
Best practices and recommendations
Trident
NetApp
February 02, 2026

This PDF was generated from https://docs.netapp.com/us-en/trident/trident-reco/deploy-reco.html on
February 02, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Best practices and recommendations . 1

Deployment . 1

Deploy to a dedicated namespace. 1

Use quotas and range limits to control storage consumption . 1

Storage configuration . 1

Platform overview. 1

ONTAP and Cloud Volumes ONTAP best practices. 1

SolidFire best practices . 6

Where to find more information? . 7

Integrate Trident . 8

Driver selection and deployment . 8

Storage class design . 11

Virtual pool design . 12

Volume operations . 13

Metrics service . 16

Data protection and disaster recovery . 17

Trident replication and recovery. 17

SVM replication and recovery . 18

Volume replication and recovery . 19

Snapshot data protection . 19

Automating the failover of stateful applications with Trident . 19

Details about force detach . 19

Details about automated failover . 20

Security . 25

Security . 25

Linux Unified Key Setup (LUKS) . 26

Kerberos in-flight encryption . 32

Best practices and recommendations

Deployment

Use the recommendations listed here when you deploy Trident.

Deploy to a dedicated namespace

Namespaces provide administrative separation between different applications and are a barrier for resource

sharing. For example, a PVC from one namespace cannot be consumed from another. Trident provides PV

resources to all the namespaces in the Kubernetes cluster and consequently leverages a service account

which has elevated privileges.

Additionally, access to the Trident pod might enable a user to access storage system credentials and other

sensitive information. It is important to ensure that application users and management applications do not have

the ability to access the Trident object definitions or the pods themselves.

Use quotas and range limits to control storage consumption

Kubernetes has two features which, when combined, provide a powerful mechanism for limiting the resource

consumption by applications. The storage quota mechanism enables the administrator to implement global,

and storage class specific, capacity and object count consumption limits on a per-namespace basis. Further,

using a range limit ensures that the PVC requests are within both a minimum and maximum value before the

request is forwarded to the provisioner.

These values are defined on a per-namespace basis, which means that each namespace should have values

defined which fall in line with their resource requirements. See here for information about how to leverage

quotas.

Storage configuration

Each storage platform in the NetApp portfolio has unique capabilities that benefit

applications, containerized or not.

Platform overview

Trident works with ONTAP and Element. There is not one platform which is better suited for all applications and

scenarios than another, however, the needs of the application and the team administering the device should be

taken into account when choosing a platform.

You should follow the baseline best practices for the host operating system with the protocol that you are

leveraging. Optionally, you might want to consider incorporating application best practices, when available, with

backend, storage class, and PVC settings to optimize storage for specific applications.

ONTAP and Cloud Volumes ONTAP best practices

Learn the best practices for configuring ONTAP and Cloud Volumes ONTAP for Trident.

The following recommendations are guidelines for configuring ONTAP for containerized workloads, which

consume volumes that are dynamically provisioned by Trident. Each should be considered and evaluated for

appropriateness in your environment.

1

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/policy/resource-quotas/#storage-resource-quota
https://kubernetes.io/docs/tasks/administer-cluster/limit-storage-consumption/#limitrange-to-limit-requests-for-storage
https://netapp.io/2017/06/09/self-provisioning-storage-kubernetes-without-worry
https://netapp.io/2017/06/09/self-provisioning-storage-kubernetes-without-worry

Use SVM(s) dedicated to Trident

Storage Virtual Machines (SVMs) provide isolation and administrative separation between tenants on an

ONTAP system. Dedicating an SVM to applications enables the delegation of privileges and enables applying

best practices for limiting resource consumption.

There are several options available for the management of the SVM:

• Provide the cluster management interface in the backend configuration, along with appropriate credentials,

and specify the SVM name.

• Create a dedicated management interface for the SVM by using ONTAP System Manager or the CLI.

• Share the management role with an NFS data interface.

In each case, the interface should be in DNS, and the DNS name should be used when configuring Trident.

This helps to facilitate some DR scenarios, for example, SVM-DR without the use of network identity retention.

There is no preference between having a dedicated or shared management LIF for the SVM, however, you

should ensure that your network security policies align with the approach you choose. Regardless, the

management LIF should be accessible via DNS to facilitate maximum flexibility should SVM-DR be used in

conjunction with Trident.

