ""
datalLIF: 192.168.0.135
debug: false
debugTraceFlags: null
defaults:
encryption: "false"
exportPolicy: <automatic>
fileSystemType: extd

When a node is removed, Trident checks all export policies to remove the access rules corresponding to the
node. By removing this node IP from the export policies of managed backends, Trident prevents rogue mounts,
unless this IP is reused by a new node in the cluster.

For previously existing backends, updating the backend with tridentctl update backend ensures that
Trident manages the export policies automatically. This creates two new export policies named after the
backend’s UUID and gtree name when they are needed. Volumes that are present on the backend will use the
newly created export policies after they are unmounted and mounted again.

Deleting a backend with auto-managed export policies will delete the dynamically created export
@ policy. If the backend is re-created, it is treated as a new backend and will result in the creation
of a new export policy.

If the IP address of a live node is updated, you must restart the Trident pod on the node. Trident will then
update the export policy for backends it manages to reflect this IP change.

Prepare to provision SMB volumes

With a little additional preparation, you can provision SMB volumes using ontap-nas drivers.

You must configure both NFS and SMB/CIFS protocols on the SVM to create an ontap-nas-
@ economy SMB volume for ONTAP on-premises. Failure to configure either of these protocols
will cause SMB volume creation to fail.

@ autoExportPolicy is not supported for SMB volumes.

96

Before you begin
Before you can provision SMB volumes, you must have the following.

* A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows
Server 2022. Trident supports SMB volumes mounted to pods running on Windows nodes only.

* At least one Trident secret containing your Active Directory credentials. To generate secret smbcreds:

kubectl create secret generic smbcreds --from-literal username=user

-—-from-literal password='password'

* A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or
GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

Steps
1. For on-premises ONTAP, you can optionally create an SMB share or Trident can create one for you.

@ SMB shares are required for Amazon FSx for ONTAP.

You can create the SMB admin shares in one of two ways either using the Microsoft Management Console
Shared Folders snap-in or using the ONTAP CLI. To create the SMB shares using the ONTAP CLI:

a. If necessary, create the directory path structure for the share.

The vserver cifs share create command checks the path specified in the -path option during
share creation. If the specified path does not exist, the command fails.

b. Create an SMB share associated with the specified SVM:

vserver cifs share create -vserver vserver name -share-name
share name -path path [-share-properties share properties,...]

[other attributes] [-comment text]

c. Verify that the share was created:

vserver cifs share show -share-name share name

@ Refer to Create an SMB share for full details.

2. When creating the backend, you must configure the following to specify SMB volumes. For all FSx for
ONTAP backend configuration options, refer to FSx for ONTAP configuration options and examples.

97

https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console
https://docs.netapp.com/us-en/ontap/smb-config/create-share-task.html
https://docs.netapp.com/us-en/trident-2410/trident-use/trident-fsx-examples.html

Parameter

smbShare

nasType

securityStyle

unixPermissions

Description Example

You can specify one of the following: the name of an smb-share
SMB share created using the Microsoft

Management Console or ONTAP CLI; a name to

allow Trident to create the SMB share; or you can

leave the parameter blank to prevent common share

access to volumes.

This parameter is optional for on-premises ONTAP.

This parameter is required for Amazon FSx for

ONTAP backends and cannot be blank.
Must set to smb. If null, defaults to nfs. smb

ntfs or mixed for SMB
volumes

Security style for new volumes.

Must be set to ntfs or mixed for SMB volumes.

Mode for new volumes. Must be left empty for
SMB volumes.

ONTAP NAS configuration options and examples

Learn to create and use ONTAP NAS drivers with your Trident installation. This section
provides backend configuration examples and details for mapping backends to

StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default
version Always 1
storageDrive Name of the storage driver "ontap-nas", "ontap-nas-economy",

rName

backendName

98

Custom name or the storage backend

"ontap-nas-flexgroup”,
"ontap-san-economy"

ontap-san",

Driver name +"_" + dataLIF

Parameter

managementLI
F

datalLlIF

svm

autoExportPo
licy

autoExportCI
DRs

Description Default

IP address of a cluster or SVM management LIF “10.0.0.17, “[2001:1234:abcd::fefe]”

A fully-qualified domain name (FQDN) can be
specified.

Can be set to use IPv6 addresses if Trident was
installed using the IPv6 flag. IPv6 addresses must be
defined in square brackets, such as
[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555
].

For seamless MetroCluster switchover, see the [mcc-
best].

IP address of protocol LIF. Specified address or derived from
SVM, if not specified (not

We recommend specifying dataLIF. If not provided, recommended)

Trident fetches data LIFs from the SVM. You can

specify a fully-qualified domain name (FQDN) to be

used for the NFS mount operations, allowing you to

create a round-robin DNS to load-balance across

multiple data LIFs.

Can be changed after initial setting. Refer to Update
dataLIF after initial configuration.

Can be set to use IPv6 addresses if Trident was
installed using the IPv6 flag. IPv6 addresses must be
defined in square brackets, such as
[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555
].

Omit for Metrocluster. See the [mcc-best].

Storage virtual machine to use Derived if an SVM
managementLIF is specified

Omit for Metrocluster. See the [mcc-best].

Enable automatic export policy creation and updating false
[Boolean].

Using the autoExportPolicy and
autoExportCIDRs options, Trident can manage
export policies automatically.

List of CIDRs to filter Kubernetes' node IPs against ['0.0.0.0/0", "::/0"T
when autoExportPolicy is enabled.

Using the autoExportPolicy and
autoExportCIDRs options, Trident can manage
export policies automatically.

99

Parameter

labels

clientCertif
icate

clientPrivat
eKey

trustedCACer
tificate
username

password

storagePrefi
X

aggregate

limitAggrega
teUsage

100

Description

Set of arbitrary JSON-formatted labels to apply on
volumes

Base64-encoded value of client certificate. Used for
certificate-based auth

Base64-encoded value of client private key. Used for
certificate-based auth

Baseb64-encoded value of trusted CA certificate.
Optional. Used for certificate-based auth

Username to connect to the cluster/SVM. Used for
credential-based auth

Password to connect to the cluster/SVM. Used for
credential-based auth

Prefix used when provisioning new volumes in the
SVM. Cannot be updated after you set it

When using ontap-nas-economy and a
storagePrefix that is 24 or more

@ characters, the gtrees will not have the
storage prefix embedded, though it will
be in the volume name.

Aggregate for provisioning (optional; if set, must be
assigned to the SVM). For the ontap-nas-
flexgroup driver, this option is ignored. If not
assigned, any of the available aggregates can be
used to provision a FlexGroup volume.

When the aggregate is updated in
SVM, it is updated in Trident
automatically by polling SVM without
having to restart the Trident Controller.
When you have configured a specific
aggregate in Trident to provision

@ volumes, if the aggregate is renamed
or moved out of the SVM, the backend
will move to failed state in Trident while
polling the SVM aggregate. You must
either change the aggregate to one that
is present on the SVM or remove it
altogether to bring the backend back
online.

Fail provisioning if usage is above this percentage.

Does not apply to Amazon FSx for ONTAP

Default

"trident"

(not enforced by default)

Parameter

flexgroupAggreg
ateList

limitVolumeS
ize

debugTraceFl
ags

nasType

nfsMountOpti
ons

Description

List of aggregates for provisioning (optional; if set,
must be assigned to the SVM). All aggregates
assigned to the SVM are used to provision a
FlexGroup volume. Supported for the ontap-nas-
flexgroup storage driver.

When the aggregate list is updated in
SVM, the list is updated in Trident
automatically by polling SVM without
having to restart the Trident Controller.
When you have configured a specific
aggregate list in Trident to provision

@ volumes, if the aggregate list is
renamed or moved out of SVM, the
backend will move to failed state in
Trident while polling the SVM
aggregate. You must either change the
aggregate list to one that is present on
the SVM or remove it altogether to
bring the backend back online.

Fail provisioning if requested volume size is above
this value.

Also restricts the maximum size of the volumes it
manages for gtrees, and the gtreesPerFlexvol
option allows customizing the maximum number of
gtrees per FlexVol.

Debug flags to use when troubleshooting. Example,
{"api":false, "method":true}

Do not use debugTraceFlags unless you are
troubleshooting and require a detailed log dump.

Configure NFS or SMB volumes creation.

Options are nfs, smb or null. Setting to null defaults
to NFS volumes.

Comma-separated list of NFS mount options.

The mount options for Kubernetes-persistent volumes

are normally specified in storage classes, but if no

mount options are specified in a storage class, Trident

will fall back to using the mount options specified in
the storage backend’s configuration file.

If no mount options are specified in the storage class
or the configuration file, Trident will not set any mount

options on an associated persistent volume.

Default

(not enforced by default)

null

nfs

101

Parameter Description Default

gtreesPerFle Maximum Qtrees per FlexVol, must be in range [50, "200"
xvol 300]
smbShare You can specify one of the following: the name ofan smb-share

SMB share created using the Microsoft Management
Console or ONTAP CLI; a name to allow Trident to
create the SMB share; or you can leave the parameter
blank to prevent common share access to volumes.

This parameter is optional for on-premises ONTAP.

This parameter is required for Amazon FSx for
ONTAP backends and cannot be blank.

useREST Boolean parameter to use ONTAP REST APIs. true for ONTAP 9.15.1 or later,
otherwise false.
useREST When set to true, Trident uses ONTAP
REST APIs to communicate with the backend; when
setto false, Trident uses ONTAP ZAPI calls to
communicate with the backend. This feature requires
ONTAP 9.11.1 and later. In addition, the ONTAP login
role used must have access to the ontap application.
This is satisfied by the pre-defined vsadmin and
cluster-admin roles.
Beginning with the Trident 24.06 release and ONTAP
9.15.1 or later, useREST is set to true by default;
change useREST to false to use ONTAP ZAPI calls.

limitVolumeP Maximum requestable FlexVol size when using Qtrees
o0olSize in ontap-nas-economy backend.

(not enforced by default)

denyNewVolum Restricts ontap-nas-economy backends from

ePools creating new FlexVol volumes to contain their Qtrees.
Only preexisting Flexvols are used for provisioning
new PVs.

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an
example, see the configuration examples below.

Parameter Description Default

spaceAllocat Space-allocation for Qtrees "true"

ion

spaceReserve Space reservation mode; "none" (thin) or "volume" "none"
(thick)

snapshotPoli Snapshot policy to use "none"

cy

102

Parameter

gosPolicy

adaptiveQosP
olicy

snapshotRese
rve

splitOnClone

encryption

tieringPolic
y

unixPermissi
ons

snapshotDir

exportPolicy

securityStyl
e

nameTemplate

Description

QoS policy group to assign for volumes created.
Choose one of qosPolicy or adaptiveQosPolicy per
storage pool/backend

Adaptive QoS policy group to assign for volumes
created. Choose one of qosPolicy or
adaptiveQosPolicy per storage pool/backend.

Not supported by ontap-nas-economy.

Percentage of volume reserved for snapshots

Split a clone from its parent upon creation

Enable NetApp Volume Encryption (NVE) on the new
volume; defaults to false. NVE must be licensed and
enabled on the cluster to use this option.

If NAE is enabled on the backend, any volume
provisioned in Trident will be NAE enabled.

For more information, refer to: How Trident works with
NVE and NAE.

Tiering policy to use "none"

Mode for new volumes

Controls access to the . snapshot directory

Export policy to use

Security style for new volumes.
NFS supports mixed and unix security styles.

SMB supports mixed and nt fs security styles.

Template to create custom volume names.

Default

"0" if snapshotPolicy is "none",
otherwise "

"false'

"false

"snapshot-only" for pre-ONTAP 9.5
SVM-DR configuration

"777" for NFS volumes; empty (not
applicable) for SMB volumes

"true" for NFSv4
"false" for NFSv3

"default"

NFS default is unix.

SMB default is ntfs.

Using QoS policy groups with Trident requires ONTAP 9.8 or later. You should use a non-shared
QoS policy group and ensure the policy group is applied to each constituent individually. A
shared QoS policy group enforces the ceiling for the total throughput of all workloads.

Volume provisioning examples

Here’s an example with defaults defined:

103

https://docs.netapp.com/us-en/trident-2410/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2410/trident-reco/security-reco.html

version: 1
storageDriverName: ontap-nas
backendName: customBackendName
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2
labels:
k8scluster: devl
backend: devl-nasbackend
svm: trident svm
username: cluster-admin
password: <password>
limitAggregateUsage: 80%
limitVolumeSize: 50Gi
nfsMountOptions: nfsvers=4
debugTraceFlags:
api: false
method: true
defaults:
spaceReserve: volume
gosPolicy: premium
exportPolicy: myk8scluster
snapshotPolicy: default
snapshotReserve: '10'

For ontap-nas and ontap-nas—-flexgroups, Trident now uses a new calculation to ensure that the FlexVol
is sized correctly with the snapshotReserve percentage and PVC. When the user requests a PVC, Trident
creates the original FlexVol with more space by using the new calculation. This calculation ensures that the
user receives the writable space they requested for in the PVC, and not lesser space than what they
requested. Before v21.07, when the user requests a PVC (for example, 5GiB), with the snapshotReserve to 50
percent, they get only 2.5GiB of writeable space. This is because what the user requested for is the whole
volume and snapshotReserve is a percentage of that. With Trident 21.07, what the user requests for is the
writeable space and Trident defines the snapshotReserve number as the percentage of the whole volume.
This does not apply to ontap-nas-economy. See the following example to see how this works:

The calculation is as follows:

Total volume size = (PVC requested size) / (1 - (snapshotReserve

percentage) / 100)

For snapshotReserve = 50%, and PVC request = 5GiB, the total volume size is 2/.5 = 10GiB and the available
size is 5GiB, which is what the user requested in the PVC request. The volume show command should show
results similar to this example:

104

Vserver Volume Aggregate State 'pe Size Available Used%

_pvc_89f1lcl56 3801 4ded4 9f9d _034d54c395f74
online Rw 18GB

_pvc_eB372153_9ad9_474a_95la_@8ael5elc@ba
online RW

2 entries were displayed.

Existing backends from previous installs will provision volumes as explained above when upgrading Trident.
For volumes that you created before upgrading, you should resize their volumes for the change to be
observed. For example, a 2GiB PVC with snapshotReserve=50 earlier resulted in a volume that provides
1GiB of writable space. Resizing the volume to 3GiB, for example, provides the application with 3GiB of
writable space on a 6 GiB volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest
way to define a backend.

@ If you are using Amazon FSx on NetApp ONTAP with Trident, the recommendation is to specify
DNS names for LIFs instead of IP addresses.

ONTAP NAS economy example

version: 1

storageDriverName: ontap-nas—economy
managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm nfs

username: vsadmin

password: password

ONTAP NAS Flexgroup example

version: 1

storageDriverName: ontap-nas-flexgroup
managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm nfs

username: vsadmin

password: password

105

MetroCluster example

You can configure the backend to avoid having to manually update the backend definition after switchover
and switchback during SVM replication and recovery.

For seamless switchover and switchback, specify the SVM using managementLIF and omit the
dataLIF and svm parameters. For example:

version: 1
storageDriverName: ontap-nas
managementLIF: 192.168.1.66
username: vsadmin

password: password

SMB volumes example

version: 1

backendName: ExampleBackend
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
nasType: smb

securityStyle: ntfs
unixPermissions: ""
datalLIF: 10.0.0.2
svm: svm nfs
username: vsadmin
password: password

106

https://docs.netapp.com/us-en/trident-2410/trident-reco/backup.html#svm-replication-and-recovery

Certificate-based authentication example

This is a minimal backend configuration example. clientCertificate, clientPrivateKey, and
trustedCACertificate (optional, if using trusted CA) are populated in backend. json and take the
base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

version: 1

backendName: DefaultNASBackend
storageDriverName: ontap-nas

managementLIF: 10.0.0.1

datalLIF: 10.0.0.15

svm: nfs svm

clientCertificate: ZXROZXJwYXB...ICMgJd3BhcGVyc2
clientPrivateKey: vciwKIyAgZG...0cnksIGR1c2NyaX
trustedCACertificate: zcyBbaG...b3Igb3dulIGNsYXNz
storagePrefix: myPrefix

Auto export policy example

This example shows you how you can instruct Trident to use dynamic export policies to create and
manage the export policy automatically. This works the same for the ontap-nas-economy and ontap-
nas-flexgroup drivers.

version: 1
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
dataLIF: 10.0.0.2
svm: svm nfs
labels:
k8scluster: test-cluster-east-1la
backend: testl-nasbackend
autoExportPolicy: true
autoExportCIDRs:
- 10.0.0.0/24
username: admin
password: password
nfsMountOptions: nfsvers=4

107

IPv6 addresses example

This example shows managementLIF using an IPv6 address.

version: 1
storageDriverName: ontap-nas
backendName: nas ipv6 backend
managementLIF: "[5c5d:5edf:8f:7657:bef8:109b:1b41:d491]"
labels:
k8scluster: test-cluster-east-la
backend: testl-ontap-ipv6
svm: nas_ipv6_ svm
username: vsadmin

password: password

Amazon FSx for ONTAP using SMB volumes example

The smbShare parameter is required for FSx for ONTAP using SMB volumes.

version: 1

backendName: SMBBackend

storageDriverName: ontap-nas

managementLIF: example.mgmt.fqgdn.aws.com
nasType: smb

datalLIF: 10.0.0.15

svm: nfs svm

smbShare: smb-share

clientCertificate: ZXROZXJIJwYXB...ICMgJd3BhcGVyc2
clientPrivateKey: vciwKIyAgZG...0cnksIGR1c2NyaX
trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz
storagePrefix: myPrefix

108

Backend configuration example with nameTemplate

version: 1
storageDriverName: ontap-nas
backendName: ontap-nas-backend
managementLIF: <ip address>
svm: svmO
username: <admin>
password: <password>
defaults: {
"nameTemplate":
"{{.volume.Name}} {{.labels.cluster}} {{.volume.Namespace}} {{.volume.R
equestName} } "
by
"labels": {"cluster": "ClusterA", "PVC":
"{{.volume.Namespace}} {{.volume.RequestName}}"}

Examples of backends with virtual pools

In the sample backend definition files shown below, specific defaults are set for all storage pools, such as
spaceReserve at none, spaceAllocation at false, and encryption at false. The virtual pools are defined
in the storage section.

Trident sets provisioning labels in the "Comments" field. Comments are set on FlexVol for ontap-nas or
FlexGroup for ontap-nas-flexgroup. Trident copies all labels present on a virtual pool to the storage
volume at provisioning. For convenience, storage administrators can define labels per virtual pool and group
volumes by label.

In these examples, some of the storage pools set their own spaceReserve, spaceAllocation, and
encryption values, and some pools override the default values.

