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Manage and protect applications

Use Trident Protect AppVault objects to manage buckets

The bucket custom resource (CR) for Trident Protect is known as an AppVault. AppVault
objects are the declarative Kubernetes workflow representation of a storage bucket. An
AppVault CR contains the configurations necessary for a bucket to be used in protection
operations, such as backups, snapshots, restore operations, and SnapMirror replication.
Only administrators can create AppVaults.

You need to create an AppVault CR either manually or using the command line when you perform data
protection operations on an application, and the AppVault CR needs to reside on the cluster where Trident
Protect is installed. The AppVault CR is specific to your environment; you can use the examples on this page
as a guide when creating AppVault CRs.

Configure AppVault authentication and passwords

Before you create an AppVault CR, you need to ensure the AppVault and the data mover you choose can
authenticate with the provider and any related resources.

Data mover repository passwords

When you create AppVault objects using CRs or the Trident Protect CLI plugin, you can optionally instruct
Trident Protect to use a Kubernetes secret that contains custom passwords for the Restic and Kopia repository
encryption. If you don’t specify a secret, Trident Protect uses a default password.

* When manually creating AppVault CRs, use the spec.dataMoverPasswordSecretRef field to specify the
secret.

* When creating AppVault objects using the Trident Protect CLI, use the --data-mover-password
-secret-ref argument to specify the secret.

Create a data mover repository password secret

Use the following examples to create the password secret. When you create AppVault objects, you can instruct
Trident Protect to use this secret to authenticate with the data mover repository.

Depending on which data mover you are using, you only need to include the corresponding
password for that data mover. For example, if you are using Restic and do not plan to use Kopia
in the future, you can include only the Restic password when you create the secret.



Use aCR

apiVersion: vl
data:
KOPIA PASSWORD: <base64-encoded-password>
RESTIC PASSWORD: <baseb64-encoded-password>
kind: Secret
metadata:
name: my-optional-data-mover-secret
namespace: trident-protect

type: Opaque

Use the CLI

kubectl create secret generic my-optional-data-mover-secret \
--from-literal=KOPIA PASSWORD=<plain-text-password> \
-—from-literal=RESTIC PASSWORD=<plain-text-password> \

-n trident-protect

S3-compatible storage IAM permissions

When you access S3-compatible storage such as Amazon S3, Generic S3, StorageGrid S3, or ONTAP S3
using Trident Protect, you need to ensure that the user credentials you provide have the necessary
permissions to access the bucket. The following is an example of a policy that grants the minimum required
permissions for access with Trident Protect. You can apply this policy to the user that manages S3-compatible
bucket policies.

"Version": "2012-10-17",
"Statement": |
{
"Effect": "Allow",
"Action": [

"s3:PutObject",

"s3:GetObject",

"s3:ListBucket",

"s3:DeleteObject"
1,

"Resource": "*"


https://docs.netapp.com/us-en/storagegrid/s3/index.html
https://docs.netapp.com/us-en/ontap/s3-config/

For more information about Amazon S3 policies, refer to to the examples in the Amazon S3 documentation.

AppVault key generation examples for cloud providers

When defining an AppVault CR, you need to include credentials to access the resources hosted by the
provider. How you generate the keys for the credentials will differ depending on the provider. The following are
command line key generation examples for several providers. You can use the following examples to create
keys for the credentials of each cloud provider.


https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-policies-s3.html

Google Cloud

kubectl create secret generic <secret-name> \
-—from-file=credentials=<mycreds-file.json> \

-n trident-protect

Amazon S3 (AWS)

kubectl create secret generic <secret-name> \
--from-literal=accessKeyID=<objectstorage-accesskey> \
-—-from-literal=secretAccessKey=<amazon-s3-trident-protect-src-bucket
—-secret> \

-n trident-protect

Microsoft Azure

kubectl create secret generic <secret-name> \
-—-from-literal=accountKey=<secret-name> \

-n trident-protect

Generic S3

kubectl create secret generic <secret-name> \
-—-from-literal=accessKeyID=<objectstorage-accesskey> \
-—-from-literal=secretAccessKey=<generic-s3-trident-protect-src-bucket
-secret> \

-n trident-protect

ONTAP S3

kubectl create secret generic <secret-name> \
--from-literal=accessKeyID=<objectstorage-accesskey> \
-—-from-literal=secretAccessKey=<ontap-s3-trident-protect-src-bucket
-secret> \

-n trident-protect

StorageGrid S3

kubectl create secret generic <secret-name> \
--from-literal=accessKeyID=<objectstorage-accesskey> \
-—-from-literal=secretAccessKey=<storagegrid-s3-trident-protect-src
-bucket-secret> \

-n trident-protect



AppVault creation examples

The following are example AppVault definitions for each provider.

AppVault CR examples

You can use the following CR examples to create AppVault objects for each cloud provider.

* You can optionally specify a Kubernetes secret that contains custom passwords for the
Restic and Kopia repository encryption. Refer to Data mover repository passwords for more
information.

@ » For Amazon S3 (AWS) AppVault objects, you can optionally specify a sessionToken, which
is useful if you are using single sign-on (SSO) for authentication. This token is created when
you generate keys for the provider in AppVault key generation examples for cloud providers.

» For S3 AppVault objects, you can optionally specify an egress proxy URL for outbound S3
traffic using the spec.providerConfig.S3.proxyURL key.



Google Cloud

apiVersion: protect.trident.netapp.io/vl
kind: AppVault
metadata:
name: gcp-trident-protect-src-bucket
namespace: trident-protect
spec:
dataMoverPasswordSecretRef: my-optional-data-mover-secret
providerType: GCP
providerConfig:
gcp:
bucketName: trident-protect-src-bucket
projectID: project-id
providerCredentials:
credentials:
valueFromSecret:
key: credentials
name: gcp-trident-protect-src-bucket-secret

Amazon S3 (AWS)



apiVersion: protect.trident.netapp.io/vl
kind: AppVault
metadata:
name: amazon-s3-trident-protect-src-bucket
namespace: trident-protect
spec:
dataMoverPasswordSecretRef: my-optional-data-mover-secret
providerType: AWS
providerConfig:
s3:
bucketName: trident-protect-src-bucket
endpoint: s3.example.com
proxyURL: http://10.1.1.1:3128
providerCredentials:
accessKeyID:
valueFromSecret:
key: accessKeyID
name: s3-secret
secretAccessKey:
valueFromSecret:
key: secretAccessKey
name: s3-secret
sessionToken:
valueFromSecret:
key: sessionToken

name: s3-secret

Microsoft Azure



apiVersion: protect.trident.netapp.io/vl
kind: AppVault
metadata:
name: azure-trident-protect-src-bucket
namespace: trident-protect
spec:
dataMoverPasswordSecretRef: my-optional-data-mover-secret
providerType: Azure
providerConfig:
azure:
accountName: account-name
bucketName: trident-protect-src-bucket
providerCredentials:
accountKey:
valueFromSecret:
key: accountKey
name: azure-trident-protect-src-bucket-secret

Generic S3

apiVersion: protect.trident.netapp.io/vl
kind: AppVault
metadata:
name: generic-s3-trident-protect-src-bucket
namespace: trident-protect
spec:
dataMoverPasswordSecretRef: my-optional-data-mover-secret
providerType: GenericS3
providerConfig:
s3:
bucketName: trident-protect-src-bucket
endpoint: s3.example.com
proxyURL: http://10.1.1.1:3128
providerCredentials:
accessKeyID:
valueFromSecret:
key: accessKeyID
name: s3-secret
secretAccessKey:
valueFromSecret:
key: secretAccessKey

name: s3-secret

ONTAP S3



apiVersion: protect.trident.netapp.io/vl
kind: AppVault
metadata:
name: ontap-s3-trident-protect-src-bucket
namespace: trident-protect
spec:
dataMoverPasswordSecretRef: my-optional-data-mover-secret
providerType: OntapS3
providerConfig:
s3:
bucketName: trident-protect-src-bucket
endpoint: s3.example.com
proxyURL: http://10.1.1.1:3128
providerCredentials:
accessKeyID:
valueFromSecret:
key: accessKeyID
name: s3-secret
secretAccessKey:
valueFromSecret:
key: secretAccessKey
name: s3-secret

StorageGrid S3



apiVersion: protect.trident.netapp.io/vl
kind: AppVault
metadata:
name: storagegrid-s3-trident-protect-src-bucket
namespace: trident-protect
spec:
dataMoverPasswordSecretRef: my-optional-data-mover-secret
providerType: StorageGridS3
providerConfig:
s3:
bucketName: trident-protect-src-bucket
endpoint: s3.example.com
proxyURL: http://10.1.1.1:3128
providerCredentials:
accessKeyID:
valueFromSecret:
key: accessKeyID
name: s3-secret
secretAccessKey:
valueFromSecret:
key: secretAccessKey
name: s3-secret

AppVault creation examples using the Trident Protect CLI

You can use the following CLI command examples to create AppVault CRs for each provider.

* You can optionally specify a Kubernetes secret that contains custom passwords for the
Restic and Kopia repository encryption. Refer to Data mover repository passwords for more

@ information.

» For S3 AppVault objects, you can optionally specify an egress proxy URL for outbound S3
traffic using the —-proxy-url <ip address:port>argument.

10



Google Cloud

tridentctl-protect create vault GCP <vault-name> \

--bucket <mybucket> \

--project <my-gcp-project> \

--secret <secret-name>/credentials \
--data-mover-password-secret-ref <my-optional-data-mover-secret> \
-n trident-protect

Amazon S3 (AWS)

tridentctl-protect create vault AWS <vault-name> \

--bucket <bucket-name> \

--secret <secret-name> \

-—endpoint <s3-endpoint> \

--data-mover-password-secret-ref <my-optional-data-mover-secret> \
-n trident-protect

Microsoft Azure

tridentctl-protect create vault Azure <vault-name> \

-—account <account-name> \

--bucket <bucket-name> \

--secret <secret-name> \

--data-mover-password-secret-ref <my-optional-data-mover-secret> \
-n trident-protect

Generic S3

tridentctl-protect create vault GenericS3 <vault-name> \

--bucket <bucket-name> \

--secret <secret-name> \

-—endpoint <s3-endpoint> \

--data-mover-password-secret-ref <my-optional-data-mover-secret> \
-n trident-protect

ONTAP S3

11



tridentctl-protect create vault OntapS3 <vault-name> \

—--bucket <bucket-name> \

——secret <secret-name> \

-—endpoint <s3-endpoint> \

--data-mover-password-secret-ref <my-optional-data-mover-secret> \
-n trident-protect

StorageGrid S3

tridentctl-protect create vault StorageGridS3 <vault-name> \
--bucket <bucket-name> \

-—-secret <secret-name> \

-—endpoint <s3-endpoint> \

--data-mover-password-secret-ref <my-optional-data-mover-secret> \
-n trident-protect

View AppVault information

You can use the Trident Protect CLI plugin to view information about AppVault objects that you have created on
the cluster.

