
Trident 24.10 documentation

Trident
NetApp
November 15, 2024

This PDF was generated from https://docs.netapp.com/us-en/trident/index.html on November 15, 2024.
Always check docs.netapp.com for the latest.

Table of Contents

Trident 24.10 documentation . 1

Release notes . 2

What’s new. 2

Earlier versions of documentation . 14

Get started . 15

Learn about Trident . 15

Quick start for Trident . 22

Requirements. 24

Install Trident . 27

Learn about Trident installation . 27

Install using Trident operator . 31

Install using tridentctl . 60

Use Trident . 66

Prepare the worker node . 66

Configure and manage backends . 76

Create and manage storage classes . 229

Provision and manage volumes . 234

Manage and monitor Trident . 274

Upgrade Trident . 274

Manage Trident using tridentctl . 280

Monitor Trident . 287

Uninstall Trident . 290

Trident for Docker. 293

Prerequisites for deployment . 293

Deploy Trident . 296

Upgrade or uninstall Trident . 301

Work with volumes . 302

Collect logs. 310

Manage multiple Trident instances. 311

Storage configuration options . 312

Known issues and limitations . 322

Best practices and recommendations . 324

Deployment . 324

Storage configuration . 324

Integrate Trident . 331

Data protection and disaster recovery . 341

Security . 343

Protect applications with Trident protect. 350

Learn about Trident protect . 350

Install Trident protect . 350

Manage Trident protect . 361

Manage and protect applications . 369

Uninstall Trident protect . 412

Knowledge and support . 413

Frequently asked questions . 413

Troubleshooting . 419

Support. 425

Reference. 427

Trident ports . 427

Trident REST API . 427

Command-line options . 428

Kubernetes and Trident objects . 429

Pod Security Standards (PSS) and Security Context Constraints (SCC) . 441

Legal notices . 446

Copyright . 446

Trademarks . 446

Patents . 446

Privacy policy . 446

Open source. 446

Trident 24.10 documentation

1

Release notes

What’s new

Release Notes provide information about new features, enhancements, and bug fixes in

the latest version of Trident.

The tridentctl binary for Linux that is provided in the installer zip file is the tested and

supported version. Be aware that the macos binary provided in the /extras part of the zip file

is not tested or supported.

What’s new in 24.10

Enhancements

• Google Cloud NetApp Volumes driver is now generally available for NFS volumes and supports zone-

aware provisioning.

• GCP Workload Identity will be used as Cloud Identity for Google Cloud NetApp Volumes with GKE.

• Added formatOptions configuration parameter to ONTAP-SAN and ONTAP-SAN-Economy drivers to

allow users to specify LUN format options.

• Reduced Azure NetApp Files minimum volume size to 50 GiB. Azure new minimum size expected to be

generally available in November.

• Added denyNewVolumePools configuration parameter to restrict ONTAP-NAS-Economy and ONTAP-

SAN-Economy drivers to preexisting Flexvol pools.

• Added detection for the addition, removal, or renaming of aggregates from the SVM across all ONTAP

drivers.

• Added 18MiB overhead to LUKS LUNs to ensure reported PVC size is usable.

• Improved ONTAP-SAN and ONTAP-SAN-Economy node stage and unstage error handling to allow

unstage to remove devices after a failed stage.

• Added a custom role generator allowing customers to create a minimalistic role for Trident in ONTAP.

• Added additional logging for troubleshooting lsscsi (Issue #792).

Kubernetes

• Added new Trident features for Kubernetes-native workflows:

◦ Data protection

◦ Data migration

◦ Disaster recovery

◦ Application mobility

Learn more about Trident protect.

• Added a new flag --k8s_api_qps to installers to set the QPS value used by Trident to communicate with

the Kubernetes API server.

• Added --node-prep flag to installers for automatic management of storage protocol dependencies on

2

https://github.com/NetApp/trident/issues/792

Kubernetes cluster nodes. Tested and verified compatibility with Amazon Linux 2023 iSCSI storage

protocol

• Added support for force detach for ONTAP-NAS-Economy volumes during Non-Graceful Node Shutdown

scenarios.

• New ONTAP-NAS-Economy NFS volumes will use per-qtree export policies when using

autoExportPolicy backend option. Qtrees will only be mapped to node restrictive export policies at time

of publish to improve access control and security. Existing qtrees will be switched to the new export policy

model when Trident unpublishes the volume from all nodes to do so without impacting active workloads.

• Added support for Kubernetes 1.31.

Experimental Enhancements

• Added tech preview for Fibre Channel support on ONTAP-SAN driver. Refer to Fibre Channel support.

Fixes

• Kubernetes:

◦ Fixed Rancher admission webhook preventing Trident Helm installations (Issue #839).

◦ Fixed Affinity key in helm chart values (Issue #898).

◦ Fixed tridentControllerPluginNodeSelector/tridentNodePluginNodeSelector won’t work with "true" value

(Issue #899).

◦ Deleted ephemeral snapshots created during cloning (Issue #901).

• Added support for Windows Server 2019.

• Fixed `go mod tidy`in Trident repo (Issue #767).

Deprecations

• Kubernetes:

◦ Updated minimum supported Kubernetes to 1.25.

◦ Removed support for POD Security Policy.

Product rebranding

Beginning with the 24.10 release, Astra Trident is rebranded to Trident (Netapp Trident). This rebranding does

not affect any features, platforms supported, or interoperability for Trident.

Changes in 24.06

Enhancements

• IMPORTANT: The limitVolumeSize parameter now limits qtree/LUN sizes in the ONTAP economy

drivers. Use the new limitVolumePoolSize parameter to control Flexvol sizes in those drivers. (Issue

#341).

• Added ability for iSCSI self-healing to initiate SCSI scans by exact LUN ID if deprecated igroups are in use

(Issue #883).

• Added support for volume clone and resize operations to be allowed even when the backend is in

suspended mode.

3

https://github.com/NetApp/trident/issues/839
https://github.com/NetApp/trident/issues/898
https://github.com/NetApp/trident/issues/899
https://github.com/NetApp/trident/issues/901
https://github.com/NetApp/trident/issues/767
https://github.com/NetApp/trident/issues/341
https://github.com/NetApp/trident/issues/341
https://github.com/NetApp/trident/issues/883

• Added ability for user-configured log settings for the Trident controller to be propagated to Trident node

pods.

• Added support in Trident to use REST by default instead of ZAPI for ONTAP versions 9.15.1 and later.

• Added support for custom volume names and metadata on the ONTAP storage backends for new

persistent volumes.

• Enhanced the azure-netapp-files (ANF) driver to automatically enable the snapshot directory by

default when the NFS mount options are set to use NFS version 4.x.

• Added Bottlerocket support for NFS volumes.

• Added technical preview support for Google Cloud NetApp Volumes.

Kubernetes

• Added support for Kubernetes 1.30.

• Added ability for Trident DaemonSet to clean zombie mounts and residual tracking files at startup (Issue

#883).

• Added PVC annotation trident.netapp.io/luksEncryption for dynamically importing LUKS

volumes (Issue #849).

• Added topology awareness to ANF driver.

• Added support for Windows Server 2022 nodes.

Fixes

• Fixed Trident installation failures due to stale transactions.

• Fixed tridentctl to ignore warning messages from Kubernetes (Issue #892).

• Changed Trident controller SecurityContextConstraint priority to 0 (Issue #887).

• ONTAP drivers now accept volume sizes below 20MiB (Issue[#885).

• Fixed Trident to prevent shrinking of Flexvols during resize operation for the ONTAP-SAN driver.

• Fixed ANF volume import failure with NFS v4.1.

Deprecations

• Removed support for EOL Windows Server 2019.

Changes in 24.02

Enhancements

• Added support for Cloud Identity.

◦ AKS with ANF - Azure Workload Identity will be used as Cloud identity.

◦ EKS with FSxN - AWS IAM role will be used as Cloud identity.

• Added support to install Trident as an add-on on EKS cluster from EKS console.

• Added ability to configure and disable iSCSI self-healing (Issue #864).

• Added FSx personality to ONTAP drivers to enable integration with AWS IAM and SecretsManager, and to

enable Trident to delete FSx volumes with backups (Issue #453).

4

https://github.com/NetApp/trident/issues/883
https://github.com/NetApp/trident/issues/883
https://github.com/NetApp/trident/issues/849
https://github.com/NetApp/trident/issues/892
https://github.com/NetApp/trident/issues/887
https://github.com/NetApp/trident/issues/885
https://github.com/NetApp/trident/issues/864
https://github.com/NetApp/trident/issues/453

Kubernetes

• Added support for Kubernetes 1.29.

Fixes

• Fixed ACP warning messages, when ACP is not enabled (Issue #866).

• Added a 10-second delay before performing a clone split during snapshot delete for ONTAP drivers, when

a clone is associated with the snapshot.

Deprecations

• Removed in-toto attestations framework from multi-platform image manifests.

Changes in 23.10

Fixes

• Fixed volume expansion if a new requested size is smaller than the total volume size for ontap-nas and

ontap-nas-flexgroup storage drivers (Issue #834).

• Fixed volume size to display only usable size of the volume during import for ontap-nas and ontap-nas-

flexgroup storage drivers (Issue #722).

• Fixed FlexVol name conversion for ONTAP-NAS-Economy.

• Fixed Trident initialization issue on a windows node when node is rebooted.

Enhancements

Kubernetes

Added support for Kubernetes 1.28.

Trident

• Added support for using Azure Managed Identities (AMI) with azure-netapp-files storage driver.

• Added support for NVMe over TCP for the ONTAP-SAN driver.

• Added ability to pause the provisioning of a volume when backend is set to suspended state by user (Issue

#558).

Changes in 23.07.1

Kubernetes: Fixed daemonset deletion to support zero-downtime upgrades (Issue #740).

Changes in 23.07

Fixes

Kubernetes

• Fixed Trident upgrade to disregard old pods stuck in terminating state (Issue #740).

• Added toleration to "transient-trident-version-pod" definition (Issue #795).

5

https://github.com/NetApp/trident/issues/866
https://github.com/NetApp/trident/issues/834
https://github.com/NetApp/trident/issues/722
https://github.com/NetApp/trident/issues/558
https://github.com/NetApp/trident/issues/558
https://github.com/NetApp/trident/issues/740
https://github.com/NetApp/trident/issues/740
https://github.com/NetApp/trident/issues/795

Trident

• Fixed ONTAP ZAPI requests to ensure LUN serial numbers are queried when getting LUN attributes to

identify and fix ghost iSCSI devices during Node Staging operations.

• Fixed error handling in storage driver code (Issue #816).

• Fixed quota resize when using ONTAP drivers with use-rest=true.

• Fixed LUN clone creation in ontap-san-economy.

• Revert publish info field from rawDevicePath to devicePath; added logic to populate and recover (in

some cases) devicePath field.

Enhancements

Kubernetes

• Added support for importing pre-provisioned snapshots.

• Minimized deployment and daemonset linux permissions (Issue #817).

Trident

• No longer reporting the state field for "online" volumes and snapshots.

• Updates the backend state if the ONTAP backend is offline (Issues #801, #543).

• LUN Serial Number is always retrieved and published during the ControllerVolumePublish workflow.

• Added additional logic to verify iSCSI multipath device serial number and size.

• Additional verification for iSCSI volumes to ensure correct multipath device is unstaged.

Experimental Enhancement

Added tech preview support for NVMe over TCP for the ONTAP-SAN driver.

Documentation

Many organizational and formatting improvements have been made.

Deprecations

Kubernetes

• Removed support for v1beta1 snapshots.

• Removed support for pre-CSI volumes and storage classes.

• Updated minimum supported Kubernetes to 1.22.

Changes in 23.04

Force volume detach for ONTAP-SAN-* volumes is supported only with Kubernetes versions

with the Non-Graceful Node Shutdown feature gate enabled. Force detach must be enabled at

install time using the --enable-force-detach Trident installer flag.

6

https://github.com/NetApp/trident/issues/816
https://github.com/NetApp/trident/issues/817
https://github.com/NetApp/trident/issues/801
https://github.com/NetApp/trident/issues/543

Fixes

• Fixed Trident Operator to use IPv6 localhost for installation when specified in spec.

• Fixed Trident Operator cluster role permissions to be in sync with the bundle permissions (Issue #799).

• Fixed issue with attaching raw block volume on multiple nodes in RWX mode.

• Fixed FlexGroup cloning support and volume import for SMB volumes.

• Fixed issue where Trident controller could not shut down immediately (Issue #811).

• Added fix to list all igroup names associated with a specified LUN provisioned with ontap-san-* drivers.

• Added a fix to allow external processes to run to completion.

• Fixed compilation error for s390 architecture (Issue #537).

• Fixed incorrect logging level during volume mount operations (Issue #781).

• Fixed potential type assertion error (Issue #802).

Enhancements

• Kubernetes:

◦ Added support for Kubernetes 1.27.

◦ Added support for importing LUKS volumes.

◦ Added support for ReadWriteOncePod PVC access mode.

◦ Added support for force detach for ONTAP-SAN-* volumes during Non-Graceful Node Shutdown

scenarios.

◦ All ONTAP-SAN-* volumes will now use per-node igroups. LUNs will only be mapped to igroups while

actively published to those nodes to improve our security posture. Existing volumes will be

opportunistically switched to the new igroup scheme when Trident determines it is safe to do so without

impacting active workloads (Issue #758).

◦ Improved Trident security by cleaning up unused Trident-managed igroups from ONTAP-SAN-*

backends.

• Added support for SMB volumes with Amazon FSx to the ontap-nas-economy and ontap-nas-flexgroup

storage drivers.

• Added support for SMB shares with the ontap-nas, ontap-nas-economy and ontap-nas-flexgroup storage

drivers.

• Added support for arm64 nodes (Issue #732).

• Improved Trident shutdown procedure by deactivating API servers first (Issue #811).

• Added cross-platform build support for Windows and arm64 hosts to Makefile; see BUILD.md.

Deprecations

Kubernetes: Backend-scoped igroups will no longer be created when configuring ontap-san and ontap-san-

economy drivers (Issue #758).

Changes in 23.01.1

Fixes

• Fixed Trident Operator to use IPv6 localhost for installation when specified in spec.

7

https://github.com/NetApp/trident/issues/799
https://github.com/NetApp/trident/issues/811
https://github.com/NetApp/trident/issues/537
https://github.com/NetApp/trident/issues/781
https://github.com/NetApp/trident/issues/802
https://github.com/NetApp/trident/issues/758
https://github.com/NetApp/trident/issues/732
https://github.com/NetApp/trident/issues/811
https://github.com/NetApp/trident/issues/758

• Fixed Trident Operator cluster role permissions to be in sync with the bundle permissions Issue #799.

• Added a fix to allow external processes to run to completion.

• Fixed issue with attaching raw block volume on multiple nodes in RWX mode.

• Fixed FlexGroup cloning support and volume import for SMB volumes.

Changes in 23.01

Kubernetes 1.27 is now supported in Trident. Please upgrade Trident prior to upgrading

Kubernetes.

Fixes

• Kubernetes: Added options to exclude Pod Security Policy creation to fix Trident installations via Helm

(Issues #783, #794).

Enhancements

Kubernetes

• Added support for Kubernetes 1.26.

• Improved overall Trident RBAC resource utilization (Issue #757).

• Added automation to detect and fix broken or stale iSCSI sessions on host nodes.

• Added support for expanding LUKS encrypted volumes.

• Kubernetes: Added credential rotation support for LUKS encrypted volumes.

Trident

• Added support for SMB volumes with Amazon FSx for ONTAP to the ontap-nas storage driver.

• Added support for NTFS permissions when using SMB volumes.

• Added support for storage pools for GCP volumes with CVS service level.

• Added support for optional use of flexgroupAggregateList when creating FlexGroups with the ontap-nas-

flexgroup storage driver.

• Improved performance for the ontap-nas-economy storage driver when managing multiple FlexVols.

• Enabled dataLIF updates for all ONTAP NAS storage drivers.

• Updated the Trident Deployment and DaemonSet naming convention to reflect the host node OS.

Deprecations

• Kubernetes: Updated minimum supported Kubernetes to 1.21.

• Data LIFs should no longer be specified when configuring ontap-san or ontap-san-economy drivers.

Changes in 22.10

You must read the following critical information before upgrading to Trident 22.10.

8

https://github.com/NetApp/trident/issues/799
https://github.com/NetApp/trident/issues/794
https://github.com/NetApp/trident/issues/757

Critical information about Trident 22.10

• Kubernetes 1.25 is now supported in Trident. You must upgrade Trident to 22.10 prior to

upgrading to Kubernetes 1.25.

• Trident now strictly enforces the use of multipathing configuration in SAN environments, with

a recommended value of find_multipaths: no in multipath.conf file.

Use of non-multipathing configuration or use of find_multipaths: yes or

find_multipaths: smart value in multipath.conf file will result in mount failures. Trident

has recommended the use of find_multipaths: no since the 21.07 release.

Fixes

• Fixed issue specific to ONTAP backend created using credentials field failing to come online during

22.07.0 upgrade (Issue #759).

• Docker: Fixed an issue causing the Docker volume plugin to fail to start in some environments (Issue #548

and Issue #760).

• Fixed SLM issue specific to ONTAP SAN backends to ensure only subset of data LIFs belonging to

reporting nodes are published.

• Fixed performance issue where unnecessary scans for iSCSI LUNs happened when attaching a volume.

• Removed granular retries within the Trident iSCSI workflow to fail fast and reduce external retry intervals.

• Fixed issue where an error was returned when flushing an iSCSI device when the corresponding multipath

device was already flushed.

Enhancements

• Kubernetes:

◦ Added support for Kubernetes 1.25. You must upgrade Trident to 22.10 prior to upgrading to

Kubernetes 1.25.

◦ Added a separate ServiceAccount, ClusterRole, and ClusterRoleBinding for the Trident Deployment

and DaemonSet to allow future permissions enhancements.

◦ Added support for cross-namespace volume sharing.

• All Trident ontap-* storage drivers now work with the ONTAP REST API.

• Added new operator yaml (bundle_post_1_25.yaml) without a PodSecurityPolicy to support

Kubernetes 1.25.

• Added support for LUKS-encrypted volumes for ontap-san and ontap-san-economy storage drivers.

• Added support for Windows Server 2019 nodes.

• Added support for SMB volumes on Windows nodes through the azure-netapp-files storage driver.

• Automatic MetroCluster switchover detection for ONTAP drivers is now generally available.

Deprecations

• Kubernetes: Updated minimum supported Kubernetes to 1.20.

• Removed Astra Data Store (ADS) driver.

• Removed support for yes and smart options for find_multipaths when configuring worker node

9

https://github.com/NetApp/trident/issues/759
https://github.com/NetApp/trident/issues/548
https://github.com/NetApp/trident/issues/760
https://docs.netapp.com/us-en/trident/trident-use/volume-share.html
https://docs.netapp.com/us-en/trident/trident-reco/security-luks.html
https://docs.netapp.com/us-en/trident/trident-use/anf.html

multipathing for iSCSI.

Changes in 22.07

Fixes

Kubernetes

• Fixed issue to handle boolean and number values for node selector when configuring Trident with Helm or

the Trident Operator. (GitHub issue #700)

• Fixed issue in handling errors from non-CHAP path, so that kubelet will retry if it fails. GitHub issue #736)

Enhancements

• Transition from k8s.gcr.io to registry.k8s.io as default registry for CSI images

• ONTAP-SAN volumes will now use per-node igroups and only map LUNs to igroups while actively

published to those nodes to improve our security posture. Existing volumes will be opportunistically

switched to the new igroup scheme when Trident determines it is safe to do so without impacting active

workloads.

• Included a ResourceQuota with Trident installations to ensure Trident DaemonSet is scheduled when

PriorityClass consumption is limited by default.

• Added support for Network Features to Azure NetApp Files driver. (GitHub issue #717)

• Added tech preview automatic MetroCluster switchover detection to ONTAP drivers. (GitHub issue #228)

Deprecations

• Kubernetes: Updated minimum supported Kubernetes to 1.19.

• Backend config no longer allows multiple authentication types in single config.

Removals

• AWS CVS driver (deprecated since 22.04) has been removed.

• Kubernetes

◦ Removed unnecessary SYS_ADMIN capability from node pods.

◦ Reduces nodeprep down to simple host info and active service discovery to do a best-effort

confirmation that NFS/iSCSI services are available on worker nodes.

Documentation

A new Pod Security Standards (PSS) section has been added detailing permissions enabled by Trident on

installation.

Changes in 22.04

NetApp is continually improving and enhancing its products and services. Here are some of the latest features

in Trident. For previous releases, Refer to Earlier versions of documentation.

If you are upgrading from any previous Trident release and use Azure NetApp Files, the

location config parameter is now a mandatory, singleton field.

10

https://github.com/NetApp/trident/issues/700
https://github.com/NetApp/trident/issues/736
https://github.com/NetApp/trident/issues/717
https://github.com/NetApp/trident/issues/228
https://docs.netapp.com/us-en/trident/trident-reference/pod-security.html
https://docs.netapp.com/us-en/trident/earlier-versions.html

Fixes

• Improved parsing of iSCSI initiator names. (GitHub issue #681)

• Fixed issue where CSI storage class parameters weren’t allowed. (GitHub issue #598)

• Fixed duplicate key declaration in Trident CRD. (GitHub issue #671)

• Fixed inaccurate CSI Snapshot logs. (GitHub issue #629))

• Fixed issue with unpublishing volumes on deleted nodes. (GitHub issue #691)

• Added handling of filesystem inconsistencies on block devices. (GitHub issue #656)

• Fixed issue pulling auto-support images when setting the imageRegistry flag during installation. (GitHub

issue #715)

• Fixed issue where Azure NetApp Files driver failed to clone a volume with multiple export rules.

Enhancements

• Inbound connections to Trident’s secure endpoints now require a minimum of TLS 1.3. (GitHub issue #698)

• Trident now adds HSTS headers to responses from its secure endpoints.

• Trident now attempts to enable the Azure NetApp Files unix permissions feature automatically.

• Kubernetes: Trident daemonset now runs at system-node-critical priority class. (GitHub issue #694)

Removals

E-Series driver (disabled since 20.07) has been removed.

Changes in 22.01.1

Fixes

• Fixed issue with unpublishing volumes on deleted nodes. (GitHub issue #691)

• Fixed panic when accessing nil fields for aggregate space in ONTAP API responses.

Changes in 22.01.0

Fixes

• Kubernetes: Increase node registration backoff retry time for large clusters.

• Fixed issue where azure-netapp-files driver could be confused by multiple resources with the same name.

• ONTAP SAN IPv6 Data LIFs now work if specified with brackets.

• Fixed issue where attempting to import an already imported volume returns EOF leaving PVC in pending

state. (GitHub issue #489)

• Fixed issue when Trident performance slows down when > 32 snapshots are created on a SolidFire

volume.

• Replaced SHA-1 with SHA-256 in SSL certificate creation.

• Fixed Azure NetApp Files driver to allow duplicate resource names and limit operations to a single location.

• Fixed Azure NetApp Files driver to allow duplicate resource names and limit operations to a single location.

11

https://github.com/NetApp/trident/issues/681
https://github.com/NetApp/trident/issues/598
https://github.com/NetApp/trident/issues/671
https://github.com/NetApp/trident/issues/629
https://github.com/NetApp/trident/issues/691
https://github.com/NetApp/trident/issues/656
https://github.com/NetApp/trident/issues/715
https://github.com/NetApp/trident/issues/715
https://github.com/NetApp/trident/issues/698
https://github.com/NetApp/trident/issues/694
https://github.com/NetApp/trident/issues/691
https://github.com/NetApp/trident/issues/489

Enhancements

• Kubernetes enhancements:

◦ Added support for Kubernetes 1.23.

◦ Add scheduling options for Trident pods when installed via Trident Operator or Helm. (GitHub issue

#651)

• Allow cross-region volumes in GCP driver. (GitHub issue #633)

• Added support for 'unixPermissions' option to Azure NetApp Files volumes. (GitHub issue #666)

Deprecations

Trident REST interface can listen and serve only at 127.0.0.1 or [::1] addresses

Changes in 21.10.1

The v21.10.0 release has an issue that can put the Trident controller into a CrashLoopBackOff

state when a node is removed and then added back to the Kubernetes cluster. This issue is

fixed in v21.10.1 (GitHub issue 669).

Fixes

• Fixed potential race condition when importing a volume on a GCP CVS backend resulting in failure to

import.

• Fixed an issue that can put the Trident controller into a CrashLoopBackOff state when a node is removed

and then added back to the Kubernetes cluster (GitHub issue 669).

• Fixed issue where SVMs were no longer discovered if no SVM name was specified (GitHub issue 612).

Changes in 21.10.0

Fixes

• Fixed issue where clones of XFS volumes could not be mounted on the same node as the source volume

(GitHub issue 514).

• Fixed issue where Trident logged a fatal error on shutdown (GitHub issue 597).

• Kubernetes-related fixes:

◦ Return a volume’s used space as the minimum restoreSize when creating snapshots with ontap-nas

and ontap-nas-flexgroup drivers (GitHub issue 645).

◦ Fixed issue where Failed to expand filesystem error was logged after volume resize (GitHub

issue 560).

◦ Fixed issue where a pod could get stuck in Terminating state (GitHub issue 572).

◦ Fixed the case where an ontap-san-economy FlexVol might be full of snapshot LUNs (GitHub issue

533).

◦ Fixed custom YAML installer issue with different image (GitHub issue 613).

◦ Fixed snapshot size calculation (GitHub issue 611).

◦ Fixed issue where all Trident installers could identify plain Kubernetes as OpenShift (GitHub issue

639).

12

https://github.com/NetApp/trident/issues/651
https://github.com/NetApp/trident/issues/651
https://github.com/NetApp/trident/issues/633
https://github.com/NetApp/trident/issues/666

◦ Fixed the Trident operator to stop reconciliation if the Kubernetes API server is unreachable (GitHub

issue 599).

Enhancements

• Added support for unixPermissions option to GCP-CVS Performance volumes.

• Added support for scale-optimized CVS volumes in GCP in the range 600 GiB to 1 TiB.

• Kubernetes-related enhancements:

◦ Added support for Kubernetes 1.22.

◦ Enabled the Trident operator and Helm chart to work with Kubernetes 1.22 (GitHub issue 628).

◦ Added operator image to tridentctl images command (GitHub issue 570).

Experimental enhancements

• Added support for volume replication in the ontap-san driver.

• Added tech preview REST support for the ontap-nas-flexgroup, ontap-san, and ontap-nas-

economy drivers.

Known issues

Known issues identify problems that might prevent you from using the product successfully.

• When upgrading a Kubernetes cluster from 1.24 to 1.25 or later that has Trident installed, you must update

values.yaml to set excludePodSecurityPolicy to true or add --set

excludePodSecurityPolicy=true to the helm upgrade command before you can upgrade the

cluster.

• Trident now enforces a blank fsType (fsType="") for volumes that do not have the fsType specified in

their StorageClass. When working with Kubernetes 1.17 or later, Trident supports providing a blank

fsType for NFS volumes. For iSCSI volumes, you are required to set the fsType on your StorageClass

when enforcing an fsGroup using a Security Context.

• When using a backend across multiple Trident instances, each backend configuration file should have a

different storagePrefix value for ONTAP backends or use a different TenantName for SolidFire

backends. Trident cannot detect volumes that other instances of Trident have created. Attempting to create

an existing volume on either ONTAP or SolidFire backends succeeds, because Trident treats volume

creation as an idempotent operation. If storagePrefix or TenantName do not differ, there might be

name collisions for volumes created on the same backend.

• When installing Trident (using tridentctl or the Trident Operator) and using tridentctl to manage

Trident, you should ensure the KUBECONFIG environment variable is set. This is necessary to indicate the

Kubernetes cluster that tridentctl should work against. When working with multiple Kubernetes

environments, you should ensure that the KUBECONFIG file is sourced accurately.

• To perform online space reclamation for iSCSI PVs, the underlying OS on the worker node might require

mount options to be passed to the volume. This is true for RHEL/RedHat CoreOS instances, which require

the discard mount option; ensure that the discard mountOption is included in your StorageClass to

support online block discard.

• If you have more than one instance of Trident per Kubernetes cluster, Trident cannot communicate with

other instances and cannot discover other volumes that they have created, which leads to unexpected and

incorrect behavior if more than one instance runs within a cluster. There should be only one instance of

Trident per Kubernetes cluster.

13

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems
https://kubernetes.io/docs/concepts/storage/storage-classes/

• If Trident-based StorageClass objects are deleted from Kubernetes while Trident is offline, Trident does

not remove the corresponding storage classes from its database when it comes back online. You should

delete these storage classes using tridentctl or the REST API.

• If a user deletes a PV provisioned by Trident before deleting the corresponding PVC, Trident does not

automatically delete the backing volume. You should remove the volume via tridentctl or the REST

API.

• ONTAP cannot concurrently provision more than one FlexGroup at a time unless the set of aggregates are

unique to each provisioning request.

• When using Trident over IPv6, you should specify managementLIF and dataLIF in the backend

definition within square brackets. For example, [fd20:8b1e:b258:2000:f816:3eff:feec:0].

You cannot specify dataLIF on an ONTAP SAN backend. Trident discovers all available

iSCSI LIFs and uses them to establish the multipath session.

• If using the solidfire-san driver with OpenShift 4.5, ensure that the underlying worker nodes use MD5

as the CHAP authentication algorithm. Secure FIPS-compliant CHAP algorithms SHA1, SHA-256, and

SHA3-256 are available with Element 12.7.

Find more information

• Trident GitHub

• Trident blogs

Earlier versions of documentation

If you aren’t running Trident 24.10, the documentation for previous releases is available

based on the Trident support lifecycle.

• Trident 24.06

• Trident 24.02

• Trident 23.10

• Trident 23.07

• Trident 23.04

• Trident 23.01

• Trident 22.10

• Trident 22.07

• Trident 22.04

• Trident 22.01

14

https://github.com/NetApp/trident
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://docs.netapp.com/us-en/trident-2406/index.html
https://docs.netapp.com/us-en/trident-2402/index.html
https://docs.netapp.com/us-en/trident-2310/index.html
https://docs.netapp.com/us-en/trident-2307/index.html
https://docs.netapp.com/us-en/trident-2304/index.html
https://docs.netapp.com/us-en/trident-2301/index.html
https://docs.netapp.com/us-en/trident-2210/index.html
https://docs.netapp.com/us-en/trident-2207/index.html
https://docs.netapp.com/us-en/trident-2204/index.html
https://docs.netapp.com/us-en/trident-2201/index.html

Get started

Learn about Trident

Learn about Trident

Trident is a fully-supported open source project maintained by NetApp. It has been

designed to help you meet your containerized application’s persistence demands using

industry-standard interfaces, such as the Container Storage Interface (CSI).

What is Trident?

Netapp Trident enables consumption and management of storage resources across all popular NetApp storage

platforms, in the public cloud or on premises, including ONTAP (AFF, FAS, Select, Cloud, Amazon FSx for

NetApp ONTAP), Element software (NetApp HCI, SolidFire), Azure NetApp Files service, and Cloud Volumes

Service on Google Cloud.

Trident is a Container Storage Interface (CSI) compliant dynamic storage orchestrator that natively integrates

with Kubernetes. Trident runs as a single Controller Pod plus a Node Pod on each worker node in the cluster.

Refer to Trident architecture for details.

Trident also provides direct integration with the Docker ecosystem for NetApp storage platforms. The NetApp

Docker Volume Plugin (nDVP) supports the provisioning and management of storage resources from the

storage platform to Docker hosts. Refer to Deploy Trident for Docker for details.

If this is your first time using Kubernetes, you should familiarize yourself with the Kubernetes

concepts and tools.

Take the Trident test drive

To take a test drive, request access to the "Easily Deploy and Clone Persistent Storage for Containerized

Workloads" NetApp Test Drive using a ready-to-use lab image. The test drive provides a sandbox environment

with a three-node Kubernetes cluster and Trident installed and configured. This is a great way to familiarize

yourself with Trident and explore its features.

Another option is the kubeadm Install Guide provided by Kubernetes.

Don’t use a Kubernetes cluster that you build using these instructions in a production

environment. Use the production deployment guides provided by your distribution for production-

ready clusters.

Kubernetes integration with NetApp products

The NetApp portfolio of storage products integrates with many aspects of a Kubernetes cluster, providing

advanced data management capabilities, which enhance the functionality, capability, performance, and

availability of the Kubernetes deployment.

15

https://kubernetes.io/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://www.netapp.com/us/try-and-buy/test-drive/index.aspx
https://kubernetes.io/docs/setup/independent/install-kubeadm/

Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP is a fully managed AWS service that lets you launch and run file systems

powered by the NetApp ONTAP storage operating system.

Azure NetApp Files

Azure NetApp Files is an enterprise-grade Azure file share service, powered by NetApp. You can run your

most demanding file-based workloads in Azure natively, with the performance and rich data management

you expect from NetApp.

Cloud Volumes ONTAP

Cloud Volumes ONTAP is a software-only storage appliance that runs the ONTAP data management

software in the cloud.

Google Cloud NetApp Volumes

Google Cloud NetApp Volumes is a fully managed file storage service in Google Cloud that provides high-

performance, enterprise-grade file storage.

Element software

Element enables the storage administrator to consolidate workloads by guaranteeing performance and

enabling a simplified and streamlined storage footprint.

NetApp HCI

NetApp HCI simplifies the management and scale of the datacenter by automating routine tasks and

enabling infrastructure administrators to focus on more important functions.

Trident can provision and manage storage devices for containerized applications directly against the

underlying NetApp HCI storage platform.

NetApp ONTAP

NetApp ONTAP is the NetApp multiprotocol, unified storage operating system that provides advanced

data management capabilities for any application.

ONTAP systems have all-flash, hybrid, or all-HDD configurations and offer many different deployment

models, including engineered hardware (FAS and AFF), white-box (ONTAP Select), and cloud-only

(Cloud Volumes ONTAP). Trident supports these ONTAP deployment models.

Trident architecture

Trident runs as a single Controller Pod plus a Node Pod on each worker node in the

16

https://www.netapp.com/aws/fsx-ontap/
https://www.netapp.com/azure/azure-netapp-files/
https://www.netapp.com/cloud-services/cloud-volumes-ontap/
https://bluexp.netapp.com/google-cloud-netapp-volumes?utm_source=GitHub&utm_campaign=Trident
https://www.netapp.com/data-management/element-software/
https://docs.netapp.com/us-en/hci/docs/concept_hci_product_overview.html
https://docs.netapp.com/us-en/ontap/index.html

cluster. The node pod must be running on any host where you want to potentially mount a

Trident volume.

Understanding controller pods and node pods

Trident deploys as a single Trident Controller Pod and one or more Trident Node Pods on the Kubernetes

cluster and uses standard Kubernetes CSI Sidecar Containers to simplify the deployment of CSI plugins.

Kubernetes CSI Sidecar Containers are maintained by the Kubernetes Storage community.

Kubernetes node selectors and tolerations and taints are used to constrain a pod to run on a specific or

preferred node. You can configure node selectors and tolerations for controller and node pods during Trident

installation.

• The controller plugin handles volume provisioning and management, such as snapshots and resizing.

• The node plugin handles attaching the storage to the node.

Figure 1. Trident deployed on the Kubernetes cluster

Trident Controller Pod

The Trident Controller Pod is a single Pod running the CSI Controller plugin.

• Responsible for provisioning and managing volumes in NetApp storage

• Managed by a Kubernetes Deployment

• Can run on the control-plane or worker nodes, depending on installation parameters.

17

https://kubernetes-csi.github.io/docs/sidecar-containers.html
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Figure 2. Trident Controller Pod diagram

Trident Node Pods

Trident Node Pods are privileged Pods running the CSI Node plugin.

• Responsible for mounting and unmounting storage for Pods running on the host

• Managed by a Kubernetes DaemonSet

• Must run on any node that will mount NetApp storage

18

Figure 3. Trident Node Pod diagram

Supported Kubernetes cluster architectures

Trident is supported with the following Kubernetes architectures:

Kubernetes cluster architectures Supported Default install

Single master, compute Yes Yes

Multiple master, compute Yes Yes

Master, etcd, compute Yes Yes

Master, infrastructure, compute Yes Yes

Concepts

Provisioning

Provisioning in Trident has two primary phases. The first phase associates a storage

class with the set of suitable backend storage pools and occurs as a necessary

preparation before provisioning. The second phase includes the volume creation itself

and requires choosing a storage pool from those associated with the pending volume’s

storage class.

Storage class association

Associating backend storage pools with a storage class relies on both the storage class’s requested attributes

and its storagePools, additionalStoragePools, and excludeStoragePools lists. When you create a

storage class, Trident compares the attributes and pools offered by each of its backends to those requested by

19

the storage class. If a storage pool’s attributes and name match all of the requested attributes and pool names,

Trident adds that storage pool to the set of suitable storage pools for that storage class. In addition, Trident

adds all storage pools listed in the additionalStoragePools list to that set, even if their attributes do not

fulfill all or any of the storage class’s requested attributes. You should use the excludeStoragePools list to

override and remove storage pools from use for a storage class. Trident performs a similar process every time

you add a new backend, checking whether its storage pools satisfy those of the existing storage classes and

removing any that have been marked as excluded.

Volume creation

Trident then uses the associations between storage classes and storage pools to determine where to provision

volumes. When you create a volume, Trident first gets the set of storage pools for that volume’s storage class,

and, if you specify a protocol for the volume, Trident removes those storage pools that cannot provide the

requested protocol (for example, a NetApp HCI/SolidFire backend cannot provide a file-based volume while an

ONTAP NAS backend cannot provide a block-based volume). Trident randomizes the order of this resulting

set, to facilitate an even distribution of volumes, and then iterates through it, attempting to provision the volume

on each storage pool in turn. If it succeeds on one, it returns successfully, logging any failures encountered in

the process. Trident returns a failure only if it fails to provision on all the storage pools available for the

requested storage class and protocol.

Volume snapshots

Learn more about how Trident handles the creation of volume snapshots for its drivers.

Learn about volume snapshot creation

• For the ontap-nas, ontap-san, gcp-cvs, and azure-netapp-files drivers, each Persistent Volume

(PV) maps to a FlexVol. As a result, volume snapshots are created as NetApp snapshots. NetApp

snapshot technology delivers more stability, scalability, recoverability, and performance than competing

snapshot technologies. These snapshot copies are extremely efficient both in the time needed to create

them and in storage space.

• For the ontap-nas-flexgroup driver, each Persistent Volume (PV) maps to a FlexGroup. As a result,

volume snapshots are created as NetApp FlexGroup snapshots. NetApp snapshot technology delivers

more stability, scalability, recoverability, and performance than competing snapshot technologies. These

snapshot copies are extremely efficient both in the time needed to create them and in storage space.

• For the ontap-san-economy driver, PVs map to LUNs created on shared FlexVols. VolumeSnapshots of

PVs are achieved by performing FlexClones of the associated LUN. ONTAP FlexClone technology makes

it possible to create copies of even the largest datasets almost instantaneously. Copies share data blocks

with their parents, consuming no storage except what is required for metadata.

• For the solidfire-san driver, each PV maps to a LUN created on the NetApp Element software/NetApp

HCI cluster. VolumeSnapshots are represented by Element snapshots of the underlying LUN. These

snapshots are point-in-time copies and only take up a small amount of system resources and space.

• When working with the ontap-nas and ontap-san drivers, ONTAP snapshots are point-in-time copies of

the FlexVol and consume space on the FlexVol itself. This can result in the amount of writable space in the

volume to reduce with time as snapshots are created/scheduled. One simple way of addressing this is to

grow the volume by resizing through Kubernetes. Another option is to delete snapshots that are no longer

required. When a VolumeSnapshot created through Kubernetes is deleted, Trident will delete the

associated ONTAP snapshot. ONTAP snapshots that were not created through Kubernetes can also be

deleted.

With Trident, you can use VolumeSnapshots to create new PVs from them. Creating PVs from these snapshots

is performed by using the FlexClone technology for supported ONTAP and CVS backends. When creating a

20

PV from a snapshot, the backing volume is a FlexClone of the snapshot’s parent volume. The solidfire-

san driver uses Element software volume clones to create PVs from snapshots. Here it creates a clone from

the Element snapshot.

Virtual pools

Virtual pools provide a layer of abstraction between Trident storage backends and

Kubernetes StorageClasses. They allow an administrator to define aspects, such as

location, performance, and protection for each backend in a common, backend-agnostic

way without making a StorageClass specify which physical backend, backend pool, or

backend type to use to meet desired criteria.

Learn about virtual pools

The storage administrator can define virtual pools on any of the Trident backends in a JSON or YAML definition

file.

Any aspect specified outside the virtual pools list is global to the backend and will apply to all the virtual pools,

while each virtual pool might specify one or more aspects individually (overriding any backend-global aspects).

• When defining virtual pools, do not attempt to rearrange the order of existing virtual pools in

a backend definition.

• We advise against modifying attributes for an existing virtual pool. You should define a new

virtual pool to make changes.

Most aspects are specified in backend-specific terms. Crucially, the aspect values are not exposed outside the

backend’s driver and are not available for matching in StorageClasses. Instead, the administrator defines

21

one or more labels for each virtual pool. Each label is a key:value pair, and labels might be common across

unique backends. Like aspects, labels can be specified per-pool or global to the backend. Unlike aspects,

which have predefined names and values, the administrator has full discretion to define label keys and values

as needed. For convenience, storage administrators can define labels per virtual pool and group volumes by

label.

A StorageClass identifies which virtual pool to use by referencing the labels within a selector parameter.

Virtual pool selectors support the following operators:

Operator Example A pool’s label value must:

= performance=premium Match

!= performance!=extreme Not match

in location in (east, west) Be in the set of values

notin performance notin (silver, bronze) Not be in the set of values

<key> protection Exist with any value

!<key> !protection Not exist

Volume access groups

Learn more about how Trident uses volume access groups.

Ignore this section if you are using CHAP, which is recommended to simplify management and

avoid the scaling limit described below. In addition, if you are using Trident in CSI mode, you can

ignore this section. Trident uses CHAP when installed as an enhanced CSI provisioner.

Learn about volume access groups

Trident can use volume access groups to control access to the volumes that it provisions. If CHAP is disabled,

it expects to find an access group called trident unless you specify one or more access group IDs in the

configuration.

While Trident associates new volumes with the configured access groups, it does not create or otherwise

manage access groups themselves. The access groups must exist before the storage backend is added to

Trident, and they need to contain the iSCSI IQNs from every node in the Kubernetes cluster that could

potentially mount the volumes provisioned by that backend. In most installations, that includes every worker

node in the cluster.

For Kubernetes clusters with more than 64 nodes, you should use multiple access groups. Each access group

may contain up to 64 IQNs, and each volume can belong to four access groups. With the maximum four

access groups configured, any node in a cluster up to 256 nodes in size will be able to access any volume. For

latest limits on volume access groups, refer to here.

If you’re modifying the configuration from one that is using the default trident access group to one that uses

others as well, include the ID for the trident access group in the list.

Quick start for Trident

You can install Trident and start managing storage resources in a few steps. Before

22

https://docs.netapp.com/us-en/element-software/concepts/concept_solidfire_concepts_volume_access_groups.html
https://docs.netapp.com/us-en/element-software/concepts/concept_solidfire_concepts_volume_access_groups.html

getting started, review Trident requirements.

For Docker, refer to Trident for Docker.

 Install Trident

Trident offers several installation methods and modes optimized for a variety of environments and

organizations.

Install Trident

 Prepare the worker node

All worker nodes in the Kubernetes cluster must be able to mount the volumes you have provisioned for your

pods.

Prepare the worker node

 Create a backend

A backend defines the relationship between Trident and a storage system. It tells Trident how to communicate

with that storage system and how Trident should provision volumes from it.

Configure a backend for your storage system

 Create a Kubernetes StorageClass

The Kubernetes StorageClass object specifies Trident as the provisioner and allows you to create a storage

class to provision volumes with customizable attributes. Trident creates a matching storage class for

Kubernetes objects that specify the Trident provisioner.

Create a storage class

 Provision a volume

A PersistentVolume (PV) is a physical storage resource provisioned by the cluster administrator on a

Kubernetes cluster. The PersistentVolumeClaim (PVC) is a request for access to the PersistentVolume on the

cluster.

Create a PersistentVolume (PV) and a PersistentVolumeClaim (PVC) that uses the configured Kubernetes

StorageClass to request access to the PV. You can then mount the PV to a pod.

Provision a volume

What’s next?

You can now add additional backends, manage storage classes, manage backends, and perform volume

operations.

23

https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy.html

Requirements

Before installing Trident you should review these general system requirements. Specific

backends might have additional requirements.

Critical information about Trident

You must read the following critical information about Trident.

Critical information about Trident

• Kubernetes 1.31 is now supported in Trident. Upgrade Trident prior to upgrading Kubernetes.

• Trident strictly enforces the use of multipathing configuration in SAN environments, with a

recommended value of find_multipaths: no in multipath.conf file.

Use of non-multipathing configuration or use of find_multipaths: yes or

find_multipaths: smart value in multipath.conf file will result in mount failures. Trident has

recommended the use of find_multipaths: no since the 21.07 release.

Supported frontends (orchestrators)

Trident supports multiple container engines and orchestrators, including the following:

• Anthos On-Prem (VMware) and Anthos on bare metal 1.16

• Kubernetes 1.25 - 1.31

• OpenShift 4.10 - 4.17

• Rancher Kubernetes Engine 2 (RKE2) v1.28.5+rke2r1

The Trident operator is supported with these releases:

• Anthos On-Prem (VMware) and Anthos on bare metal 1.16

• Kubernetes 1.25 - 1.31

• OpenShift 4.10 - 4.17

• Rancher Kubernetes Engine 2 (RKE2) v1.28.5+rke2r1

Trident also works with a host of other fully-managed and self-managed Kubernetes offerings, including

Google Kubernetes Engine (GKE), Amazon Elastic Kubernetes Services (EKS), Azure Kubernetes Service

(AKS), Mirantis Kubernetes Engine (MKE), and VMWare Tanzu Portfolio.

Trident and ONTAP can be used as a storage provider for KubeVirt.

Before upgrading a Kubernetes cluster from 1.24 to 1.25 or later that has Trident installed, refer

to Upgrade a Helm installation.

24

https://kubevirt.io/

Supported backends (storage)

To use Trident, you need one or more of the following supported backends:

• Amazon FSx for NetApp ONTAP

• Azure NetApp Files

• Cloud Volumes ONTAP

• Google Cloud NetApp Volumes

• FAS/AFF/Select 9.5 or later

• NetApp All SAN Array (ASA)

• NetApp HCI/Element software 11 or above

Feature requirements

The table below summarizes the features available with this release of Trident and the versions of Kubernetes

it supports.

Feature Kubernetes version Feature gates required?

Trident 1.25 - 1.31 No

Volume Snapshots 1.25 - 1.31 No

PVC from Volume Snapshots 1.25 - 1.31 No

iSCSI PV resize 1.25 - 1.31 No

ONTAP Bidirectional CHAP 1.25 - 1.31 No

Dynamic Export Policies 1.25 - 1.31 No

Trident Operator 1.25 - 1.31 No

CSI Topology 1.25 - 1.31 No

Tested host operating systems

Though Trident does not officially support specific operating systems, the following are known to work:

• RedHat CoreOS (RHCOS) versions as supported by OpenShift Container Platform (AMD64 and ARM64)

• RHEL 8+ (AMD64 and ARM64)

NVMe/TCP requires RHEL 9 or later.

• Ubuntu 22.04 or later (AMD64 and ARM64)

• Windows Server 2022

25

By default, Trident runs in a container and will, therefore, run on any Linux worker. However, those workers

need to be able to mount the volumes that Trident provides using the standard NFS client or iSCSI initiator,

depending on the backends you are using.

The tridentctl utility also runs on any of these distributions of Linux.

Host configuration

All worker nodes in the Kubernetes cluster must be able to mount the volumes you have provisioned for your

pods. To prepare the worker nodes, you must install NFS, iSCSI, or NVMe tools based on your driver selection.

Prepare the worker node

Storage system configuration

Trident might require changes to a storage system before a backend configuration can use it.

Configure backends

Trident ports

Trident requires access to specific ports for communication.

Trident ports

Container images and corresponding Kubernetes versions

For air-gapped installations, the following list is a reference of container images needed to install Trident. Use

the tridentctl images command to verify the list of needed container images.

Kubernetes versions Container image

v1.25.0, v1.26.0, v1.27.0, v1.28.0, v1.29.0, v1.30.0,

v1.31.0

• docker.io/netapp/trident:24.10.0

• docker.io/netapp/trident-autosupport:24.10

• registry.k8s.io/sig-storage/csi-provisioner:v5.1.0

• registry.k8s.io/sig-storage/csi-attacher:v4.7.0

• registry.k8s.io/sig-storage/csi-resizer:v1.12.0

• registry.k8s.io/sig-storage/csi-snapshotter:v8.1.0

• registry.k8s.io/sig-storage/csi-node-driver-

registrar:v2.12.0

• docker.io/netapp/trident-operator:24.10.0

(optional)

26

Install Trident

Learn about Trident installation

To ensure Trident can be installed in a wide variety of environments and organizations,

NetApp offers multiple installation options. You can install Trident using the Trident

operator (manually or using Helm) or with tridentctl. This topic provides important

information for selecting the right installation process for you.

Critical information about Trident 24.06

You must read the following critical information about Trident.

Critical information about Trident

• Kubernetes 1.31 is now supported in Trident. Upgrade Trident prior to upgrading Kubernetes.

• Trident strictly enforces the use of multipathing configuration in SAN environments, with a

recommended value of find_multipaths: no in multipath.conf file.

Use of non-multipathing configuration or use of find_multipaths: yes or

find_multipaths: smart value in multipath.conf file will result in mount failures. Trident has

recommended the use of find_multipaths: no since the 21.07 release.

Before you begin

Regardless of your installation path, you must have:

• Full privileges to a supported Kubernetes cluster running a supported version of Kubernetes and feature

requirements enabled. Review the requirements for details.

• Access to a supported NetApp storage system.

• Capability to mount volumes from all of the Kubernetes worker nodes.

• A Linux host with kubectl (or oc, if you are using OpenShift) installed and configured to manage the

Kubernetes cluster that you want to use.

• The KUBECONFIG environment variable set to point to your Kubernetes cluster configuration.

• If you are using Kubernetes with Docker Enterprise, follow their steps to enable CLI access.

If you have not familiarized yourself with the basic concepts, now is a great time to do that.

Choose your installation method

Select the installation method that’s right for you. You should also review the considerations for moving

between methods before making your decision.

27

https://docs.netapp.com/us-en/trident/trident-install/requirements.html
https://docs.docker.com/ee/ucp/user-access/cli/
https://docs.netapp.com/us-en/trident/trident-concepts/intro.html

Using the Trident operator

Whether deploying manually or using Helm, the Trident operator is a great way to simplify installation and

dynamically manage Trident resources. You can even customize your Trident operator deployment using the

attributes in the TridentOrchestrator custom resource (CR).

The benefits of using the Trident operator include:

Trident object creation

The Trident operator automatically creates the following objects for your Kubernetes version.

• ServiceAccount for the operator

• ClusterRole and ClusterRoleBinding to the ServiceAccount

• Dedicated PodSecurityPolicy (for Kubernetes 1.25 and earlier)

• The operator itself

Resource accountability

The cluster-scoped Trident operator manages resources associated with a Trident installation at the

cluster level. This mitigates errors that might be caused when maintaining cluster-scoped resources using

a namespace-scoped operator. This is essential for self-healing and patching.

Self-healing capability

The operator monitors Trident installation and actively takes measures to address issues, such as when

the deployment is deleted or if it is accidentally modified. A trident-operator-<generated-id> pod

is created that associates a TridentOrchestrator CR with a Trident installation. This ensures there is

only one instance of Trident in the cluster and controls its setup, making sure the installation is

idempotent. When changes are made to the installation (such as, deleting the deployment or node

daemonset), the operator identifies them and fixes them individually.

Easy updates to existing installations

You can easily update an existing deployment with the operator. You only need to edit the

TridentOrchestrator CR to make updates to an installation.

For example, consider a scenario where you need to enable Trident to generate debug logs. To do this,

patch your TridentOrchestrator to set spec.debug to true:

kubectl patch torc <trident-orchestrator-name> -n trident --type=merge

-p '{"spec":{"debug":true}}'

After TridentOrchestrator is updated, the operator processes the updates and patches the existing

installation. This might trigger the creation of new pods to modify the installation accordingly.

28

https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-customize-deploy.html

Clean reinstallation

The cluster-scoped Trident operator enables clean removal of cluster-scoped resources. Users can

completely uninstall Trident and easily reinstall.

Automatic Kubernetes upgrade handling

When the Kubernetes version of the cluster is upgraded to a supported version, the operator updates an

existing Trident installation automatically and changes it to ensure that it meets the requirements of the

Kubernetes version.

If the cluster is upgraded to an unsupported version, the operator prevents installing

Trident. If Trident has already been installed with the operator, a warning is displayed to

indicate that Trident is installed on an unsupported Kubernetes version.

Using tridentctl

If you have an existing deployment that must be upgraded or if you are looking to highly customize your

deployment, you should consider installing using tridentctl. This is the conventional method of deploying

Trident.

You can customize your tridentctl installation to generate the manifests for Trident resources. This

includes the deployment, daemonset, service account, and the cluster role that Trident creates as part of its

installation.

Beginning with the 22.04 release, AES keys will no longer be regenerated every time Trident is

installed. With this release, Trident will install a new secret object that persists across

installations. This means, tridentctl in 22.04 can uninstall previous versions of Trident, but

earlier versions cannot uninstall 22.04 installations.

Select the appropriate installation method.

Choose your installation mode

Determine your deployment process based on the installation mode (Standard, Offline, or Remote) required by

your organization.

29

Standard installation

This is the easiest way to install Trident and works for most environments that do not impose network

restrictions. Standard installation mode uses default registries to store required Trident (docker.io) and

CSI (registry.k8s.io) images.

When you use standard mode, the Trident installer:

• Fetches the container images over the Internet

• Creates a deployment or node daemonset, which spins up Trident pods on all the eligible nodes in the

Kubernetes cluster

Offline installation

Offline installation mode might be required in an air-gapped or secure location. In this scenario, you can

create a single private, mirrored registry or two mirrored registries to store required Trident and CSI

images.

Regardless of your registry configuration, CSI images must reside in one registry.

Remote installation

Here is a high-level overview of the remote installation process:

• Deploy the appropriate version of kubectl on the remote machine from where you want to deploy

Trident.

• Copy the configuration files from the Kubernetes cluster and set the KUBECONFIG environment

variable on the remote machine.

• Initiate a kubectl get nodes command to verify that you can connect to the required Kubernetes

cluster.

• Complete the deployment from the remote machine by using the standard installation steps.

Select the process based on your method and mode

After you’ve made your decisions, select the appropriate process.

Method Installation mode

Trident operator (manually) Standard installation

Offline installation

Trident operator (Helm) Standard installation

Offline installation

tridentctl Standard or offline installation

30

kubernetes-deploy-operator.html
kubernetes-deploy-helm.html
kubernetes-deploy-tridentctl.html

Moving between installation methods

You can decide to change your installation method. Before doing so, consider the following:

• Always use the same method for installing and uninstalling Trident. If you have deployed with

tridentctl, you should use the appropriate version of the tridentctl binary to uninstall Trident.

Similarly, if you are deploying with the operator, you should edit the TridentOrchestrator CR and set

spec.uninstall=true to uninstall Trident.

• If you have an operator-based deployment that you want to remove and use instead tridentctl to

deploy Trident, you should first edit TridentOrchestrator and set spec.uninstall=true to

uninstall Trident. Then delete TridentOrchestrator and the operator deployment. You can then install

using tridentctl.

• If you have a manual operator-based deployment, and you want to use Helm-based Trident operator

deployment, you should manually uninstall the operator first, and then perform the Helm install. This

enables Helm to deploy the Trident operator with the required labels and annotations. If you do not do this,

your Helm-based Trident operator deployment will fail with label validation error and annotation validation

error. If you have a tridentctl-based deployment, you can use Helm-based deployment without running

into issues.

Other known configuration options

When installing Trident on VMWare Tanzu Portfolio products:

• The cluster must support privileged workloads.

• The --kubelet-dir flag should be set to the location of kubelet directory. By default, this is

/var/vcap/data/kubelet.

Specifying the kubelet location using --kubelet-dir is known to work for Trident Operator, Helm, and

tridentctl deployments.

Install using Trident operator

Manually deploy the Trident operator (Standard mode)

You can manually deploy the Trident operator to install Trident. This process applies to

installations where the container images required by Trident are not stored in a private

registry. If you do have a private image registry, use the process for offline deployment.

Critical information about Trident 24.10

You must read the following critical information about Trident.

31

Critical information about Trident

• Kubernetes 1.31 is now supported in Trident. Upgrade Trident prior to upgrading Kubernetes.

• Trident strictly enforces the use of multipathing configuration in SAN environments, with a

recommended value of find_multipaths: no in multipath.conf file.

Use of non-multipathing configuration or use of find_multipaths: yes or

find_multipaths: smart value in multipath.conf file will result in mount failures. Trident has

recommended the use of find_multipaths: no since the 21.07 release.

Manually deploy the Trident operator and install Trident

Review the installation overview to ensure you’ve met installation prerequisites and selected the correct

installation option for your environment.

Before you begin

Before you begin installation, log in to the Linux host and verify it is managing a working, supported

Kubernetes cluster and that you have the necessary privileges.

With OpenShift, use oc instead of kubectl in all of the examples that follow, and log in as

system:admin first by running oc login -u system:admin or oc login -u kube-

admin.

1. Verify your Kubernetes version:

kubectl version

2. Verify cluster administrator privileges:

kubectl auth can-i '*' '*' --all-namespaces

3. Verify you can launch a pod that uses an image from Docker Hub and reach your storage system over

the pod network:

kubectl run -i --tty ping --image=busybox --restart=Never --rm -- \

 ping <management IP>

Step 1: Download the Trident installer package

The Trident installer package contains everything you need to deploy the Trident operator and install Trident.

Download and extract the latest version of the Trident installer from the Assets section on GitHub.

32

https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy.html
https://docs.netapp.com/us-en/trident/trident-install/requirements.html
https://docs.netapp.com/us-en/trident/trident-install/requirements.html
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest

wget https://github.com/NetApp/trident/releases/download/v24.10.0/trident-

installer-24.10.0.tar.gz

tar -xf trident-installer-24.10.0.tar.gz

cd trident-installer

Step 2: Create the TridentOrchestrator CRD

Create the TridentOrchestrator Custom Resource Definition (CRD). You creates a

TridentOrchestrator Custom Resources later. Use the appropriate CRD YAML version in deploy/crds

to create the TridentOrchestrator CRD.

kubectl create -f

deploy/crds/trident.netapp.io_tridentorchestrators_crd_post1.16.yaml

Step 3: Deploy the Trident operator

The Trident installer provides a bundle file that can be used to install the operator and create associated

objects. The bundle file is an easy way to deploy the operator and install Trident using a default configuration.

• For clusters running Kubernetes 1.24, use bundle_pre_1_25.yaml.

• For clusters running Kubernetes 1.25 or later, use bundle_post_1_25.yaml.

Before you begin

• By default, the Trident installer deploys the operator in the trident namespace. If the trident

namespace does not exist, create it using:

kubectl apply -f deploy/namespace.yaml

• To deploy the operator in a namespace other than the trident namespace, update

serviceaccount.yaml, clusterrolebinding.yaml and operator.yaml and generate your

bundle file using the kustomization.yaml.

1. Create the kustomization.yaml using the following command where <bundle.yaml> is

bundle_pre_1_25.yaml or bundle_post_1_25.yaml based on your Kubernetes version.

cp deploy/kustomization_<bundle.yaml> deploy/kustomization.yaml

2. Compile the bundle using using the following command where <bundle.yaml> is

bundle_pre_1_25.yaml or bundle_post_1_25.yaml based on your Kubernetes version.

kubectl kustomize deploy/ > deploy/<bundle.yaml>

Steps

33

1. Create the resources and deploy the operator:

kubectl create -f deploy/<bundle.yaml>

2. Verify the operator, deployment, and replicasets were created.

kubectl get all -n <operator-namespace>

There should only be one instance of the operator in a Kubernetes cluster. Do not create

multiple deployments of the Trident operator.

Step 4: Create the TridentOrchestrator and install Trident

You can now create the TridentOrchestrator and install Trident. Optionally, you can customize your

Trident installation using the attributes in the TridentOrchestrator spec.

34

kubectl create -f deploy/crds/tridentorchestrator_cr.yaml

tridentorchestrator.trident.netapp.io/trident created

kubectl describe torc trident

Name: trident

Namespace:

Labels: <none>

Annotations: <none>

API Version: trident.netapp.io/v1

Kind: TridentOrchestrator

...

Spec:

 Debug: true

 Namespace: trident

 nodePrep:

 - iscsi

Status:

 Current Installation Params:

 IPv6: false

 Autosupport Hostname:

 Autosupport Image: netapp/trident-autosupport:24.10

 Autosupport Proxy:

 Autosupport Serial Number:

 Debug: true

 Image Pull Secrets:

 Image Registry:

 k8sTimeout: 30

 Kubelet Dir: /var/lib/kubelet

 Log Format: text

 Silence Autosupport: false

 Trident Image: netapp/trident:24.10.0

 Message: Trident installed Namespace:

trident

 Status: Installed

 Version: v24.10.0

Events:

 Type Reason Age From Message ---- ------ ---- ---- -------Normal

 Installing 74s trident-operator.netapp.io Installing Trident Normal

 Installed 67s trident-operator.netapp.io Trident installed

Verify the installation

There are several ways to verify your installation.

35

Using TridentOrchestrator status

The status of TridentOrchestrator indicates if the installation was successful and displays the version of

Trident installed. During the installation, the status of TridentOrchestrator changes from Installing to

Installed. If you observe the Failed status and the operator is unable to recover by itself, check the logs.

Status Description

Installing The operator is installing Trident using this

TridentOrchestrator CR.

Installed Trident has successfully installed.

Uninstalling The operator is uninstalling Trident, because

spec.uninstall=true.

Uninstalled Trident is uninstalled.

Failed The operator could not install, patch, update or

uninstall

Trident; the operator will automatically try to recover

from this state. If this state persists you will require

troubleshooting.

Updating The operator is updating an existing installation.

Error The TridentOrchestrator is not used. Another

one already

exists.

Using pod creation status

You can confirm if the Trident installation completed by reviewing the status of the created pods:

kubectl get pods -n trident

NAME READY STATUS RESTARTS

AGE

trident-controller-7d466bf5c7-v4cpw 6/6 Running 0

1m

trident-node-linux-mr6zc 2/2 Running 0

1m

trident-node-linux-xrp7w 2/2 Running 0

1m

trident-node-linux-zh2jt 2/2 Running 0

1m

trident-operator-766f7b8658-ldzsv 1/1 Running 0

3m

Using tridentctl

You can use tridentctl to check the version of Trident installed.

36

./tridentctl -n trident version

+----------------+----------------+

| SERVER VERSION | CLIENT VERSION |

+----------------+----------------+

| 24.10.0 | 24.10.0 |

+----------------+----------------+

Manually deploy the Trident operator (Offline mode)

You can manually deploy the Trident operator to install Trident. This process applies to

installations where the container images required by Trident are stored in a private

registry. If you do not have a private image registry, use the process for standard

deployment.

Critical information about Trident 24.10

You must read the following critical information about Trident.

Critical information about Trident

• Kubernetes 1.31 is now supported in Trident. Upgrade Trident prior to upgrading Kubernetes.

• Trident strictly enforces the use of multipathing configuration in SAN environments, with a

recommended value of find_multipaths: no in multipath.conf file.

Use of non-multipathing configuration or use of find_multipaths: yes or

find_multipaths: smart value in multipath.conf file will result in mount failures. Trident has

recommended the use of find_multipaths: no since the 21.07 release.

Manually deploy the Trident operator and install Trident

Review the installation overview to ensure you’ve met installation prerequisites and selected the correct

installation option for your environment.

Before you begin

Log in to the Linux host and verify it is managing a working and supported Kubernetes cluster and that you

have the necessary privileges.

With OpenShift, use oc instead of kubectl in all of the examples that follow, and log in as

system:admin first by running oc login -u system:admin or oc login -u kube-

admin.

37

https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy.html
https://docs.netapp.com/us-en/trident/trident-install/requirements.html

1. Verify your Kubernetes version:

kubectl version

2. Verify cluster administrator privileges:

kubectl auth can-i '*' '*' --all-namespaces

3. Verify you can launch a pod that uses an image from Docker Hub and reach your storage system over

the pod network:

kubectl run -i --tty ping --image=busybox --restart=Never --rm -- \

 ping <management IP>

Step 1: Download the Trident installer package

The Trident installer package contains everything you need to deploy the Trident operator and install Trident.

Download and extract the latest version of the Trident installer from the Assets section on GitHub.

wget https://github.com/NetApp/trident/releases/download/v24.10.0/trident-

installer-24.10.0.tar.gz

tar -xf trident-installer-24.10.0.tar.gz

cd trident-installer

Step 2: Create the TridentOrchestrator CRD

Create the TridentOrchestrator Custom Resource Definition (CRD). You creates a

TridentOrchestrator Custom Resources later. Use the appropriate CRD YAML version in deploy/crds

to create the TridentOrchestrator CRD:

kubectl create -f deploy/crds/<VERSION>.yaml

Step 3: Update the registry location in the operator

In /deploy/operator.yaml, update image: docker.io/netapp/trident-operator:24.10.0 to

reflect the location of your image registry. Your Trident and CSI images can be located in one registry or

different registries, but all CSI images must be located in the same registry. For example:

• image: <your-registry>/trident-operator:24.10.0 if your images are all located in one

registry.

• image: <your-registry>/netapp/trident-operator:24.10.0 if your Trident image is located in

a different registry from your CSI images.

38

https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest

Step 4: Deploy the Trident operator

The Trident installer provides a bundle file that can be used to install the operator and create associated

objects. The bundle file is an easy way to deploy the operator and install Trident using a default configuration.

• For clusters running Kubernetes 1.24, use bundle_pre_1_25.yaml.

• For clusters running Kubernetes 1.25 or later, use bundle_post_1_25.yaml.

Before you begin

• By default, the Trident installer deploys the operator in the trident namespace. If the trident

namespace does not exist, create it using:

kubectl apply -f deploy/namespace.yaml

• To deploy the operator in a namespace other than the trident namespace, update

serviceaccount.yaml, clusterrolebinding.yaml and operator.yaml and generate your

bundle file using the kustomization.yaml.

1. Create the kustomization.yaml using the following command where <bundle.yaml> is

bundle_pre_1_25.yaml or bundle_post_1_25.yaml based on your Kubernetes version.

cp deploy/kustomization_<bundle.yaml> deploy/kustomization.yaml

2. Compile the bundle using using the following command where <bundle.yaml> is

bundle_pre_1_25.yaml or bundle_post_1_25.yaml based on your Kubernetes version.

kubectl kustomize deploy/ > deploy/<bundle.yaml>

Steps

1. Create the resources and deploy the operator:

kubectl create -f deploy/<bundle.yaml>

2. Verify the operator, deployment, and replicasets were created.

kubectl get all -n <operator-namespace>

There should only be one instance of the operator in a Kubernetes cluster. Do not create

multiple deployments of the Trident operator.

Step 5: Update the image registry location in the TridentOrchestrator

Your Trident and CSI images can be located in one registry or different registries, but all CSI images must be

39

located in the same registry. Update deploy/crds/tridentorchestrator_cr.yaml to add the additional

location specs based on your registry configuration.

Images in one registry

imageRegistry: "<your-registry>"

autosupportImage: "<your-registry>/trident-autosupport:24.10"

tridentImage: "<your-registry>/trident:24.10.0"

Images in different registries

imageRegistry: "<your-registry>"

autosupportImage: "<your-registry>/trident-autosupport:24.10"

tridentImage: "<your-registry>/trident:24.10.0"

Step 6: Create the TridentOrchestrator and install Trident

You can now create the TridentOrchestrator and install Trident. Optionally, you can further customize

your Trident installation using the attributes in the TridentOrchestrator spec. The following example

shows an installation where Trident and CSI images are located in different registries.

40

kubectl create -f deploy/crds/tridentorchestrator_cr.yaml

tridentorchestrator.trident.netapp.io/trident created

kubectl describe torc trident

Name: trident

Namespace:

Labels: <none>

Annotations: <none>

API Version: trident.netapp.io/v1

Kind: TridentOrchestrator

...

Spec:

 Autosupport Image: <your-registry>/trident-autosupport:24.10

 Debug: true

 Image Registry: <your-registry>

 Namespace: trident

 Trident Image: <your-registry>/trident:24.10.0

Status:

 Current Installation Params:

 IPv6: false

 Autosupport Hostname:

 Autosupport Image: <your-registry>/trident-autosupport:24.10

 Autosupport Proxy:

 Autosupport Serial Number:

 Debug: true

 Http Request Timeout: 90s

 Image Pull Secrets:

 Image Registry: <your-registry>

 k8sTimeout: 30

 Kubelet Dir: /var/lib/kubelet

 Log Format: text

 Probe Port: 17546

 Silence Autosupport: false

 Trident Image: <your-registry>/trident:24.10.0

 Message: Trident installed

 Namespace: trident

 Status: Installed

 Version: v24.10.0

Events:

 Type Reason Age From Message ---- ------ ---- ---- -------Normal

 Installing 74s trident-operator.netapp.io Installing Trident Normal

 Installed 67s trident-operator.netapp.io Trident installed

41

Verify the installation

There are several ways to verify your installation.

Using TridentOrchestrator status

The status of TridentOrchestrator indicates if the installation was successful and displays the version of

Trident installed. During the installation, the status of TridentOrchestrator changes from Installing to

Installed. If you observe the Failed status and the operator is unable to recover by itself, check the logs.

Status Description

Installing The operator is installing Trident using this

TridentOrchestrator CR.

Installed Trident has successfully installed.

Uninstalling The operator is uninstalling Trident, because

spec.uninstall=true.

Uninstalled Trident is uninstalled.

Failed The operator could not install, patch, update or

uninstall

Trident; the operator will automatically try to recover

from this state. If this state persists you will require

troubleshooting.

Updating The operator is updating an existing installation.

Error The TridentOrchestrator is not used. Another

one already

exists.

Using pod creation status

You can confirm if the Trident installation completed by reviewing the status of the created pods:

kubectl get pods -n trident

NAME READY STATUS RESTARTS

AGE

trident-controller-7d466bf5c7-v4cpw 6/6 Running 0

1m

trident-node-linux-mr6zc 2/2 Running 0

1m

trident-node-linux-xrp7w 2/2 Running 0

1m

trident-node-linux-zh2jt 2/2 Running 0

1m

trident-operator-766f7b8658-ldzsv 1/1 Running 0

3m

42

Using tridentctl

You can use tridentctl to check the version of Trident installed.

./tridentctl -n trident version

+----------------+----------------+

| SERVER VERSION | CLIENT VERSION |

+----------------+----------------+

| 24.10.0 | 24.10.0 |

+----------------+----------------+

Deploy Trident operator using Helm (Standard mode)

You can deploy the Trident operator and install Trident using Helm. This process applies

to installations where the container images required by Trident are not stored in a private

registry. If you do have a private image registry, use the process for offline deployment.

Critical information about Trident 24.10

You must read the following critical information about Trident.

Critical information about Trident

• Kubernetes 1.31 is now supported in Trident. Upgrade Trident prior to upgrading Kubernetes.

• Trident strictly enforces the use of multipathing configuration in SAN environments, with a

recommended value of find_multipaths: no in multipath.conf file.

Use of non-multipathing configuration or use of find_multipaths: yes or

find_multipaths: smart value in multipath.conf file will result in mount failures. Trident has

recommended the use of find_multipaths: no since the 21.07 release.

Deploy the Trident operator and install Trident using Helm

Using the Trident Helm Chart you can deploy the Trident operator and install Trident in one step.

Review the installation overview to ensure you’ve met installation prerequisites and selected the correct

installation option for your environment.

Before you begin

In addition to the deployment prerequisites you need Helm version 3.

Steps

1. Add the Trident Helm repository:

43

https://artifacthub.io/packages/helm/netapp-trident/trident-operator
https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy.html
https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy.html#before-you-deploy
https://v3.helm.sh/

helm repo add netapp-trident https://netapp.github.io/trident-helm-chart

2. Use helm install and specify a name for your deployment as in the following example where

100.2404.0 is the version of Trident you are installing.

helm install <name> netapp-trident/trident-operator --version 100.2410.0

--create-namespace --namespace <trident-namespace>

If you already created a namespace for Trident, the --create-namespace parameter will

not create an additional namespace.

You can use helm list to review installation details such as name, namespace, chart, status, app version,

and revision number.

Pass configuration data during install

There are two ways to pass configuration data during the install:

Option Description

--values (or -f) Specify a YAML file with overrides. This can be

specified multiple times and the rightmost file will take

precedence.

--set Specify overrides on the command line.