109

ONTAP NAS example

version: 1
storageDriverName: ontap-nas
managementLIF: 10.0.0.1
svm: svm nfs
username: admin
password: <password>
nfsMountOptions: nfsvers=4
defaults:
spaceReserve: none
encryption: 'false'
qgosPolicy: standard
labels:
store: nas_ store
k8scluster: prod-cluster-1
region: us_east 1
storage:
- labels:
app: msoffice
cost: '100"
zone: us_east la
defaults:
spaceReserve: volume
encryption: 'true'
unixPermissions: '0755'
adaptiveQosPolicy: adaptive-premium
- labels:
app: slack
cost: '75"
zone: us_east 1b
defaults:
spaceReserve: none
encryption: 'true'
unixPermissions: '0755'
- labels:
department: legal
creditpoints: '5000'
zone: us_east 1b
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0755"
- labels:

app: wordpress

110

cost: '50"
zone: us_east lc
defaults:
spaceReserve: none
encryption: 'true'
unixPermissions: '0775'
labels:
app: mysqgldb
cost: '25"
zone: us_east 1d
defaults:
spaceReserve: volume
encryption: 'false'

unixPermissions: '0775"

1M

ONTAP NAS FlexGroup example

version: 1
storageDriverName: ontap-nas-flexgroup
managementLIF: 10.0.0.1
svm: svm nfs
username: vsadmin
password: <password>
defaults:
spaceReserve: none
encryption: 'false'
labels:
store: flexgroup store
k8scluster: prod-cluster-1
region: us east 1
storage:
- labels:
protection: gold
creditpoints: '50000"'
zone: us_east la
defaults:
spaceReserve: volume

encryption: 'true'
unixPermissions: '0755'
- labels:

protection: gold

creditpoints: '30000'
zone: us_east 1b
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0755'
- labels:

protection: silver

creditpoints: '20000"
zone: us_east lc
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0775"
- labels:

protection: bronze

creditpoints: '10000"'
zone: us_east 1d
defaults:

112

spaceReserve: volume
encryption: 'false'

unixPermissions: '0775"

113

ONTAP NAS economy example

version: 1
storageDriverName: ontap-nas-economy
managementLIF: 10.0.0.1
svm: svm nfs
username: vsadmin
password: <password>
defaults:
spaceReserve: none
encryption: 'false'
labels:
store: nas_economy store
region: us east 1
storage:
- labels:
department: finance
creditpoints: '6000"
zone: us_east la
defaults:

spaceReserve: volume

encryption: 'true'
unixPermissions: '0755"
- labels:

protection: bronze

creditpoints: '5000'
zone: us_east 1b
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0755"
- labels:

department: engineering

creditpoints: '3000'
zone: us_east lc
defaults:

spaceReserve: none

encryption: 'true'
unixPermissions: '0775"
- labels:

department: humanresource
creditpoints: '2000'
zone: us_ east 1d
defaults:
spaceReserve: volume

114

encryption: 'false'
unixPermissions: '0775'

Map backends to StorageClasses

The following StorageClass definitions refer to Examples of backends with virtual pools. Using the
parameters.selector field, each StorageClass calls out which virtual pools can be used to host a volume.
The volume will have the aspects defined in the chosen virtual pool.

* The protection-gold StorageClass will map to the first and second virtual pool in the ontap-nas-
flexgroup backend. These are the only pools offering gold level protection.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-gold
provisioner: csi.trident.netapp.io
parameters:
selector: "protection=gold"
fsType: "ext4d"

* The protection-not-gold StorageClass will map to the third and fourth virtual pool in the ontap-
nas-flexgroup backend. These are the only pools offering protection level other than gold.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-not-gold
provisioner: csi.trident.netapp.io
parameters:
selector: "protection!=gold"
fsType: "ext4d"

* The app-mysqgldb StorageClass will map to the fourth virtual pool in the ontap-nas backend. This is the
only pool offering storage pool configuration for mysqldb type app.

115

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: app-mysqgldb
provisioner: csi.trident.netapp.io
parameters:

selector: "app=mysgldb"

fsType: "ext4d"

* TThe protection-silver-creditpoints-20k StorageClass will map to the third virtual pool in the
ontap-nas-flexgroup backend. This is the only pool offering silver-level protection and 20000
creditpoints.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: protection-silver-creditpoints-20k
provisioner: csi.trident.netapp.io
parameters:
selector: "protection=silver; creditpoints=20000"

fsType: "ext4d"

* The creditpoints-5k StorageClass will map to the third virtual pool in the ontap-nas backend and the
second virtual pool in the ontap-nas-economy backend. These are the only pool offerings with 5000
creditpoints.

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: creditpoints-5k
provisioner: csi.trident.netapp.io
parameters:
selector: "creditpoints=5000"
fsType: "ext4d"

Trident will decide which virtual pool is selected and ensures the storage requirement is met.

Update dataLIF after initial configuration

You can change the data LIF after initial configuration by running the following command to provide the new
backend JSON file with updated data LIF.

116

tridentctl update backend <backend-name> -f <path-to-backend-json-file-
with-updated-dataLIF>

@ If PVCs are attached to one or multiple pods, you must bring down all corresponding pods and
then bring them back up in order to for the new data LIF to take effect.

Amazon FSx for NetApp ONTAP

Use Trident with Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP is a fully managed AWS service that enables customers
to launch and run file systems powered by the NetApp ONTAP storage operating system.
FSx for ONTAP enables you to leverage NetApp features, performance, and
administrative capabilities you are familiar with, while taking advantage of the simplicity,
agility, security, and scalability of storing data on AWS. FSx for ONTAP supports ONTAP
file system features and administration APIs.

You can integrate your Amazon FSx for NetApp ONTAP file system with Trident to ensure Kubernetes clusters
running in Amazon Elastic Kubernetes Service (EKS) can provision block and file persistent volumes backed
by ONTAP.

A file system is the primary resource in Amazon FSx, analogous to an ONTAP cluster on premises. Within
each SVM you can create one or multiple volumes, which are data containers that store the files and folders in
your file system. With Amazon FSx for NetApp ONTAP, Data ONTAP will be provided as a managed file
system in the cloud. The new file system type is called NetApp ONTAP.

Using Trident with Amazon FSx for NetApp ONTAP, you can ensure Kubernetes clusters running in Amazon
Elastic Kubernetes Service (EKS) can provision block and file persistent volumes backed by ONTAP.

Requirements

In addition to Trident requirements, to integrate FSx for ONTAP with Trident, you need:

* An existing Amazon EKS cluster or self-managed Kubernetes cluster with kubect1 installed.

» An existing Amazon FSx for NetApp ONTAP file system and storage virtual machine (SVM) that is
reachable from your cluster’s worker nodes.

» Worker nodes that are prepared for NFS or iSCSI.

@ Ensure you follow the node preparation steps required for Amazon Linux and Ubuntu
Amazon Machine Images (AMIs) depending on your EKS AMI type.

Considerations
* SMB volumes:
° SMB volumes are supported using the ontap-nas driver only.

> SMB volumes are not supported with Trident EKS add-on.

o Trident supports SMB volumes mounted to pods running on Windows nodes only. Refer to Prepare to

117

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://docs.netapp.com/us-en/trident-2410/trident-get-started/requirements.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

provision SMB volumes for details.

* Prior to Trident 24.02, volumes created on Amazon FSx file systems that have automatic backups enabled,
could not be deleted by Trident. To prevent this issue in Trident 24.02 or later, specify the

fsxFilesystemID, AWS apiRegion, AWS apikey, and AWS secretKey in the backend configuration
file for AWS FSx for ONTAP.

If you are specifying an IAM role to Trident, then you can omit specifying the apiRegion,
apiKey, and secretKey fields to Trident explicitly. For more information, refer to FSx for
ONTAP configuration options and examples.

Authentication

Trident offers two modes of authentication.

* Credential-based(Recommended): Stores credentials securely in AWS Secrets Manager. You can use the
fsxadmin user for your file system or the vsadmin user configured for your SVM.

Trident expects to be run as a vsadmin SVM user or as a user with a different name that
@ has the same role. Amazon FSx for NetApp ONTAP has an fsxadmin user that is a limited

replacement of the ONTAP admin cluster user. We strongly recommend using vsadmin
with Trident.

« Certificate-based: Trident will communicate with the SVM on your FSx file system using a certificate
installed on your SVM.

For details on enabling authentication, refer to the authentication for your driver type:
* ONTAP NAS authentication
* ONTAP SAN authentication

Tested Amazon Machine Images (AMis)

EKS cluster supports various operating systems, but AWS has optimized certain Amazon Machine Images
(AMls) for containers and EKS. The following AMIs have been tested with Trident 24.10.

AMI NAS NAS-economy SAN SAN-economy
AL2023 x86 64 ST Yes Yes Yes Yes
ANDARD

AL2 x86 64 Yes Yes Yes** Yes*™™
BOTTLEROCKET_x Yes* Yes N/A N/A
86_64

AL2023_ARM_64 S Yes Yes Yes Yes
TANDARD

AL2_ARM_64 Yes Yes Yes™™ Yes**
BOTTLEROCKET_A Yes* Yes N/A N/A
RM_64

* *Must use “nolock” in mount options.

118

https://docs.netapp.com/us-en/trident-2410/trident-use/trident-fsx-examples.html
https://docs.netapp.com/us-en/trident-2410/trident-use/trident-fsx-examples.html

« ** Unable to delete the PV without restarting the node

@ If your desired AMI is not listed here, it does not mean that it is not supported; it simply means it
has not been tested. This list serves as a guide for AMIs known to work.

Tests performed with:

» EKS version: 1.30

* Installation Method: Helm and as an AWS add-On
» For NAS both NFSv3 and NFSv4.1 were tested.

* For SAN only iSCSI was tested, not NVMe-oF.

Tests performed:

* Create: Storage Class, pvc, pod

* Delete: pod, pvc (regular, gtree/lun — economy, NAS with AWS backup)
Find more information

* Amazon FSx for NetApp ONTAP documentation

* Blog post on Amazon FSx for NetApp ONTAP

Create an IAM role and AWS Secret

You can configure Kubernetes pods to access AWS resources by authenticating as an
AWS IAM role instead of by providing explicit AWS credentials.

@ To authenticate using an AWS IAM role, you must have a Kubernetes cluster deployed using
EKS.
Create AWS Secret Manager secret

This example creates an AWS Secret Manager secret to store Trident CSI credentials:

aws secretsmanager create-secret --name trident-secret --description
"Trident CSI credentials™\
-—-secret-string

"{\"username\" :\"vsadmin\", \"password\":\"<svmpassword>\"}"

Create IAM Policy

The following examples creates an IAM policy using the AWS CLI:

119

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://www.netapp.com/blog/amazon-fsx-for-netapp-ontap/

aws lam create-policy —--policy-name AmazonFSxNCSIDriverPolicy --policy
-document file://policy.json
-—-description "This policy grants access to Trident CSI to FSxN and

Secret manager"

Policy JSON file:

policy.json:

{

"Statement": |
{
"Action": [
"fsx:DescribeFileSystems",
"fsx:DescribeVolumes",
"fsx:CreateVolume",
"fsx:RestoreVolumeFromSnapshot",
"fsx:DescribeStorageVirtualMachines",
"fsx:UntagResource",
"fsx:UpdateVolume",
"fsx:TagResource",
"fsx:DeleteVolume"
1,
"Effect": "Allow",
"Resource": "*x"
b
{
"Action": "secretsmanager:GetSecretValue",
"Effect": "Allow",
"Resource": "arn:aws:secretsmanager:<aws-region>:<aws-account-

id>:secret:<aws-secret-manager-name>*"
}

1,
"Version": "2012-10-17"

Create an IAM role for the service account

120

AWS CLI

aws lam create-role --role-name trident-controller \
-—assume-role-policy-document file://trust-relationship.json

trust-relationship.json file:

"Version": "2012-10-17",
"Statement": [
{ "Effect": "Allow",
"Principal": {
"Federated":
provider/<oidc provider>"
by

"Action":

"arn:aws:iam: :<account id>:oidc-

"sts:AssumeRoleWithWebIdentity",
"Condition": {
"StringEquals": {
"<oidc provider>:aud":
"<oidc provider>:sub":

"system:serviceaccount:trident:trident-controller"

}

"sts.amazonaws.com",

Update the following values in the trust-relationship. json file:
» <account_id> - Your AWS account ID
» <oidc_provider> - The OIDC of your EKS cluster. You can obtain the oidc_provider by running:
aws eks describe-cluster --name my-cluster --query

"cluster.identity.oidc.issuer"\

--output text | sed -e "s/“https:\/\///"

Attach the IAM role with the IAM policy:

Once the role has been created, attach the policy (that was created in the step above) to the role using
this command:

aws iam attach-role-policy --role-name my-role --policy-arn <IAM policy
ARN>

121

Verify OICD provider is associated:

Verify that your OIDC provider is associated with your cluster. You can verify it using this command:
aws iam list-open-id-connect-providers | grep $oidc id | cut -d "/" -f4
Use the following command to associate IAM OIDC to your cluster:

eksctl utils associate-iam-oidc-provider --cluster Scluster name
-—approve

eksctl
The following example creates an IAM role for service account in EKS:

eksctl create iamserviceaccount --name trident-controller --namespace
trident \

-—cluster <my-cluster> --role-name <AmazonEKS FSxN CSI DriverRole>
--role-only \

-—attach-policy-arn <IAM-Policy ARN> --approve

Install Trident

Trident streamlines Amazon FSx for NetApp ONTAP storage management in Kubernetes
to enable your developers and administrators focus on application deployment.

You can install Trident using one of the following methods:

e Helm
« EKS add-on

If you want to make use of the snapshot functionality, install the CSI snapshot controller add-on. Refer to
Enable snapshot functionality for CSI volumes for more information.

Install Trident via helm

1. Download the Trident installer package

The Trident installer package contains everything you need to deploy the Trident operator and install
Trident. Download and extract the latest version of the Trident installer from the Assets section on GitHub.
wget https://github.com/NetApp/trident/releases/download/v24.10.0/trident-
installer-24.10.0.tar.gz

tar -xf trident-installer-24.10.0.tar.gz

cd trident-installer/helm

2. Set the values for cloud provider and cloud identity flags using the following environment variables:

122

https://docs.aws.amazon.com/eks/latest/userguide/csi-snapshot-controller.html
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz

The following example installs Trident and sets the cloud-provider flag to $CP, and cloud-identity
to sCI:

helm install trident trident-operator-100.2410.0.tgz --set
cloudProvider="AWS" \

--set cloudIdentity=""'eks.amazonaws.com/role-arn:

arn:aws:iam::<accountID>:role/<AmazonEKS FSxN CSI DriverRole>'" \

-—namespace trident --create-namespace

You can use the helm 1ist command to review installation details such as name, namespace, chart,
status, app version, and revision number.

helm list -n trident

NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION
trident-operator trident 1 2024-10-14 14:31:22.463122
+0300 IDT deployed trident-operator-100.2410.0 24.10.0

Install Trident via the EKS add-on

The Trident EKS add-on includes the latest security patches, bug fixes, and is validated by AWS to work with
Amazon EKS. The EKS add-on enables you to consistently ensure that your Amazon EKS clusters are secure
and stable and reduce the amount of work that you need to do in order to install, configure, and update add-
ons.

Prerequisites

Ensure that you have the following before configuring the Trident add-on for AWS EKS:

* An Amazon EKS cluster account with add-on subscription

* AWS permissions to the AWS marketplace:
"aws-marketplace:ViewSubscriptions",
"aws-marketplace:Subscribe",
"aws-marketplace:Unsubscribe

* AMI type: Amazon Linux 2 (AL2_x86_64) or Amazon Linux 2 Arm(AL2_ARM_64)
* Node type: AMD or ARM
» An existing Amazon FSx for NetApp ONTAP file system

Enable the Trident add-on for AWS

123

eksctl
The following example commands install the Trident EKS add-on:

eksctl create addon --name netapp trident-operator --cluster
<cluster name> \
--service-account-role-arn

arn:aws:iam::<account id>:role/<role name> --force

Management console
1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. On the left navigation pane, click Clusters.
3. Click the name of the cluster that you want to configure the NetApp Trident CSI add-on for.
4. Click Add-ons and then click Get more add-ons.
5. On the Select add-ons page, do the following:
a. In the AWS Marketplace EKS-addons section, select the Trident by NetApp check box.
b. Click Next.
6. On the Configure selected add-ons settings page, do the following:
a. Select the Version you would like to use.
b. For Select IAM role, leave at Not set.

c. Expand the Optional configuration settings, follow the Add-on configuration schema and set
the configurationValues parameter on the Configuration values section to the role-arn you
created on the previous step (value should be in the following format:
eks.amazonaws.com/role-arn:
arn:aws:iam::464262061435:role/AmazonEKS FSXN CSI DriverRole). If you select
Override for the Conflict resolution method, one or more of the settings for the existing add-on can
be overwritten with the Amazon EKS add-on settings. If you don’t enable this option and there’s a
conflict with your existing settings, the operation fails. You can use the resulting error message to
troubleshoot the conflict. Before selecting this option, make sure that the Amazon EKS add-on
doesn’t manage settings that you need to self-manage.

7. Choose Next.

8. On the Review and add page, choose Create.

After the add-on installation is complete, you see your installed add-on.

AWS CLI
1. Create the add-on. json file:

124

https://console.aws.amazon.com/eks/home#/clusters

add-on.json

{

"clusterName": "<eks-cluster>",

"addonName": "netapp trident-operator",

"addonVersion": "v24.10.0-eksbuild.1l",

"serviceAccountRoleArn": "<arn:aws:iam::123456:role/astratrident-
role>",

"configurationValues": "{"cloudIdentity":
"'eks.amazonaws.com/role-arn:
<arn:aws:iam::123456:role/astratrident-role>"'",

"cloudProvider": "AWS"}"

2. Install the Trident EKS add-on"

aws eks create-addon --cli-input-json file://add-on.Jjson

Update the Trident EKS add-on

125

file://add-on.json

eksctl

* Check the current version of your FSxN Trident CSI| add-on. Replace my-cluster with your cluster
name.
eksctl get addon --name netapp trident-operator --cluster my-cluster

Example output:

NAME VERSION STATUS ISSUES
IAMROLE UPDATE AVAILABLE CONFIGURATION VALUES

netapp trident-operator v24.10.0-eksbuild.1l ACTIVE 0
{"cloudIdentity":"'eks.amazonaws.com/role—-arn:

arn:aws:iam::139763910815:role/AmazonEKS FSXN CSI DriverRole'"}

» Update the add-on to the version returned under UPDATE AVAILABLE in the output of the previous
step.
eksctl update addon --name netapp trident-operator --version v24.10.0-
eksbuild.l --cluster my-cluster --force

If you remove the —-force option and any of the Amazon EKS add-on settings conflict with your
existing settings, then updating the Amazon EKS add-on fails; you receive an error message to help
you resolve the conflict. Before specifying this option, make sure that the Amazon EKS add-on does
not manage settings that you need to manage, because those settings are overwritten with this
option.

For more information about other options for this setting, see Addons.