Steps
1. View the contents of an AppVault object:

tridentctl-protect get appvaultcontent gcp-vault \
--show-resources all \

-n trident-protect

Example output:

12
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| CLUSTER | APP | TYPE | NAME

TIMESTAMP |

fom Fom————— fommm - e it T
R +

| | mysgl | snapshot | mysnap | 2024-

08-09 21:02:11 (UTC) |
| productionl | mysgl | snapshot | hourly-e7db6-20240815180300 | 2024-
08-15 18:03:06 (UTC) |
| productionl | mysgl | snapshot | hourly-e7db6-20240815190300 | 2024-
08-15 19:03:06 (UTC) |
| productionl | mysqgl | snapshot | hourly-e7db6-20240815200300 | 2024-
08-15 20:03:06 (UTC) |

| productionl | mysgl | backup | hourly-e7db6-20240815180300 | 2024-
08-15 18:04:25 (UTC) |

| productionl | mysgl | backup | hourly-e7db6-20240815190300 | 2024-
08-15 19:03:30 (UTC) |

| productionl | mysgl | backup | hourly-e7db6-20240815200300 | 2024-
08-15 20:04:21 (UTC) |

| productionl | mysgl | backup | mybackupb | 2024-
08-09 22:25:13 (UTC) |

| | mysgl | backup | mybackup | 2024-
08-09 21:02:52 (UTC) |

o —— - e e

et e P +

2. Optionally, to see the AppVaultPath for each resource, use the flag --show-paths.
The cluster name in the first column of the table is only available if a cluster name was specified in the

Trident Protect helm installation. For example: —-set clusterName=productionl.

Remove an AppVault

You can remove an AppVault object at any time.

Do not remove the finalizers key in the AppVault CR before deleting the AppVault object. If
you do so, it can result in residual data in the AppVault bucket and orphaned resources in the
cluster.

Before you begin
Ensure that you have deleted all snapshot and backup CRs being used by the AppVault you want to delete.



Remove an AppVault using the Kubernetes CLI

1. Remove the AppVault object, replacing appvault-name with the name of the AppVault object to
remove:

kubectl delete appvault <appvault-name> \

-n trident-protect

Remove an AppVault using the Trident Protect CLI

1. Remove the AppVault object, replacing appvault-name with the name of the AppVault object to
remove:

tridentctl-protect delete appvault <appvault-name> \
-n trident-protect

Define an application for management with Trident Protect

You can define an application that you want to manage with Trident Protect by creating an
application CR and an associated AppVault CR.
Create an AppVault CR

You need to create an AppVault CR that will be used when performing data protection operations on the
application, and the AppVault CR needs to reside on the cluster where Trident Protect is installed. The
AppVault CR is specific to your environment; for examples of AppVault CRs, refer to AppVault custom
resources.

Define an application

You need to define each application that you want to manage with Trident Protect. You can define an
application for management by either manually creating an application CR or by using the Trident Protect CLI.

14



Add an application using a CR
Steps
1. Create the destination application CR file:

a. Create the custom resource (CR) file and name it (for example, maria-app.yaml).
b. Configure the following attributes:

= metadata.name: (Required) The name of the application custom resource. Note the name
you choose because other CR files needed for protection operations refer to this value.

= spec.includedNamespaces: (Required) Use namespace and label selector to specify the
namespaces and resources that the application uses. The application namespace must be
part of this list. The label selector is optional and can be used to filter resources within each
specified namespace.

= spec.includedClusterScopedResources: (Optional) Use this attribute to specify cluster-
scoped resources to be included in the application definition. This attribute allows you to
select these resources based on their group, version, kind, and labels.

= groupVersionKind: (Required) Specifies the API group, version, and kind of the cluster-
scoped resource.

= labelSelector: (Optional) Filters the cluster-scoped resources based on their labels.

= metadata.annotations.protect.trident.netapp.io/skip-vm-freeze: (Optional) This annotation
is only applicable to applications defined from virtual machines, such as in KubeVirt
environments, where filesystem freezes occur before snapshots. Specify whether this
application can write to the filesystem during a snapshot. If set to true, the application ignores
the global setting and can write to the filesystem during a snapshot. If set to false, the
application ignores the global setting and the filesystem is frozen during a snapshot. If
specified but the application has no virtual machines in the application definition, the
annotation is ignored. If not specified, the application follows the global Trident Protect freeze

setting.
If you need to apply this annotation after an application has already been
created, you can use the following command:

@ kubectl annotate application -n <application CR
namespace> <application CR name>
protect.trident.netapp.io/skip-vm-freeze="true"

Example YAML:

15


https://docs.netapp.com/us-en/trident-2502/trident-protect/trident-protect-requirements.html#protecting-data-with-kubevirt-vms
https://docs.netapp.com/us-en/trident-2502/trident-protect/trident-protect-requirements.html#protecting-data-with-kubevirt-vms
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apiVersion: protect.trident.netapp.io/vl
kind: Application
metadata:
annotations:
protect.trident.netapp.io/skip-vm-freeze: "false"
name: my-app-name
namespace: my-app-namespace
spec:
includedNamespaces:
- namespace: namespace-1
labelSelector:
matchLabels:
app: example-app
- namespace: namespace-2
labelSelector:
matchLabels:
app: another-example-app
includedClusterScopedResources:
- groupVersionKind:
group: rbac.authorization.k8s.io
kind: ClusterRole
version: vl
labelSelector:
matchLabels:
mylabel: test

2. After you create the application CR to match your environment, apply the CR. For example:

kubectl apply -f maria-app.yaml

Add an application using the CLI
Steps

1. Create and apply the application definition using one of the following examples, replacing values in
brackets with information from your environment. You can include namespaces and resources in the
application definition using comma-separated lists with the arguments shown in the examples.

You can optionally use an annotation when you create an app to specify whether the application can
write to the filesystem during a snapshot. This is only applicable to applications defined from virtual
machines, such as in KubeVirt environments, where filesystem freezes occur before snapshots. If you
set the annotation to true, the application ignores the global setting and can write to the filesystem
during a snapshot. If you set it to false, the application ignores the global setting and the filesystem
is frozen during a snapshot. If you use the annotation but the application has no virtual machines in
the application definition, the annotation is ignored. If you don’t use the annotation, the application
follows the global Trident Protect freeze setting.

To specify the annotation when you use the CLI to create an application, you can use the


https://docs.netapp.com/us-en/trident-2502/trident-protect/trident-protect-requirements.html#protecting-data-with-kubevirt-vms

--annotation flag.

> Create the application and use the global setting for filesystem freeze behavior:

tridentctl-protect create application <my new app cr name>
--namespaces <namespaces to include> --csr
<cluster scoped resources to include> --namespace <my-app-

namespace>
> Create the application and configure the local application setting for filesystem freeze behavior:

tridentctl-protect create application <my new app cr name>
--namespaces <namespaces to include> --csr

<cluster scoped resources to include> --namespace <my-app-
namespace> --annotation protect.trident.netapp.io/skip-vm-freeze
=<"true"|"false">

Protect applications using Trident Protect

You can protect all apps managed by Trident Protect by taking snapshots and backups
using an automated protection policy or on an ad-hoc basis.

@ You can configure Trident Protect to freeze and unfreeze filesystems during data protection
operations. Learn more about configuring filesystem freezing with Trident Protect.
Create an on-demand snapshot

You can create an on-demand snapshot at any time.

Cluster-scoped resources are included in a backup, snapshot, or clone if they are explicitly
referenced in the application definition or if they have references to any of the application
namespaces.

17


https://docs.netapp.com/us-en/trident-2502/trident-protect/trident-protect-requirements.html#protecting-data-with-kubevirt-vms

Create a snapshot using a CR
Steps
1. Create the custom resource (CR) file and name it trident-protect-snapshot-cr.yaml.

2. In the file you created, configure the following attributes:

o metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

o spec.applicationRef: The Kubernetes name of the application to snapshot.

o spec.appVaultRef: (Required) The name of the AppVault where the snapshot contents
(metadata) should be stored.

> spec.reclaimPolicy: (Optional) Defines what happens to the AppArchive of a snapshot when the
snapshot CR is deleted. This means that even when set to Retain, the snapshot will be deleted.
Valid options:

* Retain (default)

" Delete

apiVersion: protect.trident.netapp.io/vl
kind: Snapshot
metadata:
namespace: my-app-namespace
name: my-cr-name
spec:
applicationRef: my-application
appVaultRef: appvault-name

reclaimPolicy: Delete

3. After you populate the trident-protect-snapshot-cr.yaml file with the correct values, apply
the CR:

kubectl apply -f trident-protect-snapshot-cr.yaml

Create a snapshot using the CLI
Steps

1. Create the snapshot, replacing values in brackets with information from your environment. For
example:

tridentctl-protect create snapshot <my snapshot name> --appvault
<my appvault name> --app <name of app to snapshot> -n
<application namespace>

18



Create an on-demand backup

You can back up an app at any time.

Cluster-scoped resources are included in a backup, snapshot, or clone if they are explicitly
referenced in the application definition or if they have references to any of the application
namespaces.

Before you begin

Ensure that the AWS session token expiration is sufficient for any long-running s3 backup operations. If the
token expires during the backup operation, the operation can fail.

» Refer to the AWS API documentation for more information about checking the current session token
expiration.

» Refer to the AWS IAM documentation for more information about credentials with AWS resources.

19


https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

Create a backup using a CR
Steps
1. Create the custom resource (CR) file and name it trident-protect-backup-cr.yaml.

2. In the file you created, configure the following attributes:

o metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

> spec.applicationRef: (Required) The Kubernetes name of the application to back up.

o spec.appVaultRef: (Required) The name of the AppVault where the backup contents should be
stored.

> spec.dataMover: (Optional) A string indicating which backup tool to use for the backup operation.
Possible values (case sensitive):

" Restic
* Kopia (default)
> spec.reclaimPolicy: (Optional) Defines what happens to a backup when released from its claim.
Possible values:

" Delete

* Retain (default)

o Spec.snapshotRef: (Optional): Name of the snapshot to use as the source of the backup. If not
provided, a temporary snapshot will be created and backed up.