Limit the maximum volume count

ONTAP storage systems have a maximum volume count, which varies based on the software version and

hardware platform. Refer to NetApp Hardware Universe for your specific platform and ONTAP version to

determine the exact limits. When the volume count is exhausted, provisioning operations fail not only for

Trident, but for all the storage requests.

Trident’s ontap-nas and ontap-san drivers provision a FlexVolume for each Kubernetes Persistent Volume

(PV) that is created. The ontap-nas-economy driver creates approximately one FlexVolume for every 200

PVs (configurable between 50 and 300). The ontap-san-economy driver creates approximately one

FlexVolume for every 100 PVs (configurable between 50 and 200). To prevent Trident from consuming all the

available volumes on the storage system, you should set a limit on the SVM. You can do this from the

command line:

vserver modify -vserver <svm_name> -max-volumes <num_of_volumes>

The value for max-volumes varies based on several criteria specific to your environment:

• The number of existing volumes in the ONTAP cluster

• The number of volumes you expect to provision outside of Trident for other applications

• The number of persistent volumes expected to be consumed by Kubernetes applications

The max-volumes value is the total volumes provisioned across all the nodes in the ONTAP cluster, and not

on an individual ONTAP node. As a result, you might encounter some conditions where an ONTAP cluster

node might have far more or less Trident provisioned volumes than another node.

For example, a two-node ONTAP cluster has the ability to host a maximum of 2000 FlexVol volumes. Having

the maximum volume count set to 1250 appears very reasonable. However, if only aggregates from one node

are assigned to the SVM, or the aggregates assigned from one node are unable to be provisioned against (for

example, due to capacity), then the other node becomes the target for all Trident provisioned volumes. This

2

https://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-dap/GUID-B9E36563-1C7A-48F5-A9FF-1578B99AADA9.html
https://hwu.netapp.com/
https://library.netapp.com/ecmdocs/ECMP1368859/html/GUID-3AC7685D-B150-4C1F-A408-5ECEB3FF0011.html

means that the volume limit might be reached for that node before the max-volumes value is reached,

resulting in impacting both Trident and other volume operations that use that node. You can avoid this

situation by ensuring that aggregates from each node in the cluster are assigned to the SVM used by

Trident in equal numbers.

Clone a volume

NetApp Trident supports cloning volumes when using the ontap-nas, ontap-san, and solidfire-san

storage drivers. When using the ontap-nas-flexgroup or ontap-nas-economy drivers, cloning is not

supported. Creating a new volume from an existing volume will result in a new snapshot being created.

Avoid cloning a PVC that is associated with a different StorageClass. Perform cloning operations

within the same StorageClass to ensure compatibility and prevent unexpected behavior.

Limit the maximum size of volumes created by Trident

To configure the maximum size for volumes that can be created by Trident, use the limitVolumeSize

parameter in your backend.json definition.

In addition to controlling the volume size at the storage array, you should also leverage Kubernetes

capabilities.

Limit the maximum size of FlexVols created by Trident

To configure the maximum size for FlexVols used as pools for ontap-san-economy and ontap-nas-economy

drivers, use the limitVolumePoolSize parameter in your backend.json definition.

Configure Trident to use bidirectional CHAP

You can specify the CHAP initiator and target usernames and passwords in your backend definition and have

Trident enable CHAP on the SVM. Using the useCHAP parameter in your backend configuration, Trident

authenticates iSCSI connections for ONTAP backends with CHAP.

Create and use an SVM QoS policy

Leveraging an ONTAP QoS policy, applied to the SVM, limits the number of IOPS consumable by the Trident

provisioned volumes. This helps to prevent a bully or out-of-control container from affecting workloads outside

of the Trident SVM.

You can create a QoS policy for the SVM in a few steps. See the documentation for your version of ONTAP for

the most accurate information. The example below creates a QoS policy that limits the total IOPS available to

the SVM to 5000.

create the policy group for the SVM

qos policy-group create -policy-group <policy_name> -vserver <svm_name>

-max-throughput 5000iops

assign the policy group to the SVM, note this will not work

if volumes or files in the SVM have existing QoS policies

vserver modify -vserver <svm_name> -qos-policy-group <policy_name>

3

http://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-perf-mon/GUID-77DF9BAF-4ED7-43F6-AECE-95DFB0680D2F.html?cp=7_1_2_1_2

Additionally, if your version of ONTAP supports it, you can consider using a QoS minimum to guarantee an

amount of throughput to containerized workloads. Adaptive QoS is not compatible with an SVM level policy.