For more information about Amazon EKS Kubernetes field management, see Kubernetes field
management.

Management console

1. Open the Amazon EKS console https://console.aws.amazon.com/eks/home#/clusters.
On the left navigation pane, click Clusters.

Click the name of the cluster that you want to update the NetApp Trident CSI add-on for.
Click the Add-ons tab.

Click Trident by NetApp and then click Edit.

© o k~ w0 N

On the Configure Trident by NetApp page, do the following:
a. Select the Version you would like to use.
b. Expand the Optional configuration settings and modify as needed.

c. Click Save changes.

AWS CLI
The following example updates the EKS add-on:

126

https://eksctl.io/usage/addons/
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-field-management.html
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-field-management.html
https://console.aws.amazon.com/eks/home#/clusters

aws eks update-addon --cluster-name my-cluster netapp trident-operator
vpc-cni --addon-version v24.6.l-eksbuild.1l \

--service-account-role-arn arn:aws:iam::111122223333:role/role-name
--configuration-values '{}' --resolve-conflicts --preserve

Uninstall/remove the Trident EKS add-on

You have two options for removing an Amazon EKS add-on:

* Preserve add-on software on your cluster — This option removes Amazon EKS management of any
settings. It also removes the ability for Amazon EKS to notify you of updates and automatically update the
Amazon EKS add-on after you initiate an update. However, it preserves the add-on software on your
cluster. This option makes the add-on a self-managed installation, rather than an Amazon EKS add-on.

With this option, there’s no downtime for the add-on. Retain the —-preserve option in the command to
preserve the add-on.

* Remove add-on software entirely from your cluster — We recommend that you remove the Amazon
EKS add-on from your cluster only if there are no resources on your cluster that are dependent on it.
Remove the —--preserve option from the delete command to remove the add-on.

@ If the add-on has an IAM account associated with it, the IAM account is not removed.

eksctl
The following command uninstalls the Trident EKS add-on:

eksctl delete addon --cluster K8s-arm —--name netapp trident-operator

Management console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.
In the left navigation pane, click Clusters.
Click the name of the cluster that you want to remove the NetApp Trident CSI add-on for.
Click the Add-ons tab and then click Trident by NetApp.*

Click Remove.

o gk~ WD

In the Remove netapp_trident-operator confirmation dialog, do the following:

a. If you want Amazon EKS to stop managing settings for the add-on, select Preserve on cluster.
Do this if you want to retain the add-on software on your cluster so that you can manage all of the
settings of the add-on on your own.

b. Enter netapp_trident-operator.

c. Click Remove.

AWS CLI

Replace my-cluster with the name of your cluster, and then run the following command.

aws eks delete-addon --cluster-name my-cluster --addon-name netapp trident-
operator --preserve

127

https://console.aws.amazon.com/eks/home#/clusters

Configure the Storage Backend

ONTAP SAN and NAS driver integration

To create a storage backend, you need to create a configuration file in either JSON or YAML format. The file
needs to specify the type of storage you want (NAS or SAN), the file system, and SVM to get it from and how
to authenticate with it. The following example shows how to define NAS-based storage and using an AWS
secret to store the credentials to the SVM you want to use:

128

YAML

apiVersion:
kind:
metadata:

trident.netapp.io/vl
TridentBackendConfig
name: backend-tbc-ontap-nas
namespace: trident
spec:
version: 1
storageDriverName: ontap-nas
backendName: tbc-ontap-nas
svm: svm-name
aws:
fsxFilesystemID: fS—-XXXXXXXXXX
credentials:
name: "arn:aws:secretsmanager:us-west-2:XXXXXXXX
name"

type: awsarn

JSON

"apiVersion":
"kind": "TridentBackendConfig",
"metadata": {

"name" :

"trident.netapp.io/v1l",

"backend-tbc-ontap-nas"
"namespace": "trident"
b
"Spec" . {
"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "tbc-ontap-nas",
"svm": "svm-name",
"aws": {
"fsxFilesystemID": "fs—-XXXXXXXXXX"
b
"managementLIF": null,
"credentials": {
"name": "arn:aws
name",

"type": "awsarn"

:secretsmanager:us-west—2:XXXXXXXX:secret

:secret:secret-

:secret-

129

Run the following commands to create and validate the Trident Backend Configuration (TBC):

* Create trident backend configuration (TBC) from yaml file and run the following command:

kubectl create -f backendconfig.yaml -n trident

tridentbackendconfig.trident.netapp.io/backend-tbc-ontap-nas created

+ Validate the trident backend configuration (TBC) was created successfully:

Kubectl get tbc -n trident

NAME BACKEND NAME BACKEND UUID
PHASE STATUS

backend-tbc-ontap-nas tbc-ontap-nas 933e0071-66ce-4324-
b9ff-£f96d916acbe9 Bound Success

FSx for ONTAP driver details

You can integrate Trident with Amazon FSx for NetApp ONTAP using the following drivers:

* ontap-san: Each PV provisioned is a LUN within its own Amazon FSx for NetApp ONTAP volume.
Recommended for block storage.

* ontap-nas: Each PV provisioned is a full Amazon FSx for NetApp ONTAP volume. Recommended for
NFS and SMB.

* ontap-san-economy: Each PV provisioned is a LUN with a configurable number of LUNs per Amazon
FSx for NetApp ONTAP volume.

* ontap-nas-economy: Each PV provisioned is a qgtree, with a configurable number of gtrees per Amazon
FSx for NetApp ONTAP volume.

* ontap-nas-flexgroup: Each PV provisioned is a full Amazon FSx for NetApp ONTAP FlexGroup
volume.

For driver details, refer to NAS drivers and SAN drivers.

Once the configuration file has been created, run this command to create it within your EKS:

kubectl create -f configuration file

To verify the status, run this command:

130

kubectl get tbc -n trident

NAME
PHASE STATUS

backend-fsx-ontap-nas

£2£f4c87£a629

BACKEND NAME

backend-fsx-ontap-nas

Success

Backend advanced configuration and examples

See the following table for the backend configuration options:

Parameter
version

storageDriverName

backendName

managementLIF

Description

Name of the storage driver

Custom name or the storage
backend

IP address of a cluster or SVM
management LIF

A fully-qualified domain name
(FQDN) can be specified.

Can be set to use IPv6 addresses if
Trident was installed using the IPv6
flag. IPv6 addresses must be
defined in square brackets, such as
[28€8:d9fb:a825:b7bf:69a8:d02f:9e
7b:3555].

If you provide the
fsxFilesystemID under the aws
field, you need not to provide the
managementLIF because Trident
retrieves the SVM
managementLIF information from
AWS. So, you must provide
credentials for a user under the
SVM (For example: vsadmin) and
the user must have the vsadmin
role.

BACKEND UUID

7a551921-997c-4c37-aldl-

Example

Always 1

ontap-nas, ontap-nas-
economy, ontap—-nas-
flexgroup, ontap-san, ontap-
san-economy

Driver name + “_” + dataLIF

“10.0.0.17, “[2001:1234:abcd::fefe]”

131

Parameter

dataLlIF

autoExportPolicy

autoExportCIDRs

labels

clientCertificate

132

Description

IP address of protocol LIF.

ONTAP NAS drivers: We
recommend specifying dataLIF. If
not provided, Trident fetches data
LIFs from the SVM. You can specify
a fully-qualified domain name
(FQDN) to be used for the NFS
mount operations, allowing you to
create a round-robin DNS to load-
balance across multiple data LIFs.
Can be changed after initial setting.
Refer to Update dataLIF after
initial configuration.

ONTAP SAN drivers: Do not
specify for iSCSI. Trident uses
ONTAP Selective LUN Map to
discover the iSCI LIFs needed to
establish a multi path session. A
warning is generated if dataLIF is
explicitly defined.

Can be set to use IPv6 addresses if
Trident was installed using the IPv6
flag. IPv6 addresses must be
defined in square brackets, such as
[28€8:d9fb:a825:b7bf:69a8:d02f:9e
7b:3555].

Enable automatic export policy
creation and updating [Boolean].

Using the autoExportPolicy
and autoExportCIDRs options,
Trident can manage export policies
automatically.

List of CIDRs to filter Kubernetes'
node IPs against when
autoExportPolicy is enabled.

Using the autoExportPolicy
and autoExportCIDRs options,
Trident can manage export policies
automatically.

Set of arbitrary JSON-formatted
labels to apply on volumes

Base64-encoded value of client
certificate. Used for certificate-
based auth

Example

false

"[“0.0.0.0/07, “:/0"]"

Parameter

clientPrivateKey

trustedCACertificate

username

password

svm

storagePrefix

limitAggregateUsage

limitVolumeSize

lunsPerFlexvol

Description

Base64-encoded value of client
private key. Used for certificate-
based auth

Base64-encoded value of trusted
CA certificate. Optional. Used for
certificate-based authentication.

Username to connect to the cluster
or SVM. Used for credential-based
authentication. For example,
vsadmin.

Password to connect to the cluster
or SVM. Used for credential-based
authentication.

Storage virtual machine to use

Prefix used when provisioning new
volumes in the SVM.

Cannot be modified after creation.
To update this parameter, you will
need to create a new backend.

Do not specify for Amazon FSx
for NetApp ONTAP.

The provided fsxadmin and
vsadmin do not contain the
permissions required to retrieve
aggregate usage and limit it using
Trident.

Fail provisioning if requested
volume size is above this value.

Also restricts the maximum size of
the volumes it manages for gtrees
and LUNs, and the

gtreesPerFlexvol option allows

customizing the maximum number
of gtrees per FlexVol.

Maximum LUNs per Flexvol, must
be in range [50, 200].

SAN only.

Example

Derived if an SVM managementLIF
is specified.

trident

Do not use.

(not enforced by default)

“100”

133

Parameter Description Example

debugTraceFlags Debug flags to use when null
troubleshooting. Example,
{“api”:false, “method”:true}

Do not use debugTraceFlags
unless you are troubleshooting and
require a detailed log dump.

nfsMountOptions Comma-separated list of NFS
mount options.

The mount options for Kubernetes-
persistent volumes are normally
specified in storage classes, but if
no mount options are specified in a
storage class, Trident will fall back
to using the mount options
specified in the storage backend’s
configuration file.

If no mount options are specified in
the storage class or the
configuration file, Trident will not set
any mount options on an
associated persistent volume.

nasType Configure NFS or SMB volumes nfs
creation.

Options are nfs, smb, or null.

Must set to smb for SMB
volumes. Setting to null defaults to
NFS volumes.

gtreesPerFlexvol Maximum Qtrees per FlexVol, must "200"
be in range [50, 300]

smbShare You can specify one of the smb-share
following: the name of an SMB
share created using the Microsoft
Management Console or ONTAP
CLI or a name to allow Trident to
create the SMB share.

This parameter is required for
Amazon FSx for ONTAP backends.

134

Parameter Description Example

useREST Boolean parameter to use ONTAP false
REST APIs. Tech preview

useREST is provided as a tech
preview that is recommended for
test environments and not for
production workloads. When set to
true, Trident will use ONTAP
REST APIs to communicate with
the backend.

This feature requires ONTAP 9.11.1
and later. In addition, the ONTAP
login role used must have access to
the ontap application. This is
satisfied by the pre-defined
vsadmin and cluster-admin
roles.

aws You can specify the following in the
configuration file for AWS FSx for
ONTAP:
- fsxFilesystemID: Specify the
ID of the AWS FSx file system. nn
- apiRegion: AWS API region Ul
name. o
- apikey: AWS API key.
- secretKey: AWS secret key.

credentials Specify the FSx SVM credentials to
store in AWS Secret Manager.
- name: Amazon Resource Name
(ARN) of the secret, which contains
the credentials of SVM.
- type: Setto awsarn.
Refer to Create an AWS Secrets
Manager secret for more
information.

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an
example, see the configuration examples below.

Parameter Description Default
spaceAllocation Space-allocation for LUNs true
spaceReserve Space reservation mode; “none” none

(thin) or “volume” (thick)

snapshotPolicy Snapshot policy to use none

135

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Parameter Description Default

@

gosPolicy QoS policy group to assign for
volumes created. Choose one of
gosPolicy or adaptiveQosPolicy per
storage pool or backend.

Using QoS policy groups with
Trident requires ONTAP 9.8 or later.

You should use a non-shared QoS
policy group and ensuring the
policy group is applied to each
constituent individually. A shared
QoS policy group enforces the
ceiling for the total throughput of all
workloads.

adaptiveQosPolicy Adaptive QoS policy group to
assign for volumes created.
Choose one of qosPolicy or
adaptiveQosPolicy per storage pool
or backend.

Not supported by ontap-nas-
economy.

snapshotReserve Percentage of volume reserved for If snapshotPolicy is none, else
snapshots “0”

splitOnClone Split a clone from its parent upon false
creation
encryption Enable NetApp Volume Encryption false

(NVE) on the new volume; defaults
to false. NVE must be licensed
and enabled on the cluster to use
this option.

If NAE is enabled on the backend,
any volume provisioned in Trident
will be NAE enabled.

For more information, refer to: How
Trident works with NVE and NAE.

luksEncryption Enable LUKS encryption. Referto ™
Use Linux Unified Key Setup
(LUKS).
SAN only.
tieringPolicy Tiering policy to use none snapshot-only for pre-ONTAP

9.5 SVM-DR configuration

136

https://docs.netapp.com/us-en/trident-2410/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2410/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident-2410/trident-reco/security-reco.html#Use-Linux-Unified-Key-Setup-(LUKS)
https://docs.netapp.com/us-en/trident-2410/trident-reco/security-reco.html#Use-Linux-Unified-Key-Setup-(LUKS)

Parameter Description Default

unixPermissions Mode for new volumes.

Leave empty for SMB volumes.

securityStyle Security style for new volumes. NFS default is unix.

NFS supports mixed and unix SMB default is ntfs.
security styles.

SMB supports mixed and ntfs
security styles.

Prepare to provision SMB volumes

You can provision SMB volumes using the ontap-nas driver. Before you complete ONTAP SAN and NAS
driver integration complete the following steps.

Before you begin
Before you can provision SMB volumes using the ontap-nas driver, you must have the following.

* A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows
Server 2019. Trident supports SMB volumes mounted to pods running on Windows nodes only.

* At least one Trident secret containing your Active Directory credentials. To generate secret smbcreds:

kubectl create secret generic smbcreds --from-literal username=user

-—-from-literal password='password'

* A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or
GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

Steps

1. Create SMB shares. You can create the SMB admin shares in one of two ways either using the Microsoft
Management Console Shared Folders snap-in or using the ONTAP CLI. To create the SMB shares using
the ONTAP CLI:

a. If necessary, create the directory path structure for the share.

The vserver cifs share create command checks the path specified in the -path option during
share creation. If the specified path does not exist, the command fails.

b. Create an SMB share associated with the specified SVM:

vserver cifs share create -vserver vserver name -share-name
share name -path path [-share-properties share properties,...]
[other attributes] [-comment text]

c. Verify that the share was created:

137

https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console

vserver cifs share show -share-name share name

@ Refer to Create an SMB share for full details.

2. When creating the backend, you must configure the following to specify SMB volumes. For all FSx for
ONTAP backend configuration options, refer to FSx for ONTAP configuration options and examples.

Parameter Description Example

smbShare You can specify one of the smb-share
following: the name of an SMB
share created using the Microsoft
Management Console or ONTAP
CLI or a name to allow Trident to
create the SMB share.

This parameter is required for
Amazon FSx for ONTAP

backends.
nasType Must set to smb. If null, defaults smb
to nfs.
securityStyle Security style for new volumes. ntfs ormixed for SMB volumes

Must be set to ntfs or mixed
for SMB volumes.

unixPermissions Mode for new volumes. Must be
left empty for SMB volumes.

Configure a storage class and PVC

Configure a Kubernetes StorageClass object and create the storage class to instruct
Trident how to provision volumes. Create a PersistentVolume (PV) and a
PersistentVolumeClaim (PVC) that uses the configured Kubernetes StorageClass to
request access to the PV. You can then mount the PV to a pod.

Create a storage class

Configure a Kubernetes StorageClass object

The Kubernetes StorageClass object identifies Trident as the provisioner that is used for that class instructs
Trident how to provision a volume. For example:

138

https://docs.netapp.com/us-en/ontap/smb-config/create-share-task.html
https://docs.netapp.com/us-en/trident-2410/trident-use/trident-fsx-examples.html
https://kubernetes.io/docs/concepts/storage/storage-classes/

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: ontap-gold
provisioner: csi.trident.netapp.io
parameters:
backendType: "ontap-nas"
media: "ssd"
provisioningType: "thin"
snapshots: "true"

Refer to Kubernetes and Trident objects for details on how storage classes interact with the
PersistentVolumeClaim and parameters for controlling how Trident provisions volumes.

Create a storage class

Steps
1. This is a Kubernetes object, so use kubectl to create it in Kubernetes.

kubectl create -f storage-class-ontapnas.yaml

2. You should now see a basic-csi storage class in both Kubernetes and Trident, and Trident should have
discovered the pools on the backend.

kubectl get sc basic-csi
NAME PROVISIONER AGE
basic-csi csi.trident.netapp.io 15h

Create the PV and PVC

A PersistentVolume (PV) is a physical storage resource provisioned by the cluster administrator on a
Kubernetes cluster. The PersistentVolumeClaim (PVC) is a request for access to the PersistentVolume on the
cluster.

The PVC can be configured to request storage of a certain size or access mode. Using the associated
StorageClass, the cluster administrator can control more than PersistentVolume size and access mode—such
as performance or service level.

After you create the PV and PVC, you can mount the volume in a pod.

Sample manifests

139

https://docs.netapp.com/us-en/trident-2410/trident-reference/objects.html
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes

PersistentVolume sample manifest

This sample manifest shows a basic PV of 10Gi that is associated with StorageClass basic-csi.

apiVersion: vl
kind: PersistentVolume
metadata:
name: pv-storage
labels:
type: local
spec:
storageClassName: basic-csi
capacity:
storage: 10Gi
accessModes:
- ReadWriteMany
hostPath:
path: "/my/host/path"

140

PersistentVolumeClaim sample manifests

These examples show basic PVC configuration options.

PVC with RWX access

This example shows a basic PVC with RWX access that is associated with a StorageClass named
basic-csi.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-storage
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 1Gi
storageClassName: basic-csi

PVC with NVMe/TCP

This example shows a basic PVC for NVMe/TCP with RWO access that is associated with a
StorageClass named protection-gold.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-san-nvme
spec:
accessModes:

- ReadWriteMany
resources:

requests:

storage: 300Mi

storageClassName: protection-gold

Create the PV and PVC
Steps
1. Create the PV.

kubectl create -f pv.yaml

141

2. Verify the PV status.

kubectl get pv

NAME CAPACITY
STORAGECLASS REASON
pv-storage 4Gi

Ts

3. Create the PVC.

ACCESS MODES
AGE
RWO

kubectl create -f pvc.yaml

4. Verify the PVC status.

kubectl get pvc
NAME

STATUS VOLUME

pvc-storage Bound pv-name 2Gi

RECLAIM POLICY

Retain

RWO

STATUS

Available

Refer to Kubernetes and Trident objects for details on how storage classes interact with the

PersistentVolumeClaim and parameters for controlling how Trident provisions volumes.