For example, to change the default value of debug, run the following command where 100.2410.0 is the

version of Trident you are installing:

helm install <name> netapp-trident/trident-operator --version 100.2410.0

--create-namespace --namespace trident --set tridentDebug=true

Configuration options

This table and the values.yaml file, which is part of the Helm chart, provide the list of keys and their default

values.

Option Description Default

nodeSelector Node labels for pod assignment

podAnnotatio

ns

Pod annotations

deploymentAn

notations

Deployment annotations

44

Option Description Default

tolerations Tolerations for pod assignment

affinity Affinity for pod assignment
affinity:

 nodeAffinity:

requiredDuringSchedulingIgnoredDur

ingExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key:

kubernetes.io/arch

 operator: In

 values:

 - arm64

 - amd64

 - key:

kubernetes.io/os

 operator: In

 values:

 - linux

Do not remove the default affinity from

the values.yaml file. When you want to

provide a custom affinity, extend the

default affinity.

tridentContr

ollerPluginN

odeSelector

Additional node selectors for pods.

Refer to Understanding controller

pods and node pods for details.

tridentContr

ollerPluginT

olerations

Overrides Kubernetes tolerations

for pods. Refer to Understanding

controller pods and node pods for

details.

tridentNodeP

luginNodeSel

ector

Additional node selectors for pods.

Refer to Understanding controller

pods and node pods for details.

tridentNodeP

luginTolerat

ions

Overrides Kubernetes tolerations

for pods. Refer to Understanding

controller pods and node pods for

details.

45

Option Description Default

imageRegistr

y

Identifies the registry for the

trident-operator, trident,

and other images. Leave empty to

accept the default.

IMPORTANT: When installing

Trident in a private repository, if you

are using the imageRegistry

switch to specify the repository

location, do not use /netapp/ in

the repository path.

""

imagePullPol

icy

Sets the image pull policy for the

trident-operator.
IfNotPresent

imagePullSec

rets

Sets the image pull secrets for the

trident-operator, trident,

and other images.

kubeletDir Allows overriding the host location

of kubelet’s internal state.
"/var/lib/kubelet"

operatorLogL

evel

Allows the log level of the Trident

operator to be set to: trace,

debug, info, warn, error, or

fatal.

"info"

operatorDebu

g

Allows the log level of the Trident

operator to be set to debug.
true

operatorImag

e

Allows the complete override of the

image for trident-operator.
""

operatorImag

eTag

Allows overriding the tag of the

trident-operator image.
""

tridentIPv6 Allows enabling Trident to work in

IPv6 clusters.
false

tridentK8sTi

meout

Overrides the default 30-second

timeout for most Kubernetes API

operations (if non-zero, in

seconds).

0

tridentHttpR

equestTimeou

t

Overrides the default 90-second

timeout for the HTTP requests, with

0s being an infinite duration for the

timeout. Negative values are not

allowed.

"90s"

tridentSilen

ceAutosuppor

t

Allows disabling Trident periodic

AutoSupport reporting.
false

46

Option Description Default

tridentAutos

upportImageT

ag

Allows overriding the tag of the

image for Trident AutoSupport

container.

<version>

tridentAutos

upportProxy

Enables Trident AutoSupport

container to phone home via an

HTTP proxy.

""

tridentLogFo

rmat

Sets the Trident logging format

(text or json).
"text"

tridentDisab

leAuditLog

Disables Trident audit logger. true

tridentLogLe

vel

Allows the log level of Trident to be

set to: trace, debug, info, warn,

error, or fatal.

"info"

tridentDebug Allows the log level of Trident to be

set to debug.
false

tridentLogWo

rkflows

Allows specific Trident workflows to

be enabled for trace logging or log

suppression.

""

tridentLogLa

yers

Allows specific Trident layers to be

enabled for trace logging or log

suppression.

""

tridentImage Allows the complete override of the

image for Trident.
""

tridentImage

Tag

Allows overriding the tag of the

image for Trident.
""

tridentProbe

Port

Allows overriding the default port

used for Kubernetes

liveness/readiness probes.

""

windows Enables Trident to be installed on

Windows worker node.
false

enableForceD

etach

Allows enabling the force detach

feature.
false

excludePodSe

curityPolicy

Excludes the operator pod security

policy from creation.
false

cloudProvide

r

Set to "Azure" when using

managed identities or a cloud

identity on an AKS cluster. Set to

"AWS" when using a cloud identity

on an EKS cluster.

""

47

Option Description Default

cloudIdentit

y

Set to workload identity

("azure.workload.identity/client-id:

xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxx") when using cloud

identity on an AKS cluster. Set to

AWS IAM role

("'eks.amazonaws.com/role-arn:

arn:aws:iam::123456:role/trident-

role'") when using cloud identity on

an EKS cluster.

""

iscsiSelfHea

lingInterval

The interval at which the iSCSI self-

healing is invoked.
5m0s

iscsiSelfHea

lingWaitTime

The duration after which iSCSI self-

healing initiates an attempt to

resolve a stale session by

performing a logout and

subsequent login.

7m0s

nodePrep Enables Trident to prepare the

nodes of the Kubernetes cluster to

manage volumes using the

specified data storage protocol.

Currently, iscsi is the only

value supported.

Understanding controller pods and node pods

Trident runs as a single controller pod, plus a node pod on each worker node in the cluster. The node pod must

be running on any host where you want to potentially mount a Trident volume.

Kubernetes node selectors and tolerations and taints are used to constrain a pod to run on a specific or

preferred node. Using the`ControllerPlugin` and NodePlugin, you can specify constraints and overrides.

• The controller plugin handles volume provisioning and management, such as snapshots and resizing.

• The node plugin handles attaching the storage to the node.

Deploy Trident operator using Helm (Offline mode)

You can deploy the Trident operator and install Trident using Helm. This process applies

to installations where the container images required by Trident are stored in a private

registry. If you do not have a private image registry, use the process for standard

deployment.

Critical information about Trident 24.10

You must read the following critical information about Trident.

48

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Critical information about Trident

• Kubernetes 1.31 is now supported in Trident. Upgrade Trident prior to upgrading Kubernetes.

• Trident strictly enforces the use of multipathing configuration in SAN environments, with a

recommended value of find_multipaths: no in multipath.conf file.

Use of non-multipathing configuration or use of find_multipaths: yes or

find_multipaths: smart value in multipath.conf file will result in mount failures. Trident has

recommended the use of find_multipaths: no since the 21.07 release.

Deploy the Trident operator and install Trident using Helm

Using the Trident Helm Chart you can deploy the Trident operator and install Trident in one step.

Review the installation overview to ensure you’ve met installation prerequisites and selected the correct

installation option for your environment.

Before you begin

In addition to the deployment prerequisites you need Helm version 3.

When installing Trident in a private repository, if you are using the imageRegistry switch to

specify the repository location, do not use /netapp/ in the repository path.

Steps

1. Add the Trident Helm repository:

helm repo add netapp-trident https://netapp.github.io/trident-helm-chart

2. Use helm install and specify a name for your deployment and image registry location. Your Trident

and CSI images can be located in one registry or different registries, but all CSI images must be located in

the same registry. In the examples, 100.2410.0 is the version of Trident you are installing.

49

https://artifacthub.io/packages/helm/netapp-trident/trident-operator
https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy.html
https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy.html#before-you-deploy
https://v3.helm.sh/

Images in one registry

helm install <name> netapp-trident/trident-operator --version

100.2410.0 --set imageRegistry=<your-registry> --create-namespace

--namespace <trident-namespace> --set nodePrep={iscsi}

Images in different registries

helm install <name> netapp-trident/trident-operator --version

100.2410.0 --set imageRegistry=<your-registry> --set

operatorImage=<your-registry>/trident-operator:24.10.0 --set

tridentAutosupportImage=<your-registry>/trident-autosupport:24.06

--set tridentImage=<your-registry>/trident:24.10.0 --create

-namespace --namespace <trident-namespace> --set nodePrep={iscsi}

If you already created a namespace for Trident, the --create-namespace parameter will

not create an additional namespace.

You can use helm list to review installation details such as name, namespace, chart, status, app version,

and revision number.

Pass configuration data during install

There are two ways to pass configuration data during the install:

Option Description

--values (or -f) Specify a YAML file with overrides. This can be

specified multiple times and the rightmost file will take

precedence.

--set Specify overrides on the command line.

For example, to change the default value of debug, run the following command where 100.2410.0 is the

version of Trident you are installing:

helm install <name> netapp-trident/trident-operator --version 100.2410.0

--create-namespace --namespace trident --set tridentDebug=true

To add the nodePrep value, run the following command:

helm install <name> netapp-trident/trident-operator --version 100.2406.0

--create-namespace --namespace trident --set nodePrep={iscsi}

50

Configuration options

This table and the values.yaml file, which is part of the Helm chart, provide the list of keys and their default

values.

Do not remove the default affinity from the values.yaml file. When you want to provide a custom

affinity, extend the default affinity.

Option Description Default

nodeSelector Node labels for pod assignment

podAnnotations Pod annotations

deploymentAnnotations Deployment annotations

tolerations Tolerations for pod assignment

51

Option Description Default

affinity Affinity for pod assignment
affinity:

 nodeAffinity:

requiredDuringSchedul

ingIgnoredDuringExecu

tion:

nodeSelectorTerms:

 -

matchExpressions:

 - key:

kubernetes.io/arch

operator: In

 values:

 - arm64

 - amd64

 - key:

kubernetes.io/os

operator: In

 values:

 - linux

Do not remove the

default affinity from

the values.yaml file.

When you want to

provide a custom

affinity, extend the

default affinity.

tridentControllerPluginNod

eSelector

Additional node selectors for pods.

Refer to Understanding controller

pods and node pods for details.

tridentControllerPluginTol

erations

Overrides Kubernetes tolerations

for pods. Refer to Understanding

controller pods and node pods for

details.

tridentNodePluginNodeSelec

tor

Additional node selectors for pods.

Refer to Understanding controller

pods and node pods for details.

52

Option Description Default

tridentNodePluginToleratio

ns

Overrides Kubernetes tolerations

for pods. Refer to Understanding

controller pods and node pods for

details.

imageRegistry Identifies the registry for the

trident-operator, trident,

and other images. Leave empty to

accept the default.

IMPORTANT: When installing

Trident in a private repository, if you

are using the imageRegistry

switch to specify the repository

location, do not use /netapp/ in

the repository path.

""

imagePullPolicy Sets the image pull policy for the

trident-operator.
IfNotPresent

imagePullSecrets Sets the image pull secrets for the

trident-operator, trident,

and other images.

kubeletDir Allows overriding the host location

of kubelet’s internal state.
"/var/lib/kubelet"

operatorLogLevel Allows the log level of the Trident

operator to be set to: trace,

debug, info, warn, error, or

fatal.

"info"

operatorDebug Allows the log level of the Trident

operator to be set to debug.
true

operatorImage Allows the complete override of the

image for trident-operator.

""

operatorImageTag Allows overriding the tag of the

trident-operator image.

""

tridentIPv6 Allows enabling Trident to work in

IPv6 clusters.
false

tridentK8sTimeout Overrides the default 30-second

timeout for most Kubernetes API

operations (if non-zero, in

seconds).

0

tridentHttpRequestTimeout Overrides the default 90-second

timeout for the HTTP requests, with

0s being an infinite duration for the

timeout. Negative values are not

allowed.

"90s"

tridentSilenceAutosupport Allows disabling Trident periodic

AutoSupport reporting.
false

53

Option Description Default

tridentAutosupportImageTag Allows overriding the tag of the

image for Trident AutoSupport

container.

<version>

tridentAutosupportProxy Enables Trident AutoSupport

container to phone home via an

HTTP proxy.

""

tridentLogFormat Sets the Trident logging format

(text or json).
"text"

tridentDisableAuditLog Disables Trident audit logger. true

tridentLogLevel Allows the log level of Trident to be

set to: trace, debug, info, warn,

error, or fatal.

"info"

tridentDebug Allows the log level of Trident to be

set to debug.
false

tridentLogWorkflows Allows specific Trident workflows to

be enabled for trace logging or log

suppression.

""

tridentLogLayers Allows specific Trident layers to be

enabled for trace logging or log

suppression.

""

tridentImage Allows the complete override of the

image for Trident.

""

tridentImageTag Allows overriding the tag of the

image for Trident.

""

tridentProbePort Allows overriding the default port

used for Kubernetes

liveness/readiness probes.

""

windows Enables Trident to be installed on

Windows worker node.
false

enableForceDetach Allows enabling the force detach

feature.
false

excludePodSecurityPolicy Excludes the operator pod security

policy from creation.
false

nodePrep Enables Trident to prepare the

nodes of the Kubernetes cluster to

manage volumes using the

specified data storage protocol.

Currently, iscsi is the only

value supported.

Customize Trident operator installation

The Trident operator allows you to customize Trident installation using the attributes in

54

the TridentOrchestrator spec. If you want to customize the installation beyond what

TridentOrchestrator arguments allow, consider using tridentctl to generate

custom YAML manifests to modify as needed.

Understanding controller pods and node pods

Trident runs as a single controller pod, plus a node pod on each worker node in the cluster. The node pod must

be running on any host where you want to potentially mount a Trident volume.

Kubernetes node selectors and tolerations and taints are used to constrain a pod to run on a specific or

preferred node. Using the`ControllerPlugin` and NodePlugin, you can specify constraints and overrides.

• The controller plugin handles volume provisioning and management, such as snapshots and resizing.

• The node plugin handles attaching the storage to the node.

Configuration options

spec.namespace is specified in TridentOrchestrator to signify the namespace where

Trident is installed. This parameter cannot be updated after Trident is installed. Attempting to

do so causes the TridentOrchestrator status to change to Failed. Trident is not intended

to be migrated across namespaces.

This table details TridentOrchestrator attributes.

Parameter Description Default

namespace Namespace to install Trident in "default"

debug Enable debugging for Trident false

enableForceDetach ontap-san, ontap-san-economy, and ontap-

nas-economy only.

Works with Kubernetes Non-Graceful Node Shutdown

(NGNS) to grant cluster administrators ability to safely

migrate workloads with mounted volumes to new

nodes should a node become unhealthy.

false

windows Setting to true enables installation on Windows

worker nodes.

false

cloudProvider Set to "Azure" when using managed identities or a

cloud identity on an AKS cluster. Set to "AWS" when

using a cloud identity on an EKS cluster.

""

cloudIdentity Set to workload identity

("azure.workload.identity/client-id: xxxxxxxx-xxxx-

xxxx-xxxx-xxxxxxxxxxx") when using cloud identity on

an AKS cluster. Set to AWS IAM role

("'eks.amazonaws.com/role-arn:

arn:aws:iam::123456:role/trident-role") when using

cloud identity on an EKS cluster.

""

IPv6 Install Trident over IPv6 false

55

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Parameter Description Default

k8sTimeout Timeout for Kubernetes operations 30sec

silenceAutosupport Don’t send autosupport bundles to NetApp

automatically

false

autosupportImage The container image for Autosupport Telemetry "netapp/trident-

autosupport:24.10"

autosupportProxy The address/port of a proxy for sending Autosupport

Telemetry

"http://proxy.examp

le.com:8888"

uninstall A flag used to uninstall Trident false

logFormat Trident logging format to be used [text,json] "text"

tridentImage Trident image to install "netapp/trident:24.

10"

imageRegistry Path to internal registry, of the format

<registry FQDN>[:port][/subpath]

"k8s.gcr.io"

(Kubernetes 1.19+)

or "quay.io/k8scsi"

kubeletDir Path to the kubelet directory on the host "/var/lib/kubelet"

wipeout A list of resources to delete to perform a complete

removal of

Trident

imagePullSecrets Secrets to pull images from an internal registry

imagePullPolicy Sets the image pull policy for the the Trident operator.

Valid values are:

Always to always pull the image.

IfNotPresent to pull the image only if it does not

already exist on the node.

Never to never pull the image.

IfNotPresent

controllerPluginNod

eSelector

Additional node selectors for pods. Follows same

format as pod.spec.nodeSelector.

No default; optional

controllerPluginTol

erations

Overrides Kubernetes tolerations for pods. Follows

the same format as pod.spec.Tolerations.

No default; optional

nodePluginNodeSelec

tor

Additional node selectors for pods. Follows same

format as pod.spec.nodeSelector.

No default; optional

nodePluginToleratio

ns

Overrides Kubernetes tolerations for pods. Follows

the same format as pod.spec.Tolerations.

No default; optional

nodePrep Enables Trident to prepare the nodes of the

Kubernetes cluster to manage volumes using the

specified data storage protocol.

Currently, iscsi is the only value supported.

56

For more information on formatting pod parameters, refer to Assigning Pods to Nodes.

Details about force detach

Force detach is available for ontap-san, ontap-san-economy and onatp-nas-economy only. Before

enabling force detach, non-graceful node shutdown (NGNS) must be enabled on the Kubernetes cluster. For

more information, refer to Kubernetes: Non Graceful node shutdown.

When using the ontap-nas-economy driver, you need to set the autoExportPolicy

parameter in the backend configuration to true so that Trident can restrict access from the

Kubernetes node with the taint applied using managed export policies.

Because Trident relies on Kubernetes NGNS, do not remove out-of-service taints from an

unhealthy node until all non-tolerable workloads are rescheduled. Recklessly applying or

removing the taint can jeopardize backend data protection.

When the Kubernetes cluster administrator has applied the node.kubernetes.io/out-of-

service=nodeshutdown:NoExecute taint to the node and enableForceDetach is set to true, Trident

will determine the node status and:

1. Cease backend I/O access for volumes mounted to that node.

2. Mark the Trident node object as dirty (not safe for new publications).

The Trident controller will reject new publish volume requests until the node is re-qualified

(after having been marked as dirty) by the Trident node pod. Any workloads scheduled

with a mounted PVC (even after the cluster node is healthy and ready) will be not be

accepted until Trident can verify the node clean (safe for new publications).

When node health is restored and the taint is removed, Trident will:

1. Identify and clean stale published paths on the node.

2. If the node is in a cleanable state (the out-of-service taint has been removed and the node is in Ready

state) and all stale, published paths are clean, Trident will readmit the node as clean and allow new

published volumes to the node.

Sample configurations

You can use the attributes in Configuration options when defining TridentOrchestrator to customize your

installation.

57

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/architecture/nodes/#non-graceful-node-shutdown

Basic custom configuration

This is an example for a basic custom installation.

cat deploy/crds/tridentorchestrator_cr_imagepullsecrets.yaml

apiVersion: trident.netapp.io/v1

kind: TridentOrchestrator

metadata:

 name: trident

spec:

 debug: true

 namespace: trident

 imagePullSecrets:

 - thisisasecret

Node selectors

This example installs Trident with node selectors.

apiVersion: trident.netapp.io/v1

kind: TridentOrchestrator

metadata:

 name: trident

spec:

 debug: true

 namespace: trident

 controllerPluginNodeSelector:

 nodetype: master

 nodePluginNodeSelector:

 storage: netapp

58

Windows worker nodes

This example installs Trident on a Windows worker node.

cat deploy/crds/tridentorchestrator_cr.yaml

apiVersion: trident.netapp.io/v1

kind: TridentOrchestrator

metadata:

 name: trident

spec:

 debug: true

 namespace: trident

 windows: true

Managed identities on an AKS cluster

This example installs Trident to enable managed identities on an AKS cluster.

apiVersion: trident.netapp.io/v1

kind: TridentOrchestrator

metadata:

 name: trident

spec:

 debug: true

 namespace: trident

 cloudProvider: "Azure"

Cloud identity on an AKS cluster

This example installs Trident for use with a cloud identity on an AKS cluster.

apiVersion: trident.netapp.io/v1

kind: TridentOrchestrator

metadata:

 name: trident

spec:

 debug: true

 namespace: trident

 cloudProvider: "Azure"

 cloudIdentity: 'azure.workload.identity/client-id: xxxxxxxx-xxxx-

xxxx-xxxx-xxxxxxxxxxx'

59

Cloud identity on an EKS cluster

This example installs Trident for use with a cloud identity on an AKS cluster.

apiVersion: trident.netapp.io/v1

kind: TridentOrchestrator

metadata:

 name: trident

spec:

 debug: true

 namespace: trident

 cloudProvider: "AWS"

 cloudIdentity: "'eks.amazonaws.com/role-arn:

arn:aws:iam::123456:role/trident-role'"

Cloud identity for GKE

This example installs Trident for use with a cloud identity on a GKE cluster.

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc-gcp-gcnv

spec:

 version: 1

 storageDriverName: google-cloud-netapp-volumes

 projectNumber: '012345678901'

 network: gcnv-network

 location: us-west2

 serviceLevel: Premium

 storagePool: pool-premium1

Install using tridentctl

Install using tridentctl

You can install Trident using tridentctl. This process applies to installations where the

container images required by Trident are stored either in a private registry or not. To

customize your tridentctl deployment, refer to Customize tridentctl deployment.

Critical information about Trident 24.10

You must read the following critical information about Trident.

60

Critical information about Trident

• Kubernetes 1.27 is now supported in Trident. Upgrade Trident prior to upgrading Kubernetes.

• Trident strictly enforces the use of multipathing configuration in SAN environments, with a

recommended value of find_multipaths: no in multipath.conf file.

Use of non-multipathing configuration or use of find_multipaths: yes or find_multipaths:

smart value in multipath.conf file will result in mount failures. Trident has recommended the use of

find_multipaths: no since the 21.07 release.

Install Trident using tridentctl

Review the installation overview to ensure you’ve met installation prerequisites and selected the correct

installation option for your environment.

Before you begin

Before you begin installation, log in to the Linux host and verify it is managing a working, supported

Kubernetes cluster and that you have the necessary privileges.

With OpenShift, use oc instead of kubectl in all of the examples that follow, and log in as

system:admin first by running oc login -u system:admin or oc login -u kube-

admin.

1. Verify your Kubernetes version:

kubectl version

2. Verify cluster administrator privileges:

kubectl auth can-i '*' '*' --all-namespaces

3. Verify you can launch a pod that uses an image from Docker Hub and reach your storage system over

the pod network:

kubectl run -i --tty ping --image=busybox --restart=Never --rm -- \

 ping <management IP>

Step 1: Download the Trident installer package

The Trident installer package creates a Trident pod, configures the CRD objects that are used to maintain its

state, and initializes the CSI sidecars to perform actions such as provisioning and attaching volumes to the

cluster hosts. Download and extract the latest version of the Trident installer from the Assets section on

GitHub. Update <trident-installer-XX.XX.X.tar.gz> in the example with your selected Trident version.

61

https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy.html
https://docs.netapp.com/us-en/trident/trident-install/requirements.html
https://docs.netapp.com/us-en/trident/trident-install/requirements.html
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest

wget https://github.com/NetApp/trident/releases/download/v24.10.0/trident-

installer-24.10.0.tar.gz

tar -xf trident-installer-24.10.0.tar.gz

cd trident-installer

Step 2: Install Trident

Install Trident in the desired namespace by executing the tridentctl install command. You can add

additional arguments to specify image registry location.

Standard mode

./tridentctl install -n trident

Images in one registry

./tridentctl install -n trident --image-registry <your-registry>

--autosupport-image <your-registry>/trident-autosupport:24.10 --trident

-image <your-registry>/trident:24.10.0

Images in different registries

./tridentctl install -n trident --image-registry <your-registry>

--autosupport-image <your-registry>/trident-autosupport:24.10 --trident

-image <your-registry>/trident:24.10.0

Your installation status should look something like this.

62

....

INFO Starting Trident installation. namespace=trident

INFO Created service account.

INFO Created cluster role.

INFO Created cluster role binding.

INFO Added finalizers to custom resource definitions.

INFO Created Trident service.

INFO Created Trident secret.

INFO Created Trident deployment.

INFO Created Trident daemonset.

INFO Waiting for Trident pod to start.

INFO Trident pod started. namespace=trident

pod=trident-controller-679648bd45-cv2mx

INFO Waiting for Trident REST interface.

INFO Trident REST interface is up. version=24.10.0

INFO Trident installation succeeded.

....

Verify the installation

You can verify your installation using pod creation status or tridentctl.

Using pod creation status

You can confirm if the Trident installation completed by reviewing the status of the created pods:

kubectl get pods -n trident

NAME READY STATUS RESTARTS AGE

trident-controller-679648bd45-cv2mx 6/6 Running 0 5m29s

trident-node-linux-vgc8n 2/2 Running 0 5m29s

If the installer does not complete successfully or trident-controller-<generated id>

(trident-csi-<generated id> in versions prior to 23.01) does not have a Running status,

the platform was not installed. Use -d to turn on debug mode and troubleshoot the issue.

Using tridentctl

You can use tridentctl to check the version of Trident installed.

63

./tridentctl -n trident version

+----------------+----------------+

| SERVER VERSION | CLIENT VERSION |

+----------------+----------------+

| 24.10.0 | 24.10.0 |

+----------------+----------------+

Sample configurations

The following examples provide sample configurations for installing Trident using tridentctl.

Windows nodes

To enable Trident to run on Windows nodes:

tridentctl install --windows -n trident

Force detach

For more information about force detach, refer to Customize Trident operator installation.

tridentctl install --enable-force-detach=true -n trident

Customize tridentctl installation

You can use the Trident installer to customize installation.

Learn about the installer

The Trident installer enables you to customize attributes. For example, if you have copied the Trident image to

a private repository, you can specify the image name by using --trident-image. If you have copied the

Trident image as well as the needed CSI sidecar images to a private repository, it might be preferable to

specify the location of that repository by using the --image-registry switch, which takes the form

<registry FQDN>[:port].

When installing Trident in a private repository, if you are using the --image-registry switch

to specify the repository location, do not use /netapp/ in the repository path. For example:

./tridentctl install --image-registry <image-registry> -n <namespace>

If you are using a distribution of Kubernetes, where kubelet keeps its data on a path other than the usual

/var/lib/kubelet, you can specify the alternate path by using --kubelet-dir.

If you need to customize the installation beyond what the installer’s arguments allow, you can also customize

64

https://docs.netapp.com/us-en/trident/trident-install/..trident-get-started/kubernetes-customize-deploy.html

the deployment files. Using the --generate-custom-yaml parameter creates the following YAML files in the

installer’s setup directory:

• trident-clusterrolebinding.yaml

• trident-deployment.yaml

• trident-crds.yaml

• trident-clusterrole.yaml

• trident-daemonset.yaml

• trident-service.yaml

• trident-namespace.yaml

• trident-serviceaccount.yaml

• trident-resourcequota.yaml

After you have generated these files, you can modify them according to your needs and then use --use

-custom-yaml to install your custom deployment.

./tridentctl install -n trident --use-custom-yaml

65

Use Trident

Prepare the worker node

All worker nodes in the Kubernetes cluster must be able to mount the volumes you have

provisioned for your pods. To prepare the worker nodes, you must install NFS, iSCSI,

NVMe/TCP, or FC tools based on your driver selection.

Selecting the right tools

If you are using a combination of drivers, you should install all required tools for your drivers. Recent versions

of RedHat CoreOS have the tools installed by default.

NFS tools

Install the NFS tools if you are using: ontap-nas, ontap-nas-economy, ontap-nas-flexgroup, azure-

netapp-files, gcp-cvs.

iSCSI tools

Install the iSCSI tools if you are using: ontap-san, ontap-san-economy, solidfire-san.

NVMe tools

Install the NVMe tools if you are using ontap-san for nonvolatile memory express (NVMe) over TCP

(NVMe/TCP) protocol.

We recommend ONTAP 9.12 or later for NVMe/TCP.

SCSI over FC tools

SCSI over Fibre Channel (FC) is a tech preview feature in the Trident 24.10 release.

Install the iSCSI tools if you are using ontap-san with sanType fcp (SCSI over FC).

Refer to Ways to configure FC & FC-NVMe SAN hosts for more information.

Node service discovery

Trident attempts to automatically detect if the node can run iSCSI or NFS services.

Node service discovery identifies discovered services but does not guarantee services are

properly configured. Conversely, the absence of a discovered service does not guarantee the

volume mount will fail.

Review events

Trident creates events for the node to identify the discovered services. To review these events, run:

kubectl get event -A --field-selector involvedObject.name=<Kubernetes node

name>

66

https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html#nfs-volumes
https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html#install-the-iscsi-tools
https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html#nvmetcp-volumes
https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html#install-the-iscsi-tools
https://docs.netapp.com/us-en/ontap/san-config/configure-fc-nvme-hosts-ha-pairs-reference.html

Review discovered services

Trident identifies services enabled for each node on the Trident node CR. To view the discovered services, run:

tridentctl get node -o wide -n <Trident namespace>

NFS volumes

Install the NFS tools using the commands for your operating system. Ensure the NFS service is started up

during boot time.

RHEL 8+

sudo yum install -y nfs-utils

Ubuntu

sudo apt-get install -y nfs-common

Reboot your worker nodes after installing the NFS tools to prevent failure when attaching

volumes to containers.

iSCSI volumes

Trident can automatically establish an iSCSI session, scan LUNs, and discover multipath devices, format them,

and mount them to a pod.

iSCSI self-healing capabilities

For ONTAP systems, Trident runs iSCSI self-healing every five minutes to:

1. Identify the desired iSCSI session state and the current iSCSI session state.

2. Compare the desired state to the current state to identify needed repairs. Trident determines repair

priorities and when to preempt repairs.

3. Perform repairs required to return the current iSCSI session state to the desired iSCSI session state.

Logs of self-healing activity are located in the trident-main container on the respective

Daemonset pod. To view logs, you must have set debug to "true" during Trident installation.

Trident iSCSI self-healing capabilities can help prevent:

• Stale or unhealthy iSCSI sessions that could occur after a network connectivity issue. In the case of a stale

session, Trident waits seven minutes before logging out to reestablish the connection with a portal.

67

For example, if CHAP secrets were rotated on the storage controller and the network loses

connectivity, the old (stale) CHAP secrets could persist. Self-healing can recognize this and

automatically reestablish the session to apply the updated CHAP secrets.

• Missing iSCSI sessions

• Missing LUNs

Points to consider before upgrading Trident

• If only per-node igroups (introduced in 23.04+) are in use, iSCSI self-healing will initiate SCSI rescans for

all devices in the SCSI bus.

• If only backend-scoped igroups (deprecated as of 23.04) are in use, iSCSI self-healing will initiate SCSI

rescans for exact LUN IDs in the SCSI bus.

• If a mix of per-node igroups and backend-scoped igroups are in use, iSCSI self-healing will initiate SCSI

rescans for exact LUN IDs in the SCSI bus.

Install the iSCSI tools

Install the iSCSI tools using the commands for your operating system.

Before you begin

• Each node in the Kubernetes cluster must have a unique IQN. This is a necessary prerequisite.

• If using RHCOS version 4.5 or later, or other RHEL-compatible Linux distribution, with the solidfire-

san driver and Element OS 12.5 or earlier, ensure that the CHAP authentication algorithm is set to MD5 in

/etc/iscsi/iscsid.conf. Secure FIPS-compliant CHAP algorithms SHA1, SHA-256, and SHA3-256

are available with Element 12.7.

sudo sed -i 's/^\(node.session.auth.chap_algs\).*/\1 = MD5/'

/etc/iscsi/iscsid.conf

• When using worker nodes that run RHEL/RedHat CoreOS with iSCSI PVs, specify the discard

mountOption in the StorageClass to perform inline space reclamation. Refer to RedHat documentation.

68

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems

RHEL 8+

1. Install the following system packages:

sudo yum install -y lsscsi iscsi-initiator-utils device-mapper-

multipath

2. Check that iscsi-initiator-utils version is 6.2.0.874-2.el7 or later:

rpm -q iscsi-initiator-utils

3. Enable multipathing:

sudo mpathconf --enable --with_multipathd y --find_multipaths n

Ensure etc/multipath.conf contains find_multipaths no under defaults.

4. Ensure that iscsid and multipathd are running:

sudo systemctl enable --now iscsid multipathd

5. Enable and start iscsi:

sudo systemctl enable --now iscsi

Ubuntu

1. Install the following system packages:

sudo apt-get install -y open-iscsi lsscsi sg3-utils multipath-tools

scsitools

2. Check that open-iscsi version is 2.0.874-5ubuntu2.10 or later (for bionic) or 2.0.874-7.1ubuntu6.1 or

later (for focal):

dpkg -l open-iscsi

3. Set scanning to manual:

69

sudo sed -i 's/^\(node.session.scan\).*/\1 = manual/'

/etc/iscsi/iscsid.conf

4. Enable multipathing:

sudo tee /etc/multipath.conf <<-EOF

defaults {

 user_friendly_names yes

 find_multipaths no

}

EOF

sudo systemctl enable --now multipath-tools.service

sudo service multipath-tools restart

Ensure etc/multipath.conf contains find_multipaths no under defaults.

5. Ensure that open-iscsi and multipath-tools are enabled and running:

sudo systemctl status multipath-tools

sudo systemctl enable --now open-iscsi.service

sudo systemctl status open-iscsi

For Ubuntu 18.04, you must discover target ports with iscsiadm before starting

open-iscsi for the iSCSI daemon to start. You can alternatively modify the iscsi

service to start iscsid automatically.

Configure or disable iSCSI self healing

You can configure the following Trident iSCSI self-healing settings to fix stale sessions:

• iSCSI self-healing interval: Determines the frequency at which iSCSI self-healing is invoked (default: 5

minutes). You can configure it to run more frequently by setting a smaller number or less frequently by

setting a larger number.

Setting the iSCSI self-healing interval to 0 stops iSCSI self-healing completely. We do not

recommend disabling iSCSI Self-healing; it should only be disabled in certain scenarios when

iSCSI self-healing is not working as intended or for debugging purposes.

• iSCSI Self-Healing Wait Time: Determines the duration iSCSI self-healing waits before logging out of an

unhealthy session and trying to log in again (default: 7 minutes). You can configure it to a larger number so

that sessions that are identified as unhealthy have to wait longer before being logged out and then an

attempt is made to log back in, or a smaller number to log out and log in earlier.

70

Helm

To configure or change iSCSI self-healing settings, pass the iscsiSelfHealingInterval and

iscsiSelfHealingWaitTime parameters during the helm installation or helm update.

The following example sets the iSCSI self-healing interval to 3 minutes and self-healing wait time to 6

minutes:

helm install trident trident-operator-100.2410.0.tgz --set

iscsiSelfHealingInterval=3m0s --set iscsiSelfHealingWaitTime=6m0s -n

trident

tridentctl

To configure or change iSCSI self-healing settings, pass the iscsi-self-healing-interval and

iscsi-self-healing-wait-time parameters during the tridentctl installation or update.

The following example sets the iSCSI self-healing interval to 3 minutes and self-healing wait time to 6

minutes:

tridentctl install --iscsi-self-healing-interval=3m0s --iscsi-self

-healing-wait-time=6m0s -n trident

NVMe/TCP volumes

Install the NVMe tools using the commands for your operating system.

• NVMe requires RHEL 9 or later.

• If the kernel version of your Kubernetes node is too old or if the NVMe package is not

available for your kernel version, you might have to update the kernel version of your node

to one with the NVMe package.

RHEL 9

sudo yum install nvme-cli

sudo yum install linux-modules-extra-$(uname -r)

sudo modprobe nvme-tcp

Ubuntu

sudo apt install nvme-cli

sudo apt -y install linux-modules-extra-$(uname -r)

sudo modprobe nvme-tcp

71

Verify installation

After installation, verify that each node in the Kubernetes cluster has a unique NQN using the command:

cat /etc/nvme/hostnqn

Trident modifies the ctrl_device_tmo value to ensure NVMe doesn’t give up on the path if it

goes down. Do not change this setting.

Fibre Channel (FC) support

You can now use the Fibre Channel (FC) protocol with Trident to provision and manage

storage resources on ONTAP system.

SCSI over Fibre Channel (FC) is a tech preview feature in the Trident 24.10 release.

Fibre Channel is a widely adopted protocol in enterprise storage environments due to its high performance,

reliability, and scalability. It provides a robust and efficient communication channel for storage devices,

enabling fast and secure data transfers.

By using SCSI over Fibre Channel, you can leverage their existing SCSI-based storage infrastructure while

benefiting from the high-performance and long-distance capabilities of Fibre Channel. It enables the

consolidation of storage resources and the creation of scalable and efficient storage area networks (SANs) that

can handle large amounts of data with low latency.

Using the FC feature with Trident, you can do the following:

• Dynamically provision PVCs using a deployment spec.

• Take volume snapshots and create a new volume from the snapshot.

• Clone an existing FC-PVC.

• Resize an already deployed volume.

Prerequisites

Configure the required network and node settings for FC.

Network settings

1. Get the WWPN of the target interfaces. Refer to network interface show for more information.

2. Get the WWPN for the interfaces on initiator (Host).

Refer to the corresponding host operating system utilities.

3. Configure zoning on the FC switch using WWPNs of the Host and target.

Refer to the respecive switch vendor documentation for information.

Refer to the following ONTAP documentation for details:

◦ Fibre Channel and FCoE zoning overview

◦ Ways to configure FC & FC-NVMe SAN hosts

72

https://docs.netapp.com/us-en/trident/trident-use/..https:/docs.netapp.com/us-en/ontap-cli/network-interface-show.html
https://docs.netapp.com/us-en/ontap/san-config/fibre-channel-fcoe-zoning-concept.html
https://docs.netapp.com/us-en/ontap/san-config/configure-fc-nvme-hosts-ha-pairs-reference.html

Prepare the worker node

All worker nodes in the Kubernetes cluster must be able to mount the volumes you have provisioned for your

pods. To prepare the worker nodes for FC, you must install the required tools.

Install the FC tools

Install the FC tools using the commands for your operating system.

• When using worker nodes that run RHEL/RedHat CoreOS with iSCSI PVs, specify the discard

mountOption in the StorageClass to perform inline space reclamation. Refer to RedHat documentation.

73

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems

RHEL 8+

1. Install the following system packages:

sudo yum install -y lsscsi iscsi-initiator-utils device-mapper-

multipath

2. Check that iscsi-initiator-utils version is 6.2.0.874-2.el7 or later:

rpm -q iscsi-initiator-utils

3. Enable multipathing:

sudo mpathconf --enable --with_multipathd y --find_multipaths n

Ensure etc/multipath.conf contains find_multipaths no under defaults.

4. Ensure that iscsid and multipathd are running:

sudo systemctl enable --now iscsid multipathd

5. Enable and start iscsi:

sudo systemctl enable --now iscsi

Ubuntu

1. Install the following system packages:

sudo apt-get install -y open-iscsi lsscsi sg3-utils multipath-tools

scsitools

2. Check that open-iscsi version is 2.0.874-5ubuntu2.10 or later (for bionic) or 2.0.874-7.1ubuntu6.1 or

later (for focal):

dpkg -l open-iscsi

3. Set scanning to manual:

74

sudo sed -i 's/^\(node.session.scan\).*/\1 = manual/'

/etc/iscsi/iscsid.conf

4. Enable multipathing:

sudo tee /etc/multipath.conf <<-EOF

defaults {

 user_friendly_names yes

 find_multipaths no

}

EOF

sudo systemctl enable --now multipath-tools.service

sudo service multipath-tools restart

Ensure etc/multipath.conf contains find_multipaths no under defaults.

5. Ensure that open-iscsi and multipath-tools are enabled and running:

sudo systemctl status multipath-tools

sudo systemctl enable --now open-iscsi.service

sudo systemctl status open-iscsi

For Ubuntu 18.04, you must discover target ports with iscsiadm before starting

open-iscsi for the iSCSI daemon to start. You can alternatively modify the iscsi

service to start iscsid automatically.

Create a backend configuration

Create a Trident backend for ontap-san driver and fcp as the sanType.

Refer to:

• Prepare to configure backend with ONTAP SAN drivers

• ONTAP SAN configuration options and examples

75

https://docs.netapp.com/us-en/trident/trident-use/..trident-use/ontap-san-prep.html
https://docs.netapp.com/us-en/trident/trident-use/..trident-use/ontap-san-examples.html

Backend configuration example with FC

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc-ontap-san

spec:

 version: 1

 backendName: ontap-san-backend

 storageDriverName: ontap-san

 managementLIF: 10.0.0.1

 sanType: fcp

 svm: trident_svm

 credentials:

 name: backend-tbc-ontap-san-secret

Create a storage class

For more information, refer to:

• Storage configuration options

Storage class example

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: fcp-sc

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-san"

 protocol: "fcp"

 storagePool: "aggr1"

allowVolumeExpansion: True

Configure and manage backends

Configure backends

A backend defines the relationship between Trident and a storage system. It tells Trident

how to communicate with that storage system and how Trident should provision volumes

from it.

Trident automatically offers up storage pools from backends that match the requirements defined by a storage

class. Learn how to configure the backend for your storage system.

• Configure an Azure NetApp Files backend

76

https://docs.netapp.com/us-en/trident/trident-use/..trident-docker/stor-config.html

• Configure a Cloud Volumes Service for Google Cloud Platform backend

• Configure a NetApp HCI or SolidFire backend

• Configure a backend with ONTAP or Cloud Volumes ONTAP NAS drivers

• Configure a backend with ONTAP or Cloud Volumes ONTAP SAN drivers

• Use Trident with Amazon FSx for NetApp ONTAP

Azure NetApp Files

Configure an Azure NetApp Files backend

You can configure Azure NetApp Files as the backend for Trident. You can attach NFS

and SMB volumes using an Azure NetApp Files backend. Trident also supports credential

management using managed identities for Azure Kubernetes Services (AKS) clusters.

Azure NetApp Files driver details

Trident provides the following Azure NetApp Files storage drivers to communicate with the cluster. Supported

access modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX),

ReadWriteOncePod (RWOP).

Driver Protocol volumeMod

e

Access modes

supported

File systems supported

azure-netapp-files NFS

SMB

Filesystem RWO, ROX, RWX, RWOP nfs, smb

Considerations

• The Azure NetApp Files service does not support volumes smaller than 50 GiB. Trident automatically

creates 50-GiB volumes if a smaller volume is requested.

• Trident supports SMB volumes mounted to pods running on Windows nodes only.

Managed identities for AKS

Trident supports managed identities for Azure Kubernetes Services clusters. To take advantage of streamlined

credential management offered by managed identities, you must have:

• A Kubernetes cluster deployed using AKS

• Managed identities configured on the AKS kubernetes cluster

• Trident installed that includes the cloudProvider to specify "Azure".

77

https://learn.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview

Trident operator

To install Trident using the Trident operator, edit tridentorchestrator_cr.yaml to set

cloudProvider to "Azure". For example:

apiVersion: trident.netapp.io/v1

kind: TridentOrchestrator

metadata:

 name: trident

spec:

 debug: true

 namespace: trident

 imagePullPolicy: IfNotPresent

 cloudProvider: "Azure"

Helm

The following example installs Trident sets cloudProvider to Azure using the environment variable

$CP:

helm install trident trident-operator-100.2410.0.tgz --create

-namespace --namespace <trident-namespace> --set cloudProvider=$CP

tridentctl

The following example installs Trident and sets the cloudProvider flag to Azure:

tridentctl install --cloud-provider="Azure" -n trident

Cloud identity for AKS

Cloud identity enables Kubernetes pods to access Azure resources by authenticating as a workload identity

instead of by providing explicit Azure credentials.

To take advantage of cloud identity in Azure, you must have:

• A Kubernetes cluster deployed using AKS

• Workload identity and oidc-issuer configured on the AKS Kubernetes cluster

• Trident installed that includes the cloudProvider to specify "Azure" and cloudIdentity specifying

workload identity

78

Trident operator

To install Trident using the Trident operator, edit tridentorchestrator_cr.yaml to set

cloudProvider to "Azure" and set cloudIdentity to azure.workload.identity/client-

id: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx.

For example:

apiVersion: trident.netapp.io/v1

kind: TridentOrchestrator

metadata:

 name: trident

spec:

 debug: true

 namespace: trident

 imagePullPolicy: IfNotPresent

 cloudProvider: "Azure"

 *cloudIdentity: 'azure.workload.identity/client-id: xxxxxxxx-xxxx-

xxxx-xxxx-xxxxxxxxxxx'*

Helm

Set the values for cloud-provider (CP) and cloud-identity (CI) flags using the following environment

variables:

export CP="Azure"

export CI="'azure.workload.identity/client-id: xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxx'"

The following example installs Trident and sets cloudProvider to Azure using the environment

variable $CP and sets the cloudIdentity using the environment variable $CI:

helm install trident trident-operator-100.2410.0.tgz --set

cloudProvider=$CP --set cloudIdentity="$CI"

tridentctl

Set the values for cloud provider and cloud identity flags using the following environment variables:

export CP="Azure"

export CI="azure.workload.identity/client-id: xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxx"

The following example installs Trident and sets the cloud-provider flag to $CP, and cloud-

identity to $CI:

79

tridentctl install --cloud-provider=$CP --cloud-identity="$CI" -n

trident

Prepare to configure an Azure NetApp Files backend

Before you can configure your Azure NetApp Files backend, you need to ensure the

following requirements are met.

Prerequisites for NFS and SMB volumes

If you are using Azure NetApp Files for the first time or in a new location, some initial configuration is required

to set up Azure NetApp files and create an NFS volume. Refer to Azure: Set up Azure NetApp Files and create

an NFS volume.

To configure and use an Azure NetApp Files backend, you need the following:

• subscriptionID, tenantID, clientID, location, and clientSecret are optional

when using managed identities on an AKS cluster.

• tenantID, clientID, and clientSecret are optional when using a cloud identity on an

AKS cluster.

• A capacity pool. Refer to Microsoft: Create a capacity pool for Azure NetApp Files.

• A subnet delegated to Azure NetApp Files. Refer to Microsoft: Delegate a subnet to Azure NetApp Files.

• subscriptionID from an Azure subscription with Azure NetApp Files enabled.

• tenantID, clientID, and clientSecret from an App Registration in Azure Active Directory with

sufficient permissions to the Azure NetApp Files service. The App Registration should use either:

◦ The Owner or Contributor role predefined by Azure.

◦ A custom Contributor role at the subscription level (assignableScopes) with the following

permissions that are limited to only what Trident requires. After creating the custom role, assign the

role using the Azure portal.

80

https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://azure.microsoft.com/en-us/services/netapp/
https://learn.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-set-up-capacity-pool
https://learn.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://learn.microsoft.com/en-us/azure/role-based-access-control/custom-roles-portal
https://learn.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal
https://learn.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal

Custom contributor role

{

 "id": "/subscriptions/<subscription-

id>/providers/Microsoft.Authorization/roleDefinitions/<role-

definition-id>",

 "properties": {

 "roleName": "custom-role-with-limited-perms",

 "description": "custom role providing limited

permissions",

 "assignableScopes": [

 "/subscriptions/<subscription-id>"

],

 "permissions": [

 {

 "actions": [

"Microsoft.NetApp/netAppAccounts/capacityPools/read",

"Microsoft.NetApp/netAppAccounts/capacityPools/write",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/read",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/write",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/delete",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/

read",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/

write",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/

delete",

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/MountTarge

ts/read",

 "Microsoft.Network/virtualNetworks/read",

"Microsoft.Network/virtualNetworks/subnets/read",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrat

ions/read",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrat

81

ions/write",

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrat

ions/delete",

 "Microsoft.Features/features/read",

 "Microsoft.Features/operations/read",

 "Microsoft.Features/providers/features/read",

"Microsoft.Features/providers/features/register/action",

"Microsoft.Features/providers/features/unregister/action",

"Microsoft.Features/subscriptionFeatureRegistrations/read"

],

 "notActions": [],

 "dataActions": [],

 "notDataActions": []

 }

]

 }

}

• The Azure location that contains at least one delegated subnet. As of Trident 22.01, the location

parameter is a required field at the top level of the backend configuration file. Location values specified in

virtual pools are ignored.

• To use Cloud Identity, get the client ID from a user-assigned managed identity and specify that ID

in azure.workload.identity/client-id: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx.

Additional requirements for SMB volumes

To create an SMB volume, you must have:

• Active Directory configured and connected to Azure NetApp Files. Refer to Microsoft: Create and manage

Active Directory connections for Azure NetApp Files.

• A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows

Server 2022. Trident supports SMB volumes mounted to pods running on Windows nodes only.

• At least one Trident secret containing your Active Directory credentials so Azure NetApp Files can

authenticate to Active Directory. To generate secret smbcreds:

kubectl create secret generic smbcreds --from-literal username=user

--from-literal password='password'

• A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or

GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

82

https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet
https://learn.microsoft.com/en-us/entra/identity/managed-identities-azure-resources/how-manage-user-assigned-managed-identities
https://learn.microsoft.com/en-us/azure/azure-netapp-files/create-active-directory-connections
https://learn.microsoft.com/en-us/azure/azure-netapp-files/create-active-directory-connections
https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md

Azure NetApp Files backend configuration options and examples

Learn about NFS and SMB backend configuration options for Azure NetApp Files and

review configuration examples.

Backend configuration options

Trident uses your backend configuration (subnet, virtual network, service level, and location), to create Azure

NetApp Files volumes on capacity pools that are available in the requested location and match the requested

service level and subnet.

Trident does not support Manual QoS capacity pools.

Azure NetApp Files backends provide these configuration options.

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver "azure-netapp-files"

backendName Custom name or the storage

backend

Driver name + "_" + random

characters

subscriptionID The subscription ID from your

Azure subscription

Optional when managed identities

is enabled on an AKS cluster.

tenantID The tenant ID from an App

Registration

Optional when managed identities

or cloud identity is used on an AKS

cluster.

clientID The client ID from an App

Registration

Optional when managed identities

or cloud identity is used on an AKS

cluster.

clientSecret The client secret from an App

Registration

Optional when managed identities

or cloud identity is used on an AKS

cluster.

serviceLevel One of Standard, Premium, or

Ultra

"" (random)

83

Parameter Description Default

location Name of the Azure location where

the new volumes will be created

Optional when managed identities

is enabled on an AKS cluster.

resourceGroups List of resource groups for filtering

discovered resources

"[]" (no filter)

netappAccounts List of NetApp accounts for filtering

discovered resources

"[]" (no filter)

capacityPools List of capacity pools for filtering

discovered resources

"[]" (no filter, random)

virtualNetwork Name of a virtual network with a

delegated subnet

""

subnet Name of a subnet delegated to

Microsoft.Netapp/volumes

""

networkFeatures Set of VNet features for a volume,

may be Basic or Standard.

Network Features is not available in

all regions and might have to be

enabled in a subscription.

Specifying networkFeatures

when the functionality is not

enabled causes volume

provisioning to fail.

""

nfsMountOptions Fine-grained control of NFS mount

options.

Ignored for SMB volumes.

To mount volumes using NFS

version 4.1, include nfsvers=4 in

the comma-delimited mount options

list to choose NFS v4.1.

Mount options set in a storage

class definition override mount

options set in backend

configuration.

"nfsvers=3"

limitVolumeSize Fail provisioning if the requested

volume size is above this value

"" (not enforced by default)

84

Parameter Description Default

debugTraceFlags Debug flags to use when

troubleshooting. Example,

\{"api": false, "method":

true, "discovery": true}.

Do not use this unless you are

troubleshooting and require a

detailed log dump.

null

nasType Configure NFS or SMB volumes

creation.

Options are nfs, smb or null.

Setting to null defaults to NFS

volumes.

nfs

supportedTopologies Represents a list of regions and

zones that are supported by this

backend.

For more information, refer to Use

CSI Topology.

For more information on Network Features, refer to Configure network features for an Azure

NetApp Files volume.

Required permissions and resources

If you receive a “No capacity pools found” error when creating a PVC, it is likely your app registration doesn’t

have the required permissions and resources (subnet, virtual network, capacity pool) associated. If debug is

enabled, Trident will log the Azure resources discovered when the backend is created. Verify an appropriate

role is being used.

The values for resourceGroups, netappAccounts, capacityPools, virtualNetwork, and subnet

can be specified using short or fully-qualified names. Fully-qualified names are recommended in most

situations as short names can match multiple resources with the same name.

The resourceGroups, netappAccounts, and capacityPools values are filters that restrict the set of

discovered resources to those available to this storage backend and may be specified in any combination.

Fully-qualified names follow this format:

Type Format

Resource group <resource group>

NetApp account <resource group>/<netapp account>

Capacity pool <resource group>/<netapp account>/<capacity pool>

Virtual network <resource group>/<virtual network>

Subnet <resource group>/<virtual network>/<subnet>

85

https://docs.microsoft.com/en-us/azure/azure-netapp-files/configure-network-features
https://docs.microsoft.com/en-us/azure/azure-netapp-files/configure-network-features

Volume provisioning

You can control default volume provisioning by specifying the following options in a special section of the

configuration file. Refer to Example configurations for details.

Parameter Description Default

exportRule Export rules for new volumes.

exportRule must be a comma-

separated list of any combination of

IPv4 addresses or IPv4 subnets in

CIDR notation.

Ignored for SMB volumes.

"0.0.0.0/0"

snapshotDir Controls visibility of the .snapshot

directory
"true" for NFSv4

"false" for NFSv3

size The default size of new volumes "100G"

unixPermissions The unix permissions of new

volumes (4 octal digits).

Ignored for SMB volumes.

"" (preview feature, requires

whitelisting in subscription)

Example configurations

The following examples show basic configurations that leave most parameters to default. This is the easiest

way to define a backend.

86

Minimal configuration

This is the absolute minimum backend configuration. With this configuration, Trident discovers all of your

NetApp accounts, capacity pools, and subnets delegated to Azure NetApp Files in the configured

location, and places new volumes on one of those pools and subnets randomly. Because nasType is

omitted, the nfs default applies and the backend will provision for NFS volumes.

This configuration is ideal when you are just getting started with Azure NetApp Files and trying things out,

but in practice you are going to want to provide additional scoping for the volumes you provision.

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc-anf-1

 namespace: trident

spec:

 version: 1

 storageDriverName: azure-netapp-files

 subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

 tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf

 clientID: dd043f63-bf8e-fake-8076-8de91e5713aa

 clientSecret: SECRET

 location: eastus

Managed identities for AKS

This backend configuration omits subscriptionID, tenantID, clientID, and clientSecret, which

are optional when using managed identities.

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc-anf-1

 namespace: trident

spec:

 version: 1

 storageDriverName: azure-netapp-files

 capacityPools: ["ultra-pool"]

 resourceGroups: ["aks-ami-eastus-rg"]

 netappAccounts: ["smb-na"]

 virtualNetwork: eastus-prod-vnet

 subnet: eastus-anf-subnet

87

Cloud identity for AKS

This backend configuration omits tenantID, clientID, and clientSecret, which are optional when

using a cloud identity.

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc-anf-1

 namespace: trident

spec:

 version: 1

 storageDriverName: azure-netapp-files

 capacityPools: ["ultra-pool"]

 resourceGroups: ["aks-ami-eastus-rg"]

 netappAccounts: ["smb-na"]

 virtualNetwork: eastus-prod-vnet

 subnet: eastus-anf-subnet

 location: eastus

 subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

Specific service level configuration with capacity pool filters

This backend configuration places volumes in Azure’s eastus location in an Ultra capacity pool.

Trident automatically discovers all of the subnets delegated to Azure NetApp Files in that location and

places a new volume on one of them randomly.

version: 1

storageDriverName: azure-netapp-files

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf

clientID: dd043f63-bf8e-fake-8076-8de91e5713aa

clientSecret: SECRET

location: eastus

serviceLevel: Ultra

capacityPools:

- application-group-1/account-1/ultra-1

- application-group-1/account-1/ultra-2

88

Advanced configuration

This backend configuration further reduces the scope of volume placement to a single subnet, and also

modifies some volume provisioning defaults.

version: 1

storageDriverName: azure-netapp-files

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf

clientID: dd043f63-bf8e-fake-8076-8de91e5713aa

clientSecret: SECRET

location: eastus

serviceLevel: Ultra

capacityPools:

- application-group-1/account-1/ultra-1

- application-group-1/account-1/ultra-2

virtualNetwork: my-virtual-network

subnet: my-subnet

networkFeatures: Standard

nfsMountOptions: vers=3,proto=tcp,timeo=600

limitVolumeSize: 500Gi

defaults:

 exportRule: 10.0.0.0/24,10.0.1.0/24,10.0.2.100

 snapshotDir: 'true'

 size: 200Gi

 unixPermissions: '0777'

89

Virtual pool configuration

This backend configuration defines multiple storage pools in a single file. This is useful when you have

multiple capacity pools supporting different service levels and you want to create storage classes in

Kubernetes that represent those. Virtual pool labels were used to differentiate the pools based on

performance.

version: 1

storageDriverName: azure-netapp-files

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf

clientID: dd043f63-bf8e-fake-8076-8de91e5713aa

clientSecret: SECRET

location: eastus

resourceGroups:

- application-group-1

networkFeatures: Basic

nfsMountOptions: vers=3,proto=tcp,timeo=600

labels:

 cloud: azure

storage:

- labels:

 performance: gold

 serviceLevel: Ultra

 capacityPools:

 - ultra-1

 - ultra-2

 networkFeatures: Standard

- labels:

 performance: silver

 serviceLevel: Premium

 capacityPools:

 - premium-1

- labels:

 performance: bronze

 serviceLevel: Standard

 capacityPools:

 - standard-1

 - standard-2

90

Supported topologies configuration

Trident facilitates provisioning of volumes for workloads based on regions and availability zones. The

supportedTopologies block in this backend configuration is used to provide a list of regions and

zones per backend. The region and zone values specified here must match the region and zone values

from the labels on each Kubernetes cluster node. These regions and zones represent the list of

permissible values that can be provided in a storage class. For storage classes that contain a subset of

the regions and zones provided in a backend, Trident creates volumes in the mentioned region and zone.

For more information, refer to Use CSI Topology.

version: 1

storageDriverName: azure-netapp-files

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf

clientID: dd043f63-bf8e-fake-8076-8de91e5713aa

clientSecret: SECRET

location: eastus

serviceLevel: Ultra

capacityPools:

- application-group-1/account-1/ultra-1

- application-group-1/account-1/ultra-2

supportedTopologies:

- topology.kubernetes.io/region: eastus

 topology.kubernetes.io/zone: eastus-1

- topology.kubernetes.io/region: eastus

 topology.kubernetes.io/zone: eastus-2

Storage class definitions

The following StorageClass definitions refer to the storage pools above.

Example definitions using parameter.selector field

Using parameter.selector you can specify for each StorageClass the virtual pool that is used to host a

volume. The volume will have the aspects defined in the chosen pool.

91

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: gold

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=gold"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: silver

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=silver"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: bronze

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=bronze"

allowVolumeExpansion: true

Example definitions for SMB volumes

Using nasType, node-stage-secret-name, and node-stage-secret-namespace, you can specify an

SMB volume and provide the required Active Directory credentials.

92

Basic configuration on default namespace

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: anf-sc-smb

provisioner: csi.trident.netapp.io

parameters:

 backendType: "azure-netapp-files"

 trident.netapp.io/nasType: "smb"

 csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

 csi.storage.k8s.io/node-stage-secret-namespace: "default"

Using different secrets per namespace

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: anf-sc-smb

provisioner: csi.trident.netapp.io

parameters:

 backendType: "azure-netapp-files"

 trident.netapp.io/nasType: "smb"

 csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

 csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

Using different secrets per volume

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: anf-sc-smb

provisioner: csi.trident.netapp.io

parameters:

 backendType: "azure-netapp-files"

 trident.netapp.io/nasType: "smb"

 csi.storage.k8s.io/node-stage-secret-name: ${pvc.name}

 csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

93

nasType: smb filters for pools which support SMB volumes. nasType: nfs or nasType:

null filters for NFS pools.

Create the backend

After you create the backend configuration file, run the following command:

tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to

determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Google Cloud NetApp Volumes

Configure a Google Cloud NetApp Volumes backend

You can now configure Google Cloud NetApp Volumes as the backend for Trident. You

can attach NFS volumes using a Google Cloud NetApp Volumes backend.

Google Cloud NetApp Volumes driver details

Trident provides the google-cloud-netapp-volumes driver to communicate with the cluster. Supported

access modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX),

ReadWriteOncePod (RWOP).

Driver Protocol volumeMod

e

Access modes

supported

File systems supported

google-cloud-

netapp-volumes

NFS Filesystem RWO, ROX, RWX, RWOP nfs

Cloud identity for GKE

Cloud identity enables Kubernetes pods to access Google Cloud resources by authenticating as a workload

identity instead of by providing explicit Google Cloud credentials.

To take advantage of cloud identity in Google Cloud, you must have:

• A Kubernetes cluster deployed using GKE.

• Workload identity and oidc-issuer configured on the GKE cluster.

• Trident installed that includes the cloudProvider to specify "GCP" and cloudIdentity specifying

workload identity.

94

Trident operator

To install Trident using the Trident operator, edit tridentorchestrator_cr.yaml to set

cloudProvider to "GCP" and set cloudIdentity to iam.gke.io/gcp-service-account:

cloudvolumes-admin-sa@mygcpproject.iam.gserviceaccount.com.

For example:

apiVersion: trident.netapp.io/v1

kind: TridentOrchestrator

metadata:

 name: trident

spec:

 debug: true

 namespace: trident

 imagePullPolicy: IfNotPresent

 cloudProvider: "GCP"

 cloudIdentity: 'iam.gke.io/gcp-service-account: cloudvolumes-

admin-sa@mygcpproject.iam.gserviceaccount.com'

Helm

Set the values for cloud-provider (CP) and cloud-identity (CI) flags using the following environment

variables:

export CP="GCP"

export ANNOTATION="iam.gke.io/gcp-service-account: cloudvolumes-admin-

sa@mygcpproject.iam.gserviceaccount.com"

The following example installs Trident and sets cloudProvider to GCP using the environment

variable $CP and sets the cloudIdentity using the environment variable $ANNOTATION:

helm install trident trident-operator-100.2406.0.tgz --set

cloudProvider=$CP --set cloudIdentity="$ANNOTATION"

tridentctl

Set the values for cloud provider and cloud identity flags using the following environment variables:

export CP="GCP"

export ANNOTATION="iam.gke.io/gcp-service-account: cloudvolumes-admin-

sa@mygcpproject.iam.gserviceaccount.com"

The following example installs Trident and sets the cloud-provider flag to $CP, and cloud-

identity to $ANNOTATION:

95

tridentctl install --cloud-provider=$CP --cloud

-identity="$ANNOTATION" -n trident

Prepare to configure a Google Cloud NetApp Volumes backend

Before you can configure your Google Cloud NetApp Volumes backend, you need to

ensure the following requirements are met.

Prerequisites for NFS volumes

If you are using Google Cloud NetApp Volumes for the first time or in a new location, some initial configuration

is required to set up Google Cloud NetApp Volumes and create an NFS volume. Refer to Before you begin.

Ensure that you have the following before configuring Google Cloud NetApp Volumes backend:

• A Google Cloud account configured with Google Cloud NetApp Volumes service. Refer to Google Cloud

NetApp Volumes.

• Project number of your Google Cloud account. Refer to Identifying projects.

• A Google Cloud service account with the NetApp Volumes Admin (netappcloudvolumes.admin) role.

Refer to Identity and Access Management roles and permissions.

• API key file for your GCNV account. Refer to Create a service account key

• A storage pool. Refer to Storage pools overview .

For more information about how to set up access to Google Cloud NetApp Volumes, refer to Set up access to

Google Cloud NetApp Volumes.

Google Cloud NetApp Volumes backend configuration options and examples

Learn about NFS backend configuration options for Google Cloud NetApp Volumes and

review configuration examples.

Backend configuration options

Each backend provisions volumes in a single Google Cloud region. To create volumes in other regions, you

can define additional backends.

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver The value of

storageDriverName

must be specified as

"google-cloud-netapp-

volumes".

backendName (Optional) Custom name of the storage backend Driver name + "_" + part

of API key

96

https://cloud.google.com/netapp/volumes/docs/before-you-begin/application-resilience
https://cloud.google.com/netapp-volumes
https://cloud.google.com/netapp-volumes
https://cloud.google.com/resource-manager/docs/creating-managing-projects#identifying_projects
https://cloud.google.com/netapp/volumes/docs/get-started/configure-access/iam#roles_and_permissions
https://cloud.google.com/iam/docs/keys-create-delete#creating
https://cloud.google.com/netapp/volumes/docs/configure-and-use/storage-pools/overview
https://cloud.google.com/netapp/volumes/docs/get-started/configure-access/workflow#before_you_begin
https://cloud.google.com/netapp/volumes/docs/get-started/configure-access/workflow#before_you_begin

Parameter Description Default

storagePools Optional parameter used to specify storage pools for

volume creation.

projectNumber Google Cloud account project number. The value is

found on the Google Cloud portal home page.

location The Google Cloud location where Trident creates

GCNV volumes. When creating cross-region

Kubernetes clusters, volumes created in a location

can be used in workloads scheduled on nodes across

multiple Google Cloud regions.

Cross-region traffic incurs an additional cost.

apiKey API key for the Google Cloud service account with the

netappcloudvolumes.admin role.

It includes the JSON-formatted contents of a Google

Cloud service account’s private key file (copied

verbatim into the backend configuration file).

The apiKey must include key-value pairs for the

following keys: type, project_id, client_email,

client_id, auth_uri, token_uri,

auth_provider_x509_cert_url, and

client_x509_cert_url.

nfsMountOptions Fine-grained control of NFS mount options. "nfsvers=3"

limitVolumeSize Fail provisioning if the requested volume size is above

this value.

"" (not enforced by

default)

serviceLevel The service level of a storage pool and its volumes.

The values are flex, standard, premium, or

extreme.

network Google Cloud network used for GCNV volumes.

debugTraceFlags Debug flags to use when troubleshooting. Example,

{"api":false, "method":true}.

Do not use this unless you are troubleshooting and

require a detailed log dump.

null

supportedTopologies Represents a list of regions and zones that are

supported by this backend.

For more information, refer to Use CSI Topology.

For example:

supportedTopologies:

- topology.kubernetes.io/region: asia-

east1

topology.kubernetes.io/zone: asia-east1-

a

97

Volume provisioning options

You can control default volume provisioning in the defaults section of the configuration file.

Parameter Description Default

exportRule The export rules for new volumes.

Must be a comma-separated list of

any combination of IPv4 addresses.

"0.0.0.0/0"

snapshotDir Access to the .snapshot directory "true" for NFSv4

"false" for NFSv3

snapshotReserve Percentage of volume reserved for

snapshots

"" (accept default of 0)

unixPermissions The unix permissions of new

volumes (4 octal digits).

""

Example configurations

The following examples show basic configurations that leave most parameters to default. This is the easiest

way to define a backend.

98

Minimal configuration

This is the absolute minimum backend configuration. With this configuration, Trident discovers all of your

storage pools delegated to Google Cloud NetApp Volumes in the configured location, and places new

volumes on one of those pools randomly. Because nasType is omitted, the nfs default applies and the

backend will provision for NFS volumes.

This configuration is ideal when you are just getting started with Google Cloud NetApp Volumes and

trying things out, but in practice you will most likely need to provide additional scoping for the volumes you

provision.

apiVersion: v1

kind: Secret

metadata:

 name: backend-tbc-gcnv-secret

type: Opaque

stringData:

 private_key_id: 'f2cb6ed6d7cc10c453f7d3406fc700c5df0ab9ec'

 private_key: |

 -----BEGIN PRIVATE KEY-----\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m\n

99

 XsYg6gyxy4zq7OlwWgLwGa==\n

 -----END PRIVATE KEY-----\n

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc-gcnv

spec:

 version: 1

 storageDriverName: google-cloud-netapp-volumes

 projectNumber: '123455380079'

 location: europe-west6

 serviceLevel: premium

 apiKey:

 type: service_account

 project_id: my-gcnv-project

 client_email: myproject-prod@my-gcnv-

project.iam.gserviceaccount.com

 client_id: '103346282737811234567'

 auth_uri: https://accounts.google.com/o/oauth2/auth

 token_uri: https://oauth2.googleapis.com/token

 auth_provider_x509_cert_url:

https://www.googleapis.com/oauth2/v1/certs

 client_x509_cert_url:

https://www.googleapis.com/robot/v1/metadata/x509/myproject-prod%40my-

gcnv-project.iam.gserviceaccount.com

 credentials:

 name: backend-tbc-gcnv-secret

100

Configuration with StoragePools filter

apiVersion: v1

kind: Secret

metadata:

 name: backend-tbc-gcnv-secret

type: Opaque

stringData:

 private_key_id: 'f2cb6ed6d7cc10c453f7d3406fc700c5df0ab9ec'

 private_key: |

 -----BEGIN PRIVATE KEY-----

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 XsYg6gyxy4zq7OlwWgLwGa==

 -----END PRIVATE KEY-----

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc-gcnv

spec:

101

 version: 1

 storageDriverName: google-cloud-netapp-volumes

 projectNumber: '123455380079'

 location: europe-west6

 serviceLevel: premium

 storagePools:

 - premium-pool1-europe-west6

 - premium-pool2-europe-west6

 apiKey:

 type: service_account

 project_id: my-gcnv-project

 client_email: myproject-prod@my-gcnv-

project.iam.gserviceaccount.com

 client_id: '103346282737811234567'

 auth_uri: https://accounts.google.com/o/oauth2/auth

 token_uri: https://oauth2.googleapis.com/token

 auth_provider_x509_cert_url:

https://www.googleapis.com/oauth2/v1/certs

 client_x509_cert_url:

https://www.googleapis.com/robot/v1/metadata/x509/myproject-prod%40my-

gcnv-project.iam.gserviceaccount.com

 credentials:

 name: backend-tbc-gcnv-secret

102

Virtual pool configuration

This backend configuration defines multiple virtual pools in a single file. Virtual pools are defined in the

storage section. They are useful when you have multiple storage pools supporting different service

levels and you want to create storage classes in Kubernetes that represent those. Virtual pool labels are

used to differentiate the pools. For instance, in the example below performance label and

serviceLevel type is used to differentiate virtual pools.

You can also set some default values to be applicable to all virtual pools, and overwrite the default values

for individual virtual pools. In the following example, snapshotReserve and exportRule serve as

defaults for all virtual pools.

For more information, refer to Virtual pools.

apiVersion: v1

kind: Secret

metadata:

 name: backend-tbc-gcnv-secret

type: Opaque

stringData:

 private_key_id: 'f2cb6ed6d7cc10c453f7d3406fc700c5df0ab9ec'

 private_key: |

 -----BEGIN PRIVATE KEY-----

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

103

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

 XsYg6gyxy4zq7OlwWgLwGa==

 -----END PRIVATE KEY-----

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc-gcnv

spec:

 version: 1

 storageDriverName: google-cloud-netapp-volumes

 projectNumber: '123455380079'

 location: europe-west6

 apiKey:

 type: service_account

 project_id: my-gcnv-project

 client_email: myproject-prod@my-gcnv-

project.iam.gserviceaccount.com

 client_id: '103346282737811234567'

 auth_uri: https://accounts.google.com/o/oauth2/auth

 token_uri: https://oauth2.googleapis.com/token

 auth_provider_x509_cert_url:

https://www.googleapis.com/oauth2/v1/certs

 client_x509_cert_url:

https://www.googleapis.com/robot/v1/metadata/x509/myproject-prod%40my-

gcnv-project.iam.gserviceaccount.com

 credentials:

 name: backend-tbc-gcnv-secret

 defaults:

 snapshotReserve: '10'

 exportRule: 10.0.0.0/24

 storage:

 - labels:

 performance: extreme

 serviceLevel: extreme

 defaults:

 snapshotReserve: '5'

 exportRule: 0.0.0.0/0

 - labels:

 performance: premium

 serviceLevel: premium

 - labels:

104

 performance: standard

 serviceLevel: standard

Cloud identity for GKE

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc-gcp-gcnv

spec:

 version: 1

 storageDriverName: google-cloud-netapp-volumes

 projectNumber: '012345678901'

 network: gcnv-network

 location: us-west2

 serviceLevel: Premium

 storagePool: pool-premium1

Supported topologies configuration

Trident facilitates provisioning of volumes for workloads based on regions and availability zones. The

supportedTopologies block in this backend configuration is used to provide a list of regions and

zones per backend. The region and zone values specified here must match the region and zone values

from the labels on each Kubernetes cluster node. These regions and zones represent the list of

permissible values that can be provided in a storage class. For storage classes that contain a subset of

the regions and zones provided in a backend, Trident creates volumes in the mentioned region and zone.

For more information, refer to Use CSI Topology.

version: 1

storageDriverName: google-cloud-netapp-volumes

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf

clientID: dd043f63-bf8e-fake-8076-8de91e5713aa

clientSecret: SECRET

location: asia-east1

serviceLevel: flex

supportedTopologies:

- topology.kubernetes.io/region: asia-east1

 topology.kubernetes.io/zone: asia-east1-a

- topology.kubernetes.io/region: asia-east1

 topology.kubernetes.io/zone: asia-east1-b

105

What’s next?

After you create the backend configuration file, run the following command:

kubectl create -f <backend-file>

To verify that the backend is successfully created, run the following command:

kubectl get tridentbackendconfig

NAME BACKEND NAME BACKEND UUID

PHASE STATUS

backend-tbc-gcnv backend-tbc-gcnv b2fd1ff9-b234-477e-88fd-713913294f65

Bound Success

If the backend creation fails, something is wrong with the backend configuration. You can describe the backend

using the kubectl get tridentbackendconfig <backend-name> command or view the logs to

determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can delete the backend and run the

create command again.