Example YAML:

apiVersion: protect.trident.netapp.io/vl
kind: Backup
metadata:
namespace: my-app-namespace
name: my-cr-name
spec:
applicationRef: my-application
appVaultRef: appvault-name

dataMover: Kopia

3. After you populate the trident-protect-backup-cr.yaml file with the correct values, apply the
CR:

kubectl apply -f trident-protect-backup-cr.yaml

Create a backup using the CLI
Steps
1. Create the backup, replacing values in brackets with information from your environment. For example:



tridentctl-protect create backup <my backup name> --appvault <my-
vault-name> --app <name of app to back up> --data-mover
<Kopia or Restic> -n <application namespace>

Create a data protection schedule

A protection policy protects an app by creating snapshots, backups, or both at a defined schedule. You can
choose to create snapshots and backups hourly, daily, weekly, and monthly, and you can specify the number of
copies to retain.

Cluster-scoped resources are included in a backup, snapshot, or clone if they are explicitly
referenced in the application definition or if they have references to any of the application
namespaces.

Before you begin

Ensure that the AWS session token expiration is sufficient for any long-running s3 backup operations. If the
token expires during the backup operation, the operation can fail.

» Refer to the AWS AP| documentation for more information about checking the current session token
expiration.

» Refer to the AWS IAM documentation for more information about credentials with AWS resources.

21


https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
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Create a schedule using a CR

Steps

1. Create the custom resource (CR) file and name it trident-protect-schedule-cr.yaml.

2. In the file you created, configure the following attributes:

o

o

metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

spec.dataMover: (Optional) A string indicating which backup tool to use for the backup operation.
Possible values (case sensitive):

" Restic
" Kopia (default)
spec.applicationRef: The Kubernetes name of the application to back up.

spec.appVaultRef: (Required) The name of the AppVault where the backup contents should be
stored.

spec.backupRetention: The number of backups to retain. Zero indicates that no backups should
be created.

spec.snapshotRetention: The number of snapshots to retain. Zero indicates that no snapshots
should be created.

spec.granularity: The frequency at which the schedule should run. Possible values, along with
required associated fields:

" Hourly (requires that you specify spec.minute)

* Daily (requires that you specify spec.minute and spec.hour)

" Weekly (requires that you specify spec.minute, spec.hour, and spec.dayOfleek)

* Monthly (requires that you specify spec.minute, spec.hour, and spec.dayOfMonth)

" Custom

spec.dayOfMonth: (Optional) The day of the month (1 - 31) that the schedule should run. This
field is required if the granularity is set to Monthly.

spec.dayOfWeek: (Optional) The day of the week (0 - 7) that the schedule should run. Values of
0 or 7 indicate Sunday. This field is required if the granularity is set to Weekly.

spec.hour: (Optional) The hour of the day (0 - 23) that the schedule should run. This field is
required if the granularity is set to Daily, Weekly, or Monthly.

spec.minute: (Optional) The minute of the hour (0 - 59) that the schedule should run. This field is
required if the granularity is set to Hourly, Daily, Weekly, or Monthly.



apiVersion: protect.trident.netapp.io/vl

kind: Schedule

metadata:
namespace: my-app-namespace
name: my-cr-name

spec:
dataMover: Kopia
applicationRef: my-application
appVaultRef: appvault-name
backupRetention: "15"
snapshotRetention: "15"
granularity: Monthly
dayOfMonth: "1"
dayOfwWeek: "O"
hour: "O"

minute: "O"

3. After you populate the trident-protect-schedule-cr.yaml file with the correct values, apply
the CR:

kubectl apply -f trident-protect-schedule-cr.yaml

Create a schedule using the CLI
Steps

1. Create the protection schedule, replacing values in brackets with information from your environment.
For example:

@ You can use tridentctl-protect create schedule --help to view detailed
help information for this command.

tridentctl-protect create schedule <my schedule name> --appvault

<my appvault name> --app <name of app to snapshot> --backup
-retention <how many backups to retain> --data-mover
<Kopia or Restic> --day-of-month <day of month to run schedule>
--day-of-week <day of month to run schedule> --granularity
<frequency to run> --hour <hour of day to run> --minute
<minute of hour to run> --recurrence-rule <recurrence> --snapshot
-retention <how many snapshots to retain> -n <application namespace>
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Delete a snapshot

Delete the scheduled or on-demand snapshots that you no longer need.

Steps
1. Remove the snapshot CR associated with the snapshot:

kubectl delete snapshot <snapshot name> -n my-app-namespace

Delete a backup

Delete the scheduled or on-demand backups that you no longer need.

Steps
1. Remove the backup CR associated with the backup:

kubectl delete backup <backup name> -n my-app-namespace

Check the status of a backup operation

You can use the command line to check the status of a backup operation that is in progress, has completed, or
has failed.

Steps

1. Use the following command to retrieve status of the backup operation, replacing values in brackes with
information from your environment:

kubectl get backup -n <namespace name> <my backup cr name> -o jsonpath

='{.status}'

Enable backup and restore for azure-netapp-files (ANF) operations

If you have installed Trident Protect, you can enable space-efficient backup and restore functionality for
storage backends that use the azure-netapp-files storage class and were created prior to Trident 24.06. This
funtionality works with NFSv4 volumes and does not consume additional space from the capacity pool.

Before you begin
Ensure the following:

* You have installed Trident Protect.

* You have defined an application in Trident Protect. This application will have limited protection functionality
until you complete this procedure.

* You have azure-netapp-files selected as the default storage class for your storage backend.
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Expand for configuration steps

1. Do the following in Trident if the ANF volume was created prior to upgrading to Trident 24.10:

a. Enable the snapshot directory for each PV that is azure-netapp-files based and associated with
the application:

tridentctl update volume <pv name> --snapshot-dir=true -n trident
b. Confirm that the snapshot directory has been enabled for each associated PV:

tridentctl get volume <pv name> -n trident -o yaml | grep

snapshotDir
Response:
snapshotDirectory: "true"

When the snapshot directory is not enabled, Trident Protect chooses the regular backup
functionality, which temporarily consumes space in the capacity pool during the backup process.
In this case, ensure that sufficient space is available in the capacity pool to create a temporary
volume of the size of the volume being backed up.

Result

The application is ready for backup and restore using Trident Protect. Each PVC is also available to be
used by other applications for backups and restores.

Restore applications using Trident Protect

You can use Trident Protect to restore your application from a snapshot or backup.
Restoring from an existing snapshot will be faster when restoring the application to the
same cluster.

When you restore an application, all execution hooks configured for the application are restored
@ with the app. If a post-restore execution hook is present, it runs automatically as part of the
restore operation.

Namespace annotations and labels during restore and failover operations

During restore and failover operations, labels and annotations in the destination namespace are made to
match the labels and annotations in the source namespace. Labels or annotations from the source namespace
that don’t exist in the destination namespace are added, and any labels or annotations that already exist are
overwritten to match the value from the source namespace. Labels or annotations that exist only on the
destination namespace remain unchanged.
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If you use Red Hat OpenShift, it's important to note the critical role of namespace annotations in
OpenShift environments. Namespace annotations ensure that restored pods adhere to the

@ appropriate permissions and security configurations defined by OpenShift security context
constraints (SCCs) and can access volumes without permission issues. For more information,
refer to the OpenShift security context constraints documentation.

You can prevent specific annotations in the destination namespace from being overwritten by setting the
Kubernetes environment variable RESTORE SKIP NAMESPACE ANNOTATIONS before you perform the
restore or failover operation. For example:

kubectl set env -n trident-protect deploy/trident-protect-controller-
manager

RESTORE SKIP NAMESPACE ANNOTATIONS=<annotation key to skip 1>,<annotation
key to skip 2>

If you installed the source application using Helm with the --create-namespace flag, special treatment is
given to the name label key. During the restore or failover process, Trident Protect copies this label to the
destination namespace, but updates the value to the destination namespace value if the value from source
matches the source namespace. If this value doesn’t match the source namespace it is copied to the
destination namespace with no changes.

Example

The following example presents a source and destination namespace, each with different annotations and
labels. You can see the state of the destination namespace before and after the operation, and how the
annotations and labels are combined or overwritten in the destination namespace.

Before the restore or failover operation

The following table illustrates the state of the example source and destination namespaces before the restore
or failover operation:

Namespace Annotations Labels
Namespace ns-1 * annotation.one/key: "updatedvalue” * environment=production
(source)  annotation.two/key: "true" » compliance=hipaa
* name=ns-1
Namespace ns-2 * annotation.one/key: "true" * role=database

(destination)  annotation.three/key: "false"

After the restore operation

The following table illustrates the state of the example destination namespace after the restore or failover
operation. Some keys have been added, some have been overwritten, and the name label has been updated
to match the destination namespace:
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Namespace Annotations Labels

Namespace ns-2  annotation.one/key: "updatedvalue” * name=ns-2
(destination)  annotation.two/key: "true" » compliance=hipaa
 annotation.three/key: "false" * environment=production

* role=database

Restore from a backup to a different namespace

When you restore a backup to a different namespace using a BackupRestore CR, Trident Protect restores the
application in a new namespace and creates an application CR for the restored application. To protect the
restored application, create on-demand backups or snapshots, or establish a protection schedule.

Restoring a backup to a different namespace with existing resources will not alter any resources
that share names with those in the backup. To restore all resources in the backup, either delete
and re-create the target namespace, or restore the backup to a new namespace.

Before you begin

Ensure that the AWS session token expiration is sufficient for any long-running s3 restore operations. If the
token expires during the restore operation, the operation can fail.

* Refer to the AWS API documentation for more information about checking the current session token
expiration.

» Refer to the AWS IAM documentation for more information about credentials with AWS resources.

When you restore backups using Kopia as the data mover, you can optionally specify
annotations in the CR or using the CLI to control the behavior of the emphemeral storage used

@ by Kopia. Refer to the Kopia documentation for more information about the options you can
configure. Use the tridentctl-protect create --help command for more information
about specifying annotations with the Trident Protect CLI.
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Use aCR
Steps

1. Create the custom resource (CR) file and name it t rident-protect-backup-restore-
cr.yaml.

2. In the file you created, configure the following attributes:

o metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

o spec.appArchivePath: The path inside AppVault where the backup contents are stored. You can
use the following command to find this path:

kubectl get backups <BACKUP NAME> -n my-app-namespace -o
Jjsonpath='{.status.appArchivePath}'

o spec.appVaultRef: (Required) The name of the AppVault where the backup contents are stored.

> spec.namespaceMapping: The mapping of the source namespace of the restore operation to the
destination namespace. Replace my-source-namespace and my-destination-namespace
with information from your environment.