Trident attributes

CLAIM

CAPACITY ACCESS MODES STORAGECLASS AGE

5m

These parameters determine which Trident-managed storage pools should be utilized to provision volumes of

a given type.
Attribute Type
media’ string

provisioningType string

142

Values

hdd, hybrid, ssd

thin, thick

Offer

Pool contains
media of this
type; hybrid
means both

Pool supports
this provisioning
method

Request

Media type
specified

Provisioning
method specified

Supported by

ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
solidfire-san

thick: all ontap;
thin: all ontap &
solidfire-san

https://docs.netapp.com/us-en/trident-2410/trident-reference/objects.html

Attribute
backendType

snapshots

clones

encryption

IOPS

Type

string

bool

bool

bool

int

Values

ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroup,
ontap-san,
solidfire-san,
gcp-cvs, azure-
netapp-files,
ontap-san-
economy

true, false

true, false

true, false

positive integer

' Not supported by ONTAP Select systems

Deploy sample application

Deploy sample application.

Steps

1. Mount the volume in a pod.

kubectl create -f pv-pod.yaml

These examples show basic configurations to attach the PVC to a pod:
Basic configuration:

Offer

Pool belongs to
this type of
backend

Pool supports
volumes with
shapshots

Pool supports
cloning volumes

Pool supports
encrypted
volumes

Pool is capable
of guaranteeing
IOPS in this
range

Request

Backend
specified

Volume with
snapshots
enabled

Volume with
clones enabled

Volume with
encryption
enabled

Volume
guaranteed
these IOPS

Supported by

All drivers

ontap-nas,
ontap-san,
solidfire-san,
gcp-cvs

ontap-nas,
ontap-san,
solidfire-san,
gcp-cvs

ontap-nas,
ontap-nas-
economy, ontap-
nas-flexgroups,
ontap-san

solidfire-san

143

kind: Pod
apiVersion: vl
metadata:
name: pv-pod
spec:
volumes:
- name: pv-storage
persistentVolumeClaim:
claimName: basic
containers:
- name: pv-container
image: nginx
ports:
- containerPort: 80
name: "http-server"
volumeMounts:
- mountPath: "/my/mount/path"

name: pv-storage

(D You can monitor the progress using kubectl get pod --watch.

2. Verify that the volume is mounted on /my/mount /path.

kubectl exec -it pv-pod -- df -h /my/mount/path

Filesystem Size
Used Avail Use% Mounted on
192.168.188.78:/trident pvc aed45ed05 3ace 4e7c 9080 d2a83ae03d06 1.1G
320K 1.0G 1% /my/mount/path

You can now delete the Pod. The Pod application will no longer exist, but the volume will remain.

kubectl delete pod pv-pod

Configure the Trident EKS add-on on an EKS cluster

NetApp Trident streamlines Amazon FSx for NetApp ONTAP storage management in
Kubernetes to enable your developers and administrators focus on application
deployment. The NetApp Trident EKS add-on includes the latest security patches, bug
fixes, and is validated by AWS to work with Amazon EKS. The EKS add-on enables you
to consistently ensure that your Amazon EKS clusters are secure and stable and reduce

144

the amount of work that you need to do in order to install, configure, and update add-ons.

Prerequisites

Ensure that you have the following before configuring the Trident add-on for AWS EKS:

* An Amazon EKS cluster account with permissions to work with add-ons. Refer to Amazon EKS add-ons.

* AWS permissions to the AWS marketplace:
"aws-marketplace:ViewSubscriptions",
"aws-marketplace:Subscribe",
"aws-marketplace:Unsubscribe

* AMI type: Amazon Linux 2 (AL2_x86_64) or Amazon Linux 2 Arm(AL2_ARM_64)
* Node type: AMD or ARM
» An existing Amazon FSx for NetApp ONTAP file system

Steps

1. Make sure to create IAM role and AWS secret to enable EKS pods to access AWS resources. For
instructions, see Create an IAM role and AWS Secret.

2. On your EKS Kubernetes cluster, navigate to the Add-ons tab.

tri-env-eks @ (Delete cluster) (Upgrade version) \I;%'

(@ End of standard support for Kubernetes version 1.30 is July 28, 2025. On that date, your cluster will enter the extended support period with additional fees. For more Upgrade now

information, see the pricing page [,

¥ Cluster info info

Status Kubernetes version Info Support period Provider
® Active 1.30 ® §t§nd_ard_ support L!n;.il Jp_ly 28, 2025 EKS
Cluster health issues Upgrade insights

Overview Resources Compute Networking Add-ons [§) Access Observability Update history Tags

[(i) New versions are available for 1 add-on.

Add-ons (3) i View details Edit Remove

[Q Find add-on] [Any categ... ¥] [Any status ¥] 3 matches ¢ 1

3. Go to AWS Marketplace add-ons and choose the storage category.

145

https://docs.aws.amazon.com/eks/latest/userguide/eks-add-ons.html

AWS Marketplace add-ons (1) @

Discover, subscribe to and configure EKS add-ons to enhance your EKS clusters.

[Q. Find add-on

Filtering options

(J\ny category ¥] [NetApp, Inc. ¥] [Any pricing model ¥) (Clear filters)

NetApp, Inc, X

1 NetApp'

NetApp Trident O
NetApp Trident streamlines Amazon FSx for NetApp ONTAP storage management in Kubernetes to let your developers and
administrators focus on application deployment. FSx for ONTAP flexibility, scalability, and integration capabilities make it the

ideal choice for organi. king efficient containerized ge workflows. Product details [?
—
Category Listed by Supported versions Pricing starting at
storage NetApp, Inc. [2 1.31, 1.30, 1.29, 1.28, View pricing details [
1.27,1.26, 1.25, 1.24,
1.23

4. Locate NetApp Trident and select the checkbox for the Trident add-on, and click Next.

5. Choose the desired version of the add-on.

146

NetApp Trident Remove add-on
Listed by Category Status
1 NetApp: storage %) Ready to install

You're subscribed to this software View subscription X

You can view the terms and pricing details for this product or choose

another offer if one is available.

Version

Selact the version for this add-on,

| v24.10.0-eksbuild.1 v |

Select [AM role

Select an (AM role to use with this add-on. To owate a new custom role, follow the instructions in the Amazon EKS User Guide [,

Mot set

2

¢ Optional configuration settings

Cancel Previaus -

6. Select the IAM role option to inherit from the node.

Review and add

Step 1: Select add-ons

Selected add-ons (1)

| Q, Find add-on | 1
Add-on name a Type v Status
netapp_trident-operator storage) Ready to install

Step 2: Configure selected add-ons settings

Selected add-ons version (1)

Add-on name & Version v IAM role for service account (IRSA)

netapp_trident-operator v24.10.0-eksbuild.1 Not set

EKS Pod Identity (0)

Add-on name a IAM role [3 v Service account v

No Pod Identity associations

None of the selected add-on(s) have Pod Identity associations.

7. Configure any Optional configuration settings as required and select Next.

Follow the Add-on configuration schema and set the Configuration Values parameter on the
Configuration values section to the role-arn you created on the previous step(Step 1) (value should be in
the following format: eks.amazonaws.com/role-arn:
arn:aws:iam::464262061435:role/AmazonEKS FSXN CSI DriverRole).

NOTE: If you select Override for the Conflict resolution method, one or more of the settings for the existing
add-on can be overwritten with the Amazon EKS add-on settings. If you don’t enable this option and there’s
a conflict with your existing settings, the operation fails. You can use the resulting error message to
troubleshoot the conflict. Before selecting this option, make sure that the Amazon EKS add-on doesn’t
manage settings that you need to self-manage.

147

¥ Optional configuration settings

Add-on configuration schema
Refer to the JSON schema below. The configuration values entered in the code editor will be validated against this schema.

(VL TRV IV U St ¥

"examples”: [
{
"cloudIdentity": ""
1
15

"properties": {
"cloudIdentity": {
"defoult": "",
"examples": [

1,
"title": "The cloudIdentity Schema",
"type": "string”

}

Configuration values Info
Specify any additional JSON or YAML configurations that should be applied to the add-on.

1v {
2 "cloudIdentity”: "'eks.omazonaws.com/role-arn: arn:aws:iam

: 1186785786363 : role/tri-env-eks—trident-controller-rolel' "
i}

8. Select Create.
9. Verify that the status of the add-on is Active.

Add-ons (1) View details Edit Remove

[Q netapp X] [Anycateg... v J [Anystatus v J 1 match o |

nNetapp NetApp Trident

NetApp Trident streamlines Amazon FSx for NetApp ONTAP storage management in Kubernetes to let your developers and administrators focus on application deployment. FSx for

ONTAP flexibility, scalability, and integration capabilities make it the ideal chaice for organizations seeking efficient inerized starage Product details [
Category Status Version EKS Pod Identity 1AM role for service account
storage @ Active v24.10.0-eksbuild.1 - (IRSA)
Not set
Listed by

NetApp, Inc. [3

View subscription

10. Run the following command to verify that Trident is properly installed on the cluster:

kubectl get pods -n trident

11. Continue the setup and configure the storage backend. For information, see Configure the Storage
Backend.

Install/uninstall the Trident EKS add-on using CLI

Install the NetApp Trident EKS add-on using CLI:
The following example command installs the Trident EKS add-on:

148

eksctl create addon --name aws-ebs-csi-driver --cluster <cluster name>
--service-account-role-arn arn:aws:iam::<account id>:role/<role name>

-—force

Uninstall the NetApp Trident EKS add-on using CLI:
The following command uninstalls the Trident EKS add-on:

eksctl delete addon --cluster K8s-arm --name netapp trident-operator

Create backends with kubectl

A backend defines the relationship between Trident and a storage system. It tells Trident
how to communicate with that storage system and how Trident should provision volumes
from it. After Trident is installed, the next step is to create a backend. The
TridentBackendConfig Custom Resource Definition (CRD) enables you to create and
manage Trident backends directly through the Kubernetes interface. You can do this by
using kubect1 or the equivalent CLI tool for your Kubernetes distribution.

TridentBackendConfig

TridentBackendConfig (tbc, tbconfig, tbackendconfig)is a frontend, namespaced CRD that
enables you to manage Trident backends using kubect1. Kubernetes and storage admins can now create
and manage backends directly through the Kubernetes CLI without requiring a dedicated command-line utility
(tridentctl).

Upon the creation of a TridentBackendConfig object, the following happens:

» A backend is created automatically by Trident based on the configuration you provide. This is represented
internally as a TridentBackend (tbe, tridentbackend) CR.

* The TridentBackendConfig is uniquely bound to a TridentBackend that was created by Trident.

Each TridentBackendConfig maintains a one-to-one mapping with a TridentBackend. The former is the
interface provided to the user to design and configure backends; the latter is how Trident represents the actual
backend object.

TridentBackend CRs are created automatically by Trident. You should not modify them. If
you want to make updates to backends, do this by modifying the TridentBackendConfig
object.

See the following example for the format of the TridentBackendConfig CR:

149

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:

name: backend-tbc-ontap-san
spec:

version: 1

backendName: ontap-san-backend

storageDriverName: ontap-san

managementLIF: 10.0.0.1

datalLIF: 10.0.0.2

svm: trident svm

credentials:

name: backend-tbc-ontap-san-secret

You can also take a look at the examples in the trident-installer directory for sample configurations for the
desired storage platform/service.

The spec takes backend-specific configuration parameters. In this example, the backend uses the ontap-
san storage driver and uses the configuration parameters that are tabulated here. For the list of configuration
options for your desired storage driver, refer to the backend configuration information for your storage driver.

The spec section also includes credentials and deletionPolicy fields, which are newly introduced in
the TridentBackendConfig CR:

* credentials: This parameter is a required field and contains the credentials used to authenticate with
the storage system/service. This is set to a user-created Kubernetes Secret. The credentials cannot be
passed in plain text and will result in an error.

* deletionPolicy: This field defines what should happen when the TridentBackendConfig is deleted.
It can take one of two possible values:

° delete: This results in the deletion of both TridentBackendConfig CR and the associated
backend. This is the default value.

° retain: When a TridentBackendConfig CR is deleted, the backend definition will still be present
and can be managed with tridentctl. Setting the deletion policy to retain lets users downgrade to
an earlier release (pre-21.04) and retain the created backends. The value for this field can be updated
after a TridentBackendConfig is created.

The name of a backend is set using spec.backendName. If unspecified, the name of the
(D backend is set to the name of the TridentBackendConfig object (metadata.name). It is
recommended to explicitly set backend names using spec.backendName.

Backends that were created with tridentctl do not have an associated
TridentBackendConfig object. You can choose to manage such backends with kubect1 by

creating a TridentBackendConfig CR. Care must be taken to specify identical config
parameters (such as spec.backendName, spec.storagePrefix
spec.storageDriverName, and so on). Trident will automatically bind the newly-created
TridentBackendConfig with the pre-existing backend.

150

https://github.com/NetApp/trident/tree/stable/v21.07/trident-installer/sample-input/backends-samples

Steps overview
To create a new backend by using kubect1, you should do the following:

1. Create a Kubernetes Secret. The secret contains the credentials Trident needs to communicate with the
storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and
references the secret created in the previous step.

After you create a backend, you can observe its status by using kubectl get tbc <tbc-name> -n
<trident-namespace> and gather additional details.

Step 1: Create a Kubernetes Secret

Create a Secret that contains the access credentials for the backend. This is unique to each storage
service/platform. Here’s an example:

kubectl -n trident create -f backend-tbc-ontap-san-secret.yaml
apiVersion: vl
kind: Secret
metadata:
name: backend-tbc-ontap-san-secret
type: Opaque
stringData:
username: cluster-admin

password: password

This table summarizes the fields that must be included in the Secret for each storage platform:

Storage platform Secret Fields Secret Fields description
description
Azure NetApp Files clientlD The client ID from an app

registration

Cloud Volumes Service for GCP private_key _id ID of the private key. Part of API
key for GCP Service Account with
CVS admin role

Cloud Volumes Service for GCP private_key Private key. Part of API key for
GCP Service Account with CVS
admin role

Element (NetApp HCI/SolidFire) Endpoint MVIP for the SolidFire cluster with

tenant credentials

151

https://kubernetes.io/docs/concepts/configuration/secret/

Storage platform Secret Fields
description

ONTAP

ONTAP

ONTAP

ONTAP

ONTAP

ONTAP

ONTAP

Secret

username

password

clientPrivateKey

chapUsername

chaplnitiatorSecret

chapTargetUsername

chapTargetlnitiatorSecret

Fields description

Username to connect to the
cluster/SVM. Used for credential-
based authentication

Password to connect to the
cluster/SVM. Used for credential-
based authentication

Base64-encoded value of client
private key. Used for certificate-
based authentication

Inbound username. Required if
useCHAP=true. For ontap-san
and ontap-san-economy

CHAP initiator secret. Required if
useCHAP=true. For ontap-san
and ontap-san-economy

Target username. Required if
useCHAP=true. For ontap-san
and ontap-san-economy

CHAP target initiator secret.
Required if useCHAP=true. For
ontap-san and ontap-san-
economy

The Secret created in this step will be referenced in the spec.credentials field of the

TridentBackendConfig object that is created in the next step.

Step 2: Create the TridentBackendConfig CR

You are now ready to create your TridentBackendConfig CR. In this example, a backend that uses the
ontap-san driver is created by using the TridentBackendConfig object shown below:

kubectl -n trident create -f backend-tbc-ontap-san.yaml

152

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:

name: backend-tbc-ontap-san
spec:

version: 1

backendName: ontap-san-backend

storageDriverName: ontap-san

managementLIF: 10.0.0.1

datalLIF: 10.0.0.2

svm: trident svm

credentials:

name: backend-tbc-ontap-san-secret

Step 3: Verify the status of the TridentBackendConfig CR

Now that you created the TridentBackendConfig CR, you can verify the status. See the following example:

kubectl -n trident get tbc backend-tbc-ontap-san

NAME BACKEND NAME BACKEND UUID
PHASE STATUS
backend-tbc-ontap-san ontap-san-backend 8d24fce7-6£60-4d4a-8ef6-

bab2699%e6ab8 Bound Success

A backend was successfully created and bound to the TridentBackendConfig CR.
Phase can take one of the following values:

* Bound: The TridentBackendConfig CR is associated with a backend, and that backend contains
configRef setto the TridentBackendConfig CR’s uid.

* Unbound: Represented using "". The TridentBackendConfig object is not bound to a backend. All
newly created TridentBackendConfig CRs are in this phase by default. After the phase changes, it
cannot revert to Unbound again.

* Deleting: The TridentBackendConfig CR's deletionPolicy was set to delete. When the
TridentBackendConfig CRis deleted, it transitions to the Deleting state.

° If no persistent volume claims (PVCs) exist on the backend, deleting the TridentBackendConfig
will result in Trident deleting the backend as well as the TridentBackendConfig CR.

o If one or more PVCs are present on the backend, it goes to a deleting state. The
TridentBackendConfig CR subsequently also enters deleting phase. The backend and
TridentBackendConfig are deleted only after all PVCs are deleted.

* Lost: The backend associated with the TridentBackendConfig CR was accidentally or deliberately
deleted and the TridentBackendConfig CR still has a reference to the deleted backend. The
TridentBackendConfig CR can still be deleted irrespective of the deletionPolicy value.

153

* Unknown: Trident is unable to determine the state or existence of the backend associated with the
TridentBackendConfig CR. For example, if the API server is not responding or if the
tridentbackends.trident.netapp.io CRD is missing. This might require intervention.

At this stage, a backend is successfully created! There are several operations that can additionally be handled,
such as backend updates and backend deletions.

(Optional) Step 4: Get more details

You can run the following command to get more information about your backend:

kubectl -n trident get tbc backend-tbc-ontap-san -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8d24fce7-6£f60-4d4a-8ef6-
bab269%¢6ab8 Bound Success ontap-san delete

In addition, you can also obtain a YAML/JSON dump of TridentBackendConfig.

kubectl -n trident get tbc backend-tbc-ontap-san -o yaml

154

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
creationTimestamp: "2021-04-21T20:45:112Z"
finalizers:
- trident.netapp.io
generation: 1
name: backend-tbc-ontap-san
namespace: trident

resourceVersion: "947143"
uid: 35b9d777-109f-43d5-8077-c74a4559d09c
spec:

backendName: ontap-san-backend
credentials:
name: backend-tbc-ontap-san-secret
managementLIF: 10.0.0.1
datalLIF: 10.0.0.2
storageDriverName: ontap-san
svm: trident svm
version: 1
status:
backendInfo:
backendName: ontap-san-backend
backendUUID: 8d24fce7-6f60-4d4a-8ef6-bab2699e6ab8
deletionPolicy: delete
lastOperationStatus: Success
message: Backend 'ontap-san-backend' created
phase: Bound

backendInfo contains the backendName and the backendUUID of the backend that got created in
response to the TridentBackendConfig CR. The lastOperationStatus field represents the status of
the last operation of the TridentBackendConfig CR, which can be user-triggered (for example, user
changed something in spec) or triggered by Trident (for example, during Trident restarts). It can either be
Success or Failed. phase represents the status of the relation between the TridentBackendConfig CR
and the backend. In the example above, phase has the value Bound, which means that the
TridentBackendConfig CR is associated with the backend.