More examples

Storage class definition examples

The following is a basic StorageClass definition that refers to the backend above.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: gcnv-nfs-sc

provisioner: csi.trident.netapp.io

parameters:

 backendType: "google-cloud-netapp-volumes"

Example definitions using the parameter.selector field:

Using parameter.selector you can specify for each StorageClass the virtual pool that is used to host a

volume. The volume will have the aspects defined in the chosen pool.

106

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: extreme-sc

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=extreme"

 backendType: "google-cloud-netapp-volumes"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: premium-sc

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=premium"

 backendType: "google-cloud-netapp-volumes"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: standard-sc

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=standard"

 backendType: "google-cloud-netapp-volumes"

For more details on storage classes, refer to Create a storage class.

PVC definition example

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: gcnv-nfs-pvc

spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 100Gi

 storageClassName: gcnv-nfs-sc

To verify if the PVC is bound, run the following command:

107

kubectl get pvc gcnv-nfs-pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

gcnv-nfs-pvc Bound pvc-b00f2414-e229-40e6-9b16-ee03eb79a213 100Gi

RWX gcnv-nfs-sc 1m

Configure a Cloud Volumes Service for Google Cloud backend

Learn how to configure NetApp Cloud Volumes Service for Google Cloud as the backend

for your Trident installation using the sample configurations provided.

Google Cloud driver details

Trident provides the gcp-cvs driver to communicate with the cluster. Supported access modes are:

ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWriteOncePod (RWOP).

Driver Protocol volumeMode Access modes supported File systems supported

gcp-cvs NFS Filesystem RWO, ROX, RWX, RWOP nfs

Learn about Trident support for Cloud Volumes Service for Google Cloud

Trident can create Cloud Volumes Service volumes in one of two service types:

• CVS-Performance: The default Trident service type. This performance-optimized service type is best

suited for production workloads that value performance. The CVS-Performance service type is a hardware

option supporting volumes with a minimum 100 GiB size. You can choose one of three service levels:

◦ standard

◦ premium

◦ extreme

• CVS: The CVS service type provides high zonal availability with limited to moderate performance levels.

The CVS service type is a software option that uses storage pools to support volumes as small as 1 GiB.

The storage pool can contain up to 50 volumes where all volumes share the capacity and performance of

the pool. You can choose one of two service levels:

◦ standardsw

◦ zoneredundantstandardsw

What you’ll need

To configure and use the Cloud Volumes Service for Google Cloud backend, you need the following:

• A Google Cloud account configured with NetApp Cloud Volumes Service

• Project number of your Google Cloud account

• Google Cloud service account with the netappcloudvolumes.admin role

108

https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-types
https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-levels#service_levels_for_the_cvs-performance_service_type
https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-levels#service_levels_for_the_cvs_service_type
https://cloud.netapp.com/cloud-volumes-service-for-gcp?utm_source=NetAppTrident_ReadTheDocs&utm_campaign=Trident

• API key file for your Cloud Volumes Service account

Backend configuration options

Each backend provisions volumes in a single Google Cloud region. To create volumes in other regions, you

can define additional backends.

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver "gcp-cvs"

backendName Custom name or the storage backend Driver name + "_" + part

of API key

storageClass Optional parameter used to specify the CVS service

type.

Use software to select the CVS service type.

Otherwise, Trident assumes CVS-Performance

service type (hardware).

storagePools CVS service type only. Optional parameter used to

specify storage pools for volume creation.

projectNumber Google Cloud account project number. The value is

found on the Google Cloud portal home page.

hostProjectNumber Required if using a shared VPC network. In this

scenario, projectNumber is the service project, and

hostProjectNumber is the host project.

apiRegion The Google Cloud region where Trident creates Cloud

Volumes Service volumes. When creating cross-

region Kubernetes clusters, volumes created in an

apiRegion can be used in workloads scheduled on

nodes across multiple Google Cloud regions.

Cross-region traffic incurs an additional cost.

apiKey API key for the Google Cloud service account with the

netappcloudvolumes.admin role.

It includes the JSON-formatted contents of a Google

Cloud service account’s private key file (copied

verbatim into the backend configuration file).

proxyURL Proxy URL if proxy server required to connect to CVS

account. The proxy server can either be an HTTP

proxy or an HTTPS proxy.

For an HTTPS proxy, certificate validation is skipped

to allow the usage of self-signed certificates in the

proxy server.

Proxy servers with authentication enabled are not

supported.

109

Parameter Description Default

nfsMountOptions Fine-grained control of NFS mount options. "nfsvers=3"

limitVolumeSize Fail provisioning if the requested volume size is above

this value.

"" (not enforced by

default)

serviceLevel The CVS-Performance or CVS service level for new

volumes.

CVS-Performance values are standard, premium,

or extreme.

CVS values are standardsw or

zoneredundantstandardsw.

CVS-Performance default

is "standard".

CVS default is

"standardsw".

network Google Cloud network used for Cloud Volumes

Service volumes.

"default"

debugTraceFlags Debug flags to use when troubleshooting. Example,

\{"api":false, "method":true}.

Do not use this unless you are troubleshooting and

require a detailed log dump.

null

allowedTopologies To enable cross-region access, your StorageClass

definition for allowedTopologies must include all

regions.

For example:

- key: topology.kubernetes.io/region

values:

- us-east1

- europe-west1

Volume provisioning options

You can control default volume provisioning in the defaults section of the configuration file.

Parameter Description Default

exportRule The export rules for new volumes.

Must be a comma-separated list of

any combination of IPv4 addresses

or IPv4 subnets in CIDR notation.

"0.0.0.0/0"

snapshotDir Access to the .snapshot directory "false"

snapshotReserve Percentage of volume reserved for

snapshots

"" (accept CVS default of 0)

size The size of new volumes.

CVS-Performance minimum is 100

GiB.

CVS minimum is 1 GiB.

CVS-Performance service type

defaults to "100GiB".

CVS service type does not set a

default but requires a 1 GiB

minimum.

110

CVS-Performance service type examples

The following examples provide sample configurations for the CVS-Performance service type.

Example 1: Minimal configuration

This is the minimum backend configuration using default CVS-Performance service type with the default

"standard" service level.

version: 1

storageDriverName: gcp-cvs

projectNumber: '012345678901'

apiRegion: us-west2

apiKey:

 type: service_account

 project_id: my-gcp-project

 private_key_id: "<id_value>"

 private_key: |

 -----BEGIN PRIVATE KEY-----

 <key_value>

 -----END PRIVATE KEY-----

 client_email: cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com

 client_id: '123456789012345678901'

 auth_uri: https://accounts.google.com/o/oauth2/auth

 token_uri: https://oauth2.googleapis.com/token

 auth_provider_x509_cert_url:

https://www.googleapis.com/oauth2/v1/certs

 client_x509_cert_url:

https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com

111

Example 2: Service level configuration

This sample illustrates backend configuration options, including service level, and volume defaults.

version: 1

storageDriverName: gcp-cvs

projectNumber: '012345678901'

apiRegion: us-west2

apiKey:

 type: service_account

 project_id: my-gcp-project

 private_key_id: "<id_value>"

 private_key: |

 -----BEGIN PRIVATE KEY-----

 <key_value>

 -----END PRIVATE KEY-----

 client_email: cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com

 client_id: '123456789012345678901'

 auth_uri: https://accounts.google.com/o/oauth2/auth

 token_uri: https://oauth2.googleapis.com/token

 auth_provider_x509_cert_url:

https://www.googleapis.com/oauth2/v1/certs

 client_x509_cert_url:

https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com

proxyURL: http://proxy-server-hostname/

nfsMountOptions: vers=3,proto=tcp,timeo=600

limitVolumeSize: 10Ti

serviceLevel: premium

defaults:

 snapshotDir: 'true'

 snapshotReserve: '5'

 exportRule: 10.0.0.0/24,10.0.1.0/24,10.0.2.100

 size: 5Ti

112

Example 3: Virtual pool configuration

This sample uses storage to configure virtual pools and the StorageClasses that refer back to them.

Refer to Storage class definitions to see how the storage classes were defined.

Here, specific defaults are set for all virtual pools, which set the snapshotReserve at 5% and the

exportRule to 0.0.0.0/0. The virtual pools are defined in the storage section. Each individual virtual

pool defines its own serviceLevel, and some pools overwrite the default values. Virtual pool labels

were used to differentiate the pools based on performance and protection.

version: 1

storageDriverName: gcp-cvs

projectNumber: '012345678901'

apiRegion: us-west2

apiKey:

 type: service_account

 project_id: my-gcp-project

 private_key_id: "<id_value>"

 private_key: |

 -----BEGIN PRIVATE KEY-----

 <key_value>

 -----END PRIVATE KEY-----

 client_email: cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com

 client_id: '123456789012345678901'

 auth_uri: https://accounts.google.com/o/oauth2/auth

 token_uri: https://oauth2.googleapis.com/token

 auth_provider_x509_cert_url:

https://www.googleapis.com/oauth2/v1/certs

 client_x509_cert_url:

https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com

nfsMountOptions: vers=3,proto=tcp,timeo=600

defaults:

 snapshotReserve: '5'

 exportRule: 0.0.0.0/0

labels:

 cloud: gcp

region: us-west2

storage:

- labels:

 performance: extreme

 protection: extra

 serviceLevel: extreme

 defaults:

 snapshotDir: 'true'

113

 snapshotReserve: '10'

 exportRule: 10.0.0.0/24

- labels:

 performance: extreme

 protection: standard

 serviceLevel: extreme

- labels:

 performance: premium

 protection: extra

 serviceLevel: premium

 defaults:

 snapshotDir: 'true'

 snapshotReserve: '10'

- labels:

 performance: premium

 protection: standard

 serviceLevel: premium

- labels:

 performance: standard

 serviceLevel: standard

Storage class definitions

The following StorageClass definitions apply to the virtual pool configuration example. Using

parameters.selector, you can specify for each StorageClass the virtual pool used to host a volume. The

volume will have the aspects defined in the chosen pool.

114

Storage class example

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-extreme-extra-protection

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=extreme; protection=extra"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-extreme-standard-protection

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=premium; protection=standard"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-premium-extra-protection

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=premium; protection=extra"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-premium

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=premium; protection=standard"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-standard

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=standard"

allowVolumeExpansion: true

115

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-extra-protection

provisioner: csi.trident.netapp.io

parameters:

 selector: "protection=extra"

allowVolumeExpansion: true

• The first StorageClass (cvs-extreme-extra-protection) maps to the first virtual pool. This is the only

pool offering extreme performance with a snapshot reserve of 10%.

• The last StorageClass (cvs-extra-protection) calls out any storage pool which provides a snapshot

reserve of 10%. Trident decides which virtual pool is selected and ensures that the snapshot reserve

requirement is met.

CVS service type examples

The following examples provide sample configurations for the CVS service type.

116

Example 1: Minimum configuration

This is the minimum backend configuration using storageClass to specify the CVS service type and

default standardsw service level.

version: 1

storageDriverName: gcp-cvs

projectNumber: '012345678901'

storageClass: software

apiRegion: us-east4

apiKey:

 type: service_account

 project_id: my-gcp-project

 private_key_id: "<id_value>"

 private_key: |

 -----BEGIN PRIVATE KEY-----

 <key_value>

 -----END PRIVATE KEY-----

 client_email: cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com

 client_id: '123456789012345678901'

 auth_uri: https://accounts.google.com/o/oauth2/auth

 token_uri: https://oauth2.googleapis.com/token

 auth_provider_x509_cert_url:

https://www.googleapis.com/oauth2/v1/certs

 client_x509_cert_url:

https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com

serviceLevel: standardsw

117

Example 2: Storage pool configuration

This sample backend configuration uses storagePools to configure a storage pool.

version: 1

storageDriverName: gcp-cvs

backendName: gcp-std-so-with-pool

projectNumber: '531265380079'

apiRegion: europe-west1

apiKey:

 type: service_account

 project_id: cloud-native-data

 private_key_id: "<id_value>"

 private_key: |-

 -----BEGIN PRIVATE KEY-----

 <key_value>

 -----END PRIVATE KEY-----

 client_email: cloudvolumes-admin-sa@cloud-native-

data.iam.gserviceaccount.com

 client_id: '107071413297115343396'

 auth_uri: https://accounts.google.com/o/oauth2/auth

 token_uri: https://oauth2.googleapis.com/token

 auth_provider_x509_cert_url:

https://www.googleapis.com/oauth2/v1/certs

 client_x509_cert_url:

https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40cloud-native-data.iam.gserviceaccount.com

storageClass: software

zone: europe-west1-b

network: default

storagePools:

- 1bc7f380-3314-6005-45e9-c7dc8c2d7509

serviceLevel: Standardsw

What’s next?

After you create the backend configuration file, run the following command:

tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to

determine the cause by running the following command:

118

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Configure a NetApp HCI or SolidFire backend

Learn how to create and use an Element backend with your Trident installation.

Element driver details

Trident provides the solidfire-san storage driver to communicate with the cluster. Supported access

modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWriteOncePod

(RWOP).

The solidfire-san storage driver supports file and block volume modes. For the Filesystem

volumeMode, Trident creates a volume and creates a filesystem. The filesystem type is specified by the

StorageClass.

Driver Protocol VolumeMode Access modes

supported

File systems

supported

solidfire-san iSCSI Block RWO, ROX, RWX,

RWOP

No Filesystem. Raw

block device.

solidfire-san iSCSI Filesystem RWO, RWOP xfs, ext3, ext4

Before you begin

You’ll need the following before creating an Element backend.

• A supported storage system that runs Element software.

• Credentials to a NetApp HCI/SolidFire cluster admin or tenant user that can manage volumes.

• All of your Kubernetes worker nodes should have the appropriate iSCSI tools installed. Refer to worker

node preparation information.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver Always “solidfire-san”

backendName Custom name or the storage

backend

“solidfire_” + storage (iSCSI) IP

address

Endpoint MVIP for the SolidFire cluster with

tenant credentials

119

Parameter Description Default

SVIP Storage (iSCSI) IP address and

port

labels Set of arbitrary JSON-formatted

labels to apply on volumes.

“”

TenantName Tenant name to use (created if not

found)

InitiatorIFace Restrict iSCSI traffic to a specific

host interface

“default”

UseCHAP Use CHAP to authenticate iSCSI.

Trident uses CHAP.

true

AccessGroups List of Access Group IDs to use Finds the ID of an access group

named “trident”

Types QoS specifications

limitVolumeSize Fail provisioning if requested

volume size is above this value

“” (not enforced by default)

debugTraceFlags Debug flags to use when

troubleshooting. Example,

{“api”:false, “method”:true}

null

Do not use debugTraceFlags unless you are troubleshooting and require a detailed log dump.

Example 1: Backend configuration for solidfire-san driver with three volume types

This example shows a backend file using CHAP authentication and modeling three volume types with specific

QoS guarantees. Most likely you would then define storage classes to consume each of these using the IOPS

storage class parameter.

120

version: 1

storageDriverName: solidfire-san

Endpoint: https://<user>:<password>@<mvip>/json-rpc/8.0

SVIP: "<svip>:3260"

TenantName: "<tenant>"

labels:

 k8scluster: dev1

 backend: dev1-element-cluster

UseCHAP: true

Types:

- Type: Bronze

 Qos:

 minIOPS: 1000

 maxIOPS: 2000

 burstIOPS: 4000

- Type: Silver

 Qos:

 minIOPS: 4000

 maxIOPS: 6000

 burstIOPS: 8000

- Type: Gold

 Qos:

 minIOPS: 6000

 maxIOPS: 8000

 burstIOPS: 10000

Example 2: Backend and storage class configuration for solidfire-san driver with virtual pools

This example shows the backend definition file configured with virtual pools along with StorageClasses that

refer back to them.

Trident copies labels present on a storage pool to the backend storage LUN at provisioning. For convenience,

storage administrators can define labels per virtual pool and group volumes by label.

In the sample backend definition file shown below, specific defaults are set for all storage pools, which set the

type at Silver. The virtual pools are defined in the storage section. In this example, some of the storage

pools set their own type, and some pools override the default values set above.

version: 1

storageDriverName: solidfire-san

Endpoint: https://<user>:<password>@<mvip>/json-rpc/8.0

SVIP: "<svip>:3260"

TenantName: "<tenant>"

UseCHAP: true

121

Types:

- Type: Bronze

 Qos:

 minIOPS: 1000

 maxIOPS: 2000

 burstIOPS: 4000

- Type: Silver

 Qos:

 minIOPS: 4000

 maxIOPS: 6000

 burstIOPS: 8000

- Type: Gold

 Qos:

 minIOPS: 6000

 maxIOPS: 8000

 burstIOPS: 10000

type: Silver

labels:

 store: solidfire

 k8scluster: dev-1-cluster

region: us-east-1

storage:

- labels:

 performance: gold

 cost: '4'

 zone: us-east-1a

 type: Gold

- labels:

 performance: silver

 cost: '3'

 zone: us-east-1b

 type: Silver

- labels:

 performance: bronze

 cost: '2'

 zone: us-east-1c

 type: Bronze

- labels:

 performance: silver

 cost: '1'

 zone: us-east-1d

The following StorageClass definitions refer to the above virtual pools. Using the parameters.selector

field, each StorageClass calls out which virtual pool(s) can be used to host a volume. The volume will have the

aspects defined in the chosen virtual pool.

122

The first StorageClass (solidfire-gold-four) will map to the first virtual pool. This is the only pool offering

gold performance with a Volume Type QoS of Gold. The last StorageClass (solidfire-silver) calls out

any storage pool which offers a silver performance. Trident will decide which virtual pool is selected and

ensures the storage requirement is met.

123

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-gold-four

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=gold; cost=4"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-silver-three

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=silver; cost=3"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-bronze-two

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=bronze; cost=2"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-silver-one

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=silver; cost=1"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-silver

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=silver"

 fsType: "ext4"

124

Find more information

• Volume access groups

ONTAP SAN drivers

ONTAP SAN driver overview

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP

SAN drivers.

ONTAP SAN driver details

Trident provides the following SAN storage drivers to communicate with the ONTAP cluster. Supported access

modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWriteOncePod

(RWOP).

Driver Protocol volumeMod

e

Access modes

supported

File systems supported

ontap-san iSCSI Block RWO, ROX, RWX, RWOP No filesystem; raw block

device

ontap-san iSCSI Filesystem RWO, RWOP

ROX and RWX are not

available in Filesystem

volume mode.

xfs, ext3, ext4

ontap-san NVMe/TCP

Refer to

Additional

consideratio

ns for

NVMe/TCP.

Block RWO, ROX, RWX, RWOP No filesystem; raw block

device

ontap-san NVMe/TCP

Refer to

Additional

consideratio

ns for

NVMe/TCP.

Filesystem RWO, RWOP

ROX and RWX are not

available in Filesystem

volume mode.

xfs, ext3, ext4

ontap-san-economy iSCSI Block RWO, ROX, RWX, RWOP No filesystem; raw block

device

125

Driver Protocol volumeMod

e

Access modes

supported

File systems supported

ontap-san-economy iSCSI Filesystem RWO, RWOP

ROX and RWX are not

available in Filesystem

volume mode.

xfs, ext3, ext4

• Use ontap-san-economy only if persistent volume usage count is expected to be higher

than supported ONTAP volume limits.

• Use ontap-nas-economy only if persistent volume usage count is expected to be higher

than supported ONTAP volume limits and the ontap-san-economy driver cannot be used.

• Do not use use ontap-nas-economy if you anticipate the need for data protection,

disaster recovery, or mobility.

User permissions

Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster user or a

vsadmin SVM user, or a user with a different name that has the same role. For Amazon FSx for NetApp

ONTAP deployments, Trident expects to be run as either an ONTAP or SVM administrator, using the cluster

fsxadmin user or a vsadmin SVM user, or a user with a different name that has the same role. The

fsxadmin user is a limited replacement for the cluster admin user.

If you use the limitAggregateUsage parameter, cluster admin permissions are required.

When using Amazon FSx for NetApp ONTAP with Trident, the limitAggregateUsage

parameter will not work with the vsadmin and fsxadmin user accounts. The configuration

operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don’t

recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,

making upgrades difficult and error-prone.

Additional considerations for NVMe/TCP

Trident supports the non-volatile memory express (NVMe) protocol using the ontap-san driver including:

• IPv6

• Snapshots and clones of NVMe volumes

• Resizing an NVMe volume

• Importing an NVMe volume that was created outside of Trident so that its lifecycle can be managed by

Trident

• NVMe-native multipathing

• Graceful or ungraceful shutdown of the K8s nodes (24.06)

Trident does not support:

• DH-HMAC-CHAP that is supported by natively by NVMe

126

https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html
https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html

• Device mapper (DM) multipathing

• LUKS encryption

Prepare to configure backend with ONTAP SAN drivers

Understand the requirements and authentication options for configuring an ONTAP

backend with ONTAP SAN drivers.

Requirements

For all ONTAP backends, Trident requires at least one aggregate assigned to the SVM.

Remember that you can also run more than one driver, and create storage classes that point to one or the

other. For example, you could configure a san-dev class that uses the ontap-san driver and a san-

default class that uses the ontap-san-economy one.

All your Kubernetes worker nodes must have the appropriate iSCSI tools installed. Refer to Prepare the worker

node for details.

Authenticate the ONTAP backend

Trident offers two modes of authenticating an ONTAP backend.

• Credential-based: The username and password to an ONTAP user with the required permissions. It is

recommended to use a pre-defined security login role, such as admin or vsadmin to ensure maximum

compatibility with ONTAP versions.

• Certificate-based: Trident can also communicate with an ONTAP cluster using a certificate installed on the

backend. Here, the backend definition must contain Base64-encoded values of the client certificate, key,

and the trusted CA certificate if used (recommended).

You can update existing backends to move between credential-based and certificate-based methods. However,

only one authentication method is supported at a time. To switch to a different authentication method, you must

remove the existing method from the backend configuration.

If you attempt to provide both credentials and certificates, backend creation will fail with an

error that more than one authentication method was provided in the configuration file.

Enable credential-based authentication

Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the ONTAP

backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin. This

ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by future

Trident releases. A custom security login role can be created and used with Trident, but is not recommended.

A sample backend definition will look like this:

127

YAML

version: 1

backendName: ExampleBackend

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: svm_nfs

username: vsadmin

password: password

JSON

{

 "version": 1,

 "backendName": "ExampleBackend",

 "storageDriverName": "ontap-san",

 "managementLIF": "10.0.0.1",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "password"

}

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the

backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The

creation or update of a backend is the only step that requires knowledge of the credentials. As such, it is an

admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three

parameters are required in the backend definition.

• clientCertificate: Base64-encoded value of client certificate.

• clientPrivateKey: Base64-encoded value of associated private key.

• trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter

must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to

authenticate as.

128

openssl req -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key

-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=admin"

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage

administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-

name> -vserver <vserver-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled

true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-

name> -vserver <vserver-name>

security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name admin -application ontapi

-authentication-method cert

security login create -user-or-group-name admin -application http

-authentication-method cert

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>

with Management LIF IP and SVM name.

curl -X POST -Lk https://<ONTAP-Management-

LIF>/servlets/netapp.servlets.admin.XMLrequest_filer --key k8senv.key

--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp

xmlns="http://www.netapp.com/filer/admin" version="1.21"

vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert_base64

base64 -w 0 k8senv.key >> key_base64

base64 -w 0 trustedca.pem >> trustedca_base64

7. Create backend using the values obtained from the previous step.

129

cat cert-backend.json

{

"version": 1,

"storageDriverName": "ontap-san",

"backendName": "SanBackend",

"managementLIF": "1.2.3.4",

"svm": "vserver_test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",

"clientPrivateKey": "LS0tFaKE...0VaLuES0tLS0K",

"trustedCACertificate": "QNFinfO...SiqOyN",

"storagePrefix": "myPrefix_"

}

tridentctl create backend -f cert-backend.json -n trident

+------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| SanBackend | ontap-san | 586b1cd5-8cf8-428d-a76c-2872713612c1 |

online | 0 |

+------------+----------------+--------------------------------------

+--------+---------+

Update authentication methods or rotate credentials

You can update an existing backend to use a different authentication method or to rotate their credentials. This

works both ways: backends that make use of username/password can be updated to use certificates;

backends that utilize certificates can be updated to username/password based. To do this, you must remove

the existing authentication method and add the new authentication method. Then use the updated

backend.json file containing the required parameters to execute tridentctl backend update.

130

cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-san",

"backendName": "SanBackend",

"managementLIF": "1.2.3.4",

"svm": "vserver_test",

"username": "vsadmin",

"password": "password",

"storagePrefix": "myPrefix_"

}

#Update backend with tridentctl

tridentctl update backend SanBackend -f cert-backend-updated.json -n

trident

+------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| SanBackend | ontap-san | 586b1cd5-8cf8-428d-a76c-2872713612c1 |

online | 9 |

+------------+----------------+--------------------------------------

+--------+---------+

When rotating passwords, the storage administrator must first update the password for the user

on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates

can be added to the user. The backend is then updated to use the new certificate, following

which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume

connections made after. A successful backend update indicates that Trident can communicate with the ONTAP

backend and handle future volume operations.

Create custom ONTAP role for Trident

You can create an ONTAP cluster role with minimum privileges so that you do not have to use the ONTAP

admin role to perform operations in Trident. When you include the username in a Trident backend

configuration, Trident uses the ONTAP cluster role you created to perform the operations.

Refer to Trident custom-role generator for more information about creating Trident custom roles.

131

https://github.com/NetApp/trident/tree/master/contrib/ontap/trident_role

Using ONTAP CLI

1. Create a new role using the following command:

security login role create <role_name\> -cmddirname "command" -access all

–vserver <svm_name\>

2. Create a usename for the Trident user:

security login create -username <user_name\> -application ontapi

-authmethod <password\> -role <name_of_role_in_step_1\> –vserver

<svm_name\> -comment "user_description"

3. Map the role to the user:

security login modify username <user_name\> –vserver <svm_name\> -role

<role_name\> -application ontapi -application console -authmethod

<password\>

Using System Manager

Perform the following steps in ONTAP System Manager:

1. Create a custom role:

a. To create a custom role at the cluster-level, select Cluster > Settings.

(Or) To create a custom role at the SVM level, select Storage > Storage VMs > required SVM>

Settings > Users and Roles.

b. Select the arrow icon (→) next to Users and Roles.

c. Select +Add under Roles.

d. Define the rules for the role and click Save.

2. Map the role to the Trident user:

+ Perform the following steps on the Users and Roles page:

a. Select Add icon + under Users.

b. Select the required username, and select a role in the drop-down menu for Role.

c. Click Save.

Refer to the following pages for more information:

• Custom roles for administration of ONTAP or Define custom roles

• Work with roles and users

Authenticate connections with bidirectional CHAP

Trident can authenticate iSCSI sessions with bidirectional CHAP for the ontap-san and ontap-san-

economy drivers. This requires enabling the useCHAP option in your backend definition. When set to true,

Trident configures the SVM’s default initiator security to bidirectional CHAP and set the username and secrets

from the backend file. NetApp recommends using bidirectional CHAP to authenticate connections. See the

following sample configuration:

132

https://kb.netapp.com/on-prem/ontap/Ontap_OS/OS-KBs/FAQ__Custom_roles_for_administration_of_ONTAP
https://docs.netapp.com/us-en/ontap/authentication/define-custom-roles-task.html
https://docs.netapp.com/us-en/ontap-automation/rest/rbac_roles_users.html#rest-api

version: 1

storageDriverName: ontap-san

backendName: ontap_san_chap

managementLIF: 192.168.0.135

svm: ontap_iscsi_svm

useCHAP: true

username: vsadmin

password: password

chapInitiatorSecret: cl9qxIm36DKyawxy

chapTargetInitiatorSecret: rqxigXgkesIpwxyz

chapTargetUsername: iJF4heBRT0TCwxyz

chapUsername: uh2aNCLSd6cNwxyz

The useCHAP parameter is a Boolean option that can be configured only once. It is set to false

by default. After you set it to true, you cannot set it to false.

In addition to useCHAP=true, the chapInitiatorSecret, chapTargetInitiatorSecret,

chapTargetUsername, and chapUsername fields must be included in the backend definition. The secrets

can be changed after a backend is created by running tridentctl update.

How it works

By setting useCHAP to true, the storage administrator instructs Trident to configure CHAP on the storage

backend. This includes the following:

• Setting up CHAP on the SVM:

◦ If the SVM’s default initiator security type is none (set by default) and there are no pre-existing LUNs

already present in the volume, Trident will set the default security type to CHAP and proceed to

configuring the CHAP initiator and target username and secrets.

◦ If the SVM contains LUNs, Trident will not enable CHAP on the SVM. This ensures that access to

LUNs that are already present on the SVM isn’t restricted.

• Configuring the CHAP initiator and target username and secrets; these options must be specified in the

backend configuration (as shown above).

After the backend is created, Trident creates a corresponding tridentbackend CRD and stores the CHAP

secrets and usernames as Kubernetes secrets. All PVs that are created by Trident on this backend will be

mounted and attached over CHAP.

Rotate credentials and update backends

You can update the CHAP credentials by updating the CHAP parameters in the backend.json file. This will

require updating the CHAP secrets and using the tridentctl update command to reflect these changes.

When updating the CHAP secrets for a backend, you must use tridentctl to update the

backend. Do not update the credentials on the storage cluster through the CLI/ONTAP UI as

Trident will not be able to pick up these changes.

133

cat backend-san.json

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "ontap_san_chap",

 "managementLIF": "192.168.0.135",

 "svm": "ontap_iscsi_svm",

 "useCHAP": true,

 "username": "vsadmin",

 "password": "password",

 "chapInitiatorSecret": "cl9qxUpDaTeD",

 "chapTargetInitiatorSecret": "rqxigXgkeUpDaTeD",

 "chapTargetUsername": "iJF4heBRT0TCwxyz",

 "chapUsername": "uh2aNCLSd6cNwxyz",

}

./tridentctl update backend ontap_san_chap -f backend-san.json -n trident

+----------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+----------------+----------------+--------------------------------------

+--------+---------+

| ontap_san_chap | ontap-san | aa458f3b-ad2d-4378-8a33-1a472ffbeb5c |

online | 7 |

+----------------+----------------+--------------------------------------

+--------+---------+

Existing connections will remain unaffected; they will continue to remain active if the credentials are updated by

Trident on the SVM. New connections use the updated credentials and existing connections continue to remain

active. Disconnecting and reconnecting old PVs will result in them using the updated credentials.

ONTAP SAN configuration options and examples

Learn how to create and use ONTAP SAN drivers with your Trident installation. This

section provides backend configuration examples and details for mapping backends to

StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

134

Parameter Description Default

storageDrive

rName

Name of the storage driver ontap-nas, ontap-nas-

economy, ontap-nas-

flexgroup, ontap-san, ontap-

san-economy

backendName Custom name or the storage backend Driver name + "_" + dataLIF

managementLI

F

IP address of a cluster or SVM management LIF.

A fully-qualified domain name (FQDN) can be

specified.

Can be set to use IPv6 addresses if Trident was

installed using the IPv6 flag. IPv6 addresses must be

defined in square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555

].

For seamless MetroCluster switchover, see the [mcc-

best].

“10.0.0.1”, “[2001:1234:abcd::fefe]”

dataLIF IP address of protocol LIF.

Do not specify for iSCSI. Trident uses ONTAP

Selective LUN Map to discover the iSCI LIFs needed

to establish a multi path session. A warning is

generated if dataLIF is explicitly defined.

Omit for Metrocluster. See the [mcc-best].

Derived by the SVM

svm Storage virtual machine to use

Omit for Metrocluster. See the [mcc-best].

Derived if an SVM

managementLIF is specified

useCHAP Use CHAP to authenticate iSCSI for ONTAP SAN

drivers [Boolean].

Set to true for Trident to configure and use

bidirectional CHAP as the default authentication for

the SVM given in the backend. Refer to Prepare to

configure backend with ONTAP SAN drivers for

details.

false

chapInitiato

rSecret

CHAP initiator secret. Required if useCHAP=true ""

labels Set of arbitrary JSON-formatted labels to apply on

volumes

""

chapTargetIn

itiatorSecre

t

CHAP target initiator secret. Required if

useCHAP=true

""

chapUsername Inbound username. Required if useCHAP=true ""

135

https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html
https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html

Parameter Description Default

chapTargetUs

ername

Target username. Required if useCHAP=true ""

clientCertif

icate

Base64-encoded value of client certificate. Used for

certificate-based auth

""

clientPrivat

eKey

Base64-encoded value of client private key. Used for

certificate-based auth

""

trustedCACer

tificate

Base64-encoded value of trusted CA certificate.

Optional. Used for certificate-based authentication.

""

username Username needed to communicate with the ONTAP

cluster. Used for credential-based authentication.

""

password Password needed to communicate with the ONTAP

cluster. Used for credential-based authentication.

""

svm Storage virtual machine to use Derived if an SVM

managementLIF is specified

storagePrefi

x

Prefix used when provisioning new volumes in the

SVM.

Cannot be modified later. To update this parameter,

you will need to create a new backend.

trident

aggregate Aggregate for provisioning (optional; if set, must be

assigned to the SVM). For the ontap-nas-

flexgroup driver, this option is ignored. If not

assigned, any of the available aggregates can be

used to provision a FlexGroup volume.

When the aggregate is updated in

SVM, it is updated in Trident

automatically by polling SVM without

having to restart the Trident Controller.

When you have configured a specific

aggregate in Trident to provision

volumes, if the aggregate is renamed

or moved out of the SVM, the backend

will move to failed state in Trident while

polling the SVM aggregate. You must

either change the aggregate to one that

is present on the SVM or remove it

altogether to bring the backend back

online.

""

136

Parameter Description Default

limitAggrega

teUsage

Fail provisioning if usage is above this percentage.

If you are using an Amazon FSx for NetApp ONTAP

backend, do not specify limitAggregateUsage.

The provided fsxadmin and vsadmin do not contain

the permissions required to retrieve aggregate usage

and limit it using Trident.

"" (not enforced by default)

limitVolumeS

ize

Fail provisioning if requested volume size is above

this value.

Also restricts the maximum size of the volumes it

manages for LUNs.

"" (not enforced by default)

lunsPerFlexv

ol

Maximum LUNs per Flexvol, must be in range [50,

200]
100

debugTraceFl

ags

Debug flags to use when troubleshooting. Example,

{"api":false, "method":true}

Do not use unless you are troubleshooting and require

a detailed log dump.

null

useREST Boolean parameter to use ONTAP REST APIs.

useREST When set to true, Trident uses ONTAP

REST APIs to communicate with the backend; when

set to false, Trident uses ONTAP ZAPI calls to

communicate with the backend. This feature requires

ONTAP 9.11.1 and later. In addition, the ONTAP login

role used must have access to the ontap application.

This is satisfied by the pre-defined vsadmin and

cluster-admin roles. Beginning with the Trident

24.06 release and ONTAP 9.15.1 or later, userREST

is set to true by default; change useREST to false

to use ONTAP ZAPI calls.

useREST is fully qualified for NVMe/TCP.

true for ONTAP 9.15.1 or later,

otherwise false.

sanType Use to select iscsi for iSCSI, nvme for NVMe/TCP

or fcp for SCSI over Fibre Channel (FC).

'fcp' (SCSI over FC) is a tech preview feature in the

Trident 24.10 release.

iscsi if blank

137

Parameter Description Default

formatOption

s

Use formatOptions to specify command line

arguments for the mkfs command, which will be

applied whenever a volume is formatted. This allows

you to format the volume according to your

preferences. Make sure to specify the formatOptions

similar to that of the mkfs command options,

excluding the device path.

Example: "-E nodiscard"

Supported for ontap-san and ontap-san-

economy drivers only.

limitVolumeP

oolSize

Maximum requestable FlexVol size when using LUNs

in ontap-san-economy backend.

"" (not enforced by default)

denyNewVolum

ePools

Restricts ontap-san-economy backends from

creating new FlexVol volumes to contain their LUNs.

Only preexisting Flexvols are used for provisioning

new PVs.

Recommendations for using formatOptions

Trident recommends the following option to expedite the formatting process:

-E nodiscard:

• Keep, do not attempt to discard blocks at mkfs time (discarding blocks initially is useful on solid state

devices and sparse / thin-provisioned storage). This replaces the deprecated option “-K” and it is applicable

to all the file systems (xfs, ext3, and ext4).

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an

example, see the configuration examples below.

Parameter Description Default

spaceAllocat

ion

Space-allocation for LUNs "true"

spaceReserve Space reservation mode; "none" (thin) or "volume"

(thick)

"none"

snapshotPoli

cy

Snapshot policy to use "none"

138

Parameter Description Default

qosPolicy QoS policy group to assign for volumes created.

Choose one of qosPolicy or adaptiveQosPolicy per

storage pool/backend.

Using QoS policy groups with Trident requires ONTAP

9.8 or later. You should use a non-shared QoS policy

group and ensuring the policy group is applied to each

constituent individually. A shared QoS policy group

enforces the ceiling for the total throughput of all

workloads.

""

adaptiveQosP

olicy

Adaptive QoS policy group to assign for volumes

created. Choose one of qosPolicy or

adaptiveQosPolicy per storage pool/backend

""

snapshotRese

rve

Percentage of volume reserved for snapshots "0" if snapshotPolicy is "none",

otherwise ""

splitOnClone Split a clone from its parent upon creation "false"

encryption Enable NetApp Volume Encryption (NVE) on the new

volume; defaults to false. NVE must be licensed and

enabled on the cluster to use this option.

If NAE is enabled on the backend, any volume

provisioned in Trident will be NAE enabled.

For more information, refer to: How Trident works with

NVE and NAE.

"false"

luksEncrypti

on

Enable LUKS encryption. Refer to Use Linux Unified

Key Setup (LUKS).

LUKS encryption is not supported for NVMe/TCP.

""

securityStyl

e

Security style for new volumes unix

tieringPolic

y

Tiering policy to use "none" "snapshot-only" for pre-ONTAP 9.5

SVM-DR configuration

nameTemplate Template to create custom volume names. ""

Volume provisioning examples

Here’s an example with defaults defined:

139

version: 1

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: trident_svm

username: admin

password: <password>

labels:

 k8scluster: dev2

 backend: dev2-sanbackend

storagePrefix: alternate-trident

debugTraceFlags:

 api: false

 method: true

defaults:

 spaceReserve: volume

 qosPolicy: standard

 spaceAllocation: 'false'

 snapshotPolicy: default

 snapshotReserve: '10'

For all volumes created using the ontap-san driver, Trident adds an extra 10 percent capacity

to the FlexVol to accommodate the LUN metadata. The LUN will be provisioned with the exact

size that the user requests in the PVC. Trident adds 10 percent to the FlexVol (shows as

Available size in ONTAP). Users will now get the amount of usable capacity they requested. This

change also prevents LUNs from becoming read-only unless the available space is fully utilized.

This does not apply to ontap-san-economy.

For backends that define snapshotReserve, Trident calculates the size of volumes as follows:

Total volume size = [(PVC requested size) / (1 - (snapshotReserve

percentage) / 100)] * 1.1

The 1.1 is the extra 10 percent Trident adds to the FlexVol to accommodate the LUN metadata. For

snapshotReserve = 5%, and PVC request = 5GiB, the total volume size is 5.79GiB and the available size is

5.5GiB. The volume show command should show results similar to this example:

140

Currently, resizing is the only way to use the new calculation for an existing volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest

way to define a backend.

If you are using Amazon FSx on NetApp ONTAP with Trident, we recommend you specify DNS

names for LIFs instead of IP addresses.

ONTAP SAN example

This is a basic configuration using the ontap-san driver.

version: 1

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: svm_iscsi

labels:

 k8scluster: test-cluster-1

 backend: testcluster1-sanbackend

username: vsadmin

password: <password>

ONTAP SAN economy example

version: 1

storageDriverName: ontap-san-economy

managementLIF: 10.0.0.1

svm: svm_iscsi_eco

username: vsadmin

password: <password>

1. example

141

You can configure the backend to avoid having to manually update the backend definition after switchover

and switchback during SVM replication and recovery.

For seamless switchover and switchback, specify the SVM using managementLIF and omit the

dataLIF and svm parameters. For example:

version: 1

storageDriverName: ontap-san

managementLIF: 192.168.1.66

username: vsadmin

password: password

Certificate-based authentication example

In this basic configuration example clientCertificate, clientPrivateKey, and

trustedCACertificate (optional, if using trusted CA) are populated in backend.json and take the

base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

version: 1

storageDriverName: ontap-san

backendName: DefaultSANBackend

managementLIF: 10.0.0.1

svm: svm_iscsi

useCHAP: true

chapInitiatorSecret: cl9qxIm36DKyawxy

chapTargetInitiatorSecret: rqxigXgkesIpwxyz

chapTargetUsername: iJF4heBRT0TCwxyz

chapUsername: uh2aNCLSd6cNwxyz

clientCertificate: ZXR0ZXJwYXB...ICMgJ3BhcGVyc2

clientPrivateKey: vciwKIyAgZG...0cnksIGRlc2NyaX

trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz

142

Bidirectional CHAP examples

These examples create a backend with useCHAP set to true.

ONTAP SAN CHAP example

version: 1

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: svm_iscsi

labels:

 k8scluster: test-cluster-1

 backend: testcluster1-sanbackend

useCHAP: true

chapInitiatorSecret: cl9qxIm36DKyawxy

chapTargetInitiatorSecret: rqxigXgkesIpwxyz

chapTargetUsername: iJF4heBRT0TCwxyz

chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

ONTAP SAN economy CHAP example

version: 1

storageDriverName: ontap-san-economy

managementLIF: 10.0.0.1

svm: svm_iscsi_eco

useCHAP: true

chapInitiatorSecret: cl9qxIm36DKyawxy

chapTargetInitiatorSecret: rqxigXgkesIpwxyz

chapTargetUsername: iJF4heBRT0TCwxyz

chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

143

NVMe/TCP example

You must have an SVM configured with NVMe on your ONTAP backend. This is a basic backend

configuration for NVMe/TCP.

version: 1

backendName: NVMeBackend

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: svm_nvme

username: vsadmin

password: password

sanType: nvme

useREST: true

Backend configuration example with nameTemplate

version: 1

storageDriverName: ontap-san

backendName: ontap-san-backend

managementLIF: <ip address>

svm: svm0

username: <admin>

password: <password>

defaults: {

 "nameTemplate":

"{{.volume.Name}}_{{.labels.cluster}}_{{.volume.Namespace}}_{{.volume.R

equestName}}"

},

"labels": {"cluster": "ClusterA", "PVC":

"{{.volume.Namespace}}_{{.volume.RequestName}}"}

144

formatOptions example for ontap-san-economy driver

version: 1

storageDriverName: ontap-san-economy

managementLIF: ''

svm: svm1

username: ''

password: "!"

storagePrefix: whelk_

debugTraceFlags:

 method: true

 api: true

defaults:

 formatOptions: "-E nodiscard"

Examples of backends with virtual pools

In these sample backend definition files, specific defaults are set for all storage pools, such as spaceReserve

at none, spaceAllocation at false, and encryption at false. The virtual pools are defined in the storage

section.

Trident sets provisioning labels in the "Comments" field. Comments are set on the FlexVol. Trident copies all

labels present on a virtual pool to the storage volume at provisioning. For convenience, storage administrators

can define labels per virtual pool and group volumes by label.

In these examples, some of the storage pools set their own spaceReserve, spaceAllocation, and

encryption values, and some pools override the default values.

145

ONTAP SAN example

146

version: 1

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: svm_iscsi

useCHAP: true

chapInitiatorSecret: cl9qxIm36DKyawxy

chapTargetInitiatorSecret: rqxigXgkesIpwxyz

chapTargetUsername: iJF4heBRT0TCwxyz

chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

defaults:

 spaceAllocation: 'false'

 encryption: 'false'

 qosPolicy: standard

labels:

 store: san_store

 kubernetes-cluster: prod-cluster-1

region: us_east_1

storage:

- labels:

 protection: gold

 creditpoints: '40000'

 zone: us_east_1a

 defaults:

 spaceAllocation: 'true'

 encryption: 'true'

 adaptiveQosPolicy: adaptive-extreme

- labels:

 protection: silver

 creditpoints: '20000'

 zone: us_east_1b

 defaults:

 spaceAllocation: 'false'

 encryption: 'true'

 qosPolicy: premium

- labels:

 protection: bronze

 creditpoints: '5000'

 zone: us_east_1c

 defaults:

 spaceAllocation: 'true'

 encryption: 'false'

147

ONTAP SAN economy example

version: 1

storageDriverName: ontap-san-economy

managementLIF: 10.0.0.1

svm: svm_iscsi_eco

useCHAP: true

chapInitiatorSecret: cl9qxIm36DKyawxy

chapTargetInitiatorSecret: rqxigXgkesIpwxyz

chapTargetUsername: iJF4heBRT0TCwxyz

chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

defaults:

 spaceAllocation: 'false'

 encryption: 'false'

labels:

 store: san_economy_store

region: us_east_1

storage:

- labels:

 app: oracledb

 cost: '30'

 zone: us_east_1a

 defaults:

 spaceAllocation: 'true'

 encryption: 'true'

- labels:

 app: postgresdb

 cost: '20'

 zone: us_east_1b

 defaults:

 spaceAllocation: 'false'

 encryption: 'true'

- labels:

 app: mysqldb

 cost: '10'

 zone: us_east_1c

 defaults:

 spaceAllocation: 'true'

 encryption: 'false'

- labels:

 department: legal

 creditpoints: '5000'

 zone: us_east_1c

148

 defaults:

 spaceAllocation: 'true'

 encryption: 'false'

NVMe/TCP example

version: 1

storageDriverName: ontap-san

sanType: nvme

managementLIF: 10.0.0.1

svm: nvme_svm

username: vsadmin

password: <password>

useREST: true

defaults:

 spaceAllocation: 'false'

 encryption: 'true'

storage:

- labels:

 app: testApp

 cost: '20'

 defaults:

 spaceAllocation: 'false'

 encryption: 'false'

Map backends to StorageClasses

The following StorageClass definitions refer to the Examples of backends with virtual pools. Using the

parameters.selector field, each StorageClass calls out which virtual pools can be used to host a volume.

The volume will have the aspects defined in the chosen virtual pool.

• The protection-gold StorageClass will map to the first virtual pool in the ontap-san backend. This is

the only pool offering gold-level protection.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-gold

provisioner: csi.trident.netapp.io

parameters:

 selector: "protection=gold"

 fsType: "ext4"

149

• The protection-not-gold StorageClass will map to the second and third virtual pool in ontap-san

backend. These are the only pools offering a protection level other than gold.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-not-gold

provisioner: csi.trident.netapp.io

parameters:

 selector: "protection!=gold"

 fsType: "ext4"

• The app-mysqldb StorageClass will map to the third virtual pool in ontap-san-economy backend. This

is the only pool offering storage pool configuration for the mysqldb type app.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: app-mysqldb

provisioner: csi.trident.netapp.io

parameters:

 selector: "app=mysqldb"

 fsType: "ext4"

• The protection-silver-creditpoints-20k StorageClass will map to the second virtual pool in

ontap-san backend. This is the only pool offering silver-level protection and 20000 creditpoints.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-silver-creditpoints-20k

provisioner: csi.trident.netapp.io

parameters:

 selector: "protection=silver; creditpoints=20000"

 fsType: "ext4"

• The creditpoints-5k StorageClass will map to the third virtual pool in ontap-san backend and the

fourth virtual pool in the ontap-san-economy backend. These are the only pool offerings with 5000

creditpoints.

150

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: creditpoints-5k

provisioner: csi.trident.netapp.io

parameters:

 selector: "creditpoints=5000"

 fsType: "ext4"

• The my-test-app-sc StorageClass will map to the testAPP virtual pool in the ontap-san driver with

sanType: nvme. This is the only pool offering testApp.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: my-test-app-sc

provisioner: csi.trident.netapp.io

parameters:

 selector: "app=testApp"

 fsType: "ext4"

Trident will decide which virtual pool is selected and ensures the storage requirement is met.

ONTAP NAS drivers

ONTAP NAS driver overview

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP

NAS drivers.

ONTAP NAS driver details

Trident provides the following NAS storage drivers to communicate with the ONTAP cluster. Supported access

modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWriteOncePod

(RWOP).

Driver Protocol volumeMod

e

Access modes

supported

File systems supported

ontap-nas NFS

SMB

Filesystem RWO, ROX, RWX, RWOP "", nfs, smb

ontap-nas-economy NFS

SMB

Filesystem RWO, ROX, RWX, RWOP "", nfs, smb

151

Driver Protocol volumeMod

e

Access modes

supported

File systems supported

ontap-nas-flexgroup NFS

SMB

Filesystem RWO, ROX, RWX, RWOP "", nfs, smb

• Use ontap-san-economy only if persistent volume usage count is expected to be higher

than supported ONTAP volume limits.

• Use ontap-nas-economy only if persistent volume usage count is expected to be higher

than supported ONTAP volume limits and the ontap-san-economy driver cannot be used.

• Do not use use ontap-nas-economy if you anticipate the need for data protection,

disaster recovery, or mobility.

User permissions

Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster user or a

vsadmin SVM user, or a user with a different name that has the same role.

For Amazon FSx for NetApp ONTAP deployments, Trident expects to be run as either an ONTAP or SVM

administrator, using the cluster fsxadmin user or a vsadmin SVM user, or a user with a different name that

has the same role. The fsxadmin user is a limited replacement for the cluster admin user.

If you use the limitAggregateUsage parameter, cluster admin permissions are required.

When using Amazon FSx for NetApp ONTAP with Trident, the limitAggregateUsage

parameter will not work with the vsadmin and fsxadmin user accounts. The configuration

operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don’t

recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,

making upgrades difficult and error-prone.

Prepare to configure a backend with ONTAP NAS drivers

Understand the requirements, authentication options, and export policies for configuring

an ONTAP backend with ONTAP NAS drivers.

Requirements

• For all ONTAP backends, Trident requires at least one aggregate assigned to the SVM.

• You can run more than one driver, and create storage classes that point to one or the other. For example,

you could configure a Gold class that uses the ontap-nas driver and a Bronze class that uses the

ontap-nas-economy one.

• All your Kubernetes worker nodes must have the appropriate NFS tools installed. Refer to here for more

details.

• Trident supports SMB volumes mounted to pods running on Windows nodes only. Refer to Prepare to

provision SMB volumes for details.

152

https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html
https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html

Authenticate the ONTAP backend

Trident offers two modes of authenticating an ONTAP backend.

• Credential-based: This mode requires sufficient permissions to the ONTAP backend. It is recommended to

use an account associated with a pre-defined security login role, such as admin or vsadmin to ensure

maximum compatibility with ONTAP versions.

• Certificate-based: This mode requires a certificate installed on the backend for Trident to communicate with

an ONTAP cluster. Here, the backend definition must contain Base64-encoded values of the client

certificate, key, and the trusted CA certificate if used (recommended).

You can update existing backends to move between credential-based and certificate-based methods. However,

only one authentication method is supported at a time. To switch to a different authentication method, you must

remove the existing method from the backend configuration.

If you attempt to provide both credentials and certificates, backend creation will fail with an

error that more than one authentication method was provided in the configuration file.

Enable credential-based authentication

Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the ONTAP

backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin. This

ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by future

Trident releases. A custom security login role can be created and used with Trident, but is not recommended.

A sample backend definition will look like this:

153

YAML

version: 1

backendName: ExampleBackend

storageDriverName: ontap-nas

managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm_nfs

username: vsadmin

password: password

JSON

{

 "version": 1,

 "backendName": "ExampleBackend",

 "storageDriverName": "ontap-nas",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "password"

}

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the

backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The

creation/updation of a backend is the only step that requires knowledge of the credentials. As such, it is an

admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based Authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three

parameters are required in the backend definition.

• clientCertificate: Base64-encoded value of client certificate.

• clientPrivateKey: Base64-encoded value of associated private key.

• trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter

must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to

authenticate as.

154

openssl req -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key

-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=vsadmin"

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage

administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-

name> -vserver <vserver-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled

true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-

name> -vserver <vserver-name>

security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name vsadmin -application ontapi

-authentication-method cert -vserver <vserver-name>

security login create -user-or-group-name vsadmin -application http

-authentication-method cert -vserver <vserver-name>

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>

with Management LIF IP and SVM name. You must ensure the LIF has its service policy set to default-

data-management.

curl -X POST -Lk https://<ONTAP-Management-

LIF>/servlets/netapp.servlets.admin.XMLrequest_filer --key k8senv.key

--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp

xmlns="http://www.netapp.com/filer/admin" version="1.21"

vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert_base64

base64 -w 0 k8senv.key >> key_base64

base64 -w 0 trustedca.pem >> trustedca_base64

155

7. Create backend using the values obtained from the previous step.

cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "NasBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver_test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",

"clientPrivateKey": "LS0tFaKE...0VaLuES0tLS0K",

"storagePrefix": "myPrefix_"

}

#Update backend with tridentctl

tridentctl update backend NasBackend -f cert-backend-updated.json -n

trident

+------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| NasBackend | ontap-nas | 98e19b74-aec7-4a3d-8dcf-128e5033b214 |

online | 9 |

+------------+----------------+--------------------------------------

+--------+---------+

Update authentication methods or rotate credentials

You can update an existing backend to use a different authentication method or to rotate their credentials. This

works both ways: backends that make use of username/password can be updated to use certificates;

backends that utilize certificates can be updated to username/password based. To do this, you must remove

the existing authentication method and add the new authentication method. Then use the updated

backend.json file containing the required parameters to execute tridentctl update backend.

156

cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "NasBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver_test",

"username": "vsadmin",

"password": "password",

"storagePrefix": "myPrefix_"

}

#Update backend with tridentctl

tridentctl update backend NasBackend -f cert-backend-updated.json -n

trident

+------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| NasBackend | ontap-nas | 98e19b74-aec7-4a3d-8dcf-128e5033b214 |

online | 9 |

+------------+----------------+--------------------------------------

+--------+---------+

When rotating passwords, the storage administrator must first update the password for the user

on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates

can be added to the user. The backend is then updated to use the new certificate, following

which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume

connections made after. A successful backend update indicates that Trident can communicate with the ONTAP

backend and handle future volume operations.

Create custom ONTAP role for Trident

You can create an ONTAP cluster role with minimum privileges so that you do not have to use the ONTAP

admin role to perform operations in Trident. When you include the username in a Trident backend

configuration, Trident uses the ONTAP cluster role you created to perform the operations.

Refer to Trident custom-role generator for more information about creating Trident custom roles.

157

https://github.com/NetApp/trident/tree/master/contrib/ontap/trident_role

Using ONTAP CLI

1. Create a new role using the following command:

security login role create <role_name\> -cmddirname "command" -access all

–vserver <svm_name\>

2. Create a usename for the Trident user:

security login create -username <user_name\> -application ontapi

-authmethod <password\> -role <name_of_role_in_step_1\> –vserver

<svm_name\> -comment "user_description"

3. Map the role to the user:

security login modify username <user_name\> –vserver <svm_name\> -role

<role_name\> -application ontapi -application console -authmethod

<password\>

Using System Manager

Perform the following steps in ONTAP System Manager:

1. Create a custom role:

a. To create a custom role at the cluster-level, select Cluster > Settings.

(Or) To create a custom role at the SVM level, select Storage > Storage VMs > required SVM>

Settings > Users and Roles.

b. Select the arrow icon (→) next to Users and Roles.

c. Select +Add under Roles.

d. Define the rules for the role and click Save.

2. Map the role to the Trident user:

+ Perform the following steps on the Users and Roles page:

a. Select Add icon + under Users.

b. Select the required username, and select a role in the drop-down menu for Role.

c. Click Save.

Refer to the following pages for more information:

• Custom roles for administration of ONTAP or Define custom roles

• Work with roles and users

Manage NFS export policies

Trident uses NFS export policies to control access to the volumes that it provisions.

Trident provides two options when working with export policies:

• Trident can dynamically manage the export policy itself; in this mode of operation, the storage administrator

158

https://kb.netapp.com/on-prem/ontap/Ontap_OS/OS-KBs/FAQ__Custom_roles_for_administration_of_ONTAP
https://docs.netapp.com/us-en/ontap/authentication/define-custom-roles-task.html
https://docs.netapp.com/us-en/ontap-automation/rest/rbac_roles_users.html#rest-api

specifies a list of CIDR blocks that represent admissible IP addresses. Trident adds applicable node IPs

that fall in these ranges to the export policy automatically at publish time. Alternatively, when no CIDRs are

specified, all global-scoped unicast IPs found on the node that the volume being published to will be added

to the export policy.

• Storage administrators can create an export policy and add rules manually. Trident uses the default export

policy unless a different export policy name is specified in the configuration.

Dynamically manage export policies

Trident provides the ability to dynamically manage export policies for ONTAP backends. This provides the

storage administrator the ability to specify a permissible address space for worker node IPs, rather than

defining explicit rules manually. It greatly simplifies export policy management; modifications to the export

policy no longer require manual intervention on the storage cluster. Moreover, this helps restrict access to the

storage cluster only to worker nodes that are mounting volumes and have IPs in the range specified,

supporting a fine-grained and automated management.

Do not use Network Address Translation (NAT) when using dynamic export policies. With NAT,

the storage controller sees the frontend NAT address and not the actual IP host address, so

access will be denied when no match is found in the export rules.

In Trident 24.10, ontap-nas storage driver will continue to work as in the earlier releases; no

change has been made for ontap-nas driver. Only the ontap-nas-economy storage driver will

have volume based granular access control in Trident 24.10.

Example

There are two configuration options that must be used. Here’s an example backend definition:

version: 1

storageDriverName: ontap-nas-economy

backendName: ontap_nas_auto_export

managementLIF: 192.168.0.135

svm: svm1

username: vsadmin

password: password

autoExportCIDRs:

- 192.168.0.0/24

autoExportPolicy: true

When using this feature, you must ensure that the root junction in your SVM has a previously

created export policy with an export rule that permits the node CIDR block (such as the default

export policy). Always follow NetApp recommended best practice to dedicate an SVM for

Trident.

Here is an explanation of how this feature works using the example above:

• autoExportPolicy is set to true. This indicates that Trident creates an export policy for each volume

provisioned with this backend for the svm1 SVM and handle the addition and deletion of rules using

159

autoexportCIDRs address blocks. Until a volume is attached to a node, the volume uses an empty

export policy with no rules to prevent unwanted access to that volume. When a volume is published to a

node Trident creates an export policy with the same name as the underlying qtree containing the node IP

within the specified CIDR block. These IPs will also be added to the export policy used by the parent

FlexVol.

◦ For example:

▪ backend UUID 403b5326-8482-40db-96d0-d83fb3f4daec

▪ autoExportPolicy set to true

▪ storage prefix trident

▪ PVC UUID a79bcf5f-7b6d-4a40-9876-e2551f159c1c

▪ qtree named trident_pvc_a79bcf5f_7b6d_4a40_9876_e2551f159c1c creates an export policy for

the FlexVol named trident-403b5326-8482-40db�96d0-d83fb3f4daec , an export policy for

the qtree named

trident_pvc_a79bcf5f_7b6d_4a40_9876_e2551f159c1c, and an empty export policy

named trident_empty on the SVM. The rules for the FlexVol export policy will be a superset of

any rules contained in the qtree export policies. The empty export policy will be reused by any

volumes that are not attached.

• autoExportCIDRs contains a list of address blocks. This field is optional and it defaults to ["0.0.0.0/0",

"::/0"]. If not defined, Trident adds all globally-scoped unicast addresses found on the worker nodes with

publications.

In this example, the 192.168.0.0/24 address space is provided. This indicates that Kubernetes node IPs

that fall within this address range with publications will be added to the export policy that Trident creates. When

Trident registers a node it runs on, it retrieves the IP addresses of the node and checks them against the

address blocks provided in autoExportCIDRs. At publish time, after filtering the IPs, Trident creates the

export policy rules for the client IPs for the node it is publishing to.

You can update autoExportPolicy and autoExportCIDRs for backends after you create them. You can

append new CIDRs for a backend that is automatically managed or delete existing CIDRs. Exercise care when

deleting CIDRs to ensure that existing connections are not dropped. You can also choose to disable

autoExportPolicy for a backend and fall back to a manually created export policy. This will require setting

the exportPolicy parameter in your backend config.

After Trident creates or updates a backend, you can check the backend using tridentctl or the

corresponding tridentbackend CRD:

160

./tridentctl get backends ontap_nas_auto_export -n trident -o yaml

items:

- backendUUID: 403b5326-8482-40db-96d0-d83fb3f4daec

 config:

 aggregate: ""

 autoExportCIDRs:

 - 192.168.0.0/24

 autoExportPolicy: true

 backendName: ontap_nas_auto_export

 chapInitiatorSecret: ""

 chapTargetInitiatorSecret: ""

 chapTargetUsername: ""

 chapUsername: ""

 dataLIF: 192.168.0.135

 debug: false

 debugTraceFlags: null

 defaults:

 encryption: "false"

 exportPolicy: <automatic>

 fileSystemType: ext4

When a node is removed, Trident checks all export policies to remove the access rules corresponding to the

node. By removing this node IP from the export policies of managed backends, Trident prevents rogue mounts,

unless this IP is reused by a new node in the cluster.

For previously existing backends, updating the backend with tridentctl update backend ensures that

Trident manages the export policies automatically. This creates two new export policies named after the

backend’s UUID and qtree name when they are needed. Volumes that are present on the backend will use the

newly created export policies after they are unmounted and mounted again.

Deleting a backend with auto-managed export policies will delete the dynamically created export

policy. If the backend is re-created, it is treated as a new backend and will result in the creation

of a new export policy.

If the IP address of a live node is updated, you must restart the Trident pod on the node. Trident will then

update the export policy for backends it manages to reflect this IP change.

Prepare to provision SMB volumes

With a little additional preparation, you can provision SMB volumes using ontap-nas drivers.

You must configure both NFS and SMB/CIFS protocols on the SVM to create an ontap-nas-

economy SMB volume for ONTAP on-premises. Failure to configure either of these protocols

will cause SMB volume creation to fail.

autoExportPolicy is not supported for SMB volumes.

161

Before you begin

Before you can provision SMB volumes, you must have the following.

• A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows

Server 2022. Trident supports SMB volumes mounted to pods running on Windows nodes only.

• At least one Trident secret containing your Active Directory credentials. To generate secret smbcreds:

kubectl create secret generic smbcreds --from-literal username=user

--from-literal password='password'

• A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or

GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

Steps

1. For on-premises ONTAP, you can optionally create an SMB share or Trident can create one for you.

SMB shares are required for Amazon FSx for ONTAP.

You can create the SMB admin shares in one of two ways either using the Microsoft Management Console

Shared Folders snap-in or using the ONTAP CLI. To create the SMB shares using the ONTAP CLI:

a. If necessary, create the directory path structure for the share.

The vserver cifs share create command checks the path specified in the -path option during

share creation. If the specified path does not exist, the command fails.

b. Create an SMB share associated with the specified SVM:

vserver cifs share create -vserver vserver_name -share-name

share_name -path path [-share-properties share_properties,...]

[other_attributes] [-comment text]

c. Verify that the share was created:

vserver cifs share show -share-name share_name

Refer to Create an SMB share for full details.

2. When creating the backend, you must configure the following to specify SMB volumes. For all FSx for

ONTAP backend configuration options, refer to FSx for ONTAP configuration options and examples.

162

https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console
https://docs.netapp.com/us-en/ontap/smb-config/create-share-task.html
https://docs.netapp.com/us-en/trident/trident-use/trident-fsx-examples.html

Parameter Description Example

smbShare You can specify one of the following: the name of an

SMB share created using the Microsoft

Management Console or ONTAP CLI; a name to

allow Trident to create the SMB share; or you can

leave the parameter blank to prevent common share

access to volumes.

This parameter is optional for on-premises ONTAP.

This parameter is required for Amazon FSx for

ONTAP backends and cannot be blank.

smb-share

nasType Must set to smb. If null, defaults to nfs. smb

securityStyle Security style for new volumes.

Must be set to ntfs or mixed for SMB volumes.

ntfs or mixed for SMB

volumes

unixPermissions Mode for new volumes. Must be left empty for

SMB volumes.

""

ONTAP NAS configuration options and examples

Learn to create and use ONTAP NAS drivers with your Trident installation. This section

provides backend configuration examples and details for mapping backends to

StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

storageDrive

rName

Name of the storage driver "ontap-nas", "ontap-nas-economy",

"ontap-nas-flexgroup", "ontap-san",

"ontap-san-economy"

backendName Custom name or the storage backend Driver name + "_" + dataLIF

163

Parameter Description Default

managementLI

F

IP address of a cluster or SVM management LIF

A fully-qualified domain name (FQDN) can be

specified.

Can be set to use IPv6 addresses if Trident was

installed using the IPv6 flag. IPv6 addresses must be

defined in square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555

].

For seamless MetroCluster switchover, see the [mcc-

best].

“10.0.0.1”, “[2001:1234:abcd::fefe]”

dataLIF IP address of protocol LIF.

We recommend specifying dataLIF. If not provided,

Trident fetches data LIFs from the SVM. You can

specify a fully-qualified domain name (FQDN) to be

used for the NFS mount operations, allowing you to

create a round-robin DNS to load-balance across

multiple data LIFs.

Can be changed after initial setting. Refer to Update

dataLIF after initial configuration.

Can be set to use IPv6 addresses if Trident was

installed using the IPv6 flag. IPv6 addresses must be

defined in square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555

].

Omit for Metrocluster. See the [mcc-best].

Specified address or derived from

SVM, if not specified (not

recommended)

svm Storage virtual machine to use

Omit for Metrocluster. See the [mcc-best].

Derived if an SVM

managementLIF is specified

autoExportPo

licy

Enable automatic export policy creation and updating

[Boolean].

Using the autoExportPolicy and

autoExportCIDRs options, Trident can manage

export policies automatically.

false

autoExportCI

DRs

List of CIDRs to filter Kubernetes' node IPs against

when autoExportPolicy is enabled.

Using the autoExportPolicy and

autoExportCIDRs options, Trident can manage

export policies automatically.

["0.0.0.0/0", "::/0"]`

164

Parameter Description Default

labels Set of arbitrary JSON-formatted labels to apply on

volumes

""

clientCertif

icate

Base64-encoded value of client certificate. Used for

certificate-based auth

""

clientPrivat

eKey

Base64-encoded value of client private key. Used for

certificate-based auth

""

trustedCACer

tificate

Base64-encoded value of trusted CA certificate.

Optional. Used for certificate-based auth

""

username Username to connect to the cluster/SVM. Used for

credential-based auth

password Password to connect to the cluster/SVM. Used for

credential-based auth

storagePrefi

x

Prefix used when provisioning new volumes in the

SVM. Cannot be updated after you set it

When using ontap-nas-economy and a

storagePrefix that is 24 or more

characters, the qtrees will not have the

storage prefix embedded, though it will

be in the volume name.

"trident"

aggregate Aggregate for provisioning (optional; if set, must be

assigned to the SVM). For the ontap-nas-

flexgroup driver, this option is ignored. If not

assigned, any of the available aggregates can be

used to provision a FlexGroup volume.

When the aggregate is updated in

SVM, it is updated in Trident

automatically by polling SVM without

having to restart the Trident Controller.

When you have configured a specific

aggregate in Trident to provision

volumes, if the aggregate is renamed

or moved out of the SVM, the backend

will move to failed state in Trident while

polling the SVM aggregate. You must

either change the aggregate to one that

is present on the SVM or remove it

altogether to bring the backend back

online.

""

limitAggrega

teUsage

Fail provisioning if usage is above this percentage.

Does not apply to Amazon FSx for ONTAP

"" (not enforced by default)

165

Parameter Description Default

flexgroupAggreg

ateList

List of aggregates for provisioning (optional; if set,

must be assigned to the SVM). All aggregates

assigned to the SVM are used to provision a

FlexGroup volume. Supported for the ontap-nas-

flexgroup storage driver.

When the aggregate list is updated in

SVM, the list is updated in Trident

automatically by polling SVM without

having to restart the Trident Controller.

When you have configured a specific

aggregate list in Trident to provision

volumes, if the aggregate list is

renamed or moved out of SVM, the

backend will move to failed state in

Trident while polling the SVM

aggregate. You must either change the

aggregate list to one that is present on

the SVM or remove it altogether to

bring the backend back online.

""

limitVolumeS

ize

Fail provisioning if requested volume size is above

this value.

Also restricts the maximum size of the volumes it

manages for qtrees, and the qtreesPerFlexvol

option allows customizing the maximum number of

qtrees per FlexVol.

"" (not enforced by default)

debugTraceFl

ags

Debug flags to use when troubleshooting. Example,

{"api":false, "method":true}

Do not use debugTraceFlags unless you are

troubleshooting and require a detailed log dump.

null

nasType Configure NFS or SMB volumes creation.

Options are nfs, smb or null. Setting to null defaults

to NFS volumes.

nfs

nfsMountOpti

ons

Comma-separated list of NFS mount options.

The mount options for Kubernetes-persistent volumes

are normally specified in storage classes, but if no

mount options are specified in a storage class, Trident

will fall back to using the mount options specified in

the storage backend’s configuration file.

If no mount options are specified in the storage class

or the configuration file, Trident will not set any mount

options on an associated persistent volume.

""

166

Parameter Description Default

qtreesPerFle

xvol

Maximum Qtrees per FlexVol, must be in range [50,

300]

"200"

smbShare You can specify one of the following: the name of an

SMB share created using the Microsoft Management

Console or ONTAP CLI; a name to allow Trident to

create the SMB share; or you can leave the parameter

blank to prevent common share access to volumes.

This parameter is optional for on-premises ONTAP.

This parameter is required for Amazon FSx for

ONTAP backends and cannot be blank.

smb-share

useREST Boolean parameter to use ONTAP REST APIs.

useREST When set to true, Trident uses ONTAP

REST APIs to communicate with the backend; when

set to false, Trident uses ONTAP ZAPI calls to

communicate with the backend. This feature requires

ONTAP 9.11.1 and later. In addition, the ONTAP login

role used must have access to the ontap application.

This is satisfied by the pre-defined vsadmin and

cluster-admin roles.

Beginning with the Trident 24.06 release and ONTAP

9.15.1 or later, userREST is set to true by default;

change useREST to false to use ONTAP ZAPI calls.

true for ONTAP 9.15.1 or later,

otherwise false.

limitVolumeP

oolSize

Maximum requestable FlexVol size when using Qtrees

in ontap-nas-economy backend.

"" (not enforced by default)

denyNewVolum

ePools

Restricts ontap-nas-economy backends from

creating new FlexVol volumes to contain their Qtrees.

Only preexisting Flexvols are used for provisioning

new PVs.

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an

example, see the configuration examples below.

Parameter Description Default

spaceAllocat

ion

Space-allocation for Qtrees "true"

spaceReserve Space reservation mode; "none" (thin) or "volume"

(thick)

"none"

snapshotPoli

cy

Snapshot policy to use "none"

167

Parameter Description Default

qosPolicy QoS policy group to assign for volumes created.

Choose one of qosPolicy or adaptiveQosPolicy per

storage pool/backend

""

adaptiveQosP

olicy

Adaptive QoS policy group to assign for volumes

created. Choose one of qosPolicy or

adaptiveQosPolicy per storage pool/backend.

Not supported by ontap-nas-economy.

""

snapshotRese

rve

Percentage of volume reserved for snapshots "0" if snapshotPolicy is "none",

otherwise ""

splitOnClone Split a clone from its parent upon creation "false"

encryption Enable NetApp Volume Encryption (NVE) on the new

volume; defaults to false. NVE must be licensed and

enabled on the cluster to use this option.

If NAE is enabled on the backend, any volume

provisioned in Trident will be NAE enabled.

For more information, refer to: How Trident works with

NVE and NAE.

"false"

tieringPolic

y

Tiering policy to use "none" "snapshot-only" for pre-ONTAP 9.5

SVM-DR configuration

unixPermissi

ons

Mode for new volumes "777" for NFS volumes; empty (not

applicable) for SMB volumes

snapshotDir Controls access to the .snapshot directory "true" for NFSv4

"false" for NFSv3

exportPolicy Export policy to use "default"

securityStyl

e

Security style for new volumes.

NFS supports mixed and unix security styles.

SMB supports mixed and ntfs security styles.

NFS default is unix.

SMB default is ntfs.

nameTemplate Template to create custom volume names. ""

Using QoS policy groups with Trident requires ONTAP 9.8 or later. You should use a non-shared

QoS policy group and ensure the policy group is applied to each constituent individually. A

shared QoS policy group enforces the ceiling for the total throughput of all workloads.