> spec.storageClassMapping: The mapping of the source storage class of the restore operation to
the destination storage class. Replace destinationStorageClass and
sourceStorageClass with information from your environment.

apiVersion: protect.trident.netapp.io/vl
kind: BackupRestore
metadata:
name: my-cr-name
namespace: my-destination-namespace
annotations: # Optional annotations for Kopia data mover
protect.trident.netapp.io/kopia-content-cache-size-limit-mb:
"1000"
spec:
appArchivePath: my-backup-path
appVaultRef: appvault-name
namespaceMapping: [{"source": "my-source-namespace",
"destination": "my-destination-namespace"}]
storageClassMapping:
destination: "${destinationStorageClass}"

source: "S${sourceStorageClass}"

3. (Optional) If you need to select only certain resources of the application to restore, add filtering that
includes or excludes resources marked with particular labels:



®

Trident Protect selects some resources automatically because of their relationship with
resources that you select. For example, if you select a persistent volume claim
resource and it has an associated pod, Trident Protect will also restore the associated
pod.

° resourceFilter.resourceSelectionCriteria: (Required for filtering) Use Include or Exclude to
include or exclude a resource defined in resourceMatchers. Add the following resourceMatchers
parameters to define the resources to be included or excluded:

= resourceFilter.resourceMatchers: An array of resourceMatcher objects. If you define
multiple elements in this array, they match as an OR operation, and the fields inside each
element (group, kind, version) match as an AND operation.

resourceMatchers[].group: (Optional) Group of the resource to be filtered.
resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.
resourceMatchers][].version: (Optional) Version of the resource to be filtered.

resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of
the resource to be filtered.

resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes
metadata.name field of the resource to be filtered.

resourceMatchers]].labelSelectors: (Optional) Label selector string in the Kubernetes
metadata.name field of the resource as defined in the Kubernetes documentation. For
example: "trident.netapp.io/os=1linux".

For example:

spec:
resourceFilter:
resourceSelectionCriteria: "Include"
resourceMatchers:
- group: my-resource-group-1
kind: my-resource-kind-1
version: my-resource-version-1
names: ["my-resource-names"]
namespaces: ["my-resource-namespaces"]
labelSelectors: ["trident.netapp.io/os=1linux"]
- group: my-resource-group-2
kind: my-resource-kind-2
version: my-resource-version-2
names: ["my-resource-names"]
namespaces: ["my-resource-namespaces"]

labelSelectors: ["trident.netapp.io/os=linux"]

4. After you populate the trident-protect-backup-restore-cr.yanl file with the correct values,
apply the CR:
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kubectl apply -f trident-protect-backup-restore-cr.yaml

Use the CLI
Steps

1. Restore the backup to a different namespace, replacing values in brackets with information from your
environment. The namespace-mapping argument uses colon-separated namespaces to map
source namespaces to the correct destination namespaces in the format
sourcel:destl, source2:dest2. For example:

tridentctl-protect create backuprestore <my restore name> \
—--backup <backup namespace>/<backup to restore> \
--namespace-mapping <source to destination namespace mapping> \

-n <application namespace>

Restore from a backup to the original namespace
You can restore a backup to the original namespace at any time.

Before you begin

Ensure that the AWS session token expiration is sufficient for any long-running s3 restore operations. If the
token expires during the restore operation, the operation can fail.

* Refer to the AWS API documentation for more information about checking the current session token
expiration.

» Refer to the AWS |AM documentation for more information about credentials with AWS resources.

When you restore backups using Kopia as the data mover, you can optionally specify
annotations in the CR or using the CLI to control the behavior of the emphemeral storage used

@ by Kopia. Refer to the Kopia documentation for more information about the options you can
configure. Use the tridentctl-protect create --help command for more information
about specifying annotations with the Trident Protect CLI.
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Use a CR
Steps
1. Create the custom resource (CR) file and name it trident-protect-backup-ipr-cr.yaml.

2. In the file you created, configure the following attributes:

o metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

o spec.appArchivePath: The path inside AppVault where the backup contents are stored. You can
use the following command to find this path:

kubectl get backups <BACKUP NAME> -n my-app-namespace -o
jsonpath="'{.status.appArchivePath}"'

o spec.appVaultRef: (Required) The name of the AppVault where the backup contents are stored.

For example:

apiVersion: protect.trident.netapp.io/vl
kind: BackupInplaceRestore
metadata:
name: my-cr-name
namespace: my-app-namespace
annotations: # Optional annotations for Kopia data mover
protect.trident.netapp.io/kopia-content-cache-size-limit-mb:
"1000"
spec:
appArchivePath: my-backup-path
appVaultRef: appvault-name

3. (Optional) If you need to select only certain resources of the application to restore, add filtering that
includes or excludes resources marked with particular labels:

Trident Protect selects some resources automatically because of their relationship with

@ resources that you select. For example, if you select a persistent volume claim
resource and it has an associated pod, Trident Protect will also restore the associated
pod.

° resourceFilter.resourceSelectionCriteria: (Required for filtering) Use Include or Exclude to
include or exclude a resource defined in resourceMatchers. Add the following resourceMatchers
parameters to define the resources to be included or excluded:

= resourceFilter.resourceMatchers: An array of resourceMatcher objects. If you define
multiple elements in this array, they match as an OR operation, and the fields inside each
element (group, kind, version) match as an AND operation.

= resourceMatchers[].group: (Optional) Group of the resource to be filtered.
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= resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.
= resourceMatchers[].version: (Optional) Version of the resource to be filtered.

= resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of
the resource to be filtered.

= resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes
metadata.name field of the resource to be filtered.

= resourceMatchers[].labelSelectors: (Optional) Label selector string in the Kubernetes
metadata.name field of the resource as defined in the Kubernetes documentation. For
example: "trident.netapp.io/os=1linux".

For example:

spec:
resourceFilter:
resourceSelectionCriteria: "Include"
resourceMatchers:
- group: my-resource-group-1
kind: my-resource-kind-1
version: my-resource-version-1
names: ["my-resource-names"]
namespaces: ["my-resource-namespaces"]
labelSelectors: ["trident.netapp.io/os=linux"]
- group: my-resource-group-2
kind: my-resource-kind-2
version: my-resource-version-2
names: ["my-resource-names"]
namespaces: ["my-resource-namespaces"]
labelSelectors: ["trident.netapp.io/os=linux"]

4. After you populate the trident-protect-backup-ipr-cr.yaml file with the correct values,

apply the CR:

kubectl apply -f trident-protect-backup-ipr-cr.yaml

Use the CLI
Steps

1.

Restore the backup to the original namespace, replacing values in brackets with information from your
environment. The backup argument uses a namespace and backup name in the format
<namespace>/<name>. For example:

tridentctl-protect create backupinplacerestore <my restore name> \
--backup <namespace/backup to restore> \

-n <application namespace>


https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

Restore from a backup to a different cluster

You can restore a backup to a different cluster if there is an issue with the original cluster.

When you restore backups using Kopia as the data mover, you can optionally specify
annotations in the CR or using the CLI to control the behavior of the emphemeral storage used

@ by Kopia. Refer to the Kopia documentation for more information about the options you can
configure. Use the tridentctl-protect create —--help command for more information
about specifying annotations with the Trident Protect CLI.

Before you begin
Ensure the following prerequisites are met:

¢ The destination cluster has Trident Protect installed.

» The destination cluster has access to the bucket path of the same AppVault as the source cluster, where
the backup is stored.

» Ensure that the AWS session token expiration is sufficient for any long-running restore operations. If the
token expires during the restore operation, the operation can fail.

o Refer to the AWS API documentation for more information about checking the current session token
expiration.

o Refer to the AWS documentation for more information about credentials with AWS resources.

Steps
1. Check the availability of the AppVault CR on the destination cluster using Trident Protect CLI plugin:

tridentctl-protect get appvault --context <destination cluster name>
@ Ensure that the namespace intended for the application restore exists on the destination
cluster.

2. View the backup contents of the available AppVault from the destination cluster:

tridentctl-protect get appvaultcontent <appvault name> \
--show-resources backup \
--show-paths \

-—context <destination cluster name>

Running this command displays the available backups in the AppVault, including their originating clusters,

corresponding application names, timestamps, and archive paths.

Example output:
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e b +

| CLUSTER | APP | TYPE | NAME TIMESTAMP
| PATH |

e fomm - tomm - o
o tom e +

| productionl | wordpress | backup | wordpress-bkup-1| 2024-10-30
08:37:40 (UTC) | backuppathl |

| productionl | wordpress | backup | wordpress-bkup-2| 2024-10-30
08:37:40 (UTC) | backuppath2 |

3. Restore the application to the destination cluster using the AppVault name and archive path:



Use aCR

4. Create the custom resource (CR) file and name it trident-protect-backup-restore-
cr.yaml.

5. In the file you created, configure the following attributes:

o metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

o spec.appVaultRef: (Required) The name of the AppVault where the backup contents are stored.

o spec.appArchivePath: The path inside AppVault where the backup contents are stored. You can
use the following command to find this path:

kubectl get backups <BACKUP NAME> -n my-app-namespace -o
Jjsonpath='{.status.appArchivePath}'

@ If BackupRestore CR is not available, you can use the command mentioned in step
2 to view the backup contents.

o spec.namespaceMapping: The mapping of the source namespace of the restore operation to the
destination namespace. Replace my-source-namespace and my-destination-namespace
with information from your environment.

For example:

apiVersion: protect.trident.netapp.io/vl
kind: BackupRestore
metadata:

name: my-cr-name

namespace: my-destination-namespace

annotations: # Optional annotations for Kopia data mover

protect.trident.netapp.io/kopia-content-cache-size-limit-mb:

"1000"
spec:

appVaultRef: appvault-name

appArchivePath: my-backup-path

namespaceMapping: [{"source": "my-source-namespace",
"destination": "my-destination-namespace"}]

6. After you populate the trident-protect-backup-restore-cr.yaml file with the correct values,
apply the CR:

kubectl apply -f trident-protect-backup-restore-cr.yaml

Use the CLI
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4. Use the following command to restore the application, replacing values in brackets with information
from your environment. The namespace-mapping argument uses colon-separated namespaces to
map source namespaces to the correct destination namespaces in the format
source1:dest1,source2:dest2. For example:

tridentctl-protect create backuprestore <restore name> \
--namespace-mapping <source to destination namespace mapping> \
--appvault <appvault name> \

--path <backup path> \

--context <destination cluster name> \

-n <application namespace>

Restore from a snapshot to a different namespace

You can restore data from a snapshot using a custom resource (CR) file either to a different namespace or the
original source namespace. When you restore a snapshot to a different namespace using a SnapshotRestore
CR, Trident Protect restores the application in a new namespace and creates an application CR for the
restored application. To protect the restored application, create on-demand backups or snapshots, or establish
a protection schedule.

Before you begin

Ensure that the AWS session token expiration is sufficient for any long-running s3 restore operations. If the
token expires during the restore operation, the operation can fail.