You can run the kubectl -n trident describe tbc <tbc-cr-name> command to get details of the
event logs.

You cannot update or delete a backend which contains an associated
TridentBackendConfig object using tridentctl. To understand the steps involved in
switching between tridentctl and TridentBackendConfig, see here.

155

Manage backends
Perform backend management with kubectl

Learn about how to perform backend management operations by using kubectl1.

Delete a backend

By deleting a TridentBackendConfig, you instruct Trident to delete/retain backends (based on
deletionPolicy). To delete a backend, ensure that deletionPolicy is set to delete. To delete just the
TridentBackendConfig, ensure that deletionPolicy is set to retain. This ensures the backend is still
present and can be managed by using tridentctl.

Run the following command:

kubectl delete tbc <tbc—-name> -n trident

Trident does not delete the Kubernetes Secrets that were in use by TridentBackendConfig. The
Kubernetes user is responsible for cleaning up secrets. Care must be taken when deleting secrets. You should
delete secrets only if they are not in use by the backends.

View the existing backends

Run the following command:

kubectl get tbc -n trident

You can also run tridentctl get backend -n trident or tridentctl get backend -o yaml -n
trident to obtain a list of all backends that exist. This list will also include backends that were created with
tridentctl.

Update a backend
There can be multiple reasons to update a backend:
» Credentials to the storage system have changed. To update credentials, the Kubernetes Secret that is used

in the TridentBackendConfig object must be updated. Trident will automatically update the backend
with the latest credentials provided. Run the following command to update the Kubernetes Secret:

kubectl apply -f <updated-secret-file.yaml> -n trident

« Parameters (such as the name of the ONTAP SVM being used) need to be updated.

° You can update TridentBackendConfig objects directly through Kubernetes using the following
command:

kubectl apply -f <updated-backend-file.yaml>

156

° Alternatively, you can make changes to the existing TridentBackendConfig CR using the following
command:

kubectl edit tbc <tbc-name> -n trident

* If a backend update fails, the backend continues to remain in its last known configuration.
You can view the logs to determine the cause by running kubectl get tbc <tbc-name>
(D -0 yaml -n trident or kubectl describe tbc <tbc-name> -n trident.

« After you identify and correct the problem with the configuration file, you can re-run the
update command.

Perform backend management with tridentctl

Learn about how to perform backend management operations by using tridentctl.

Create a backend

After you create a backend configuration file, run the following command:
tridentctl create backend -f <backend-file> -n trident

If backend creation fails, something was wrong with the backend configuration. You can view the logs to
determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the create command
again.

Delete a backend

To delete a backend from Trident, do the following:

1. Retrieve the backend name:
tridentctl get backend -n trident
2. Delete the backend:

tridentctl delete backend <backend-name> -n trident

157

If Trident has provisioned volumes and snapshots from this backend that still exist, deleting the

@ backend prevents new volumes from being provisioned by it. The backend will continue to exist
in a “Deleting” state and Trident will continue to manage those volumes and snapshots until they
are deleted.

View the existing backends

To view the backends that Trident knows about, do the following:

* To get a summary, run the following command:
tridentctl get backend -n trident
* To get all the details, run the following command:

tridentctl get backend -o json -n trident

Update a backend

After you create a new backend configuration file, run the following command:
tridentctl update backend <backend-name> -f <backend-file> -n trident

If backend update fails, something was wrong with the backend configuration or you attempted an invalid
update. You can view the logs to determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the update command
again.

Identify the storage classes that use a backend

This is an example of the kind of questions you can answer with the JSON that tridentct1 outputs for
backend objects. This uses the jq utility, which you need to install.

tridentctl get backend -o json | jg '[.items[] | {backend: .name,
storageClasses: [.storage[].storageClasses] |unique}]’

This also applies for backends that were created by using TridentBackendConfig.

Move between backend management options

Learn about the different ways of managing backends in Trident.

158

Options for managing backends

With the introduction of TridentBackendConfig, administrators now have two unique ways of managing
backends. This poses the following questions:

* Can backends created using tridentctl be managed with TridentBackendConfig?

* Can backends created using TridentBackendConfig be managed using tridentctl?

Manage tridentctl backends using TridentBackendConfig

This section covers the steps required to manage backends that were created using tridentctl directly
through the Kubernetes interface by creating TridentBackendConfig objects.

This will apply to the following scenarios:

* Pre-existing backends, that don’t have a TridentBackendConfig because they were created with
tridentctl.

* New backends that were created with tridentctl, while other TridentBackendConfig objects exist.

In both scenarios, backends will continue to be present, with Trident scheduling volumes and operating on
them. Administrators have one of two choices here:

* Continue using tridentctl to manage backends that were created using it.
* Bind backends created using tridentctl to a new TridentBackendConfig object. Doing so would
mean the backends will be managed using kubectl and not tridentctl.

To manage a pre-existing backend using kubect1, you will need to create a TridentBackendConfig that
binds to the existing backend. Here is an overview of how that works:

1. Create a Kubernetes Secret. The secret contains the credentials Trident needs to communicate with the
storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and
references the secret created in the previous step. Care must be taken to specify identical config
parameters (such as spec.backendName, spec.storagePrefix, spec.storageDriverName, and
S0 on). spec.backendName must be set to the name of the existing backend.

Step 0: Identify the backend

To create a TridentBackendConfig that binds to an existing backend, you will need to obtain the backend
configuration. In this example, let us assume a backend was created using the following JSON definition:

tridentctl get backend ontap-nas-backend -n trident

o e e o e
fessssssssssssesessososssssssssss o= fremmm==== e +

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

e e fossmmsm=s===m===

fesmsee e s se s e me s e s e e e femmmm=== fommmmm=as 4

| ontap-nas-backend | ontap-nas | 52f2ebl0-e4c6-4160-99fc-

159

96b3beb5abbd7 | online | 25 |

cat ontap-nas-backend.json

"version": 1,

"storageDriverName": "ontap-nas",
"managementLIF": "10.10.10.1",
"dataLIF": "10.10.10.2",
"backendName": "ontap-nas-backend",

"svm": "trident svm",
"username": "cluster-admin",

"password": "admin-password",

"defaults": {

"spaceReserve": "none",
"encryption": "false"
by
"labels":{"store":"nas store"},
"region": "us east 1",
"storage": [

{
"labels":{"app":"msoffice", "cost":"100"},
"zone":"us east la",
"defaults": {
"spaceReserve": "volume",
"encryption": "true",

"unixPermissions": "0755"

"labels":{"app":"mysqgldb", "cost":"25"},
"zone":"us east 1d",
"defaults": {

"spaceReserve": "volume",
"encryption": "false",
"unixPermissions": "0775"

160

Step 1: Create a Kubernetes Secret

Create a Secret that contains the credentials for the backend, as shown in this example:

cat tbc-ontap-nas-backend-secret.yaml

apiVersion: vl
kind: Secret
metadata:
name: ontap-nas-backend-secret
type: Opaque
stringData:
username: cluster-admin

password: admin-password

kubectl create -f tbc-ontap-nas-backend-secret.yaml -n trident
secret/backend-tbc-ontap-san-secret created

Step 2: Create a TridentBackendConfig CR

The next step is to create a TridentBackendConfig CR that will automatically bind to the pre-existing
ontap-nas-backend (as in this example). Ensure the following requirements are met:

* The same backend name is defined in spec.backendName.
« Configuration parameters are identical to the original backend.
« Virtual pools (if present) must retain the same order as in the original backend.

* Credentials are provided through a Kubernetes Secret and not in plain text.

In this case, the TridentBackendConfig will look like this:

161

cat backend-tbc-ontap-nas.yaml
apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: tbc-ontap-nas-backend
spec:
version: 1
storageDriverName: ontap-nas
managementLIF: 10.10.10.1
datalLIF: 10.10.10.2
backendName: ontap-nas-backend
svm: trident svm
credentials:
name: mysecret
defaults:
spaceReserve: none
encryption: 'false'
labels:
store: nas_ store
region: us east 1
storage:
- labels:
app: msoffice
cost: '100"
zone: us_east la
defaults:
spaceReserve: volume
encryption: 'true'
unixPermissions: '0755'
- labels:
app: mysqgldb
cost: '25"
zone: us_east 1d
defaults:
spaceReserve: volume
encryption: 'false'

unixPermissions: '0775"

kubectl create -f backend-tbc-ontap-nas.yaml -n trident
tridentbackendconfig.trident.netapp.io/tbc-ontap-nas-backend created

Step 3: Verify the status of the TridentBackendConfig CR

After the TridentBackendConfig has been created, its phase must be Bound. It should also reflect the
same backend name and UUID as that of the existing backend.

162

kubectl get tbc tbc-ontap-nas-backend -n trident

NAME BACKEND NAME BACKEND UUID
PHASE STATUS
tbc-ontap-nas-backend ontap-nas-backend 52f2ebl10-e4c6-4160-99fc-

96b3beb5ab5d7 Bound Success

#confirm that no new backends were created (i.e., TridentBackendConfig did
not end up creating a new backend)
tridentctl get backend -n trident

fmm e fom e

Rt ettt F—————— o — +

| NAME | STORAGE DRIVER | UuID

| STATE | VOLUMES |

et e T o

e - e b +

| ontap-nas-backend | ontap-nas | 52f2ebl0-ed4c6-4160-99fc—-
96b3bebab5d7 | online | 25 |

e o
e - +————— +

The backend will now be completely managed using the tbc-ontap-nas-backend
TridentBackendConfig object.

Manage TridentBackendConfig backends using tridentctl

tridentctl can be used to list backends that were created using TridentBackendConfig. In addition,
administrators can also choose to completely manage such backends through tridentctl by deleting
TridentBackendConfig and making sure spec.deletionPolicyis setto retain

Step 0: Identify the backend

For example, let us assume the following backend was created using TridentBackendConfig:

163

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8labcb27-ea63-49bb-b606-
0a5315ach5£f82 Bound Success ontap-san delete

tridentctl get backend ontap-san-backend -n trident

P memssesem== P m===
R Fommomome Fomomomom= +

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

Fommmmmmmmemeoeoeoos Fommmmmmomeomomm=
et Fom—————— fom——————— +

| ontap-san-backend | ontap-san | 8labcb27-ea63-49%bb-b606-
0a5315ac5f82 | online | 33 |

Fommmmcmemcmsosmsmss Fommmmmmsmemsmse=
B e o= Pommmmmm== +

From the output, it is seen that TridentBackendConfig was created successfully and is bound to a
backend [observe the backend’s UUID].

Step 1: Confirm deletionPolicy is setto retain

Let us take a look at the value of deletionPolicy. This needs to be set to retain. This ensures that when
a TridentBackendConfig CRis deleted, the backend definition will still be present and can be managed
with tridentctl.

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8labcb27-ea63-49bb-b606-
0a5315ac5£82 Bound Success ontap-san delete

Patch value of deletionPolicy to retain
kubectl patch tbc backend-tbc-ontap-san --type=merge -p
"{"spec":{"deletionPolicy":"retain"}}' -n trident

tridentbackendconfig.trident.netapp.io/backend-tbc-ontap-san patched

#Confirm the value of deletionPolicy
kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 8labcb27-ea63-49bb-b606-
0ab5315ac5f82 Bound Success ontap-san retain

164

(D Do not proceed to the next step unless deletionPolicy is setto retain.

Step 2: Delete the TridentBackendConfig CR

The final step is to delete the TridentBackendConfig CR. After confirming the deletionPolicy is set to
retain, you can go ahead with the deletion:

kubectl delete tbc backend-tbc-ontap-san -n trident
tridentbackendconfig.trident.netapp.io "backend-tbc-ontap-san" deleted

tridentctl get backend ontap-san-backend -n trident

fomm e fom -
Rt bt PP t——————— Fo———— +

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

o o

e it ettt PP +—————— o +

| ontap-san-backend | ontap-san | 8labcb27-ea63-49bb-b606-
0a5315ac5f82 | online | 33 |

o o

Rt et ettt et - +—————— +

Upon the deletion of the TridentBackendConfig object, Trident simply removes it without actually deleting
the backend itself.

Create and manage storage classes

Create a storage class

Configure a Kubernetes StorageClass object and create the storage class to instruct
Trident how to provision volumes.

Configure a Kubernetes StorageClass object

The Kubernetes StorageClass object identifies Trident as the provisioner that is used for that class and
instructs Trident how to provision a volume. For example:

165

https://kubernetes.io/docs/concepts/storage/storage-classes/

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: <Name>
provisioner: csi.trident.netapp.io
mountOptions: <Mount Options>
parameters:

<Trident Parameters>
allowVolumeExpansion: true
volumeBindingMode: Immediate

Refer to Kubernetes and Trident objects for details on how storage classes interact with the
PersistentVolumeClaim and parameters for controlling how Trident provisions volumes.

Create a storage class

After you create the StorageClass object, you can create the storage class. Storage class samples provides
some basic samples you can use or modify.

Steps
1. This is a Kubernetes object, so use kubectl to create it in Kubernetes.

kubectl create -f sample-input/storage-class-basic-csi.yaml

2. You should now see a basic-csi storage class in both Kubernetes and Trident, and Trident should have
discovered the pools on the backend.

166

https://docs.netapp.com/us-en/trident-2410/trident-reference/objects.html

kubectl get sc basic-csi
NAME PROVISIONER AGE

basic-csi csi.trident.netapp.io 15h

./tridentctl -n trident get storageclass basic-csi -o json

{

"items": [
{

"Config": {
"version": "1V,
"name": "basic-csi",
"attributes": {

"backendType": "ontap-nas"

by
"storagePools": null,
"additionalStoragePools": null

by

"storage": {

"ontapnas 10.0.0.1": [
"aggrl",
"aggrz",
"aggr3",
"aggrd"

Storage class samples

Trident provides simple storage class definitions for specific backends.

Alternatively, you can edit sample-input/storage-class-csi.yaml.templ file that comes with the
installer and replace BACKEND TYPE with the storage driver name.

167

https://github.com/NetApp/trident/tree/master/trident-installer/sample-input/storage-class-samples

./tridentctl -n trident get backend

e o T bt
o F—————— +

| NAME | STORAGE DRIVER | UuID

STATE | VOLUMES |

o —— o T et it
- F—m————— +

| nas-backend | ontap-nas | 98el9b74-aec7-4a3d-8dcf-128e5033b214 |
online | 0 |

o —— e it PP T ittt
- F—————— +

cp sample-input/storage-class-csi.yaml.templ sample-input/storage-class-
basic-csi.yaml

Modify = BACKEND TYPE with the storage driver field above (e.g.,
ontap-nas)
vi sample-input/storage-class-basic-csi.yaml

Manage storage classes

You can view existing storage classes, set a default storage class, identify the storage
class backend, and delete storage classes.

View the existing storage classes

» To view existing Kubernetes storage classes, run the following command:
kubectl get storageclass

» To view Kubernetes storage class detail, run the following command:

kubectl get storageclass <storage-class> -o json

 To view Trident’s synchronized storage classes, run the following command:
tridentctl get storageclass

» To view Trident’s synchronized storage class detail, run the following command:

tridentctl get storageclass <storage-class> -0 json

168

Set a default storage class

Kubernetes 1.6 added the ability to set a default storage class. This is the storage class that will be used to
provision a Persistent Volume if a user does not specify one in a Persistent Volume Claim (PVC).

* Define a default storage class by setting the annotation storageclass.kubernetes.io/is-

default-class to true in the storage class definition. According to the specification, any other value or

absence of the annotation is interpreted as false.

* You can configure an existing storage class to be the default storage class by using the following
command:

kubectl patch storageclass <storage-class-name> -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}"'

« Similarly, you can remove the default storage class annotation by using the following command:

kubectl patch storageclass <storage-class-name> -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}}"

There are also examples in the Trident installer bundle that include this annotation.

There should be only one default storage class in your cluster at a time. Kubernetes does not
technically prevent you from having more than one, but it will behave as if there is no default
storage class at all.

Identify the backend for a storage class
This is an example of the kind of questions you can answer with the JSON that tridentctl outputs for

Trident backend objects. This uses the - q utility, which you may need to install first.

tridentctl get storageclass -o json | jg '[.items[] | {storageClass:
.Config.name, backends: [.storage] |unique}]’

Delete a storage class

To delete a storage class from Kubernetes, run the following command:

kubectl delete storageclass <storage-class>

<storage-class> should be replaced with your storage class.

Any persistent volumes that were created through this storage class will remain untouched, and Trident will
continue to manage them.

169

Trident enforces a blank £sType for the volumes it creates. For iSCSI backends, it is
recommended to enforce parameters. fsType in the StorageClass. You should delete
existing StorageClasses and re-create them with parameters. fsType specified.

Provision and manage volumes

Provision a volume

Create a PersistentVolume (PV) and a PersistentVolumeClaim (PVC) that uses the
configured Kubernetes StorageClass to request access to the PV. You can then mount
the PV to a pod.

Overview

A PersistentVolume (PV) is a physical storage resource provisioned by the cluster administrator on a
Kubernetes cluster. The PersistentVolumeClaim (PVC) is a request for access to the PersistentVolume on the
cluster.

The PVC can be configured to request storage of a certain size or access mode. Using the associated
StorageClass, the cluster administrator can control more than PersistentVolume size and access mode—such
as performance or service level.

After you create the PV and PVC, you can mount the volume in a pod.

Sample manifests

PersistentVolume sample manifest

This sample manifest shows a basic PV of 10Gi that is associated with StorageClass basic-csi.

apiVersion: vl
kind: PersistentVolume
metadata:
name: pv-storage
labels:
type: local
spec:
storageClassName: basic-csi
capacity:
storage: 10Gi
accessModes:
- ReadWriteOnce
hostPath:
path: "/my/host/path"

170

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes

PersistentVolumeClaim sample manifests

These examples show basic PVC configuration options.

PVC with RWO access

This example shows a basic PVC with RWO access that is associated with a StorageClass named
basic-csi.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-storage
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: basic-csi

PVC with NVMe/TCP

This example shows a basic PVC for NVMe/TCP with RWO access that is associated with a
StorageClass named protection-gold

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-san-nvme
spec:
accessModes:

- ReadWriteOnce
resources:

requests:

storage: 300Mi

storageClassName: protection-gold

171

Pod manifest samples

These examples show basic configurations to attach the PVC to a pod.