Volume provisioning examples

Here’s an example with defaults defined:

168

version: 1

storageDriverName: ontap-nas

backendName: customBackendName

managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

labels:

 k8scluster: dev1

 backend: dev1-nasbackend

svm: trident_svm

username: cluster-admin

password: <password>

limitAggregateUsage: 80%

limitVolumeSize: 50Gi

nfsMountOptions: nfsvers=4

debugTraceFlags:

 api: false

 method: true

defaults:

 spaceReserve: volume

 qosPolicy: premium

 exportPolicy: myk8scluster

 snapshotPolicy: default

 snapshotReserve: '10'

For ontap-nas and ontap-nas-flexgroups, Trident now uses a new calculation to ensure that the FlexVol

is sized correctly with the snapshotReserve percentage and PVC. When the user requests a PVC, Trident

creates the original FlexVol with more space by using the new calculation. This calculation ensures that the

user receives the writable space they requested for in the PVC, and not lesser space than what they

requested. Before v21.07, when the user requests a PVC (for example, 5GiB), with the snapshotReserve to 50

percent, they get only 2.5GiB of writeable space. This is because what the user requested for is the whole

volume and snapshotReserve is a percentage of that. With Trident 21.07, what the user requests for is the

writeable space and Trident defines the snapshotReserve number as the percentage of the whole volume.

This does not apply to ontap-nas-economy. See the following example to see how this works:

The calculation is as follows:

Total volume size = (PVC requested size) / (1 - (snapshotReserve

percentage) / 100)

For snapshotReserve = 50%, and PVC request = 5GiB, the total volume size is 2/.5 = 10GiB and the available

size is 5GiB, which is what the user requested in the PVC request. The volume show command should show

results similar to this example:

169

Existing backends from previous installs will provision volumes as explained above when upgrading Trident.

For volumes that you created before upgrading, you should resize their volumes for the change to be

observed. For example, a 2GiB PVC with snapshotReserve=50 earlier resulted in a volume that provides

1GiB of writable space. Resizing the volume to 3GiB, for example, provides the application with 3GiB of

writable space on a 6 GiB volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest

way to define a backend.

If you are using Amazon FSx on NetApp ONTAP with Trident, the recommendation is to specify

DNS names for LIFs instead of IP addresses.

ONTAP NAS economy example

version: 1

storageDriverName: ontap-nas-economy

managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm_nfs

username: vsadmin

password: password

ONTAP NAS Flexgroup example

version: 1

storageDriverName: ontap-nas-flexgroup

managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm_nfs

username: vsadmin

password: password

170

MetroCluster example

You can configure the backend to avoid having to manually update the backend definition after switchover

and switchback during SVM replication and recovery.

For seamless switchover and switchback, specify the SVM using managementLIF and omit the

dataLIF and svm parameters. For example:

version: 1

storageDriverName: ontap-nas

managementLIF: 192.168.1.66

username: vsadmin

password: password

SMB volumes example

version: 1

backendName: ExampleBackend

storageDriverName: ontap-nas

managementLIF: 10.0.0.1

nasType: smb

securityStyle: ntfs

unixPermissions: ""

dataLIF: 10.0.0.2

svm: svm_nfs

username: vsadmin

password: password

171

Certificate-based authentication example

This is a minimal backend configuration example. clientCertificate, clientPrivateKey, and

trustedCACertificate (optional, if using trusted CA) are populated in backend.json and take the

base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

version: 1

backendName: DefaultNASBackend

storageDriverName: ontap-nas

managementLIF: 10.0.0.1

dataLIF: 10.0.0.15

svm: nfs_svm

clientCertificate: ZXR0ZXJwYXB...ICMgJ3BhcGVyc2

clientPrivateKey: vciwKIyAgZG...0cnksIGRlc2NyaX

trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz

storagePrefix: myPrefix_

Auto export policy example

This example shows you how you can instruct Trident to use dynamic export policies to create and

manage the export policy automatically. This works the same for the ontap-nas-economy and ontap-

nas-flexgroup drivers.

version: 1

storageDriverName: ontap-nas

managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm_nfs

labels:

 k8scluster: test-cluster-east-1a

 backend: test1-nasbackend

autoExportPolicy: true

autoExportCIDRs:

- 10.0.0.0/24

username: admin

password: password

nfsMountOptions: nfsvers=4

172

IPv6 addresses example

This example shows managementLIF using an IPv6 address.

version: 1

storageDriverName: ontap-nas

backendName: nas_ipv6_backend

managementLIF: "[5c5d:5edf:8f:7657:bef8:109b:1b41:d491]"

labels:

 k8scluster: test-cluster-east-1a

 backend: test1-ontap-ipv6

svm: nas_ipv6_svm

username: vsadmin

password: password

Amazon FSx for ONTAP using SMB volumes example

The smbShare parameter is required for FSx for ONTAP using SMB volumes.

version: 1

backendName: SMBBackend

storageDriverName: ontap-nas

managementLIF: example.mgmt.fqdn.aws.com

nasType: smb

dataLIF: 10.0.0.15

svm: nfs_svm

smbShare: smb-share

clientCertificate: ZXR0ZXJwYXB...ICMgJ3BhcGVyc2

clientPrivateKey: vciwKIyAgZG...0cnksIGRlc2NyaX

trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz

storagePrefix: myPrefix_

173

Backend configuration example with nameTemplate

version: 1

storageDriverName: ontap-nas

backendName: ontap-nas-backend

managementLIF: <ip address>

svm: svm0

username: <admin>

password: <password>

defaults: {

 "nameTemplate":

"{{.volume.Name}}_{{.labels.cluster}}_{{.volume.Namespace}}_{{.volume.R

equestName}}"

},

"labels": {"cluster": "ClusterA", "PVC":

"{{.volume.Namespace}}_{{.volume.RequestName}}"}

Examples of backends with virtual pools

In the sample backend definition files shown below, specific defaults are set for all storage pools, such as

spaceReserve at none, spaceAllocation at false, and encryption at false. The virtual pools are defined

in the storage section.

Trident sets provisioning labels in the "Comments" field. Comments are set on FlexVol for ontap-nas or

FlexGroup for ontap-nas-flexgroup. Trident copies all labels present on a virtual pool to the storage

volume at provisioning. For convenience, storage administrators can define labels per virtual pool and group

volumes by label.

In these examples, some of the storage pools set their own spaceReserve, spaceAllocation, and

encryption values, and some pools override the default values.

174

ONTAP NAS example

version: 1

storageDriverName: ontap-nas

managementLIF: 10.0.0.1

svm: svm_nfs

username: admin

password: <password>

nfsMountOptions: nfsvers=4

defaults:

 spaceReserve: none

 encryption: 'false'

 qosPolicy: standard

labels:

 store: nas_store

 k8scluster: prod-cluster-1

region: us_east_1

storage:

- labels:

 app: msoffice

 cost: '100'

 zone: us_east_1a

 defaults:

 spaceReserve: volume

 encryption: 'true'

 unixPermissions: '0755'

 adaptiveQosPolicy: adaptive-premium

- labels:

 app: slack

 cost: '75'

 zone: us_east_1b

 defaults:

 spaceReserve: none

 encryption: 'true'

 unixPermissions: '0755'

- labels:

 department: legal

 creditpoints: '5000'

 zone: us_east_1b

 defaults:

 spaceReserve: none

 encryption: 'true'

 unixPermissions: '0755'

- labels:

 app: wordpress

175

 cost: '50'

 zone: us_east_1c

 defaults:

 spaceReserve: none

 encryption: 'true'

 unixPermissions: '0775'

- labels:

 app: mysqldb

 cost: '25'

 zone: us_east_1d

 defaults:

 spaceReserve: volume

 encryption: 'false'

 unixPermissions: '0775'

176

ONTAP NAS FlexGroup example

version: 1

storageDriverName: ontap-nas-flexgroup

managementLIF: 10.0.0.1

svm: svm_nfs

username: vsadmin

password: <password>

defaults:

 spaceReserve: none

 encryption: 'false'

labels:

 store: flexgroup_store

 k8scluster: prod-cluster-1

region: us_east_1

storage:

- labels:

 protection: gold

 creditpoints: '50000'

 zone: us_east_1a

 defaults:

 spaceReserve: volume

 encryption: 'true'

 unixPermissions: '0755'

- labels:

 protection: gold

 creditpoints: '30000'

 zone: us_east_1b

 defaults:

 spaceReserve: none

 encryption: 'true'

 unixPermissions: '0755'

- labels:

 protection: silver

 creditpoints: '20000'

 zone: us_east_1c

 defaults:

 spaceReserve: none

 encryption: 'true'

 unixPermissions: '0775'

- labels:

 protection: bronze

 creditpoints: '10000'

 zone: us_east_1d

 defaults:

177

 spaceReserve: volume

 encryption: 'false'

 unixPermissions: '0775'

178

ONTAP NAS economy example

version: 1

storageDriverName: ontap-nas-economy

managementLIF: 10.0.0.1

svm: svm_nfs

username: vsadmin

password: <password>

defaults:

 spaceReserve: none

 encryption: 'false'

labels:

 store: nas_economy_store

region: us_east_1

storage:

- labels:

 department: finance

 creditpoints: '6000'

 zone: us_east_1a

 defaults:

 spaceReserve: volume

 encryption: 'true'

 unixPermissions: '0755'

- labels:

 protection: bronze

 creditpoints: '5000'

 zone: us_east_1b

 defaults:

 spaceReserve: none

 encryption: 'true'

 unixPermissions: '0755'

- labels:

 department: engineering

 creditpoints: '3000'

 zone: us_east_1c

 defaults:

 spaceReserve: none

 encryption: 'true'

 unixPermissions: '0775'

- labels:

 department: humanresource

 creditpoints: '2000'

 zone: us_east_1d

 defaults:

 spaceReserve: volume

179

 encryption: 'false'

 unixPermissions: '0775'

Map backends to StorageClasses

The following StorageClass definitions refer to Examples of backends with virtual pools. Using the

parameters.selector field, each StorageClass calls out which virtual pools can be used to host a volume.

The volume will have the aspects defined in the chosen virtual pool.

• The protection-gold StorageClass will map to the first and second virtual pool in the ontap-nas-

flexgroup backend. These are the only pools offering gold level protection.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-gold

provisioner: csi.trident.netapp.io

parameters:

 selector: "protection=gold"

 fsType: "ext4"

• The protection-not-gold StorageClass will map to the third and fourth virtual pool in the ontap-

nas-flexgroup backend. These are the only pools offering protection level other than gold.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-not-gold

provisioner: csi.trident.netapp.io

parameters:

 selector: "protection!=gold"

 fsType: "ext4"

• The app-mysqldb StorageClass will map to the fourth virtual pool in the ontap-nas backend. This is the

only pool offering storage pool configuration for mysqldb type app.

180

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: app-mysqldb

provisioner: csi.trident.netapp.io

parameters:

 selector: "app=mysqldb"

 fsType: "ext4"

• TThe protection-silver-creditpoints-20k StorageClass will map to the third virtual pool in the

ontap-nas-flexgroup backend. This is the only pool offering silver-level protection and 20000

creditpoints.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-silver-creditpoints-20k

provisioner: csi.trident.netapp.io

parameters:

 selector: "protection=silver; creditpoints=20000"

 fsType: "ext4"

• The creditpoints-5k StorageClass will map to the third virtual pool in the ontap-nas backend and the

second virtual pool in the ontap-nas-economy backend. These are the only pool offerings with 5000

creditpoints.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: creditpoints-5k

provisioner: csi.trident.netapp.io

parameters:

 selector: "creditpoints=5000"

 fsType: "ext4"

Trident will decide which virtual pool is selected and ensures the storage requirement is met.

Update dataLIF after initial configuration

You can change the data LIF after initial configuration by running the following command to provide the new

backend JSON file with updated data LIF.

181

tridentctl update backend <backend-name> -f <path-to-backend-json-file-

with-updated-dataLIF>

If PVCs are attached to one or multiple pods, you must bring down all corresponding pods and

then bring them back up in order to for the new data LIF to take effect.

Amazon FSx for NetApp ONTAP

Use Trident with Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP is a fully managed AWS service that enables customers

to launch and run file systems powered by the NetApp ONTAP storage operating system.

FSx for ONTAP enables you to leverage NetApp features, performance, and

administrative capabilities you are familiar with, while taking advantage of the simplicity,

agility, security, and scalability of storing data on AWS. FSx for ONTAP supports ONTAP

file system features and administration APIs.

You can integrate your Amazon FSx for NetApp ONTAP file system with Trident to ensure Kubernetes clusters

running in Amazon Elastic Kubernetes Service (EKS) can provision block and file persistent volumes backed

by ONTAP.

A file system is the primary resource in Amazon FSx, analogous to an ONTAP cluster on premises. Within

each SVM you can create one or multiple volumes, which are data containers that store the files and folders in

your file system. With Amazon FSx for NetApp ONTAP, Data ONTAP will be provided as a managed file

system in the cloud. The new file system type is called NetApp ONTAP.

Using Trident with Amazon FSx for NetApp ONTAP, you can ensure Kubernetes clusters running in Amazon

Elastic Kubernetes Service (EKS) can provision block and file persistent volumes backed by ONTAP.

Requirements

In addition to Trident requirements, to integrate FSx for ONTAP with Trident, you need:

• An existing Amazon EKS cluster or self-managed Kubernetes cluster with kubectl installed.

• An existing Amazon FSx for NetApp ONTAP file system and storage virtual machine (SVM) that is

reachable from your cluster’s worker nodes.

• Worker nodes that are prepared for NFS or iSCSI.

Ensure you follow the node preparation steps required for Amazon Linux and Ubuntu

Amazon Machine Images (AMIs) depending on your EKS AMI type.

Considerations

• SMB volumes:

◦ SMB volumes are supported using the ontap-nas driver only.

◦ SMB volumes are not supported with Trident EKS add-on.

◦ Trident supports SMB volumes mounted to pods running on Windows nodes only. Refer to Prepare to

182

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

provision SMB volumes for details.

• Prior to Trident 24.02, volumes created on Amazon FSx file systems that have automatic backups enabled,

could not be deleted by Trident. To prevent this issue in Trident 24.02 or later, specify the

fsxFilesystemID, AWS apiRegion, AWS apikey, and AWS secretKey in the backend configuration

file for AWS FSx for ONTAP.

If you are specifying an IAM role to Trident, then you can omit specifying the apiRegion,

apiKey, and secretKey fields to Trident explicitly. For more information, refer to FSx for

ONTAP configuration options and examples.

Authentication

Trident offers two modes of authentication.

• Credential-based(Recommended): Stores credentials securely in AWS Secrets Manager. You can use the

fsxadmin user for your file system or the vsadmin user configured for your SVM.

Trident expects to be run as a vsadmin SVM user or as a user with a different name that

has the same role. Amazon FSx for NetApp ONTAP has an fsxadmin user that is a limited

replacement of the ONTAP admin cluster user. We strongly recommend using vsadmin

with Trident.

• Certificate-based: Trident will communicate with the SVM on your FSx file system using a certificate

installed on your SVM.

For details on enabling authentication, refer to the authentication for your driver type:

• ONTAP NAS authentication

• ONTAP SAN authentication

Find more information

• Amazon FSx for NetApp ONTAP documentation

• Blog post on Amazon FSx for NetApp ONTAP

Create an IAM role and AWS Secret

You can configure Kubernetes pods to access AWS resources by authenticating as an

AWS IAM role instead of by providing explicit AWS credentials.

To authenticate using an AWS IAM role, you must have a Kubernetes cluster deployed using

EKS.

Create AWS Secret Manager secret

This example creates an AWS Secret Manager secret to store Trident CSI credentials:

aws secretsmanager create-secret --name trident-secret --description "Trident CSI

credentials" --secret-string "{"user":"vsadmin","password":"<svmpassword>"}"

183

https://docs.netapp.com/us-en/trident/trident-use/trident-fsx-examples.html
https://docs.netapp.com/us-en/trident/trident-use/trident-fsx-examples.html
https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://www.netapp.com/blog/amazon-fsx-for-netapp-ontap/

Create IAM Policy

The following examples creates an IAM policy using the AWS CLI:

aws iam create-policy --policy-name AmazonFSxNCSIDriverPolicy --policy-document

file://policy.json --description "This policy grants access to Trident CSI to

FSxN and Secret manager"

Policy JSON file:

policy.json:

{

 "Statement": [

 {

 "Action": [

 "fsx:DescribeFileSystems",

 "fsx:DescribeVolumes",

 "fsx:CreateVolume",

 "fsx:RestoreVolumeFromSnapshot",

 "fsx:DescribeStorageVirtualMachines",

 "fsx:UntagResource",

 "fsx:UpdateVolume",

 "fsx:TagResource",

 "fsx:DeleteVolume"

],

 "Effect": "Allow",

 "Resource": "*"

 },

 {

 "Action": "secretsmanager:GetSecretValue",

 "Effect": "Allow",

 "Resource": "arn:aws:secretsmanager:<aws-region>:<aws-account-

id>:secret:<aws-secret-manager-name>"

 }

],

 "Version": "2012-10-17"

}

Create and IAM role for the service account

The following example creates an IAM role for service account in EKS:

eksctl create iamserviceaccount --name trident-controller --namespace trident

--cluster <my-cluster> --role-name <AmazonEKS_FSxN_CSI_DriverRole> --role-only

--attach-policy-arn arn:aws:iam::aws:policy/service-

role/AmazonFSxNCSIDriverPolicy --approve

184

file://policy.json

Install Astra Trident

Astra Trident streamlines Amazon FSx for NetApp ONTAP storage management in

Kubernetes to enable your developers and administrators focus on application

deployment.

You can install Astra Trident using one of the following methods:

• Helm

• EKS add-on

If you want to make use of the snapshot functionality, install the CSI

snapshot controller add-on. Refer to

https://docs.aws.amazon.com/eks/latest/userguide/csi-snapshot-

controller.html.

Install Astra Trident via helm

1. Download the Astra Trident installer package

The Astra Trident installer package contains everything you need to deploy the Trident operator and install

Astra Trident. Download and extract the latest version of the Astra Trident installer from the Assets section

on GitHub.

wget https://github.com/NetApp/trident/releases/download/v24.10.0/trident-

installer-24.10.0.tar.gz

tar -xf trident-installer-24.10.0.tar.gz

cd trident-installer

2. Set the values for cloud provider and cloud identity flags using the following environment variables:

export CP="AWS"

export CI="'eks.amazonaws.com/role-arn:

arn:aws:iam::<accountID>:role/<AmazonEKS_FSxN_CSI_DriverRole>'"

The following example installs Astra Trident and sets the cloud-provider flag to $CP, and cloud-

identity to $CI:

helm install trident trident-operator-100.2410.0.tgz --set

cloudProvider=$CP --set cloudIdentity=$CI -–namespace trident

You can use the helm list command to review installation details such as name, namespace, chart,

status, app version, and revision number.

helm list -n trident

185

https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz
https://github.com/NetApp/trident/releases/download/v24.10.0/trident-installer-24.10.0.tar.gz

NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION

trident-operator trident 1 2024-10-14 14:31:22.463122

+0300 IDT deployed trident-operator-100.2410.0 24.10.0

Install Astra Trident via the EKS add-on

The Astra Trident EKS add-on includes the latest security patches, bug fixes, and is validated by AWS to work

with Amazon EKS. The EKS add-on enables you to consistently ensure that your Amazon EKS clusters are

secure and stable and reduce the amount of work that you need to do in order to install, configure, and update

add-ons.

Prerequisites

Ensure that you have the following before configuring the Astra Trident add-on for AWS EKS:

• An Amazon EKS cluster account with add-on subscription

• AWS permissions to the AWS marketplace:

"aws-marketplace:ViewSubscriptions",

"aws-marketplace:Subscribe",

"aws-marketplace:Unsubscribe

• AMI type: Amazon Linux 2 (AL2_x86_64) or Amazon Linux 2 Arm(AL2_ARM_64)

• Node type: AMD or ARM

• An existing Amazon FSx for NetApp ONTAP file system

Enable the Astra Trident add-on for AWS

186

EKS cluster

The following example commands install the Astra Trident EKS add-on:

eksctl create addon --cluster clusterName --name netapp_trident-operator

--version v24.6.1-eksbuild

eksctl create addon --cluster clusterName --name netapp_trident-operator

--version v24.6.1-eksbuild.1 (with a dedicated version)

When you configure the optional parameter cloudIdentity, ensure that you specify

cloudProvider while installing Trident using the EKS add-on.

Management console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. On the left navigation pane, click Clusters.

3. Click the name of the cluster that you want to configure the NetApp Trident CSI add-on for.

4. Click Add-ons and then click Get more add-ons.

5. On the S*elect add-ons page, do the following:

a. In the AWS Marketplace EKS-addons section, select the Astra Trident by NetApp check box.

b. Click Next.

6. On the Configure selected add-ons settings page, do the following:

a. Select the Version you would like to use.

b. For Select IAM role, leave at Not set.

c. Expand the Optional configuration settings, follow the Add-on configuration schema and set

the configurationValues parameter on the Configuration values section to the role-arn you

created on the previous step (value should be in the following format:

eks.amazonaws.com/role-arn:

arn:aws:iam::464262061435:role/AmazonEKS_FSXN_CSI_DriverRole). If you select

Override for the Conflict resolution method, one or more of the settings for the existing add-on can

be overwritten with the Amazon EKS add-on settings. If you don’t enable this option and there’s a

conflict with your existing settings, the operation fails. You can use the resulting error message to

troubleshoot the conflict. Before selecting this option, make sure that the Amazon EKS add-on

doesn’t manage settings that you need to self-manage.

When you configure the optional parameter cloudIdentity, ensure that you

specify cloudProvider while installing Trident using the EKS add-on.

7. Choose Next.

8. On the Review and add page, choose Create.

After the add-on installation is complete, you see your installed add-on.

AWS CLI

1. Create the add-on.json file:

187

https://console.aws.amazon.com/eks/home#/clusters

add-on.json

{

 "clusterName": "<eks-cluster>",

 "addonName": "netapp_trident-operator",

 "addonVersion": "v24.6.1-eksbuild.1",

 "serviceAccountRoleArn": "arn:aws:iam::123456:role/astratrident-

role",

 "configurationValues": "{"cloudIdentity":

"'eks.amazonaws.com/role-arn: arn:aws:iam::123456:role/astratrident-

role'",

 "cloudProvider": "AWS"}"

}

When you configure the optional parameter cloudIdentity, ensure that you specify

AWS as the cloudProvider while installing Trident using the EKS add-on.

2. Install the Astra Trident EKS add-on"

aws eks create-addon --cli-input-json file://add-on.json

Update the Astra Trident EKS add-on

188

file://add-on.json

EKS cluster

• Check the current version of your FSxN Trident CSI add-on. Replace my-cluster with your cluster

name.

eksctl get addon --name netapp_trident-operator --cluster my-cluster

Example output:

NAME VERSION STATUS ISSUES

IAMROLE UPDATE AVAILABLE CONFIGURATION VALUES

netapp_trident-operator v24.6.1-eksbuild.1 ACTIVE 0

{"cloudIdentity":"'eks.amazonaws.com/role-arn:

arn:aws:iam::139763910815:role/AmazonEKS_FSXN_CSI_DriverRole'"}

• Update the add-on to the version returned under UPDATE AVAILABLE in the output of the previous

step.

eksctl update addon --name netapp_trident-operator --version v24.6.1-

eksbuild.1 --cluster my-cluster --force

If you remove the --force option and any of the Amazon EKS add-on settings conflict with your

existing settings, then updating the Amazon EKS add-on fails; you receive an error message to help

you resolve the conflict. Before specifying this option, make sure that the Amazon EKS add-on does

not manage settings that you need to manage, because those settings are overwritten with this

option.

For more information about other options for this setting, see Addons.

For more information about Amazon EKS Kubernetes field management, see Kubernetes field

management.

Management console

1. Open the Amazon EKS console https://console.aws.amazon.com/eks/home#/clusters.

2. On the left navigation pane, click Clusters.

3. Click the name of the cluster that you want to update the NetApp Trident CSI add-on for.

4. Click the Add-ons tab.

5. Click Astra Trident by NetApp and then click Edit.

6. On the Configure Astra Trident by NetApp page, do the following:

a. Select the Version you would like to use.

b. (Optional) You can expand the Optional configuration settings and modify as needed.

c. Click Save changes.

AWS CLI

The following example updates the EKS add-on:

aws eks update-addon --cluster-name my-cluster netapp_trident-operator vpc-cni

--addon-version v24.6.1-eksbuild.1 \

--service-account-role-arn arn:aws:iam::111122223333:role/role-name

--configuration-values '{}' --resolve-conflicts --preserve

189

https://eksctl.io/usage/addons/
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-field-management.html
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-field-management.html
https://console.aws.amazon.com/eks/home#/clusters

Uninstall/remove the Astra Trident EKS add-on

You have two options for removing an Amazon EKS add-on:

• Preserve add-on software on your cluster – This option removes Amazon EKS management of any

settings. It also removes the ability for Amazon EKS to notify you of updates and automatically update the

Amazon EKS add-on after you initiate an update. However, it preserves the add-on software on your

cluster. This option makes the add-on a self-managed installation, rather than an Amazon EKS add-on.

With this option, there’s no downtime for the add-on. Retain the --preserve option in the command to

preserve the add-on.

• Remove add-on software entirely from your cluster – We recommend that you remove the Amazon

EKS add-on from your cluster only if there are no resources on your cluster that are dependent on it.

Remove the --preserve option from the delete command to remove the add-on.

If the add-on has an IAM account associated with it, the IAM account is not removed.

EKS cluster

The following command uninstalls the Astra Trident EKS add-on:

eksctl delete addon --cluster K8s-arm --name netapp_trident-operator

Management console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, click Clusters.

3. Click the name of the cluster that you want to remove the NetApp Trident CSI add-on for.

4. Click the Add-ons tab and then click Astra Trident by NetApp.*

5. Click Remove.

6. In the Remove netapp_trident-operator confirmation dialog, do the following:

a. If you want Amazon EKS to stop managing settings for the add-on, select Preserve on cluster.

Do this if you want to retain the add-on software on your cluster so that you can manage all of the

settings of the add-on on your own.

b. Enter netapp_trident-operator.

c. Click Remove.

AWS CLI

Replace my-cluster with the name of your cluster, and then run the following command.

aws eks delete-addon --cluster-name my-cluster --addon-name netapp_trident-

operator --preserve

Configure the Storage Backend

ONTAP SAN and NAS driver integration

You can create a backend file using the SVM credentials (username and password) stored in AWS Secret

Manager as shown in this example:

190

https://console.aws.amazon.com/eks/home#/clusters

YAML

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc-ontap-nas

spec:

 version: 1

 storageDriverName: ontap-nas

 backendName: tbc-ontap-nas

 svm: svm-name

 aws:

 fsxFilesystemID: fs-xxxxxxxxxx

 credentials:

 name: "arn:aws:secretsmanager:us-west-2:xxxxxxxx:secret:secret-

name"

 type: awsarn

JSON

{

 "apiVersion": "trident.netapp.io/v1",

 "kind": "TridentBackendConfig",

 "metadata": {

 "name": "backend-tbc-ontap-nas"

 },

 "spec": {

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "tbc-ontap-nas",

 "svm": "svm-name",

 "aws": {

 "fsxFilesystemID": "fs-xxxxxxxxxx"

 },

 "managementLIF": null,

 "credentials": {

 "name": "arn:aws:secretsmanager:us-west-2:xxxxxxxx:secret:secret-

name",

 "type": "awsarn"

 }

 }

}

For information about creating backends, refer to these pages:

191

• Configure a backend with ONTAP NAS drivers

• Configure a backend with ONTAP SAN drivers

FSx for ONTAP driver details

You can integrate Trident with Amazon FSx for NetApp ONTAP using the following drivers:

• ontap-san: Each PV provisioned is a LUN within its own Amazon FSx for NetApp ONTAP volume.

Recommended for block storage.

• ontap-nas: Each PV provisioned is a full Amazon FSx for NetApp ONTAP volume. Recommended for

NFS and SMB.

• ontap-san-economy: Each PV provisioned is a LUN with a configurable number of LUNs per Amazon

FSx for NetApp ONTAP volume.

• ontap-nas-economy: Each PV provisioned is a qtree, with a configurable number of qtrees per Amazon

FSx for NetApp ONTAP volume.

• ontap-nas-flexgroup: Each PV provisioned is a full Amazon FSx for NetApp ONTAP FlexGroup

volume.

For driver details, refer to NAS drivers and SAN drivers.

Example configurations

Configuration for AWS FSx for ONTAP with secret manager

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc-ontap-nas

spec:

 version: 1

 storageDriverName: ontap-nas

 backendName: tbc-ontap-nas

 svm: svm-name

 aws:

 fsxFilesystemID: fs-xxxxxxxxxx

 managementLIF:

 credentials:

 name: "arn:aws:secretsmanager:us-west-2:xxxxxxxx:secret:secret-

name"

 type: awsarn

192

Configuration of storage class for SMB volumes

Using nasType, node-stage-secret-name, and node-stage-secret-namespace, you can

specify an SMB volume and provide the required Active Directory credentials. SMB volumes are

supported using the ontap-nas driver only.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: nas-smb-sc

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-nas"

 trident.netapp.io/nasType: "smb"

 csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

 csi.storage.k8s.io/node-stage-secret-namespace: "default"

Backend advanced configuration and examples

See the following table for the backend configuration options:

Parameter Description Example

version Always 1

storageDriverName Name of the storage driver ontap-nas, ontap-nas-

economy, ontap-nas-

flexgroup, ontap-san, ontap-

san-economy

backendName Custom name or the storage

backend

Driver name + “_” + dataLIF

193

Parameter Description Example

managementLIF IP address of a cluster or SVM

management LIF

A fully-qualified domain name

(FQDN) can be specified.

Can be set to use IPv6 addresses if

Trident was installed using the IPv6

flag. IPv6 addresses must be

defined in square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e

7b:3555].

If you provide the

fsxFilesystemID under the aws

field, you need not to provide the

managementLIF because Trident

retrieves the SVM

managementLIF information from

AWS. So, you must provide

credentials for a user under the

SVM (For example: vsadmin) and

the user must have the vsadmin

role.

“10.0.0.1”, “[2001:1234:abcd::fefe]”

194

Parameter Description Example

dataLIF IP address of protocol LIF.

ONTAP NAS drivers: We

recommend specifying dataLIF. If

not provided, Trident fetches data

LIFs from the SVM. You can specify

a fully-qualified domain name

(FQDN) to be used for the NFS

mount operations, allowing you to

create a round-robin DNS to load-

balance across multiple data LIFs.

Can be changed after initial setting.

Refer to Update dataLIF after

initial configuration.

ONTAP SAN drivers: Do not

specify for iSCSI. Trident uses

ONTAP Selective LUN Map to

discover the iSCI LIFs needed to

establish a multi path session. A

warning is generated if dataLIF is

explicitly defined.

Can be set to use IPv6 addresses if

Trident was installed using the IPv6

flag. IPv6 addresses must be

defined in square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e

7b:3555].

autoExportPolicy Enable automatic export policy

creation and updating [Boolean].

Using the autoExportPolicy

and autoExportCIDRs options,

Trident can manage export policies

automatically.

false

autoExportCIDRs List of CIDRs to filter Kubernetes'

node IPs against when

autoExportPolicy is enabled.

Using the autoExportPolicy

and autoExportCIDRs options,

Trident can manage export policies

automatically.

"[“0.0.0.0/0”, “::/0”]"

labels Set of arbitrary JSON-formatted

labels to apply on volumes

""

clientCertificate Base64-encoded value of client

certificate. Used for certificate-

based auth

""

195

Parameter Description Example

clientPrivateKey Base64-encoded value of client

private key. Used for certificate-

based auth

""

trustedCACertificate Base64-encoded value of trusted

CA certificate. Optional. Used for

certificate-based authentication.

""

username Username to connect to the cluster

or SVM. Used for credential-based

authentication. For example,

vsadmin.

password Password to connect to the cluster

or SVM. Used for credential-based

authentication.

svm Storage virtual machine to use Derived if an SVM managementLIF

is specified.

storagePrefix Prefix used when provisioning new

volumes in the SVM.

Cannot be modified after creation.

To update this parameter, you will

need to create a new backend.

trident

limitAggregateUsage Do not specify for Amazon FSx

for NetApp ONTAP.

The provided fsxadmin and

vsadmin do not contain the

permissions required to retrieve

aggregate usage and limit it using

Trident.

Do not use.

limitVolumeSize Fail provisioning if requested

volume size is above this value.

Also restricts the maximum size of

the volumes it manages for qtrees

and LUNs, and the

qtreesPerFlexvol option allows

customizing the maximum number

of qtrees per FlexVol.

“” (not enforced by default)

lunsPerFlexvol Maximum LUNs per Flexvol, must

be in range [50, 200].

SAN only.

“100”

196

Parameter Description Example

debugTraceFlags Debug flags to use when

troubleshooting. Example,

{“api”:false, “method”:true}

Do not use debugTraceFlags

unless you are troubleshooting and

require a detailed log dump.

null

nfsMountOptions Comma-separated list of NFS

mount options.

The mount options for Kubernetes-

persistent volumes are normally

specified in storage classes, but if

no mount options are specified in a

storage class, Trident will fall back

to using the mount options

specified in the storage backend’s

configuration file.

If no mount options are specified in

the storage class or the

configuration file, Trident will not set

any mount options on an

associated persistent volume.

""

nasType Configure NFS or SMB volumes

creation.

Options are nfs, smb, or null.

Must set to smb for SMB

volumes. Setting to null defaults to

NFS volumes.

nfs

qtreesPerFlexvol Maximum Qtrees per FlexVol, must

be in range [50, 300]
"200"

smbShare You can specify one of the

following: the name of an SMB

share created using the Microsoft

Management Console or ONTAP

CLI or a name to allow Trident to

create the SMB share.

This parameter is required for

Amazon FSx for ONTAP backends.

smb-share

197

Parameter Description Example

useREST Boolean parameter to use ONTAP

REST APIs. Tech preview

useREST is provided as a tech

preview that is recommended for

test environments and not for

production workloads. When set to

true, Trident will use ONTAP

REST APIs to communicate with

the backend.

This feature requires ONTAP 9.11.1

and later. In addition, the ONTAP

login role used must have access to

the ontap application. This is

satisfied by the pre-defined

vsadmin and cluster-admin

roles.

false

aws You can specify the following in the

configuration file for AWS FSx for

ONTAP:

- fsxFilesystemID: Specify the

ID of the AWS FSx file system.

- apiRegion: AWS API region

name.

- apikey: AWS API key.

- secretKey: AWS secret key.

""

""

""

credentials Specify the FSx SVM credentials to

store in AWS Secret Manager.

- name: Amazon Resource Name

(ARN) of the secret, which contains

the credentials of SVM.

- type: Set to awsarn.

Refer to Create an AWS Secrets

Manager secret for more

information.

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an

example, see the configuration examples below.

Parameter Description Default

spaceAllocation Space-allocation for LUNs true

spaceReserve Space reservation mode; “none”

(thin) or “volume” (thick)
none

snapshotPolicy Snapshot policy to use none

198

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Parameter Description Default

qosPolicy QoS policy group to assign for

volumes created. Choose one of

qosPolicy or adaptiveQosPolicy per

storage pool or backend.

Using QoS policy groups with

Trident requires ONTAP 9.8 or later.

You should use a non-shared QoS

policy group and ensuring the

policy group is applied to each

constituent individually. A shared

QoS policy group enforces the

ceiling for the total throughput of all

workloads.

“”

adaptiveQosPolicy Adaptive QoS policy group to

assign for volumes created.

Choose one of qosPolicy or

adaptiveQosPolicy per storage pool

or backend.

Not supported by ontap-nas-

economy.

“”

snapshotReserve Percentage of volume reserved for

snapshots “0”
If snapshotPolicy is none, else

“”

splitOnClone Split a clone from its parent upon

creation
false

encryption Enable NetApp Volume Encryption

(NVE) on the new volume; defaults

to false. NVE must be licensed

and enabled on the cluster to use

this option.

If NAE is enabled on the backend,

any volume provisioned in Trident

will be NAE enabled.

For more information, refer to: How

Trident works with NVE and NAE.

false

luksEncryption Enable LUKS encryption. Refer to

Use Linux Unified Key Setup

(LUKS).

SAN only.

""

tieringPolicy Tiering policy to use none snapshot-only for pre-ONTAP

9.5 SVM-DR configuration

199

Parameter Description Default

unixPermissions Mode for new volumes.

Leave empty for SMB volumes.

“"

securityStyle Security style for new volumes.

NFS supports mixed and unix

security styles.

SMB supports mixed and ntfs

security styles.

NFS default is unix.

SMB default is ntfs.

Prepare to provision SMB volumes

You can provision SMB volumes using the ontap-nas driver. Before you complete ONTAP SAN and NAS

driver integration complete the following steps.

Before you begin

Before you can provision SMB volumes using the ontap-nas driver, you must have the following.

• A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows

Server 2019. Trident supports SMB volumes mounted to pods running on Windows nodes only.

• At least one Trident secret containing your Active Directory credentials. To generate secret smbcreds:

kubectl create secret generic smbcreds --from-literal username=user

--from-literal password='password'

• A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or

GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

Steps

1. Create SMB shares. You can create the SMB admin shares in one of two ways either using the Microsoft

Management Console Shared Folders snap-in or using the ONTAP CLI. To create the SMB shares using

the ONTAP CLI:

a. If necessary, create the directory path structure for the share.

The vserver cifs share create command checks the path specified in the -path option during

share creation. If the specified path does not exist, the command fails.

b. Create an SMB share associated with the specified SVM:

vserver cifs share create -vserver vserver_name -share-name

share_name -path path [-share-properties share_properties,...]

[other_attributes] [-comment text]

c. Verify that the share was created:

200

https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console

vserver cifs share show -share-name share_name

Refer to Create an SMB share for full details.

2. When creating the backend, you must configure the following to specify SMB volumes. For all FSx for

ONTAP backend configuration options, refer to FSx for ONTAP configuration options and examples.

Parameter Description Example

smbShare You can specify one of the

following: the name of an SMB

share created using the Microsoft

Management Console or ONTAP

CLI or a name to allow Trident to

create the SMB share.

This parameter is required for

Amazon FSx for ONTAP

backends.

smb-share

nasType Must set to smb. If null, defaults

to nfs.

smb

securityStyle Security style for new volumes.

Must be set to ntfs or mixed
for SMB volumes.

ntfs or mixed for SMB volumes

unixPermissions Mode for new volumes. Must be

left empty for SMB volumes.

""

Configure a storage class and PVC

Configure a Kubernetes StorageClass object and create the storage class to instruct

Trident how to provision volumes. Create a PersistentVolume (PV) and a

PersistentVolumeClaim (PVC) that uses the configured Kubernetes StorageClass to

request access to the PV. You can then mount the PV to a pod.

Create a storage class

Configure a Kubernetes StorageClass object

The Kubernetes StorageClass object identifies Trident as the provisioner that is used for that class instructs

Trident how to provision a volume. For example:

201

https://docs.netapp.com/us-en/ontap/smb-config/create-share-task.html
https://docs.netapp.com/us-en/trident/trident-use/trident-fsx-examples.html
https://kubernetes.io/docs/concepts/storage/storage-classes/

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-gold

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-nas"

 media: "ssd"

 provisioningType: "thin"

 snapshots: "true"

Refer to Kubernetes and Trident objects for details on how storage classes interact with the

PersistentVolumeClaim and parameters for controlling how Trident provisions volumes.

Create a storage class

Steps

1. This is a Kubernetes object, so use kubectl to create it in Kubernetes.

kubectl create -f storage-class-ontapnas.yaml

2. You should now see a basic-csi storage class in both Kubernetes and Trident, and Trident should have

discovered the pools on the backend.

kubectl get sc basic-csi

NAME PROVISIONER AGE

basic-csi csi.trident.netapp.io 15h

Create the PV and PVC

A PersistentVolume (PV) is a physical storage resource provisioned by the cluster administrator on a

Kubernetes cluster. The PersistentVolumeClaim (PVC) is a request for access to the PersistentVolume on the

cluster.

The PVC can be configured to request storage of a certain size or access mode. Using the associated

StorageClass, the cluster administrator can control more than PersistentVolume size and access mode—such

as performance or service level.

After you create the PV and PVC, you can mount the volume in a pod.

Sample manifests

202

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes

PersistentVolume sample manifest

This sample manifest shows a basic PV of 10Gi that is associated with StorageClass basic-csi.

apiVersion: v1

kind: PersistentVolume

metadata:

 name: pv-storage

 labels:

 type: local

spec:

 storageClassName: basic-csi

 capacity:

 storage: 10Gi

 accessModes:

 - ReadWriteMany

 hostPath:

 path: "/my/host/path"

203

PersistentVolumeClaim sample manifests

These examples show basic PVC configuration options.

PVC with RWO access

This example shows a basic PVC with RWX access that is associated with a StorageClass named

basic-csi.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pvc-storage

spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 1Gi

 storageClassName: basic-csi

PVC with NVMe/TCP

This example shows a basic PVC for NVMe/TCP with RWO access that is associated with a

StorageClass named protection-gold.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san-nvme

spec:

accessModes:

 - ReadWriteOnce

resources:

 requests:

 storage: 300Mi

storageClassName: protection-gold

Create the PV and PVC

Steps

1. Create the PV.

kubectl create -f pv.yaml

204

2. Verify the PV status.

kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM

STORAGECLASS REASON AGE

pv-storage 4Gi RWO Retain Available

7s

3. Create the PVC.

kubectl create -f pvc.yaml

4. Verify the PVC status.

kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

pvc-storage Bound pv-name 2Gi RWO 5m

Refer to Kubernetes and Trident objects for details on how storage classes interact with the

PersistentVolumeClaim and parameters for controlling how Trident provisions volumes.

Trident attributes

These parameters determine which Trident-managed storage pools should be utilized to provision volumes of

a given type.

Attribute Type Values Offer Request Supported by

media1 string hdd, hybrid, ssd Pool contains

media of this

type; hybrid

means both

Media type

specified

ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroup,

ontap-san,

solidfire-san

provisioningType string thin, thick Pool supports

this provisioning

method

Provisioning

method specified

thick: all ontap;

thin: all ontap &

solidfire-san

205

Attribute Type Values Offer Request Supported by

backendType string ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroup,

ontap-san,

solidfire-san,

gcp-cvs, azure-

netapp-files,

ontap-san-

economy

Pool belongs to

this type of

backend

Backend

specified

All drivers

snapshots bool true, false Pool supports

volumes with

snapshots

Volume with

snapshots

enabled

ontap-nas,

ontap-san,

solidfire-san,

gcp-cvs

clones bool true, false Pool supports

cloning volumes

Volume with

clones enabled

ontap-nas,

ontap-san,

solidfire-san,

gcp-cvs

encryption bool true, false Pool supports

encrypted

volumes

Volume with

encryption

enabled

ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroups,

ontap-san

IOPS int positive integer Pool is capable

of guaranteeing

IOPS in this

range

Volume

guaranteed

these IOPS

solidfire-san

1: Not supported by ONTAP Select systems

Deploy sample application

Deploy sample application.

Steps

1. Mount the volume in a pod.

kubectl create -f pv-pod.yaml

These examples show basic configurations to attach the PVC to a pod:

Basic configuration:

206

kind: Pod

apiVersion: v1

metadata:

 name: pv-pod

spec:

 volumes:

 - name: pv-storage

 persistentVolumeClaim:

 claimName: basic

 containers:

 - name: pv-container

 image: nginx

 ports:

 - containerPort: 80

 name: "http-server"

 volumeMounts:

 - mountPath: "/my/mount/path"

 name: pv-storage

You can monitor the progress using kubectl get pod --watch.

2. Verify that the volume is mounted on /my/mount/path.

kubectl exec -it task-pv-pod -- df -h /my/mount/path

Filesystem Size

Used Avail Use% Mounted on

192.168.188.78:/trident_pvc_ae45ed05_3ace_4e7c_9080_d2a83ae03d06 1.1G

320K 1.0G 1% /my/mount/path

1. You can now delete the Pod. The Pod application will no longer exist, but the volume will remain.

kubectl delete pod task-pv-pod

Configure the Astra Trident EKS add-on on an EKS cluster

Astra Trident streamlines Amazon FSx for NetApp ONTAP storage management in

Kubernetes to enable your developers and administrators focus on application

deployment. The Astra Trident EKS add-on includes the latest security patches, bug

fixes, and is validated by AWS to work with Amazon EKS. The EKS add-on enables you

to consistently ensure that your Amazon EKS clusters are secure and stable and reduce

207

the amount of work that you need to do in order to install, configure, and update add-ons.

Prerequisites

Ensure that you have the following before configuring the Astra Trident add-on for AWS EKS:

• An Amazon EKS cluster account with add-on subscription

• AWS permissions to the AWS marketplace:

"aws-marketplace:ViewSubscriptions",

"aws-marketplace:Subscribe",

"aws-marketplace:Unsubscribe

• AMI type: Amazon Linux 2 (AL2_x86_64) or Amazon Linux 2 Arm(AL2_ARM_64)

• Node type: AMD or ARM

• An existing Amazon FSx for NetApp ONTAP file system

Steps

1. On your your EKS Kubernetes cluster, navigate to the Add-ons tab.

2. Go to AWS Marketplace add-ons and choose the storage category.

208

3. Locate NetApp Trident and select the checkbox for the Astra Trident add-on.

4. Choose the desired version of the add-on.

209

5. Select the IAM role option to inherit from the node.

210

6. (Optional) Configure any Optional configuration settings as required and select Next.

Follow the Add-on configuration schema and set the configurationValues parameter on the

Configuration values section to the role-arn you created on the previous step (value should be in the

following format: eks.amazonaws.com/role-arn:

arn:aws:iam::464262061435:role/AmazonEKS_FSXN_CSI_DriverRole). If you select Override

for the Conflict resolution method, one or more of the settings for the existing add-on can be overwritten

with the Amazon EKS add-on settings. If you don’t enable this option and there’s a conflict with your

existing settings, the operation fails. You can use the resulting error message to troubleshoot the conflict.

Before selecting this option, make sure that the Amazon EKS add-on doesn’t manage settings that you

need to self-manage.

When you configure the optional parameter cloudIdentity, ensure that you specify AWS

as the cloudProvider while installing Trident using the EKS add-on.

211

7. Select Create.

8. Verify that the status of the add-on is Active.

Install/uninstall the Astra Trident EKS add-on using CLI

Install the Astra Trident EKS add-on using CLI:

The following example command installs the Astra Trident EKS add-on:

eksctl create addon --cluster K8s-arm --name netapp_trident-operator --version

v24.6.1-eksbuild

212

eksctl create addon --cluster clusterName --name netapp_trident-operator

--version v24.6.1-eksbuild.1 (with a dedicated version)

When you configure the optional parameter cloudIdentity, ensure that you specify

cloudProvider while installing Trident using the EKS add-on.

Uninstall the Astra Trident EKS add-on using CLI:

The following command uninstalls the Astra Trident EKS add-on:

eksctl delete addon --cluster K8s-arm --name netapp_trident-operator

Create backends with kubectl

A backend defines the relationship between Trident and a storage system. It tells Trident

how to communicate with that storage system and how Trident should provision volumes

from it. After Trident is installed, the next step is to create a backend. The

TridentBackendConfig Custom Resource Definition (CRD) enables you to create and

manage Trident backends directly through the Kubernetes interface. You can do this by

using kubectl or the equivalent CLI tool for your Kubernetes distribution.

TridentBackendConfig

TridentBackendConfig (tbc, tbconfig, tbackendconfig) is a frontend, namespaced CRD that

enables you to manage Trident backends using kubectl. Kubernetes and storage admins can now create

and manage backends directly through the Kubernetes CLI without requiring a dedicated command-line utility

(tridentctl).

Upon the creation of a TridentBackendConfig object, the following happens:

• A backend is created automatically by Trident based on the configuration you provide. This is represented

internally as a TridentBackend (tbe, tridentbackend) CR.

• The TridentBackendConfig is uniquely bound to a TridentBackend that was created by Trident.

Each TridentBackendConfig maintains a one-to-one mapping with a TridentBackend. The former is the

interface provided to the user to design and configure backends; the latter is how Trident represents the actual

backend object.

TridentBackend CRs are created automatically by Trident. You should not modify them. If

you want to make updates to backends, do this by modifying the TridentBackendConfig

object.

See the following example for the format of the TridentBackendConfig CR:

213

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc-ontap-san

spec:

 version: 1

 backendName: ontap-san-backend

 storageDriverName: ontap-san

 managementLIF: 10.0.0.1

 dataLIF: 10.0.0.2

 svm: trident_svm

 credentials:

 name: backend-tbc-ontap-san-secret

You can also take a look at the examples in the trident-installer directory for sample configurations for the

desired storage platform/service.

The spec takes backend-specific configuration parameters. In this example, the backend uses the ontap-

san storage driver and uses the configuration parameters that are tabulated here. For the list of configuration

options for your desired storage driver, refer to the backend configuration information for your storage driver.

The spec section also includes credentials and deletionPolicy fields, which are newly introduced in

the TridentBackendConfig CR:

• credentials: This parameter is a required field and contains the credentials used to authenticate with

the storage system/service. This is set to a user-created Kubernetes Secret. The credentials cannot be

passed in plain text and will result in an error.

• deletionPolicy: This field defines what should happen when the TridentBackendConfig is deleted.

It can take one of two possible values:

◦ delete: This results in the deletion of both TridentBackendConfig CR and the associated

backend. This is the default value.

◦ retain: When a TridentBackendConfig CR is deleted, the backend definition will still be present

and can be managed with tridentctl. Setting the deletion policy to retain lets users downgrade to

an earlier release (pre-21.04) and retain the created backends. The value for this field can be updated

after a TridentBackendConfig is created.

The name of a backend is set using spec.backendName. If unspecified, the name of the

backend is set to the name of the TridentBackendConfig object (metadata.name). It is

recommended to explicitly set backend names using spec.backendName.

Backends that were created with tridentctl do not have an associated

TridentBackendConfig object. You can choose to manage such backends with kubectl by

creating a TridentBackendConfig CR. Care must be taken to specify identical config

parameters (such as spec.backendName, spec.storagePrefix,

spec.storageDriverName, and so on). Trident will automatically bind the newly-created

TridentBackendConfig with the pre-existing backend.

214

https://github.com/NetApp/trident/tree/stable/v21.07/trident-installer/sample-input/backends-samples

Steps overview

To create a new backend by using kubectl, you should do the following:

1. Create a Kubernetes Secret. The secret contains the credentials Trident needs to communicate with the

storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and

references the secret created in the previous step.

After you create a backend, you can observe its status by using kubectl get tbc <tbc-name> -n

<trident-namespace> and gather additional details.

Step 1: Create a Kubernetes Secret

Create a Secret that contains the access credentials for the backend. This is unique to each storage

service/platform. Here’s an example:

kubectl -n trident create -f backend-tbc-ontap-san-secret.yaml

apiVersion: v1

kind: Secret

metadata:

 name: backend-tbc-ontap-san-secret

type: Opaque

stringData:

 username: cluster-admin

 password: t@Ax@7q(>

This table summarizes the fields that must be included in the Secret for each storage platform:

Storage platform Secret Fields

description

Secret Fields description

Azure NetApp Files clientID The client ID from an app

registration

Cloud Volumes Service for GCP private_key_id ID of the private key. Part of API

key for GCP Service Account with

CVS admin role

Cloud Volumes Service for GCP private_key Private key. Part of API key for

GCP Service Account with CVS

admin role

Element (NetApp HCI/SolidFire) Endpoint MVIP for the SolidFire cluster with

tenant credentials

215

https://kubernetes.io/docs/concepts/configuration/secret/

Storage platform Secret Fields

description

Secret Fields description

ONTAP username Username to connect to the

cluster/SVM. Used for credential-

based authentication

ONTAP password Password to connect to the

cluster/SVM. Used for credential-

based authentication

ONTAP clientPrivateKey Base64-encoded value of client

private key. Used for certificate-

based authentication

ONTAP chapUsername Inbound username. Required if

useCHAP=true. For ontap-san

and ontap-san-economy

ONTAP chapInitiatorSecret CHAP initiator secret. Required if

useCHAP=true. For ontap-san

and ontap-san-economy

ONTAP chapTargetUsername Target username. Required if

useCHAP=true. For ontap-san

and ontap-san-economy

ONTAP chapTargetInitiatorSecret CHAP target initiator secret.

Required if useCHAP=true. For

ontap-san and ontap-san-

economy

The Secret created in this step will be referenced in the spec.credentials field of the

TridentBackendConfig object that is created in the next step.

Step 2: Create the TridentBackendConfig CR

You are now ready to create your TridentBackendConfig CR. In this example, a backend that uses the

ontap-san driver is created by using the TridentBackendConfig object shown below:

kubectl -n trident create -f backend-tbc-ontap-san.yaml

216

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc-ontap-san

spec:

 version: 1

 backendName: ontap-san-backend

 storageDriverName: ontap-san

 managementLIF: 10.0.0.1

 dataLIF: 10.0.0.2

 svm: trident_svm

 credentials:

 name: backend-tbc-ontap-san-secret

Step 3: Verify the status of the TridentBackendConfig CR

Now that you created the TridentBackendConfig CR, you can verify the status. See the following example:

kubectl -n trident get tbc backend-tbc-ontap-san

NAME BACKEND NAME BACKEND UUID

PHASE STATUS

backend-tbc-ontap-san ontap-san-backend 8d24fce7-6f60-4d4a-8ef6-

bab2699e6ab8 Bound Success

A backend was successfully created and bound to the TridentBackendConfig CR.

Phase can take one of the following values:

• Bound: The TridentBackendConfig CR is associated with a backend, and that backend contains

configRef set to the TridentBackendConfig CR’s uid.

• Unbound: Represented using "". The TridentBackendConfig object is not bound to a backend. All

newly created TridentBackendConfig CRs are in this phase by default. After the phase changes, it

cannot revert to Unbound again.

• Deleting: The TridentBackendConfig CR’s deletionPolicy was set to delete. When the

TridentBackendConfig CR is deleted, it transitions to the Deleting state.

◦ If no persistent volume claims (PVCs) exist on the backend, deleting the TridentBackendConfig

will result in Trident deleting the backend as well as the TridentBackendConfig CR.

◦ If one or more PVCs are present on the backend, it goes to a deleting state. The

TridentBackendConfig CR subsequently also enters deleting phase. The backend and

TridentBackendConfig are deleted only after all PVCs are deleted.

• Lost: The backend associated with the TridentBackendConfig CR was accidentally or deliberately

deleted and the TridentBackendConfig CR still has a reference to the deleted backend. The

TridentBackendConfig CR can still be deleted irrespective of the deletionPolicy value.

217

• Unknown: Trident is unable to determine the state or existence of the backend associated with the

TridentBackendConfig CR. For example, if the API server is not responding or if the

tridentbackends.trident.netapp.io CRD is missing. This might require intervention.

At this stage, a backend is successfully created! There are several operations that can additionally be handled,

such as backend updates and backend deletions.

(Optional) Step 4: Get more details

You can run the following command to get more information about your backend:

kubectl -n trident get tbc backend-tbc-ontap-san -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY

backend-tbc-ontap-san ontap-san-backend 8d24fce7-6f60-4d4a-8ef6-

bab2699e6ab8 Bound Success ontap-san delete

In addition, you can also obtain a YAML/JSON dump of TridentBackendConfig.

kubectl -n trident get tbc backend-tbc-ontap-san -o yaml

218

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 creationTimestamp: "2021-04-21T20:45:11Z"

 finalizers:

 - trident.netapp.io

 generation: 1

 name: backend-tbc-ontap-san

 namespace: trident

 resourceVersion: "947143"

 uid: 35b9d777-109f-43d5-8077-c74a4559d09c

spec:

 backendName: ontap-san-backend

 credentials:

 name: backend-tbc-ontap-san-secret

 managementLIF: 10.0.0.1

 dataLIF: 10.0.0.2

 storageDriverName: ontap-san

 svm: trident_svm

 version: 1

status:

 backendInfo:

 backendName: ontap-san-backend

 backendUUID: 8d24fce7-6f60-4d4a-8ef6-bab2699e6ab8

 deletionPolicy: delete

 lastOperationStatus: Success

 message: Backend 'ontap-san-backend' created

 phase: Bound

backendInfo contains the backendName and the backendUUID of the backend that got created in

response to the TridentBackendConfig CR. The lastOperationStatus field represents the status of

the last operation of the TridentBackendConfig CR, which can be user-triggered (for example, user

changed something in spec) or triggered by Trident (for example, during Trident restarts). It can either be

Success or Failed. phase represents the status of the relation between the TridentBackendConfig CR

and the backend. In the example above, phase has the value Bound, which means that the

TridentBackendConfig CR is associated with the backend.

You can run the kubectl -n trident describe tbc <tbc-cr-name> command to get details of the

event logs.

You cannot update or delete a backend which contains an associated

TridentBackendConfig object using tridentctl. To understand the steps involved in

switching between tridentctl and TridentBackendConfig, see here.

219

Manage backends

Perform backend management with kubectl

Learn about how to perform backend management operations by using kubectl.

Delete a backend

By deleting a TridentBackendConfig, you instruct Trident to delete/retain backends (based on

deletionPolicy). To delete a backend, ensure that deletionPolicy is set to delete. To delete just the

TridentBackendConfig, ensure that deletionPolicy is set to retain. This ensures the backend is still

present and can be managed by using tridentctl.

Run the following command:

kubectl delete tbc <tbc-name> -n trident

Trident does not delete the Kubernetes Secrets that were in use by TridentBackendConfig. The

Kubernetes user is responsible for cleaning up secrets. Care must be taken when deleting secrets. You should

delete secrets only if they are not in use by the backends.

View the existing backends

Run the following command:

kubectl get tbc -n trident

You can also run tridentctl get backend -n trident or tridentctl get backend -o yaml -n

trident to obtain a list of all backends that exist. This list will also include backends that were created with

tridentctl.

Update a backend

There can be multiple reasons to update a backend:

• Credentials to the storage system have changed. To update credentials, the Kubernetes Secret that is used

in the TridentBackendConfig object must be updated. Trident will automatically update the backend

with the latest credentials provided. Run the following command to update the Kubernetes Secret:

kubectl apply -f <updated-secret-file.yaml> -n trident

• Parameters (such as the name of the ONTAP SVM being used) need to be updated.

◦ You can update TridentBackendConfig objects directly through Kubernetes using the following

command:

kubectl apply -f <updated-backend-file.yaml>

220

◦ Alternatively, you can make changes to the existing TridentBackendConfig CR using the following

command:

kubectl edit tbc <tbc-name> -n trident

• If a backend update fails, the backend continues to remain in its last known configuration.

You can view the logs to determine the cause by running kubectl get tbc <tbc-name>

-o yaml -n trident or kubectl describe tbc <tbc-name> -n trident.

• After you identify and correct the problem with the configuration file, you can re-run the

update command.

Perform backend management with tridentctl

Learn about how to perform backend management operations by using tridentctl.

Create a backend

After you create a backend configuration file, run the following command:

tridentctl create backend -f <backend-file> -n trident

If backend creation fails, something was wrong with the backend configuration. You can view the logs to

determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the create command

again.

Delete a backend

To delete a backend from Trident, do the following:

1. Retrieve the backend name:

tridentctl get backend -n trident

2. Delete the backend:

tridentctl delete backend <backend-name> -n trident

221

If Trident has provisioned volumes and snapshots from this backend that still exist, deleting the

backend prevents new volumes from being provisioned by it. The backend will continue to exist

in a “Deleting” state and Trident will continue to manage those volumes and snapshots until they

are deleted.

View the existing backends

To view the backends that Trident knows about, do the following:

• To get a summary, run the following command:

tridentctl get backend -n trident

• To get all the details, run the following command:

tridentctl get backend -o json -n trident

Update a backend

After you create a new backend configuration file, run the following command:

tridentctl update backend <backend-name> -f <backend-file> -n trident

If backend update fails, something was wrong with the backend configuration or you attempted an invalid

update. You can view the logs to determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the update command

again.

Identify the storage classes that use a backend

This is an example of the kind of questions you can answer with the JSON that tridentctl outputs for

backend objects. This uses the jq utility, which you need to install.

tridentctl get backend -o json | jq '[.items[] | {backend: .name,

storageClasses: [.storage[].storageClasses]|unique}]'

This also applies for backends that were created by using TridentBackendConfig.

Move between backend management options

Learn about the different ways of managing backends in Trident.

222

Options for managing backends

With the introduction of TridentBackendConfig, administrators now have two unique ways of managing

backends. This poses the following questions:

• Can backends created using tridentctl be managed with TridentBackendConfig?

• Can backends created using TridentBackendConfig be managed using tridentctl?

Manage tridentctl backends using TridentBackendConfig

This section covers the steps required to manage backends that were created using tridentctl directly

through the Kubernetes interface by creating TridentBackendConfig objects.

This will apply to the following scenarios:

• Pre-existing backends, that don’t have a TridentBackendConfig because they were created with

tridentctl.

• New backends that were created with tridentctl, while other TridentBackendConfig objects exist.

In both scenarios, backends will continue to be present, with Trident scheduling volumes and operating on

them. Administrators have one of two choices here:

• Continue using tridentctl to manage backends that were created using it.

• Bind backends created using tridentctl to a new TridentBackendConfig object. Doing so would

mean the backends will be managed using kubectl and not tridentctl.

To manage a pre-existing backend using kubectl, you will need to create a TridentBackendConfig that

binds to the existing backend. Here is an overview of how that works:

1. Create a Kubernetes Secret. The secret contains the credentials Trident needs to communicate with the

storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and

references the secret created in the previous step. Care must be taken to specify identical config

parameters (such as spec.backendName, spec.storagePrefix, spec.storageDriverName, and

so on). spec.backendName must be set to the name of the existing backend.

Step 0: Identify the backend

To create a TridentBackendConfig that binds to an existing backend, you will need to obtain the backend

configuration. In this example, let us assume a backend was created using the following JSON definition:

tridentctl get backend ontap-nas-backend -n trident

+---------------------+----------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+---------------------+----------------

+--------------------------------------+--------+---------+

| ontap-nas-backend | ontap-nas | 52f2eb10-e4c6-4160-99fc-

223

96b3be5ab5d7 | online | 25 |

+---------------------+----------------

+--------------------------------------+--------+---------+

cat ontap-nas-backend.json

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "managementLIF": "10.10.10.1",

 "dataLIF": "10.10.10.2",

 "backendName": "ontap-nas-backend",

 "svm": "trident_svm",

 "username": "cluster-admin",

 "password": "admin-password",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "false"

 },

 "labels":{"store":"nas_store"},

 "region": "us_east_1",

 "storage": [

 {

 "labels":{"app":"msoffice", "cost":"100"},

 "zone":"us_east_1a",

 "defaults": {

 "spaceReserve": "volume",

 "encryption": "true",

 "unixPermissions": "0755"

 }

 },

 {

 "labels":{"app":"mysqldb", "cost":"25"},

 "zone":"us_east_1d",

 "defaults": {

 "spaceReserve": "volume",

 "encryption": "false",

 "unixPermissions": "0775"

 }

 }

]

}

224

Step 1: Create a Kubernetes Secret

Create a Secret that contains the credentials for the backend, as shown in this example:

cat tbc-ontap-nas-backend-secret.yaml

apiVersion: v1

kind: Secret

metadata:

 name: ontap-nas-backend-secret

type: Opaque

stringData:

 username: cluster-admin

 password: admin-password

kubectl create -f tbc-ontap-nas-backend-secret.yaml -n trident

secret/backend-tbc-ontap-san-secret created

Step 2: Create a TridentBackendConfig CR

The next step is to create a TridentBackendConfig CR that will automatically bind to the pre-existing

ontap-nas-backend (as in this example). Ensure the following requirements are met:

• The same backend name is defined in spec.backendName.

• Configuration parameters are identical to the original backend.

• Virtual pools (if present) must retain the same order as in the original backend.

• Credentials are provided through a Kubernetes Secret and not in plain text.

In this case, the TridentBackendConfig will look like this:

225

cat backend-tbc-ontap-nas.yaml

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: tbc-ontap-nas-backend

spec:

 version: 1

 storageDriverName: ontap-nas

 managementLIF: 10.10.10.1

 dataLIF: 10.10.10.2

 backendName: ontap-nas-backend

 svm: trident_svm

 credentials:

 name: mysecret

 defaults:

 spaceReserve: none

 encryption: 'false'

 labels:

 store: nas_store

 region: us_east_1

 storage:

 - labels:

 app: msoffice

 cost: '100'

 zone: us_east_1a

 defaults:

 spaceReserve: volume

 encryption: 'true'

 unixPermissions: '0755'

 - labels:

 app: mysqldb

 cost: '25'

 zone: us_east_1d

 defaults:

 spaceReserve: volume

 encryption: 'false'

 unixPermissions: '0775'

kubectl create -f backend-tbc-ontap-nas.yaml -n trident

tridentbackendconfig.trident.netapp.io/tbc-ontap-nas-backend created

Step 3: Verify the status of the TridentBackendConfig CR

After the TridentBackendConfig has been created, its phase must be Bound. It should also reflect the

same backend name and UUID as that of the existing backend.

226

kubectl get tbc tbc-ontap-nas-backend -n trident

NAME BACKEND NAME BACKEND UUID

PHASE STATUS

tbc-ontap-nas-backend ontap-nas-backend 52f2eb10-e4c6-4160-99fc-

96b3be5ab5d7 Bound Success

#confirm that no new backends were created (i.e., TridentBackendConfig did

not end up creating a new backend)

tridentctl get backend -n trident

+---------------------+----------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+---------------------+----------------

+--------------------------------------+--------+---------+

| ontap-nas-backend | ontap-nas | 52f2eb10-e4c6-4160-99fc-

96b3be5ab5d7 | online | 25 |

+---------------------+----------------

+--------------------------------------+--------+---------+

The backend will now be completely managed using the tbc-ontap-nas-backend

TridentBackendConfig object.

Manage TridentBackendConfig backends using tridentctl

tridentctl can be used to list backends that were created using TridentBackendConfig. In addition,

administrators can also choose to completely manage such backends through tridentctl by deleting

TridentBackendConfig and making sure spec.deletionPolicy is set to retain.

Step 0: Identify the backend

For example, let us assume the following backend was created using TridentBackendConfig:

227

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY

backend-tbc-ontap-san ontap-san-backend 81abcb27-ea63-49bb-b606-

0a5315ac5f82 Bound Success ontap-san delete

tridentctl get backend ontap-san-backend -n trident

+-------------------+----------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+-------------------+----------------

+--------------------------------------+--------+---------+

| ontap-san-backend | ontap-san | 81abcb27-ea63-49bb-b606-

0a5315ac5f82 | online | 33 |

+-------------------+----------------

+--------------------------------------+--------+---------+

From the output, it is seen that TridentBackendConfig was created successfully and is bound to a

backend [observe the backend’s UUID].

Step 1: Confirm deletionPolicy is set to retain

Let us take a look at the value of deletionPolicy. This needs to be set to retain. This ensures that when

a TridentBackendConfig CR is deleted, the backend definition will still be present and can be managed

with tridentctl.

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY

backend-tbc-ontap-san ontap-san-backend 81abcb27-ea63-49bb-b606-

0a5315ac5f82 Bound Success ontap-san delete

Patch value of deletionPolicy to retain

kubectl patch tbc backend-tbc-ontap-san --type=merge -p

'{"spec":{"deletionPolicy":"retain"}}' -n trident

tridentbackendconfig.trident.netapp.io/backend-tbc-ontap-san patched

#Confirm the value of deletionPolicy

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY

backend-tbc-ontap-san ontap-san-backend 81abcb27-ea63-49bb-b606-

0a5315ac5f82 Bound Success ontap-san retain

228

Do not proceed to the next step unless deletionPolicy is set to retain.

Step 2: Delete the TridentBackendConfig CR

The final step is to delete the TridentBackendConfig CR. After confirming the deletionPolicy is set to

retain, you can go ahead with the deletion:

kubectl delete tbc backend-tbc-ontap-san -n trident

tridentbackendconfig.trident.netapp.io "backend-tbc-ontap-san" deleted

tridentctl get backend ontap-san-backend -n trident

+-------------------+----------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+-------------------+----------------

+--------------------------------------+--------+---------+

| ontap-san-backend | ontap-san | 81abcb27-ea63-49bb-b606-

0a5315ac5f82 | online | 33 |

+-------------------+----------------

+--------------------------------------+--------+---------+

Upon the deletion of the TridentBackendConfig object, Trident simply removes it without actually deleting

the backend itself.

Create and manage storage classes

Create a storage class

Configure a Kubernetes StorageClass object and create the storage class to instruct

Trident how to provision volumes.

Configure a Kubernetes StorageClass object

The Kubernetes StorageClass object identifies Trident as the provisioner that is used for that class and

instructs Trident how to provision a volume. For example:

229

https://kubernetes.io/docs/concepts/storage/storage-classes/

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: <Name>

provisioner: csi.trident.netapp.io

mountOptions: <Mount Options>

parameters:

 <Trident Parameters>

allowVolumeExpansion: true

volumeBindingMode: Immediate

Refer to Kubernetes and Trident objects for details on how storage classes interact with the

PersistentVolumeClaim and parameters for controlling how Trident provisions volumes.

Create a storage class

After you create the StorageClass object, you can create the storage class. Storage class samples provides

some basic samples you can use or modify.

Steps

1. This is a Kubernetes object, so use kubectl to create it in Kubernetes.

kubectl create -f sample-input/storage-class-basic-csi.yaml

2. You should now see a basic-csi storage class in both Kubernetes and Trident, and Trident should have

discovered the pools on the backend.

230

kubectl get sc basic-csi

NAME PROVISIONER AGE

basic-csi csi.trident.netapp.io 15h

./tridentctl -n trident get storageclass basic-csi -o json

{

 "items": [

 {

 "Config": {

 "version": "1",

 "name": "basic-csi",

 "attributes": {

 "backendType": "ontap-nas"

 },

 "storagePools": null,

 "additionalStoragePools": null

 },

 "storage": {

 "ontapnas_10.0.0.1": [

 "aggr1",

 "aggr2",

 "aggr3",

 "aggr4"

]

 }

 }

]

}

Storage class samples

Trident provides simple storage class definitions for specific backends.

Alternatively, you can edit sample-input/storage-class-csi.yaml.templ file that comes with the

installer and replace BACKEND_TYPE with the storage driver name.

231

https://github.com/NetApp/trident/tree/master/trident-installer/sample-input/storage-class-samples

./tridentctl -n trident get backend

+-------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+-------------+----------------+--------------------------------------

+--------+---------+

| nas-backend | ontap-nas | 98e19b74-aec7-4a3d-8dcf-128e5033b214 |

online | 0 |

+-------------+----------------+--------------------------------------

+--------+---------+

cp sample-input/storage-class-csi.yaml.templ sample-input/storage-class-

basic-csi.yaml

Modify __BACKEND_TYPE__ with the storage driver field above (e.g.,

ontap-nas)

vi sample-input/storage-class-basic-csi.yaml

Manage storage classes

You can view existing storage classes, set a default storage class, identify the storage

class backend, and delete storage classes.

View the existing storage classes

• To view existing Kubernetes storage classes, run the following command:

kubectl get storageclass

• To view Kubernetes storage class detail, run the following command:

kubectl get storageclass <storage-class> -o json

• To view Trident’s synchronized storage classes, run the following command:

tridentctl get storageclass

• To view Trident’s synchronized storage class detail, run the following command:

tridentctl get storageclass <storage-class> -o json

232

Set a default storage class

Kubernetes 1.6 added the ability to set a default storage class. This is the storage class that will be used to

provision a Persistent Volume if a user does not specify one in a Persistent Volume Claim (PVC).

• Define a default storage class by setting the annotation storageclass.kubernetes.io/is-

default-class to true in the storage class definition. According to the specification, any other value or

absence of the annotation is interpreted as false.

• You can configure an existing storage class to be the default storage class by using the following

command:

kubectl patch storageclass <storage-class-name> -p '{"metadata":

{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

• Similarly, you can remove the default storage class annotation by using the following command:

kubectl patch storageclass <storage-class-name> -p '{"metadata":

{"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}}'

There are also examples in the Trident installer bundle that include this annotation.

There should be only one default storage class in your cluster at a time. Kubernetes does not

technically prevent you from having more than one, but it will behave as if there is no default

storage class at all.

Identify the backend for a storage class

This is an example of the kind of questions you can answer with the JSON that tridentctl outputs for

Trident backend objects. This uses the jq utility, which you may need to install first.

tridentctl get storageclass -o json | jq '[.items[] | {storageClass:

.Config.name, backends: [.storage]|unique}]'

Delete a storage class

To delete a storage class from Kubernetes, run the following command:

kubectl delete storageclass <storage-class>

<storage-class> should be replaced with your storage class.

Any persistent volumes that were created through this storage class will remain untouched, and Trident will

continue to manage them.

233

Trident enforces a blank fsType for the volumes it creates. For iSCSI backends, it is

recommended to enforce parameters.fsType in the StorageClass. You should delete

existing StorageClasses and re-create them with parameters.fsType specified.

Provision and manage volumes

Provision a volume

Create a PersistentVolume (PV) and a PersistentVolumeClaim (PVC) that uses the

configured Kubernetes StorageClass to request access to the PV. You can then mount

the PV to a pod.

Overview

A PersistentVolume (PV) is a physical storage resource provisioned by the cluster administrator on a

Kubernetes cluster. The PersistentVolumeClaim (PVC) is a request for access to the PersistentVolume on the

cluster.