The number of IOPS dedicated to the containerized workloads depends on many aspects. Among other things,

these include:

• Other workloads using the storage array. If there are other workloads, not related to the Kubernetes

deployment, utilizing the storage resources, care should be taken to ensure that those workloads are not

accidentally adversely impacted.

• Expected workloads running in containers. If workloads which have high IOPS requirements will be running

in containers, a low QoS policy results in a bad experience.

It’s important to remember that a QoS policy assigned at the SVM level results in all the volumes provisioned to

the SVM sharing the same IOPS pool. If one, or a small number, of the containerized applications have a high

IOPS requirement, it could become a bully to the other containerized workloads. If this is the case, you might

want to consider using external automation to assign per-volume QoS policies.

You should assign the QoS policy group to the SVM only if your ONTAP version is earlier than

9.8.

Create QoS policy groups for Trident

Quality of service (QoS) guarantees that performance of critical workloads is not degraded by competing

workloads. ONTAP QoS policy groups provide QoS options for volumes, and enable users to define the

throughput ceiling for one or more workloads. For more information about QoS, refer to Guaranteeing

throughput with QoS.

You can specify QoS policy groups in the backend or in a storage pool, and they are applied to each volume

created in that pool or backend.

ONTAP has two kinds of QoS policy groups: traditional and adaptive. Traditional policy groups provide a flat

maximum (or minimum, in later versions) throughput in IOPS. Adaptive QoS automatically scales the

throughput to workload size, maintaining the ratio of IOPS to TBs|GBs as the size of the workload changes.

This provides a significant advantage when you are managing hundreds or thousands of workloads in a large

deployment.

Consider the following when you create QoS policy groups:

• You should set the qosPolicy key in the defaults block of the backend configuration. See the following

backend configuration example:

4

https://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-perf-mon/GUID-77DF9BAF-4ED7-43F6-AECE-95DFB0680D2F.html
https://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-perf-mon/GUID-77DF9BAF-4ED7-43F6-AECE-95DFB0680D2F.html

version: 1

storageDriverName: ontap-nas

managementLIF: 0.0.0.0

dataLIF: 0.0.0.0

svm: svm0

username: user

password: pass

defaults:

 qosPolicy: standard-pg

storage:

 - labels:

 performance: extreme

 defaults:

 adaptiveQosPolicy: extremely-adaptive-pg

 - labels:

 performance: premium

 defaults:

 qosPolicy: premium-pg

• You should apply the policy groups per volume, so that each volume gets the entire throughput as specified

by the policy group. Shared policy groups are not supported.

For more information about QoS policy groups, refer to ONTAP command reference.

Limit storage resource access to Kubernetes cluster members

Limiting access to the NFS volumes, iSCSI LUNs, and FC LUNs created by Trident is a critical component of

the security posture for your Kubernetes deployment. Doing so prevents hosts that are not a part of the

Kubernetes cluster from accessing the volumes and potentially modifying data unexpectedly.

It’s important to understand that namespaces are the logical boundary for resources in Kubernetes. The

assumption is that resources in the same namespace are able to be shared, however, importantly, there is no

cross-namespace capability. This means that even though PVs are global objects, when bound to a PVC they

are only accessible by pods which are in the same namespace. It is critical to ensure that namespaces are

used to provide separation when appropriate.

The primary concern for most organizations with regard to data security in a Kubernetes context is that a

process in a container can access storage mounted to the host, but which is not intended for the container.

Namespaces are designed to prevent this type of compromise. However, there is one exception: privileged

containers.

A privileged container is one that is run with substantially more host-level permissions than normal. These are

not denied by default, so ensure that you disable the capability by using pod security policies.

For volumes where access is desired from both Kubernetes and external hosts, the storage should be

managed in a traditional manner, with the PV introduced by the administrator and not managed by Trident. This

ensures that the storage volume is destroyed only when both the Kubernetes and external hosts have

disconnected and are no longer using the volume. Additionally, a custom export policy can be applied, which

enables access from the Kubernetes cluster nodes and targeted servers outside of the Kubernetes cluster.

5

https://docs.netapp.com/us-en/ontap/concepts/manual-pages.html
https://en.wikipedia.org/wiki/Linux_namespaces
https://kubernetes.io/docs/concepts/policy/pod-security-policy/

For deployments which have dedicated infrastructure nodes (for example, OpenShift) or other nodes which are

unable to schedule user applications, separate export policies should be used to further limit access to storage

resources. This includes creating an export policy for services which are deployed to those infrastructure

nodes (for example, the OpenShift Metrics and Logging services), and standard applications which are

deployed to non-infrastructure nodes.