Basic configuration

kind: Pod
apiVersion: vl
metadata:
name: pv-pod
spec:
volumes:
- name: pv-storage
persistentVolumeClaim:
claimName: basic
containers:
- name: pv-container
image: nginx
ports:
- containerPort: 80
name: "http-server"
volumeMounts:
- mountPath: "/my/mount/path"

name: pv-storage

172

Basic NVMe/TCP configuration

apiVersion: vl

kind: Pod

metadata:
creationTimestamp: null
labels:

run: nginx

name: nginx
spec:
containers:

- image: nginx
name: nginx
resources: {}
volumeMounts:

- mountPath: "/usr/share/nginx/html"

name: task-pv-storage
dnsPolicy: ClusterFirst
restartPolicy: Always
volumes:
- name: task-pv-storage
persistentVolumeClaim:

claimName: pvc-san-nvme

Create the PV and PVC

Steps
1. Create the PV.
kubectl create -f pv.yaml

2. Verify the PV status.

kubectl get pv

NAME CAPACITY ACCESS MODES
STORAGECLASS REASON AGE
pv-storage 4Gi RWO

7s

3. Create the PVC.

RECLAIM POLICY

Retain

STATUS

Available

CLAIM

173

kubectl create -f pvc.yaml
4. Verify the PVC status.

kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
pvc-storage Bound pv-name 2Gi RWO 5m

5. Mount the volume in a pod.

kubectl create -f pv-pod.yaml

@ You can monitor the progress using kubectl get pod --watch.

6. Verify that the volume is mounted on /my/mount/path.
kubectl exec -it task-pv-pod -- df -h /my/mount/path
7. You can now delete the Pod. The Pod application will no longer exist, but the volume will remain.

kubectl delete pod pv-pod

Refer to Kubernetes and Trident objects for details on how storage classes interact with the
PersistentVolumeClaim and parameters for controlling how Trident provisions volumes.

Expand volumes

Trident provides Kubernetes users the ability to expand their volumes after they are
created. Find information about the configurations required to expand iISCSI and NFS
volumes.

Expand an iSCSI volume

You can expand an iSCSI Persistent Volume (PV) by using the CSI provisioner.

(D iSCSI volume expansion is supported by the ontap-san, ontap-san-economy, solidfire-
san drivers and requires Kubernetes 1.16 and later.

Step 1: Configure the StorageClass to support volume expansion

Edit the StorageClass definition to set the allowVolumeExpansion field to true.

174

https://docs.netapp.com/us-en/trident-2410/trident-reference/objects.html

cat storageclass-ontapsan.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontap-san
provisioner: csi.trident.netapp.io
parameters:

backendType: "ontap-san"
allowVolumeExpansion: True

For an already existing StorageClass, edit it to include the allowVolumeExpansion parameter.

Step 2: Create a PVC with the StorageClass you created

Edit the PVC definition and update the spec.resources.requests. storage to reflect the newly desired
size, which must be greater than the original size.

cat pvc-ontapsan.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: san—-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: ontap-san

Trident creates a Persistent Volume (PV) and associates it with this Persistent Volume Claim (PVC).

175

kubectl get pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82£2885db671 1Gi

RWO ontap-san 8s

kubectl get pv

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-8a814d62-bd58-4253-b0d1-82£2885db671 1G1i RWO

Delete Bound default/san-pvc ontap-san 10s

Step 3: Define a pod that attaches the PVC

Attach the PV to a pod for it to be resized. There are two scenarios when resizing an iISCSI PV:

« If the PV is attached to a pod, Trident expands the volume on the storage backend, rescans the device,
and resizes the filesystem.

* When attempting to resize an unattached PV, Trident expands the volume on the storage backend. After
the PVC is bound to a pod, Trident rescans the device and resizes the filesystem. Kubernetes then
updates the PVC size after the expand operation has successfully completed.

In this example, a pod is created that uses the san-pvc.

kubectl get pod
NAME READY STATUS RESTARTS AGE
ubuntu-pod 1/1 Running 0 65s

kubectl describe pvc san-pvc

Name: san-pvc

Namespace: default

StorageClass: ontap-san

Status: Bound

Volume: pvc-8a814d62-bd58-4253-b0d1-82£2885db671
Labels: <none>

Annotations: pv.kubernetes.io/bind-completed: yes

pv.kubernetes.io/bound-by-controller: yes
volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers: [kubernetes.io/pvc-protection]
Capacity: 1Gi

Access Modes: RWO

VolumeMode: Filesystem

Mounted By: ubuntu-pod

176

Step 4: Expand the PV

To resize the PV that has been created from 1Gi to 2Gi, edit the PVC definition and update the
spec.resources.requests.storage to 2Gi.

kubectl edit pvc san-pvc

Please edit the object below. Lines beginning with a '#' will be
ignored,

and an empty file will abort the edit. If an error occurs while saving
this file will be

reopened with the relevant failures.

#

apiVersion: vl

kind: PersistentVolumeClaim

metadata:
annotations:
pv.kubernetes.io/bind-completed: "yes"
pv.kubernetes.io/bound-by-controller: "yes"

volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
creationTimestamp: "2019-10-10T17:32:292Z"
finalizers:
- kubernetes.io/pvc-protection
name: san-pvc
namespace: default
resourceVersion: "16609"
selflLink: /api/vl/namespaces/default/persistentvolumeclaims/san-pvc
uid: 8a814d62-bd58-4253-b0d1-82f2885db671

spec:

accessModes:
- ReadWriteOnce
resources:

requests:

storage: 2Gi

Step 5: Validate the expansion

You can validate the expansion worked correctly by checking the size of the PVC, PV, and the Trident volume:

177

kubectl get pvc san-pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82£2885db671 2Gi

RWO ontap-san 1lm

kubectl get pv

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-8a814d62-bd58-4253-b0d1-82£2885db671 2G1 RWO

Delete Bound default/san-pvc ontap-san 12m

tridentctl get volumes -n trident

fos=s=ss=s=ssscsessssssssosossssss=s=sssa=s fememe==== e

e L T s frommmem e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

o o e e o o e o o e e o o 5 D) e e i e e frommmom e e

fremmmm=a==s frememsesessss s s s m s s e o s = = e fremememm=s I
| pvc-8a814d62-bd58-4253-b0d1-82£2885db671 | 2.0 GiB | ontap-san |
block | a%7bfff-0505-4e31-b6c5-59£492e02d33 | online | true |

fomssssess s s s s o s e o s sss s osss fremmmemm=s frememesmeeeeaaa=

fem======== e Bt fmm====== fememe==== 4

Expand an NFS volume

Trident supports volume expansion for NFS PVs provisioned on ontap-nas, ontap-nas—-economy, ontap-
nas-flexgroup, gcp-cvs, and azure-netapp-files backends.

Step 1: Configure the StorageClass to support volume expansion

To resize an NFS PV, the admin first needs to configure the storage class to allow volume expansion by setting
the allowVolumeExpansion field to true:

cat storageclass-ontapnas.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontapnas
provisioner: csi.trident.netapp.io
parameters:

backendType: ontap-nas
allowVolumeExpansion: true

If you have already created a storage class without this option, you can simply edit the existing storage class
by using kubectl edit storageclass to allow volume expansion.

178

Step 2: Create a PVC with the StorageClass you created

cat pvc-ontapnas.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: ontapnas20mb
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 20Mi
storageClassName: ontapnas

Trident should create a 20MiB NFS PV for this PVC:

kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08£f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi

RWO ontapnas 9s

kubectl get pv pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLATIM STORAGECLASS REASON
AGE

pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7 20Mi RWO

Delete Bound default/ontapnas20mb ontapnas

2mé2s

Step 3: Expand the PV

To resize the newly created 20MiB PV to 1GiB, edit the PVC and set spec.resources.requests.storage
to 1GiB

179

kubectl edit pvc ontapnas20mb

Please edit the object below. Lines beginning with a '#' will be
ignored,

and an empty file will abort the edit. If an error occurs while saving
this file will be

reopened with the relevant failures.

#

apiVersion: vl

kind: PersistentVolumeClaim

metadata:
annotations:
pv.kubernetes.io/bind-completed: "yes"
pv.kubernetes.io/bound-by-controller: "yes"

volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
creationTimestamp: 2018-08-21T18:26:447%
finalizers:
- kubernetes.io/pvc-protection
name: ontapnas20mb
namespace: default
resourceVersion: "1958015"
selflLink: /api/vl/namespaces/default/persistentvolumeclaims/ontapnas20mb
uid: clbd7fab5-a56f-11e8-b8d7-fal63e59%eaab

spec:

accessModes:
- ReadWriteOnce
resources:

requests:

storage: 1Gi

Step 4: Validate the expansion

You can validate the resize worked correctly by checking the size of the PVC, PV, and the Trident volume:

180

kubectl get pvc ontapnas20mb

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08£f3d561-b199-11e9-8d9£f-5254004dfdb7 1G1i
RWO ontapnas 4médds

kubectl get pv pvc-08£3d561-b199-11e9-8d9£-5254004dfdb7

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON
AGE

pvc-08£3d561-0199-11e9-8d9£f-5254004dfdb7 1Gi RWO

Delete Bound default/ontapnas20mb ontapnas

5m35s

tridentctl get volume pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

o e Fomm -
fom - o fom - fom— +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

- fom o
fom - o fomm - fomm - +
| pvc-08£3d561-b199-11e9-8d9£-5254004dfdb7 | 1.0 GiB | ontapnas |
file | cS5abf6ad-b052-423b-80d4-8fb491alda22 | online | true |

et ittt L fommm - fom e
fom - oo fom - e +

Import volumes

You can import existing storage volumes as a Kubernetes PV using tridentctl
import.

Overview and considerations

You might import a volume into Trident to:

« Containerize an application and reuse its existing data set
* Use a clone of a data set for an ephemeral application
» Rebuild a failed Kubernetes cluster

» Migrate application data during disaster recovery

Considerations
Before importing a volume, review the following considerations.

 Trident can import RW (read-write) type ONTAP volumes only. DP (data protection) type volumes are

SnapMirror destination volumes. You should break the mirror relationship before importing the volume into
Trident.

181

* We suggest importing volumes without active connections. To import an actively-used volume, clone the
volume and then perform the import.

This is especially important for block volumes as Kubernetes would be unaware of the
@ previous connection and could easily attach an active volume to a pod. This can result in
data corruption.

* Though storageClass must be specified on a PVC, Trident does not use this parameter during import.
Storage classes are used during volume creation to select from available pools based on storage
characteristics. Because the volume already exists, no pool selection is required during import. Therefore,
the import will not fail even if the volume exists on a backend or pool that does not match the storage class
specified in the PVC.

* The existing volume size is determined and set in the PVC. After the volume is imported by the storage
driver, the PV is created with a ClaimRef to the PVC.

° The reclaim policy is initially set to retain in the PV. After Kubernetes successfully binds the PVC and
PV, the reclaim policy is updated to match the reclaim policy of the Storage Class.

° If the reclaim policy of the Storage Class is delete, the storage volume will be deleted when the PV is
deleted.

* By default, Trident manages the PVC and renames the FlexVol and LUN on the backend. You can pass the
--no-manage flag to import an unmanaged volume. If you use --no-manage, Trident does not perform
any additional operations on the PVC or PV for the lifecycle of the objects. The storage volume is not
deleted when the PV is deleted and other operations such as volume clone and volume resize are also
ignored.

This option is useful if you want to use Kubernetes for containerized workloads but
otherwise want to manage the lifecycle of the storage volume outside of Kubernetes.

» An annotation is added to the PVC and PV that serves a dual purpose of indicating that the volume was
imported and if the PVC and PV are managed. This annotation should not be modified or removed.

Import a volume
You can use tridentctl import to import a volume.

Steps

1. Create the Persistent Volume Claim (PVC) file (for example, pvc . yaml) that will be used to create the
PVC. The PVC file should include name, namespace, accessModes, and storageClassName.
Optionally, you can specify unixPermissions in your PVC definition.

The following is an example of a minimum specification:

182

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: my claim
namespace: my namespace
spec:
accessModes:
- ReadWriteOnce
storageClassName: my storage class

(D Don’t include additional parameters such as PV name or volume size. This can cause the
import command to fail.

2. Use the tridentctl import command to specify the name of the Trident backend containing the
volume and the name that uniquely identifies the volume on the storage (for example: ONTAP FlexVol,
Element Volume, Cloud Volumes Service path). The -f argument is required to specify the path to the
PVC file.

tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-
file>

Examples

Review the following volume import examples for supported drivers.

ONTAP NAS and ONTAP NAS FlexGroup

Trident supports volume import using the ontap-nas and ontap-nas-flexgroup drivers.

* The ontap-nas-economy driver cannot import and manage qtrees.
(D * The ontap-nas and ontap-nas-flexgroup drivers do not allow duplicate volume
names.

Each volume created with the ontap-nas driver is a FlexVol on the ONTAP cluster. Importing FlexVols with
the ontap-nas driver works the same. A FlexVol that already exists on an ONTAP cluster can be imported as
a ontap-nas PVC. Similarly, FlexGroup vols can be imported as ontap-nas-flexgroup PVCs.

ONTAP NAS examples
The following show an example of a managed volume and an unmanaged volume import.

183

Managed volume

The following example imports a volume named managed volume on a backend named ontap nas:

tridentctl import volume ontap nas managed volume -f <path-to-pvc-file>

fossssss=s=ssscscssssssesosossssssss==ssa=s fememe==== fememmmsaemaaa=a
T e e e e e e S D e fro— e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

L fr e fr e e
fress=m=m==s fremeosesesssssss e s s s s s o s e fremememm=s I
| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |
file | cba6f6ad-b052-423b-80d4-8fb491ald4a22 | online | true |
fossssssssssssesessssoees oo ssssss s s s e e
femm======a femessesessss s e e se s e eessssaa s fmmm==== femememm== 4

Unmanaged volume

When using the --no-manage argument, Trident does not rename the volume.

The following example imports unmanaged volume on the ontap nas backend:

tridentctl import volume nas blog unmanaged volume -f <path-to-pvc-
file> --no-manage

o fomm - Fomm -
fomm - o fom - fomm - +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
e ittt L e fomm - fomm e
Fommcmmomo= B e Fommcomo= oo +
| pvc-df07d542-afbc-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |
file | c5a6f6ad-b052-423b-80d4-8fb491aldaz22 | online | false |
o Fommm - Fomm -
fom - o fom— - e +

ONTAP SAN

Trident supports volume import using the ontap-san and ontap-san-economy drivers.

Trident can import ONTAP SAN FlexVols that contain a single LUN. This is consistent with the ontap-san
driver, which creates a FlexVol for each PVC and a LUN within the FlexVol. Trident imports the FlexVol and
associates it with the PVC definition.

ONTAP SAN examples

184

The following show an example of a managed volume and an unmanaged volume import.

185

Managed volume

For managed volumes, Trident renames the FlexVol to the pvc-<uuid> format and the LUN within the
FlexVol to 1uno.

The following example imports the ontap-san-managed FlexVol that is present on the
ontap san default backend:

tridentctl import volume ontapsan san default ontap-san-managed -f pvc-

basic-import.yaml -n trident -d

Fommmmmmmmsmeososorreroememememe oo memmm o Frommomoms Fommmmmmomoomoms
Fommemmomo= o memererserererr s eseee s ee e Focmcomo= ommmcemos +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
e e et rommmmom= Fommcmmccmeoeo=e
Fommmmmmm== e Fommmmm== o= +
| pvc-d6eedf54-4e40-4454-92£fd-d00£c228d74a | 20 MiB | basic |
block | cd394786-ddd5-4470-adc3-10c5ced4ca’57 | online | true |
Fommmmmmemsmssesese s s s s s e e i Fommmmmmemememe=
Fommmomomme Fommememerossrsreemenessosoeseoomomoms Fomomomme Fommomomos +

Unmanaged volume

The following example imports unmanaged example volume onthe ontap san backend:

186

tridentctl import volume -n trident san blog unmanaged example volume
-f pvc-import.yaml --no-manage

Fommmmmmemssesesese s s s s e e e P o=
Fommmmmomo= B e e e Fommmmmoe e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
i e et ommmmomos e e
Pommmmmmm== ettt Fommmmm== o= +
| pvc-1£c999c9-ce8c-459c-82e4-ed4380a4b228 | 1.0 GiB | san-blog

block | €3275890-7d80-4af6-90cc-c7a0759£555a | online | false |
et P P
Fommmmmmm== e et Fommmmm== o= +

If you have LUNS mapped to igroups that share an IQN with a Kubernetes node IQN, as
shown in the following example, you will receive the error: LUN already mapped to
initiator(s) in this group. You will need to remove the initiator or unmap the LUN
to import the volume.

(::) Vserver Igroup Protocol 0S Type Initiators

k8s-nodename. example. com-fe5d36f2-cded-4138-9eb@-c7719fc2193

iscsi linux iqn.1994-05.com.redhat:4c2elcf35e0

unmanaged-example-igroup
mixed linux ign.1994-05.com.redhat:4c2elcf35e0

Element

Trident supports NetApp Element software and NetApp HCI volume import using the solidfire-san driver.

The Element driver supports duplicate volume names. However, Trident returns an error if there
are duplicate volume names. As a workaround, clone the volume, provide a unique volume
name, and import the cloned volume.

Element example

The following example imports an element-managed volume on backend element default.

tridentctl import volume element default element-managed -f pvc-basic-
import.yaml -n trident -d

Fommmmmcrmsmerrrrrrrrrre s me e eeemm o Fommmmom= Fommemmcemeomoes
Fommmmmmm== ettt fommmmm== o= +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
Fommmmmmemsmesesese s s s s e o= fommmmmmemememe=
Fommmomomme Fommomemeressrsreemenessosoeseeoomomoms Fomommmme e e +
| pvc-970celca-2096-4ecd-8545-ac7/edc24a8fe | 10 GiB | basic-element |
block | d3bal47a-ealb-43£9-9¢c42-e38e58301c49 | online | true |
Fommmmmmemsmeosormrrerosmememe oo oeoememmm o Fommomome Fommmmmmemoomoos
Fommmmmmmos FosmsmsmsrorsrsrossoosososEsEeneses oo o Fommmmmos Fosmmmmmes +

Google Cloud Platform

Trident supports volume import using the gcp-cvs driver.

To import a volume backed by the NetApp Cloud Volumes Service in Google Cloud Platform,
identify the volume by its volume path. The volume path is the portion of the volume’s export

@ path after the : /. For example, if the export pathis 10.0.0.1:/adroit-jolly-swift, the
volume path is adroit-jolly-swift.

187

Google Cloud Platform example

The following example imports a gcp-cvs volume on backend gcpcvs YEppr with the volume path of
adroit-jolly-swift.

tridentctl import volume gcpcvs YEppr adroit-jolly-swift -f <path-to-pvc-
file> -n trident

- fom—————— e

fom - o fom—m - fommm - +

| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

o fomm - fomm -

fom - o fom - e +

| pvc-ad6ccab7-44aa-4433-94bl-e47fc8c0fa55 | 93 GiB | gcp-storage | file
| €la6e65b-299e-4568-ad05-4£0a105c888f | online | true |
o fom—————— o

fom - o fomm - fomm - +

Azure NetApp Files

Trident supports volume import using the azure-netapp-files driver.