The PVC can be configured to request storage of a certain size or access mode. Using the associated

StorageClass, the cluster administrator can control more than PersistentVolume size and access mode—such

as performance or service level.

After you create the PV and PVC, you can mount the volume in a pod.

Sample manifests

PersistentVolume sample manifest

This sample manifest shows a basic PV of 10Gi that is associated with StorageClass basic-csi.

apiVersion: v1

kind: PersistentVolume

metadata:

 name: pv-storage

 labels:

 type: local

spec:

 storageClassName: basic-csi

 capacity:

 storage: 10Gi

 accessModes:

 - ReadWriteOnce

 hostPath:

 path: "/my/host/path"

234

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes

PersistentVolumeClaim sample manifests

These examples show basic PVC configuration options.

PVC with RWO access

This example shows a basic PVC with RWO access that is associated with a StorageClass named

basic-csi.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pvc-storage

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: basic-csi

PVC with NVMe/TCP

This example shows a basic PVC for NVMe/TCP with RWO access that is associated with a

StorageClass named protection-gold.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san-nvme

spec:

accessModes:

 - ReadWriteOnce

resources:

 requests:

 storage: 300Mi

storageClassName: protection-gold

235

Pod manifest samples

These examples show basic configurations to attach the PVC to a pod.

Basic configuration

kind: Pod

apiVersion: v1

metadata:

 name: pv-pod

spec:

 volumes:

 - name: pv-storage

 persistentVolumeClaim:

 claimName: basic

 containers:

 - name: pv-container

 image: nginx

 ports:

 - containerPort: 80

 name: "http-server"

 volumeMounts:

 - mountPath: "/my/mount/path"

 name: pv-storage

236

Basic NVMe/TCP configuration

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 run: nginx

 name: nginx

spec:

 containers:

 - image: nginx

 name: nginx

 resources: {}

 volumeMounts:

 - mountPath: "/usr/share/nginx/html"

 name: task-pv-storage

 dnsPolicy: ClusterFirst

 restartPolicy: Always

 volumes:

 - name: task-pv-storage

 persistentVolumeClaim:

 claimName: pvc-san-nvme

Create the PV and PVC

Steps

1. Create the PV.

kubectl create -f pv.yaml

2. Verify the PV status.

kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM

STORAGECLASS REASON AGE

pv-storage 4Gi RWO Retain Available

7s

3. Create the PVC.

237

kubectl create -f pvc.yaml

4. Verify the PVC status.

kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

pvc-storage Bound pv-name 2Gi RWO 5m

5. Mount the volume in a pod.

kubectl create -f pv-pod.yaml

You can monitor the progress using kubectl get pod --watch.

6. Verify that the volume is mounted on /my/mount/path.

kubectl exec -it task-pv-pod -- df -h /my/mount/path

7. You can now delete the Pod. The Pod application will no longer exist, but the volume will remain.

kubectl delete pod task-pv-pod

Refer to Kubernetes and Trident objects for details on how storage classes interact with the

PersistentVolumeClaim and parameters for controlling how Trident provisions volumes.

Expand volumes

Trident provides Kubernetes users the ability to expand their volumes after they are

created. Find information about the configurations required to expand iSCSI and NFS

volumes.

Expand an iSCSI volume

You can expand an iSCSI Persistent Volume (PV) by using the CSI provisioner.

iSCSI volume expansion is supported by the ontap-san, ontap-san-economy, solidfire-

san drivers and requires Kubernetes 1.16 and later.

Step 1: Configure the StorageClass to support volume expansion

Edit the StorageClass definition to set the allowVolumeExpansion field to true.

238

cat storageclass-ontapsan.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-san

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-san"

allowVolumeExpansion: True

For an already existing StorageClass, edit it to include the allowVolumeExpansion parameter.

Step 2: Create a PVC with the StorageClass you created

Edit the PVC definition and update the spec.resources.requests.storage to reflect the newly desired

size, which must be greater than the original size.

cat pvc-ontapsan.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: san-pvc

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: ontap-san

Trident creates a Persistent Volume (PV) and associates it with this Persistent Volume Claim (PVC).

239

kubectl get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi

RWO ontap-san 8s

kubectl get pv

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi RWO

Delete Bound default/san-pvc ontap-san 10s

Step 3: Define a pod that attaches the PVC

Attach the PV to a pod for it to be resized. There are two scenarios when resizing an iSCSI PV:

• If the PV is attached to a pod, Trident expands the volume on the storage backend, rescans the device,

and resizes the filesystem.

• When attempting to resize an unattached PV, Trident expands the volume on the storage backend. After

the PVC is bound to a pod, Trident rescans the device and resizes the filesystem. Kubernetes then

updates the PVC size after the expand operation has successfully completed.

In this example, a pod is created that uses the san-pvc.

 kubectl get pod

NAME READY STATUS RESTARTS AGE

ubuntu-pod 1/1 Running 0 65s

 kubectl describe pvc san-pvc

Name: san-pvc

Namespace: default

StorageClass: ontap-san

Status: Bound

Volume: pvc-8a814d62-bd58-4253-b0d1-82f2885db671

Labels: <none>

Annotations: pv.kubernetes.io/bind-completed: yes

 pv.kubernetes.io/bound-by-controller: yes

 volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers: [kubernetes.io/pvc-protection]

Capacity: 1Gi

Access Modes: RWO

VolumeMode: Filesystem

Mounted By: ubuntu-pod

240

Step 4: Expand the PV

To resize the PV that has been created from 1Gi to 2Gi, edit the PVC definition and update the

spec.resources.requests.storage to 2Gi.

kubectl edit pvc san-pvc

Please edit the object below. Lines beginning with a '#' will be

ignored,

and an empty file will abort the edit. If an error occurs while saving

this file will be

reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 annotations:

 pv.kubernetes.io/bind-completed: "yes"

 pv.kubernetes.io/bound-by-controller: "yes"

 volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

 creationTimestamp: "2019-10-10T17:32:29Z"

 finalizers:

 - kubernetes.io/pvc-protection

 name: san-pvc

 namespace: default

 resourceVersion: "16609"

 selfLink: /api/v1/namespaces/default/persistentvolumeclaims/san-pvc

 uid: 8a814d62-bd58-4253-b0d1-82f2885db671

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 2Gi

 ...

Step 5: Validate the expansion

You can validate the expansion worked correctly by checking the size of the PVC, PV, and the Trident volume:

241

kubectl get pvc san-pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82f2885db671 2Gi

RWO ontap-san 11m

kubectl get pv

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 2Gi RWO

Delete Bound default/san-pvc ontap-san 12m

tridentctl get volumes -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-8a814d62-bd58-4253-b0d1-82f2885db671 | 2.0 GiB | ontap-san |

block | a9b7bfff-0505-4e31-b6c5-59f492e02d33 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

Expand an NFS volume

Trident supports volume expansion for NFS PVs provisioned on ontap-nas, ontap-nas-economy, ontap-

nas-flexgroup, gcp-cvs, and azure-netapp-files backends.

Step 1: Configure the StorageClass to support volume expansion

To resize an NFS PV, the admin first needs to configure the storage class to allow volume expansion by setting

the allowVolumeExpansion field to true:

cat storageclass-ontapnas.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontapnas

provisioner: csi.trident.netapp.io

parameters:

 backendType: ontap-nas

allowVolumeExpansion: true

If you have already created a storage class without this option, you can simply edit the existing storage class

by using kubectl edit storageclass to allow volume expansion.

242

Step 2: Create a PVC with the StorageClass you created

cat pvc-ontapnas.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: ontapnas20mb

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 20Mi

 storageClassName: ontapnas

Trident should create a 20MiB NFS PV for this PVC:

kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi

RWO ontapnas 9s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi RWO

Delete Bound default/ontapnas20mb ontapnas

2m42s

Step 3: Expand the PV

To resize the newly created 20MiB PV to 1GiB, edit the PVC and set spec.resources.requests.storage

to 1GiB:

243

kubectl edit pvc ontapnas20mb

Please edit the object below. Lines beginning with a '#' will be

ignored,

and an empty file will abort the edit. If an error occurs while saving

this file will be

reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 annotations:

 pv.kubernetes.io/bind-completed: "yes"

 pv.kubernetes.io/bound-by-controller: "yes"

 volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

 creationTimestamp: 2018-08-21T18:26:44Z

 finalizers:

 - kubernetes.io/pvc-protection

 name: ontapnas20mb

 namespace: default

 resourceVersion: "1958015"

 selfLink: /api/v1/namespaces/default/persistentvolumeclaims/ontapnas20mb

 uid: c1bd7fa5-a56f-11e8-b8d7-fa163e59eaab

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

...

Step 4: Validate the expansion

You can validate the resize worked correctly by checking the size of the PVC, PV, and the Trident volume:

244

kubectl get pvc ontapnas20mb

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 1Gi

RWO ontapnas 4m44s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 1Gi RWO

Delete Bound default/ontapnas20mb ontapnas

5m35s

tridentctl get volume pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 | 1.0 GiB | ontapnas |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

Import volumes

You can import existing storage volumes as a Kubernetes PV using tridentctl

import.

Overview and considerations

You might import a volume into Trident to:

• Containerize an application and reuse its existing data set

• Use a clone of a data set for an ephemeral application

• Rebuild a failed Kubernetes cluster

• Migrate application data during disaster recovery

Considerations

Before importing a volume, review the following considerations.

• Trident can import RW (read-write) type ONTAP volumes only. DP (data protection) type volumes are

SnapMirror destination volumes. You should break the mirror relationship before importing the volume into

Trident.

245

• We suggest importing volumes without active connections. To import an actively-used volume, clone the

volume and then perform the import.

This is especially important for block volumes as Kubernetes would be unaware of the

previous connection and could easily attach an active volume to a pod. This can result in

data corruption.

• Though StorageClass must be specified on a PVC, Trident does not use this parameter during import.

Storage classes are used during volume creation to select from available pools based on storage

characteristics. Because the volume already exists, no pool selection is required during import. Therefore,

the import will not fail even if the volume exists on a backend or pool that does not match the storage class

specified in the PVC.

• The existing volume size is determined and set in the PVC. After the volume is imported by the storage

driver, the PV is created with a ClaimRef to the PVC.

◦ The reclaim policy is initially set to retain in the PV. After Kubernetes successfully binds the PVC and

PV, the reclaim policy is updated to match the reclaim policy of the Storage Class.

◦ If the reclaim policy of the Storage Class is delete, the storage volume will be deleted when the PV is

deleted.

• By default, Trident manages the PVC and renames the FlexVol and LUN on the backend. You can pass the

--no-manage flag to import an unmanaged volume. If you use --no-manage, Trident does not perform

any additional operations on the PVC or PV for the lifecycle of the objects. The storage volume is not

deleted when the PV is deleted and other operations such as volume clone and volume resize are also

ignored.

This option is useful if you want to use Kubernetes for containerized workloads but

otherwise want to manage the lifecycle of the storage volume outside of Kubernetes.

• An annotation is added to the PVC and PV that serves a dual purpose of indicating that the volume was

imported and if the PVC and PV are managed. This annotation should not be modified or removed.

Import a volume

You can use tridentctl import to import a volume.

Steps

1. Create the Persistent Volume Claim (PVC) file (for example, pvc.yaml) that will be used to create the

PVC. The PVC file should include name, namespace, accessModes, and storageClassName.

Optionally, you can specify unixPermissions in your PVC definition.

The following is an example of a minimum specification:

246

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: my_claim

 namespace: my_namespace

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: my_storage_class

Don’t include additional parameters such as PV name or volume size. This can cause the

import command to fail.

2. Use the tridentctl import command to specify the name of the Trident backend containing the

volume and the name that uniquely identifies the volume on the storage (for example: ONTAP FlexVol,

Element Volume, Cloud Volumes Service path). The -f argument is required to specify the path to the

PVC file.

tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-

file>

Examples

Review the following volume import examples for supported drivers.

ONTAP NAS and ONTAP NAS FlexGroup

Trident supports volume import using the ontap-nas and ontap-nas-flexgroup drivers.

• The ontap-nas-economy driver cannot import and manage qtrees.

• The ontap-nas and ontap-nas-flexgroup drivers do not allow duplicate volume

names.

Each volume created with the ontap-nas driver is a FlexVol on the ONTAP cluster. Importing FlexVols with

the ontap-nas driver works the same. A FlexVol that already exists on an ONTAP cluster can be imported as

a ontap-nas PVC. Similarly, FlexGroup vols can be imported as ontap-nas-flexgroup PVCs.

ONTAP NAS examples

The following show an example of a managed volume and an unmanaged volume import.

247

Managed volume

The following example imports a volume named managed_volume on a backend named ontap_nas:

tridentctl import volume ontap_nas managed_volume -f <path-to-pvc-file>

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

Unmanaged volume

When using the --no-manage argument, Trident does not rename the volume.

The following example imports unmanaged_volume on the ontap_nas backend:

tridentctl import volume nas_blog unmanaged_volume -f <path-to-pvc-

file> --no-manage

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-df07d542-afbc-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | false |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

ONTAP SAN

Trident supports volume import using the ontap-san and ontap-san-economy drivers.

Trident can import ONTAP SAN FlexVols that contain a single LUN. This is consistent with the ontap-san

driver, which creates a FlexVol for each PVC and a LUN within the FlexVol. Trident imports the FlexVol and

associates it with the PVC definition.

ONTAP SAN examples

248

The following show an example of a managed volume and an unmanaged volume import.

249

Managed volume

For managed volumes, Trident renames the FlexVol to the pvc-<uuid> format and the LUN within the

FlexVol to lun0.

The following example imports the ontap-san-managed FlexVol that is present on the

ontap_san_default backend:

tridentctl import volume ontapsan_san_default ontap-san-managed -f pvc-

basic-import.yaml -n trident -d

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-d6ee4f54-4e40-4454-92fd-d00fc228d74a | 20 MiB | basic |

block | cd394786-ddd5-4470-adc3-10c5ce4ca757 | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

Unmanaged volume

The following example imports unmanaged_example_volume on the ontap_san backend:

tridentctl import volume -n trident san_blog unmanaged_example_volume

-f pvc-import.yaml --no-manage

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-1fc999c9-ce8c-459c-82e4-ed4380a4b228 | 1.0 GiB | san-blog |

block | e3275890-7d80-4af6-90cc-c7a0759f555a | online | false |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

250

If you have LUNS mapped to igroups that share an IQN with a Kubernetes node IQN, as

shown in the following example, you will receive the error: LUN already mapped to

initiator(s) in this group. You will need to remove the initiator or unmap the LUN

to import the volume.

Element

Trident supports NetApp Element software and NetApp HCI volume import using the solidfire-san driver.

The Element driver supports duplicate volume names. However, Trident returns an error if there

are duplicate volume names. As a workaround, clone the volume, provide a unique volume

name, and import the cloned volume.

Element example

The following example imports an element-managed volume on backend element_default.

tridentctl import volume element_default element-managed -f pvc-basic-

import.yaml -n trident -d

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-970ce1ca-2096-4ecd-8545-ac7edc24a8fe | 10 GiB | basic-element |

block | d3ba047a-ea0b-43f9-9c42-e38e58301c49 | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

Google Cloud Platform

Trident supports volume import using the gcp-cvs driver.

To import a volume backed by the NetApp Cloud Volumes Service in Google Cloud Platform,

identify the volume by its volume path. The volume path is the portion of the volume’s export

path after the :/. For example, if the export path is 10.0.0.1:/adroit-jolly-swift, the

volume path is adroit-jolly-swift.

251

Google Cloud Platform example

The following example imports a gcp-cvs volume on backend gcpcvs_YEppr with the volume path of

adroit-jolly-swift.

tridentctl import volume gcpcvs_YEppr adroit-jolly-swift -f <path-to-pvc-

file> -n trident

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-a46ccab7-44aa-4433-94b1-e47fc8c0fa55 | 93 GiB | gcp-storage | file

| e1a6e65b-299e-4568-ad05-4f0a105c888f | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

Azure NetApp Files

Trident supports volume import using the azure-netapp-files driver.

To import an Azure NetApp Files volume, identify the volume by its volume path. The volume

path is the portion of the volume’s export path after the :/. For example, if the mount path is

10.0.0.2:/importvol1, the volume path is importvol1.

Azure NetApp Files example

The following example imports an azure-netapp-files volume on backend azurenetappfiles_40517

with the volume path importvol1.

tridentctl import volume azurenetappfiles_40517 importvol1 -f <path-to-

pvc-file> -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-0ee95d60-fd5c-448d-b505-b72901b3a4ab | 100 GiB | anf-storage |

file | 1c01274f-d94b-44a3-98a3-04c953c9a51e | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

252

Customize volume names and labels

With Trident, you can assign meaningful names and labels to volumes you create. This

helps you identify and easily map volumes to their respective Kubernetes resources

(PVCs). You can also define templates at the backend level for creating custom volume

names and custom labels; any volumes that you create, import, or clone will adhere to

the templates.

Before you begin

Customizable volume names and labels support:

1. Volume create, import, and clone operations.

2. In the case of ontap-nas-economy driver, only the name of the Qtree volume complies with the name

template.

3. In the case of ontap-san-economy driver, only the LUN name complies with the name template.

Limitations

1. Customizable volume names are compatible with ONTAP on-premises drivers only.

2. Customizable volume names do not apply to existing volumes.

Key behaviors of customizable volume names

1. If a failure occurs due to invalid syntax in a name template, the backend creation fails. However, if the

template application fails, the volume will be named according to existing naming convention.

2. Storage prefix is not applicable when a volume is named using a name template from the backend

configuration. Any desired prefix value may be directly added to the template.

Backend configuration examples with name template and labels

Custom name templates can be defined at the root and/or pool level.

253

Root level example

{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "ontap-nfs-backend",

"managementLIF": "<ip address>",

"svm": "svm0",

"username": "<admin>",

"password": "<password>",

"defaults": {

 "nameTemplate":

"{{.volume.Name}}_{{.labels.cluster}}_{{.volume.Namespace}}_{{.volume.Requ

estName}}"

},

"labels": {"cluster": "ClusterA", "PVC":

"{{.volume.Namespace}}_{{.volume.RequestName}}"}

}

254

Pool level example

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "ontap-nfs-backend",

 "managementLIF": "<ip address>",

 "svm": "svm0",

 "username": "<admin>",

 "password": "<password>",

 "useREST": true,

 "storage": [

 {

 "labels":{"labelname":"label1", "name": "{{ .volume.Name }}"},

 "defaults":

 {

 "nameTemplate": "pool01_{{ .volume.Name }}_{{ .labels.cluster

}}_{{ .volume.Namespace }}_{{ .volume.RequestName }}"

 }

 },

 {

 "labels":{"cluster":"label2", "name": "{{ .volume.Name }}"},

 "defaults":

 {

 "nameTemplate": "pool02_{{ .volume.Name }}_{{ .labels.cluster

}}_{{ .volume.Namespace }}_{{ .volume.RequestName }}"

 }

}

]

}

Name template examples

Example 1:

"nameTemplate": "{{ .config.StoragePrefix }}_{{ .volume.Name }}_{{

.config.BackendName }}"

Example 2:

"nameTemplate": "pool_{{ .config.StoragePrefix }}_{{ .volume.Name }}_{{

slice .volume.RequestName 1 5 }}""

255

Points to consider

1. In the case of volume imports, the labels are updated only if the existing volume has labels in a specific

format. For example: {"provisioning":{"Cluster":"ClusterA", "PVC": "pvcname"}}.

2. In the case of managed volume imports, the volume name follows the name template defined at the root

level in the backend definition.

3. Trident does not support the use of a slice operator with the storage prefix.

4. If the templates do not result in unique volume names, Trident will append a few random characters to

create unique volume names.

5. If the custom name for a NAS economy volume exceeds 64 characters in length, Trident will name the

volumes according to the existing naming convention. For all other ONTAP drivers, if the volume name

exceeds the name limit, the volume creation process fails.

Share an NFS volume across namespaces

Using Trident, you can create a volume in a primary namespace and share it in one or

more secondary namespaces.

Features

The TridentVolumeReference CR allows you to securely share ReadWriteMany (RWX) NFS volumes across

one or more Kubernetes namespaces. This Kubernetes-native solution has the following benefits:

• Multiple levels of access control to ensure security

• Works with all Trident NFS volume drivers

• No reliance on tridentctl or any other non-native Kubernetes feature

This diagram illustrates NFS volume sharing across two Kubernetes namespaces.

256

Quick start

You can set up NFS volume sharing in just a few steps.

 Configure source PVC to share the volume

The source namespace owner grants permission to access the data in the source PVC.

 Grant permission to create a CR in the destination namespace

The cluster administrator grants permission to the owner of the destination namespace to create the

TridentVolumeReference CR.

 Create TridentVolumeReference in the destination namespace

The owner of the destination namespace creates the TridentVolumeReference CR to refer to the source PVC.

 Create the subordinate PVC in the destination namespace

The owner of the destination namespace creates the subordinate PVC to use the data source from the source

PVC.

Configure the source and destination namespaces

To ensure security, cross namespace sharing requires collaboration and action by the source namespace

257

owner, cluster administrator, and destination namespace owner. The user role is designated in each step.

Steps

1. Source namespace owner: Create the PVC (pvc1) in the source namespace that grants permission to

share with the destination namespace (namespace2) using the shareToNamespace annotation.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pvc1

 namespace: namespace1

 annotations:

 trident.netapp.io/shareToNamespace: namespace2

spec:

 accessModes:

 - ReadWriteMany

 storageClassName: trident-csi

 resources:

 requests:

 storage: 100Gi

Trident creates the PV and its backend NFS storage volume.

◦ You can share the PVC to multiple namespaces using a comma-delimited list. For

example, trident.netapp.io/shareToNamespace:

namespace2,namespace3,namespace4.

◦ You can share to all namespaces using *. For example,

trident.netapp.io/shareToNamespace: *

◦ You can update the PVC to include the shareToNamespace annotation at any time.

2. Cluster admin: Create the custom role and kubeconfig to grant permission to the destination namespace

owner to create the TridentVolumeReference CR in the destination namespace.

3. Destination namespace owner: Create a TridentVolumeReference CR in the destination namespace that

refers to the source namespace pvc1.

apiVersion: trident.netapp.io/v1

kind: TridentVolumeReference

metadata:

 name: my-first-tvr

 namespace: namespace2

spec:

 pvcName: pvc1

 pvcNamespace: namespace1

258

4. Destination namespace owner: Create a PVC (pvc2) in destination namespace (namespace2) using

the shareFromPVC annotation to designate the source PVC.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 annotations:

 trident.netapp.io/shareFromPVC: namespace1/pvc1

 name: pvc2

 namespace: namespace2

spec:

 accessModes:

 - ReadWriteMany

 storageClassName: trident-csi

 resources:

 requests:

 storage: 100Gi

The size of the destination PVC must be less than or equal than the source PVC.

Results

Trident reads the shareFromPVC annotation on the destination PVC and creates the destination PV as a

subordinate volume with no storage resource of its own that points to the source PV and shares the source PV

storage resource. The destination PVC and PV appear bound as normal.

Delete a shared volume

You can delete a volume that is shared across multiple namespaces. Trident will remove access to the volume

on the source namespace and maintain access for other namespaces that share the volume. When all

namespaces that reference the volume are removed, Trident deletes the volume.

Use tridentctl get to query subordinate volumes

Using the tridentctl utility, you can run the get command to get subordinate volumes. For more

information, refer to tridentctl commands and options.

Usage:

 tridentctl get [option]

Flags:

• `-h, --help: Help for volumes.

• --parentOfSubordinate string: Limit query to subordinate source volume.

• --subordinateOf string: Limit query to subordinates of volume.

259

https://docs.netapp.com/us-en/trident/trident-reference/tridentctl.html
https://docs.netapp.com/us-en/trident/trident-reference/tridentctl.html

Limitations

• Trident cannot prevent destination namespaces from writing to the shared volume. You should use file

locking or other processes to prevent overwriting shared volume data.

• You cannot revoke access to the source PVC by removing the shareToNamespace or

shareFromNamespace annotations or deleting the TridentVolumeReference CR. To revoke access,

you must delete the subordinate PVC.

• Snapshots, clones, and mirroring are not possible on subordinate volumes.

For more information

To learn more about cross-namespace volume access:

• Visit Sharing volumes between namespaces: Say hello to cross-namespace volume access.

• Watch the demo on NetAppTV.

Use CSI Topology

Trident can selectively create and attach volumes to nodes present in a Kubernetes

cluster by making use of the CSI Topology feature.

Overview

Using the CSI Topology feature, access to volumes can be limited to a subset of nodes, based on regions and

availability zones. Cloud providers today enable Kubernetes administrators to spawn nodes that are zone

based. Nodes can be located in different availability zones within a region, or across various regions. To

facilitate the provisioning of volumes for workloads in a multi-zone architecture, Trident uses CSI Topology.

Learn more about the CSI Topology feature here.

Kubernetes provides two unique volume binding modes:

• With VolumeBindingMode set to Immediate, Trident creates the volume without any topology

awareness. Volume binding and dynamic provisioning are handled when the PVC is created. This is the

default VolumeBindingMode and is suited for clusters that do not enforce topology constraints. Persistent

Volumes are created without having any dependency on the requesting pod’s scheduling requirements.

• With VolumeBindingMode set to WaitForFirstConsumer, the creation and binding of a Persistent

Volume for a PVC is delayed until a pod that uses the PVC is scheduled and created. This way, volumes

are created to meet the scheduling constraints that are enforced by topology requirements.

The WaitForFirstConsumer binding mode does not require topology labels. This can be

used independent of the CSI Topology feature.

What you’ll need

To make use of CSI Topology, you need the following:

• A Kubernetes cluster running a supported Kubernetes version

260

https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/

kubectl version

Client Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:50:19Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

Server Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:41:49Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

• Nodes in the cluster should have labels that introduce topology awareness

(topology.kubernetes.io/region and topology.kubernetes.io/zone). These labels should

be present on nodes in the cluster before Trident is installed for Trident to be topology aware.

kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{.metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"

[node1,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node1","kubernetes.io/

os":"linux","node-

role.kubernetes.io/master":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-a"}]

[node2,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node2","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-b"}]

[node3,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node3","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-c"}]

Step 1: Create a topology-aware backend

Trident storage backends can be designed to selectively provision volumes based on availability zones. Each

backend can carry an optional supportedTopologies block that represents a list of zones and regions that

are supported. For StorageClasses that make use of such a backend, a volume would only be created if

requested by an application that is scheduled in a supported region/zone.

Here is an example backend definition:

261

YAML

version: 1

storageDriverName: ontap-san

backendName: san-backend-us-east1

managementLIF: 192.168.27.5

svm: iscsi_svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-east1

 topology.kubernetes.io/zone: us-east1-a

- topology.kubernetes.io/region: us-east1

 topology.kubernetes.io/zone: us-east1-b

JSON

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "san-backend-us-east1",

 "managementLIF": "192.168.27.5",

 "svm": "iscsi_svm",

 "username": "admin",

 "password": "password",

 "supportedTopologies": [

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-a"},

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-b"}

]

}

supportedTopologies is used to provide a list of regions and zones per backend. These

regions and zones represent the list of permissible values that can be provided in a

StorageClass. For StorageClasses that contain a subset of the regions and zones provided in a

backend, Trident creates a volume on the backend.

You can define supportedTopologies per storage pool as well. See the following example:

262

version: 1

storageDriverName: ontap-nas

backendName: nas-backend-us-central1

managementLIF: 172.16.238.5

svm: nfs_svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-a

- topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-b

storage:

- labels:

 workload: production

 supportedTopologies:

 - topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-a

- labels:

 workload: dev

 supportedTopologies:

 - topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-b

In this example, the region and zone labels stand for the location of the storage pool.

topology.kubernetes.io/region and topology.kubernetes.io/zone dictate where the storage

pools can be consumed from.

Step 2: Define StorageClasses that are topology aware

Based on the topology labels that are provided to the nodes in the cluster, StorageClasses can be defined to

contain topology information. This will determine the storage pools that serve as candidates for PVC requests

made, and the subset of nodes that can make use of the volumes provisioned by Trident.

See the following example:

263

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

name: netapp-san-us-east1

provisioner: csi.trident.netapp.io

volumeBindingMode: WaitForFirstConsumer

allowedTopologies:

- matchLabelExpressions:

- key: topology.kubernetes.io/zone

 values:

 - us-east1-a

 - us-east1-b

- key: topology.kubernetes.io/region

 values:

 - us-east1

parameters:

 fsType: "ext4"

In the StorageClass definition provided above, volumeBindingMode is set to WaitForFirstConsumer.

PVCs that are requested with this StorageClass will not be acted upon until they are referenced in a pod. And,

allowedTopologies provides the zones and region to be used. The netapp-san-us-east1 StorageClass

creates PVCs on the san-backend-us-east1 backend defined above.

Step 3: Create and use a PVC

With the StorageClass created and mapped to a backend, you can now create PVCs.

See the example spec below:

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san

spec:

accessModes:

 - ReadWriteOnce

resources:

 requests:

 storage: 300Mi

storageClassName: netapp-san-us-east1

Creating a PVC using this manifest would result in the following:

264

kubectl create -f pvc.yaml

persistentvolumeclaim/pvc-san created

kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

AGE

pvc-san Pending netapp-san-us-east1

2s

kubectl describe pvc

Name: pvc-san

Namespace: default

StorageClass: netapp-san-us-east1

Status: Pending

Volume:

Labels: <none>

Annotations: <none>

Finalizers: [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode: Filesystem

Mounted By: <none>

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Normal WaitForFirstConsumer 6s persistentvolume-controller waiting

for first consumer to be created before binding

For Trident to create a volume and bind it to the PVC, use the PVC in a pod. See the following example:

265

apiVersion: v1

kind: Pod

metadata:

 name: app-pod-1

spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: topology.kubernetes.io/region

 operator: In

 values:

 - us-east1

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 1

 preference:

 matchExpressions:

 - key: topology.kubernetes.io/zone

 operator: In

 values:

 - us-east1-a

 - us-east1-b

 securityContext:

 runAsUser: 1000

 runAsGroup: 3000

 fsGroup: 2000

 volumes:

 - name: vol1

 persistentVolumeClaim:

 claimName: pvc-san

 containers:

 - name: sec-ctx-demo

 image: busybox

 command: ["sh", "-c", "sleep 1h"]

 volumeMounts:

 - name: vol1

 mountPath: /data/demo

 securityContext:

 allowPrivilegeEscalation: false

This podSpec instructs Kubernetes to schedule the pod on nodes that are present in the us-east1 region,

and choose from any node that is present in the us-east1-a or us-east1-b zones.

See the following output:

266

kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE

NOMINATED NODE READINESS GATES

app-pod-1 1/1 Running 0 19s 192.168.25.131 node2

<none> <none>

kubectl get pvc -o wide

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE VOLUMEMODE

pvc-san Bound pvc-ecb1e1a0-840c-463b-8b65-b3d033e2e62b 300Mi

RWO netapp-san-us-east1 48s Filesystem

Update backends to include supportedTopologies

Pre-existing backends can be updated to include a list of supportedTopologies using tridentctl

backend update. This will not affect volumes that have already been provisioned, and will only be used for

subsequent PVCs.

Find more information

• Manage resources for containers

• nodeSelector

• Affinity and anti-affinity

• Taints and Tolerations

Work with snapshots

Kubernetes volume snapshots of Persistent Volumes (PVs) enable point-in-time copies of

volumes. You can create a snapshot of a volume created using Trident, import a snapshot

created outside of Trident, create a new volume from an existing snapshot, and recover

volume data from snapshots.

Overview

Volume snapshot is supported by ontap-nas, ontap-nas-flexgroup, ontap-san, ontap-san-

economy, solidfire-san, gcp-cvs, and azure-netapp-files drivers.

Before you begin

You must have an external snapshot controller and Custom Resource Definitions (CRDs) to work with

snapshots. This is the responsibility of the Kubernetes orchestrator (for example: Kubeadm, GKE, OpenShift).

If your Kubernetes distribution does not include the snapshot controller and CRDs, refer to Deploy a volume

snapshot controller.

Don’t create a snapshot controller if creating on-demand volume snapshots in a GKE

environment. GKE uses a built-in, hidden snapshot controller.

267

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Create a volume snapshot

Steps

1. Create a VolumeSnapshotClass. For more information, refer to VolumeSnapshotClass.

◦ The driver points to the Trident CSI driver.

◦ deletionPolicy can be Delete or Retain. When set to Retain, the underlying physical snapshot

on the storage cluster is retained even when the VolumeSnapshot object is deleted.

Example

cat snap-sc.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

 name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

2. Create a snapshot of an existing PVC.

Examples

◦ This example creates a snapshot of an existing PVC.

cat snap.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

 name: pvc1-snap

spec:

 volumeSnapshotClassName: csi-snapclass

 source:

 persistentVolumeClaimName: pvc1

◦ This example creates a volume snapshot object for a PVC named pvc1 and the name of the snapshot

is set to pvc1-snap. A VolumeSnapshot is analogous to a PVC and is associated with a

VolumeSnapshotContent object that represents the actual snapshot.

kubectl create -f snap.yaml

volumesnapshot.snapshot.storage.k8s.io/pvc1-snap created

kubectl get volumesnapshots

NAME AGE

pvc1-snap 50s

◦ You can identify the VolumeSnapshotContent object for the pvc1-snap VolumeSnapshot by

268

describing it. The Snapshot Content Name identifies the VolumeSnapshotContent object which

serves this snapshot. The Ready To Use parameter indicates that the snapshot can be used to

create a new PVC.

kubectl describe volumesnapshots pvc1-snap

Name: pvc1-snap

Namespace: default

.

.

.

Spec:

 Snapshot Class Name: pvc1-snap

 Snapshot Content Name: snapcontent-e8d8a0ca-9826-11e9-9807-

525400f3f660

 Source:

 API Group:

 Kind: PersistentVolumeClaim

 Name: pvc1

Status:

 Creation Time: 2019-06-26T15:27:29Z

 Ready To Use: true

 Restore Size: 3Gi

.

.

Create a PVC from a volume snapshot

You can use dataSource to create a PVC using a VolumeSnapshot named <pvc-name> as the source of the

data. After the PVC is created, it can be attached to a pod and used just like any other PVC.

The PVC will be created in the same backend as the source volume. Refer to KB: Creating a

PVC from a Trident PVC Snapshot cannot be created in an alternate backend.

The following example creates the PVC using pvc1-snap as the data source.

269

https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend

cat pvc-from-snap.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: pvc-from-snap

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: golden

 resources:

 requests:

 storage: 3Gi

 dataSource:

 name: pvc1-snap

 kind: VolumeSnapshot

 apiGroup: snapshot.storage.k8s.io

Import a volume snapshot

Trident supports the Kubernetes pre-provisioned snapshot process to enable the cluster administrator to create

a VolumeSnapshotContent object and import snapshots created outside of Trident.

Before you begin

Trident must have created or imported the snapshot’s parent volume.

Steps

1. Cluster admin: Create a VolumeSnapshotContent object that references the backend snapshot. This

initiates the snapshot workflow in Trident.

◦ Specify the name of the backend snapshot in annotations as

trident.netapp.io/internalSnapshotName: <"backend-snapshot-name">.

◦ Specify <name-of-parent-volume-in-trident>/<volume-snapshot-content-name> in

snapshotHandle. This is the only information provided to Trident by the external snapshotter in the

ListSnapshots call.

The <volumeSnapshotContentName> cannot always match the backend snapshot

name due to CR naming constraints.

Example

The following example creates a VolumeSnapshotContent object that references backend snapshot

snap-01.

270

https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotContent

metadata:

 name: import-snap-content

 annotations:

 trident.netapp.io/internalSnapshotName: "snap-01" # This is the

name of the snapshot on the backend

spec:

 deletionPolicy: Retain

 driver: csi.trident.netapp.io

 source:

 snapshotHandle: pvc-f71223b5-23b9-4235-bbfe-e269ac7b84b0/import-

snap-content # <import PV name or source PV name>/<volume-snapshot-

content-name>

2. Cluster admin: Create the VolumeSnapshot CR that references the VolumeSnapshotContent object.

This requests access to use the VolumeSnapshot in a given namespace.

Example

The following example creates a VolumeSnapshot CR named import-snap that references the

VolumeSnapshotContent named import-snap-content.

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

 name: import-snap

spec:

 # volumeSnapshotClassName: csi-snapclass (not required for pre-

provisioned or imported snapshots)

 source:

 volumeSnapshotContentName: import-snap-content

3. Internal processing (no action required): The external snapshotter recognizes the newly created

VolumeSnapshotContent and runs the ListSnapshots call. Trident creates the TridentSnapshot.

◦ The external snapshotter sets the VolumeSnapshotContent to readyToUse and the

VolumeSnapshot to true.

◦ Trident returns readyToUse=true.

4. Any user: Create a PersistentVolumeClaim to reference the new VolumeSnapshot, where the

spec.dataSource (or spec.dataSourceRef) name is the VolumeSnapshot name.

Example

The following example creates a PVC referencing the VolumeSnapshot named import-snap.

271

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: pvc-from-snap

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: simple-sc

 resources:

 requests:

 storage: 1Gi

 dataSource:

 name: import-snap

 kind: VolumeSnapshot

 apiGroup: snapshot.storage.k8s.io

Recover volume data using snapshots

The snapshot directory is hidden by default to facilitate maximum compatibility of volumes provisioned using

the ontap-nas and ontap-nas-economy drivers. Enable the .snapshot directory to recover data from

snapshots directly.

Use the volume snapshot restore ONTAP CLI to to restore a volume to a state recorded in a prior snapshot.

cluster1::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3_snap_archive

When you restore a snapshot copy, the existing volume configuration is overwritten. Changes

made to volume data after the snapshot copy was created are lost.

Delete a PV with associated snapshots

When deleting a Persistent Volume with associated snapshots, the corresponding Trident volume is updated to

a “Deleting state”. Remove the volume snapshots to delete the Trident volume.

Deploy a volume snapshot controller

If your Kubernetes distribution does not include the snapshot controller and CRDs, you can deploy them as

follows.

Steps

1. Create volume snapshot CRDs.

272

cat snapshot-setup.sh

#!/bin/bash

Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents.yam

l

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml

2. Create the snapshot controller.

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

If necessary, open deploy/kubernetes/snapshot-controller/rbac-snapshot-

controller.yaml and update namespace to your namespace.

Related links

• Volume snapshots

• VolumeSnapshotClass

273

Manage and monitor Trident

Upgrade Trident

Upgrade Trident

Beginning with the 24.02 release, Trident follows a four-month release cadence,

delivering three major releases every calendar year. Each new release builds on the

previous releases and provides new features, performance enhancements, bug fixes, and

improvements. We encourage you to upgrade at least once a year to take advantage of

the new features in Trident.

Considerations before upgrading

When upgrading to the latest release of Trident, consider the following:

• There should be only one Trident instance installed across all the namespaces in a given Kubernetes

cluster.

• Trident 23.07 and later requires v1 volume snapshots and no longer supports alpha or beta snapshots.

• If you created Cloud Volumes Service for Google Cloud in the CVS service type, you must update the

backend configuration to use the standardsw or zoneredundantstandardsw service level when

upgrading from Trident 23.01. Failure to update the serviceLevel in the backend could cause volumes

to fail. Refer to CVS service type samples for details.

• When upgrading, it is important you provide parameter.fsType in StorageClasses used by Trident.

You can delete and re-create StorageClasses without disrupting pre-existing volumes.

◦ This is a requirement for enforcing security contexts for SAN volumes.

◦ The sample input directory contains examples, such as storage-class-basic.yaml.templ and

storage-class-bronze-default.yaml.

◦ For more information, refer to Known Issues.

Step 1: Select a version

Trident versions follow a date-based YY.MM naming convention, where "YY" is the last two digits of the year

and "MM" is the month. Dot releases follow a YY.MM.X convention, where "X" is the patch level. You will select

the version to upgrade to based on the version you are upgrading from.

• You can perform a direct upgrade to any target release that is within a four-release window of your installed

version. For example, you can directly upgrade from 23.04 (or any 23.04 dot release) to 24.06.

• If you are upgrading from a release outside of the four-release window, perform a multi-step upgrade. Use

the upgrade instructions for the earlier version you are upgrading from to upgrade to the most recent

release that fits the four-release window. For example, if you are running 22.01 and want to upgrade to

24.06:

1. First upgrade from 22.07 to 23.04.

2. Then upgrade from 23.04 to 24.06.

274

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://github.com/NetApp/trident/tree/master/trident-installer/sample-input
https://github.com/NetApp/trident/blob/master/trident-installer/sample-input/storage-class-samples/storage-class-basic.yaml.templ
https://github.com/NetApp/trident/blob/master/trident-installer/sample-input/storage-class-samples/storage-class-bronze-default.yaml

When upgrading using the Trident operator on OpenShift Container Platform, you should

upgrade to Trident 21.01.1 or later. The Trident operator released with 21.01.0 contains a known

issue that has been fixed in 21.01.1. For more details, refer to the issue details on GitHub.

Step 2: Determine the original installation method

To determine which version you used to originally install Trident:

1. Use kubectl get pods -n trident to examine the pods.

◦ If there is no operator pod, Trident was installed using tridentctl.

◦ If there is an operator pod, Trident was installed using the Trident operator either manually or using

Helm.

2. If there is an operator pod, use kubectl describe torc to determine if Trident was installed using

Helm.

◦ If there is a Helm label, Trident was installed using Helm.

◦ If there is no Helm label, Trident was installed manually using the Trident operator.

Step 3: Select an upgrade method

Generally, you should upgrade using the same method you used for the initial installation, however you can

move between installation methods. There are two options to upgrade Trident.

• Upgrade using the Trident operator

We suggest you review Understand the operator upgrade workflow before upgrading with

the operator.

• Upgrade using tridentctl

Upgrade with the operator

Understand the operator upgrade workflow

Before using the Trident operator to upgrade Trident, you should understand the

background processes that occur during upgrade. This includes changes to the Trident

controller, controller Pod and node Pods, and node DaemonSet that enable rolling

updates.

Trident operator upgrade handling

One of the many benefits of using the Trident operator to install and upgrade Trident is the automatic handling

of Trident and Kubernetes objects without disrupting existing mounted volumes. In this way, Trident can

support upgrades with zero downtime, or rolling updates. In particular, the Trident operator communicates with

the Kubernetes cluster to:

• Delete and recreate the Trident Controller deployment and node DaemonSet.

• Replace the Trident Controller Pod and Trident Node Pods with new versions.

◦ If a node is not updated, it does not prevent remaining nodes from being updated.

275

https://github.com/NetApp/trident/issues/517
https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy.html#moving-between-installation-methods
https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy.html
https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/

◦ Only nodes with a running Trident Node Pod can mount volumes.

For more information about Trident architecture on the Kubernetes cluster, refer to Trident

architecture.

Operator upgrade workflow

When you initiate an upgrade using the Trident operator:

1. The Trident operator:

a. Detects the currently installed version of Trident (version n).

b. Updates all Kubernetes objects including CRDs, RBAC, and Trident SVC.

c. Deletes the Trident Controller deployment for version n.

d. Creates the Trident Controller deployment for version n+1.

2. Kubernetes creates Trident Controller Pod for n+1.

3. The Trident operator:

a. Deletes the Trident Node DaemonSet for n. The operator does not wait for Node Pod termination.

b. Creates the Trident Node Daemonset for n+1.

4. Kubernetes creates Trident Node Pods on nodes not running Trident Node Pod n. This ensures there is

never more than one Trident Node Pod, of any version, on a node.

Upgrade a Trident installation using Trident operator or Helm

You can upgrade Trident using the Trident operator either manually or using Helm. You

can upgrade from a Trident operator installation to another Trident operator installation or

upgrade from a tridentctl installation to a Trident operator version. Review Select an

upgrade method before upgrading a Trident operator installation.

Upgrade a manual installation

You can upgrade from a cluster-scoped Trident operator installation to another cluster-scoped Trident operator

installation. All Trident versions 21.01 and above use a cluster-scoped operator.

To upgrade from Trident that was installed using the namespace-scoped operator (versions

20.07 through 20.10), use the upgrade instructions for your installed version of Trident.

About this task

Trident provides a bundle file you can use to install the operator and create associated objects for your

Kubernetes version.

• For clusters running Kubernetes 1.24, use bundle_pre_1_25.yaml.

• For clusters running Kubernetes 1.25 or later, use bundle_post_1_25.yaml.

Before you begin

Ensure you are using a Kubernetes cluster running a supported Kubernetes version.

Steps

276

https://docs.netapp.com/us-en/trident/trident-managing-k8s/trident-concepts/intro.html#trident-architecture
https://docs.netapp.com/us-en/trident/trident-managing-k8s/trident-concepts/intro.html#trident-architecture
https://github.com/NetApp/trident/tree/stable/v24.10/deploy/bundle_pre_1_25.yaml
https://github.com/NetApp/trident/tree/stable/v24.10/deploy/bundle_post_1_25.yaml

1. Verify your Trident version:

./tridentctl -n trident version

2. Delete the Trident operator that was used to install the current Trident instance. For example, if you are

upgrading from 23.07, run the following command:

kubectl delete -f 23.07.0/trident-installer/deploy/<bundle.yaml> -n

trident

3. If you customized your initial installation using TridentOrchestrator attributes, you can edit the

TridentOrchestrator object to modify the installation parameters. This might include changes made to

specify mirrored Trident and CSI image registries for offline mode, enable debug logs, or specify image pull

secrets.

4. Install Trident using the correct bundle YAML file for your environment, where <bundle.yaml> is

bundle_pre_1_25.yaml or bundle_post_1_25.yaml based on your Kubernetes version. For

example, if you are installing Trident 24.10, run the following command:

kubectl create -f 24.10.0/trident-installer/deploy/<bundle.yaml> -n

trident

Upgrade a Helm installation

You can upgrade a Trident Helm installation.

When upgrading a Kubernetes cluster from 1.24 to 1.25 or later that has Trident installed, you

must update values.yaml to set excludePodSecurityPolicy to true or add --set

excludePodSecurityPolicy=true to the helm upgrade command before you can

upgrade the cluster.

If you have already upgraded your Kubernetes cluster from 1.24 to 1.25 without upgrading the Trident helm,

the helm upgrade fails. For the helm upgrade to go through, perform these steps as pre-requisites:

1. Install the helm-mapkubeapis plugin from https://github.com/helm/helm-mapkubeapis.

2. Perform a dry run for the Trident release in the namespace where Trident is installed. This lists out the

resources, which will be cleaned up.

helm mapkubeapis --dry-run trident --namespace trident

3. Perform a full run with helm to do the cleanup.

helm mapkubeapis trident --namespace trident

277

https://github.com/helm/helm-mapkubeapis

Steps

1. If you installed Trident using Helm, you can use helm upgrade trident netapp-

trident/trident-operator --version 100.2410.0 to upgrade in one step. If you did not add the

Helm repo or cannot use it to upgrade:

a. Download the latest Trident release from the Assets section on GitHub.

b. Use the helm upgrade command where trident-operator-24.10.0.tgz reflects the version

that you want to upgrade to.

helm upgrade <name> trident-operator-24.10.0.tgz

If you set custom options during the initial installation (such as specifying private,

mirrored registries for Trident and CSI images), append the helm upgrade command

using --set to ensure those options are included in the upgrade command, otherwise

the values will reset to default.

2. Run helm list to verify that the chart and app version have both been upgraded. Run tridentctl

logs to review any debug messages.

Upgrade from a tridentctl installation to Trident operator

You can upgrade to the latest release of the Trident operator from a tridentctl installation. The existing

backends and PVCs will automatically be available.

Before switching between installation methods, review Moving between installation methods.

Steps

1. Download the latest Trident release.

Download the release required [24.10.0]

mkdir 24.10.0

cd 24.10.0

wget

https://github.com/NetApp/trident/releases/download/v24.10.0/trident-

installer-24.10.0.tar.gz

tar -xf trident-installer-24.10.0.tar.gz

cd trident-installer

2. Create the tridentorchestrator CRD from the manifest.

kubectl create -f

deploy/crds/trident.netapp.io_tridentorchestrators_crd_post1.16.yaml

3. Deploy the cluster-scoped operator in the same namespace.

278

https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy-helm.html#deploy-the-trident-operator-and-install-trident-using-helm
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest
https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy.html#moving-between-installation-methods

kubectl create -f deploy/<bundle-name.yaml>

serviceaccount/trident-operator created

clusterrole.rbac.authorization.k8s.io/trident-operator created

clusterrolebinding.rbac.authorization.k8s.io/trident-operator created

deployment.apps/trident-operator created

podsecuritypolicy.policy/tridentoperatorpods created

#Examine the pods in the Trident namespace

NAME READY STATUS RESTARTS AGE

trident-controller-79df798bdc-m79dc 6/6 Running 0 150d

trident-node-linux-xrst8 2/2 Running 0 150d

trident-operator-5574dbbc68-nthjv 1/1 Running 0 1m30s

4. Create a TridentOrchestrator CR for installing Trident.

cat deploy/crds/tridentorchestrator_cr.yaml

apiVersion: trident.netapp.io/v1

kind: TridentOrchestrator

metadata:

 name: trident

spec:

 debug: true

 namespace: trident

kubectl create -f deploy/crds/tridentorchestrator_cr.yaml

#Examine the pods in the Trident namespace

NAME READY STATUS RESTARTS AGE

trident-csi-79df798bdc-m79dc 6/6 Running 0 1m

trident-csi-xrst8 2/2 Running 0 1m

trident-operator-5574dbbc68-nthjv 1/1 Running 0 5m41s

5. Confirm Trident was upgraded to the intended version.

kubectl describe torc trident | grep Message -A 3

Message: Trident installed

Namespace: trident

Status: Installed

Version: v24.10.0

279

Upgrade with tridentctl

You can easily upgrade an existing Trident installation using tridentctl.

About this task

Uninstalling and reinstalling Trident acts as an upgrade. When you uninstall Trident, the Persistent Volume

Claim (PVC) and Persistent Volume (PV) used by the Trident deployment are not deleted. PVs that have

already been provisioned will remain available while Trident is offline, and Trident will provision volumes for any

PVCs that are created in the interim after it is back online.

Before you begin

Review Select an upgrade method before upgrading using tridentctl.

Steps

1. Run the uninstall command in tridentctl to remove all of the resources associated with Trident except

for the CRDs and related objects.

./tridentctl uninstall -n <namespace>

2. Reinstall Trident. Refer to Install Trident using tridentctl.

Do not interrupt the upgrade process. Ensure the installer runs to completion.

Manage Trident using tridentctl

The Trident installer bundle includes the tridentctl command-line utility to provide

simple access to Trident. Kubernetes users with sufficient privileges can use it to install

Trident or manage the namespace that contains the Trident pod.

Commands and global flags

You can run tridentctl help to get a list of available commands for tridentctl or append the --help

flag to any command to get a list of options and flags for that specific command.

tridentctl [command] [--optional-flag]

The Trident tridentctl utility supports the following commands and global flags.

280

https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy-tridentctl.html
https://github.com/NetApp/trident/releases

Commands

create

Add a resource to Trident.

delete

Remove one or more resources from Trident.

get

Get one or more resources from Trident.

help

Help about any command.

images

Print a table of the container images Trident needs.

import

Import an existing resource to Trident.

install

Install Trident.

logs

Print the logs from Trident.

send

Send a resource from Trident.

uninstall

Uninstall Trident.

update

Modify a resource in Trident.

update backend state

Temporarily suspend backend operations.

upgrade

Upgrade a resource in Trident.

version

Print the version of Trident.

281

Global flags

-d, --debug

Debug output.

-h, --help

Help for tridentctl.

-k, --kubeconfig string

Specify the KUBECONFIG path to run commands locally or from one Kubernetes cluster to another.

Alternatively, you can export the KUBECONFIG variable to point to a specific Kubernetes

cluster and issue tridentctl commands to that cluster.

-n, --namespace string

Namespace of Trident deployment.

-o, --output string

Output format. One of json|yaml|name|wide|ps (default).

-s, --server string

Address/port of Trident REST interface.

Trident REST interface can be configured to listen and serve at 127.0.0.1 (for IPv4) or

[::1] (for IPv6) only.

Command options and flags

create

Use the create command to add a resource to Trident.

tridentctl create [option]

Options

backend: Add a backend to Trident.

delete

Use the delete command to remove one or more resources from Trident.

tridentctl delete [option]

Options

backend: Delete one or more storage backends from Trident.

snapshot: Delete one or more volume snapshots from Trident.

storageclass: Delete one or more storage classes from Trident.

volume: Delete one or more storage volumes from Trident.

282

get

Use the get command to get one or more resources from Trident.

tridentctl get [option]

Options

backend: Get one or more storage backends from Trident.

snapshot: Get one or more snapshots from Trident.

storageclass: Get one or more storage classes from Trident.

volume: Get one or more volumes from Trident.

Flags

-h, --help: Help for volumes.

--parentOfSubordinate string: Limit query to subordinate source volume.

--subordinateOf string: Limit query to subordinates of volume.

images

Use images flags to print a table of the container images Trident needs.

tridentctl images [flags]

Flags

-h, --help: Help for images.

-v, --k8s-version string: Semantic version of Kubernetes cluster.

import volume

Use the import volume command to import an existing volume to Trident.

tridentctl import volume <backendName> <volumeName> [flags]

Aliases

volume, v

Flags

-f, --filename string: Path to YAML or JSON PVC file.

-h, --help: Help for volume.

--no-manage: Create PV/PVC only. Don’t assume volume lifecycle management.

install

Use the install flags to install Trident.

tridentctl install [flags]

Flags

--autosupport-image string: The container image for Autosupport Telemetry (default "netapp/trident

autosupport:<current-version>").

--autosupport-proxy string: The address/port of a proxy for sending Autosupport Telemetry.

283

--enable-node-prep: Attempt to install required packages on nodes.

--generate-custom-yaml: Generate YAML files without installing anything.

-h, --help: Help for install.

--http-request-timeout: Override the HTTP request timeout for Trident controller’s REST API (default

1m30s).

--image-registry string: The address/port of an internal image registry.

--k8s-timeout duration: The timeout for all Kubernetes operations (default 3m0s).

--kubelet-dir string: The host location of kubelet’s internal state (default "/var/lib/kubelet").

--log-format string: The Trident logging format (text, json) (default "text").

--node-prep: Enables Trident to prepare the nodes of the Kubernetes cluster to manage volumes using

the specified data storage protocol. Currently, iscsi is the only value supported.

--pv string: The name of the legacy PV used by Trident, makes sure this doesn’t exist (default

"trident").

--pvc string: The name of the legacy PVC used by Trident, makes sure this doesn’t exist (default

"trident").

--silence-autosupport: Don’t send autosupport bundles to NetApp automatically (default true).

--silent: Disable most output during installation.

--trident-image string: The Trident image to install.

--use-custom-yaml: Use any existing YAML files that exist in setup directory.

--use-ipv6: Use IPv6 for Trident’s communication.

logs

Use logs flags to print the logs from Trident.

tridentctl logs [flags]

Flags

-a, --archive: Create a support archive with all logs unless otherwise specified.

-h, --help: Help for logs.

-l, --log string: Trident log to display. One of trident|auto|trident-operator|all (default "auto").

--node string: The Kubernetes node name from which to gather node pod logs.

-p, --previous: Get the logs for the previous container instance if it exists.

--sidecars: Get the logs for the sidecar containers.

send

Use the send command to send a resource from Trident.

tridentctl send [option]

Options

autosupport: Send an Autosupport archive to NetApp.

uninstall

Use uninstall flags to uninstall Trident.

tridentctl uninstall [flags]

284

Flags

-h, --help: Help for uninstall.

--silent: Disable most output during uninstall.

update

Use the update command to modify a resource in Trident.

tridentctl update [option]

Options

backend: Update a backend in Trident.

update backend state

Use the update backend state command to suspend or resume backend operations.

tridentctl update backend state <backend-name> [flag]

Points to consider

• If a backend is created using a TridentBackendConfig (tbc), the backend cannot be updated using a

backend.json file.

• If the userState has been set in a tbc, it cannot be modified using the tridentctl update backend

state <backend-name> --user-state suspended/normal command.

• To regain the ability to set the userState via tridentctl after it has been set via tbc, the userState field

must be removed from the tbc. This can be done using the kubectl edit tbc command. After the

userState field is removed, you can use the tridentctl update backend state command to

change the userState of a backend.

• Use the tridentctl update backend state to change the userState. You can also update the

userState using TridentBackendConfig or backend.json file; this triggers a complete re-

initialization of the backend and can be time-consuming.

Flags

-h, --help: Help for backend state.

--user-state: Set to suspended to pause backend operations. Set to normal to resume backend

operations. When set to suspended:

• AddVolume and Import Volume are paused.

• CloneVolume, ResizeVolume, PublishVolume, UnPublishVolume, CreateSnapshot,

GetSnapshot, RestoreSnapshot, DeleteSnapshot, RemoveVolume, GetVolumeExternal,

ReconcileNodeAccess remain available.

You can also update the backend state using userState field in the backend configuration file

TridentBackendConfig or backend.json.

For more information, refer to Options for managing backends and Perform backend management with

kubectl.

Example:

285

JSON

Follow these steps to update the userState using the backend.json file:

1. Edit the backend.json file to include the userState field with its value set to 'suspended'.

2. Update the backend using the tridentctl backend update command and the path to the

updated backend.json file.

Example: tridentctl backend update -f /<path to backend JSON

file>/backend.json

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "managementLIF": "<redacted>",

 "svm": "nas-svm",

 "backendName": "customBackend",

 "username": "<redacted>",

 "password": "<redacted>",

 "userState": "suspended",

}

YAML

You can edit the tbc after it has been applied using the kubectl edit <tbc-name> -n

<namespace> command.

The following example updates the backend state to suspend using the userState: suspended

option:

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-ontap-nas

spec:

 version: 1

 backendName: customBackend

 storageDriverName: ontap-nas

 managementLIF: <redacted>

 svm: nas-svm

userState: suspended

 credentials:

 name: backend-tbc-ontap-nas-secret

286

version

Use version flags to print the version of tridentctl and the running Trident service.

tridentctl version [flags]

Flags

--client: Client version only (no server required).

-h, --help: Help for version.

Plugin support

Tridentctl supports plugins similar to kubectl. Tridentctl detects a plugin if the plugin binary file name follows the

scheme "tridentctl-<plugin>", and the binary is located in a folder listed the PATH environment variable. All the

detected plugins are listed in the plugin section of the tridentctl help. Optionally, you can also limit the search

by specifying a plugin folder in the the enviornment variable TRIDENTCTL_PLUGIN_PATH (Example:

TRIDENTCTL_PLUGIN_PATH=~/tridentctl-plugins/). If the variable is used, tridenctl searches only in

the specified folder.

Monitor Trident

Trident provides a set of Prometheus metrics endpoints that you can use to monitor

Trident performance.

Overview

The metrics provided by Trident enable you to do the following:

• Keep tabs on Trident’s health and configuration. You can examine how successful operations are and if it

can communicate with the backends as expected.

• Examine backend usage information and understand how many volumes are provisioned on a backend

and the amount of space consumed, and so on.

• Maintain a mapping of the amount of volumes provisioned on available backends.

• Track performance. You can take a look at how long it takes for Trident to communicate to backends and

perform operations.

By default, Trident’s metrics are exposed on the target port 8001 at the /metrics endpoint.

These metrics are enabled by default when Trident is installed.

What you’ll need

• A Kubernetes cluster with Trident installed.

• A Prometheus instance. This can be a containerized Prometheus deployment or you can choose to run

Prometheus as a native application.

Step 1: Define a Prometheus target

You should define a Prometheus target to gather the metrics and obtain information about the backends

Trident manages, the volumes it creates, and so on. This blog explains how you can use Prometheus and

Grafana with Trident to retrieve metrics. The blog explains how you can run Prometheus as an operator in your

Kubernetes cluster and the creation of a ServiceMonitor to obtain Trident metrics.

287

https://github.com/prometheus-operator/prometheus-operator
https://prometheus.io/download/
https://netapp.io/2020/02/20/prometheus-and-trident/

Step 2: Create a Prometheus ServiceMonitor

To consume the Trident metrics, you should create a Prometheus ServiceMonitor that watches the trident-

csi service and listens on the metrics port. A sample ServiceMonitor looks like this:

apiVersion: monitoring.coreos.com/v1

kind: ServiceMonitor

metadata:

 name: trident-sm

 namespace: monitoring

 labels:

 release: prom-operator

spec:

 jobLabel: trident

 selector:

 matchLabels:

 app: controller.csi.trident.netapp.io

 namespaceSelector:

 matchNames:

 - trident

 endpoints:

 - port: metrics

 interval: 15s

This ServiceMonitor definition retrieves metrics returned by the trident-csi service and specifically looks

for the metrics endpoint of the service. As a result, Prometheus is now configured to understand Trident’s

metrics.

In addition to metrics available directly from Trident, kubelet exposes many kubelet_volume_* metrics via

it’s own metrics endpoint. Kubelet can provide information about the volumes that are attached, and pods and

other internal operations it handles. Refer to here.

Step 3: Query Trident metrics with PromQL

PromQL is good for creating expressions that return time-series or tabular data.

Here are some PromQL queries that you can use:

Get Trident health information

• Percentage of HTTP 2XX responses from Trident

(sum (trident_rest_ops_seconds_total_count{status_code=~"2.."} OR on()

vector(0)) / sum (trident_rest_ops_seconds_total_count)) * 100

• Percentage of REST responses from Trident via status code

288

https://kubernetes.io/docs/concepts/cluster-administration/monitoring/

(sum (trident_rest_ops_seconds_total_count) by (status_code) / scalar

(sum (trident_rest_ops_seconds_total_count))) * 100

• Average duration in ms of operations performed by Trident

sum by (operation)

(trident_operation_duration_milliseconds_sum{success="true"}) / sum by

(operation)

(trident_operation_duration_milliseconds_count{success="true"})

Get Trident usage information

• Average volume size

trident_volume_allocated_bytes/trident_volume_count

• Total volume space provisioned by each backend

sum (trident_volume_allocated_bytes) by (backend_uuid)

Get individual volume usage

This is enabled only if kubelet metrics are also gathered.

• Percentage of used space for each volume

kubelet_volume_stats_used_bytes / kubelet_volume_stats_capacity_bytes *

100

Learn about Trident AutoSupport telemetry

By default, Trident sends Prometheus metrics and basic backend information to NetApp on a daily cadence.

• To stop Trident from sending Prometheus metrics and basic backend information to NetApp, pass the

--silence-autosupport flag during Trident installation.

• Trident can also send container logs to NetApp Support on-demand via tridentctl send

autosupport. You will need to trigger Trident to upload it’s logs. Before you submit logs, you should

accept NetApp’s

privacy policy.

• Unless specified, Trident fetches the logs from the past 24 hours.

• You can specify the log retention time frame with the --since flag. For example: tridentctl send

autosupport --since=1h. This information is collected and sent via a trident-autosupport

289

https://www.netapp.com/company/legal/privacy-policy/

container

that is installed alongside Trident. You can obtain the container image at Trident AutoSupport.

• Trident AutoSupport does not gather or transmit Personally Identifiable Information (PII) or Personal

Information. It comes with a EULA that is not applicable to the Trident container image itself. You can learn

more about NetApp’s commitment to data security and trust here.

An example payload sent by Trident looks like this:

items:

- backendUUID: ff3852e1-18a5-4df4-b2d3-f59f829627ed

 protocol: file

 config:

 version: 1

 storageDriverName: ontap-nas

 debug: false

 debugTraceFlags:

 disableDelete: false

 serialNumbers:

 - nwkvzfanek_SN

 limitVolumeSize: ''

 state: online

 online: true

• The AutoSupport messages are sent to NetApp’s AutoSupport endpoint. If you are using a private registry

to store container images, you can use the --image-registry flag.

• You can also configure proxy URLs by generating the installation YAML files. This can be done by using

tridentctl install --generate-custom-yaml to create the YAML files and adding the --proxy

-url argument for the trident-autosupport container in trident-deployment.yaml.

Disable Trident metrics

To disable metrics from being reported, you should generate custom YAMLs (using the --generate-custom

-yaml flag) and edit them to remove the --metrics flag from being invoked for the trident-main

container.

Uninstall Trident

You should use the same method to uninstall Trident that you used to install Trident.

About this task

• If you need a fix for bugs observed after an upgrade, dependency issues, or an unsuccessful or incomplete

upgrade, you should uninstall Trident and reinstall the earlier version using the specific instructions for that

version. This is the only recommended way to downgrade to an earlier version.

• For easy upgrade and reinstallation, uninstalling Trident does not remove the CRDs or related objects

created by Trident. If you need to completely remove Trident and all of its data, refer to Completely remove

Trident and CRDs.

290

https://hub.docker.com/r/netapp/trident-autosupport
https://www.netapp.com/us/media/enduser-license-agreement-worldwide.pdf
https://www.netapp.com/pdf.html?item=/media/14114-enduserlicenseagreementworldwidepdf.pdf

Before you begin

If you are decommissioning Kubernetes clusters, you must delete all applications that use volumes created by

Trident prior to uninstalling. This ensures that PVCs are unpublished on Kubernetes nodes before they are

deleted.

Determine the original installation method

You should use the same method to uninstall Trident that you used to install it. Before uninstalling, verify which

version you used to originally install Trident.

1. Use kubectl get pods -n trident to examine the pods.

◦ If there is no operator pod, Trident was installed using tridentctl.

◦ If there is an operator pod, Trident was installed using the Trident operator either manually or using

Helm.

2. If there is an operator pod, use kubectl describe tproc trident to determine if Trident was

installed using Helm.

◦ If there is a Helm label, Trident was installed using Helm.

◦ If there is no Helm label, Trident was installed manually using the Trident operator.

Uninstall a Trident operator installation

You can uninstall a trident operator installation manually or using Helm.

Uninstall manual installation

If you installed Trident using the operator, you can uninstall it by doing one of the following:

1. Edit TridentOrchestrator CR and set the uninstall flag:

kubectl patch torc <trident-orchestrator-name> --type=merge -p

'{"spec":{"uninstall":true}}'

When the uninstall flag is set to true, the Trident operator uninstalls Trident, but does not remove the

TridentOrchestrator itself. You should clean up the TridentOrchestrator and create a new one if you want to

install Trident again.

2. Delete TridentOrchestrator: By removing the TridentOrchestrator CR that was used to deploy

Trident, you instruct the operator to uninstall Trident. The operator processes the removal of

TridentOrchestrator and proceeds to remove the Trident deployment and daemonset, deleting the

Trident pods it had created as part of the installation.

kubectl delete -f deploy/<bundle.yaml> -n <namespace>

Uninstall Helm installation

If you installed Trident by using Helm, you can uninstall it by using helm uninstall.

291

#List the Helm release corresponding to the Trident install.

helm ls -n trident

NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION

trident trident 1 2021-04-20

00:26:42.417764794 +0000 UTC deployed trident-operator-21.07.1

21.07.1

#Uninstall Helm release to remove Trident

helm uninstall trident -n trident

release "trident" uninstalled

Uninstall a tridentctl installation

Use the uninstall command in tridentctl to remove all of the resources associated with Trident except

for the CRDs and related objects:

./tridentctl uninstall -n <namespace>

292

Trident for Docker

Prerequisites for deployment

You have to install and configure the necessary protocol prerequisites on your host before

you can deploy Trident.

Verify the requirements

• Verify that your deployment meets all of the requirements.

• Verify that you have a supported version of Docker installed. If your Docker version is out of date, install or

update it.

docker --version

• Verify that the protocol prerequisites are installed and configured on your host.

NFS tools

Install the NFS tools using the commands for your operating system.

RHEL 8+

sudo yum install -y nfs-utils

Ubuntu

sudo apt-get install -y nfs-common

Reboot your worker nodes after installing the NFS tools to prevent failure when attaching

volumes to containers.

iSCSI tools

Install the iSCSI tools using the commands for your operating system.

293

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

RHEL 8+

1. Install the following system packages:

sudo yum install -y lsscsi iscsi-initiator-utils sg3_utils device-

mapper-multipath

2. Check that iscsi-initiator-utils version is 6.2.0.874-2.el7 or later:

rpm -q iscsi-initiator-utils

3. Set scanning to manual:

sudo sed -i 's/^\(node.session.scan\).*/\1 = manual/'

/etc/iscsi/iscsid.conf

4. Enable multipathing:

sudo mpathconf --enable --with_multipathd y --find_multipaths n

Ensure etc/multipath.conf contains find_multipaths no under defaults.

5. Ensure that iscsid and multipathd are running:

sudo systemctl enable --now iscsid multipathd

6. Enable and start iscsi:

sudo systemctl enable --now iscsi

Ubuntu

1. Install the following system packages:

sudo apt-get install -y open-iscsi lsscsi sg3-utils multipath-tools

scsitools

2. Check that open-iscsi version is 2.0.874-5ubuntu2.10 or later (for bionic) or 2.0.874-7.1ubuntu6.1 or

later (for focal):

294

dpkg -l open-iscsi

3. Set scanning to manual:

sudo sed -i 's/^\(node.session.scan\).*/\1 = manual/'

/etc/iscsi/iscsid.conf

4. Enable multipathing:

sudo tee /etc/multipath.conf <<-EOF

defaults {

 user_friendly_names yes

 find_multipaths no

}

EOF

sudo systemctl enable --now multipath-tools.service

sudo service multipath-tools restart

Ensure etc/multipath.conf contains find_multipaths no under defaults.

5. Ensure that open-iscsi and multipath-tools are enabled and running:

sudo systemctl status multipath-tools

sudo systemctl enable --now open-iscsi.service

sudo systemctl status open-iscsi

NVMe tools

Install the NVMe tools using the commands for your operating system.

• NVMe requires RHEL 9 or later.

• If the kernel version of your Kubernetes node is too old or if the NVMe package is not

available for your kernel version, you might have to update the kernel version of your node

to one with the NVMe package.

295

RHEL 9

sudo yum install nvme-cli

sudo yum install linux-modules-extra-$(uname -r)

sudo modprobe nvme-tcp

Ubuntu

sudo apt install nvme-cli

sudo apt -y install linux-modules-extra-$(uname -r)

sudo modprobe nvme-tcp

Deploy Trident

Trident for Docker provides direct integration with the Docker ecosystem for NetApp

storage platforms. It supports the provisioning and management of storage resources

from the storage platform to Docker hosts, with a framework for adding additional

platforms in the future.

Multiple instances of Trident can run concurrently on the same host. This allows simultaneous connections to

multiple storage systems and storage types, with the ablity to customize the storage used for the Docker

volumes.

What you’ll need

See the prerequisites for deployment. After you ensure the prerequisites are met, you are ready to deploy

Trident.

Docker managed plugin method (version 1.13/17.03 and later)

Before you begin

If you have used Trident pre Docker 1.13/17.03 in the traditional daemon method, ensure that

you stop the Trident process and restart your Docker daemon before using the managed plugin

method.

1. Stop all running instances:

pkill /usr/local/bin/netappdvp

pkill /usr/local/bin/trident

2. Restart Docker.

systemctl restart docker

296

3. Ensure that you have Docker Engine 17.03 (new 1.13) or later installed.

docker --version

If your version is out of date, install or update your installation.

Steps

1. Create a configuration file and specify the options as follows:

◦ config: The default filename is config.json, however you can use any name you choose by

specifying the config option with the filename. The configuration file must be located in the

/etc/netappdvp directory on the host system.

◦ log-level: Specify the logging level (debug, info, warn, error, fatal). The default is info.

◦ debug: Specify whether debug logging is enabled. Default is false. Overrides log-level if true.

a. Create a location for the configuration file:

sudo mkdir -p /etc/netappdvp

b. Create the configuration file:

cat << EOF > /etc/netappdvp/config.json

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "password",

 "aggregate": "aggr1"

}

EOF

2. Start Trident using the managed plugin system. Replace <version> with the plugin version (xxx.xx.x) you

are using.

docker plugin install --grant-all-permissions --alias netapp

netapp/trident-plugin:<version> config=myConfigFile.json

3. Begin using Trident to consume storage from the configured system.

a. Create a volume named "firstVolume":

297

https://docs.docker.com/engine/install/

docker volume create -d netapp --name firstVolume

b. Create a default volume when the container starts:

docker run --rm -it --volume-driver netapp --volume

secondVolume:/my_vol alpine ash

c. Remove the volume "firstVolume":

docker volume rm firstVolume

Traditional method (version 1.12 or earlier)

Before you begin

1. Ensure that you have Docker version 1.10 or later.

docker --version

If your version is out of date, update your installation.

curl -fsSL https://get.docker.com/ | sh

Or, follow the instructions for your distribution.

2. Ensure that NFS and/or iSCSI is configured for your system.

Steps

1. Install and configure the NetApp Docker Volume Plugin:

a. Download and unpack the application:

wget

https://github.com/NetApp/trident/releases/download/v24.10.0/trident-

installer-24.10.0.tar.gz

tar zxf trident-installer-24.10.0.tar.gz

b. Move to a location in the bin path:

298

https://docs.docker.com/engine/install/

sudo mv trident-installer/extras/bin/trident /usr/local/bin/

sudo chown root:root /usr/local/bin/trident

sudo chmod 755 /usr/local/bin/trident

c. Create a location for the configuration file:

sudo mkdir -p /etc/netappdvp

d. Create the configuration file:

cat << EOF > /etc/netappdvp/ontap-nas.json

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "password",

 "aggregate": "aggr1"

}

EOF

2. After placing the binary and creating the configuration file, start the Trident daemon using the desired

configuration file.

sudo trident --config=/etc/netappdvp/ontap-nas.json

Unless specified, the default name for the volume driver is "netapp".