Use a dedicated export policy

You should ensure that an export policy exists for each backend that only allows access to the nodes present

in the Kubernetes cluster. Trident can automatically create and manage export policies. This way, Trident limits

access to the volumes it provisions to the nodes in the Kubernetes cluster and simplifies the addition/deletion

of nodes.

Alternatively, you can also create an export policy manually and populate it with one or more export rules that

process each node access request:

• Use the vserver export-policy create ONTAP CLI command to create the export policy.

• Add rules to the export policy by using the vserver export-policy rule create ONTAP CLI

command.

Running these commands enables you to restrict which Kubernetes nodes have access to the data.

Disable showmount for the application SVM

The showmount feature enables an NFS client to query the SVM for a list of available NFS exports. A pod

deployed to the Kubernetes cluster can issue the showmount -e command against the and receive a list of

available mounts, including those which it does not have access to. While this, by itself, is not a security

compromise, it does provide unnecessary information potentially aiding an unauthorized user with connecting

to an NFS export.

You should disable showmount by using the SVM-level ONTAP CLI command:

vserver nfs modify -vserver <svm_name> -showmount disabled

SolidFire best practices

Learn the best practices for configuring SolidFire storage for Trident.

Create Solidfire Account

Each SolidFire account represents a unique volume owner and receives its own set of Challenge-Handshake

Authentication Protocol (CHAP) credentials. You can access volumes assigned to an account either by using

the account name and the relative CHAP credentials or through a volume access group. An account can have

up to two-thousand volumes assigned to it, but a volume can belong to only one account.

Create a QoS policy

Use SolidFire Quality of Service (QoS) policies if you want to create and save a standardized quality of service

setting that can be applied to many volumes.

You can set QoS parameters on a per-volume basis. Performance for each volume can be assured by setting

6

three configurable parameters that define the QoS: Min IOPS, Max IOPS, and Burst IOPS.

Here are the possible minimum, maximum, and burst IOPS values for the 4Kb block size.

IOPS parameter Definition Min. value Default value Max. value(4Kb)

Min IOPS The guaranteed

level of performance

for a volume.

50 50 15000

Max IOPS The performance

will not exceed this

limit.

50 15000 200,000

Burst IOPS Maximum IOPS

allowed in a short

burst scenario.

50 15000 200,000

Although the Max IOPS and Burst IOPS can be set as high as 200,000, the real-world maximum

performance of a volume is limited by cluster usage and per-node performance.

Block size and bandwidth have a direct influence on the number of IOPS. As block sizes increase, the system

increases bandwidth to a level necessary to process the larger block sizes. As bandwidth increases, the

number of IOPS the system is able to attain decreases. Refer to SolidFire Quality of Service for more

information about QoS and performance.

SolidFire authentication

Element supports two methods for authentication: CHAP and Volume Access Groups (VAG). CHAP uses the

CHAP protocol to authenticate the host to the backend. Volume Access Groups controls access to the volumes

it provisions. NetApp recommends using CHAP for authentication as it’s simpler and has no scaling limits.

Trident with the enhanced CSI provisioner supports the use of CHAP authentication. VAGs

should only be used in the traditional non-CSI mode of operation.

CHAP authentication (verification that the initiator is the intended volume user) is supported only with account-

based access control. If you are using CHAP for authentication, two options are available: unidirectional CHAP

and bidirectional CHAP. Unidirectional CHAP authenticates volume access by using the SolidFire account

name and initiator secret. The bidirectional CHAP option provides the most secure way of authenticating the

volume because the volume authenticates the host through the account name and the initiator secret, and then

the host authenticates the volume through the account name and the target secret.

However, if CHAP cannot be enabled and VAGs are required, create the access group and add the host

initiators and volumes to the access group. Each IQN that you add to an access group can access each

volume in the group with or without CHAP authentication. If the iSCSI initiator is configured to use CHAP

authentication, account-based access control is used. If the iSCSI initiator is not configured to use CHAP

authentication, then Volume Access Group access control is used.

Where to find more information?

Some of the best practices documentation is listed below. Search the NetApp library for the most current

versions.