To import an Azure NetApp Files volume, identify the volume by its volume path. The volume
@ path is the portion of the volume’s export path after the : /. For example, if the mount path is
10.0.0.2:/importvoll, the volume path is importvoll.

Azure NetApp Files example

The following example imports an azure-netapp-files volume on backend azurenetappfiles 40517
with the volume path importvoll.

tridentctl import volume azurenetappfiles 40517 importvoll -f <path-to-
pvc-file> -n trident

Fommmmmmemsmssesesese s s s s e o= o=
Fommmmmomme R e S e e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

Fommmmmmmmsmeososorreroememerene oo memmm o Frommmmomos Fomcmmemememonos
S et Fosmsmsosoossrsrosososososmsoonososos o Pommmmms e i +
| pvc-0ee95d60-£d5¢c-448d-b505-b72901b3adab | 100 GiB | anf-storage |
file | 1c01274f-d94b-44a3-98a3-04c953c9%a5le | online | true |

ARGttt Fosmsmsmss Focosmsmsosssoss
Pommmmmmm== P mes e e s s s s s s s ee s Fommmmm== o= +

188

Customize volume names and labels

With Trident, you can assign meaningful names and labels to volumes you create. This

helps you identify and easily map volumes to their respective Kubernetes resources

(PVCs). You can also define templates at the backend level for creating custom volume

names and custom labels; any volumes that you create, import, or clone will adhere to
the templates.
Before you begin

Customizable volume names and labels support:

1. Volume create, import, and clone operations.

2. In the case of ontap-nas-economy driver, only the name of the Qtree volume complies with the name
template.

3. In the case of ontap-san-economy driver, only the LUN name complies with the name template.
Limitations

1. Customizable volume names are compatible with ONTAP on-premises drivers only.

2. Customizable volume names do not apply to existing volumes.

Key behaviors of customizable volume names

1. If a failure occurs due to invalid syntax in a name template, the backend creation fails. However, if the
template application fails, the volume will be named according to existing naming convention.

2. Storage prefix is not applicable when a volume is named using a name template from the backend
configuration. Any desired prefix value may be directly added to the template.

Backend configuration examples with name template and labels

Custom name templates can be defined at the root and/or pool level.

189

Root level example

{

"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "ontap-nfs-backend",
"managementLIF": "<ip address>",
"svm": "svmQO",
"username": "<admin>",
"password": "<password>",
"defaults": {

"nameTemplate":

"{{.volume.Name}} {{.labels.cluster}} {{.volume.Namespace}} {{.volume.Requ
estName} } "

by

"labels": {"cluster": "ClusterA", "PVC":

"{{.volume.Namespace}} {{.volume.RequestName}}"}

}

190

Pool level example

"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "ontap-nfs-backend",
"managementLIF": "<ip address>",
"svm": "svmQO",
"username": "<admin>",
"password": "<password>",
"useREST": true,
"storage": [
{
"labels":{"labelname":"labell", "name": "{{ .volume.Name }}"},
"defaults":
{
"nameTemplate": "poolOl {{ .volume.Name }} {{ .labels.cluster

1Y _{{ .volume.Namespace }} {{ .volume.RequestName }}"
}
iy

"labels":{"cluster":"label2", "name": "{{ .volume.Name }}"},
"defaults":
{

"nameTemplate": "pool02 {{ .volume.Name }} {{ .labels.cluster

}} _{{ .volume.Namespace }} {{ .volume.RequestName }}"

}

Name template examples

Example 1:

"nameTemplate": "{{ .config.StoragePrefix }} {{ .volume.Name }} {{

.config.BackendName }}"

Example 2:

"nameTemplate": "pool {{ .config.StoragePrefix }} {{ .volume.Name }} {{
slice .volume.RequestName 1 5 }}""

191

Points to consider

1.

In the case of volume imports, the labels are updated only if the existing volume has labels in a specific
format. For example: {"provisioning":{"Cluster":"ClusterA", "PVC": "pvcname"}}.

In the case of managed volume imports, the volume name follows the name template defined at the root
level in the backend definition.

3. Trident does not support the use of a slice operator with the storage prefix.

If the templates do not result in unique volume names, Trident will append a few random characters to
create unique volume names.

. If the custom name for a NAS economy volume exceeds 64 characters in length, Trident will name the

volumes according to the existing naming convention. For all other ONTAP drivers, if the volume name
exceeds the name limit, the volume creation process fails.

Share an NFS volume across namespaces

Using Trident, you can create a volume in a primary namespace and share it in one or
more secondary namespaces.

Features

The TridentVolumeReference CR allows you to securely share ReadWriteMany (RWX) NFS volumes across
one or more Kubernetes namespaces. This Kubernetes-native solution has the following benefits:

Multiple levels of access control to ensure security
Works with all Trident NFS volume drivers

No reliance on tridentctl or any other non-native Kubernetes feature

This diagram illustrates NFS volume sharing across two Kubernetes namespaces.

192

................. : Primary PV Secondary PV

npl"il'l'"lar}f" o . Q = :,’

1T Trident T g %
namespace

primary

Vo TVel e——>

TridentVolumeReference

O [
H

primary/pvci

Slorage = tt-cecemecsecosno-e
Volume

Quick start

You can set up NFS volume sharing in just a few steps.

o Configure source PVC to share the volume
The source namespace owner grants permission to access the data in the source PVC.

9 Grant permission to create a CR in the destination namespace

The cluster administrator grants permission to the owner of the destination namespace to create the
TridentVolumeReference CR.

e Create TridentVolumeReference in the destination namespace
The owner of the destination namespace creates the TridentVolumeReference CR to refer to the source PVC.

o Create the subordinate PVC in the destination namespace

The owner of the destination namespace creates the subordinate PVC to use the data source from the source
PVC.

Configure the source and destination namespaces

To ensure security, cross namespace sharing requires collaboration and action by the source namespace

193

owner, cluster administrator, and destination namespace owner. The user role is designated in each step.

Steps

1. Source namespace owner: Create the PVC (pvc1) in the source namespace that grants permission to
share with the destination namespace (namespace?) using the shareToNamespace annotation.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvcl
namespace: namespacel
annotations:

trident.netapp.io/shareToNamespace: namespace?

spec:
accessModes:

- ReadWriteMany
storageClassName: trident-csi
resources:

requests:

storage: 100Gi

Trident creates the PV and its backend NFS storage volume.

> You can share the PVC to multiple namespaces using a comma-delimited list. For
example, trident.netapp.io/shareToNamespace:
namespace?2, namespace3, namespace4.

@ ° You can share to all namespaces using *. For example,
trident.netapp.io/shareToNamespace: *

° You can update the PVC to include the shareToNamespace annotation at any time.

2. Cluster admin: Create the custom role and kubeconfig to grant permission to the destination namespace
owner to create the TridentVolumeReference CR in the destination namespace.

3. Destination namespace owner: Create a TridentVolumeReference CR in the destination namespace that
refers to the source namespace pvcl.

apiVersion: trident.netapp.io/vl
kind: TridentVolumeReference
metadata:

name: my-first-tvr

namespace: namespace?2
spec:

pvcName: pvcl

pvcNamespace: namespacel

194

4. Destination namespace owner: Create a PVC (pvc2) in destination namespace (namespace?2) using
the shareFromPVC annotation to designate the source PVC.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:

annotations:

trident.netapp.io/shareFromPVC: namespacel/pvcl
name: pvc2
namespace: namespace?2

spec:
accessModes:

- ReadWriteMany
storageClassName: trident-csi
resources:

requests:

storage: 100Gi

@ The size of the destination PVC must be less than or equal than the source PVC.

Results

Trident reads the shareFromPVC annotation on the destination PVC and creates the destination PV as a
subordinate volume with no storage resource of its own that points to the source PV and shares the source PV
storage resource. The destination PVC and PV appear bound as normal.

Delete a shared volume

You can delete a volume that is shared across multiple namespaces. Trident will remove access to the volume
on the source namespace and maintain access for other namespaces that share the volume. When all
namespaces that reference the volume are removed, Trident deletes the volume.

Use tridentctl get to query subordinate volumes
Using the tridentctl utility, you can run the get command to get subordinate volumes. For more

information, refer to tridentctl commands and options.

Usage:
tridentctl get [option]
Flags:

* "-h, --help: Help for volumes.
* ——parentOfSubordinate string: Limit query to subordinate source volume.

* ——subordinateOf string: Limit query to subordinates of volume.

195

https://docs.netapp.com/us-en/trident-2410/trident-reference/tridentctl.html
https://docs.netapp.com/us-en/trident-2410/trident-reference/tridentctl.html

Limitations

 Trident cannot prevent destination namespaces from writing to the shared volume. You should use file
locking or other processes to prevent overwriting shared volume data.

* You cannot revoke access to the source PVC by removing the shareToNamespace or
shareFromNamespace annotations or deleting the TridentvVolumeReference CR. To revoke access,
you must delete the subordinate PVC.

» Snapshots, clones, and mirroring are not possible on subordinate volumes.

For more information

To learn more about cross-namespace volume access:

* Visit Sharing volumes between namespaces: Say hello to cross-namespace volume access.

* Watch the demo on NetAppTV.

Replicate volumes using SnapMirror

Trident supports mirror relationships between a source volume on one cluster and the
destination volume on the peered cluster for replicating data for disaster recovery. You
can use a namespaced Custom Resource Definition (CRD) to perform the following
operations:

* Create mirror relationships between volumes (PVCs)

* Remove mirror relationships between volumes

* Break the mirror relationships

» Promote the secondary volume during disaster conditions (failovers)

» Perform lossless transition of applications from cluster to cluster (during planned failovers or migrations)

Replication prerequisites
Ensure that the following prerequisites are met before you begin:

ONTAP clusters

* Trident: Trident version 22.10 or later must exist on both the source and destination Kubernetes clusters
that utilize ONTAP as a backend.

* Licenses: ONTAP SnapMirror asynchronous licenses using the Data Protection bundle must be enabled
on both the source and destination ONTAP clusters. Refer to SnapMirror licensing overview in ONTAP for
more information.

Peering
* Cluster and SVM: The ONTAP storage backends must be peered. Refer to Cluster and SVM peering
overview for more information.

@ Ensure that the SVM names used in the replication relationship between two ONTAP
clusters are unique.

» Trident and SVM: The peered remote SVMs must be available to Trident on the destination cluster.

196

https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html

Supported drivers

» Volume replication is supported for the ontap-nas and ontap-san drivers.

Create a mirrored PVC

Follow these steps and use the CRD examples to create mirror relationship between primary and secondary

volumes.

Steps

1. Perform the following steps on the primary Kubernetes cluster:

a. Create a StorageClass object with the trident.netapp.io/replication: true parameter.

Example

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: csi-nas
provisioner: csi.trident.netapp.io
parameters:
backendType: "ontap-nas"
fsType: "nfs"
trident.netapp.io/replication: "true"

b. Create a PVC with previously created StorageClass.

Example

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: csi-nas
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 1Gi
storageClassName: csi-nas

c. Create a MirrorRelationship CR with local information.

197

Example

kind: TridentMirrorRelationship
apiVersion: trident.netapp.io/vl
metadata:
name: csi-nas
spec:
state: promoted
volumeMappings:
- localPVCName: csi-nas

Trident fetches the internal information for the volume and the volume’s current data protection (DP)
state, then populates the status field of the MirrorRelationship.

d. Get the TridentMirrorRelationship CR to obtain the internal name and SVM of the PVC.

kubectl get tmr csi-nas

kind: TridentMirrorRelationship
apiVersion: trident.netapp.io/vl
metadata:
name: csi-nas
generation: 1
spec:
state: promoted
volumeMappings:
- localPVCName: csi-nas
status:
conditions:
- state: promoted
localVolumeHandle:
"datavserver:trident pvc 3bedd23c 46a8 4384 bl2b 3c38b313clel”
localPVCName: csi-nas

observedGeneration: 1

2. Perform the following steps on the secondary Kubernetes cluster:

a. Create a StorageClass with the trident.netapp.io/replication: true parameter.

198

Example

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: csi-nas
provisioner: csi.trident.netapp.io
parameters:
trident.netapp.io/replication: true

b. Create a MirrorRelationship CR with destination and source information.

Example

kind: TridentMirrorRelationship
apivVersion: trident.netapp.io/vl
metadata:

name: csi-nas

spec:
state: established
volumeMappings:

- localPVCName: csi-nas
remoteVolumeHandle:
"datavserver:trident pvc 3bedd23c 46a8 4384 bl2b 3c38b313clel"”

Trident will create a SnapMirror relationship with the configured relationship policy name (or default for
ONTAP) and initialize it.

c. Create a PVC with previously created StorageClass to act as the secondary (SnapMirror destination).

Example

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: csi-nas
annotations:
trident.netapp.io/mirrorRelationship: csi-nas
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 1Gi
storageClassName: csi-nas

Trident will check for the TridentMirrorRelationship CRD and fail to create the volume if the relationship

199

does not exist. If the relationship exists, Trident will ensure the new FlexVol volume is placed onto an
SVM that is peered with the remote SVM defined in the MirrorRelationship.

Volume Replication States

A Trident Mirror Relationship (TMR) is a CRD that represents one end of a replication relationship between
PVCs. The destination TMR has a state, which tells Trident what the desired state is. The destination TMR has
the following states:
» Established: the local PVC is the destination volume of a mirror relationship, and this is a new relationship.
* Promoted: the local PVC is ReadWrite and mountable, with no mirror relationship currently in effect.

» Reestablished: the local PVC is the destination volume of a mirror relationship and was also previously in
that mirror relationship.

o The reestablished state must be used if the destination volume was ever in a relationship with the
source volume because it overwrites the destination volume contents.

> The reestablished state will fail if the volume was not previously in a relationship with the source.
Promote secondary PVC during an unplanned failover

Perform the following step on the secondary Kubernetes cluster:

* Update the spec.state field of TridentMirrorRelationship to promoted.

Promote secondary PVC during a planned failover
During a planned failover (migration), perform the following steps to promote the secondary PVC:

Steps
1. On the primary Kubernetes cluster, create a snapshot of the PVC and wait until the snapshot is created.

2. On the primary Kubernetes cluster, create the Snapshotinfo CR to obtain internal details.

Example

kind: SnapshotInfo
apiVersion: trident.netapp.io/vl
metadata:
name: csi-nas
spec:
snapshot-name: csi-nas-snapshot

3. On secondary Kubernetes cluster, update the spec.state field of the TridentMirrorRelationship CR to
promoted and spec.promotedSnapshotHandle to be the internalName of the snapshot.

4. On secondary Kubernetes cluster, confirm the status (status.state field) of TridentMirrorRelationship to
promoted.

Restore a mirror relationship after a failover

Before restoring a mirror relationship, choose the side that you want to make as the new primary.

200

Steps

1. On the secondary Kubernetes cluster, ensure that the values for the spec.remoteVolumeHandle field on
the TridentMirrorRelationship is updated.

2. On secondary Kubernetes cluster, update the spec.mirror field of TridentMirrorRelationship to
reestablished.
Additional operations

Trident supports the following operations on the primary and secondary volumes:

Replicate primary PVC to a new secondary PVC

Ensure that you already have a primary PVC and a secondary PVC.

Steps

1. Delete the PersistentVolumeClaim and TridentMirrorRelationship CRDs from the established secondary
(destination) cluster.

2. Delete the TridentMirrorRelationship CRD from the primary (source) cluster.

3. Create a new TridentMirrorRelationship CRD on the primary (source) cluster for the new secondary
(destination) PVC you want to establish.

Resize a mirrored, primary or secondary PVC

The PVC can be resized as normal, ONTAP will automatically expand any destination flevxols if the amount of
data exceeds the current size.

Remove replication from a PVC

To remove replication, perform one of the following operations on the current secondary volume:

» Delete the MirrorRelationship on the secondary PVC. This breaks the replication relationship.

* Or, update the spec.state field to promoted.

Delete a PVC (that was previously mirrored)

Trident checks for replicated PVCs, and releases the replication relationship before attempting to delete the
volume.

Delete a TMR

Deleting a TMR on one side of a mirrored relationship causes the remaining TMR to transition to promoted
state before Trident completes the deletion. If the TMR selected for deletion is already in promoted state, there
is no existing mirror relationship and the TMR will be removed and Trident will promote the local PVC to
ReadWrite. This deletion releases SnapMirror metadata for the local volume in ONTAP. If this volume is used
in @ mirror relationship in the future, it must use a new TMR with an established volume replication state when
creating the new mirror relationship.

Update mirror relationships when ONTAP is online

Mirror relationships can be updated any time after they are established. You can use the state: promoted
or state: reestablished fields to update the relationships.

When promoting a destination volume to a regular ReadWrite volume, you can use promotedSnapshotHandle
to specify a specific snapshot to restore the current volume to.

201

Update mirror relationships when ONTAP is offline

You can use a CRD to perform a SnapMirror update without Trident having direct connectivity to the ONTAP
cluster. Refer to the following example format of the TridentActionMirrorUpdate:

Example

apiVersion: trident.netapp.io/vl
kind: TridentActionMirrorUpdate
metadata:
name: update-mirror-b
spec:
snapshotHandle: "pvc-1234/snapshot-1234"

tridentMirrorRelationshipName: mirror-b

status.state reflects the state of the TridentActionMirrorUpdate CRD. It can take a value from Succeeded,
In Progress, or Failed.

Use CSI Topology

Trident can selectively create and attach volumes to nodes present in a Kubernetes
cluster by making use of the CSI Topology feature.

Overview

Using the CSI Topology feature, access to volumes can be limited to a subset of nodes, based on regions and
availability zones. Cloud providers today enable Kubernetes administrators to spawn nodes that are zone
based. Nodes can be located in different availability zones within a region, or across various regions. To
facilitate the provisioning of volumes for workloads in a multi-zone architecture, Trident uses CSI Topology.

Learn more about the CSI Topology feature here.

Kubernetes provides two unique volume binding modes:

* With VolumeBindingMode set to Immediate, Trident creates the volume without any topology
awareness. Volume binding and dynamic provisioning are handled when the PVC is created. This is the
default volumeBindingMode and is suited for clusters that do not enforce topology constraints. Persistent
Volumes are created without having any dependency on the requesting pod’s scheduling requirements.

* With VolumeBindingMode set to WaitForFirstConsumer, the creation and binding of a Persistent
Volume for a PVC is delayed until a pod that uses the PVC is scheduled and created. This way, volumes
are created to meet the scheduling constraints that are enforced by topology requirements.

@ The WaitForFirstConsumer binding mode does not require topology labels. This can be
used independent of the CSI Topology feature.