» Refer to the AWS API documentation for more information about checking the current session token
expiration.

» Refer to the AWS IAM documentation for more information about credentials with AWS resources.
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Use aCR
Steps

1. Create the custom resource (CR) file and name it trident-protect-snapshot-restore-
cr.yaml.

2. In the file you created, configure the following attributes:

o metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

o spec.appVaultRef: (Required) The name of the AppVault where the snapshot contents are
stored.

o spec.appArchivePath: The path inside AppVault where the snapshot contents are stored. You
can use the following command to find this path:

kubectl get snapshots <SNAPHOT NAME> -n my-app-namespace -0
jsonpath="'{.status.appArchivePath}'

> spec.namespaceMapping: The mapping of the source namespace of the restore operation to the
destination namespace. Replace my-source-namespace and my-destination-namespace
with information from your environment.

> spec.storageClassMapping: The mapping of the source storage class of the restore operation to
the destination storage class. Replace destinationStorageClass and
sourceStorageClass with information from your environment.

The storageClassMapping attribute works only when both the original and new

@ StorageClass use the same storage backend. If you attempt to restore to a
StorageClass that uses a different storage backend, the restore operation will
fail.

apiVersion: protect.trident.netapp.io/vl
kind: SnapshotRestore
metadata:
name: my-cr-name
namespace: my-app-namespace
spec:
appVaultRef: appvault-name
appArchivePath: my-snapshot-path
namespaceMapping: [{"source": "my-source-namespace",
"destination": "my-destination-namespace"}]
storageClassMapping:
destination: "${destinationStorageClass}"

source: "S${sourceStorageClass}"

3. (Optional) If you need to select only certain resources of the application to restore, add filtering that
includes or excludes resources marked with particular labels:
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®

Trident Protect selects some resources automatically because of their relationship with
resources that you select. For example, if you select a persistent volume claim
resource and it has an associated pod, Trident Protect will also restore the associated
pod.

° resourceFilter.resourceSelectionCriteria: (Required for filtering) Use Include or Exclude to
include or exclude a resource defined in resourceMatchers. Add the following resourceMatchers
parameters to define the resources to be included or excluded:

= resourceFilter.resourceMatchers: An array of resourceMatcher objects. If you define
multiple elements in this array, they match as an OR operation, and the fields inside each
element (group, kind, version) match as an AND operation.

resourceMatchers[].group: (Optional) Group of the resource to be filtered.
resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.
resourceMatchers][].version: (Optional) Version of the resource to be filtered.

resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of
the resource to be filtered.

resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes
metadata.name field of the resource to be filtered.

resourceMatchers]].labelSelectors: (Optional) Label selector string in the Kubernetes
metadata.name field of the resource as defined in the Kubernetes documentation. For
example: "trident.netapp.io/os=1linux".

For example:

spec:
resourceFilter:
resourceSelectionCriteria: "Include"
resourceMatchers:
- group: my-resource-group-1
kind: my-resource-kind-1
version: my-resource-version-1
names: ["my-resource-names"]
namespaces: ["my-resource-namespaces"]
labelSelectors: ["trident.netapp.io/os=1linux"]
- group: my-resource-group-2
kind: my-resource-kind-2
version: my-resource-version-2
names: ["my-resource-names"]
namespaces: ["my-resource-namespaces"]

labelSelectors: ["trident.netapp.io/os=linux"]

4. After you populate the trident-protect-snapshot-restore-cr.yaml file with the correct
values, apply the CR:
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kubectl apply -f trident-protect-snapshot-restore-cr.yaml

Use the CLI
Steps
1. Restore the snapshot to a different namespace, replacing values in brackets with information from
your environment.

° The snapshot argument uses a namespace and snapshot name in the format
<namespace>/<name>.

° The namespace-mapping argument uses colon-separated namespaces to map source
namespaces to the correct destination namespaces in the format
sourcel:destl, source2:dest?2.

For example:

tridentctl-protect create snapshotrestore <my restore name> \
—--snapshot <namespace/snapshot_to_restore> \
--namespace-mapping <source to destination namespace mapping> \

-n <application namespace>

Restore from a snapshot to the original namespace
You can restore a snapshot to the original namespace at any time.

Before you begin

Ensure that the AWS session token expiration is sufficient for any long-running s3 restore operations. If the
token expires during the restore operation, the operation can fail.

» Refer to the AWS AP| documentation for more information about checking the current session token
expiration.

* Refer to the AWS |IAM documentation for more information about credentials with AWS resources.
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Use a CR
Steps
1. Create the custom resource (CR) file and name it trident-protect-snapshot-ipr-cr.yaml.

2. In the file you created, configure the following attributes:

o metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

o spec.appVaultRef: (Required) The name of the AppVault where the snapshot contents are
stored.

o spec.appArchivePath: The path inside AppVault where the snapshot contents are stored. You
can use the following command to find this path:

kubectl get snapshots <SNAPSHOT NAME> -n my-app-namespace -o
Jjsonpath='{.status.appArchivePath}'

apiVersion: protect.trident.netapp.io/vl
kind: SnapshotInplaceRestore
metadata:
name: my-cr-name
namespace: my-app-namespace
spec:
appVaultRef: appvault-name
appArchivePath: my-snapshot-path

3. (Optional) If you need to select only certain resources of the application to restore, add filtering that
includes or excludes resources marked with particular labels:

Trident Protect selects some resources automatically because of their relationship with

@ resources that you select. For example, if you select a persistent volume claim
resource and it has an associated pod, Trident Protect will also restore the associated
pod.

° resourceFilter.resourceSelectionCriteria: (Required for filtering) Use Include or Exclude to
include or exclude a resource defined in resourceMatchers. Add the following resourceMatchers
parameters to define the resources to be included or excluded:

= resourceFilter.resourceMatchers: An array of resourceMatcher objects. If you define
multiple elements in this array, they match as an OR operation, and the fields inside each
element (group, kind, version) match as an AND operation.

= resourceMatchers[].group: (Optional) Group of the resource to be filtered.
= resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.
= resourceMatchers[].version: (Optional) Version of the resource to be filtered.

= resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of
the resource to be filtered.



= resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes
metadata.name field of the resource to be filtered.

= resourceMatchers[].labelSelectors: (Optional) Label selector string in the Kubernetes
metadata.name field of the resource as defined in the Kubernetes documentation. For
example: "trident.netapp.io/os=1linux".

For example:

spec:
resourceFilter:
resourceSelectionCriteria: "Include"
resourceMatchers:
- group: my-resource-group-1
kind: my-resource-kind-1
version: my-resource-version-1
names: ["my-resource-names"]
namespaces: ["my-resource-namespaces"]
labelSelectors: ["trident.netapp.io/os=linux"]
- group: my-resource-group-2
kind: my-resource-kind-2
version: my-resource-version-2
names: ["my-resource-names"]
namespaces: ["my-resource-namespaces"]

labelSelectors: ["trident.netapp.io/os=1linux"]

4. After you populate the trident-protect-snapshot-ipr-cr.yaml file with the correct values,
apply the CR:

kubectl apply -f trident-protect-snapshot-ipr-cr.yaml

Use the CLI
Steps

1. Restore the snapshot to the original namespace, replacing values in brackets with information from
your environment. For example:

tridentctl-protect create snapshotinplacerestore <my restore name> \
--snapshot <snapshot to restore> \
-n <application namespace>

Check the status of a restore operation

You can use the command line to check the status of a restore operation that is in progress, has completed, or

has failed.
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Steps

1. Use the following command to retrieve status of the restore operation, replacing values in brackes with
information from your environment:

kubectl get backuprestore -n <namespace name> <my restore cr name> -0
Jjsonpath="'{.status}"'

Replicate applications using NetApp SnapMirror and Trident
Protect

Using Trident Protect, you can use the asynchronous replication capabilities of NetApp
SnapMirror technology to replicate data and application changes from one storage
backend to another, on the same cluster or between different clusters.

Namespace annotations and labels during restore and failover operations

During restore and failover operations, labels and annotations in the destination namespace are made to
match the labels and annotations in the source namespace. Labels or annotations from the source namespace
that don’t exist in the destination namespace are added, and any labels or annotations that already exist are
overwritten to match the value from the source namespace. Labels or annotations that exist only on the
destination namespace remain unchanged.

If you use Red Hat OpenShift, it's important to note the critical role of namespace annotations in
OpenShift environments. Namespace annotations ensure that restored pods adhere to the

@ appropriate permissions and security configurations defined by OpenShift security context
constraints (SCCs) and can access volumes without permission issues. For more information,
refer to the OpenShift security context constraints documentation.

You can prevent specific annotations in the destination namespace from being overwritten by setting the
Kubernetes environment variable RESTORE SKIP NAMESPACE ANNOTATIONS before you perform the
restore or failover operation. For example:

kubectl set env -n trident-protect deploy/trident-protect-controller-
manager

RESTORE SKIP NAMESPACE ANNOTATIONS=<annotation key to skip 1>,<annotation
key to skip 2>

If you installed the source application using Helm with the --create-namespace flag, special treatment is
given to the name label key. During the restore or failover process, Trident Protect copies this label to the
destination namespace, but updates the value to the destination namespace value if the value from source
matches the source namespace. If this value doesn’t match the source namespace it is copied to the
destination namespace with no changes.

Example

The following example presents a source and destination namespace, each with different annotations and
labels. You can see the state of the destination namespace before and after the operation, and how the
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annotations and labels are combined or overwritten in the destination namespace.

Before the restore or failover operation

The following table illustrates the state of the example source and destination namespaces before the restore
or failover operation:

Namespace Annotations Labels
Namespace ns-1 * annotation.one/key: "updatedvalue" * environment=production
(source) * annotation.two/key: "true" » compliance=hipaa
* name=ns-1
Namespace ns-2  annotation.one/key: "true" * role=database

(destination) + annotation.three/key: "false"

After the restore operation

The following table illustrates the state of the example destination namespace after the restore or failover
operation. Some keys have been added, some have been overwritten, and the name label has been updated
to match the destination namespace:

Namespace Annotations Labels
Namespace ns-2  annotation.one/key: "updatedvalue” * name=ns-2
(destination)  annotation.two/key: "true" » compliance=hipaa

+ annotation.three/key: "false" * environment=production

* role=database

@ You can configure Trident Protect to freeze and unfreeze filesystems during data protection
operations. Learn more about configuring filesystem freezing with Trident Protect.