7

https://www.netapp.com/pdf.html?item=/media/10502-tr-4644pdf.pdf
https://www.netapp.com/search/

ONTAP

• NFS Best Practice and Implementation Guide

• SAN Administration (for iSCSI)

• iSCSI Express Configuration for RHEL

Element software

• Configuring SolidFire for Linux

NetApp HCI

• NetApp HCI deployment prerequisites

• Access the NetApp Deployment Engine

Application best practices information

• Best practices for MySQL on ONTAP

• Best practices for MySQL on SolidFire

• NetApp SolidFire and Cassandra

• Oracle best practices on SolidFire

• PostgreSQL best practices on SolidFire

Not all applications have specific guidelines, it’s important to work with your NetApp team and to use the

NetApp library to find the most up-to-date documentation.

Integrate Trident

To integrate Trident, the following design and architectural elements require integration:

driver selection and deployment, storage class design, virtual pool design, Persistent

Volume Claim (PVC) impacts on storage provisioning, volume operations, and OpenShift

services deployment using Trident.

Driver selection and deployment

Select and deploy a backend driver for your storage system.

ONTAP backend drivers

ONTAP backend drivers are differentiated by the protocol used and how the volumes are provisioned on the

storage system. Therefore, give careful consideration when deciding which driver to deploy.

At a higher level, if your application has components which need shared storage (multiple pods accessing the

same PVC), NAS-based drivers would be the default choice, while the block-based iSCSI drivers meet the

needs of non-shared storage. Choose the protocol based on the requirements of the application and the

comfort level of the storage and infrastructure teams. Generally speaking, there is little difference between

them for most applications, so often the decision is based upon whether or not shared storage (where more

than one pod will need simultaneous access) is needed.

The available ONTAP backend drivers are:

8

https://www.netapp.com/pdf.html?item=/media/10720-tr-4067.pdf
http://docs.netapp.com/ontap-9/topic/com.netapp.doc.dot-cm-sanag/home.html
http://docs.netapp.com/ontap-9/topic/com.netapp.doc.exp-iscsi-rhel-cg/home.html
https://www.netapp.com/pdf.html?item=/media/10507-tr4639pdf.pdf
https://docs.netapp.com/us-en/hci/docs/hci_prereqs_overview.html
https://docs.netapp.com/us-en/hci/docs/concept_nde_access_overview.html
https://docs.netapp.com/us-en/ontap-apps-dbs/mysql/mysql-overview.html
https://www.netapp.com/pdf.html?item=/media/10510-tr-4605.pdf
https://www.netapp.com/pdf.html?item=/media/10513-tr-4635pdf.pdf
https://www.netapp.com/pdf.html?item=/media/10511-tr4606pdf.pdf
https://www.netapp.com/pdf.html?item=/media/10512-tr-4610pdf.pdf
https://www.netapp.com/search/

• ontap-nas: Each PV provisioned is a full ONTAP FlexVolume.

• ontap-nas-economy: Each PV provisioned is a qtree, with a configurable number of qtrees per

FlexVolume (default is 200).

• ontap-nas-flexgroup: Each PV provisioned as a full ONTAP FlexGroup, and all aggregates assigned

to a SVM are used.

• ontap-san: Each PV provisioned is a LUN within its own FlexVolume.

• ontap-san-economy: Each PV provisioned is a LUN, with a configurable number of LUNs per

FlexVolume (default is 100).

Choosing between the three NAS drivers has some ramifications to the features, which are made available to

the application.

Note that, in the tables below, not all of the capabilities are exposed through Trident. Some must be applied by

the storage administrator after provisioning if that functionality is desired. The superscript footnotes distinguish

the functionality per feature and driver.

ONTAP NAS drivers Snapshot

s

Clones Dynamic

export

policies

Multi-

attach

QoS Resize Replicatio

n

ontap-nas Yes Yes Yes [5] Yes Yes [1] Yes Yes [1]

ontap-nas-economy NO [3] NO [3] Yes [5] Yes NO [3] Yes NO [3]

ontap-nas-

flexgroup

Yes [1] NO Yes [5] Yes Yes [1] Yes Yes [1]

Trident offers 2 SAN drivers for ONTAP, whose capabilities are shown below.