After the daemon is started, you can create and manage volumes by using the Docker CLI interface

3. Create a volume:

docker volume create -d netapp --name trident_1

4. Provision a Docker volume when starting a container:

docker run --rm -it --volume-driver netapp --volume trident_2:/my_vol

alpine ash

299

5. Remove a Docker volume:

docker volume rm trident_1

docker volume rm trident_2

Start Trident at system startup

A sample unit file for systemd based systems can be found at contrib/trident.service.example in the

Git repo. To use the file with RHEL, do the following:

1. Copy the file to the correct location.

You should use unique names for the unit files if you have more than one instance running.

cp contrib/trident.service.example

/usr/lib/systemd/system/trident.service

2. Edit the file, change the description (line 2) to match the driver name and the configuration file path (line 9)

to reflect your environment.

3. Reload systemd for it to ingest changes:

systemctl daemon-reload

4. Enable the service.

This name varies depending on what you named the file in the /usr/lib/systemd/system directory.

systemctl enable trident

5. Start the service.

systemctl start trident

6. View the status.

systemctl status trident

Any time you modify the unit file, run the systemctl daemon-reload command for it to be

aware of the changes.

300

Upgrade or uninstall Trident

You can safely upgrade Trident for Docker without any impact to volumes that are in use.

During the upgrade process there will be a brief period where docker volume

commands directed at the plugin will not succeed, and applications will be unable to

mount volumes until the plugin is running again. Under most circumstances, this is a

matter of seconds.

Upgrade

Perform the steps below to upgrade Trident for Docker.

Steps

1. List the existing volumes:

docker volume ls

DRIVER VOLUME NAME

netapp:latest my_volume

2. Disable the plugin:

docker plugin disable -f netapp:latest

docker plugin ls

ID NAME DESCRIPTION

ENABLED

7067f39a5df5 netapp:latest nDVP - NetApp Docker Volume

Plugin false

3. Upgrade the plugin:

docker plugin upgrade --skip-remote-check --grant-all-permissions

netapp:latest netapp/trident-plugin:21.07

The 18.01 release of Trident replaces the nDVP. You should upgrade directly from the

netapp/ndvp-plugin image to the netapp/trident-plugin image.

4. Enable the plugin:

docker plugin enable netapp:latest

5. Verify that the plugin is enabled:

301

docker plugin ls

ID NAME DESCRIPTION

ENABLED

7067f39a5df5 netapp:latest Trident - NetApp Docker Volume

Plugin true

6. Verify that the volumes are visible:

docker volume ls

DRIVER VOLUME NAME

netapp:latest my_volume

If you are upgrading from an old version of Trident (pre-20.10) to Trident 20.10 or later, you

might run into an error. For more information, refer to Known Issues. If you run into the error, you

should first disable the plugin, then remove the plugin, and then install the required Trident

version by passing an extra config parameter: docker plugin install

netapp/trident-plugin:20.10 --alias netapp --grant-all-permissions

config=config.json

Uninstall

Perform the steps below to uninstall Trident for Docker.

Steps

1. Remove any volumes that the plugin created.

2. Disable the plugin:

docker plugin disable netapp:latest

docker plugin ls

ID NAME DESCRIPTION

ENABLED

7067f39a5df5 netapp:latest nDVP - NetApp Docker Volume

Plugin false

3. Remove the plugin:

docker plugin rm netapp:latest

Work with volumes

You can easily create, clone, and remove volumes using the standard docker volume

302

commands with the Trident driver name specified when needed.

Create a volume

• Create a volume with a driver using the default name:

docker volume create -d netapp --name firstVolume

• Create a volume with a specific Trident instance:

docker volume create -d ntap_bronze --name bronzeVolume

If you do not specify any options, the defaults for the driver are used.

• Override the default volume size. See the following example to create a 20GiB volume with a driver:

docker volume create -d netapp --name my_vol --opt size=20G

Volume sizes are expressed as strings containing an integer value with optional units

(example: 10G, 20GB, 3TiB). If no units are specified, the default is G. Size units can be

expressed either as powers of 2 (B, KiB, MiB, GiB, TiB) or powers of 10 (B, KB, MB, GB,

TB). Shorthand units use powers of 2 (G = GiB, T = TiB, …).

Remove a volume

• Remove the volume just like any other Docker volume:

docker volume rm firstVolume

When using the solidfire-san driver, the above example deletes and purges the

volume.

Perform the steps below to upgrade Trident for Docker.

Clone a volume

When using the ontap-nas, ontap-san, solidfire-san, and gcp-cvs storage drivers, Trident can

clone volumes. When using the ontap-nas-flexgroup or ontap-nas-economy drivers, cloning is not

supported. Creating a new volume from an existing volume will result in a new snapshot being created.

• Inspect the volume to enumerate snapshots:

303

docker volume inspect <volume_name>

• Create a new volume from an existing volume. This will result in a new snapshot being created:

docker volume create -d <driver_name> --name <new_name> -o

from=<source_docker_volume>

• Create a new volume from an existing snapshot on a volume. This will not create a new snapshot:

docker volume create -d <driver_name> --name <new_name> -o

from=<source_docker_volume> -o fromSnapshot=<source_snap_name>

Example

304

docker volume inspect firstVolume

[

 {

 "Driver": "ontap-nas",

 "Labels": null,

 "Mountpoint": "/var/lib/docker-volumes/ontap-

nas/netappdvp_firstVolume",

 "Name": "firstVolume",

 "Options": {},

 "Scope": "global",

 "Status": {

 "Snapshots": [

 {

 "Created": "2017-02-10T19:05:00Z",

 "Name": "hourly.2017-02-10_1505"

 }

]

 }

 }

]

docker volume create -d ontap-nas --name clonedVolume -o from=firstVolume

clonedVolume

docker volume rm clonedVolume

docker volume create -d ontap-nas --name volFromSnap -o from=firstVolume

-o fromSnapshot=hourly.2017-02-10_1505

volFromSnap

docker volume rm volFromSnap

Access externally created volumes

You can access externally created block devices (or their clones) by containers using Trident only if they have

no partitions and if their filesystem is supported by Trident (for example: an ext4-formatted /dev/sdc1 will

not be accessible via Trident).

Driver-specific volume options

Each storage driver has a different set of options, which you can specify at volume

creation time to customize the outcome. See below for options that apply to your

configured storage system.

Using these options during the volume create operation is simple. Provide the option and the value using the

-o operator during the CLI operation. These override any equivalent values from the JSON configuration file.

305

ONTAP volume options

Volume create options for both NFS and iSCSI include the following:

Option Description

size The size of the volume, defaults to 1 GiB.

spaceReserve Thin or thick provision the volume, defaults to thin.

Valid values are none (thin provisioned) and volume

(thick provisioned).

snapshotPolicy This will set the snapshot policy to the desired value.

The default is none, meaning no snapshots will

automatically be created for the volume. Unless

modified by your storage administrator, a policy

named “default” exists on all ONTAP systems which

creates and retains six hourly, two daily, and two

weekly snapshots. The data preserved in a snapshot

can be recovered by browsing to the .snapshot

directory in any directory in the volume.

snapshotReserve This will set the snapshot reserve to the desired

percentage. The default is no value, meaning ONTAP

will select the snapshotReserve (usually 5%) if you

have selected a snapshotPolicy, or 0% if the

snapshotPolicy is none. You can set the default

snapshotReserve value in the config file for all

ONTAP backends, and you can use it as a volume

creation option for all ONTAP backends except ontap-

nas-economy.

splitOnClone When cloning a volume, this will cause ONTAP to

immediately split the clone from its parent. The default

is false. Some use cases for cloning volumes are

best served by splitting the clone from its parent

immediately upon creation, because there is unlikely

to be any opportunity for storage efficiencies. For

example, cloning an empty database can offer large

time savings but little storage savings, so it’s best to

split the clone immediately.

encryption Enable NetApp Volume Encryption (NVE) on the new

volume; defaults to false. NVE must be licensed

and enabled on the cluster to use this option.

If NAE is enabled on the backend, any volume

provisioned in Trident will be NAE enabled.

For more information, refer to: How Trident works with

NVE and NAE.

306

Option Description

tieringPolicy Sets the tiering policy to be used for the volume. This

decides whether data is moved to the cloud tier when

it becomes inactive (cold).

The following additional options are for NFS only:

Option Description

unixPermissions This controls the permission set for the volume itself.

By default the permissions will be set to `---rwxr-

xr-x, or in numerical notation 0755, and root will be

the owner. Either the text or numerical format will

work.

snapshotDir Setting this to true will make the .snapshot

directory visible to clients accessing the volume. The

default value is false, meaning that visibility of the

.snapshot directory is disabled by default. Some

images, for example the official MySQL image, don’t

function as expected when the .snapshot directory

is visible.

exportPolicy Sets the export policy to be used for the volume. The

default is default.

securityStyle Sets the security style to be used for access to the

volume. The default is unix. Valid values are unix

and mixed.

The following additional options are for iSCSI only:

Option Description

fileSystemType Sets the file system used to format iSCSI volumes.

The default is ext4. Valid values are ext3, ext4,

and xfs.

spaceAllocation Setting this to false will turn off the LUN’s space-

allocation feature. The default value is true, meaning

ONTAP notifies the host when the volume has run out

of space and the LUN in the volume cannot accept

writes. This option also enables ONTAP to reclaim

space automatically when your host deletes data.

Examples

See the examples below:

• Create a 10GiB volume:

307

docker volume create -d netapp --name demo -o size=10G -o

encryption=true

• Create a 100GiB volume with snapshots:

docker volume create -d netapp --name demo -o size=100G -o

snapshotPolicy=default -o snapshotReserve=10

• Create a volume which has the setUID bit enabled:

docker volume create -d netapp --name demo -o unixPermissions=4755

The minimum volume size is 20MiB.

If the snapshot reserve is not specified and the snapshot policy is none, Trident use a snapshot reserve of 0%.

• Create a volume with no snapshot policy and no snapshot reserve:

docker volume create -d netapp --name my_vol --opt snapshotPolicy=none

• Create a volume with no snapshot policy and a custom snapshot reserve of 10%:

docker volume create -d netapp --name my_vol --opt snapshotPolicy=none

--opt snapshotReserve=10

• Create a volume with a snapshot policy and a custom snapshot reserve of 10%:

docker volume create -d netapp --name my_vol --opt

snapshotPolicy=myPolicy --opt snapshotReserve=10

• Create a volume with a snapshot policy, and accept ONTAP’s default snapshot reserve (usually 5%):

docker volume create -d netapp --name my_vol --opt

snapshotPolicy=myPolicy

Element software volume options

The Element software options expose the size and quality of service (QoS) policies associated with the

volume. When the volume is created, the QoS policy associated with it is specified using the -o

type=service_level nomenclature.

308

The first step to defining a QoS service level with the Element driver is to create at least one type and specify

the minimum, maximum, and burst IOPS associated with a name in the configuration file.

Other Element software volume create options include the following:

Option Description

size The size of the volume, defaults to 1GiB or config

entry … "defaults": {"size": "5G"}.

blocksize Use either 512 or 4096, defaults to 512 or config entry

DefaultBlockSize.

Example

See the following sample configuration file with QoS definitions:

{

 "...": "..."

 "Types": [

 {

 "Type": "Bronze",

 "Qos": {

 "minIOPS": 1000,

 "maxIOPS": 2000,

 "burstIOPS": 4000

 }

 },

 {

 "Type": "Silver",

 "Qos": {

 "minIOPS": 4000,

 "maxIOPS": 6000,

 "burstIOPS": 8000

 }

 },

 {

 "Type": "Gold",

 "Qos": {

 "minIOPS": 6000,

 "maxIOPS": 8000,

 "burstIOPS": 10000

 }

 }

]

}

309

In the above configuration, we have three policy definitions: Bronze, Silver, and Gold. These names are

arbitrary.

• Create a 10GiB Gold volume:

docker volume create -d solidfire --name sfGold -o type=Gold -o size=10G

• Create a 100GiB Bronze volume:

docker volume create -d solidfire --name sfBronze -o type=Bronze -o

size=100G

Collect logs

You can collect logs for help with troubleshooting. The method you use to collect the logs

varies based on how you are running the Docker plugin.

Collect logs for troubleshooting

Steps

1. If you are running Trident using the recommended managed plugin method (i.e., using docker plugin

commands), view them as follows:

docker plugin ls

ID NAME DESCRIPTION

ENABLED

4fb97d2b956b netapp:latest nDVP - NetApp Docker Volume

Plugin false

journalctl -u docker | grep 4fb97d2b956b

The standard logging level should allow you to diagnose most issues. If you find that’s not enough, you can

enable debug logging.

2. To enable debug logging, install the plugin with debug logging enabled:

docker plugin install netapp/trident-plugin:<version> --alias <alias>

debug=true

Or, enable debug logging when the plugin is already installed:

310

docker plugin disable <plugin>

docker plugin set <plugin> debug=true

docker plugin enable <plugin>

3. If you are running the binary itself on the host, logs are available in the host’s /var/log/netappdvp

directory. To enable debug logging, specify -debug when you run the plugin.

General troubleshooting tips

• The most common problem new users run into is a misconfiguration that prevents the plugin from

initializing. When this happens you will likely see a message such as this when you try to install or enable

the plugin:

Error response from daemon: dial unix /run/docker/plugins/<id>/netapp.sock:

connect: no such file or directory

This means that the plugin failed to start. Luckily, the plugin has been built with a comprehensive logging

capability that should help you diagnose most of the issues you are likely to come across.

• If there are problems with mounting a PV to a container, ensure that rpcbind is installed and running. Use

the required package manager for the host OS and check if rpcbind is running. You can check the status

of the rpcbind service by running a systemctl status rpcbind or its equivalent.

Manage multiple Trident instances

Multiple instances of Trident are needed when you desire to have multiple storage

configurations available simultaneously. The key to multiple instances is to give them

different names using the --alias option with the containerized plugin, or --volume

-driver option when instantiating Trident on the host.

Steps for Docker managed plugin (version 1.13/17.03 or later)

1. Launch the first instance specifying an alias and configuration file.

docker plugin install --grant-all-permissions --alias silver

netapp/trident-plugin:21.07 config=silver.json

2. Launch the second instance, specifying a different alias and configuration file.

docker plugin install --grant-all-permissions --alias gold

netapp/trident-plugin:21.07 config=gold.json

3. Create volumes specifying the alias as the driver name.

For example, for gold volume:

311

docker volume create -d gold --name ntapGold

For example, for silver volume:

docker volume create -d silver --name ntapSilver

Steps for traditional (version 1.12 or earlier)

1. Launch the plugin with an NFS configuration using a custom driver ID:

sudo trident --volume-driver=netapp-nas --config=/path/to/config

-nfs.json

2. Launch the plugin with an iSCSI configuration using a custom driver ID:

sudo trident --volume-driver=netapp-san --config=/path/to/config

-iscsi.json

3. Provision Docker volumes for each driver instance:

For example, for NFS:

docker volume create -d netapp-nas --name my_nfs_vol

For example, for iSCSI:

docker volume create -d netapp-san --name my_iscsi_vol

Storage configuration options

See the configuration options available for your Trident configurations.

Global configuration options

These configuration options apply to all Trident configurations, regardless of the storage platform being used.

Option Description Example

version Config file version number 1

312

Option Description Example

storageDriverName Name of storage driver ontap-nas, ontap-san, ontap-

nas-economy,

ontap-nas-flexgroup,

solidfire-san

storagePrefix Optional prefix for volume names.

Default: netappdvp_.
staging_

limitVolumeSize Optional restriction on volume

sizes. Default: "" (not enforced)
10g

Do not use storagePrefix (including the default) for Element backends. By default, the

solidfire-san driver will ignore this setting and not use a prefix. We recommend using either

a specific tenantID for Docker volume mapping or using the attribute data which is populated

with the Docker version, driver info, and raw name from Docker in cases where any name

munging may have been used.

Default options are available to avoid having to specify them on every volume you create. The size option is

available for all the controller types. See the ONTAP configuration section for an example of how to set the

default volume size.

Option Description Example

size Optional default size for new

volumes. Default: 1G
10G

ONTAP configuration

In addition to the global configuration values above, when using ONTAP, the following top-level options are

available.

Option Description Example

managementLIF IP address of ONTAP management

LIF. You can specify a fully-qualified

domain name (FQDN).

10.0.0.1

313

Option Description Example

dataLIF IP address of protocol LIF.

ONTAP NAS drivers: We

recommend specifying dataLIF. If

not provided, Trident fetches data

LIFs from the SVM. You can

specify a fully-qualified domain

name (FQDN) to be used for the

NFS mount operations, allowing

you to create a round-robin DNS to

load-balance across multiple data

LIFs.

ONTAP SAN drivers: Do not

specify for iSCSI. Trident uses

ONTAP Selective LUN Map to

discover the iSCI LIFs needed to

establish a multi path session. A

warning is generated if dataLIF is

explicitly defined.

10.0.0.2

svm Storage virtual machine to use

(required, if management LIF is a

cluster LIF)

svm_nfs

username Username to connect to the

storage device
vsadmin

password Password to connect to the storage

device
secret

aggregate Aggregate for provisioning

(optional; if set, must be assigned

to the SVM). For the ontap-nas-

flexgroup driver, this option is

ignored. All aggregates assigned to

the SVM are used to provision a

FlexGroup volume.

aggr1

limitAggregateUsage Optional, fail provisioning if usage

is above this percentage
75%

nfsMountOptions Fine grained control of NFS mount

options; defaults to “-o nfsvers=3”.

Available only for the ontap-nas

and ontap-nas-economy
drivers. See NFS host

configuration information here.

-o nfsvers=4

314

https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html
https://www.netapp.com/pdf.html?item=/media/10720-tr-4067.pdf
https://www.netapp.com/pdf.html?item=/media/10720-tr-4067.pdf

Option Description Example

igroupName Trident creates and manages per-

node igroups as netappdvp.

This value cannot be changed or

omitted.

Available only for the ontap-san
driver.

netappdvp

limitVolumeSize Maximum requestable volume size. 300g

qtreesPerFlexvol Maximum qtrees per FlexVol, must

be in range [50, 300], default is

200.

For the ontap-nas-economy
driver, this option allows

customizing the maximum

number of qtrees per FlexVol.

300

sanType Supported for ontap-san driver

only.

Use to select iscsi for iSCSI,

nvme for NVMe/TCP or fcp for

SCSI over Fibre Channel (FC).

'fcp' (SCSI over FC) is a tech

preview feature in the Trident

24.10 release.

iscsi if blank

limitVolumePoolSize Supported for ontap-san-

economy and ontap-san-

economy drivers only.

Limits FlexVol sizes in ONTAP

ontap-nas-economy and ontap-

SAN-economy drivers.

300g

Default options are available to avoid having to specify them on every volume you create:

Option Description Example

spaceReserve Space reservation mode; none (thin provisioned) or

volume (thick)

none

snapshotPoli

cy

Snapshot policy to use, default is none none

315

Option Description Example

snapshotRese

rve

Snapshot reserve percentage, default is “” to accept

the ONTAP default
10

splitOnClone Split a clone from its parent upon creation, defaults to

false
false

encryption Enables NetApp Volume Encryption (NVE) on the

new volume; defaults to false. NVE must be

licensed and enabled on the cluster to use this option.

If NAE is enabled on the backend, any volume

provisioned in Trident will be NAE enabled.

For more information, refer to: How Trident works with

NVE and NAE.

true

unixPermissi

ons

NAS option for provisioned NFS volumes, defaults to

777
777

snapshotDir NAS option for access to the .snapshot directory. "true" for NFSv4

"false" for NFSv3

exportPolicy NAS option for the NFS export policy to use, defaults

to default
default

securityStyl

e

NAS option for access to the provisioned NFS

volume.

NFS supports mixed and unix security styles. The

default is unix.

unix

fileSystemTy

pe

SAN option to select the file system type, defaults to

ext4
xfs

tieringPolic

y

Tiering policy to use, default is none; snapshot-

only for pre-ONTAP 9.5 SVM-DR configuration

none

Scaling options

The ontap-nas and ontap-san drivers create an ONTAP FlexVol for each Docker volume. ONTAP supports

up to 1000 FlexVols per cluster node with a cluster maximum of 12,000 FlexVols. If your Docker volume

requirements fit within that limitation, the ontap-nas driver is the preferred NAS solution due to the additional

features offered by FlexVols, such as Docker-volume-granular snapshots and cloning.

If you need more Docker volumes than can be accommodated by the FlexVol limits, choose the ontap-nas-

economy or the ontap-san-economy driver.

316

The ontap-nas-economy driver creates Docker volumes as ONTAP Qtrees within a pool of automatically

managed FlexVols. Qtrees offer far greater scaling, up to 100,000 per cluster node and 2,400,000 per cluster,

at the expense of some features. The ontap-nas-economy driver does not support Docker-volume-granular

snapshots or cloning.

The ontap-nas-economy driver is not currently supported in Docker Swarm, because Swarm

does not orchestrate volume creation across multiple nodes.

The ontap-san-economy driver creates Docker volumes as ONTAP LUNs within a shared pool of

automatically managed FlexVols. This way, each FlexVol is not restricted to only one LUN and it offers better

scalability for SAN workloads. Depending on the storage array, ONTAP supports up to 16384 LUNs per cluster.

Because the volumes are LUNs underneath, this driver supports Docker-volume-granular snapshots and

cloning.

Choose the ontap-nas-flexgroup driver to increase parallelism to a single volume that can grow into the

petabyte range with billions of files. Some ideal use cases for FlexGroups include AI/ML/DL, big data and

analytics, software builds, streaming, file repositories, and so on. Trident uses all aggregates assigned to an

SVM when provisioning a FlexGroup volume. FlexGroup support in Trident also has the following

considerations:

• Requires ONTAP version 9.2 or greater.

• As of this writing, FlexGroups only support NFS v3.

• Recommended to enable the 64-bit NFSv3 identifiers for the SVM.

• The minimum recommended FlexGroup member/volume size is 100GiB.

• Cloning is not supported for FlexGroup volumes.

For information about FlexGroups and workloads that are appropriate for FlexGroups see the NetApp

FlexGroup volume Best Practices and Implementation Guide.

To get advanced features and huge scale in the same environment, you can run multiple instances of the

Docker Volume Plugin, with one using ontap-nas and another using ontap-nas-economy.

Custom ONTAP role for Trident

You can create an ONTAP cluster role with minimum privileges so that you do not have to use the ONTAP

admin role to perform operations in Trident. When you include the username in a Trident backend

configuration, Trident uses the ONTAP cluster role you created to perform the operations.

Refer to Trident custom-role generator for more information about creating Trident custom roles.

317

https://www.netapp.com/pdf.html?item=/media/12385-tr4571pdf.pdf
https://www.netapp.com/pdf.html?item=/media/12385-tr4571pdf.pdf
https://github.com/NetApp/trident/tree/master/contrib/ontap/trident_role

Using ONTAP CLI

1. Create a new role using the following command:

security login role create <role_name\> -cmddirname "command" -access all

–vserver <svm_name\>

2. Create a usename for the Trident user:

security login create -username <user_name\> -application ontapi

-authmethod <password\> -role <name_of_role_in_step_1\> –vserver

<svm_name\> -comment "user_description"

3. Map the role to the user:

security login modify username <user_name\> –vserver <svm_name\> -role

<role_name\> -application ontapi -application console -authmethod

<password\>

Using System Manager

Perform the following steps in ONTAP System Manager:

1. Create a custom role:

a. To create a custom role at the cluster-level, select Cluster > Settings.

(Or) To create a custom role at the SVM level, select Storage > Storage VMs > required SVM>

Settings > Users and Roles.

b. Select the arrow icon (→) next to Users and Roles.

c. Select +Add under Roles.

d. Define the rules for the role and click Save.

2. Map the role to the Trident user:

+ Perform the following steps on the Users and Roles page:

a. Select Add icon + under Users.

b. Select the required username, and select a role in the drop-down menu for Role.

c. Click Save.

Refer to the following pages for more information:

• Custom roles for administration of ONTAP or Define custom roles

• Work with roles and users

Example ONTAP configuration files

318

https://kb.netapp.com/on-prem/ontap/Ontap_OS/OS-KBs/FAQ__Custom_roles_for_administration_of_ONTAP
https://docs.netapp.com/us-en/ontap/authentication/define-custom-roles-task.html
https://docs.netapp.com/us-en/ontap-automation/rest/rbac_roles_users.html#rest-api

NFS example for ontap-nas driver

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "password",

 "aggregate": "aggr1",

 "defaults": {

 "size": "10G",

 "spaceReserve": "none",

 "exportPolicy": "default"

 }

}

NFS example for ontap-nas-flexgroup driver

{

 "version": 1,

 "storageDriverName": "ontap-nas-flexgroup",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "password",

 "defaults": {

 "size": "100G",

 "spaceReserve": "none",

 "exportPolicy": "default"

 }

}

319

NFS example for ontap-nas-economy driver

{

 "version": 1,

 "storageDriverName": "ontap-nas-economy",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "password",

 "aggregate": "aggr1"

}

iSCSI example for ontap-san driver

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.3",

 "svm": "svm_iscsi",

 "username": "vsadmin",

 "password": "password",

 "aggregate": "aggr1",

 "igroupName": "netappdvp"

}

NFS example for ontap-san-economy driver

{

 "version": 1,

 "storageDriverName": "ontap-san-economy",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.3",

 "svm": "svm_iscsi_eco",

 "username": "vsadmin",

 "password": "password",

 "aggregate": "aggr1",

 "igroupName": "netappdvp"

}

320

NVMe/TCP example for ontap-san driver

{

 "version": 1,

 "backendName": "NVMeBackend",

 "storageDriverName": "ontap-san",

 "managementLIF": "10.0.0.1",

 "svm": "svm_nvme",

 "username":"vsadmin",

 "password":"password",

 "sanType": "nvme",

 "useREST": true

}

Element software configuration

In addition to the global configuration values, when using Element software (NetApp HCI/SolidFire), these

options are available.

Option Description Example

Endpoint https://<login>:<password>@<mvip

>/json-rpc/<element-version>

https://admin:admin@192.168.160.

3/json-rpc/8.0

SVIP iSCSI IP address and port 10.0.0.7:3260

TenantName SolidFireF Tenant to use (created if

not found)
docker

InitiatorIFace Specify interface when restricting

iSCSI traffic to non-default interface
default

Types QoS specifications See example below

LegacyNamePrefix Prefix for upgraded Trident installs.

If you used a version of Trident

prior to 1.3.2 and perform an

upgrade with existing volumes,

you’ll need to set this value to

access your old volumes that were

mapped via the volume-name

method.

netappdvp-

The solidfire-san driver does not support Docker Swarm.

321

Example Element software configuration file

{

 "version": 1,

 "storageDriverName": "solidfire-san",

 "Endpoint": "https://admin:admin@192.168.160.3/json-rpc/8.0",

 "SVIP": "10.0.0.7:3260",

 "TenantName": "docker",

 "InitiatorIFace": "default",

 "Types": [

 {

 "Type": "Bronze",

 "Qos": {

 "minIOPS": 1000,

 "maxIOPS": 2000,

 "burstIOPS": 4000

 }

 },

 {

 "Type": "Silver",

 "Qos": {

 "minIOPS": 4000,

 "maxIOPS": 6000,

 "burstIOPS": 8000

 }

 },

 {

 "Type": "Gold",

 "Qos": {

 "minIOPS": 6000,

 "maxIOPS": 8000,

 "burstIOPS": 10000

 }

 }

]

}

Known issues and limitations

Find information about known issues and limitations when using Trident with Docker.

Upgrading Trident Docker Volume Plugin to 20.10 and later from older versions
results in upgrade failure with the no such file or directory error.

Workaround

322

1. Disable the plugin.

docker plugin disable -f netapp:latest

2. Remove the plugin.

docker plugin rm -f netapp:latest

3. Reinstall the plugin by providing the extra config parameter.

docker plugin install netapp/trident-plugin:20.10 --alias netapp --grant

-all-permissions config=config.json

Volume names must be a minimum of 2 characters in length.

This is a Docker client limitation. The client will interpret a single character name as being a

Windows path. See bug 25773.

Docker Swarm has certain behaviors that prevent Trident from supporting it with
every storage and driver combination.

• Docker Swarm presently makes use of volume name instead of volume ID as its unique volume identifier.

• Volume requests are simultaneously sent to each node in a Swarm cluster.

• Volume plugins (including Trident) must run independently on each node in a Swarm cluster.

Due to the way ONTAP works and how the ontap-nas and ontap-san drivers function, they are the only

ones that happen to be able to operate within these limitations.

The rest of the drivers are subject to issues like race conditions that can result in the creation of a large

number of volumes for a single request without a clear “winner”; for example, Element has a feature that allows

volumes to have the same name but different IDs.

NetApp has provided feedback to the Docker team, but does not have any indication of future recourse.

If a FlexGroup is being provisioned, ONTAP does not provision a second
FlexGroup if the second FlexGroup has one or more aggregates in common with
the FlexGroup being provisioned.

323

https://github.com/moby/moby/issues/25773

Best practices and recommendations

Deployment

Use the recommendations listed here when you deploy Trident.

Deploy to a dedicated namespace

Namespaces provide administrative separation between different applications and are a barrier for resource

sharing. For example, a PVC from one namespace cannot be consumed from another. Trident provides PV

resources to all the namespaces in the Kubernetes cluster and consequently leverages a service account

which has elevated privileges.

Additionally, access to the Trident pod might enable a user to access storage system credentials and other

sensitive information. It is important to ensure that application users and management applications do not have

the ability to access the Trident object definitions or the pods themselves.

Use quotas and range limits to control storage consumption

Kubernetes has two features which, when combined, provide a powerful mechanism for limiting the resource

consumption by applications. The storage quota mechanism enables the administrator to implement global,

and storage class specific, capacity and object count consumption limits on a per-namespace basis. Further,

using a range limit ensures that the PVC requests are within both a minimum and maximum value before the

request is forwarded to the provisioner.

These values are defined on a per-namespace basis, which means that each namespace should have values

defined which fall in line with their resource requirements. See here for information about how to leverage

quotas.

Storage configuration

Each storage platform in the NetApp portfolio has unique capabilities that benefit

applications, containerized or not.

Platform overview

Trident works with ONTAP and Element. There is not one platform which is better suited for all applications and

scenarios than another, however, the needs of the application and the team administering the device should be

taken into account when choosing a platform.

You should follow the baseline best practices for the host operating system with the protocol that you are

leveraging. Optionally, you might want to consider incorporating application best practices, when available, with

backend, storage class, and PVC settings to optimize storage for specific applications.

ONTAP and Cloud Volumes ONTAP best practices

Learn the best practices for configuring ONTAP and Cloud Volumes ONTAP for Trident.

The following recommendations are guidelines for configuring ONTAP for containerized workloads, which

consume volumes that are dynamically provisioned by Trident. Each should be considered and evaluated for

appropriateness in your environment.

324

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/policy/resource-quotas/#storage-resource-quota
https://kubernetes.io/docs/tasks/administer-cluster/limit-storage-consumption/#limitrange-to-limit-requests-for-storage
https://netapp.io/2017/06/09/self-provisioning-storage-kubernetes-without-worry
https://netapp.io/2017/06/09/self-provisioning-storage-kubernetes-without-worry

Use SVM(s) dedicated to Trident

Storage Virtual Machines (SVMs) provide isolation and administrative separation between tenants on an

ONTAP system. Dedicating an SVM to applications enables the delegation of privileges and enables applying

best practices for limiting resource consumption.

There are several options available for the management of the SVM:

• Provide the cluster management interface in the backend configuration, along with appropriate credentials,

and specify the SVM name.

• Create a dedicated management interface for the SVM by using ONTAP System Manager or the CLI.

• Share the management role with an NFS data interface.

In each case, the interface should be in DNS, and the DNS name should be used when configuring Trident.

This helps to facilitate some DR scenarios, for example, SVM-DR without the use of network identity retention.

There is no preference between having a dedicated or shared management LIF for the SVM, however, you

should ensure that your network security policies align with the approach you choose. Regardless, the

management LIF should be accessible via DNS to facilitate maximum flexibility should SVM-DR be used in

conjunction with Trident.

Limit the maximum volume count

ONTAP storage systems have a maximum volume count, which varies based on the software version and

hardware platform. Refer to NetApp Hardware Universe for your specific platform and ONTAP version to

determine the exact limits. When the volume count is exhausted, provisioning operations fail not only for

Trident, but for all the storage requests.

Trident’s ontap-nas and ontap-san drivers provision a FlexVolume for each Kubernetes Persistent Volume

(PV) that is created. The ontap-nas-economy driver creates approximately one FlexVolume for every 200

PVs (configurable between 50 and 300). The ontap-san-economy driver creates approximately one

FlexVolume for every 100 PVs (configurable between 50 and 200). To prevent Trident from consuming all the

available volumes on the storage system, you should set a limit on the SVM. You can do this from the

command line:

vserver modify -vserver <svm_name> -max-volumes <num_of_volumes>

The value for max-volumes varies based on several criteria specific to your environment:

• The number of existing volumes in the ONTAP cluster

• The number of volumes you expect to provision outside of Trident for other applications

• The number of persistent volumes expected to be consumed by Kubernetes applications

The max-volumes value is the total volumes provisioned across all the nodes in the ONTAP cluster, and not

on an individual ONTAP node. As a result, you might encounter some conditions where an ONTAP cluster

node might have far more or less Trident provisioned volumes than another node.

For example, a two-node ONTAP cluster has the ability to host a maximum of 2000 FlexVolumes. Having the

maximum volume count set to 1250 appears very reasonable. However, if only aggregates from one node are

assigned to the SVM, or the aggregates assigned from one node are unable to be provisioned against (for

example, due to capacity), then the other node becomes the target for all Trident provisioned volumes. This

325

https://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-dap/GUID-B9E36563-1C7A-48F5-A9FF-1578B99AADA9.html
https://hwu.netapp.com/
https://library.netapp.com/ecmdocs/ECMP1368859/html/GUID-3AC7685D-B150-4C1F-A408-5ECEB3FF0011.html

means that the volume limit might be reached for that node before the max-volumes value is reached,

resulting in impacting both Trident and other volume operations that use that node. You can avoid this

situation by ensuring that aggregates from each node in the cluster are assigned to the SVM used by

Trident in equal numbers.

Limit the maximum size of volumes created by Trident

To configure the maximum size for volumes that can be created by Trident, use the limitVolumeSize

parameter in your backend.json definition.

In addition to controlling the volume size at the storage array, you should also leverage Kubernetes

capabilities.

Limit the maximum size of FlexVols created by Trident

To configure the maximum size for FlexVols used as pools for ontap-san-economy and ontap-nas-economy

drivers, use the limitVolumePoolSize parameter in your backend.json definition.

Configure Trident to use bidirectional CHAP

You can specify the CHAP initiator and target usernames and passwords in your backend definition and have

Trident enable CHAP on the SVM. Using the useCHAP parameter in your backend configuration, Trident

authenticates iSCSI connections for ONTAP backends with CHAP.

Create and use an SVM QoS policy

Leveraging an ONTAP QoS policy, applied to the SVM, limits the number of IOPS consumable by the Trident

provisioned volumes. This helps to prevent a bully or out-of-control container from affecting workloads outside

of the Trident SVM.

You can create a QoS policy for the SVM in a few steps. See the documentation for your version of ONTAP for

the most accurate information. The example below creates a QoS policy that limits the total IOPS available to

the SVM to 5000.

create the policy group for the SVM

qos policy-group create -policy-group <policy_name> -vserver <svm_name>

-max-throughput 5000iops

assign the policy group to the SVM, note this will not work

if volumes or files in the SVM have existing QoS policies

vserver modify -vserver <svm_name> -qos-policy-group <policy_name>

Additionally, if your version of ONTAP supports it, you can consider using a QoS minimum to guarantee an

amount of throughput to containerized workloads. Adaptive QoS is not compatible with an SVM level policy.

The number of IOPS dedicated to the containerized workloads depends on many aspects. Among other things,

these include:

• Other workloads using the storage array. If there are other workloads, not related to the Kubernetes

deployment, utilizing the storage resources, care should be taken to ensure that those workloads are not

accidentally adversely impacted.

326

http://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-perf-mon/GUID-77DF9BAF-4ED7-43F6-AECE-95DFB0680D2F.html?cp=7_1_2_1_2

• Expected workloads running in containers. If workloads which have high IOPS requirements will be running

in containers, a low QoS policy results in a bad experience.

It’s important to remember that a QoS policy assigned at the SVM level results in all the volumes provisioned to

the SVM sharing the same IOPS pool. If one, or a small number, of the containerized applications have a high

IOPS requirement, it could become a bully to the other containerized workloads. If this is the case, you might

want to consider using external automation to assign per-volume QoS policies.

You should assign the QoS policy group to the SVM only if your ONTAP version is earlier than

9.8.

Create QoS policy groups for Trident

Quality of service (QoS) guarantees that performance of critical workloads is not degraded by competing

workloads. ONTAP QoS policy groups provide QoS options for volumes, and enable users to define the

throughput ceiling for one or more workloads. For more information about QoS, refer to Guaranteeing

throughput with QoS.

You can specify QoS policy groups in the backend or in a storage pool, and they are applied to each volume

created in that pool or backend.

ONTAP has two kinds of QoS policy groups: traditional and adaptive. Traditional policy groups provide a flat

maximum (or minimum, in later versions) throughput in IOPS. Adaptive QoS automatically scales the

throughput to workload size, maintaining the ratio of IOPS to TBs|GBs as the size of the workload changes.

This provides a significant advantage when you are managing hundreds or thousands of workloads in a large

deployment.

Consider the following when you create QoS policy groups:

• You should set the qosPolicy key in the defaults block of the backend configuration. See the following

backend configuration example:

327

https://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-perf-mon/GUID-77DF9BAF-4ED7-43F6-AECE-95DFB0680D2F.html
https://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-perf-mon/GUID-77DF9BAF-4ED7-43F6-AECE-95DFB0680D2F.html

version: 1

storageDriverName: ontap-nas

managementLIF: 0.0.0.0

dataLIF: 0.0.0.0

svm: svm0

username: user

password: pass

defaults:

 qosPolicy: standard-pg

storage:

- labels:

 performance: extreme

 defaults:

 adaptiveQosPolicy: extremely-adaptive-pg

- labels:

 performance: premium

 defaults:

 qosPolicy: premium-pg

• You should apply the policy groups per volume, so that each volume gets the entire throughput as specified

by the policy group. Shared policy groups are not supported.

For more information about QoS policy groups, refer to ONTAP 9.8 QoS commands.

Limit storage resource access to Kubernetes cluster members

Limiting access to the NFS volumes and iSCSI LUNs created by Trident is a critical component of the security

posture for your Kubernetes deployment. Doing so prevents hosts that are not a part of the Kubernetes cluster

from accessing the volumes and potentially modifying data unexpectedly.

It’s important to understand that namespaces are the logical boundary for resources in Kubernetes. The

assumption is that resources in the same namespace are able to be shared, however, importantly, there is no

cross-namespace capability. This means that even though PVs are global objects, when bound to a PVC they

are only accessible by pods which are in the same namespace. It is critical to ensure that namespaces are

used to provide separation when appropriate.

The primary concern for most organizations with regard to data security in a Kubernetes context is that a

process in a container can access storage mounted to the host, but which is not intended for the container.

Namespaces are designed to prevent this type of compromise. However, there is one exception: privileged

containers.

A privileged container is one that is run with substantially more host-level permissions than normal. These are

not denied by default, so ensure that you disable the capability by using pod security policies.

For volumes where access is desired from both Kubernetes and external hosts, the storage should be

managed in a traditional manner, with the PV introduced by the administrator and not managed by Trident. This

ensures that the storage volume is destroyed only when both the Kubernetes and external hosts have

disconnected and are no longer using the volume. Additionally, a custom export policy can be applied, which

enables access from the Kubernetes cluster nodes and targeted servers outside of the Kubernetes cluster.

328

https://docs.netapp.com/ontap-9/topic/com.netapp.doc.dot-cm-cmpr-980/TOC__qos.html
https://en.wikipedia.org/wiki/Linux_namespaces
https://kubernetes.io/docs/concepts/policy/pod-security-policy/

For deployments which have dedicated infrastructure nodes (for example, OpenShift) or other nodes which are

unable to schedule user applications, separate export policies should be used to further limit access to storage

resources. This includes creating an export policy for services which are deployed to those infrastructure

nodes (for example, the OpenShift Metrics and Logging services), and standard applications which are

deployed to non-infrastructure nodes.

Use a dedicated export policy

You should ensure that an export policy exists for each backend that only allows access to the nodes present

in the Kubernetes cluster. Trident can automatically create and manage export policies. This way, Trident limits

access to the volumes it provisions to the nodes in the Kubernetes cluster and simplifies the addition/deletion

of nodes.

Alternatively, you can also create an export policy manually and populate it with one or more export rules that

process each node access request:

• Use the vserver export-policy create ONTAP CLI command to create the export policy.

• Add rules to the export policy by using the vserver export-policy rule create ONTAP CLI

command.

Running these commands enables you to restrict which Kubernetes nodes have access to the data.

Disable showmount for the application SVM

The showmount feature enables an NFS client to query the SVM for a list of available NFS exports. A pod

deployed to the Kubernetes cluster can issue the showmount -e command against the data LIF and receive

a list of available mounts, including those which it does not have access to. While this, by itself, is not a

security compromise, it does provide unnecessary information potentially aiding an unauthorized user with

connecting to an NFS export.

You should disable showmount by using the SVM-level ONTAP CLI command:

vserver nfs modify -vserver <svm_name> -showmount disabled

SolidFire best practices

Learn the best practices for configuring SolidFire storage for Trident.

Create Solidfire Account

Each SolidFire account represents a unique volume owner and receives its own set of Challenge-Handshake

Authentication Protocol (CHAP) credentials. You can access volumes assigned to an account either by using

the account name and the relative CHAP credentials or through a volume access group. An account can have

up to two-thousand volumes assigned to it, but a volume can belong to only one account.

Create a QoS policy

Use SolidFire Quality of Service (QoS) policies if you want to create and save a standardized quality of service

setting that can be applied to many volumes.

You can set QoS parameters on a per-volume basis. Performance for each volume can be assured by setting

329

three configurable parameters that define the QoS: Min IOPS, Max IOPS, and Burst IOPS.

Here are the possible minimum, maximum, and burst IOPS values for the 4Kb block size.

IOPS parameter Definition Min. value Default value Max. value(4Kb)

Min IOPS The guaranteed

level of performance

for a volume.

50 50 15000

Max IOPS The performance

will not exceed this

limit.

50 15000 200,000

Burst IOPS Maximum IOPS

allowed in a short

burst scenario.

50 15000 200,000

Although the Max IOPS and Burst IOPS can be set as high as 200,000, the real-world maximum

performance of a volume is limited by cluster usage and per-node performance.

Block size and bandwidth have a direct influence on the number of IOPS. As block sizes increase, the system

increases bandwidth to a level necessary to process the larger block sizes. As bandwidth increases, the

number of IOPS the system is able to attain decreases. Refer to SolidFire Quality of Service for more

information about QoS and performance.

SolidFire authentication

Element supports two methods for authentication: CHAP and Volume Access Groups (VAG). CHAP uses the

CHAP protocol to authenticate the host to the backend. Volume Access Groups controls access to the volumes

it provisions. NetApp recommends using CHAP for authentication as it’s simpler and has no scaling limits.

Trident with the enhanced CSI provisioner supports the use of CHAP authentication. VAGs

should only be used in the traditional non-CSI mode of operation.

CHAP authentication (verification that the initiator is the intended volume user) is supported only with account-

based access control. If you are using CHAP for authentication, two options are available: unidirectional CHAP

and bidirectional CHAP. Unidirectional CHAP authenticates volume access by using the SolidFire account

name and initiator secret. The bidirectional CHAP option provides the most secure way of authenticating the

volume because the volume authenticates the host through the account name and the initiator secret, and then

the host authenticates the volume through the account name and the target secret.

However, if CHAP cannot be enabled and VAGs are required, create the access group and add the host

initiators and volumes to the access group. Each IQN that you add to an access group can access each

volume in the group with or without CHAP authentication. If the iSCSI initiator is configured to use CHAP

authentication, account-based access control is used. If the iSCSI initiator is not configured to use CHAP

authentication, then Volume Access Group access control is used.

Where to find more information?

Some of the best practices documentation is listed below. Search the NetApp library for the most current

versions.

330

https://www.netapp.com/pdf.html?item=/media/10502-tr-4644pdf.pdf
https://www.netapp.com/search/

ONTAP

• NFS Best Practice and Implementation Guide

• SAN Administration Guide (for iSCSI)

• iSCSI Express Configuration for RHEL

Element software

• Configuring SolidFire for Linux

NetApp HCI

• NetApp HCI deployment prerequisites

• Access the NetApp Deployment Engine

Application best practices information

• Best practices for MySQL on ONTAP

• Best practices for MySQL on SolidFire

• NetApp SolidFire and Cassandra

• Oracle best practices on SolidFire

• PostgreSQL best practices on SolidFire

Not all applications have specific guidelines, it’s important to work with your NetApp team and to use the

NetApp library to find the most up-to-date documentation.

Integrate Trident

To integrate Trident, the following design and architectural elements require integration:

driver selection and deployment, storage class design, virtual pool design, Persistent

Volume Claim (PVC) impacts on storage provisioning, volume operations, and OpenShift

services deployment using Trident.

Driver selection and deployment

Select and deploy a backend driver for your storage system.

ONTAP backend drivers

ONTAP backend drivers are differentiated by the protocol used and how the volumes are provisioned on the

storage system. Therefore, give careful consideration when deciding which driver to deploy.

At a higher level, if your application has components which need shared storage (multiple pods accessing the

same PVC), NAS-based drivers would be the default choice, while the block-based iSCSI drivers meet the

needs of non-shared storage. Choose the protocol based on the requirements of the application and the

comfort level of the storage and infrastructure teams. Generally speaking, there is little difference between

them for most applications, so often the decision is based upon whether or not shared storage (where more

than one pod will need simultaneous access) is needed.

The available ONTAP backend drivers are:

331

https://www.netapp.com/pdf.html?item=/media/10720-tr-4067.pdf
http://docs.netapp.com/ontap-9/topic/com.netapp.doc.dot-cm-sanag/home.html
http://docs.netapp.com/ontap-9/topic/com.netapp.doc.exp-iscsi-rhel-cg/home.html
https://www.netapp.com/pdf.html?item=/media/10507-tr4639pdf.pdf
https://docs.netapp.com/us-en/hci/docs/hci_prereqs_overview.html
https://docs.netapp.com/us-en/hci/docs/concept_nde_access_overview.html
https://docs.netapp.com/us-en/ontap-apps-dbs/mysql/mysql-overview.html
https://www.netapp.com/pdf.html?item=/media/10510-tr-4605.pdf
https://www.netapp.com/pdf.html?item=/media/10513-tr-4635pdf.pdf
https://www.netapp.com/pdf.html?item=/media/10511-tr4606pdf.pdf
https://www.netapp.com/pdf.html?item=/media/10512-tr-4610pdf.pdf
https://www.netapp.com/search/

• ontap-nas: Each PV provisioned is a full ONTAP FlexVolume.

• ontap-nas-economy: Each PV provisioned is a qtree, with a configurable number of qtrees per

FlexVolume (default is 200).

• ontap-nas-flexgroup: Each PV provisioned as a full ONTAP FlexGroup, and all aggregates assigned

to a SVM are used.

• ontap-san: Each PV provisioned is a LUN within its own FlexVolume.

• ontap-san-economy: Each PV provisioned is a LUN, with a configurable number of LUNs per

FlexVolume (default is 100).

Choosing between the three NAS drivers has some ramifications to the features, which are made available to

the application.

Note that, in the tables below, not all of the capabilities are exposed through Trident. Some must be applied by

the storage administrator after provisioning if that functionality is desired. The superscript footnotes distinguish

the functionality per feature and driver.

ONTAP NAS drivers Snapshot

s

Clones Dynamic

export

policies

Multi-

attach

QoS Resize Replicatio

n

ontap-nas Yes Yes Yes [5] Yes Yes [1] Yes Yes [1]

ontap-nas-economy Yes [3] Yes [3] Yes [5] Yes Yes [3] Yes Yes [3]

ontap-nas-

flexgroup

Yes [1] No Yes [5] Yes Yes [1] Yes Yes [1]

Trident offers 2 SAN drivers for ONTAP, whose capabilities are shown below.

ONTAP SAN drivers Snapshot

s

Clones Multi-

attach

Bi-

directiona

l CHAP

QoS Resize Replicatio

n

ontap-san Yes Yes Yes [4] Yes Yes [1] Yes Yes [1]

ontap-san-economy Yes Yes Yes [4] Yes Yes [3] Yes Yes [3]

Footnote for the above tables:

Yes [1]: Not managed by Trident

Yes [2]: Managed by Trident, but not PV granular

Yes [3]: Not managed by Trident and not PV granular

Yes [4]: Supported for raw-block volumes

Yes [5]: Supported by Trident

The features that are not PV granular are applied to the entire FlexVolume and all of the PVs (that is, qtrees or

332

LUNs in shared FlexVols) will share a common schedule.

As we can see in the above tables, much of the functionality between the ontap-nas and ontap-nas-

economy is the same. However, because the ontap-nas-economy driver limits the ability to control the

schedule at per-PV granularity, this can affect your disaster recovery and backup planning in particular. For

development teams which desire to leverage PVC clone functionality on ONTAP storage, this is only possible

when using the ontap-nas, ontap-san or ontap-san-economy drivers.

The solidfire-san driver is also capable of cloning PVCs.

Cloud Volumes ONTAP backend drivers

Cloud Volumes ONTAP provides data control along with enterprise-class storage features for various use

cases, including file shares and block-level storage serving NAS and SAN protocols (NFS, SMB / CIFS, and

iSCSI). The compatible drivers for Cloud Volume ONTAP are ontap-nas, ontap-nas-economy, ontap-

san and ontap-san-economy. These are applicable for Cloud Volume ONTAP for Azure, Cloud Volume

ONTAP for GCP.

Amazon FSx for ONTAP backend drivers

Amazon FSx for NetApp ONTAP lets you leverage NetApp features, performance, and administrative

capabilities you’re familiar with, while taking advantage of the simplicity, agility, security, and scalability of

storing data on AWS. FSx for ONTAP supports many ONTAP file system features and administration APIs. The

compatible drivers for Cloud Volume ONTAP are ontap-nas, ontap-nas-economy, ontap-nas-

flexgroup, ontap-san and ontap-san-economy.

NetApp HCI/SolidFire backend drivers

The solidfire-san driver used with the NetApp HCI/SolidFire platforms, helps the admin configure an

Element backend for Trident on the basis of QoS limits. If you would like to design your backend to set the

specific QoS limits on the volumes provisioned by Trident, use the type parameter in the backend file. The

admin also can restrict the volume size that could be created on the storage using the limitVolumeSize

parameter. Currently, Element storage features like volume resize and volume replication are not supported

through the solidfire-san driver. These operations should be done manually through Element Software

web UI.

SolidFire Driver Snapshot

s

Clones Multi-

attach

CHAP QoS Resize Replicatio

n

solidfire-san Yes Yes Yes [2] Yes Yes Yes Yes [1]

Footnote:

Yes [1]: Not managed by Trident

Yes [2]: Supported for raw-block volumes

Azure NetApp Files backend drivers

Trident uses the azure-netapp-files driver to manage the Azure NetApp Files service.

333

https://azure.microsoft.com/en-us/services/netapp/

More information about this driver and how to configure it can be found in Trident backend configuration for

Azure NetApp Files.

Azure NetApp Files

Driver

Snapshots Clones Multi-attach QoS Expand Replication

azure-netapp-files Yes Yes Yes Yes Yes Yes [1]

Footnote:

Yes [1]: Not managed by Trident

Cloud Volumes Service on Google Cloud backend driver

Trident uses the gcp-cvs driver to link with the Cloud Volumes Service on Google Cloud.

The gcp-cvs driver uses virtual pools to abstract the backend and allow Trident to determine volume

placement. The administrator defines the virtual pools in the backend.json files. Storage classes use

selectors to identify virtual pools by label.

• If virtual pools are defined in the backend, Trident will try to create a volume in the Google Cloud storage

pools to which those virtual pools are limited.

• If virtual pools are not defined in the backend, Trident will select a Google Cloud storage pool from the

available storage pools in the region.

To configure the Google Cloud backend on Trident, you must specify projectNumber, apiRegion, and

apiKey in the backend file. You can find the project number in the Google Cloud console. The API key is

taken from the service account private key file you created when setting up API access for Cloud Volumes

Service on Google Cloud.

For details on Cloud Volumes Service on Google Cloud service types and service levels, refer to Learn about

Trident support for CVS for GCP.

Cloud Volumes Service

for Google Cloud driver

Snapshots Clones Multi-attach QoS Expand Replication

gcp-cvs Yes Yes Yes Yes Yes Available on

CVS-

Performanc

e service

type only.

Replication notes

• Replication is not managed by Trident.

• The clone will be created in the same storage pool as the source volume.

Storage class design

Individual Storage classes need to be configured and applied to create a Kubernetes Storage Class object.

This section discusses how to design a storage class for your application.

334

https://docs.netapp.com/us-en/trident/trident-use/anf.html
https://docs.netapp.com/us-en/trident/trident-use/anf.html

Specific backend utilization

Filtering can be used within a specific storage class object to determine which storage pool or set of pools are

to be used with that specific storage class. Three sets of filters can be set in the Storage Class:

storagePools, additionalStoragePools, and/or excludeStoragePools.

The storagePools parameter helps restrict storage to the set of pools that match any specified attributes.

The additionalStoragePools parameter is used to extend the set of pools that Trident use for

provisioning along with the set of pools selected by the attributes and storagePools parameters. You can

use either parameter alone or both together to make sure that the appropriate set of storage pools are

selected.

The excludeStoragePools parameter is used to specifically exclude the listed set of pools that match the

attributes.

Emulate QoS policies

If you would like to design Storage Classes to emulate Quality of Service policies, create a Storage Class with

the media attribute as hdd or ssd. Based on the media attribute mentioned in the storage class, Trident will

select the appropriate backend that serves hdd or ssd aggregates to match the media attribute and then direct

the provisioning of the volumes on to the specific aggregate. Therefore we can create a storage class

PREMIUM which would have media attribute set as ssd which could be classified as the PREMIUM QoS

policy. We can create another storage class STANDARD which would have the media attribute set as `hdd'

which could be classified as the STANDARD QoS policy. We could also use the ``IOPS'' attribute in the storage

class to redirect provisioning to an Element appliance which can be defined as a QoS Policy.

Utilize backend based on specific features

Storage classes can be designed to direct volume provisioning on a specific backend where features such as

thin and thick provisioning, snapshots, clones, and encryption are enabled. To specify which storage to use,

create Storage Classes that specify the appropriate backend with the required feature enabled.

Virtual pools

Virtual pools are available for all Trident backends. You can define virtual pools for any backend, using any

driver that Trident provides.

Virtual pools allow an administrator to create a level of abstraction over backends which can be referenced

through Storage Classes, for greater flexibility and efficient placement of volumes on backends. Different

backends can be defined with the same class of service. Moreover, multiple storage pools can be created on

the same backend but with different characteristics. When a Storage Class is configured with a selector with

the specific labels, Trident chooses a backend which matches all the selector labels to place the volume. If the

Storage Class selector labels matches multiple storage pools, Trident will choose one of them to provision the

volume from.

Virtual pool design

While creating a backend, you can generally specify a set of parameters. It was impossible for the

administrator to create another backend with the same storage credentials and with a different set of

parameters. With the introduction of virtual pools, this issue has been alleviated. Virtual pools is a level

abstraction introduced between the backend and the Kubernetes Storage Class so that the administrator can

define parameters along with labels which can be referenced through Kubernetes Storage Classes as a

selector, in a backend-agnostic way. Virtual pools can be defined for all supported NetApp backends with

Trident. That list includes SolidFire/NetApp HCI, ONTAP, Cloud Volumes Service on GCP, as well as Azure

335

NetApp Files.

When defining virtual pools, it is recommended to not attempt to rearrange the order of existing

virtual pools in a backend definition. It is also advisable to not edit/modify attributes for an

existing virtual pool and define a new virtual pool instead.

Emulating different service levels/QoS

It is possible to design virtual pools for emulating service classes. Using the virtual pool implementation for

Cloud Volume Service for Azure NetApp Files, let us examine how we can setup up different service classes.

Configure the Azure NetApp Files backend with multiple labels, representing different performance levels. Set

servicelevel aspect to the appropriate performance level and add other required aspects under each

labels. Now create different Kubernetes Storage Classes that would map to different virtual pools. Using the

parameters.selector field, each StorageClass calls out which virtual pools may be used to host a volume.

Assigning specific set of aspects

Multiple virtual pools with a specific set of aspects can be designed from a single storage backend. For doing

so, configure the backend with multiple labels and set the required aspects under each label. Now create

different Kubernetes Storage Classes using the parameters.selector field that would map to different

virtual pools. The volumes that get provisioned on the backend will have the aspects defined in the chosen

virtual pool.

PVC characteristics which affect storage provisioning

Some parameters beyond the requested storage class may affect the Trident provisioning decision process

when creating a PVC.

Access mode

When requesting storage via a PVC, one of the mandatory fields is the access mode. The mode desired may

affect the backend selected to host the storage request.

Trident will attempt to match the storage protocol used with the access method specified according to the

following matrix. This is independent of the underlying storage platform.

ReadWriteOnce ReadOnlyMany ReadWriteMany

iSCSI Yes Yes Yes (Raw block)

NFS Yes Yes Yes

A request for a ReadWriteMany PVC submitted to a Trident deployment without an NFS backend configured

will result in no volume being provisioned. For this reason, the requestor should use the access mode which is

appropriate for their application.

Volume operations

Modify persistent volumes

Persistent volumes are, with two exceptions, immutable objects in Kubernetes. Once created, the reclaim

policy and the size can be modified. However, this doesn’t prevent some aspects of the volume from being

modified outside of Kubernetes. This may be desirable in order to customize the volume for specific

applications, to ensure that capacity is not accidentally consumed, or simply to move the volume to a different

336

storage controller for any reason.

Kubernetes in-tree provisioners do not support volume resize operations for NFS or iSCSI PVs

at this time. Trident supports expanding both NFS and iSCSI volumes.

The connection details of the PV cannot be modified after creation.

Create on-demand volume snapshots

Trident supports on-demand volume snapshot creation and the creation of PVCs from snapshots using the CSI

framework. Snapshots provide a convenient method of maintaining point-in-time copies of the data and have a

lifecycle independent of the source PV in Kubernetes. These snapshots can be used to clone PVCs.

Create volumes from snapshots

Trident also supports the creation of PersistentVolumes from volume snapshots. To accomplish this, just create

a PersistentVolumeClaim and mention the datasource as the required snapshot from which the volume

needs to be created. Trident will handle this PVC by creating a volume with the data present on the snapshot.

With this feature, it is possible to duplicate data across regions, create test environments, replace a damaged

or corrupted production volume in its entirety, or retrieve specific files and directories and transfer them to

another attached volume.

Move volumes in the cluster

Storage administrators have the ability to move volumes between aggregates and controllers in the ONTAP

cluster non-disruptively to the storage consumer. This operation does not affect Trident or the Kubernetes

cluster, as long as the destination aggregate is one which the SVM that Trident is using has access to.

Importantly, if the aggregate has been newly added to the SVM, the backend will need to be refreshed by re-

adding it to Trident. This will trigger Trident to reinventory the SVM so that the new aggregate is recognized.

However, moving volumes across backends is not supported automatically by Trident. This includes between

SVMs in the same cluster, between clusters, or onto a different storage platform (even if that storage system is

one which is connected to Trident).

If a volume is copied to another location, the volume import feature may be used to import current volumes into

Trident.

Expand volumes

Trident supports resizing NFS and iSCSI PVs. This enables users to resize their volumes directly through the

Kubernetes layer. Volume expansion is possible for all major NetApp storage platforms, including ONTAP,

SolidFire/NetApp HCI and Cloud Volumes Service backends. To allow possible expansion later, set

allowVolumeExpansion to true in your StorageClass associated with the volume. Whenever the

Persistent Volume needs to be resized, edit the spec.resources.requests.storage annotation in the

Persistent Volume Claim to the required volume size. Trident will automatically take care of resizing the volume

on the storage cluster.

Import an existing volume into Kubernetes

Volume import provides the ability to import an existing storage volume into a Kubernetes environment. This is

currently supported by the ontap-nas, ontap-nas-flexgroup, solidfire-san, azure-netapp-

files, and gcp-cvs drivers. This feature is useful when porting an existing application into Kubernetes or

during disaster recovery scenarios.

337

When using the ONTAP and solidfire-san drivers, use the command tridentctl import volume

<backend-name> <volume-name> -f /path/pvc.yaml to import an existing volume into Kubernetes to

be managed by Trident. The PVC YAML or JSON file used in the import volume command points to a storage

class which identifies Trident as the provisioner. When using a NetApp HCI/SolidFire backend, ensure the

volume names are unique. If the volume names are duplicated, clone the volume to a unique name so the

volume import feature can distinguish between them.

If the azure-netapp-files or gcp-cvs driver is used, use the command tridentctl import volume

<backend-name> <volume path> -f /path/pvc.yaml to import the volume into Kubernetes to be

managed by Trident. This ensures a unique volume reference.

When the above command is executed, Trident will find the volume on the backend and read its size. It will

automatically add (and overwrite if necessary) the configured PVC’s volume size. Trident then creates the new

PV and Kubernetes binds the PVC to the PV.

If a container was deployed such that it required the specific imported PVC, it would remain in a pending state

until the PVC/PV pair are bound via the volume import process. After the PVC/PV pair are bound, the container

should come up, provided there are no other issues.

Deploy OpenShift services

The OpenShift value-add cluster services provide important functionality to cluster administrators and the

applications being hosted. The storage which these services use can be provisioned using the node-local

resources, however, this often limits the capacity, performance, recoverability, and sustainability of the service.

Leveraging an enterprise storage array to provide the capacity to these services can enable dramatically

improved service, however, as with all applications, the OpenShift and storage administrators should work

closely together to determine the best options for each. The Red Hat documentation should be leveraged

heavily to determine the requirements and ensure that sizing and performance needs are met.

Registry service

Deploying and managing storage for the registry has been documented on netapp.io in the blog.

Logging service

Like other OpenShift services, the logging service is deployed using Ansible with configuration parameters

supplied by the inventory file, a.k.a. hosts, provided to the playbook. There are two installation methods which

will be covered: deploying logging during initial OpenShift install and deploying logging after OpenShift has

been

installed.

As of Red Hat OpenShift version 3.9, the official documentation recommends against NFS for

the logging service due to concerns around data corruption. This is based on Red Hat testing of

their products. The ONTAP NFS server does not have these issues, and can easily back a

logging deployment. Ultimately, the choice of protocol for the logging service is up to you, just

know that both will work great when using NetApp platforms and there is no reason to avoid

NFS if that is your preference.

If you choose to use NFS with the logging service, you will need to set the Ansible variable

openshift_enable_unsupported_configurations to true to prevent the installer from failing.

338

https://netapp.io/
https://netapp.io/2017/08/24/deploying-the-openshift-registry-using-netapp-storage/

Get started

The logging service can, optionally, be deployed for both applications as well as for the core operations of the

OpenShift cluster itself. If you choose to deploy operations logging, by specifying the variable

openshift_logging_use_ops as true, two instances of the service will be created. The variables which

control the logging instance for operations contain "ops" in them, whereas the instance for applications does

not.

Configuring the Ansible variables according to the deployment method is important to ensure that the correct

storage is utilized by the underlying services. Let’s look at the options for each of the deployment methods.

The tables below contain only the variables relevant for storage configuration as it relates to the

logging service. You can find other options in RedHat OpenShift logging documentation which

should be reviewed, configured, and used according to your deployment.

The variables in the below table will result in the Ansible playbook creating a PV and PVC for the logging

service using the details provided. This method is significantly less flexible than using the component

installation playbook after OpenShift installation, however, if you have existing volumes available, it is an

option.

Variable Details

openshift_logging_storage_kind Set to nfs to have the installer create an NFS PV for

the logging service.

openshift_logging_storage_host The hostname or IP address of the NFS host. This

should be set to the data LIF for your virtual machine.

openshift_logging_storage_nfs_directory The mount path for the NFS export. For example, if

the volume is junctioned as /openshift_logging,

you would use that path for this variable.

openshift_logging_storage_volume_name The name, e.g. pv_ose_logs, of the PV to create.

openshift_logging_storage_volume_size The size of the NFS export, for example 100Gi.

If your OpenShift cluster is already running, and therefore Trident has been deployed and configured, the

installer can use dynamic provisioning to create the volumes. The following variables will need to be

configured.

Variable Details

openshift_logging_es_pvc_dynamic Set to true to use dynamically provisioned volumes.

openshift_logging_es_pvc_storage_class_n

ame

The name of the storage class which will be used in

the PVC.

openshift_logging_es_pvc_size The size of the volume requested in the PVC.

openshift_logging_es_pvc_prefix A prefix for the PVCs used by the logging service.

openshift_logging_es_ops_pvc_dynamic Set to true to use dynamically provisioned volumes

for the ops logging instance.

openshift_logging_es_ops_pvc_storage_cla

ss_name

The name of the storage class for the ops logging

instance.

openshift_logging_es_ops_pvc_size The size of the volume request for the ops instance.

339

https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging.html

Variable Details

openshift_logging_es_ops_pvc_prefix A prefix for the ops instance PVCs.

Deploy the logging stack

If you are deploying logging as a part of the initial OpenShift install process, then you only need to follow the

standard deployment process. Ansible will configure and deploy the needed services and OpenShift objects so

that the service is available as soon as Ansible completes.

However, if you are deploying after the initial installation, the component playbook will need to be used by

Ansible. This process may change slightly with different versions of OpenShift, so be sure to read and follow

RedHat OpenShift Container Platform 3.11 documentation for your version.

Metrics service

The metrics service provides valuable information to the administrator regarding the status, resource utilization,

and availability of the OpenShift cluster. It is also necessary for pod auto-scale functionality and many

organizations use data from the metrics service for their charge back and/or show back applications.

Like with the logging service, and OpenShift as a whole, Ansible is used to deploy the metrics service. Also,

like the logging service, the metrics service can be deployed during an initial setup of the cluster or after its

operational using the component installation method. The following tables contain the variables which are

important when configuring persistent storage for the metrics service.

The tables below only contain the variables which are relevant for storage configuration as it

relates to the metrics service. There are many other options found in the documentation which

should be reviewed, configured, and used according to your deployment.

Variable Details

openshift_metrics_storage_kind Set to nfs to have the installer create an NFS PV for

the logging service.

openshift_metrics_storage_host The hostname or IP address of the NFS host. This

should be set to the data LIF for your SVM.

openshift_metrics_storage_nfs_directory The mount path for the NFS export. For example, if

the volume is junctioned as /openshift_metrics,

you would use that path for this variable.

openshift_metrics_storage_volume_name The name,

e.g. pv_ose_metrics, of the PV to create.

openshift_metrics_storage_volume_size The size of the NFS export, for example 100Gi.

If your OpenShift cluster is already running, and therefore Trident has been deployed and configured, the

installer can use dynamic provisioning to create the volumes. The following variables will need to be

configured.

Variable Details

openshift_metrics_cassandra_pvc_prefix A prefix to use for the metrics PVCs.

openshift_metrics_cassandra_pvc_size The size of the volumes to request.

340

https://docs.openshift.com/container-platform/3.11/welcome/index.html

Variable Details

openshift_metrics_cassandra_storage_type The type of storage to use for metrics, this must be

set to dynamic for Ansible to create PVCs with the

appropriate storage class.

openshift_metrics_cassanda_pvc_storage_c

lass_name

The name of the storage class to use.

Deploy the metrics service

With the appropriate Ansible variables defined in your hosts/inventory file, deploy the service using Ansible. If

you are deploying at OpenShift install time, then the PV will be created and used automatically. If you’re

deploying using the component playbooks, after OpenShift install, then Ansible creates any PVCs which are

needed and, after Trident has provisioned storage for them, deploy the service.

The variables above, and the process for deploying, may change with each version of OpenShift. Ensure you

review and follow RedHat’s OpenShift deployment guide for your version so that it is configured for your

environment.

Data protection and disaster recovery

Learn about protection and recovery options for Trident and volumes created using

Trident. You should have a data protection and recovery strategy for each application with

a persistence requirement.

Trident replication and recovery

You can create a backup to restore Trident in the event of a disaster.

Trident replication

Trident uses Kubernetes CRDs to store and manage its own state and the Kubernetes cluster etcd to store its

metadata.

Steps

1. Back up the Kubernetes cluster etcd using Kubernetes: Backing up an etcd cluster.

2. Place the backup artifacts on a FlexVol.

We recommend you protect the SVM where the FlexVol resides with a SnapMirror

relationship to another SVM.

Trident recovery

Using Kubernetes CRDs and the Kubernetes cluster etcd snapshot, you can recover Trident.

Steps

1. From the destination SVM, mount the volume which contains the Kubernetes etcd data files and certificates

on to the host which will be set up as a master node.

2. Copy all required certificates pertaining to the Kubernetes cluster under /etc/kubernetes/pki and the

341

https://docs.openshift.com/container-platform/3.11/install_config/cluster_metrics.html
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#backing-up-an-etcd-cluster

etcd member files under /var/lib/etcd.

3. Restore the Kubernetes cluster from the etcd backup using Kubernetes: Restoring an etcd cluster.

4. Run kubectl get crd to verify all Trident custom resources have come up and retrieve the Trident

objects to verify all data is available.

SVM replication and recovery

Trident cannot configure replication relationships, however, the storage administrator can use ONTAP

SnapMirror to replicate an SVM.

In the event of a disaster, you can activate the SnapMirror destination SVM to start serving data. You can

switch back to the primary when systems are restored.

About this task

Consider the following when using the SnapMirror SVM Replication feature:

• You should create a distinct backend for each SVM with SVM-DR enabled.

• Configure the storage classes to select the replicated backends only when needed to avoid having

volumes which do not need replication provisioned onto the backends that support SVM-DR.

• Application administrators should understand the additional cost and complexity associated with replication

and carefully consider their recovery plan prior to beginning this process.

SVM replication

You can use ONTAP: SnapMirror SVM replication to create the SVM replication relationship.

SnapMirror allows you to set options to control what to replicate. You’ll need to know which options you

selected when preforming SVM recovery using Trident.

• -identity-preserve true replicates the entire SVM configuration.

• -discard-configs network excludes LIFs and related network settings.

• -identity-preserve false replicates only the volumes and security configuration.

SVM recovery using Trident

Trident does not automatically detect SVM failures. In the event of a disaster, the administrator can manually

initiate Trident failover to the new SVM.

Steps

1. Cancel scheduled and ongoing SnapMirror transfers, break the replication relationship, stop the source

SVM and then activate the SnapMirror destination SVM.

2. If you specified -identity-preserve false or -discard-config network when configuring your

SVM replication, update the managementLIF and dataLIF in the Trident backend definition file.

3. Confirm storagePrefix is present in the Trident backend definition file. This parameter cannot be

changed. Omitting storagePrefix will cause the backend update to fail.

4. Update all the required backends to reflect the new destination SVM name using:

342

https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#restoring-an-etcd-cluster
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-svm-replication-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-svm-replication-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-svm-replication-workflow-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/replicate-entire-svm-config-task.html
https://docs.netapp.com/us-en/ontap/data-protection/exclude-lifs-svm-replication-task.html
https://docs.netapp.com/us-en/ontap/data-protection/exclude-network-name-service-svm-replication-task.html

./tridentctl update backend <backend-name> -f <backend-json-file> -n

<namespace>

5. If you specified -identity-preserve false or discard-config network, you must bounce all

application pods.

If you specified -identity-preserve true, all volumes provisioned by Trident start

serving data when the destination SVM is activated.

Volume replication and recovery

Trident cannot configure SnapMirror replication relationships, however, the storage administrator can use

ONTAP SnapMirror replication and recovery to replicate volumes created by Trident.

You can then import the recovered volumes into Trident using tridentctl volume import.

Import is not supported on ontap-nas-economy, ontap-san-economy, or ontap-

flexgroup-economy drivers.

Snapshot data protection

You can protect and restore data using:

• An external snapshot controller and CRDs to create Kubernetes volume snapshots of Persistent Volumes

(PVs).

Volume snapshots

• ONTAP Snapshots to restore the entire contents of a volume or to recover individual files or LUNs.

ONTAP Snapshots

Security

Security

Use the recommendations listed here to ensure your Trident installation is secure.