What you’ll need
To make use of CSI Topology, you need the following:

« A Kubernetes cluster running a supported Kubernetes version

202

https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://docs.netapp.com/us-en/trident-2410/trident-get-started/requirements.html

kubectl version

Client Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"1el1le4a2108024935ecfcb2912226cedeafd99df",
GitTreeState:"clean", BuildDate:"2020-10-14T12:50:192",
GoVersion:"gol.15.2", Compiler:"gc", Platform:"linux/amdoc4"}
Server Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"1elled4a2108024935ecfcb2912226cedeafd99df"”,
GitTreeState:"clean", BuildDate:"2020-10-14T12:41:492",
GoVersion:"gol.15.2", Compiler:"gc", Platform:"linux/amd64"}

* Nodes in the cluster should have labels that introduce topology awareness
(topology.kubernetes.io/region and topology.kubernetes.io/zone). These labels should
be present on nodes in the cluster before Trident is installed for Trident to be topology aware.

kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{ .metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"
[nodel,
{"beta.kubernetes.io/arch":"amdo64", "beta.kubernetes.io/os":"1linux", "kube

rnetes.io/arch":"amd64", "kubernetes.io/hostname" :"nodel", "kubernetes.io/
os":"linux", "node-
role.kubernetes.io/master":"","topology.kubernetes.io/region":"us-
eastl", "topology.kubernetes.io/zone":"us-eastl-a"}]

[node?2,

{"beta.kubernetes.io/arch":"amdo64", "beta.kubernetes.io/os":"1linux", "kube
rnetes.io/arch":"amd64", "kubernetes.io/hostname" :"node2", "kubernetes.io/
os":"linux", "node-
role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-
eastl", "topology.kubernetes.io/zone":"us-eastl-b"}]

[node3,

{"beta.kubernetes.io/arch":"amdo64", "beta.kubernetes.io/os":"1linux", "kube
rnetes.io/arch":"amd64", "kubernetes.io/hostname" :"node3", "kubernetes.io/
os":"linux", "node-
role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-
eastl", "topology.kubernetes.io/zone":"us-eastl-c"}]

Step 1: Create a topology-aware backend

Trident storage backends can be designed to selectively provision volumes based on availability zones. Each
backend can carry an optional supportedTopologies block that represents a list of zones and regions that
are supported. For StorageClasses that make use of such a backend, a volume would only be created if
requested by an application that is scheduled in a supported region/zone.

Here is an example backend definition:

203

YAML

version: 1

storageDriverName: ontap-san

backendName: san-backend-us-eastl

managementLIF: 192.168.27.5

svm: iscsi svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-eastl
topology.kubernetes.io/zone: us-eastl-a

- topology.kubernetes.io/region: us-eastl
topology.kubernetes.io/zone: us-eastl-Db

JSON
{
"version": 1,
"storageDriverName": "ontap-san",
"backendName": "san-backend-us-eastl",
"managementLIF": "192.168.27.5",
"svm": "iscsi svm",
"username": "admin",
"password": "password",
"supportedTopologies™: [
{"topology.kubernetes.io/region": "us-eastl",
"topology.kubernetes.io/zone": "us-eastl-a"},
{"topology.kubernetes.io/region": "us-eastl",
"topology.kubernetes.io/zone": "us-eastl-b"}

]
}

supportedTopologies is used to provide a list of regions and zones per backend. These

@ regions and zones represent the list of permissible values that can be provided in a
StorageClass. For StorageClasses that contain a subset of the regions and zones provided in a
backend, Trident creates a volume on the backend.

You can define supportedTopologies per storage pool as well. See the following example:

204

version: 1

storageDriverName: ontap-nas

backendName: nas-backend-us-centrall

managementLIF: 172.16.

svm: nfs svm
username: admin
password: password
supportedTopologies:
- topology.kubernetes

topology.kubernetes.
- topology.kubernetes.
topology.kubernetes.

storage:
- labels:

238.5

.1o0/region: us-centrall

io/zone: us-centrall-a
io/region: us-centrall
io/zone: us-centrall-b

workload: production

supportedTopologies:
- topology.kubernetes.
topology.kubernetes.io/zone: us-centrall-a

- labels:
workload: dev

supportedTopologies:
- topology.kubernetes.
topology.kubernetes.io/zone: us-centrall-b

In this example, the region and zone labels stand for the location of the storage pool.
topology.kubernetes.io/region and topology.kubernetes.io/zone dictate where the storage

pools can be consumed from.

Step 2: Define StorageClasses that are topology aware

io/region: us-centrall

io/region: us-centrall

Based on the topology labels that are provided to the nodes in the cluster, StorageClasses can be defined to
contain topology information. This will determine the storage pools that serve as candidates for PVC requests

made, and the subset of nodes that can make use of the volumes provisioned by Trident.

See the following example:

205

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: netapp-san-us-eastl
provisioner: csi.trident.netapp.io
volumeBindingMode: WaitForFirstConsumer
allowedTopologies:
- matchLabelExpressions:
- key: topology.kubernetes.io/zone
values:
- us-eastl-a
- us-eastl-b
- key: topology.kubernetes.io/region
values:
- us-eastl
parameters:
fsType: "ext4d"

In the StorageClass definition provided above, volumeBindingMode is set to WaitForFirstConsumer.
PVCs that are requested with this StorageClass will not be acted upon until they are referenced in a pod. And,
allowedTopologies provides the zones and region to be used. The netapp-san-us-eastl1 StorageClass
creates PVCs on the san-backend-us-east1 backend defined above.

Step 3: Create and use a PVC

With the StorageClass created and mapped to a backend, you can now create PVCs.

See the example spec below:

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-san
spec:
accessModes:

- ReadWriteOnce
resources:

requests:

storage: 300Mi

storageClassName: netapp-san-us-eastl

Creating a PVC using this manifest would result in the following:

206

kubectl create -f pvc.yaml
persistentvolumeclaim/pvc-san created
kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

AGE

pvc-san Pending netapp-san-us-eastl

2s

kubectl describe pvc

Name: pvc-san

Namespace: default

StorageClass: netapp-san-us-eastl

Status: Pending

Volume:

Labels: <none>

Annotations: <none>

Finalizers: [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode: Filesystem

Mounted By: <none>

Events:
Type Reason Age From Message
Normal WaitForFirstConsumer ©6s persistentvolume-controller waiting

for first consumer to be created before binding

For Trident to create a volume and bind it to the PVC, use the PVC in a pod. See the following example:

207

apiVersion: vl
kind: Pod
metadata:
name: app-pod-1
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: topology.kubernetes.io/region
operator: In
values:
- us-eastl
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
preference:
matchExpressions:
- key: topology.kubernetes.io/zone
operator: In
values:
- us-eastl-a
- us-eastl-b
securityContext:
runAsUser: 1000
runAsGroup: 3000
fsGroup: 2000
volumes:
- name: voll
persistentVolumeClaim:
claimName: pvc-san
containers:
- name: sec-ctx-demo
image: busybox
command: ["sh", "-c", "sleep 1h"]
volumeMounts:
- name: voll
mountPath: /data/demo
securityContext:
allowPrivilegeEscalation: false

This podSpec instructs Kubernetes to schedule the pod on nodes that are present in the us-east1 region,
and choose from any node that is present in the us-eastl-a or us-eastl-b zones.

See the following output:

208

kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES

app-pod-1 1/1 Running 0 19s 192.168.25.131 node?2
<none> <none>

kubectl get pvc -o wide

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE VOLUMEMODE

pvc-san Bound pvc-ecblelal0-840c-463b-8b65-b3d033e2e62b 300Mi
RWO netapp-san-us-eastl 48s Filesystem

Update backends to include supportedTopologies

Pre-existing backends can be updated to include a list of supportedTopologies using tridentctl
backend update. This will not affect volumes that have already been provisioned, and will only be used for
subsequent PVCs.

Find more information

* Manage resources for containers
* nodeSelector
« Affinity and anti-affinity

¢ Taints and Tolerations

Work with snapshots

Kubernetes volume snapshots of Persistent Volumes (PVs) enable point-in-time copies of
volumes. You can create a snapshot of a volume created using Trident, import a snapshot
created outside of Trident, create a new volume from an existing snapshot, and recover
volume data from snapshots.

Overview

Volume snapshot is supported by ontap-nas, ontap-nas-flexgroup, ontap-san, ontap-san-
economy, solidfire-san, gcp-cvs, and azure-netapp-files drivers.

Before you begin

You must have an external snapshot controller and Custom Resource Definitions (CRDs) to work with
snapshots. This is the responsibility of the Kubernetes orchestrator (for example: Kubeadm, GKE, OpenShift).

If your Kubernetes distribution does not include the snapshot controller and CRDs, refer to Deploy a volume
shapshot controller.

(D Don’t create a snapshot controller if creating on-demand volume snapshots in a GKE
environment. GKE uses a built-in, hidden snapshot controller.

209

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Create a volume snapshot

Steps
1. Create a VolumeSnapshotClass. For more information, refer to VolumeSnapshotClass.

° The driver points to the Trident CSI driver.

° deletionPolicy can be Delete or Retain. When set to Retain, the underlying physical snapshot
on the storage cluster is retained even when the volumeSnapshot object is deleted.

Example

cat snap-sc.yaml
apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshotClass
metadata:

name: csi-snapclass
driver: csi.trident.netapp.io
deletionPolicy: Delete

2. Create a snapshot of an existing PVC.

Examples
o This example creates a snapshot of an existing PVC.

cat snap.yaml
apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshot
metadata:
name: pvcl-snap
spec:
volumeSnapshotClassName: csi-snapclass
source:
persistentVolumeClaimName: pvcl

° This example creates a volume snapshot object for a PVC named pvcl and the name of the snapshot
is set to pvcl-snap. A VolumeSnapshot is analogous to a PVC and is associated with a
VolumeSnapshotContent object that represents the actual snapshot.

kubectl create -f snap.yaml
volumesnapshot.snapshot.storage.k8s.io/pvcl-snap created

kubectl get volumesnapshots
NAME AGE
pvcl-snap 50s

° You can identify the volumeSnapshotContent object for the pvcl-snap VolumeSnapshot by

210

https://docs.netapp.com/us-en/trident-2410/trident-reference/objects.html#kubernetes-volumesnapshotclass-objects

describing it. The Snapshot Content Name identifies the VolumeSnapshotContent object which
serves this snapshot. The Ready To Use parameter indicates that the snapshot can be used to
create a new PVC.

kubectl describe volumesnapshots pvcl-snap

Name: pvcl-snap
Namespace: default
Spec:
Snapshot Class Name: pvcl-snap
Snapshot Content Name: snapcontent-e8d8a0ca-9826-11e9-9807-
525400£3£660
Source:
API Group:
Kind: PersistentVolumeClaim
Name: pvcl
Status:
Creation Time: 2019-06-26T15:27:29%
Ready To Use: true
Restore Size: 3Gi

Create a PVC from a volume snapshot

You can use dataSource to create a PVC using a VolumeSnapshot named <pvc-name> as the source of the
data. After the PVC is created, it can be attached to a pod and used just like any other PVC.

@ The PVC will be created in the same backend as the source volume. Refer to KB: Creating a
PVC from a Trident PVC Snapshot cannot be created in an alternate backend.

The following example creates the PVC using pvcl-snap as the data source.

211

https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend

cat pvc-from-snap.yaml
apiVersion: vl
kind: PersistentVolumeClaim
metadata:

name: pvc-from-snap
spec:

accessModes:

- ReadWriteOnce
storageClassName: golden
resources:

requests:

storage: 3Gi
dataSource:

name: pvcl-snap

kind: VolumeSnapshot

apiGroup: snapshot.storage.k8s.io

Import a volume snapshot

Trident supports the Kubernetes pre-provisioned snapshot process to enable the cluster administrator to create
a VolumeSnapshotContent object and import snapshots created outside of Trident.

Before you begin
Trident must have created or imported the snapshot’s parent volume.

Steps

1. Cluster admin: Create a VolumeSnapshotContent object that references the backend snapshot. This
initiates the snapshot workflow in Trident.

° Specify the name of the backend snapshot in annotations as
trident.netapp.io/internalSnapshotName: <"backend-snapshot—-name">.

° Specify <name-of-parent-volume-in-trident>/<volume-snapshot-content-name> in
snapshotHandle. This is the only information provided to Trident by the external snapshotter in the
ListSnapshots call.

(D The <volumeSnapshotContentName> cannot always match the backend snapshot
name due to CR naming constraints.

Example

The following example creates a VolumeSnapshotContent object that references backend snapshot
snap-01.

212

https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static

apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshotContent
metadata:
name: import-snap-content
annotations:
trident.netapp.io/internalSnapshotName: "snap-01" # This is the
name of the snapshot on the backend
spec:
deletionPolicy: Retain
driver: csi.trident.netapp.io
source:
snapshotHandle: pvc-£71223b5-23b9-4235-bbfe-e269%9ac7b84b0/import-
snap-content # <import PV name or source PV name>/<volume-snapshot-
content—-name>
volumeSnapshotRef:
name: import-snap

namespace: default

2. Cluster admin: Create the VolumeSnapshot CR that references the volumeSnapshotContent object.
This requests access to use the VolumeSnapshot in a given namespace.

Example

The following example creates a VolumeSnapshot CR named import-snap that references the
VolumeSnapshotContent named import-snap-content.

apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshot
metadata:

name: import-snap
spec:

volumeSnapshotClassName: csi-snapclass (not required for pre-
provisioned or imported snapshots)

source:

volumeSnapshotContentName: import-snap-content

3. Internal processing (no action required): The external snapshotter recognizes the newly created
VolumeSnapshotContent and runs the ListSnapshots call. Trident creates the TridentSnapshot.

° The external snapshotter sets the VolumeSnapshotContent to readyToUse and the
VolumeSnapshot to true.

° Trident returns readyToUse=true.

4. Any user: Create a PersistentVolumeClaim to reference the new VvolumeSnapshot, where the
spec.dataSource (Or spec.dataSourceRef) name is the VolumeSnapshot name.

Example

213

The following example creates a PVC referencing the VolumeSnapshot named import-snap.

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: pvc-from-snap
spec:
accessModes:

- ReadWriteOnce
storageClassName: simple-sc
resources:

requests:

storage: 1Gi
dataSource:

name: import-snap

kind: VolumeSnapshot

apiGroup: snapshot.storage.k8s.io

Recover volume data using snapshots

The snapshot directory is hidden by default to facilitate maximum compatibility of volumes provisioned using
the ontap-nas and ontap-nas-economy drivers. Enable the . snapshot directory to recover data from
snapshots directly.

Use the volume snapshot restore ONTAP CLI to to restore a volume to a state recorded in a prior snapshot.

clusterl::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3 snap archive

@ When you restore a snapshot copy, the existing volume configuration is overwritten. Changes
made to volume data after the snapshot copy was created are lost.
In-place volume restoration from a snapshot

Trident provides rapid, in-place volume restoration from a snapshot using the
TridentActionSnapshotRestore (TASR) CR. This CR functions as an imperative Kubernetes action and
does not persist after the operation completes.

Trident supports snapshot restore on the ontap-san, ontap-san-economy, ontap-nas, ontap-nas-
flexgroup, azure-netapp-files, gcp-cvs, google-cloud-netapp-volumes, and solidfire-san
drivers.

Before you begin
You must have a bound PVC and available volume snapshot.

« Verify the PVC status is bound.

214

kubectl get pvc
« Verify the volume snapshot is ready to use.

kubectl get vs

Steps
1. Create the TASR CR. This example creates a CR for PVC pvc1 and volume snapshot pvcl-snapshot.

@ The TASR CR must be in a namespace where the PVC & VS exist.

cat tasr-pvcl-snapshot.yaml

apiVersion: trident.netapp.io/vl
kind: TridentActionSnapshotRestore
metadata:

name: trident-snap

namespace: trident
spec:

pvcName: pvcl

volumeSnapshotName: pvcl-snapshot

1. Apply the CR to restore from the snapshot. This example restores from snapshot pvci.

kubectl create -f tasr-pvcl-snapshot.yaml

tridentactionsnapshotrestore.trident.netapp.io/trident-snap created

Results
Trident restores the data from the snapshot. You can verify the snapshot restore status.

215

kubectl get tasr -o yaml

apiVersion: trident.netapp.io/vl
items:
- apiVersion: trident.netapp.io/vl
kind: TridentActionSnapshotRestore
metadata:
creationTimestamp: "2023-04-14T00:20:332Z"
generation: 3
name: trident-snap

namespace: trident

resourceVersion: "3453847"
uid: <uid>
spec:

pvcName: pvcl
volumeSnapshotName: pvcl-snapshot
status:

startTime: "2023-04-14T00:20:34z2"
completionTime: "2023-04-14T00:20:372"
state: Succeeded

kind: List

metadata:

resourceVersion:

* In most cases, Trident will not automatically retry the operation in case of failure. You will
(D need to perform the operation again.

* Kubernetes users without admin access might have to be granted permission by the admin
to create a TASR CR in their application namespace.
Delete a PV with associated snapshots

When deleting a Persistent Volume with associated snapshots, the corresponding Trident volume is updated to
a “Deleting state”. Remove the volume snapshots to delete the Trident volume.

Deploy a volume snapshot controller

If your Kubernetes distribution does not include the snapshot controller and CRDs, you can deploy them as
follows.

Steps
1. Create volume snapshot CRDs.

216

cat snapshot-setup.sh

#!/bin/bash

Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshotclasses.yaml
kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshotcontents.yam
1

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshots.yaml

2. Create the snapshot controller.

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-
controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-
controller/setup-snapshot-controller.yaml

(:) If necessary, open deploy/kubernetes/snapshot-controller/rbac-snapshot-
controller.yaml and update namespace to your namespace.

Related links

* Volume snapshots

* VolumeSnapshotClass

217

https://docs.netapp.com/us-en/trident-2410/trident-concepts/snapshots.html
https://docs.netapp.com/us-en/trident-2410/trident-reference/objects.html

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

218

http://www.netapp.com/TM

	Use Trident : Trident
	Table of Contents
	Use Trident
	Prepare the worker node
	Selecting the right tools
	Node service discovery
	NFS volumes
	iSCSI volumes
	NVMe/TCP volumes
	Install the FC tools
	Fibre Channel (FC) support

	Configure and manage backends
	Configure backends
	Azure NetApp Files
	Google Cloud NetApp Volumes
	Configure a Cloud Volumes Service for Google Cloud backend
	Configure a NetApp HCI or SolidFire backend
	ONTAP SAN drivers
	ONTAP NAS drivers
	Amazon FSx for NetApp ONTAP
	Create backends with kubectl
	Manage backends

	Create and manage storage classes
	Create a storage class
	Manage storage classes

	Provision and manage volumes
	Provision a volume
	Expand volumes
	Import volumes
	Customize volume names and labels
	Share an NFS volume across namespaces
	Replicate volumes using SnapMirror
	Use CSI Topology
	Work with snapshots