Set up a replication relationship

Setting up a replication relationship involves the following:
» Choosing how frequently you want Trident Protect to take an app snapshot (which includes the app’s
Kubernetes resources as well as the volume snapshots for each of the app’s volumes)
» Choosing the replication schedule (includes Kubernetes resources as well as persistent volume data)

 Setting the time for the snapshot to be taken

Steps

1. On the source cluster, create an AppVault for the source application. Depending on your storage provider,
modify an example in AppVault custom resources to fit your environment:
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Create an AppVault using a CR

a. Create the custom resource (CR) file and name it (for example, trident-protect-appvault-
primary-source.yaml).

b. Configure the following attributes:

= metadata.name: (Required) The name of the AppVault custom resource. Make note of the
name you choose, because other CR files needed for a replication relationship refer to this
value.

= spec.providerConfig: (Required) Stores the configuration necessary to access the AppVault
using the specified provider. Choose a bucketName and any other necessary details for your
provider. Make note of the values you choose, because other CR files needed for a replication
relationship refer to these values. Refer to AppVault custom resources for examples of
AppVault CRs with other providers.

= spec.providerCredentials: (Required) Stores references to any credential required to access
the AppVault using the specified provider.

= spec.providerCredentials.valueFromSecret: (Required) Indicates that the credential
value should come from a secret.

= key: (Required) The valid key of the secret to select from.

= name: (Required) Name of the secret containing the value for this field. Must be in the
same namespace.

= spec.providerCredentials.secretAccessKey: (Required) The access key used to
access the provider. The name should match
spec.providerCredentials.valueFromSecret.name.

= spec.providerType: (Required) Determines what provides the backup; for example, NetApp
ONTAP S3, generic S3, Google Cloud, or Microsoft Azure. Possible values:

= aws
= azure

= gcp

= generic-s3

= ontap-s3

= storagegrid-s3

C. After you populate the trident-protect-appvault-primary-source.yaml file with the
correct values, apply the CR:

kubectl apply -f trident-protect-appvault-primary-source.yaml -n
trident-protect

Create an AppVault using the CLI
a. Create the AppVault, replacing values in brackets with information from your environment:

tridentctl-protect create vault Azure <vault-name> --account
<account-name> --bucket <bucket-name> --secret <secret-name>



2. On the source cluster, create the source application CR:

Create the source application using a CR

a. Create the custom resource (CR) file and name it (for example, trident-protect-app-
source.yaml).

b. Configure the following attributes:

= metadata.name: (Required) The name of the application custom resource. Make note of the
name you choose, because other CR files needed for a replication relationship refer to this
value.

= spec.includedNamespaces: (Required) An array of namespaces and associated labels. Use
namespace names and optionally narrow the scope of the namespaces with labels to specify
resources that exist in the namespaces listed here. The application namespace must be part
of this array.

Example YAML:

apiVersion: protect.trident.netapp.io/vl
kind: Application
metadata:

name: my-app-name

namespace: my-app-namespace
spec:

includedNamespaces:

- namespace: my-app-namespace
labelSelector: {}

C. After you populate the trident-protect-app-source.yaml file with the correct values, apply
the CR:

kubectl apply -f trident-protect-app-source.yaml -n my-app-

namespace

Create the source application using the CLI
a. Create the source application. For example:

tridentctl-protect create app <my-app-name> --namespaces
<namespaces-to-be-included> -n <my-app-namespace>

3. Optionally, on the source cluster, take a shutdown snapshot of the source application. This snapshot is
used as the basis for the application on the destination cluster. If you skip this step, you'll need to wait for
the next scheduled snapshot to run so that you have a recent snapshot.
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Take a shutdown snapshot using a CR
a. Create a replication schedule for the source application:

i. Create the custom resource (CR) file and name it (for example, trident-protect-
schedule.yaml).

i. Configure the following attributes:
= metadata.name: (Required) The name of the schedule custom resource.

= spec.AppVaultRef: (Required) This value must match the metadata.name field of the
AppVault for the source application.

= spec.ApplicationRef: (Required) This value must match the metadata.name field of the
source application CR.

= spec.backupRetention: (Required) This field is required, and the value must be set to 0.
= spec.enabled: Must be set to true.

* spec.granularity: Must be set to Custom.

= spec.recurrenceRule: Define a start date in UTC time and a recurrence interval.

= spec.snapshotRetention: Must be set to 2.

Example YAML.:

apiVersion: protect.trident.netapp.io/vl
kind: Schedule
metadata:
name: appmirror-schedule-0elf88ab-f013-4bce-8ae9-
6afed9df59%al
namespace: my-app-namespace
spec:
appVaultRef: generic-s3-trident-protect-src-bucket-
04b6bdec-46a3-420a-b351-45795elb5e34
applicationRef: my-app-name
backupRetention: "0O"
enabled: true
granularity: custom
recurrenceRule: |-
DTSTART:20220101T000200Z
RRULE : FREQ=MINUTELY; INTERVAL=5

snapshotRetention: "2"

ii. After you populate the trident-protect-schedule.yaml file with the correct values,
apply the CR:



kubectl apply -f trident-protect-schedule.yaml -n my-app-

namespace

Take a shutdown snapshot using the CLI

a. Create the snapshot, replacing values in brackets with information from your environment. For
example:

tridentctl-protect create snapshot <my snapshot name> --appvault
<my appvault name> --app <name of app to snapshot> -n
<application namespace>

4. On the destination cluster, create a source application AppVault CR that is identical to the AppVault CR you
applied on the source cluster and name it (for example, trident-protect-appvault-primary-
destination.yaml).

5. Apply the CR:

kubectl apply -f trident-protect-appvault-primary-destination.yaml -n

my-app-namespace

6. Create a destination AppVault CR for the destination application on the destination cluster. Depending on
your storage provider, modify an example in AppVault custom resources to fit your environment:

a. Create the custom resource (CR) file and name it (for example, trident-protect-appvault-
secondary-destination.yaml).

b. Configure the following attributes:

= metadata.name: (Required) The name of the AppVault custom resource. Make note of the name
you choose, because other CR files needed for a replication relationship refer to this value.

= spec.providerConfig: (Required) Stores the configuration necessary to access the AppVault using
the specified provider. Choose a bucketName and any other necessary details for your provider.
Make note of the values you choose, because other CR files needed for a replication relationship
refer to these values. Refer to AppVault custom resources for examples of AppVault CRs with other
providers.

= spec.providerCredentials: (Required) Stores references to any credential required to access the
AppVault using the specified provider.

= spec.providerCredentials.valueFromSecret: (Required) Indicates that the credential value
should come from a secret.

= key: (Required) The valid key of the secret to select from.

= name: (Required) Name of the secret containing the value for this field. Must be in the
same namespace.

= spec.providerCredentials.secretAccessKey: (Required) The access key used to access the
provider. The name should match spec.providerCredentials.valueFromSecret.name.
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= spec.providerType: (Required) Determines what provides the backup; for example, NetApp
ONTAP S3, generic S3, Google Cloud, or Microsoft Azure. Possible values:

= aws
= azure

= gcp

= generic-s3

= ontap-s3

= storagegrid-s3

C. After you populate the trident-protect-appvault-secondary-destination.yaml file with
the correct values, apply the CR:

kubectl apply -f trident-protect-appvault-secondary-destination.yaml

-n my-app-namespace

7. On the destination cluster, create an AppMirrorRelationship CR file:
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Create an AppMirrorRelationship using a CR

a. Create the custom resource (CR) file and name it (for example, trident-protect-
relationship.yaml).

b. Configure the following attributes:
= metadata.name: (Required) The name of the AppMirrorRelationship custom resource.

= spec.destinationAppVaultRef: (Required) This value must match the name of the AppVault
for the destination application on the destination cluster.

= spec.namespaceMapping: (Required) The destination and source namespaces must match
the application namespace defined in the respective application CR.

= spec.sourceAppVaultRef: (Required) This value must match the name of the AppVault for
the source application.

= spec.sourceApplicationName: (Required) This value must match the name of the source
application you defined in the source application CR.

= spec.storageClassName: (Required) Choose the name of a valid storage class on the
cluster. The storage class must be linked to an ONTAP storage VM that is peered with the
source environment.

= spec.recurrenceRule: Define a start date in UTC time and a recurrence interval.

Example YAML:

apiVersion: protect.trident.netapp.io/vl
kind: AppMirrorRelationship
metadata:
name: amr-16061e80-1b05-4e80-9d26-d326dcl1953d8
namespace: my-app-namespace
spec:
desiredState: Established
destinationAppVaultRef: generic-s3-trident-protect-dst-
bucket-8fe0b902-£369-4317-93d1-ad7f2edc02b5
namespaceMapping:
- destination: my-app-namespace
source: my-app-nhamespace
recurrenceRule: |-
DTSTART:20220101T000200%
RRULE : FREQ=MINUTELY; INTERVAL=5
sourceAppVaultRef: generic-s3-trident-protect-src-bucket-
b643cc50-0429-4ad5-971f-ac4a83621922
sourceApplicationName: my-app-name
sourceApplicationUID: 7498d32c-328e-4ddd-9029-122540866aeb

storageClassName: sc-vsim-2

C. After you populate the trident-protect-relationship.yaml file with the correct values,
apply the CR:
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kubectl apply -f trident-protect-relationship.yaml -n my-app-

namespace

Create an AppMirrorRelationship using the CLI

a. Create and apply the AppMirrorRelationship object, replacing values in brackets with information
from your environment. For example:

tridentctl-protect create appmirrorrelationship

<name of appmirorrelationship> --destination-app-vault

<my vault name> --recurrence-rule <rule> --source-app

<my source app> --source-app-vault <my source app vault> -n
<application namespace>

8. (Optional) On the destination cluster, check the state and status of the replication relationship:

kubectl get amr -n my-app-namespace <relationship name> -o=jsonpath

='{.status}' | Jjg

Fail over to destination cluster

Using Trident Protect, you can fail over replicated applications to a destination cluster. This procedure stops
the replication relationship and brings the app online on the destination cluster. Trident Protect does not stop
the app on the source cluster if it was operational.

Steps

1. On the destination cluster, edit the AppMirrorRelationship CR file (for example, trident-protect-
relationship.yaml) and change the value of spec.desiredState to Promoted.

2. Save the CR file.
3. Apply the CR:

kubectl apply -f trident-protect-relationship.yaml -n my-app-namespace

4. (Optional) Create any protection schedules that you need on the failed over application.

5. (Optional) Check the state and status of the replication relationship:

kubectl get amr -n my-app-namespace <relationship name> -o=jsonpath

='{.status}' | Jjg
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Resync a failed over replication relationship

The resync operation re-establishes the replication relationship. After you perform a resync operation, the
original source application becomes the running application, and any changes made to the running application
on the destination cluster are discarded.

The process stops the app on the destination cluster before re-establishing replication.
@ Any data written to the destination application during failover will be lost.