Run Trident in its own namespace

It is important to prevent applications, application administrators, users, and management applications from

accessing Trident object definitions or the pods to ensure reliable storage and block potential malicious activity.

To separate the other applications and users from Trident, always install Trident in its own Kubernetes

namespace (trident). Putting Trident in its own namespace assures that only the Kubernetes administrative

personnel have access to the Trident pod and the artifacts (such as backend and CHAP secrets if applicable)

stored in the namespaced CRD objects.

You should ensure that you allow only administrators access to the Trident namespace and thus access to the

tridentctl application.

343

https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-disaster-recovery-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/manage-local-snapshot-copies-concept.html

Use CHAP authentication with ONTAP SAN backends

Trident supports CHAP-based authentication for ONTAP SAN workloads (using the ontap-san and ontap-

san-economy drivers). NetApp recommends using bidirectional CHAP with Trident for authentication between

a host and the storage backend.

For ONTAP backends that use the SAN storage drivers, Trident can set up bidirectional CHAP and manage

CHAP usernames and secrets through tridentctl.

Refer to Prepare to configure backend with ONTAP SAN drivers to understand how Trident configures CHAP

on ONTAP backends.

Use CHAP authentication with NetApp HCI and SolidFire backends

NetApp recommends deploying bidirectional CHAP to ensure authentication between a host and the NetApp

HCI and SolidFire backends. Trident uses a secret object that includes two CHAP passwords per tenant. When

Trident is installed, it manages the CHAP secrets and stores them in a tridentvolume CR object for the

respective PV. When you create a PV, Trident uses the CHAP secrets to initiate an iSCSI session and

communicate with the NetApp HCI and SolidFire system over CHAP.

The volumes that are created by Trident are not associated with any Volume Access Group.

Use Trident with NVE and NAE

NetApp ONTAP provides data-at-rest encryption to protect sensitive data in the event a disk is stolen, returned,

or repurposed. For details, refer to Configure NetApp Volume Encryption overview.

• If NAE is enabled on the backend, any volume provisioned in Trident will be NAE-enabled.

• If NAE is not enabled on the backend, any volume provisioned in Trident will be NVE-enabled unless you

set the NVE encryption flag to false in the backend configuration.

Volumes created in Trident on an NAE-enabled backend must be NVE or NAE encrypted.

• You can set the NVE encryption flag to true in the Trident backend configuration to override

the NAE encryption and use a specific encryption key on a per volume basis.

• Setting the NVE encryption flag to false on an NAE-enabled backend creates an NAE-

enabled volume. You cannot disable NAE encryption by setting the NVE encryption flag to

false.

• You can manually create an NVE volume in Trident by explicitly setting the NVE encryption flag to true.

For more information on backend configuration options, refer to:

• ONTAP SAN configuration options

• ONTAP NAS configuration options

Linux Unified Key Setup (LUKS)

You can enable Linux Unified Key Setup (LUKS) to encrypt ONTAP SAN and ONTAP

SAN ECONOMY volumes on Trident. Trident supports passphrase rotation and volume

expansion for LUKS-encrypted volumes.

344

https://docs.netapp.com/us-en/ontap/encryption-at-rest/configure-netapp-volume-encryption-concept.html

In Trident, LUKS-encrypted volumes use the aes-xts-plain64 cypher and mode, as recommended by NIST.

Before you begin

• Worker nodes must have cryptsetup 2.1 or higher (but lower than 3.0) installed. For more information, visit

Gitlab: cryptsetup.

• For performance reasons, we recommend that worker nodes support Advanced Encryption Standard New

Instructions (AES-NI). To verify AES-NI support, run the following command:

grep "aes" /proc/cpuinfo

If nothing is returned, your processor does not support AES-NI. For more information on AES-NI, visit:

Intel: Advanced Encryption Standard Instructions (AES-NI).

Enable LUKS encryption

You can enable per-volume, host-side encryption using Linux Unified Key Setup (LUKS) for ONTAP SAN and

ONTAP SAN ECONOMY volumes.

Steps

1. Define LUKS encryption attributes in the backend configuration. For more information on backend

configuration options for ONTAP SAN, refer to ONTAP SAN configuration options.

"storage": [

 {

 "labels":{"luks": "true"},

 "zone":"us_east_1a",

 "defaults": {

 "luksEncryption": "true"

 }

 },

 {

 "labels":{"luks": "false"},

 "zone":"us_east_1a",

 "defaults": {

 "luksEncryption": "false"

 }

 },

]

2. Use parameters.selector to define the storage pools using LUKS encryption. For example:

345

https://csrc.nist.gov/publications/detail/sp/800-38e/final
https://gitlab.com/cryptsetup/cryptsetup
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: luks

provisioner: csi.trident.netapp.io

parameters:

 selector: "luks=true"

 csi.storage.k8s.io/node-stage-secret-name: luks-${pvc.name}

 csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

3. Create a secret that contains the LUKS passphrase. For example:

kubectl -n trident create -f luks-pvc1.yaml

apiVersion: v1

kind: Secret

metadata:

 name: luks-pvc1

stringData:

 luks-passphrase-name: A

 luks-passphrase: secretA

Limitations

LUKS-encrypted volumes cannot take advantage of ONTAP deduplication and compression.

Backend configuration for importing LUKS volumes

To import a LUKS volume, you must set luksEncryption to true on the backend. The luksEncryption

option tells Trident if the volume is LUKS-compliant (true) or not LUKS-compliant (false) as shown in the

following example.

version: 1

storageDriverName: ontap-san

managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: trident_svm

username: admin

password: password

defaults:

 luksEncryption: 'true'

 spaceAllocation: 'false'

 snapshotPolicy: default

 snapshotReserve: '10'

346

PVC configuration for importing LUKS volumes

To import LUKS volumes dynamically, set the annotation trident.netapp.io/luksEncryption to true

and include a LUKS-enabled storage class in the PVC as shown in this example.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: luks-pvc

 namespace: trident

 annotations:

 trident.netapp.io/luksEncryption: "true"

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: luks-sc

Rotate a LUKS passphrase

You can rotate the LUKS passphrase and confirm rotation.

Do not forget a passphrase until you have verified it is no longer referenced by any volume,

snapshot, or secret. If a referenced passphrase is lost, you might be unable to mount the

volume and the data will remain encrypted and inaccessible.

About this task

LUKS passphrase rotation occurs when a pod that mounts the volume is created after a new LUKS

passphrase is specified. When a new pod is created, Trident compares the LUKS passphrase on the volume to

the active passphrase in the secret.

• If the passphrase on the volume does not match the active passphrase in the secret, rotation occurs.

• If the passphrase on the volume matches the active passphrase in the secret, the previous-luks-

passphrase parameter is ignored.

Steps

1. Add the node-publish-secret-name and node-publish-secret-namespace StorageClass

parameters. For example:

347

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: csi-san

provisioner: csi.trident.netapp.io

parameters:

 trident.netapp.io/backendType: "ontap-san"

 csi.storage.k8s.io/node-stage-secret-name: luks

 csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

 csi.storage.k8s.io/node-publish-secret-name: luks

 csi.storage.k8s.io/node-publish-secret-namespace: ${pvc.namespace}

2. Identify existing passphrases on the volume or snapshot.

Volume

tridentctl -d get volume luks-pvc1

GET http://127.0.0.1:8000/trident/v1/volume/<volumeID>

...luksPassphraseNames:["A"]

Snapshot

tridentctl -d get snapshot luks-pvc1

GET http://127.0.0.1:8000/trident/v1/volume/<volumeID>/<snapshotID>

...luksPassphraseNames:["A"]

3. Update the LUKS secret for the volume to specify the new and previous passphrases. Ensure previous-

luke-passphrase-name and previous-luks-passphrase match the previous passphrase.

apiVersion: v1

kind: Secret

metadata:

 name: luks-pvc1

stringData:

 luks-passphrase-name: B

 luks-passphrase: secretB

 previous-luks-passphrase-name: A

 previous-luks-passphrase: secretA

4. Create a new pod mounting the volume. This is required to initiate the rotation.

5. Verify the the passphrase was rotated.

348

Volume

tridentctl -d get volume luks-pvc1

GET http://127.0.0.1:8000/trident/v1/volume/<volumeID>

...luksPassphraseNames:["B"]

Snapshot

tridentctl -d get snapshot luks-pvc1

GET http://127.0.0.1:8000/trident/v1/volume/<volumeID>/<snapshotID>

...luksPassphraseNames:["B"]

Results

The passphrase was rotated when only the new passphrase is returned on the volume and snapshot.

If two passphrases are returned, for example luksPassphraseNames: ["B", "A"], the

rotation is incomplete. You can trigger a new pod to attempt to complete the rotation.

Enable volume expansion

You can enable volume expansion on a LUKS-encrypted volume.

Steps

1. Enable the CSINodeExpandSecret feature gate (beta 1.25+). Refer to Kubernetes 1.25: Use Secrets for

Node-Driven Expansion of CSI Volumes for details.

2. Add the node-expand-secret-name and node-expand-secret-namespace StorageClass

parameters. For example:

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: luks

provisioner: csi.trident.netapp.io

parameters:

 selector: "luks=true"

 csi.storage.k8s.io/node-stage-secret-name: luks-${pvc.name}

 csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

 csi.storage.k8s.io/node-expand-secret-name: luks-${pvc.name}

 csi.storage.k8s.io/node-expand-secret-namespace: ${pvc.namespace}

allowVolumeExpansion: true

Results

When you initiate online storage expansion, the kubelet passes the appropriate credentials to the driver.

349

https://kubernetes.io/blog/2022/09/21/kubernetes-1-25-use-secrets-while-expanding-csi-volumes-on-node-alpha/
https://kubernetes.io/blog/2022/09/21/kubernetes-1-25-use-secrets-while-expanding-csi-volumes-on-node-alpha/

Protect applications with Trident protect

Learn about Trident protect

NetApp Trident protect provides advanced application data management capabilities that

enhance the functionality and availability of stateful Kubernetes applications backed by

NetApp ONTAP storage systems and the NetApp Trident CSI storage provisioner. Trident

protect simplifies the management, protection, and movement of containerized workloads

across public clouds and on-premises environments. It also offers automation capabilities

through its API and CLI.

You can protect applications with Trident protect by creating custom resources (CRs) or by using the Trident

protect CLI.

What’s next?

You can learn about Trident protect requirements before you install it:

• Trident protect requirements

Install Trident protect

Trident protect requirements

Get started by verifying the readiness of your operational environment, application

clusters, applications, and licenses. Ensure that your environment meets these

requirements to deploy and operate Trident protect.

Trident protect Kubernetes compatibility

Trident protect is compatible with a wide range of fully managed and self-managed Kubernetes offerings,

including:

• Amazon Elastic Kubernetes Service (EKS)

• Google Kubernetes Engine (GKE)

• Microsoft Azure Kubernetes Service (AKS)

• Red Hat OpenShift

• SUSE Rancher

• VMware Tanzu Portfolio

• Upstream Kubernetes

Trident protect storage backend compatibility

Trident protect supports the following storage backends:

• Amazon FSx for NetApp ONTAP

350

• Cloud Volumes ONTAP

• ONTAP storage arrays

• Google Cloud NetApp Volumes

• Azure NetApp Files

Ensure that your storage backend meets the following requirements:

• Ensure that NetApp storage connected to the cluster is using Astra Trident 24.02 or newer (Trident 24.10 is

recommended).

◦ If Astra Trident is older than version 24.06.1 and you plan to use NetApp SnapMirror disaster recovery

functionality, you need to manually enable Astra Control Provisioner.

• Ensure that you have the latest Astra Control Provisioner (installed and enabled by default as of Astra

Trident 24.06.1).

• Ensure that you have a NetApp ONTAP storage backend.

• Ensure that you have configured an object storage bucket for storing backups.

• Create any application namespaces that you plan to use for applications or application data management

operations. Trident protect does not create these namespaces for you; if you specify a nonexistent

namespace in a custom resource, the operation will fail.

Requirements for nas-economy volumes

Trident protect supports backup and restore operations to nas-economy volumes. Snapshots, clones, and

SnapMirror replication to nas-economy volumes are not currently supported. You need to enable a snapshot

directory for each nas-economy volume you plan to use with Trident protect.

Some applications are not compatible with volumes that use a snapshot directory. For these

applications, you need to hide the snapshot directory by running the following command on the

ONTAP storage system:

nfs modify -vserver <svm> -v3-hide-snapshot enabled

You can enable the snapshot directory by running the following command for each nas-economy volume,

replacing <volume-UUID> with the UUID of the volume you want to change:

tridentctl update volume <volume-UUID> --snapshot-dir=true --pool-level

=true -n trident

You can enable snapshot directories by default for new volumes by setting the Trident backend

configuration option snapshotDir to true. Existing volumes are not affected.

Requirements for SnapMirror replication

NetApp SnapMirror is available for use with Trident protect for the following ONTAP solutions:

• NetApp ASA

351

• NetApp AFF

• NetApp FAS

• NetApp ONTAP Select

• NetApp Cloud Volumes ONTAP

• Amazon FSx for NetApp ONTAP

ONTAP cluster requirements for SnapMirror replication

Ensure your ONTAP cluster meets the following requirements if you plan to use SnapMirror replication:

• Astra Control Provisioner or Trident: Astra Control Provisioner or Trident must exist on both the source

and destination Kubernetes clusters that utilize ONTAP as a backend. Trident protect supports replication

with NetApp SnapMirror technology using storage classes backed by the following drivers:

◦ ontap-nas

◦ ontap-san

• Licenses: ONTAP SnapMirror asynchronous licenses using the Data Protection bundle must be enabled

on both the source and destination ONTAP clusters. Refer to SnapMirror licensing overview in ONTAP for

more information.

Peering considerations for SnapMirror replication

Ensure your environment meets the following requirements if you plan to use storage backend peering:

• Cluster and SVM: The ONTAP storage backends must be peered. Refer to Cluster and SVM peering

overview for more information.

Ensure that the SVM names used in the replication relationship between two ONTAP

clusters are unique.

• Astra Control Provisioner or Trident and SVM: The peered remote SVMs must be available to Astra

Control Provisioner or Trident on the destination cluster.

• Managed backends: You need to add and manage ONTAP storage backends in Trident protect to create

a replication relationship.

• NVMe over TCP: Trident protect does not support NetApp SnapMirror replication for storage backends that

are using the NVMe over TCP protocol.

Trident / ONTAP configuration for SnapMirror replication

Trident protect requires that you configure at least one storage backend that supports replication for both the

source and destination clusters. If the source and destination clusters are the same, the destination application

should use a different storage backend than the source application for the best resiliency.

Considerations when using KubeVirt

If you plan to use KubeVirt virtual machines with SnapMirror replication, you need to set up virtualization so

that you can freeze and unfreeze your SVMs. After you set up virtualization, SVMs you deploy will include the

necessary tools to freeze and unfreeze. To learn more about setting up virtualization, refer to Installing

OpenShift Virtualization.

352

https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/peering/index.html
https://docs.netapp.com/us-en/ontap/peering/index.html
https://kubevirt.io/
https://docs.openshift.com/container-platform/4.17/virt/install/installing-virt.html
https://docs.openshift.com/container-platform/4.17/virt/install/installing-virt.html

Install and configure Trident protect

If your environment meets the requirements for Trident protect, you can follow these

steps to install Trident protect on your cluster. You can obtain Trident protect from

NetApp, or install it from your own private registry. Installing from a private registry is

helpful if your cluster cannot access the Internet.

By default, Trident protect collects support information that helps with any NetApp support cases

that you might open, including logs, metrics, and topology information about clusters and

managed applications. Trident protect sends these support bundles to NetApp on a daily

schedule. You can optionally disable this support bundle collection when you install Trident

protect. You can manually generate a support bundle at any time.

353

Install Trident protect from NetApp

1. Add the Trident Helm repository:

helm repo add netapp-trident-protect

https://netapp.github.io/trident-protect-helm-chart

2. Install the Trident protect CRDs:

helm install trident-protect-crds netapp-trident-protect/trident-

protect-crds --version 100.2410.0

3. Use Helm to install Trident protect using one of the following commands. Replace

<name_of_cluster> with a cluster name, which will be assigned to the cluster and used to identify

the cluster’s backups and snapshots:

◦ Install Trident protect normally:

helm install trident-protect netapp-trident-protect/trident-

protect --set clusterName=<name_of_cluster> --version 100.2410.0

--create-namespace --namespace trident-protect

◦ Install Trident protect and disable the scheduled daily Trident protect AutoSupport support bundle

uploads:

helm install trident-protect netapp-trident-protect/trident-

protect --set autoSupport.enabled=false --set

clusterName=<name_of_cluster> --version 100.2410.0 --create

-namespace --namespace trident-protect

4. Optionally, freeze your VMs. If you are using KubeVirt support for SnapMirror, freezing VMs helps you

to manage them effectively:

kubectl set env deployment/trident-protect-controller-manager

NEPTUNE_VM_FREEZE=true -n trident-protect

You need to set up virtualization for the freeze functionality to work. VMs deployed after

this setup include the necessary binaries to freeze and unfreeze. To learn more about

setting up virtualization, refer to Installing OpenShift Virtualization.

Install Trident protect from a private registry

You can install Trident protect from a private image registry if your Kubernetes cluster is unable to access

the Internet. In these examples, replace values in brackets with information from your environment:

354

https://docs.openshift.com/container-platform/4.16/virt/install/installing-virt.html

1. Pull the following images to your local machine, update the tags, and then push them to your private

registry:

netapp/controller:24.10.0

netapp/restic:24.10.0

netapp/kopia:24.10.0

netapp/trident-autosupport:24.10.0

netapp/exechook:24.10.0

netapp/resourcebackup:24.10.0

netapp/resourcerestore:24.10.0

netapp/resourcedelete:24.10.0

bitnami/kubectl:1.30.2

kubebuilder/kube-rbac-proxy:v0.16.0

For example:

docker pull netapp/controller:24.10.0

docker tag netapp/controller:24.10.0 <private-registry-

url>/controller:24.10.0

docker push <private-registry-url>/controller:24.10.0

2. Create the Trident protect system namespace:

kubectl create ns trident-protect

3. Log in to the registry:

helm registry login <private-registry-url> -u <account-id> -p <api-

token>

4. Create a pull secret to use for private registry authentication:

kubectl create secret docker-registry regcred --docker

-username=<registry-username> --docker-password=<api-token> -n

trident-protect --docker-server=<private-registry-url>

5. Add the Trident Helm repository:

355

helm repo add netapp-trident-protect

https://netapp.github.io/trident-protect-helm-chart

6. Create a file named protectValues.yaml that contains the following Trident protect settings:

image:

 registry: <private-registry-url>

imagePullSecrets:

- name: regcred

controller:

 image:

 registry: <private-registry-url>

rbacProxy:

 image:

 registry: <private-registry-url>

crCleanup:

 imagePullSecrets:

 - name: regcred

webhooksCleanup:

 imagePullSecrets:

 - name: regcred

7. Install the Trident protect CRDs:

helm install trident-protect-crds netapp-trident-protect/trident-

protect-crds --version 100.2410.0

8. Use Helm to install Trident protect using one of the following commands. Replace

<name_of_cluster> with a cluster name, which will be assigned to the cluster and used to identify

the cluster’s backups and snapshots:

◦ Install Trident protect normally:

helm install trident-protect netapp-trident-protect/trident-

protect --set clusterName=<name_of_cluster> --version 100.2410.0

--create-namespace --namespace trident-protect -f

protectValues.yaml

◦ Install Trident protect and disable the scheduled daily Trident protect AutoSupport support bundle

uploads:

356

helm install trident-protect netapp-trident-protect/trident-

protect --set autoSupport.enabled=false --set

clusterName=<name_of_cluster> --version 100.2410.0 --create

-namespace --namespace trident-protect -f protectValues.yaml

9. Optionally, freeze your VMs. If you are using KubeVirt support for SnapMirror, freezing VMs helps you

to manage them effectively:

kubectl set env deployment/trident-protect-controller-manager

NEPTUNE_VM_FREEZE=true -n trident-protect

You need to set up virtualization for the freeze functionality to work. VMs deployed after

this setup include the necessary binaries to freeze and unfreeze. To learn more about

setting up virtualization, refer to Installing OpenShift Virtualization.

Install the Trident protect CLI plugin

You can use the Trident protect command line plugin, which is an extension of the Trident

tridentctl utility, to create and interact with Trident protect custom resources (CRs).

Install the Trident protect CLI plugin

Before using the command line utility, you need to install it on the machine you use to access your cluster.

Follow these steps, depending on if your machine uses an x64 or ARM CPU.

357

https://docs.openshift.com/container-platform/4.16/virt/install/installing-virt.html

Download plugin for Linux AMD64 CPUs

1. Download the Trident protect CLI plugin:

curl -L -o tridentctl-protect https://github.com/NetApp/tridentctl-

protect/releases/download/24.10.0/tridentctl-protect-linux-amd64

Download plugin for Linux ARM64 CPUs

1. Download the Trident protect CLI plugin:

curl -L -o tridentctl-protect https://github.com/NetApp/tridentctl-

protect/releases/download/24.10.0/tridentctl-protect-linux-arm64

Download plugin for Mac AMD64 CPUs

1. Download the Trident protect CLI plugin:

curl -L -o tridentctl-protect https://github.com/NetApp/tridentctl-

protect/releases/download/24.10.0/tridentctl-protect-macos-amd64

Download plugin for Mac ARM64 CPUs

1. Download the Trident protect CLI plugin:

curl -L -o tridentctl-protect https://github.com/NetApp/tridentctl-

protect/releases/download/24.10.0/tridentctl-protect-macos-arm64

1. Enable execute permissions for the binary:

chmod +x tridentctl-protect

2. Copy the plugin binary to the path of your choice:

cp ./tridentctl-protect ~/bin/

3. Optionally, to install the binary globally, copy the plugin binary to a global path. For example: /usr/bin or

/usr/local/bin (you might need elevated privileges):

cp ./tridentctl-protect /usr/local/bin/

358

View Trident CLI plugin help

You can use the built-in plugin help features to get detailed help on the capabilities of the plugin:

Steps

1. Use the help function to view usage guidance:

tridentctl protect help

Enable command auto-completion

After you have installed the Trident protect CLI plugin, you can enable auto-completion for certain commands.

359

Enable auto-completion for the Bash shell

1. Download the completion script:

curl -L -O https://github.com/NetApp/tridentctl-

protect/releases/download/24.10.0/tridentctl-completion.bash

2. Make a new directory in your home directory to contain the script:

mkdir -p ~/.bash/completions

3. Move the downloaded script to the ~/.bash/completions directory:

mv tridentctl-completion.bash ~/.bash/completions/

4. Add the following line to the ~/.bashrc file in your home directory:

source ~/.bash/completions/tridentctl-completion.bash

Enable auto-completion for the Z shell

1. Download the completion script:

curl -L -O https://github.com/NetApp/tridentctl-

protect/releases/download/24.10.0/tridentctl-completion.zsh

2. Make a new directory in your home directory to contain the script:

mkdir -p ~/.zsh/completions

3. Move the downloaded script to the ~/.zsh/completions directory:

mv tridentctl-completion.zsh ~/.zsh/completions/

4. Add the following line to the ~/.zprofile file in your home directory:

source ~/.zsh/completions/tridentctl-completion.zsh

360

Result

Upon your next shell login, you can use command auto-completion with the tridentctl protect plugin.

Manage Trident protect

Manage authorization and access control

Trident protect uses the Kubernetes model of role-based access control (RBAC). By

default, Trident protect provides a single system namespace and its associated default

service account. If you have an organization with many users or specific security needs,

you can use the RBAC features of Trident protect to gain more granular control over

access to resources and namespaces.

The cluster administrator always has access to resources in the default trident-protect namespace, and

can also access resources in all other namespaces. To control access to resources and applications, you need

to create additional namespaces and add resources and applications to those namespaces.

Note that no users can create application data management CRs in the default trident-protect

namespace. You need to create application data management CRs in an application namespace (as a best

practice, create application data management CRs in the same namespace as their associated application).

Only administrators should have access to privileged Trident protect custom resource objects,

which include:

• AppVault: Requires bucket credential data

• AutoSupportBundle: Collects metrics, logs, and other sensitive Trident protect data

• AutoSupportBundleSchedule: Manages log collection schedules

As a best practice, use RBAC to restrict access to privileged objects to administrators.

For more information about how RBAC regulates access to resources and namespaces, refer to the

Kubernetes RBAC documentation.

Fore information about service accounts, refer to the Kubernetes service account documentation.

Example: Manage access for two groups of users

For example, an organization has a cluster administrator, a group of engineering users, and a group of

marketing users. The cluster administrator would complete the following tasks to create an environment where

the engineering group and the marketing group each have access to only the resources assigned to their

respective namespaces.

Step 1: Create a namespace to contain resources for each group

Creating a namespace enables you to logically separate resources and better control who has access to those

resources.

Steps

1. Create a namespace for the engineering group:

361

https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/

kubectl create ns engineering-ns

2. Create a namespace for the marketing group:

kubectl create ns marketing-ns

Step 2: Create new service accounts to interact with resources in each namespace

Each new namespace you create comes with a default service account, but you should create a service

account for each group of users so that you can further divide privileges between groups in the future if

necessary.

Steps

1. Create a service account for the engineering group:

apiVersion: v1

kind: ServiceAccount

metadata:

 name: eng-user

 namespace: engineering-ns

2. Create a service account for the marketing group:

apiVersion: v1

kind: ServiceAccount

metadata:

 name: mkt-user

 namespace: marketing-ns

Step 3: Create a secret for each new service account

A service account secret is used to authenticate with the service account, and can easily be deleted and

recreated if compromised.

Steps

1. Create a secret for the engineering service account:

362

apiVersion: v1

kind: Secret

metadata:

 annotations:

 kubernetes.io/service-account.name: eng-user

 name: eng-user-secret

 namespace: engineering-ns

type: kubernetes.io/service-account-token

2. Create a secret for the marketing service account:

apiVersion: v1

kind: Secret

metadata:

 annotations:

 kubernetes.io/service-account.name: mkt-user

 name: mkt-user-secret

 namespace: marketing-ns

type: kubernetes.io/service-account-token

Step 4: Create a RoleBinding object to bind the ClusterRole object to each new service account

A default ClusterRole object is created when you install Trident protect. You can bind this ClusterRole to the

service account by creating and applying a RoleBinding object.

Steps

1. Bind the ClusterRole to the engineering service account:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: engineering-ns-tenant-rolebinding

 namespace: engineering-ns

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: trident-protect-tenant-cluster-role

subjects:

- kind: ServiceAccount

 name: eng-user

 namespace: engineering-ns

2. Bind the ClusterRole to the marketing service account:

363

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: marketing-ns-tenant-rolebinding

 namespace: marketing-ns

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: trident-protect-tenant-cluster-role

subjects:

- kind: ServiceAccount

 name: mkt-user

 namespace: marketing-ns

Step 5: Test permissions

Test that the permissions are correct.

Steps

1. Confirm that engineering users can access engineering resources:

kubectl auth can-i --as=system:serviceaccount:engineering-ns:eng-user

get applications.protect.trident.netapp.io -n engineering-ns

2. Confirm that engineering users cannot access marketing resources:

kubectl auth can-i --as=system:serviceaccount:engineering-ns:eng-user

get applications.protect.trident.netapp.io -n marketing-ns

Step 6: Grant access to AppVault objects

To perform data management tasks such as backups and snapshots, the cluster administrator needs to grant

access to AppVault objects to individual users.

Steps

1. Create and apply an AppVault and secret combination YAML file that grants a user access to an AppVault.

For example, the following CR grants access to an AppVault to the user eng-user:

364

apiVersion: v1

data:

 accessKeyID: <ID_value>

 secretAccessKey: <key_value>

kind: Secret

metadata:

 name: appvault-for-eng-user-only-secret

 namespace: trident-protect

type: Opaque

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

 name: appvault-for-eng-user-only

 namespace: trident-protect # Trident protect system namespace

spec:

 providerConfig:

 azure:

 accountName: ""

 bucketName: ""

 endpoint: ""

 gcp:

 bucketName: ""

 projectID: ""

 s3:

 bucketName: testbucket

 endpoint: 192.168.0.1:30000

 secure: "false"

 skipCertValidation: "true"

 providerCredentials:

 accessKeyID:

 valueFromSecret:

 key: accessKeyID

 name: appvault-for-eng-user-only-secret

 secretAccessKey:

 valueFromSecret:

 key: secretAccessKey

 name: appvault-for-eng-user-only-secret

 providerType: GenericS3

2. Create and apply a Role CR to enable cluster administrators to grant access to specific resources in a

namespace. For example:

365

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: eng-user-appvault-reader

 namespace: trident-protect

rules:

- apiGroups:

 - protect.trident.netapp.io

 resourceNames:

 - appvault-for-enguser-only

 resources:

 - appvaults

 verbs:

 - get

3. Create and apply a RoleBinding CR to bind the permissions to the user eng-user. For example:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: eng-user-read-appvault-binding

 namespace: trident-protect

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: eng-user-appvault-reader

subjects:

- kind: ServiceAccount

 name: eng-user

 namespace: engineering-ns

4. Verify that the permissions are correct.

a. Attempt to retrieve AppVault object information for all namespaces:

kubectl get appvaults -n trident-protect

--as=system:serviceaccount:engineering-ns:eng-user

You should see output similar to the following:

366

Error from server (Forbidden): appvaults.protect.trident.netapp.io is

forbidden: User "system:serviceaccount:engineering-ns:eng-user"

cannot list resource "appvaults" in API group

"protect.trident.netapp.io" in the namespace "trident-protect"

b. Test to see if the user can get the AppVault information that they now have permission to access:

kubectl auth can-i --as=system:serviceaccount:engineering-ns:eng-user

get appvaults.protect.trident.netapp.io/appvault-for-eng-user-only -n

trident-protect

You should see output similar to the following:

yes

Result

The users you have granted AppVault permissions to should be able to use authorized AppVault objects for

application data management operations, and should not be able to access any resources outside of the

assigned namespaces or create new resources that they do not have access to.

Generate a support bundle

Trident protect enables administrators to generate bundles that include information useful

to NetApp Support, including logs, metrics, and topology information about the clusters

and apps under management. If you are connected to the Internet, you can upload

support bundles to the NetApp Support Site (NSS) using a custom resource (CR) file.

367

Create a support bundle using a CR

1. Create the custom resource (CR) file and name it (for example, trident-protect-support-

bundle.yaml).

2. Configure the following attributes:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.triggerType: (Required) Determines whether the support bundle is generated immediately,

or scheduled. Scheduled bundle generation happens at 12AM UTC. Possible values:

▪ Scheduled

▪ Manual

◦ spec.uploadEnabled: (Optional) Controls whether the support bundle should be uploaded to the

NetApp Support Site after it is generated. If not specified, defaults to false. Possible values:

▪ true

▪ false (default)

◦ spec.dataWindowStart: (Optional) A date string in RFC 3339 format that specifies the date and

time that the window of included data in the support bundle should begin. If not specified, defaults

to 24 hours ago. The earliest window date you can specify is 7 days ago.

Example YAML:

apiVersion: protect.trident.netapp.io/v1

kind: AutoSupportBundle

metadata:

 name: trident-protect-support-bundle

spec:

 triggerType: Manual

 uploadEnabled: true

 dataWindowStart: 2024-05-05T12:30:00Z

3. After you populate the astra-support-bundle.yaml file with the correct values, apply the CR:

kubectl apply -f trident-protect-support-bundle.yaml

Create a support bundle using the CLI

1. Create the support bundle, replacing values in brackets with information from your environment. The

trigger-type determines whether the bundle is created immediately or if creation time is dictated

by the schedule, and can be Manual or Scheduled. The default setting is Manual.

For example:

368

tridentctl protect create autosupportbundle <my_bundle_name>

--trigger-type <trigger_type>

Manage and protect applications

Use AppVault objects to manage buckets

The bucket custom resource (CR) for Trident protect is known as an AppVault. AppVault

objects are the declarative Kubernetes workflow representation of a storage bucket. An

AppVault CR contains the configurations necessary for a bucket to be used in protection

operations, such as backups, snapshots, restore operations, and SnapMirror replication.

Only administrators can create AppVaults.

Key generation and AppVault definition examples

When defining an AppVault CR, you need to include credentials to access the resources hosted by the

provider. How you generate the keys for the credentials will differ depending on the provider. The following are

command line key generation examples for several providers, followed by example AppVault definitions for

each provider.

Google Cloud

Key generation example:

kubectl create secret generic gcp-creds --from-file=credentials=<mycreds

-file.json> -n trident-protect

The following AppVault definition examples are provided as a CR that you can use and modify, or an example

Trident protect CLI command that generates the AppVault CR for you:

369

Example AppVault CR

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

 name: gcp-trident-protect-src-bucket-b643cc50-0429-4ad5-971f-

ac4a83621922

 namespace: trident-protect

spec:

 providerType: GCP

 providerConfig:

 gcp:

 bucketName: trident-protect-src-bucket

 projectID: project-id

 providerCredentials:

 credentials:

 valueFromSecret:

 key: credentials

 name: gcp-trident-protect-src-bucket-secret

Example AppVault CR creation using the Trident protect CLI

tridentctl protect create vault gcp my-new-vault --bucket mybucket

--project my-gcp-project --secret <gcp-creds>/<credentials>

Amazon S3

Key generation example:

kubectl create secret generic -n trident-protect s3 --from

-literal=accessKeyID=<secret-name> --from-literal=secretAccessKey

=<generic-s3-trident-protect-src-bucket-secret>

The following AppVault definition examples are provided as a CR that you can use and modify, or an example

Trident protect CLI command that generates the AppVault CR for you:

370

Example AppVault CR

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

 name: amazon-s3-trident-protect-src-bucket-b643cc50-0429-4ad5-971f-

ac4a83621922

 namespace: trident-protect

spec:

 providerType: AWS

 providerConfig:

 s3:

 bucketName: trident-protect-src-bucket

 endpoint: s3.example.com

 providerCredentials:

 accessKeyID:

 valueFromSecret:

 key: accessKeyID

 name: s3

 secretAccessKey:

 valueFromSecret:

 key: secretAccessKey

 name: s3

Example AppVault creation with CLI

tridentctl protect create vault GenericS3 s3vault --bucket <bucket-

name> --secret <secret-name> --endpoint <s3-endpoint>

Microsoft Azure

Key generation example:

kubectl create secret generic <secret-name> --from-literal=accountKey

=<secret-name> -n trident-protect

The following AppVault definition examples are provided as a CR that you can use and modify, or an example

Trident protect CLI command that generates the AppVault CR for you:

371

Example AppVault CR

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

 name: azure-trident-protect-src-bucket-b643cc50-0429-4ad5-971f-

ac4a83621922

 namespace: trident-protect

spec:

 providerType: Azure

 providerConfig:

 azure:

 accountName: account-name

 bucketName: trident-protect-src-bucket

 providerCredentials:

 accountKey:

 valueFromSecret:

 key: accountKey

 name: azure-trident-protect-src-bucket-secret

Example AppVault creation with CLI

tridentctl protect create vault Azure <vault-name> --account <account-

name> --bucket <bucket-name> --secret <secret-name>

Supported values for providerType and providerConfig

The providerType and providerConfig keys in an AppVault CR require specific values. The following

table lists supported values for the providerType key, and the associated providerConfig key that you

need to use with each providerType value.

Supported providerType value Associated providerConfig key

AWS s3

Azure azure

GCP gcp

GenericS3 s3

OntapS3 s3

StorageGridS3 s3

Use the AppVault browser to view AppVault information

You can use the Trident protect CLI plugin to view information about AppVault objects that have been created

on the cluster.

372

Steps

1. View the contents of an AppVault object:

tridentctl protect get appvaultcontent gcp-vault --show-resources all

Example output:

+-------------+-------+----------+-----------------------------

+---------------------------+

| CLUSTER | APP | TYPE | NAME |

TIMESTAMP |

+-------------+-------+----------+-----------------------------

+---------------------------+

| | mysql | snapshot | mysnap | 2024-

08-09 21:02:11 (UTC) |

| production1 | mysql | snapshot | hourly-e7db6-20240815180300 | 2024-

08-15 18:03:06 (UTC) |

| production1 | mysql | snapshot | hourly-e7db6-20240815190300 | 2024-

08-15 19:03:06 (UTC) |

| production1 | mysql | snapshot | hourly-e7db6-20240815200300 | 2024-

08-15 20:03:06 (UTC) |

| production1 | mysql | backup | hourly-e7db6-20240815180300 | 2024-

08-15 18:04:25 (UTC) |

| production1 | mysql | backup | hourly-e7db6-20240815190300 | 2024-

08-15 19:03:30 (UTC) |

| production1 | mysql | backup | hourly-e7db6-20240815200300 | 2024-

08-15 20:04:21 (UTC) |

| production1 | mysql | backup | mybackup5 | 2024-

08-09 22:25:13 (UTC) |

| | mysql | backup | mybackup | 2024-

08-09 21:02:52 (UTC) |

+-------------+-------+----------+-----------------------------

+---------------------------+

2. Optionally, to see the AppVaultPath for each resource, use the flag --show-paths.

The cluster name in the first column of the table is only available if a cluster name was specified in the

Trident protect helm installation. For example: --set clusterName=production1.

Remove an AppVault

You can remove an AppVault object at any time.

373

Do not remove the finalizers key in the AppVault CR before deleting the AppVault object. If

you do so, it can result in residual data in the AppVault bucket and orphaned resources in the

cluster.

Before you begin

Ensure that you have deleted all snapshots and backups stored in the associated bucket.

Remove an AppVault using the Kubernetes CLI

1. Remove the AppVault object, replacing appvault_name with the name of the AppVault object to

remove:

kubectl delete appvault <appvault_name> -n trident-protect

Remove an AppVault using the Trident CLI

1. Remove the AppVault object, replacing appvault_name with the name of the AppVault object to

remove:

tridentctl protect delete appvault <appvault_name> -n trident-

protect

Define an application for management

You can define an application that you want to manage with Trident protect by creating an

application CR and an associated AppVault CR.

Create an AppVault CR

You need to create an AppVault CR that will be used when performing data protection operations on the

application, and the AppVault CR needs to reside on the cluster where Trident protect is installed. The

AppVault CR is specific to your environment; for examples of AppVault CRs, refer to AppVault custom

resources.

Create an application CR

You need to create an application CR to for each application that you want to manage with Trident protect. You

can add an application for management by manually creating an application CR or by using the Trident protect

CLI to create the CR.

374

Add an application using a CR

1. Create the destination application CR file:

a. Create the custom resource (CR) file and name it (for example, maria-app.yaml).

b. Configure the following attributes:

▪ metadata.name: (Required) The name of the application custom resource. Note the name

you choose because other CR files needed for protection operations refer to this value.

▪ spec.includedNamespaces: (Required) Use namespace labels or a namespace name to

specify namespaces that the application resources exist in. The application namespace must

be part of this list.

Example YAML:

apiVersion: protect.trident.netapp.io/v1

kind: Application

metadata:

 name: maria

 namespace: my-app-namespace

spec:

 includedNamespaces:

 labelSelector: {}

 namespace: my-app-namespace

Add an application using the CLI

1. Create and apply the application definition, replacing values in brackets with information from your

environment. You can include namespaces and resources in the application definition using comma-

separated lists with the arguments shown in the following example:

tridentctl protect create application <my_new_app_cr_name>

--namespaces <namespaces_to_include> --csr

<cluster_scoped_resources_to_include>

Protect applications

Protect all apps by taking snapshots and backups using an automated protection policy

or on an ad-hoc basis.

Create an on-demand snapshot

You can create an on-demand snapshot at any time.

375

Create a snapshot using a CR

1. Create the custom resource (CR) file and name it trident-protect-snapshot-cr.yaml.

2. In the file you created, configure the following attributes:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.applicationRef: The Kubernetes name of the application to snapshot.

◦ spec.appVaultRef: (Required) The name of the AppVault where the snapshot contents

(metadata) should be stored.

◦ spec.reclaimPolicy: (Optional) Defines what happens to the AppArchive of a snapshot when the

snapshot CR is deleted. This means that even when set to Retain, the snapshot will be deleted.

Valid options:

▪ Retain (default)

▪ Delete

apiVersion: protect.trident.netapp.io/v1

kind: Snapshot

metadata:

 namespace: my-app-namespace

 name: my-cr-name

spec:

 applicationRef: my-application

 appVaultRef: appvault-name

 reclaimPolicy: Delete

3. After you populate the trident-protect-snapshot-cr.yaml file with the correct values, apply

the CR:

kubectl apply -f trident-protect-snapshot-cr.yaml

Create a snapshot using the CLI

1. Create the snapshot, replacing values in brackets with information from your environment. For

example:

tridentctl protect create snapshot <my_snapshot_name> --appvault

<my_appvault_name> --app <name_of_app_to_snapshot>

Create an on-demand backup

You can back up an app at any time.

376

Create a backup using a CR

1. Create the custom resource (CR) file and name it trident-protect-backup-cr.yaml.

2. In the file you created, configure the following attributes:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.applicationRef: (Required) The Kubernetes name of the application to back up.

◦ spec.appVaultRef: (Required) The name of the AppVault where the backup contents should be

stored.

◦ spec.dataMover: (Optional) A string indicating which backup tool to use for the backup operation.

Possible values (case sensitive):

▪ Restic

▪ Kopia (default)

◦ spec.reclaimPolicy: (Optional) Defines what happens to a backup when released from its claim.

Possible values:

▪ Delete

▪ Retain (default)

◦ Spec.snapshotRef: (Optional): Name of the snapshot to use as the source of the backup. If not

provided, a temporary snapshot will be created and backed up.

apiVersion: protect.trident.netapp.io/v1

kind: Backup

metadata:

 namespace: my-app-namespace

 name: my-cr-name

spec:

 applicationRef: my-application

 appVaultRef: appvault-name

 dataMover: Kopia

3. After you populate the trident-protect-backup-cr.yaml file with the correct values, apply the

CR:

kubectl apply -f trident-protect-backup-cr.yaml

Create a backup using the CLI

1. Create the backup, replacing values in brackets with information from your environment. For example:

tridentctl protect create backup <my_backup_name> --appvault <my-

vault-name> --app <name_of_app_to_back_up>

377

Create a data protection schedule

A protection policy protects an app by creating snapshots, backups, or both at a defined schedule. You can

choose to create snapshots and backups hourly, daily, weekly, and monthly, and you can specify the number of

copies to retain.

378

Create a schedule using a CR

1. Create the custom resource (CR) file and name it trident-protect-schedule-cr.yaml.

2. In the file you created, configure the following attributes:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.dataMover: (Optional) A string indicating which backup tool to use for the backup operation.

Possible values (case sensitive):

▪ Restic

▪ Kopia (default)

◦ spec.applicationRef: The Kubernetes name of the application to back up.

◦ spec.appVaultRef: (Required) The name of the AppVault where the backup contents should be

stored.

◦ spec.backupRetention: The number of backups to retain. Zero indicates that no backups should

be created.

◦ spec.snapshotRetention: The number of snapshots to retain. Zero indicates that no snapshots

should be created.

◦ spec.granularity: The frequency at which the schedule should run. Possible values, along with

required associated fields:

▪ hourly (requires that you specify spec.minute)

▪ daily (requires that you specify spec.minute and spec.hour)

▪ weekly (requires that you specify spec.minute, spec.hour, and spec.dayOfWeek)

▪ monthly (requires that you specify spec.minute, spec.hour, and spec.dayOfMonth)

◦ spec.dayOfMonth: (Optional) The day of the month (1 - 31) that the schedule should run. This

field is required if the granularity is set to monthly.

◦ spec.dayOfWeek: (Optional) The day of the week (0 - 7) that the schedule should run. Values of

0 or 7 indicate Sunday. This field is required if the granularity is set to weekly.

◦ spec.hour: (Optional) The hour of the day (0 - 23) that the schedule should run. This field is

required if the granularity is set to daily, weekly, or monthly.

◦ spec.minute: (Optional) The minute of the hour (0 - 59) that the schedule should run. This field is

required if the granularity is set to hourly, daily, weekly, or monthly.

379

apiVersion: protect.trident.netapp.io/v1

kind: Schedule

metadata:

 namespace: my-app-namespace

 name: my-cr-name

spec:

 dataMover: Kopia

 applicationRef: my-application

 appVaultRef: appvault-name

 backupRetention: "15"

 snapshotRetention: "15"

 granularity: <monthly>

 dayOfMonth: "1"

 dayOfWeek: "0"

 hour: "0"

 minute: "0"

3. After you populate the trident-protect-schedule-cr.yaml file with the correct values, apply

the CR:

kubectl apply -f trident-protect-schedule-cr.yaml

Create a schedule using the CLI

1. Create the protection schedule, replacing values in brackets with information from your environment.

For example:

You can use tridentctl protect create schedule --help to view detailed

help information for this command.

tridentctl protect create schedule <my_schedule_name> --appvault

<my_appvault_name> --app <name_of_app_to_snapshot> --backup

-retention <how_many_backups_to_retain> --data-mover

<kopia_or_restic> --day-of-month <day_of_month_to_run_schedule>

--day-of-week <day_of_month_to_run_schedule> --granularity

<frequency_to_run> --hour <hour_of_day_to_run> --minute

<minute_of_hour_to_run> --recurrence-rule <recurrence> --snapshot

-retention <how_many_snapshots_to_retain>

Delete a snapshot

Delete the scheduled or on-demand snapshots that you no longer need.

380

Steps

1. Remove the snapshot CR associated with the snapshot:

kubectl delete snapshot <snapshot_name> -n my-app-namespace

Delete a backup

Delete the scheduled or on-demand backups that you no longer need.

Steps

1. Remove the backup CR associated with the backup:

kubectl delete backup <backup_name> -n my-app-namespace

Check the status of a backup operation

You can use the command line to check the status of a backup operation that is in progress, has completed, or

has failed.

Steps

1. Use the following command to retrieve status of the backup operation, replacing values in brackes with

information from your environment:

kubectl get backup -n <namespace_name> <my_backup_cr_name> -o jsonpath

='{.status}'

Enable backup and restore for azure-netapp-files (ANF) operations

If you have installed Trident protect, you can enable space-efficient backup and restore functionality for storage

backends that use the azure-netapp-files storage class and were created prior to Trident 24.06. This

funtionality works with NFSv4 volumes and does not consume additional space from the capacity pool.

Before you begin

Ensure the following:

• You have installed Trident protect.

• You have defined an application in Trident protect. This application will have limited protection functionality

until you complete this procedure.

• You have azure-netapp-files selected as the default storage class for your storage backend.

381

Expand for configuration steps

1. Do the following in Trident if the ANF volume was created prior to upgrading to Trident 24.10:

a. Enable the snapshot directory for each PV that is azure-netapp-files based and associated with

the application:

tridentctl update volume <pv name> --snapshot-dir=true -n trident

b. Confirm that the snapshot directory has been enabled for each associated PV:

tridentctl get volume <pv name> -n trident -o yaml | grep

snapshotDir

Response:

snapshotDirectory: "true"

When the snapshot directory is not enabled, Trident protect chooses the regular backup

functionality, which temporarily consumes space in the capacity pool during the backup process.

In this case, ensure that sufficient space is available in the capacity pool to create a temporary

volume of the size of the volume being backed up.

Result

The application is ready for backup and restore using Trident protect. Each PVC is also available to be

used by other applications for backups and restores.

Restore applications

You can use Trident protect to restore your application from a snapshot or backup.

Restoring from an existing snapshot will be faster when restoring the application to the

same cluster.

When you restore an application, all execution hooks configured for the application are restored

with the app. If a post-restore execution hook is present, it runs automatically as part of the

restore operation.

Restore from a backup to a different namespace

When you restore a backup to a different namespace using a BackupRestore CR, Trident protect restores the

application in a new namespace, but the restored application is not automatically protected by Trident protect.

To protect the restored application, you need to create an Application CR for the restored application so that it

will be protected by Trident protect.

382

Use a CR

1. Create the custom resource (CR) file and name it trident-protect-backup-restore-

cr.yaml.

2. In the file you created, configure the following attributes:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.appArchivePath: The path inside AppVault where the backup contents are stored. You can

use the following command to find this path:

kubectl get backups <BACKUP_NAME> -n my-app-namespace -o

jsonpath='{.status.appArchivePath}'

◦ spec.appVaultRef: (Required) The name of the AppVault where the backup contents are stored.

◦ spec.namespaceMapping: The mapping of the source namespace of the restore operation to the

destination namespace. Replace my-source-namespace and my-destination-namespace

with information from your environment.

◦ spec.storageClassMapping: The mapping of the source storage class of the restore operation to

the destination storage class. Replace destinationStorageClass and

sourceStorageClass with information from your environment.

apiVersion: protect.trident.netapp.io/v1o

kind: BackupRestore

metadata:

 name: my-cr-name

 namespace: my-app-namespace

spec:

 appArchivePath: my-backup-path

 appVaultRef: appvault-name

 namespaceMapping: [{"source": "my-source-namespace",

"destination": "my-destination-namespace"}]

 storageClassMapping:

 destination: "${destinationStorageClass}"

 source: "${sourceStorageClass}"

3. (Optional) If you need to select only certain resources of the application to restore, add filtering that

includes or excludes resources marked with particular labels:

◦ resourceFilter.resourceSelectionCriteria: (Required for filtering) Use include or exclude

to include or exclude a resource defined in resourceMatchers. Add the following

resourceMatchers parameters to define the resources to be included or excluded:

▪ resourceFilter.resourceMatchers: Array of resourceMatcher objects.

▪ resourceMatchers[].group: (Optional) Group of the resource to be filtered.

▪ resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.

383

▪ resourceMatchers[].version: (Optional) Version of the resource to be filtered.

▪ resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of

the resource to be filtered.

▪ resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes

metadata.name field of the resource to be filtered.

▪ resourceMatchers[].labelSelectors: (Optional) Label selector string in the Kubernetes

metadata.name field of the resource as defined in the Kubernetes documentation. For

example: "trident.netapp.io/os=linux".

For example:

spec:

 resourceFilter:

 resourceSelectionCriteria: "include"

 resourceMatchers:

 group: my-resource-group

 kind: my-resource-kind

 version: my-resource-version

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

4. After you populate the trident-protect-backup-restore-cr.yaml file with the correct values,

apply the CR:

kubectl apply -f trident-protect-backup-restore-cr.yaml

Use the CLI

1. Restore the backup to a different namespace, replacing values in brackets with information from your

environment. The namespace-mapping argument uses colon-separated namespaces to map

source namespaces to the correct destination namespaces in the format

source1:dest1,source2:dest2. For example:

tridentctl protect create backuprestore <my_restore_name> --backup

<backup_namespace>/<backup_to_restore> --namespace-mapping

<source_to_destination_namespace_mapping>

Restore from a backup to the original namespace

You can restore a backup to the original namespace at any time.

384

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

Restoring a backup to a namespace with existing resources will not alter any resources that

share names with those in the backup. To restore all resources in a backup, either delete and re-

create the target namespace, or restore the backup to a new namespace.

385

Use a CR

1. Create the custom resource (CR) file and name it trident-protect-backup-ipr-cr.yaml.

2. In the file you created, configure the following attributes:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.appArchivePath: The path inside AppVault where the backup contents are stored. You can

use the following command to find this path:

kubectl get backups <BACKUP_NAME> -n my-app-namespace -o

jsonpath='{.status.appArchivePath}'

◦ spec.appVaultRef: (Required) The name of the AppVault where the backup contents are stored.

For example:

apiVersion: protect.trident.netapp.io/v1

kind: BackupInplaceRestore

metadata:

 name: my-cr-name

 namespace: my-app-namespace

spec:

 appArchivePath: my-backup-path

 appVaultRef: appvault-name

3. (Optional) If you need to select only certain resources of the application to restore, add filtering that

includes or excludes resources marked with particular labels:

◦ resourceFilter.resourceSelectionCriteria: (Required for filtering) Use include or exclude

to include or exclude a resource defined in resourceMatchers. Add the following

resourceMatchers parameters to define the resources to be included or excluded:

▪ resourceFilter.resourceMatchers: Array of resourceMatcher objects.

▪ resourceMatchers[].group: (Optional) Group of the resource to be filtered.

▪ resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.

▪ resourceMatchers[].version: (Optional) Version of the resource to be filtered.

▪ resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of

the resource to be filtered.

▪ resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes

metadata.name field of the resource to be filtered.

▪ resourceMatchers[].labelSelectors: (Optional) Label selector string in the Kubernetes

metadata.name field of the resource as defined in the Kubernetes documentation. For

example: "trident.netapp.io/os=linux".

For example:

386

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

spec:

 resourceFilter:

 resourceSelectionCriteria: "include"

 resourceMatchers:

 group: my-resource-group

 kind: my-resource-kind

 version: my-resource-version

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

4. After you populate the trident-protect-backup-ipr-cr.yaml file with the correct values,

apply the CR:

kubectl apply -f trident-protect-backup-ipr-cr.yaml

Use the CLI

1. Restore the backup to the original namespace, replacing values in brackets with information from your

environment. The backup argument uses a namespace and backup name in the format

<namespace>/<name>. For example:

tridentctl protect create backupinplacerestore <my_restore_name>

--backup <namespace/backup_to_restore>

Restore from a snapshot to a different namespace

You can restore data from a snapshot using a custom resource (CR) file either to a different namespace or the

original source namespace. When you restore a snapshot to a different namespace using a SnapshotRestore

CR, Trident protect restores the application in a new namespace, but the restored application is not

automatically protected by Trident protect. To protect the restored application, you need to create an

Application CR for the restored application so that it will be protected by Trident protect.

387

Use a CR

1. Create the custom resource (CR) file and name it trident-protect-snapshot-restore-

cr.yaml.

2. In the file you created, configure the following attributes:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.appVaultRef: (Required) The name of the AppVault where the snapshot contents are

stored.

◦ spec.appArchivePath: The path inside AppVault where the snapshot contents are stored. You

can use the following command to find this path:

kubectl get snapshots <SNAPHOT_NAME> -n my-app-namespace -o

jsonpath='{.status.appArchivePath}'

◦ spec.namespaceMapping: The mapping of the source namespace of the restore operation to the

destination namespace. Replace my-source-namespace and my-destination-namespace

with information from your environment.

◦ spec.storageClassMapping: The mapping of the source storage class of the restore operation to

the destination storage class. Replace destinationStorageClass and

sourceStorageClass with information from your environment.

apiVersion: protect.trident.netapp.io/v1

kind: SnapshotRestore

metadata:

 name: my-cr-name

 namespace: my-app-namespace

spec:

 appVaultRef: appvault-name

 appArchivePath: my-snapshot-path

 namespaceMapping: [{"source": "my-source-namespace",

"destination": "my-destination-namespace"}]

 storageClassMapping:

 destination: "${destinationStorageClass}"

 source: "${sourceStorageClass}"

3. (Optional) If you need to select only certain resources of the application to restore, add filtering that

includes or excludes resources marked with particular labels:

◦ resourceFilter.resourceSelectionCriteria: (Required for filtering) Use include or exclude

to include or exclude a resource defined in resourceMatchers. Add the following

resourceMatchers parameters to define the resources to be included or excluded:

▪ resourceFilter.resourceMatchers: Array of resourceMatcher objects.

▪ resourceMatchers[].group: (Optional) Group of the resource to be filtered.

388

▪ resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.

▪ resourceMatchers[].version: (Optional) Version of the resource to be filtered.

▪ resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of

the resource to be filtered.

▪ resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes

metadata.name field of the resource to be filtered.

▪ resourceMatchers[].labelSelectors: (Optional) Label selector string in the Kubernetes

metadata.name field of the resource as defined in the Kubernetes documentation. For

example: "trident.netapp.io/os=linux".

For example:

spec:

 resourceFilter:

 resourceSelectionCriteria: "include"

 resourceMatchers:

 group: my-resource-group

 kind: my-resource-kind

 version: my-resource-version

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

4. After you populate the trident-protect-snapshot-restore-cr.yaml file with the correct

values, apply the CR:

kubectl apply -f trident-protect-snapshot-restore-cr.yaml

Use the CLI

1. Restore the snapshot to a different namespace, replacing values in brackets with information from

your environment.

◦ The snapshot argument uses a namespace and snapshot name in the format

<namespace>/<name>.

◦ The namespace-mapping argument uses colon-separated namespaces to map source

namespaces to the correct destination namespaces in the format

source1:dest1,source2:dest2.

For example:

tridentctl protect create snapshotrestore <my_restore_name>

--snapshot <namespace/snapshot_to_restore> --namespace-mapping

<source_to_destination_namespace_mapping>

389

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

Restore from a snapshot to the original namespace

You can restore a snapshot to the original namespace at any time.

390

Use a CR

1. Create the custom resource (CR) file and name it trident-protect-snapshot-ipr-cr.yaml.

2. In the file you created, configure the following attributes:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.appVaultRef: (Required) The name of the AppVault where the snapshot contents are

stored.

◦ spec.appArchivePath: The path inside AppVault where the snapshot contents are stored. You

can use the following command to find this path:

kubectl get snapshots <SNAPSHOT_NAME> -n my-app-namespace -o

jsonpath='{.status.appArchivePath}'

apiVersion: protect.trident.netapp.io/v1

kind: SnapshotInplaceRestore

metadata:

 name: my-cr-name

 namespace: my-app-namespace

spec:

 appVaultRef: appvault-name

 appArchivePath: my-snapshot-path

3. (Optional) If you need to select only certain resources of the application to restore, add filtering that

includes or excludes resources marked with particular labels:

◦ resourceFilter.resourceSelectionCriteria: (Required for filtering) Use include or exclude

to include or exclude a resource defined in resourceMatchers. Add the following

resourceMatchers parameters to define the resources to be included or excluded:

▪ resourceFilter.resourceMatchers: Array of resourceMatcher objects.

▪ resourceMatchers[].group: (Optional) Group of the resource to be filtered.

▪ resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.

▪ resourceMatchers[].version: (Optional) Version of the resource to be filtered.

▪ resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of

the resource to be filtered.

▪ resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes

metadata.name field of the resource to be filtered.

▪ resourceMatchers[].labelSelectors: (Optional) Label selector string in the Kubernetes

metadata.name field of the resource as defined in the Kubernetes documentation. For

example: "trident.netapp.io/os=linux".

For example:

391

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

spec:

 resourceFilter:

 resourceSelectionCriteria: "include"

 resourceMatchers:

 group: my-resource-group

 kind: my-resource-kind

 version: my-resource-version

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

4. After you populate the trident-protect-snapshot-ipr-cr.yaml file with the correct values,

apply the CR:

kubectl apply -f trident-protect-snapshot-ipr-cr.yaml

Use the CLI

1. Restore the snapshot to the original namespace, replacing values in brackets with information from

your environment. For example:

tridentctl protect create snapshotinplacerestore <my_restore_name>

--snapshot <snapshot_to_restore>

Check the status of a restore operation

You can use the command line to check the status of a restore operation that is in progress, has completed, or

has failed.

Steps

1. Use the following command to retrieve status of the restore operation, replacing values in brackes with

information from your environment:

kubectl get backuprestore -n <namespace_name> <my_restore_cr_name> -o

jsonpath='{.status}'

Replicate applications with NetApp SnapMirror

Using Trident protect, you can use the asynchronous replication capabilities of NetApp

SnapMirror technology to replicate data and application changes from one storage

backend to another, on the same cluster or between different clusters.

392

Set up a replication relationship

Setting up a replication relationship involves the following:

• Choosing how frequently you want Trident protect to take an app snapshot (which includes the app’s

Kubernetes resources as well as the volume snapshots for each of the app’s volumes)

• Choosing the replication schedule (includes Kubernetes resources as well as persistent volume data)

• Setting the time for the snapshot to be taken

Steps

1. Create an AppVault for the source application on the source cluster. Depending on your storage provider,

modify an example in AppVault custom resources to fit your environment:

393

Create an AppVault using a CR

a. Create the custom resource (CR) file and name it (for example, trident-protect-appvault-

primary-source.yaml).

b. Configure the following attributes:

▪ metadata.name: (Required) The name of the AppVault custom resource. Make note of the

name you choose, because other CR files needed for a replication relationship refer to this

value.

▪ spec.providerConfig: (Required) Stores the configuration necessary to access the AppVault

using the specified provider. Choose a bucketName and any other necessary details for your

provider. Make note of the values you choose, because other CR files needed for a replication

relationship refer to these values. Refer to AppVault custom resources for examples of

AppVault CRs with other providers.

▪ spec.providerCredentials: (Required) Stores references to any credential required to access

the AppVault using the specified provider.

▪ spec.providerCredentials.valueFromSecret: (Required) Indicates that the credential

value should come from a secret.

▪ key: (Required) The valid key of the secret to select from.

▪ name: (Required) Name of the secret containing the value for this field. Must be in the

same namespace.

▪ spec.providerCredentials.secretAccessKey: (Required) The access key used to

access the provider. The name should match

spec.providerCredentials.valueFromSecret.name.

▪ spec.providerType: (Required) Determines what provides the backup; for example, NetApp

ONTAP S3, generic S3, Google Cloud, or Microsoft Azure. Possible values:

▪ aws

▪ azure

▪ gcp

▪ generic-s3

▪ ontap-s3

▪ storagegrid-s3

c. After you populate the trident-protect-appvault-primary-source.yaml file with the

correct values, apply the CR:

kubectl apply -f trident-protect-appvault-primary-source.yaml -n

trident-protect

Create an AppVault using the CLI

1. Create the AppVault, replacing values in brackets with information from your environment:

tridentctl protect create vault Azure <vault-name> --account

<account-name> --bucket <bucket-name> --secret <secret-name>

394

2. Create the source application CR:

Create the source application using a CR

a. Create the custom resource (CR) file and name it (for example, trident-protect-app-

source.yaml).

b. Configure the following attributes:

▪ metadata.name: (Required) The name of the application custom resource. Make note of the

name you choose, because other CR files needed for a replication relationship refer to this

value.

▪ spec.includedNamespaces: (Required) An array of namespaces and associated labels. Use

namespace names and optionally narrow the scope of the namespaces with labels to specify

resources that exist in the namespaces listed here. The application namespace must be part

of this array.

Example YAML:

apiVersion: protect.trident.netapp.io/v1

kind: Application

metadata:

 name: maria

 namespace: my-app-namespace

spec:

 includedNamespaces:

 - namespace: maria

 labelSelector: {}

c. After you populate the trident-protect-app-source.yaml file with the correct values, apply

the CR:

kubectl apply -f trident-protect-app-source.yaml -n my-app-

namespace

Create the source application using the CLI

1. Create the source application. For example:

tridentctl protect create app maria --namespaces maria -n my-app-

namespace

3. Optionally, take a snapshot of the source application. This snapshot is used as the basis for the application

on the destination cluster. If you skip this step, you’ll need to wait for the next scheduled snapshot to run so

that you have a recent snapshot.

395

Take a snapshot using a CR

1. Create a replication schedule for the source application:

a. Create the custom resource (CR) file and name it (for example, trident-protect-

schedule.yaml).

b. Configure the following attributes:

▪ metadata.name: (Required) The name of the schedule custom resource.

▪ spec.AppVaultRef: (Required) This value must match the metadata.name field of the

AppVault for the source application.

▪ spec.ApplicationRef: (Required) This value must match the metadata.name field of the

source application CR.

▪ spec.backupRetention: (Required) This field is required, and the value must be set to 0.

▪ spec.enabled: Must be set to true.

▪ spec.granularity: Must be set to Custom.

▪ spec.recurrenceRule: Define a start date in UTC time and a recurrence interval.

▪ spec.snapshotRetention: Must be set to 2.

Example YAML:

apiVersion: protect.trident.netapp.io/v1

kind: Schedule

metadata:

 name: appmirror-schedule-0e1f88ab-f013-4bce-8ae9-

6afed9df59a1

 namespace: my-app-namespace

spec:

 appVaultRef: generic-s3-trident-protect-src-bucket-

04b6b4ec-46a3-420a-b351-45795e1b5e34

 applicationRef: maria

 backupRetention: "0"

 enabled: true

 granularity: custom

 recurrenceRule: |-

 DTSTART:20220101T000200Z

 RRULE:FREQ=MINUTELY;INTERVAL=5

 snapshotRetention: "2"

c. After you populate the trident-protect-schedule.yaml file with the correct values,

apply the CR:

kubectl apply -f trident-protect-schedule.yaml -n my-app-

namespace

396

Take a snapshot using the CLI

1. Create the snapshot, replacing values in brackets with information from your environment. For

example:

tridentctl protect create snapshot <my_snapshot_name> --appvault

<my_appvault_name> --app <name_of_app_to_snapshot>

4. Create a source application AppVault CR on the destination cluster that is identical to the AppVault CR you

applied on the source cluster and name it (for example, trident-protect-appvault-primary-

destination.yaml).

5. Apply the CR:

kubectl apply -f trident-protect-appvault-primary-destination.yaml -n

my-app-namespace

6. Create an AppVault for the destination application on the destination cluster. Depending on your storage

provider, modify an example in AppVault custom resources to fit your environment:

a. Create the custom resource (CR) file and name it (for example, trident-protect-appvault-

secondary-destination.yaml).

b. Configure the following attributes:

▪ metadata.name: (Required) The name of the AppVault custom resource. Make note of the name

you choose, because other CR files needed for a replication relationship refer to this value.

▪ spec.providerConfig: (Required) Stores the configuration necessary to access the AppVault using

the specified provider. Choose a bucketName and any other necessary details for your provider.

Make note of the values you choose, because other CR files needed for a replication relationship

refer to these values. Refer to AppVault custom resources for examples of AppVault CRs with other

providers.

▪ spec.providerCredentials: (Required) Stores references to any credential required to access the

AppVault using the specified provider.

▪ spec.providerCredentials.valueFromSecret: (Required) Indicates that the credential value

should come from a secret.

▪ key: (Required) The valid key of the secret to select from.

▪ name: (Required) Name of the secret containing the value for this field. Must be in the

same namespace.

▪ spec.providerCredentials.secretAccessKey: (Required) The access key used to access the

provider. The name should match spec.providerCredentials.valueFromSecret.name.

▪ spec.providerType: (Required) Determines what provides the backup; for example, NetApp

ONTAP S3, generic S3, Google Cloud, or Microsoft Azure. Possible values:

▪ aws

▪ azure

▪ gcp

397

▪ generic-s3

▪ ontap-s3

▪ storagegrid-s3

c. After you populate the trident-protect-appvault-secondary-destination.yaml file with

the correct values, apply the CR:

kubectl apply -f trident-protect-appvault-secondary-destination.yaml

-n my-app-namespace

7. Create an AppMirrorRelationship CR file:

398

Create an AppMirrorRelationship using a CR

a. Create the custom resource (CR) file and name it (for example, trident-protect-

relationship.yaml).

b. Configure the following attributes:

▪ metadata.name: (Required) The name of the AppMirrorRelationship custom resource.

▪ spec.destinationAppVaultRef: (Required) This value must match the name of the AppVault

for the destination application on the destination cluster.

▪ spec.namespaceMapping: (Required) The destination and source namespaces must match

the application namespace defined in the respective application CR.

▪ spec.sourceAppVaultRef: (Required) This value must match the name of the AppVault for

the source application.

▪ spec.sourceApplicationName: (Required) This value must match the name of the source

application you defined in the source application CR.

▪ spec.storageClassName: (Required) Choose the name of a valid storage class on the

cluster. The storage class must be peered with the storage class that is in use on the source

cluster where the source application is deployed.

▪ spec.recurrenceRule: Define a start date in UTC time and a recurrence interval.

Example YAML:

apiVersion: protect.trident.netapp.io/v1

kind: AppMirrorRelationship

metadata:

 name: amr-16061e80-1b05-4e80-9d26-d326dc1953d8

 namespace: my-app-namespace

spec:

 desiredState: Established

 destinationAppVaultRef: generic-s3-trident-protect-dst-

bucket-8fe0b902-f369-4317-93d1-ad7f2edc02b5

 namespaceMapping:

 - destination: my-app-namespace

 source: my-app-namespace

 recurrenceRule: |-

 DTSTART:20220101T000200Z

 RRULE:FREQ=MINUTELY;INTERVAL=5

 sourceAppVaultRef: generic-s3-trident-protect-src-bucket-

b643cc50-0429-4ad5-971f-ac4a83621922

 sourceApplicationName: maria

 sourceApplicationUID: 7498d32c-328e-4ddd-9029-122540866aeb

 storageClassName: sc-vsim-2

c. After you populate the trident-protect-relationship.yaml file with the correct values,

apply the CR:

399

kubectl apply -f trident-protect-relationship.yaml -n my-app-

namespace

Create an AppMirrorRelationship using the CLI

1. Create and apply the AppMirrorRelationship object, replacing values in brackets with information

from your environment. For example:

tridentctl protect create appmirrorrelationship

<name_of_appmirorrelationship> --destination-app-vault

<my_vault_name> --recurrence-rule <rule> --source-app

<my_source_app> --source-app-vault <my_source_app_vault>

8. (Optional) Check the state and status of the replication relationship:

kubectl get amr -n my-app-namespace <relationship name> -o=jsonpath

='{.status}' | jq

Fail over to destination cluster

Using Trident protect, you can fail over replicated applications to a destination cluster. This procedure stops the

replication relationship and brings the app online on the destination cluster. Trident protect does not stop the

app on the source cluster if it was operational.

Steps

1. Open the AppMirrorRelationship CR file (for example, trident-protect-relationship.yaml) and

change the value of spec.desiredState to Promoted.

2. Save the CR file.

3. Apply the CR:

kubectl apply -f trident-protect-relationship.yaml -n my-app-namespace

4. (Optional) Create any protection schedules that you need on the failed over application.

5. (Optional) Check the state and status of the replication relationship:

kubectl get amr -n my-app-namespace <relationship name> -o=jsonpath

='{.status}' | jq

400

Resync a failed over replication relationship

The resync operation re-establishes the replication relationship. After you perform a resync operation, the

original source application becomes the running application, and any changes made to the running application

on the destination cluster are discarded.

The process stops the app on the destination cluster before re-establishing replication.

Any data written to the destination application during failover will be lost.

Steps

1. Create a snapshot of the source application.

2. Open the AppMirrorRelationship CR file (for example, trident-protect-relationship.yaml) and

change the value of spec.desiredState to Established.

3. Save the CR file.

4. Apply the CR:

kubectl apply -f trident-protect-relationship.yaml -n my-app-namespace

5. If you created any protection schedules on the destination cluster to protect the failed over application,

remove them. Any schedules that remain cause volume snapshot failures.

Reverse resync a failed over replication relationship

When you reverse resync a failed over replication relationship, the destination application becomes the source

application, and the source becomes the destination. Changes made to the destination application during

failover are kept.

Steps

1. Delete the AppMirrorRelationship CR on the original destination cluster. This causes the destination to

become the source. If there are any protection schedules remaining on the new destination cluster, remove

them.

2. Set up a replication relationship by applying the CR files you originally used to set up the relationship to the

opposite clusters.

3. Ensure the AppVault CRs are ready on each cluster.

4. Set up a replication relationship on the opposite cluster, configuring values for the reverse direction.

Reverse application replication direction

When you reverse replication direction, Trident protect moves the application to the destination storage

backend while continuing to replicate back to the original source storage backend. Trident protect stops the

source application and replicates the data to the destination before failing over to the destination app.

In this situation, you are swapping the source and destination.

Steps

1. Create a shutdown snapshot:

401

Create a shutdown snapshot using a CR

1. Disable the protection policy schedules for the source application.

2. Create a ShutdownSnapshot CR file:

a. Create the custom resource (CR) file and name it (for example, trident-protect-

shutdownsnapshot.yaml).

b. Configure the following attributes:

▪ metadata.name: (Required) The name of the custom resource.

▪ spec.AppVaultRef: (Required) This value must match the metadata.name field of the

AppVault for the source application.

▪ spec.ApplicationRef: (Required) This value must match the metadata.name field of the

source application CR file.

Example YAML:

apiVersion: protect.trident.netapp.io/v1

kind: ShutdownSnapshot

metadata:

 name: replication-shutdown-snapshot-afc4c564-e700-4b72-

86c3-c08a5dbe844e

 namespace: my-app-namespace

spec:

 appVaultRef: generic-s3-trident-protect-src-bucket-

04b6b4ec-46a3-420a-b351-45795e1b5e34

 applicationRef: maria

3. After you populate the trident-protect-shutdownsnapshot.yaml file with the correct

values, apply the CR:

kubectl apply -f trident-protect-shutdownsnapshot.yaml -n my-app-

namespace

Create a shutdown snapshot using the CLI

1. Create the shutdown snapshot, replacing values in brackets with information from your

environment. For example:

tridentctl protect create shutdownsnapshot <my_shutdown_snapshot>

--appvault <my_vault> --app <app_to_snapshot>

2. After the snapshot completes, get the status of the snapshot:

402

kubectl get shutdownsnapshot -n my-app-namespace

<shutdown_snapshot_name> -o yaml

3. Find the value of shutdownsnapshot.status.appArchivePath using the following command, and record

the last part of the file path (also called the basename; this will be everything after the last slash):

k get shutdownsnapshot -n my-app-namespace <shutdown_snapshot_name> -o

jsonpath='{.status.appArchivePath}'

4. Perform a fail over from the destination cluster to the source cluster, with the following change:

In step 2 of the fail over procedure, include the spec.promotedSnapshot field in the

AppMirrorRelationship CR file, and set its value to the basename you recorded in step 3

above.