ONTAP SAN drivers Snapshot

s

Clones Multi-

attach

Bi-

directiona

l CHAP

QoS Resize Replicatio

n

ontap-san Yes Yes Yes [4] Yes Yes [1] Yes Yes [1]

ontap-san-economy Yes Yes Yes [4] Yes NO [3] Yes NO [3]

Footnote for the above tables:

Yes [1]: Not managed by Trident

Yes [2]: Managed by Trident, but not PV granular

NO [3]: Not managed by Trident and not PV granular

Yes [4]: Supported for raw-block volumes

Yes [5]: Supported by Trident

The features that are not PV granular are applied to the entire FlexVolume and all of the PVs (that is, qtrees or

9

LUNs in shared FlexVols) will share a common schedule.

As we can see in the above tables, much of the functionality between the ontap-nas and ontap-nas-

economy is the same. However, because the ontap-nas-economy driver limits the ability to control the

schedule at per-PV granularity, this can affect your disaster recovery and backup planning in particular. For

development teams which desire to leverage PVC clone functionality on ONTAP storage, this is only possible

when using the ontap-nas, ontap-san or ontap-san-economy drivers.

The solidfire-san driver is also capable of cloning PVCs.

Cloud Volumes ONTAP backend drivers

Cloud Volumes ONTAP provides data control along with enterprise-class storage features for various use

cases, including file shares and block-level storage serving NAS and SAN protocols (NFS, SMB / CIFS, and

iSCSI). The compatible drivers for Cloud Volume ONTAP are ontap-nas, ontap-nas-economy, ontap-

san and ontap-san-economy. These are applicable for Cloud Volume ONTAP for Azure, Cloud Volume

ONTAP for GCP.

Amazon FSx for ONTAP backend drivers

Amazon FSx for NetApp ONTAP lets you leverage NetApp features, performance, and administrative

capabilities you’re familiar with, while taking advantage of the simplicity, agility, security, and scalability of

storing data on AWS. FSx for ONTAP supports many ONTAP file system features and administration APIs. The

compatible drivers for Cloud Volume ONTAP are ontap-nas, ontap-nas-economy, ontap-nas-

flexgroup, ontap-san and ontap-san-economy.

NetApp HCI/SolidFire backend drivers

The solidfire-san driver used with the NetApp HCI/SolidFire platforms, helps the admin configure an

Element backend for Trident on the basis of QoS limits. If you would like to design your backend to set the

specific QoS limits on the volumes provisioned by Trident, use the type parameter in the backend file. The

admin also can restrict the volume size that could be created on the storage using the limitVolumeSize

parameter. Currently, Element storage features like volume resize and volume replication are not supported

through the solidfire-san driver. These operations should be done manually through Element Software

web UI.

SolidFire Driver Snapshot

s

Clones Multi-

attach

CHAP QoS Resize Replicatio

n

solidfire-san Yes Yes Yes [2] Yes Yes Yes Yes [1]

Footnote:

Yes [1]: Not managed by Trident

Yes [2]: Supported for raw-block volumes

Azure NetApp Files backend drivers

Trident uses the azure-netapp-files driver to manage the Azure NetApp Files service.

10

https://azure.microsoft.com/en-us/services/netapp/

More information about this driver and how to configure it can be found in Trident backend configuration for

Azure NetApp Files.

Azure NetApp Files

Driver

Snapshots Clones Multi-attach QoS Expand Replication

azure-netapp-files Yes Yes Yes Yes Yes Yes [1]

Footnote:

Yes [1]: Not managed by Trident

Storage class design

Individual Storage classes need to be configured and applied to create a Kubernetes Storage Class object.

This section discusses how to design a storage class for your application.

Specific backend utilization

Filtering can be used within a specific storage class object to determine which storage pool or set of pools are

to be used with that specific storage class. Three sets of filters can be set in the Storage Class:

storagePools, additionalStoragePools, and/or excludeStoragePools.

The storagePools parameter helps restrict storage to the set of pools that match any specified attributes.

The additionalStoragePools parameter is used to extend the set of pools that Trident use for

provisioning along with the set of pools selected by the attributes and storagePools parameters. You can

use either parameter alone or both together to make sure that the appropriate set of storage pools are

selected.

The excludeStoragePools parameter is used to specifically exclude the listed set of pools that match the

attributes.

Emulate QoS policies

If you would like to design Storage Classes to emulate Quality of Service policies, create a Storage Class with

the media attribute as hdd or ssd. Based on the media attribute mentioned in the storage class, Trident will

select the appropriate backend that serves hdd or ssd aggregates to match the media attribute and then direct

the provisioning of the volumes on to the specific aggregate. Therefore we can create a storage class

PREMIUM which would have media attribute set as ssd which could be classified as the PREMIUM QoS

policy. We can create another storage class STANDARD which would have the media attribute set as `hdd'

which could be classified as the STANDARD QoS policy. We could also use the ``IOPS'' attribute in the storage

class to redirect provisioning to an Element appliance which can be defined as a QoS Policy.