Steps

1. Optional: On the source cluster, create a snapshot of the source application. This ensures that the latest
changes from the source cluster are captured.

2. On the destination cluster, edit the AppMirrorRelationship CR file (for example, trident-protect-
relationship.yaml) and change the value of spec.desiredState to Established.

3. Save the CR file.
4. Apply the CR:

kubectl apply -f trident-protect-relationship.yaml -n my-app-namespace

5. If you created any protection schedules on the destination cluster to protect the failed over application,
remove them. Any schedules that remain cause volume snapshot failures.

Reverse resync a failed over replication relationship

When you reverse resync a failed over replication relationship, the destination application becomes the source
application, and the source becomes the destination. Changes made to the destination application during
failover are kept.

Steps

1. On the original destination cluster, delete the AppMirrorRelationship CR. This causes the destination to
become the source. If there are any protection schedules remaining on the new destination cluster, remove
them.

2. Set up a replication relationship by applying the CR files you originally used to set up the relationship to the
opposite clusters.

3. Ensure the new destination (original source cluster) is configured with both AppVault CRs.

4. Set up a replication relationship on the opposite cluster, configuring values for the reverse direction.

Reverse application replication direction

When you reverse replication direction, Trident Protect moves the application to the destination storage
backend while continuing to replicate back to the original source storage backend. Trident Protect stops the
source application and replicates the data to the destination before failing over to the destination app.

In this situation, you are swapping the source and destination.

Steps
1. On the source cluster, create a shutdown snapshot:
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Create a shutdown snapshot using a CR
a. Disable the protection policy schedules for the source application.

b. Create a ShutdownSnapshot CR file:

i. Create the custom resource (CR) file and name it (for example, trident-protect-
shutdownsnapshot.yaml).

i. Configure the following attributes:
= metadata.name: (Required) The name of the custom resource.

= spec.AppVaultRef: (Required) This value must match the metadata.name field of the
AppVault for the source application.

= spec.ApplicationRef: (Required) This value must match the metadata.name field of the
source application CR file.

Example YAML:

apiVersion: protect.trident.netapp.io/vl
kind: ShutdownSnapshot
metadata:

name: replication-shutdown-snapshot-afc4c564-e700-4b72-
86c3-c08abdbe844e

namespace: my-app-namespace
spec:

appVaultRef: generic-s3-trident-protect-src-bucket-
04be6b4dec-46a3-420a-b351-45795el1bbe34

applicationRef: my-app-name

C. After you populate the trident-protect-shutdownsnapshot.yaml file with the correct
values, apply the CR:

kubectl apply -f trident-protect-shutdownsnapshot.yaml -n my-app-

namespace

Create a shutdown snapshot using the CLI

a. Create the shutdown snapshot, replacing values in brackets with information from your
environment. For example:

tridentctl-protect create shutdownsnapshot <my shutdown snapshot>
--appvault <my vault> --app <app_to snapshot> -n
<application namespace>



2. On the source cluster, after the shutdown snapshot completes, get the status of the shutdown snapshot:

kubectl get shutdownsnapshot -n my-app-namespace

<shutdown snapshot name> -o yaml

3. On the source cluster, find the value of shutdownsnapshot.status.appArchivePath using the following
command, and record the last part of the file path (also called the basename; this will be everything after
the last slash):

k get shutdownsnapshot -n my-app-namespace <shutdown snapshot name> -o
jsonpath='{.status.appArchivePath}'

4. Perform a fail over from the new destination cluster to the new source cluster, with the following change:

In step 2 of the fail over procedure, include the spec.promotedSnapshot field in the
AppMirrorRelationship CR file, and set its value to the basename you recorded in step 3
above.

5. Perform the reverse resync steps in Reverse resync a failed over replication relationship.

»

. Enable protection schedules on the new source cluster.

Result

The following actions occur because of the reverse replication:

* A snapshot is taken of the original source app’s Kubernetes resources.

» The original source app’s pods are gracefully stopped by deleting the app’s Kubernetes resources (leaving
PVCs and PVs in place).

« After the pods are shut down, snapshots of the app’s volumes are taken and replicated.
* The SnapMirror relationships are broken, making the destination volumes ready for read/write.

* The app’s Kubernetes resources are restored from the pre-shutdown snapshot, using the volume data
replicated after the original source app was shut down.

* Replication is re-established in the reverse direction.

Fail back applications to the original source cluster

Using Trident Protect, you can achieve "fail back" after a failover operation by using the following sequence of
operations. In this workflow to restore the original replication direction, Trident Protect replicates (resyncs) any
application changes back to the original source application before reversing the replication direction.

This process starts from a relationship that has completed a failover to a destination and involves the following
steps:

« Start with a failed over state.

* Reverse resync the replication relationship.
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@ Do not perform a normal resync operation, as this will discard data written to the destination
cluster during the fail over procedure.

* Reverse the replication direction.

Steps
1. Perform the Reverse resync a failed over replication relationship steps.

2. Perform the Reverse application replication direction steps.

Delete a replication relationship

You can delete a replication relationship at any time. When you delete the application replication relationship, it
results in two separate applications with no relationship between them.

Steps
1. On the current desination cluster, delete the AppMirrorRelationship CR:

kubectl delete -f trident-protect-relationship.yaml -n my-app-namespace

Migrate applications using Trident Protect

You can migrate your applications between clusters or storage classes by restoring your
backup or snapshot data to a different cluster or storage class.

When you migrate an application, all execution hooks configured for the application are migrated
with the app. If a post-restore execution hook is present, it runs automatically as part of the
restore operation.

Backup and restore operations

To perform backup and restore operations for the following scenarios, you can automate specific backup and
restore tasks.

Clone to same cluster

To clone an application to the same cluster, create a snapshot or backup and restore the data to the same
cluster.

Steps
1. Do one of the following:

a. Create a snapshot.
b. Create a backup.

2. On the same cluster, do one of the following, depending on if you created a snapshot or a backup:
a. Restore your data from the snapshot.

b. Restore your data from the backup.
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Clone to different cluster

To clone an application to a different cluster (perform a cross-cluster clone), create a backup on the source
cluster, and then restore the backup to a different cluster. Make sure that Trident Protect is installed on the
destination cluster.

@ You can replicate an application between different clusters using SnapMirror replication.

Steps
1. Create a backup.

2. Ensure that the AppVault CR for the object storage bucket that contains the backup has been configured
on the destination cluster.

3. On the destination cluster, restore your data from the backup.

Migrate applications from one storage class to another storage class

You can migrate applications from one storage class to a different storage class by restoring a snapshot to the
different destination storage class.

For example (excluding the secrets from the restore CR):

apiVersion: protect.trident.netapp.io/vl
kind: SnapshotRestore
metadata:
name: "${snapshotRestoreCRName}"
spec:
appArchivePath: "${snapshotArchivePath}"
appVaultRef: "${appVaultCRName}"
namespaceMapping:
destination: "${destinationNamespace}"
source: "S${sourceNamespace}"
storageClassMapping:
destination: "${destinationStorageClass}"
source: "S${sourceStorageClass}"
resourceFilter:
resourceMatchers:
kind: Secret
version: vl

resourceSelectionCriteria: exclude
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Restore the snapshot using a CR
Steps

1. Create the custom resource (CR) file and name it trident-protect-snapshot-restore-
cr.yaml.

2. In the file you created, configure the following attributes:

o metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

o spec.appArchivePath: The path inside AppVault where the snapshot contents are stored. You
can use the following command to find this path:

kubectl get snapshots <my-snapshot-name> -n trident-protect -o
Jjsonpath='{.status.appArchivePath}'

o spec.appVaultRef: (Required) The name of the AppVault where the snapshot contents are
stored.

> spec.namespaceMapping: The mapping of the source namespace of the restore operation to the
destination namespace. Replace my-source-namespace and my-destination-namespace
with information from your environment.

apiVersion: protect.trident.netapp.io/vl
kind: SnapshotRestore
metadata:
name: my-cr-name
namespace: trident-protect
spec:
appArchivePath: my-snapshot-path
appVaultRef: appvault-name
namespaceMapping: [{"source": "my-source-namespace",
"destination": "my-destination-namespace"}]

3. Optionally, if you need to select only certain resources of the application to restore, add filtering that
includes or excludes resources marked with particular labels:

° resourceFilter.resourceSelectionCriteria: (Required for filtering) Use include or exclude
to include or exclude a resource defined in resourceMatchers. Add the following
resourceMatchers parameters to define the resources to be included or excluded:

= resourceFilter.resourceMatchers: An array of resourceMatcher objects. If you define
multiple elements in this array, they match as an OR operation, and the fields inside each
element (group, kind, version) match as an AND operation.

= resourceMatchers[].group: (Optional) Group of the resource to be filtered.
= resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.

= resourceMatchers[].version: (Optional) Version of the resource to be filtered.



= resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of
the resource to be filtered.

= resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes
metadata.name field of the resource to be filtered.

= resourceMatchers[].labelSelectors: (Optional) Label selector string in the Kubernetes
metadata.name field of the resource as defined in the Kubernetes documentation. For
example: "trident.netapp.io/os=linux".

For example:

spec:
resourceFilter:
resourceSelectionCriteria: "include"
resourceMatchers:
- group: my-resource-group-1
kind: my-resource-kind-1
version: my-resource-version-1
names: ["my-resource-names"]
namespaces: ["my-resource-namespaces"]
labelSelectors: ["trident.netapp.io/os=linux"]
- group: my-resource-group-2
kind: my-resource-kind-2
version: my-resource-version-2
names: ["my-resource-names"]
namespaces: ["my-resource-namespaces"]
labelSelectors: ["trident.netapp.io/os=1linux"]

4. After you populate the trident-protect-snapshot-restore-cr.yaml file with the correct
values, apply the CR:

kubectl apply -f trident-protect-snapshot-restore-cr.yaml

Restore the snapshot using the CLI
Steps
1. Restore the snapshot to a different namespace, replacing values in brackets with information from
your environment.

° The snapshot argument uses a namespace and snapshot name in the format
<namespace>/<name>.

° The namespace-mapping argument uses colon-separated namespaces to map source
namespaces to the correct destination namespaces in the format
sourcel:destl, source2:dest?2.

For example:


https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

tridentctl-protect create snapshotrestore <my restore name>
--snapshot <namespace/snapshot to restore> --namespace-mapping
<source to destination namespace mapping>

Manage Trident Protect execution hooks

An execution hook is a custom action that you can configure to run in conjunction with a
data protection operation of a managed app. For example, if you have a database app,
you can use an execution hook to pause all database transactions before a snapshot,
and resume transactions after the snapshot is complete. This ensures application-
consistent snapshots.