5. Perform the reverse resync steps in Reverse resync a failed over replication relationship.

6. Enable protection schedules on the new source cluster.

Result

The following actions occur because of the reverse replication:

• A snapshot is taken of the original source app’s Kubernetes resources.

• The original source app’s pods are gracefully stopped by deleting the app’s Kubernetes resources (leaving

PVCs and PVs in place).

• After the pods are shut down, snapshots of the app’s volumes are taken and replicated.

• The SnapMirror relationships are broken, making the destination volumes ready for read/write.

• The app’s Kubernetes resources are restored from the pre-shutdown snapshot, using the volume data

replicated after the original source app was shut down.

• Replication is re-established in the reverse direction.

Fail back applications to the original source cluster

Using Trident protect, you can achieve "fail back" after a failover operation by using the following sequence of

operations. In this workflow to restore the original replication direction, Trident protect replicates (resyncs) any

application changes back to the original source application before reversing the replication direction.

This process starts from a relationship that has completed a failover to a destination and involves the following

steps:

• Start with a failed over state.

• Reverse resync the replication relationship.

Do not perform a normal resync operation, as this will discard data written to the destination

cluster during the fail over procedure.

403

• Reverse the replication direction.

Steps

1. Perform the Reverse resync a failed over replication relationship steps.

2. Perform the Reverse application replication direction steps.

Delete a replication relationship

You can delete a replication relationship at any time. When you delete the application replication relationship, it

results in two separate applications with no relationship between them.

Steps

1. Delete the AppMirrorRelationship CR:

kubectl delete -f trident-protect-relationship.yaml -n my-app-namespace

Migrate applications

You can migrate your applications between clusters or storage classes by restoring your

backup or snapshot data to a different cluster or storage class.

When you migrate an application, all execution hooks configured for the application are migrated

with the app. If a post-restore execution hook is present, it runs automatically as part of the

restore operation.

Backup and restore operations

To perform backup and restore operations for the following scenarios, you can automate specific backup and

restore tasks.

Clone to same cluster

To clone an application to the same cluster, create a snapshot or backup and restore the data to the same

cluster.

Steps

1. Do one of the following:

a. Create a snapshot.

b. Create a backup.

2. On the same cluster, do one of the following, depending on if you created a snapshot or a backup:

a. Restore your data from the snapshot.

b. Restore your data from the backup.

Clone to different cluster

To clone an application to a different cluster (perform a cross-cluster clone), create a snapshot or backup and

restore the data to a different cluster. Make sure that Trident protect is installed on the destination cluster.

404

Steps

1. Do one of the following:

a. Create a snapshot.

b. Create a backup.

2. Ensure that the AppVault CR for the object storage bucket that contains the backup or snapshot has been

configured on the destination cluster.

3. On the destination cluster, do one of the following, depending on if you created a snapshot or a backup:

a. Restore your data from the snapshot.

b. Restore your data from the backup.

Migrate applications from one storage class to another storage class

You can migrate applications from one storage class to a different storage class by restoring a snapshot to the

different destination storage class.

For example (excluding the secrets from the restore CR):

apiVersion: protect.trident.netapp.io/v1

kind: SnapshotRestore

metadata:

 name: "${snapshotRestoreCRName}"

spec:

 appArchivePath: "${snapshotArchivePath}"

 appVaultRef: "${appVaultCRName}"

 namespaceMapping:

 destination: "${destinationNamespace}"

 source: "${sourceNamespace}"

 storageClassMapping:

 destination: "${destinationStorageClass}"

 source: "${sourceStorageClass}"

 resourceFilter:

 resourceMatchers:

 kind: Secret

 version: v1

 resourceSelectionCriteria: exclude

405

Restore the snapshot using a CR

1. Create the custom resource (CR) file and name it trident-protect-snapshot-restore-

cr.yaml.

2. In the file you created, configure the following attributes:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.appArchivePath: The path inside AppVault where the snapshot contents are stored. You

can use the following command to find this path:

kubectl get snapshots <my-snapshot-name> -n trident-protect -o

jsonpath='{.status.appArchivePath}'

◦ spec.appVaultRef: (Required) The name of the AppVault where the snapshot contents are

stored.

◦ spec.namespaceMapping: The mapping of the source namespace of the restore operation to the

destination namespace. Replace my-source-namespace and my-destination-namespace

with information from your environment.

apiVersion: protect.trident.netapp.io/v1

kind: SnapshotRestore

metadata:

 name: my-cr-name

 namespace: trident-protect

spec:

 appArchivePath: my-snapshot-path

 appVaultRef: appvault-name

 namespaceMapping: [{"source": "my-source-namespace",

"destination": "my-destination-namespace"}]

3. Optionally, if you need to select only certain resources of the application to restore, add filtering that

includes or excludes resources marked with particular labels:

◦ resourceFilter.resourceSelectionCriteria: (Required for filtering) Use include or exclude

to include or exclude a resource defined in resourceMatchers. Add the following

resourceMatchers parameters to define the resources to be included or excluded:

◦ resourceMatchers.group: (Optional) Group of the resource to be filtered.

◦ resourceMatchers.kind: (Optional) Kind of the resource to be filtered.

◦ resourceMatchers.version: (Optional) Version of the resource to be filtered.

◦ resourceMatchers.names: (Optional) Names in the Kubernetes metadata.name field of the

resource to be filtered.

◦ resourceMatchers.namespaces: (Optional) Namespaces in the Kubernetes metadata.name

field of the resource to be filtered.

◦ resourceMatchers.labelSelectors: (Optional) Label selector string in the Kubernetes

406

metadata.name field of the resource as defined in the Kubernetes documentation. For example:

"trident.netapp.io/os=linux".

For example:

spec:

 resourceFilter:

 resourceSelectionCriteria: "include"

 resourceMatchers:

 group: my-resource-group

 kind: my-resource-kind

 version: my-resource-version

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

4. After you populate the trident-protect-snapshot-restore-cr.yaml file with the correct

values, apply the CR:

kubectl apply -f trident-protect-snapshot-restore-cr.yaml

Restore the snapshot using the CLI

1. Restore the snapshot to a different namespace, replacing values in brackets with information from

your environment.

◦ The snapshot argument uses a namespace and snapshot name in the format

<namespace>/<name>.

◦ The namespace-mapping argument uses colon-separated namespaces to map source

namespaces to the correct destination namespaces in the format

source1:dest1,source2:dest2.

For example:

tridentctl protect create snapshotrestore <my_restore_name>

--snapshot <namespace/snapshot_to_restore> --namespace-mapping

<source_to_destination_namespace_mapping>

Manage execution hooks

An execution hook is a custom action that you can configure to run in conjunction with a

data protection operation of a managed app. For example, if you have a database app,

you can use an execution hook to pause all database transactions before a snapshot,

and resume transactions after the snapshot is complete. This ensures application-

407

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

consistent snapshots.

Types of execution hooks

Trident protect supports the following types of execution hooks, based on when they can be run:

• Pre-snapshot

• Post-snapshot

• Pre-backup

• Post-backup

• Post-restore

• Post-failover

Order of execution

When a data protection operation is run, execution hook events take place in the following order:

1. Any applicable custom pre-operation execution hooks are run on the appropriate containers. You can

create and run as many custom pre-operation hooks as you need, but the order of execution of these

hooks before the operation is neither guaranteed nor configurable.

2. The data protection operation is performed.

3. Any applicable custom post-operation execution hooks are run on the appropriate containers. You can

create and run as many custom post-operation hooks as you need, but the order of execution of these

hooks after the operation is neither guaranteed nor configurable.

If you create multiple execution hooks of the same type (for example, pre-snapshot), the order of execution of

those hooks is not guaranteed. However, the order of execution of hooks of different types is guaranteed. For

example, the following is the order of execution of a configuration that has all of the different types of hooks:

1. Pre-snapshot hooks executed

2. Post-snapshot hooks executed

3. Pre-backup hooks executed

4. Post-backup hooks executed

The preceding order example only applies when you run a backup that does not use an existing

snapshot.

You should always test your execution hook scripts before enabling them in a production

environment. You can use the 'kubectl exec' command to conveniently test the scripts. After you

enable the execution hooks in a production environment, test the resulting snapshots and

backups to ensure they are consistent. You can do this by cloning the app to a temporary

namespace, restoring the snapshot or backup, and then testing the app.

Important notes about custom execution hooks

Consider the following when planning execution hooks for your apps.

• An execution hook must use a script to perform actions. Many execution hooks can reference the same

script.

408

• Trident protect requires the scripts that execution hooks use to be written in the format of executable shell

scripts.

• Script size is limited to 96KB.

• Trident protect uses execution hook settings and any matching criteria to determine which hooks are

applicable to a snapshot, backup, or restore operation.

Because execution hooks often reduce or completely disable the functionality of the application

they are running against, you should always try to minimize the time your custom execution

hooks take to run. If you start a backup or snapshot operation with associated execution hooks

but then cancel it, the hooks are still allowed to run if the backup or snapshot operation has

already begun. This means that the logic used in a post-backup execution hook cannot assume

that the backup was completed.

Execution hook filters

When you add or edit an execution hook for an application, you can add filters to the execution hook to

manage which containers the hook will match. Filters are useful for applications that use the same container

image on all containers, but might use each image for a different purpose (such as Elasticsearch). Filters allow

you to create scenarios where execution hooks run on some but not necessarily all identical containers. If you

create multiple filters for a single execution hook, they are combined with a logical AND operator. You can have

up to 10 active filters per execution hook.

Each filter you add to an execution hook uses a regular expression to match containers in your cluster. When a

hook matches a container, the hook will run its associated script on that container. Regular expressions for

filters use the Regular Expression 2 (RE2) syntax, which does not support creating a filter that excludes

containers from the list of matches. For information on the syntax that Trident protect supports for regular

expressions in execution hook filters, see Regular Expression 2 (RE2) syntax support.

If you add a namespace filter to an execution hook that runs after a restore or clone operation

and the restore or clone source and destination are in different namespaces, the namespace

filter is only applied to the destination namespace.

Execution hook examples

Visit the NetApp Verda GitHub project to download real execution hooks for popular apps such as Apache

Cassandra and Elasticsearch. You can also see examples and get ideas for structuring your own custom

execution hooks.

Create an execution hook

You can create a custom execution hook for an app using Trident protect. You need to have Owner, Admin, or

Member permissions to create execution hooks.

409

https://github.com/google/re2/wiki/Syntax
https://github.com/NetApp/Verda

Use a CR

1. Create the custom resource (CR) file and name it trident-protect-hook.yaml.

2. Configure the following attributes to match your Trident protect environment and cluster configuration:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.applicationRef: (Required) The Kubernetes name of the application for which to run the

execution hook.

◦ spec.stage: (Required) A string indicating which stage during the action that the execution hook

should run. Possible values:

▪ Pre

▪ Post

◦ spec.action: (Required) A string indicating which action the execution hook will take, assuming

any execution hook filters specified are matched. Possible values:

▪ Snapshot

▪ Backup

▪ Restore

▪ Failover

◦ spec.enabled: (Optional) Indicates whether this execution hook is enabled or disabled. If not

specified, the default value is true.

◦ spec.hookSource: (Required) A string containing the base64-encoded hook script.

◦ spec.timeout: (Optional) A number defining how long in minutes that the execution hook is

allowed to run. The minimum value is 1 minute, and the default value is 25 minutes if not

specified.

◦ spec.arguments: (Optional) A YAML list of arguments that you can specify for the execution

hook.

◦ spec.matchingCriteria: (Optional) An optional list of criteria key value pairs, each pair making up

an execution hook filter. You can add up to 10 filters per execution hook.

◦ spec.matchingCriteria.type: (Optional) A string identifying the execution hook filter type.

Possible values:

▪ ContainerImage

▪ ContainerName

▪ PodName

▪ PodLabel

▪ NamespaceName

◦ spec.matchingCriteria.value: (Optional) A string or regular expression identifying the execution

hook filter value.

Example YAML:

410

apiVersion: protect.trident.netapp.io/v1

kind: ExecHook

metadata:

 name: example-hook-cr

 namespace: my-app-namespace

 annotations:

 astra.netapp.io/astra-control-hook-source-id:

/account/test/hookSource/id

spec:

 applicationRef: my-app-name

 stage: Pre

 action: Snapshot

 enabled: true

 hookSource: IyEvYmluL2Jhc2gKZWNobyAiZXhhbXBsZSBzY3JpcHQiCg==

 timeout: 10

 arguments:

 - FirstExampleArg

 - SecondExampleArg

 matchingCriteria:

 - type: containerName

 value: mysql

 - type: containerImage

 value: bitnami/mysql

 - type: podName

 value: mysql

 - type: namespaceName

 value: mysql-a

 - type: podLabel

 value: app.kubernetes.io/component=primary

 - type: podLabel

 value: helm.sh/chart=mysql-10.1.0

 - type: podLabel

 value: deployment-type=production

3. After you populate the CR file with the correct values, apply the CR:

kubectl apply -f trident-protect-hook.yaml

Use the CLI

1. Create the execution hook, replacing values in brackets with information from your environment. For

example:

411

tridentctl protect create exechook <my_exec_hook_name> --action

<action_type> --app <app_to_use_hook> --stage <pre_or_post_stage>

--source-file <script-file>

Uninstall Trident protect

You might need to remove Trident protect components if you are upgrading from a trial to

a full version of the product.

To remove Trident protect, perform the following steps.

Steps

1. Remove the Trident protect CR files:

helm uninstall trident-protect-crds

2. Remove Trident protect:

helm uninstall -n trident-protect trident-protect

3. Remove the Trident protect namespace:

kubectl delete ns trident-protect

412

Knowledge and support

Frequently asked questions

Find answers to the frequently asked questions about installing, configuring, upgrading,

and troubleshooting Trident.

General questions

How frequently is Trident released?

Beginning with the 24.02 release, Trident is released every four months: February, June, and October.

Does Trident support all the features that are released in a particular version of Kubernetes?

Trident usually does not support alpha features in Kubernetes. Trident might support beta features within the

two Trident releases that follow the Kubernetes beta release.

Does Trident have any dependencies on other NetApp products for its functioning?

Trident does not have any dependencies on other NetApp software products and it works as a standalone

application. However, you should have a NetApp backend storage device.

How can I obtain complete Trident configuration details?

Use the tridentctl get command to obtain more information about your Trident configuration.

Can I obtain metrics on how storage is provisioned by Trident?

Yes. Prometheus endpoints that can be used to gather information about Trident operation, such as the

number of backends managed, the number of volumes provisioned, bytes consumed, and so on. You can also

use Cloud Insights for monitoring and analysis.

Does the user experience change when using Trident as a CSI Provisioner?

No. There are no changes as far as the user experience and functionalities are concerned. The provisioner

name used is csi.trident.netapp.io. This method of installing Trident is recommended if you want to

use all the new features provided by current and future releases.

Install and use Trident on a Kubernetes cluster

Does Trident support an offline install from a private registry?

Yes, Trident can be installed offline. Refer to Learn about Trident installation.

Can I install Trident be remotely?

Yes. Trident 18.10 and later support remote installation capability from any machine that has kubectl access

to the cluster. After kubectl access is verified (for example, initiate a kubectl get nodes command from

the remote machine to verify), follow the installation instructions.

413

https://docs.netapp.com/us-en/cloudinsights/
https://docs.netapp.com/us-en/trident/../trident-get-started/kubernetes-deploy.html

Can I configure High Availability with Trident?

Trident is installed as a Kubernetes Deployment (ReplicaSet) with one instance, and so it has HA built in. You

should not increase the number of replicas in the deployment. If the node where Trident is installed is lost or

the pod is otherwise inaccessible, Kubernetes automatically re-deploys the pod to a healthy node in your

cluster. Trident is control-plane only, so currently mounted pods are not affected if Trident is re-deployed.

Does Trident need access to the kube-system namespace?

Trident reads from the Kubernetes API Server to determine when applications request new PVCs, so it needs

access to kube-system.

What are the roles and privileges used by Trident?

The Trident installer creates a Kubernetes ClusterRole, which has specific access to the cluster’s

PersistentVolume, PersistentVolumeClaim, StorageClass, and Secret resources of the Kubernetes cluster.

Refer to Customize tridentctl installation.

Can I locally generate the exact manifest files Trident uses for installation?

You can locally generate and modify the exact manifest files Trident uses for installation, if needed. Refer to

Customize tridentctl installation.

Can I share the same ONTAP backend SVM for two separate Trident instances for two separate
Kubernetes clusters?

Although it is not advised, you can use the same backend SVM for two Trident instances. Specify a unique

volume name for each instance during installation and/or specify a unique StoragePrefix parameter in the

setup/backend.json file. This is to ensure the same FlexVol is not used for both instances.

Is it possible to install Trident under ContainerLinux (formerly CoreOS)?

Trident is simply a Kubernetes pod and can be installed wherever Kubernetes is running.

Can I use Trident with NetApp Cloud Volumes ONTAP?

Yes, Trident is supported on AWS, Google Cloud, and Azure.

Does Trident work with Cloud Volumes Services?

Yes, Trident supports the Azure NetApp Files service in Azure as well as the Cloud Volumes Service in GCP.

Troubleshooting and support

Does NetApp support Trident?

Although Trident is open source and provided for free, NetApp fully supports it provided your NetApp backend

is supported.

How do I raise a support case?

To raise a support case, do one of the following:

1. Contact your Support Account Manager and get help to raise a ticket.

414

https://docs.netapp.com/us-en/trident/../trident-get-started/kubernetes-customize-deploy-tridentctl.html
https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-customize-deploy-tridentctl.html

2. Raise a support case by contacting NetApp Support.

How do I generate a support log bundle?

You can create a support bundle by running tridentctl logs -a. In addition to the logs captured in the

bundle, capture the kubelet log to diagnose the mount problems on the Kubernetes side. The instructions to

get the kubelet log varies based on how Kubernetes is installed.

What do I do if I need to raise a request for a new feature?

Create an issue on Trident Github and mention RFE in the subject and description of the issue.

Where do I raise a defect?

Create an issue on Trident Github. Make sure to include all the necessary information and logs pertaining to

the issue.

What happens if I have quick question on Trident that I need clarification on? Is there a community or a
forum?

If you have any questions, issues, or requests, reach out to us through our Trident Discord channel or GitHub.

My storage system’s password has changed and Trident no longer works, how do I recover?

Update the backend’s password with tridentctl update backend myBackend -f

</path/to_new_backend.json> -n trident. Replace myBackend in the example with your backend

name, and `/path/to_new_backend.json with the path to the correct backend.json file.

Trident cannot find my Kubernetes node. How do I fix this?

There are two likely scenarios why Trident cannot find a Kubernetes node. It can be because of a networking

issue within Kubernetes or a DNS issue. The Trident node daemonset that runs on each Kubernetes node

must be able to communicate with the Trident controller to register the node with Trident. If networking changes

occurred after Trident was installed, you encounter this problem only with new Kubernetes nodes that are

added to the cluster.

If the Trident pod is destroyed, will I lose the data?

Data will not be lost if the Trident pod is destroyed. Trident metadata is stored in CRD objects. All PVs that

have been provisioned by Trident will function normally.

Upgrade Trident

Can I upgrade from a older version directly to a newer version (skipping a few versions)?

NetApp supports upgrading Trident from one major release to the next immediate major release. You can

upgrade from version 18.xx to 19.xx, 19.xx to 20.xx, and so on. You should test upgrading in a lab before

production deployment.

Is it possible to downgrade Trident to a previous release?

If you need a fix for bugs observed after an upgrade, dependency issues, or an unsuccessful or incomplete

upgrade, you should uninstall Trident and reinstall the earlier version using the specific instructions for that

version. This is the only recommended way to downgrade to an earlier version.

415

https://www.netapp.com/company/contact-us/support/
https://github.com/NetApp/trident
https://github.com/NetApp/trident
https://discord.gg/NetApp

Manage backends and volumes

Do I need to define both Management and Data LIFs in an ONTAP backend definition file?

The management LIF is mandatory. Data LIF varies:

• ONTAP SAN: Do not specify for iSCSI. Trident uses ONTAP Selective LUN Map to discover the iSCI LIFs

needed to establish a multi path session. A warning is generated if dataLIF is explicitly defined. Refer to

ONTAP SAN configuration options and examples for details.

• ONTAP NAS: We recommend specifying dataLIF. If not provided, Trident fetches data LIFs from the

SVM. You can specify a fully-qualified domain name (FQDN) to be used for the NFS mount operations,

allowing you to create a round-robin DNS to load-balance across multiple data LIFs. Refer to ONTAP NAS

configuration options and examples for details

Can Trident configure CHAP for ONTAP backends?

Yes. Trident supports bidirectional CHAP for ONTAP backends. This requires setting useCHAP=true in your

backend configuration.

How do I manage export policies with Trident?

Trident can dynamically create and manage export policies from version 20.04 onwards. This enables the

storage administrator to provide one or more CIDR blocks in their backend configuration and have Trident add

node IPs that fall within these ranges to an export policy it creates. In this manner, Trident automatically

manages the addition and deletion of rules for nodes with IPs within the given CIDRs.

Can IPv6 addresses be used for the Management and Data LIFs?

Trident supports defining IPv6 addresses for:

• managementLIF and dataLIF for ONTAP NAS backends.

• managementLIF for ONTAP SAN backends. You cannot specify dataLIF on an ONTAP SAN backend.

Trident must be installed using the flag --use-ipv6 (for tridentctl installation), IPv6 (for Trident

operator), or tridentTPv6 (for Helm installation) for it to function over IPv6.

Is it possible to update the Management LIF on the backend?

Yes, it is possible to update the backend Management LIF using the tridentctl update backend

command.

Is it possible to update the Data LIF on the backend?

You can update the Data LIF on ontap-nas and ontap-nas-economy only.

Can I create multiple backends in Trident for Kubernetes?

Trident can support many backends simultaneously, either with the same driver or different drivers.

How does Trident store backend credentials?

Trident stores the backend credentials as Kubernetes Secrets.

416

https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html

How does Trident select a specific backend?

If the backend attributes cannot be used to automatically select the right pools for a class, the storagePools

and additionalStoragePools parameters are used to select a specific set of pools.

How do I ensure that Trident will not provision from a specific backend?

The excludeStoragePools parameter is used to filter the set of pools that Trident uses for provisioning and

will remove any pools that match.

If there are multiple backends of the same kind, how does Trident select which backend to use?

If there are multiple configured backends of the same type, Trident selects the appropriate backend based on

the parameters present in StorageClass and PersistentVolumeClaim. For example, if there are multiple

ontap-nas driver backends, Trident tries to match parameters in the StorageClass and

PersistentVolumeClaim combined and match a backend which can deliver the requirements listed in

StorageClass and PersistentVolumeClaim. If there are multiple backends that match the request,

Trident selects from one of them at random.

Does Trident support bi-directional CHAP with Element/SolidFire?

Yes.

How does Trident deploy Qtrees on an ONTAP volume? How many Qtrees can be deployed on a single
volume?

The ontap-nas-economy driver creates up to 200 Qtrees in the same FlexVol (configurable between 50 and

300), 100,000 Qtrees per cluster node, and 2.4M per cluster. When you enter a new

PersistentVolumeClaim that is serviced by the economy driver, the driver looks to see if a FlexVol already

exists that can service the new Qtree. If the FlexVol does not exist that can service the Qtree, a new FlexVol is

created.

How can I set Unix permissions for volumes provisioned on ONTAP NAS?

You can set Unix permissions on the volume provisioned by Trident by setting a parameter in the backend

definition file.

How can I configure an explicit set of ONTAP NFS mount options while provisioning a volume?

By default, Trident does not set mount options to any value with Kubernetes. To specify the mount options in

the Kubernetes Storage Class, follow the example given here.

How do I set the provisioned volumes to a specific export policy?

To allow the appropriate hosts access to a volume, use the exportPolicy parameter configured in the

backend definition file.

How do I set volume encryption through Trident with ONTAP?

You can set encryption on the volume provisioned by Trident by using the encryption parameter in the backend

definition file. For more information, refer to: How Trident works with NVE and NAE

417

https://github.com/NetApp/trident/blob/master/trident-installer/sample-input/storage-class-samples/storage-class-ontapnas-k8s1.8-mountoptions.yaml

What is the best way to implement QoS for ONTAP through Trident?

Use StorageClasses to implement QoS for ONTAP.

How do I specify thin or thick provisioning through Trident?

The ONTAP drivers support either thin or thick provisioning. The ONTAP drivers default to thin provisioning. If

thick provisioning is desired, you should configure either the backend definition file or the StorageClass. If

both are configured, StorageClass takes precedence. Configure the following for ONTAP:

1. On StorageClass, set the provisioningType attribute as thick.

2. In the backend definition file, enable thick volumes by setting backend spaceReserve parameter as

volume.

How do I make sure that the volumes being used are not deleted even if I accidentally delete the PVC?

PVC protection is automatically enabled on Kubernetes starting from version 1.10.

Can I grow NFS PVCs that were created by Trident?

Yes. You can expand a PVC that has been created by Trident. Note that volume autogrow is an ONTAP feature

that is not applicable to Trident.

Can I import a volume while it is in SnapMirror Data Protection (DP) or offline mode?

The volume import fails if the external volume is in DP mode or is offline. You receive the following error

message:

Error: could not import volume: volume import failed to get size of

volume: volume <name> was not found (400 Bad Request) command terminated

with exit code 1.

Make sure to remove the DP mode or put the volume online before importing

the volume.

How is resource quota translated to a NetApp cluster?

Kubernetes Storage Resource Quota should work as long as NetApp storage has capacity. When the NetApp

storage cannot honor the Kubernetes quota settings due to lack of capacity, Trident tries to provision but errors

out.

Can I create Volume Snapshots using Trident?

Yes. Creating on-demand volume snapshots and Persistent Volumes from Snapshots are supported by Trident.

To create PVs from snapshots, ensure that the VolumeSnapshotDataSource feature gate has been

enabled.

What are the drivers that support Trident volume snapshots?

As of today, on-demand snapshot support is available for our ontap-nas, ontap-nas-flexgroup, ontap-

san, ontap-san-economy, solidfire-san, gcp-cvs, and azure-netapp-files backend drivers.

418

How do I take a snapshot backup of a volume provisioned by Trident with ONTAP?

This is available on ontap-nas, ontap-san, and ontap-nas-flexgroup drivers. You can also specify a

snapshotPolicy for the ontap-san-economy driver at the FlexVol level.

This is also available on the ontap-nas-economy drivers but on the FlexVol level granularity and not on the

qtree level granularity. To enable the ability to snapshot volumes provisioned by Trident, set the backend

parameter option snapshotPolicy to the desired snapshot policy as defined on the ONTAP backend. Any

snapshots taken by the storage controller are not known by Trident.

Can I set a snapshot reserve percentage for a volume provisioned through Trident?

Yes, you can reserve a specific percentage of disk space for storing the snapshot copies through Trident by

setting the snapshotReserve attribute in the backend definition file. If you have configured

snapshotPolicy and snapshotReserve in the backend definition file, snapshot reserve percentage is set

according to the snapshotReserve percentage mentioned in the backend file. If the snapshotReserve

percentage number is not mentioned, ONTAP by default takes the snapshot reserve percentage as 5. If the

snapshotPolicy option is set to none, the snapshot reserve percentage is set to 0.

Can I directly access the volume snapshot directory and copy files?

Yes, you can access the snapshot directory on the volume provisioned by Trident by setting the snapshotDir

parameter in the backend definition file.

Can I set up SnapMirror for volumes through Trident?

Currently, SnapMirror has to be set externally by using ONTAP CLI or OnCommand System Manager.

How do I restore Persistent Volumes to a specific ONTAP snapshot?

To restore a volume to an ONTAP snapshot, perform the following steps:

1. Quiesce the application pod which is using the Persistent volume.

2. Revert to the required snapshot through ONTAP CLI or OnCommand System Manager.

3. Restart the application pod.

Can Trident provision volumes on SVMs that have a Load-Sharing Mirror configured?

Load-sharing mirrors can be created for root volumes of SVMs that serve data over NFS. ONTAP automatically

updates load-sharing mirrors for volumes that have been created by Trident. This may result in delays in

mounting volumes. When multiple volumes are created using Trident, provisioning a volume is dependent on

ONTAP updating the load-sharing mirror.

How can I separate out storage class usage for each customer/tenant?

Kubernetes does not allow storage classes in namespaces. However, you can use Kubernetes to limit usage of

a specific storage class per namespace by using Storage Resource Quotas, which are per namespace. To

deny a specific namespace access to specific storage, set the resource quota to 0 for that storage class.

Troubleshooting

Use the pointers provided here for troubleshooting issues you might encounter while

419

installing and using Trident.

General troubleshooting

• If the Trident pod fails to come up properly (for example, when the Trident pod is stuck in the

ContainerCreating phase with fewer than two ready containers), running kubectl -n trident

describe deployment trident and kubectl -n trident describe pod trident--** can

provide additional insights. Obtaining kubelet logs (for example, via journalctl -xeu kubelet) can

also be helpful.

• If there is not enough information in the Trident logs, you can try enabling the debug mode for Trident by

passing the -d flag to the install parameter based on your installation option.

Then confirm debug is set using ./tridentctl logs -n trident and searching for level=debug

msg in the log.

Installed with Operator

kubectl patch torc trident -n <namespace> --type=merge -p

'{"spec":{"debug":true}}'

This will restart all Trident pods, which can take several seconds. You can check this by observing the

'AGE' column in the output of kubectl get pod -n trident.

For Trident 20.07 and 20.10 use tprov in place of torc.

Installed with Helm

helm upgrade <name> trident-operator-21.07.1-custom.tgz --set

tridentDebug=true`

Installed with tridentctl

./tridentctl uninstall -n trident

./tridentctl install -d -n trident

• You can also obtain debug logs for each backend by including debugTraceFlags in your backend

definition. For example, include debugTraceFlags: {“api”:true, “method”:true,} to obtain API

calls and method traversals in the Trident logs. Existing backends can have debugTraceFlags

configured with a tridentctl backend update.

• When using RedHat CoreOS, ensure that iscsid is enabled on the worker nodes and started by default.

This can be done using OpenShift MachineConfigs or by modifying the ignition templates.

• A common problem you could encounter when using Trident with Azure NetApp Files is when the tenant

and client secrets come from an app registration with insufficient permissions. For a complete list of Trident

requirements, Refer to Azure NetApp Files configuration.

• If there are problems with mounting a PV to a container, ensure that rpcbind is installed and running. Use

the required package manager for the host OS and check if rpcbind is running. You can check the status

of the rpcbind service by running a systemctl status rpcbind or its equivalent.

420

https://azure.microsoft.com/en-us/services/netapp/

• If a Trident backend reports that it is in the failed state despite having worked before, it is likely caused

by changing the SVM/admin credentials associated with the backend. Updating the backend information

using tridentctl update backend or bouncing the Trident pod will fix this issue.

• If you encounter permission issues when installing Trident with Docker as the container runtime, attempt

the installation of Trident with the --in cluster=false flag. This will not use an installer pod and avoid

permission troubles seen due to the trident-installer user.

• Use the uninstall parameter <Uninstalling Trident> for cleaning up after a failed run. By

default, the script does not remove the CRDs that have been created by Trident, making it safe to uninstall

and install again even in a running deployment.

• If you want to downgrade to an earlier version of Trident, first run the tridentctl uninstall command

to remove Trident. Download the desired Trident version and install using the tridentctl install

command.

• After a successful install, if a PVC is stuck in the Pending phase, running kubectl describe pvc can

provide additional information about why Trident failed to provision a PV for this PVC.

Unsuccessful Trident deployment using the operator

If you are deploying Trident using the operator, the status of TridentOrchestrator changes from

Installing to Installed. If you observe the Failed status, and the operator is unable to recover by itself,

you should check the logs of the operator by running following command:

tridentctl logs -l trident-operator

Trailing the logs of the trident-operator container can point to where the problem lies. For example, one such

issue could be the inability to pull the required container images from upstream registries in an airgapped

environment.

To understand why the installation of Trident was unsuccessful, you

should take a look at the TridentOrchestrator status.

421

https://github.com/NetApp/trident/releases

kubectl describe torc trident-2

Name: trident-2

Namespace:

Labels: <none>

Annotations: <none>

API Version: trident.netapp.io/v1

Kind: TridentOrchestrator

...

Status:

 Current Installation Params:

 IPv6:

 Autosupport Hostname:

 Autosupport Image:

 Autosupport Proxy:

 Autosupport Serial Number:

 Debug:

 Image Pull Secrets: <nil>

 Image Registry:

 k8sTimeout:

 Kubelet Dir:

 Log Format:

 Silence Autosupport:

 Trident Image:

 Message: Trident is bound to another CR 'trident'

 Namespace: trident-2

 Status: Error

 Version:

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Warning Error 16s (x2 over 16s) trident-operator.netapp.io Trident

is bound to another CR 'trident'

This error indicates that there already exists a TridentOrchestrator

that was used to install Trident. Since each Kubernetes cluster can only

have one instance of Trident, the operator ensures that at any given

time there only exists one active TridentOrchestrator that it can

create.

In addition, observing the status of the Trident pods can often indicate if something is not right.

422

kubectl get pods -n trident

NAME READY STATUS RESTARTS

AGE

trident-csi-4p5kq 1/2 ImagePullBackOff 0

5m18s

trident-csi-6f45bfd8b6-vfrkw 4/5 ImagePullBackOff 0

5m19s

trident-csi-9q5xc 1/2 ImagePullBackOff 0

5m18s

trident-csi-9v95z 1/2 ImagePullBackOff 0

5m18s

trident-operator-766f7b8658-ldzsv 1/1 Running 0

8m17s

You can clearly see that the pods are not able to initialize completely

because one or more container images were not fetched.

To address the problem, you should edit the TridentOrchestrator CR.

Alternatively, you can delete TridentOrchestrator, and create a new

one with the modified and accurate definition.

Unsuccessful Trident deployment using tridentctl

To help figure out what went wrong, you could run the installer again using the -d argument, which will turn on

debug mode and help you understand what the problem is:

./tridentctl install -n trident -d

After addressing the problem, you can clean up the installation as follows, and then run the tridentctl

install command again:

./tridentctl uninstall -n trident

INFO Deleted Trident deployment.

INFO Deleted cluster role binding.

INFO Deleted cluster role.

INFO Deleted service account.

INFO Removed Trident user from security context constraint.

INFO Trident uninstallation succeeded.

Completely remove Trident and CRDs

You can completely remove Trident and all created CRDs and associated custom resources.

423

This cannot be undone. Do not do this unless you want a completely fresh installation of Trident.

To uninstall Trident without removing CRDs, refer to Uninstall Trident.

Trident operator

To uninstall Trident and completely remove CRDs using the Trident operator:

kubectl patch torc <trident-orchestrator-name> --type=merge -p

'{"spec":{"wipeout":["crds"],"uninstall":true}}'

Helm

To uninstall Trident and completely remove CRDs using Helm:

kubectl patch torc trident --type=merge -p

'{"spec":{"wipeout":["crds"],"uninstall":true}}'

tridentctl

To completely remove CRDs after uninstalling Trident using tridentctl

tridentctl obliviate crd

NVMe node unstaging failure with RWX raw block namespaces o Kubernetes 1.26

If you are running Kubernetes 1.26, node unstaging might fail when using NVMe/TCP with RWX raw block

namespaces. The following scenarios provide workaround to the failure. Alternatively, you can upgrade

Kubernetes to 1.27.

Deleted the namespace and pod

Consider a scenario where you have a Trident managed namespace (NVMe persistent volume) attached to a

pod. If you delete the namespace directly from the ONTAP backend, the unstaging process gets stuck after

you attempt to delete the pod. This scenario does not impact the Kubernetes cluster or other functioning.

Workaround

Unmount the persistent volume (corresponding to that namespace) from the respective node and delete it.

Blocked dataLIFs

If you block (or bring down) all the dataLIFs of the NVMe Trident backend,

the unstaging process gets stuck when you attempt to delete the pod. In

this scenario, you cannot run any NVMe CLI commands on the Kubernetes

node.

424

Workaround

Bring up the dataLIFS to restore full functionality.

Deleted namespace mapping

If you remove the `hostNQN` of the worker node from the corresponding

subsystem, the unstaging process gets stuck when you attempt to delete the

pod. In this scenario, you cannot run any NVMe CLI commands on the

Kubernetes node.

Workaround

Add the hostNQN back to the subsystem.

Support

NetApp provides support for Trident in a variety of ways. Extensive free self-support

options are available 24x7, such as knowledgebase (KB) articles and a Discord channel.

Trident support lifecycle

Trident provides three levels of support based on your version. Refer to NetApp software version support for

definitions.

Full support

Trident provides full support for twelve months from the release date.

Limited support

Trident provides limited support for months 13 - 24 from the release date.

Self-support

Trident documentation is available for months 25 - 36 from the release date.

Table 1. Trident version support schedule

Version Full support Limited support Self-support

24.10 October 2025 October 2026 October 2027

24.06 June 2025 June 2026 June 2027

24.02 February 2025 February 2026 February 2027

23.10 October 2024 October 2025 October 2026

23.07 July 2024 July 2025 July 2026

23.04  —  April 2025 April 2026

425

https://mysupport.netapp.com/site/info/version-support
https://mysupport.netapp.com/site/info/version-support
https://docs.netapp.com/us-en/trident/index.html
https://docs.netapp.com/us-en/trident-2406/index.html
https://docs.netapp.com/us-en/trident-2402/index.html
https://docs.netapp.com/us-en/trident-2310/index.html
https://docs.netapp.com/us-en/trident-2307/index.html
https://docs.netapp.com/us-en/trident-2304/index.html

Version Full support Limited support Self-support

23.01  —  January 2025 January 2026

22.10  —  October 2024 October 2025

22.07  —  July 2024 July 2025

22.04  —   —  April 2025

22.01  —   —  January 2025

Self-support

For a comprehensive list of troubleshooting articles, Refer to NetApp Knowledgebase (login required).

Community support

There is a vibrant public community of container users (including Trident developers) on our Discord channel.

This is a great place to ask general questions about the project and discuss related topics with like-minded

peers.

NetApp technical support

For help with Trident, create a support bundle using tridentctl logs -a -n trident and send it to

NetApp Support <Getting Help>.

For more information

• Trident resources

• Kubernetes Hub

426

https://docs.netapp.com/us-en/trident-2301/index.html
https://docs.netapp.com/us-en/trident-2210/index.html
https://docs.netapp.com/us-en/trident-2207/index.html
https://docs.netapp.com/us-en/trident-2204/index.html
https://docs.netapp.com/us-en/trident-2201/index.html
https://kb.netapp.com/Advice_and_Troubleshooting/Cloud_Services/Trident_Kubernetes
https://discord.gg/NetApp
https://github.com/NetApp/trident
https://cloud.netapp.com/kubernetes-hub

Reference

Trident ports

Learn more about the ports that Trident uses for communication.

Trident ports

Trident communicates over the following ports:

Port Purpose

8443 Backchannel HTTPS

8001 Prometheus metrics endpoint

8000 Trident REST server

17546 Liveness/readiness probe port used by Trident daemonset pods

The liveness/readiness probe port can be changed during installation using the --probe-port

flag. It is important to make sure this port isn’t being used by another process on the worker

nodes.

Trident REST API

While tridentctl commands and options are the easiest way to interact with the Trident

REST API, you can use the REST endpoint directly if you prefer.

When to use the REST API

REST API is useful for advanced installations that use Trident as a standalone binary in non-Kubernetes

deployments.

For better security, the Trident REST API is restricted to localhost by default when running inside a pod. To

change this behavior, you need to set Trident’s -address argument in its pod configuration.

Using REST API

For examples of how these APIs are called, pass the debug (-d) flag. For more information, refer to Manage

Trident using tridentctl.

The API works as follows:

GET

GET <trident-address>/trident/v1/<object-type>

Lists all objects of that type.

427

https://docs.netapp.com/us-en/trident/trident-reference/tridentctl.html

GET <trident-address>/trident/v1/<object-type>/<object-name>

Gets the details of the named object.

POST

POST <trident-address>/trident/v1/<object-type>

Creates an object of the specified type.

• Requires a JSON configuration for the object to be created. For the specification of each object type,

refer to Manage Trident using tridentctl.

• If the object already exists, behavior varies: backends update the existing object, while all other object

types will fail the operation.

DELETE

DELETE <trident-address>/trident/v1/<object-type>/<object-name>

Deletes the named resource.

Volumes associated with backends or storage classes will continue to exist; these must be

deleted separately. For more information, refer to Manage Trident using tridentctl.

Command-line options

Trident exposes several command-line options for the Trident orchestrator. You can use

these options to modify your deployment.

Logging

-debug

Enables debugging output.

-loglevel <level>

Sets the logging level (debug, info, warn, error, fatal). Defaults to info.

Kubernetes

-k8s_pod

Use this option or -k8s_api_server to enable Kubernetes support. Setting this causes Trident to use its

containing pod’s Kubernetes service account credentials to contact the API server. This only works when

Trident runs as a pod in a Kubernetes cluster with service accounts enabled.

-k8s_api_server <insecure-address:insecure-port>

Use this option or -k8s_pod to enable Kubernetes support. When specified, Trident connects to the

Kubernetes API server using the provided insecure address and port. This Enables Trident to be deployed

outside of a pod; however, it only supports insecure connections to the API server. To connect securely,

deploy Trident in a pod with the -k8s_pod option.

428

Docker

-volume_driver <name>

Driver name used when registering the Docker plugin. Defaults to netapp.

-driver_port <port-number>

Listen on this port rather than a UNIX domain socket.

-config <file>

Required; you must specify this path to a backend configuration file.

REST

-address <ip-or-host>

Specifies the address on which Trident’s REST server should listen. Defaults to localhost. When listening

on localhost and running inside a Kubernetes pod, the REST interface isn’t directly accessible from outside

the pod. Use -address "" to make the REST interface accessible from the pod IP address.

Trident REST interface can be configured to listen and serve at 127.0.0.1 (for IPv4) or [::1]

(for IPv6) only.

-port <port-number>

Specifies the port on which Trident’s REST server should listen. Defaults to 8000.

-rest

Enables the REST interface. Defaults to true.

Kubernetes and Trident objects

You can interact with Kubernetes and Trident using REST APIs by reading and writing

resource objects. There are several resource objects that dictate the relationship between

Kubernetes and Trident, Trident and storage, and Kubernetes and storage. Some of

these objects are managed through Kubernetes and the others are managed through

Trident.

How do the objects interact with one another?

Perhaps the easiest way to understand the objects, what they are for, and how they interact, is to follow a

single request for storage from a Kubernetes user:

1. A user creates a PersistentVolumeClaim requesting a new PersistentVolume of a particular size

from a Kubernetes StorageClass that was previously configured by the administrator.

2. The Kubernetes StorageClass identifies Trident as its provisioner and includes parameters that tell

Trident how to provision a volume for the requested class.

3. Trident looks at its own StorageClass with the same name that identifies the matching Backends and

StoragePools that it can use to provision volumes for the class.

4. Trident provisions storage on a matching backend and creates two objects: a PersistentVolume in

429

Kubernetes that tells Kubernetes how to find, mount, and treat the volume, and a volume in Trident that

retains the relationship between the PersistentVolume and the actual storage.

5. Kubernetes binds the PersistentVolumeClaim to the new PersistentVolume. Pods that include the

PersistentVolumeClaim mount that PersistentVolume on any host that it runs on.

6. A user creates a VolumeSnapshot of an existing PVC, using a VolumeSnapshotClass that points to

Trident.

7. Trident identifies the volume that is associated with the PVC and creates a snapshot of the volume on its

backend. It also creates a VolumeSnapshotContent that instructs Kubernetes on how to identify the

snapshot.

8. A user can create a PersistentVolumeClaim using VolumeSnapshot as the source.

9. Trident identifies the required snapshot and performs the same set of steps involved in creating a

PersistentVolume and a Volume.

For further reading about Kubernetes objects, we highly recommend that you read the

Persistent Volumes section of the Kubernetes documentation.

Kubernetes PersistentVolumeClaim objects

A Kubernetes PersistentVolumeClaim object is a request for storage made by a Kubernetes cluster user.

In addition to the standard specification, Trident allows users to specify the following volume-specific

annotations if they want to override the defaults that you set in the backend configuration:

Annotation Volume Option Supported Drivers

trident.netapp.io/fileSystem fileSystem ontap-san, solidfire-san,ontap-san-

economy

trident.netapp.io/cloneFromPVC cloneSourceVolume ontap-nas,

ontap-san, solidfire-san, azure-

netapp-files, gcp-cvs,

ontap-san-economy

trident.netapp.io/splitOnClone splitOnClone ontap-nas, ontap-san

trident.netapp.io/protocol protocol any

trident.netapp.io/exportPolicy exportPolicy ontap-nas,

ontap-nas-economy, ontap-nas-

flexgroup

trident.netapp.io/snapshotPolicy snapshotPolicy ontap-nas,

ontap-nas-economy, ontap-nas-

flexgroup, ontap-san

trident.netapp.io/snapshotReserve snapshotReserve ontap-nas,

ontap-nas-flexgroup, ontap-san,

gcp-cvs

trident.netapp.io/snapshotDirectory snapshotDirectory ontap-nas,

ontap-nas-economy, ontap-nas-

flexgroup

430

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Annotation Volume Option Supported Drivers

trident.netapp.io/unixPermissions unixPermissions ontap-nas,

ontap-nas-economy, ontap-nas-

flexgroup

trident.netapp.io/blockSize blockSize solidfire-san

If the created PV has the Delete reclaim policy, Trident deletes both the PV and the backing volume when the

PV becomes released (that is, when the user deletes the PVC). Should the delete action fail, Trident marks the

PV as such and periodically retries the operation until it succeeds or the PV is manually deleted. If the PV uses

the Retain policy, Trident ignores it and assumes the administrator will clean it up from Kubernetes and the

backend, allowing the volume to be backed up or inspected before its removal. Note that deleting the PV does

not cause Trident to delete the backing volume. You should remove it using the REST API (tridentctl).

Trident supports the creation of Volume Snapshots using the CSI specification: you can create a Volume

Snapshot and use it as a Data Source to clone existing PVCs. This way, point-in-time copies of PVs can be

exposed to Kubernetes in the form of snapshots. The snapshots can then be used to create new PVs. Take a

look at On-Demand Volume Snapshots to see how this would work.

Trident also provides the cloneFromPVC and splitOnClone annotations for creating clones. You can use

these annotations to clone a PVC without having to use the CSI implementation.

Here is an example: If a user already has a PVC called mysql, the user can create a new PVC called

mysqlclone by using the annotation, such as trident.netapp.io/cloneFromPVC: mysql. With this

annotation set, Trident clones the volume corresponding to the mysql PVC, instead of provisioning a volume

from scratch.

Consider the following points:

• We recommend cloning an idle volume.

• A PVC and its clone should be in the same Kubernetes namespace and have the same storage class.

• With the ontap-nas and ontap-san drivers, it might be desirable to set the PVC annotation

trident.netapp.io/splitOnClone in conjunction with trident.netapp.io/cloneFromPVC. With

trident.netapp.io/splitOnClone set to true, Trident splits the cloned volume from the parent

volume and thus, completely decoupling the life cycle of the cloned volume from its parent at the expense

of losing some storage efficiency. Not setting trident.netapp.io/splitOnClone or setting it to

false results in reduced space consumption on the backend at the expense of creating dependencies

between the parent and clone volumes such that the parent volume cannot be deleted unless the clone is

deleted first. A scenario where splitting the clone makes sense is cloning an empty database volume where

it’s expected for the volume and its clone to greatly diverge and not benefit from storage efficiencies offered

by ONTAP.

The sample-input directory contains examples of PVC definitions for use with Trident. Refer to Trident

Volume objects for a full description of the parameters and settings associated with Trident volumes.

Kubernetes PersistentVolume objects

A Kubernetes PersistentVolume object represents a piece of storage that is made available to the

Kubernetes cluster. It has a lifecycle that is independent of the pod that uses it.

431

Trident creates PersistentVolume objects and registers them with the Kubernetes cluster

automatically based on the volumes that it provisions. You are not expected to manage them

yourself.

When you create a PVC that refers to a Trident-based StorageClass, Trident provisions a new volume using

the corresponding storage class and registers a new PV for that volume. In configuring the provisioned volume

and corresponding PV, Trident follows the following rules:

• Trident generates a PV name for Kubernetes and an internal name that it uses to provision the storage. In

both cases, it is assuring that the names are unique in their scope.

• The size of the volume matches the requested size in the PVC as closely as possible, though it might be

rounded up to the nearest allocatable quantity, depending on the platform.

Kubernetes StorageClass objects

Kubernetes StorageClass objects are specified by name in PersistentVolumeClaims to provision

storage with a set of properties. The storage class itself identifies the provisioner to be used and defines that

set of properties in terms the provisioner understands.

It is one of two basic objects that need to be created and managed by the administrator. The other is the

Trident backend object.

A Kubernetes StorageClass object that uses Trident looks like this:

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: <Name>

provisioner: csi.trident.netapp.io

mountOptions: <Mount Options>

parameters:

 <Trident Parameters>

allowVolumeExpansion: true

volumeBindingMode: Immediate

These parameters are Trident-specific and tell Trident how to provision volumes for the class.

The storage class parameters are:

Attribute Type Required Description

attributes map[string]string no See the attributes section

below

storagePools map[string]StringList no Map of backend names to

lists

of storage pools within

432

Attribute Type Required Description

additionalStoragePools map[string]StringList no Map of backend names

to lists of storage pools

within

excludeStoragePools map[string]StringList no Map of backend names to

lists of storage pools

within

Storage attributes and their possible values can be classified into storage pool selection attributes and

Kubernetes attributes.

Storage pool selection attributes

These parameters determine which Trident-managed storage pools should be utilized to provision volumes of

a given type.

Attribute Type Values Offer Request Supported by

media1 string hdd, hybrid, ssd Pool contains

media of this

type; hybrid

means both

Media type

specified

ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroup,

ontap-san,

solidfire-san

provisioningType string thin, thick Pool supports

this provisioning

method

Provisioning

method specified

thick: all ontap;

thin: all ontap &

solidfire-san

backendType string ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroup,

ontap-san,

solidfire-san,

gcp-cvs, azure-

netapp-files,

ontap-san-

economy

Pool belongs to

this type of

backend

Backend

specified

All drivers

snapshots bool true, false Pool supports

volumes with

snapshots

Volume with

snapshots

enabled

ontap-nas,

ontap-san,

solidfire-san,

gcp-cvs

clones bool true, false Pool supports

cloning volumes

Volume with

clones enabled

ontap-nas,

ontap-san,

solidfire-san,

gcp-cvs

433

Attribute Type Values Offer Request Supported by

encryption bool true, false Pool supports

encrypted

volumes

Volume with

encryption

enabled

ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroups,

ontap-san

IOPS int positive integer Pool is capable

of guaranteeing

IOPS in this

range

Volume

guaranteed

these IOPS

solidfire-san

1: Not supported by ONTAP Select systems

In most cases, the values requested directly influence provisioning; for instance, requesting thick provisioning

results in a thickly provisioned volume. However, an Element storage pool uses its offered IOPS minimum and

maximum to set QoS values, rather than the requested value. In this case, the requested value is used only to

select the storage pool.

Ideally, you can use attributes alone to model the qualities of the storage you need to satisfy the needs of a

particular class. Trident automatically discovers and selects storage pools that match all of the attributes

that you specify.

If you find yourself unable to use attributes to automatically select the right pools for a class, you can use

the storagePools and additionalStoragePools parameters to further refine the pools or even to select

a specific set of pools.

You can use the storagePools parameter to further restrict the set of pools that match any specified

attributes. In other words, Trident uses the intersection of pools identified by the attributes and

storagePools parameters for provisioning. You can use either parameter alone or both together.

You can use the additionalStoragePools parameter to extend the set of pools that Trident uses for

provisioning, regardless of any pools selected by the attributes and storagePools parameters.

You can use the excludeStoragePools parameter to filter the set of pools that Trident uses for provisioning.

Using this parameter removes any pools that match.

In the storagePools and additionalStoragePools parameters, each entry takes the form

<backend>:<storagePoolList>, where <storagePoolList> is a comma-separated list of storage pools

for the specified backend. For example, a value for additionalStoragePools might look like

ontapnas_192.168.1.100:aggr1,aggr2;solidfire_192.168.1.101:bronze.

These lists accept regex values for both the backend and list values. You can use tridentctl get

backend to get the list of backends and their pools.

Kubernetes attributes

These attributes have no impact on the selection of storage pools/backends by Trident during dynamic

provisioning. Instead, these attributes simply supply parameters supported by Kubernetes Persistent Volumes.

Worker nodes are responsible for filesystem create operations and might require filesystem utilities, such as

xfsprogs.

434

Attribute Type Values Description Relevant

Drivers
Kubernetes

Version

fsType string ext4, ext3, xfs The file system

type for block

volumes

solidfire-san,

ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroup,

ontap-san,

ontap-san-

economy

All

allowVolumeExp

ansion

boolean true, false Enable or

disable support

for growing the

PVC size

ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroup,

ontap-san,

ontap-san-

economy,

solidfire-san,

gcp-cvs, azure-

netapp-files

1.11+

volumeBindingM

ode

string Immediate,

WaitForFirstCon

sumer

Choose when

volume binding

and dynamic

provisioning

occurs

All 1.19 - 1.26

• The fsType parameter is used to control the desired file system type for SAN LUNs. In

addition, Kubernetes also uses the presence of fsType in a storage class to indicate a

filesystem exists. Volume ownership can be controlled using the fsGroup security context

of a pod only if fsType is set. Refer to Kubernetes: Configure a Security Context for a Pod

or Container for an overview on setting volume ownership using the fsGroup context.

Kubernetes will apply the fsGroup value only if:

◦ fsType is set in the storage class.

◦ The PVC access mode is RWO.

For NFS storage drivers, a filesystem already exists as part of the NFS export. In order to

use fsGroup the storage class still needs to specify a fsType. You can set it to nfs or any

non-null value.

• Refer to Expand volumes for further details on volume expansion.

• The Trident installer bundle provides several example storage class definitions for use with

Trident in sample-input/storage-class-*.yaml. Deleting a Kubernetes storage class

causes the corresponding Trident storage class to be deleted as well.

Kubernetes VolumeSnapshotClass objects

Kubernetes VolumeSnapshotClass objects are analogous to StorageClasses. They help define multiple

classes of storage and are referenced by volume snapshots to associate the snapshot with the required

snapshot class. Each volume snapshot is associated with a single volume snapshot class.

435

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://docs.netapp.com/us-en/trident/trident-use/vol-expansion.html

A VolumeSnapshotClass should be defined by an administrator in order to create snapshots. A volume

snapshot class is created with the following definition:

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

 name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

The driver specifies to Kubernetes that requests for volume snapshots of the csi-snapclass class are

handled by Trident. The deletionPolicy specifies the action to be taken when a snapshot must be deleted.

When deletionPolicy is set to Delete, the volume snapshot objects as well as the underlying snapshot on

the storage cluster are removed when a snapshot is deleted. Alternatively, setting it to Retain means that

VolumeSnapshotContent and the physical snapshot are retained.

Kubernetes VolumeSnapshot objects

A Kubernetes VolumeSnapshot object is a request to create a snapshot of a volume. Just as a PVC

represents a request made by a user for a volume, a volume snapshot is a request made by a user to create a

snapshot of an existing PVC.

When a volume snapshot request comes in, Trident automatically manages the creation of the snapshot for the

volume on the backend and exposes the snapshot by creating a unique

VolumeSnapshotContent object. You can create snapshots from existing PVCs and use the snapshots as a

DataSource when creating new PVCs.

The lifecyle of a VolumeSnapshot is independent of the source PVC: a snapshot persists even

after the source PVC is deleted. When deleting a PVC which has associated snapshots, Trident

marks the backing volume for this PVC in a Deleting state, but does not remove it completely.

The volume is removed when all the associated snapshots are deleted.

Kubernetes VolumeSnapshotContent objects

A Kubernetes VolumeSnapshotContent object represents a snapshot taken from an already provisioned

volume. It is analogous to a PersistentVolume and signifies a provisioned snapshot on the storage cluster.

Similar to PersistentVolumeClaim and PersistentVolume objects, when a snapshot is created, the

VolumeSnapshotContent object maintains a one-to-one mapping to the VolumeSnapshot object, which

had requested the snapshot creation.

The VolumeSnapshotContent object contains details that uniquely identify the snapshot, such as the

snapshotHandle. This snapshotHandle is a unique combination of the name of the PV and the name of

the VolumeSnapshotContent object.

When a snapshot request comes in, Trident creates the snapshot on the backend. After the snapshot is

created, Trident configures a VolumeSnapshotContent object and thus exposes the snapshot to the

Kubernetes API.

436

Typically, you do not need to manage the VolumeSnapshotContent object. An exception to

this is when you want to import a volume snapshot created outside of Trident.

Kubernetes CustomResourceDefinition objects

Kubernetes Custom Resources are endpoints in the Kubernetes API that are defined by the administrator and

are used to group similar objects. Kubernetes supports the creation of custom resources for storing a collection

of objects. You can obtain these resource definitions by running kubectl get crds.

Custom Resource Definitions (CRDs) and their associated object metadata are stored by Kubernetes in its

metadata store. This eliminates the need for a separate store for Trident.

Trident uses CustomResourceDefinition objects to preserve the identity of Trident objects, such as

Trident backends, Trident storage classes, and Trident volumes. These objects are managed by Trident. In

addition, the CSI volume snapshot framework introduces some CRDs that are required to define volume

snapshots.

CRDs are a Kubernetes construct. Objects of the resources defined above are created by Trident. As a simple

example, when a backend is created using tridentctl, a corresponding tridentbackends CRD object is

created for consumption by Kubernetes.

Here are a few points to keep in mind about Trident’s CRDs:

• When Trident is installed, a set of CRDs are created and can be used like any other resource type.

• When uninstalling Trident by using the tridentctl uninstall command, Trident pods are deleted but

the created CRDs are not cleaned up. Refer to Uninstall Trident to understand how Trident can be

completely removed and reconfigured from scratch.

Trident StorageClass objects

Trident creates matching storage classes for Kubernetes StorageClass objects that specify

csi.trident.netapp.io in their provisioner field. The storage class name matches that of the Kubernetes

StorageClass object it represents.

With Kubernetes, these objects are created automatically when a Kubernetes StorageClass

that uses Trident as a provisioner is registered.

Storage classes comprise a set of requirements for volumes. Trident matches these requirements with the

attributes present in each storage pool; if they match, that storage pool is a valid target for provisioning

volumes using that storage class.

You can create storage class configurations to directly define storage classes by using the REST API.

However, for Kubernetes deployments, we expect them to be created when registering new Kubernetes

StorageClass objects.

Trident backend objects

Backends represent the storage providers on top of which Trident provisions volumes; a single Trident instance

can manage any number of backends.

437

This is one of the two object types that you create and manage yourself. The other is the

Kubernetes StorageClass object.

For more information about how to construct these objects, refer to configuring backends.

Trident StoragePool objects

Storage pools represent the distinct locations available for provisioning on each backend. For ONTAP, these

correspond to aggregates in SVMs. For NetApp HCI/SolidFire, these correspond to administrator-specified

QoS bands. For Cloud Volumes Service, these correspond to cloud provider regions. Each storage pool has a

set of distinct storage attributes, which define its performance characteristics and data protection

characteristics.

Unlike the other objects here, storage pool candidates are always discovered and managed automatically.

Trident Volume objects

Volumes are the basic unit of provisioning, comprising backend endpoints, such as NFS shares and iSCSI

LUNs. In Kubernetes, these correspond directly to PersistentVolumes. When you create a volume, ensure

that it has a storage class, which determines where that volume can be provisioned, along with a size.

• In Kubernetes, these objects are managed automatically. You can view them to see what

Trident provisioned.

• When deleting a PV with associated snapshots, the corresponding Trident volume is

updated to a Deleting state. For the Trident volume to be deleted, you should remove the

snapshots of the volume.

A volume configuration defines the properties that a provisioned volume should have.

Attribute Type Required Description

version string no Version of the Trident API

("1")

name string yes Name of volume to create

storageClass string yes Storage class to use when

provisioning the volume

size string yes Size of the volume to

provision in bytes

protocol string no Protocol type to use; "file"

or "block"

internalName string no Name of the object on the

storage system;

generated by Trident

cloneSourceVolume string no ontap (nas, san) &

solidfire-*: Name of the

volume to clone from

splitOnClone string no ontap (nas, san): Split the

clone from its parent

438

Attribute Type Required Description

snapshotPolicy string no ontap-*: Snapshot policy

to use

snapshotReserve string no ontap-*: Percentage of

volume reserved for

snapshots

exportPolicy string no ontap-nas*: Export policy

to use

snapshotDirectory bool no ontap-nas*: Whether the

snapshot directory is

visible

unixPermissions string no ontap-nas*: Initial UNIX

permissions

blockSize string no solidfire-*: Block/sector

size

fileSystem string no File system type

Trident generates internalName when creating the volume. This consists of two steps. First, it prepends the

storage prefix (either the default trident or the prefix in the backend configuration) to the volume name,

resulting in a name of the form <prefix>-<volume-name>. It then proceeds to sanitize the name, replacing

characters not permitted in the backend. For ONTAP backends, it replaces hyphens with underscores (thus,

the internal name becomes <prefix>_<volume-name>). For Element backends, it replaces underscores

with hyphens.

You can use volume configurations to directly provision volumes using the REST API, but in Kubernetes

deployments we expect most users to use the standard Kubernetes PersistentVolumeClaim method.

Trident creates this volume object automatically as part of the provisioning

process.

Trident Snapshot objects

Snapshots are a point-in-time copy of volumes, which can be used to provision new volumes or restore state.

In Kubernetes, these correspond directly to VolumeSnapshotContent objects. Each snapshot is associated

with a volume, which is the source of the data for the snapshot.

Each Snapshot object includes the properties listed below:

Attribute Type Required Description

version String Yes Version of the Trident API

("1")

name String Yes Name of the Trident

snapshot object

internalName String Yes Name of the Trident

snapshot object on the

storage system

439

Attribute Type Required Description

volumeName String Yes Name of the Persistent

Volume for which the

snapshot is created

volumeInternalName String Yes Name of the associated

Trident volume object on

the storage system

In Kubernetes, these objects are managed automatically. You can view them to see what Trident

provisioned.

When a Kubernetes VolumeSnapshot object request is created, Trident works by creating a snapshot object

on the backing storage system. The internalName of this snapshot object is generated by combining the

prefix snapshot- with the UID of the VolumeSnapshot object (for example, snapshot-e8d8a0ca-9826-

11e9-9807-525400f3f660). volumeName and volumeInternalName are populated by getting the details

of the backing

volume.

Trident ResourceQuota object

The Trident deamonset consumes a system-node-critical Priority Class—the highest Priority Class

available in Kubernetes—to ensure Trident can identify and clean up volumes during graceful node shutdown

and allow Trident daemonset pods to preempt workloads with a lower priority in clusters where there is high

resource pressure.

To accomplish this, Trident employs a ResourceQuota object to ensure a "system-node-critical" Priority Class

on the Trident daemonset is satisfied. Prior to deployment and daemonset creation, Trident looks for the

ResourceQuota object and, if not discovered, applies it.

If you need more control over the default Resource Quota and Priority Class, you can generate a

custom.yaml or configure the ResourceQuota object using Helm chart.

The following is an example of a `ResourceQuota`object prioritizing the Trident daemonset.

apiVersion: <version>

kind: ResourceQuota

metadata:

 name: trident-csi

 labels:

 app: node.csi.trident.netapp.io

spec:

 scopeSelector:

 matchExpressions:

 - operator : In

 scopeName: PriorityClass

 values: ["system-node-critical"]

For more information on Resource Quotas, refer to Kubernetes: Resource Quotas.

440

https://kubernetes.io/docs/concepts/policy/resource-quotas/

Clean up ResourceQuota if installation fails

In the rare case where installation fails after the ResourceQuota object is created, first try uninstalling and

then reinstall.

If that doesn’t work, manually remove the ResourceQuota object.

Remove ResourceQuota

If you prefer to control your own resource allocation, you can remove the Trident ResourceQuota object using

the command:

kubectl delete quota trident-csi -n trident

Pod Security Standards (PSS) and Security Context
Constraints (SCC)

Kubernetes Pod Security Standards (PSS) and Pod Security Policies (PSP) define

permission levels and restrict the behavior of pods. OpenShift Security Context

Constraints (SCC) similarly define pod restriction specific to the OpenShift Kubernetes

Engine. To provide this customization, Trident enables certain permissions during

installation. The following sections detail the permissions set by Trident.

PSS replaces Pod Security Policies (PSP). PSP was deprecated in Kubernetes v1.21 and will

be removed in v1.25. For more information, Refer to Kubernetes: Security.

Required Kubernetes Security Context and Related Fields

Permission Description

Privileged CSI requires mount points to be Bidirectional, which

means the Trident node pod must run a privileged

container. For more information, refer to Kubernetes:

Mount propagation.

Host networking Required for the iSCSI daemon. iscsiadm manages

iSCSI mounts and uses host networking to

communicate with the iSCSI daemon.

Host IPC NFS uses interprocess communication (IPC) to

communicate with the NFSD.

Host PID Required to start rpc-statd for NFS. Trident queries

host processes to determine if rpc-statd is running

before mounting NFS volumes.

441

https://kubernetes.io/docs/concepts/security/
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation

Permission Description

Capabilities The SYS_ADMIN capability is provided as part of the

default capabilities for privileged containers. For

example, Docker sets these capabilities for privileged

containers:

CapPrm: 0000003fffffffff

CapEff: 0000003fffffffff

Seccomp Seccomp profile is always "Unconfined" in privileged

containers; therefore, it cannot be enabled in Trident.

SELinux On OpenShift, privileged containers are run in the

spc_t ("Super Privileged Container") domain, and

unprivileged containers are run in the container_t

domain. On containerd, with container-

selinux installed, all containers are run in the spc_t

domain, which effectively disables SELinux.

Therefore, Trident does not add seLinuxOptions to

containers.

DAC Privileged containers must be run as root. Non-

privileged containers run as root to access unix

sockets required by CSI.

Pod Security Standards (PSS)

Label Description Default

pod-

security.kubernetes.io/enf

orce

pod-

security.kubernetes.io/enf

orce-version

Allows the Trident Controller and

nodes to be admitted into the install

namespace.

Do not change the namespace

label.

enforce: privileged

enforce-version: <version

of the current cluster or

highest version of PSS

tested.>

Changing the namespace labels can result in pods not being scheduled, an "Error creating: …"

or, "Warning: trident-csi-…". If this happens, check if the namespace label for privileged was

changed. If so, reinstall Trident.

Pod Security Policies (PSP)

Field Description Default

allowPrivilegeEscalation Privileged containers must allow

privilege escalation.
true

allowedCSIDrivers Trident does not use inline CSI

ephemeral volumes.

Empty

442

Field Description Default

allowedCapabilities Non-privileged Trident containers

do not require more capabilities

than the default set and privileged

containers are granted all possible

capabilities.

Empty

allowedFlexVolumes Trident does not make use of a

FlexVolume driver, therefore they

are not included in the list of

allowed volumes.

Empty

allowedHostPaths The Trident node pod mounts the

node’s root filesystem, therefore

there is no benefit to setting this list.

Empty

allowedProcMountTypes Trident does not use any

ProcMountTypes.

Empty

allowedUnsafeSysctls Trident does not require any unsafe

sysctls.

Empty

defaultAddCapabilities No capabilities are required to be

added to privileged containers.

Empty

defaultAllowPrivilegeEscal

ation

Allowing privilege escalation is

handled in each Trident pod.
false

forbiddenSysctls No sysctls are allowed. Empty

fsGroup Trident containers run as root. RunAsAny

hostIPC Mounting NFS volumes requires

host IPC to communicate with

nfsd

true

hostNetwork iscsiadm requires the host network

to communicate with the iSCSI

daemon.

true

hostPID Host PID is required to check if

rpc-statd is running on the node.
true

hostPorts Trident does not use any host

ports.

Empty

privileged Trident node pods must run a

privileged container in order to

mount volumes.

true

readOnlyRootFilesystem Trident node pods must write to the

node filesystem.
false

requiredDropCapabilities Trident node pods run a privileged

container and cannot drop

capabilities.

none

runAsGroup Trident containers run as root. RunAsAny

runAsUser Trident containers run as root. runAsAny

443

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-storage/flexvolume.md

Field Description Default

runtimeClass Trident does not use

RuntimeClasses.

Empty

seLinux Trident does not set

seLinuxOptions because there

are currently differences in how

container runtimes and Kubernetes

distributions handle SELinux.

Empty

supplementalGroups Trident containers run as root. RunAsAny

volumes Trident pods require these volume

plugins.
hostPath, projected,

emptyDir

Security Context Constraints (SCC)

Labels Description Default

allowHostDirVolumePlugin Trident node pods mount the

node’s root filesystem.
true

allowHostIPC Mounting NFS volumes requires

host IPC to communicate with

nfsd.

true

allowHostNetwork iscsiadm requires the host network

to communicate with the iSCSI

daemon.

true

allowHostPID Host PID is required to check if

rpc-statd is running on the node.
true

allowHostPorts Trident does not use any host

ports.
false

allowPrivilegeEscalation Privileged containers must allow

privilege escalation.
true

allowPrivilegedContainer Trident node pods must run a

privileged container in order to

mount volumes.

true

allowedUnsafeSysctls Trident does not require any unsafe

sysctls.
none

allowedCapabilities Non-privileged Trident containers

do not require more capabilities

than the default set and privileged

containers are granted all possible

capabilities.

Empty

defaultAddCapabilities No capabilities are required to be

added to privileged containers.

Empty

fsGroup Trident containers run as root. RunAsAny

444

Labels Description Default

groups This SCC is specific to Trident and

is bound to its user.

Empty

readOnlyRootFilesystem Trident node pods must write to the

node filesystem.
false

requiredDropCapabilities Trident node pods run a privileged

container and cannot drop

capabilities.

none

runAsUser Trident containers run as root. RunAsAny

seLinuxContext Trident does not set

seLinuxOptions because there

are currently differences in how

container runtimes and Kubernetes

distributions handle SELinux.

Empty

seccompProfiles Privileged containers always run

"Unconfined".

Empty

supplementalGroups Trident containers run as root. RunAsAny

users One entry is provided to bind this

SCC to the Trident user in the

Trident namespace.

n/a

volumes Trident pods require these volume

plugins.
hostPath, downwardAPI,

projected, emptyDir

445

Legal notices

Legal notices provide access to copyright statements, trademarks, patents, and more.

Copyright

https://www.netapp.com/company/legal/copyright/

Trademarks

NETAPP, the NETAPP logo, and the marks listed on the NetApp Trademarks page are trademarks of NetApp,

Inc. Other company and product names may be trademarks of their respective owners.

https://www.netapp.com/company/legal/trademarks/

Patents

A current list of NetApp owned patents can be found at:

https://www.netapp.com/pdf.html?item=/media/11887-patentspage.pdf

Privacy policy

https://www.netapp.com/company/legal/privacy-policy/

Open source

You can review third-party copyright and licenses used in NetApp software for Trident in the notices file for

each release at https://github.com/NetApp/trident/.

446

https://www.netapp.com/company/legal/copyright/
https://www.netapp.com/company/legal/trademarks/
https://www.netapp.com/pdf.html?item=/media/11887-patentspage.pdf
https://www.netapp.com/company/legal/privacy-policy/
https://github.com/NetApp/trident/

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

447

http://www.netapp.com/TM

	Trident 24.10 documentation : Trident
	Table of Contents
	Trident 24.10 documentation
	Release notes
	What’s new
	Earlier versions of documentation

	Get started
	Learn about Trident
	Quick start for Trident
	Requirements

	Install Trident
	Learn about Trident installation
	Install using Trident operator
	Install using tridentctl

	Use Trident
	Prepare the worker node
	Configure and manage backends
	Create and manage storage classes
	Provision and manage volumes

	Manage and monitor Trident
	Upgrade Trident
	Manage Trident using tridentctl
	Monitor Trident
	Uninstall Trident

	Trident for Docker
	Prerequisites for deployment
	Deploy Trident
	Upgrade or uninstall Trident
	Work with volumes
	Collect logs
	Manage multiple Trident instances
	Storage configuration options
	Known issues and limitations

	Best practices and recommendations
	Deployment
	Storage configuration
	Integrate Trident
	Data protection and disaster recovery
	Security

	Protect applications with Trident protect
	Learn about Trident protect
	Install Trident protect
	Manage Trident protect
	Manage and protect applications
	Uninstall Trident protect

	Knowledge and support
	Frequently asked questions
	Troubleshooting
	Support

	Reference
	Trident ports
	Trident REST API
	Command-line options
	Kubernetes and Trident objects
	Pod Security Standards (PSS) and Security Context Constraints (SCC)

	Legal notices
	Copyright
	Trademarks
	Patents
	Privacy policy
	Open source