Utilize backend based on specific features

Storage classes can be designed to direct volume provisioning on a specific backend where features such as

thin and thick provisioning, snapshots, clones, and encryption are enabled. To specify which storage to use,

create Storage Classes that specify the appropriate backend with the required feature enabled.

Virtual pools

Virtual pools are available for all Trident backends. You can define virtual pools for any backend, using any

driver that Trident provides.

11

https://docs.netapp.com/us-en/trident/trident-use/anf.html
https://docs.netapp.com/us-en/trident/trident-use/anf.html

Virtual pools allow an administrator to create a level of abstraction over backends which can be referenced

through Storage Classes, for greater flexibility and efficient placement of volumes on backends. Different

backends can be defined with the same class of service. Moreover, multiple storage pools can be created on

the same backend but with different characteristics. When a Storage Class is configured with a selector with

the specific labels, Trident chooses a backend which matches all the selector labels to place the volume. If the

Storage Class selector labels matches multiple storage pools, Trident will choose one of them to provision the

volume from.

Virtual pool design

While creating a backend, you can generally specify a set of parameters. It was impossible for the

administrator to create another backend with the same storage credentials and with a different set of

parameters. With the introduction of virtual pools, this issue has been alleviated. A virtual pool is a level

abstraction introduced between the backend and the Kubernetes Storage Class so that the administrator can

define parameters along with labels which can be referenced through Kubernetes Storage Classes as a

selector, in a backend-agnostic way. Virtual pools can be defined for all supported NetApp backends with

Trident. That list includes SolidFire/NetApp HCI, ONTAP, as well as Azure NetApp Files.

When defining virtual pools, it is recommended to not attempt to rearrange the order of existing

virtual pools in a backend definition. It is also advisable to not edit/modify attributes for an

existing virtual pool and define a new virtual pool instead.

Emulating different service levels/QoS

It is possible to design virtual pools for emulating service classes. Using the virtual pool implementation for

Cloud Volume Service for Azure NetApp Files, let us examine how we can setup up different service classes.

Configure the Azure NetApp Files backend with multiple labels, representing different performance levels. Set

servicelevel aspect to the appropriate performance level and add other required aspects under each

labels. Now create different Kubernetes Storage Classes that would map to different virtual pools. Using the

parameters.selector field, each StorageClass calls out which virtual pools may be used to host a volume.

Assigning specific set of aspects

Multiple virtual pools with a specific set of aspects can be designed from a single storage backend. For doing

so, configure the backend with multiple labels and set the required aspects under each label. Now create

different Kubernetes Storage Classes using the parameters.selector field that would map to different

virtual pools. The volumes that get provisioned on the backend will have the aspects defined in the chosen

virtual pool.

PVC characteristics which affect storage provisioning

Some parameters beyond the requested storage class may affect the Trident provisioning decision process

when creating a PVC.

Access mode

When requesting storage via a PVC, one of the mandatory fields is the access mode. The mode desired may

affect the backend selected to host the storage request.

Trident will attempt to match the storage protocol used with the access method specified according to the

following matrix. This is independent of the underlying storage platform.

12

ReadWriteOnce ReadOnlyMany ReadWriteMany

iSCSI Yes Yes Yes (Raw block)

NFS Yes Yes Yes

A request for a ReadWriteMany PVC submitted to a Trident deployment without an NFS backend configured

will result in no volume being provisioned. For this reason, the requestor should use the access mode which is

appropriate for their application.

Volume operations

Modify persistent volumes

Persistent volumes are, with two exceptions, immutable objects in Kubernetes. Once created, the reclaim

policy and the size can be modified. However, this doesn’t prevent some aspects of the volume from being

modified outside of Kubernetes. This may be desirable in order to customize the volume for specific

applications, to ensure that capacity is not accidentally consumed, or simply to move the volume to a different

storage controller for any reason.

Kubernetes in-tree provisioners do not support volume resize operations for NFS, iSCSI, or FC

PVs at this time. Trident supports expanding both NFS, iSCSI, and FC volumes.

The connection details of the PV cannot be modified after creation.