Types of execution hooks

Trident Protect supports the following types of execution hooks, based on when they can be run:

* Pre-snapshot
* Post-snapshot
* Pre-backup

» Post-backup
» Post-restore

» Post-failover

Order of execution

When a data protection operation is run, execution hook events take place in the following order:

1. Any applicable custom pre-operation execution hooks are run on the appropriate containers. You can
create and run as many custom pre-operation hooks as you need, but the order of execution of these
hooks before the operation is neither guaranteed nor configurable.

2. Filesystem freezes occur, if applicable. Learn more about configuring filesystem freezing with Trident
Protect.

3. The data protection operation is performed.
4. Frozen filesystems are unfrozen, if applicable.

5. Any applicable custom post-operation execution hooks are run on the appropriate containers. You can
create and run as many custom post-operation hooks as you need, but the order of execution of these
hooks after the operation is neither guaranteed nor configurable.

If you create multiple execution hooks of the same type (for example, pre-snapshot), the order of execution of
those hooks is not guaranteed. However, the order of execution of hooks of different types is guaranteed. For
example, the following is the order of execution of a configuration that has all of the different types of hooks:

1. Pre-snapshot hooks executed

2. Post-snapshot hooks executed
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3. Pre-backup hooks executed

4. Post-backup hooks executed

@ The preceding order example only applies when you run a backup that does not use an existing
snapshot.

You should always test your execution hook scripts before enabling them in a production
environment. You can use the 'kubectl exec' command to conveniently test the scripts. After you

@ enable the execution hooks in a production environment, test the resulting snapshots and
backups to ensure they are consistent. You can do this by cloning the app to a temporary
namespace, restoring the snapshot or backup, and then testing the app.

@ If a pre-snapshot execution hook adds, changes, or removes Kubernetes resources, those
changes are included in the snapshot or backup and in any subsequent restore operation.

Important notes about custom execution hooks
Consider the following when planning execution hooks for your apps.

» An execution hook must use a script to perform actions. Many execution hooks can reference the same
script.

 Trident Protect requires the scripts that execution hooks use to be written in the format of executable shell
scripts.

* Script size is limited to 96KB.

 Trident Protect uses execution hook settings and any matching criteria to determine which hooks are
applicable to a snapshot, backup, or restore operation.

Because execution hooks often reduce or completely disable the functionality of the application
they are running against, you should always try to minimize the time your custom execution

@ hooks take to run. If you start a backup or snapshot operation with associated execution hooks
but then cancel it, the hooks are still allowed to run if the backup or snapshot operation has
already begun. This means that the logic used in a post-backup execution hook cannot assume
that the backup was completed.

Execution hook filters

When you add or edit an execution hook for an application, you can add filters to the execution hook to
manage which containers the hook will match. Filters are useful for applications that use the same container
image on all containers, but might use each image for a different purpose (such as Elasticsearch). Filters allow
you to create scenarios where execution hooks run on some but not necessarily all identical containers. If you
create multiple filters for a single execution hook, they are combined with a logical AND operator. You can have
up to 10 active filters per execution hook.

Each filter you add to an execution hook uses a regular expression to match containers in your cluster. When a
hook matches a container, the hook will run its associated script on that container. Regular expressions for
filters use the Regular Expression 2 (RE2) syntax, which does not support creating a filter that excludes
containers from the list of matches. For information on the syntax that Trident Protect supports for regular
expressions in execution hook filters, see Regular Expression 2 (RE2) syntax support.
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If you add a namespace filter to an execution hook that runs after a restore or clone operation
and the restore or clone source and destination are in different namespaces, the namespace
filter is only applied to the destination namespace.

Execution hook examples

Visit the NetApp Verda GitHub project to download real execution hooks for popular apps such as Apache
Cassandra and Elasticsearch. You can also see examples and get ideas for structuring your own custom
execution hooks.

Create an execution hook

You can create a custom execution hook for an app using Trident Protect. You need to have Owner, Admin, or
Member permissions to create execution hooks.
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Use aCR

Steps

1. Create the custom resource (CR) file and name it trident-protect-hook.yaml.

2. Configure the following attributes to match your Trident Protect environment and cluster configuration:

o

metadata.name: (Required) The name of this custom resource; choose a unique and sensible
name for your environment.

spec.applicationRef: (Required) The Kubernetes name of the application for which to run the
execution hook.

spec.stage: (Required) A string indicating which stage during the action that the execution hook
should run. Possible values:

= Pre
= Post

spec.action: (Required) A string indicating which action the execution hook will take, assuming
any execution hook filters specified are matched. Possible values:

= Snapshot
= Backup
= Restore
= Failover

spec.enabled: (Optional) Indicates whether this execution hook is enabled or disabled. If not
specified, the default value is true.

spec.hookSource: (Required) A string containing the base64-encoded hook script.

spec.timeout: (Optional) A number defining how long in minutes that the execution hook is
allowed to run. The minimum value is 1 minute, and the default value is 25 minutes if not
specified.

spec.arguments: (Optional) A YAML list of arguments that you can specify for the execution
hook.

spec.matchingCriteria: (Optional) An optional list of criteria key value pairs, each pair making up
an execution hook filter. You can add up to 10 filters per execution hook.

spec.matchingCriteria.type: (Optional) A string identifying the execution hook filter type.
Possible values:

= Containerlmage
= ContainerName
= PodName
= PodLabel
= NamespaceName
spec.matchingCriteria.value: (Optional) A string or regular expression identifying the execution

hook filter value.

Example YAML:
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apiVersion: protect.trident.netapp.io/vl
kind: ExecHook
metadata:
name: example-hook-cr
namespace: my-app-namespace
annotations:
astra.netapp.io/astra-control-hook-source-id:
/account/test/hookSource/id
spec:
applicationRef: my-app-name
stage: Pre
action: Snapshot
enabled: true
hookSource: IyEvYmluL2Jhc2gKZWNobyAiZXhhbXBsZSBzY3JpcHQiCg==
timeout: 10
arguments:
- FirstExampleArg
— SecondExampleArg
matchingCriteria:
- type: containerName
value: mysqgl
- type: containerImage
value: bitnami/mysqgl
- type: podName
value: mysqgl
- type: namespaceName
value: mysqgl-a
- type: podLabel
value: app.kubernetes.io/component=primary
- type: podLabel
value: helm.sh/chart=mysqgl-10.1.0
- type: podLabel
value: deployment-type=production

3. After you populate the CR file with the correct values, apply the CR:

kubectl apply -f trident-protect-hook.yaml

Use the CLI
Steps

1. Create the execution hook, replacing values in brackets with information from your environment. For
example:



tridentctl-protect create exechook <my exec hook name> --action
<action type> --app <app to use hook> --stage <pre or post stage>
--source-file <script-file> -n <application namespace>

Manually run an execution hook

You can manually run an execution hook for testing purposes or if you need to re-run the hook manually after a
failure. You need to have Owner, Admin, or Member permissions to manually run execution hooks.

Manually running an execution hook consists of two basic steps:

1. Create a resource backup, which collects resources and creates a backup of them, determining where the
hook will run
2. Run the execution hook against the backup
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Step 1: Create a resource backup
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Use aCR
Steps
1. Create the custom resource (CR) file and name it trident-protect-resource-
backup.yaml.

2. Configure the following attributes to match your Trident Protect environment and cluster
configuration:

o metadata.name: (Required) The name of this custom resource; choose a unique and
sensible name for your environment.

> spec.applicationRef: (Required) The Kubernetes name of the application for which to
create the resource backup.

o spec.appVaultRef: (Required) The name of the AppVault where the backup contents are
stored.

o spec.appArchivePath: The path inside AppVault where the backup contents are stored. You
can use the following command to find this path:

kubectl get backups <BACKUP NAME> -n my-app-namespace -o
jsonpath='{.status.appArchivePath}'

Example YAML:

apiVersion: protect.trident.netapp.io/vl
kind: ResourceBackup
metadata:
name: example-resource-backup
spec:
applicationRef: my-app-name
appVaultRef: my-appvault-name

appArchivePath: example-resource-backup

3. After you populate the CR file with the correct values, apply the CR:

kubectl apply -f trident-protect-resource-backup.yaml

Use the CLI
Steps

1. Create the backup, replacing values in brackets with information from your environment. For
example:
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tridentctl protect create resourcebackup <my backup name> --app
<my app name> --appvault <my appvault name> -n
<my app namespace> --app-archive-path <app archive path>

2. View the status of the backup. You can use this example command repeatedly until the operation
is complete:

tridentctl protect get resourcebackup -n <my app namespace>
<my backup name>

3. Verify that the backup was successful:

kubectl describe resourcebackup <my backup name>



Step 2: Run the execution hook
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Use aCR

Steps

1. Create the custom resource (CR) file and name it trident-protect-hook-run.yaml.

2. Configure the following attributes to match your Trident Protect environment and cluster
configuration:

o

metadata.name: (Required) The name of this custom resource; choose a unique and
sensible name for your environment.

spec.applicationRef: (Required) Ensure this value matches the application name from the
ResourceBackup CR you created in step 1.

spec.appVaultRef: (Required) Ensure this value matches the appVaultRef from the
ResourceBackup CR you created in step 1.

spec.appArchivePath: Ensure this value matches the appArchivePath from the
ResourceBackup CR you created in step 1.

kubectl get backups <BACKUP NAME> -n my-app-namespace =-o
Jjsonpath="'{.status.appArchivePath}"'

spec.action: (Required) A string indicating which action the execution hook will take,
assuming any execution hook filters specified are matched. Possible values:

= Snapshot
= Backup
= Restore
= Failover

spec.stage: (Required) A string indicating which stage during the action that the execution
hook should run. This hook run will not run hooks in any other stage. Possible values:

= Pre
= Post

Example YAML.:

apiVersion: protect.trident.netapp.io/vl

kind: ExecHooksRun

metadata:
name: example-hook-run

spec:
applicationRef: my-app-name
appVaultRef: my-appvault-name
appArchivePath: example-resource-backup
stage: Post

action: Failover



3. After you populate the CR file with the correct values, apply the CR:

kubectl apply -f trident-protect-hook-run.yaml

Use the CLI
Steps

1. Create the manual execution hook run request:

tridentctl protect create exechooksrun <my exec hook run name>
-n <my app_ namespace> --action snapshot --stage <pre or post>

-—app <my app name> --appvault <my appvault name> --path
<my backup name>

2. Check the status of the execution hook run. You can run this command repeatedly until the
operation is complete:

tridentctl protect get exechooksrun -n <my app namespace>
<my exec hook run name>

3. Describe the exechooksrun object to see the final details and status:

kubectl -n <my app namespace> describe exechooksrun
<my exec hook run name>
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