Create on-demand volume snapshots

Trident supports on-demand volume snapshot creation and the creation of PVCs from snapshots using the CSI

framework. Snapshots provide a convenient method of maintaining point-in-time copies of the data and have a

lifecycle independent of the source PV in Kubernetes. These snapshots can be used to clone PVCs.

Create volumes from snapshots

Trident also supports the creation of PersistentVolumes from volume snapshots. To accomplish this, just create

a PersistentVolumeClaim and mention the datasource as the required snapshot from which the volume

needs to be created. Trident will handle this PVC by creating a volume with the data present on the snapshot.

With this feature, it is possible to duplicate data across regions, create test environments, replace a damaged

or corrupted production volume in its entirety, or retrieve specific files and directories and transfer them to

another attached volume.

Move volumes in the cluster

Storage administrators have the ability to move volumes between aggregates and controllers in the ONTAP

cluster non-disruptively to the storage consumer. This operation does not affect Trident or the Kubernetes

cluster, as long as the destination aggregate is one which the SVM that Trident is using has access to.

Importantly, if the aggregate has been newly added to the SVM, the backend will need to be refreshed by re-

adding it to Trident. This will trigger Trident to reinventory the SVM so that the new aggregate is recognized.

However, moving volumes across backends is not supported automatically by Trident. This includes between

SVMs in the same cluster, between clusters, or onto a different storage platform (even if that storage system is

one which is connected to Trident).

If a volume is copied to another location, the volume import feature may be used to import current volumes into

Trident.

13

Expand volumes

Trident supports resizing NFS, iSCSI, and FC PVs. This enables users to resize their volumes directly through

the Kubernetes layer. Volume expansion is possible for all major NetApp storage platforms, including ONTAP,

and SolidFire/NetApp HCI backends. To allow possible expansion later, set allowVolumeExpansion to

true in your StorageClass associated with the volume. Whenever the Persistent Volume needs to be resized,

edit the spec.resources.requests.storage annotation in the Persistent Volume Claim to the required

volume size. Trident will automatically take care of resizing the volume on the storage cluster.

Import an existing volume into Kubernetes

Volume import provides the ability to import an existing storage volume into a Kubernetes environment. This is

currently supported by the ontap-nas, ontap-nas-flexgroup, solidfire-san, and azure-netapp-

files drivers. This feature is useful when porting an existing application into Kubernetes or during disaster

recovery scenarios.

When using the ONTAP and solidfire-san drivers, use the command tridentctl import volume

<backend-name> <volume-name> -f /path/pvc.yaml to import an existing volume into Kubernetes to

be managed by Trident. The PVC YAML or JSON file used in the import volume command points to a storage

class which identifies Trident as the provisioner. When using a NetApp HCI/SolidFire backend, ensure the

volume names are unique. If the volume names are duplicated, clone the volume to a unique name so the

volume import feature can distinguish between them.

If the azure-netapp-files driver is used, use the command tridentctl import volume <backend-

name> <volume path> -f /path/pvc.yaml to import the volume into Kubernetes to be managed by

Trident. This ensures a unique volume reference.

When the above command is executed, Trident will find the volume on the backend and read its size. It will

automatically add (and overwrite if necessary) the configured PVC’s volume size. Trident then creates the new

PV and Kubernetes binds the PVC to the PV.

If a container was deployed such that it required the specific imported PVC, it would remain in a pending state

until the PVC/PV pair are bound via the volume import process. After the PVC/PV pair are bound, the container

should come up, provided there are no other issues.

Registry service

Deploying and managing storage for the registry has been documented on netapp.io in the blog.

Logging service

Like other OpenShift services, the logging service is deployed using Ansible with configuration parameters

supplied by the inventory file, a.k.a. hosts, provided to the playbook. There are two installation methods which

will be covered: deploying logging during initial OpenShift install and deploying logging after OpenShift has

been

installed.

As of Red Hat OpenShift version 3.9, the official documentation recommends against NFS for

the logging service due to concerns around data corruption. This is based on Red Hat testing of

their products. The ONTAP NFS server does not have these issues, and can easily back a

logging deployment. Ultimately, the choice of protocol for the logging service is up to you, just

know that both will work great when using NetApp platforms and there is no reason to avoid

NFS if that is your preference.

14

https://netapp.io/
https://netapp.io/2017/08/24/deploying-the-openshift-registry-using-netapp-storage/

If you choose to use NFS with the logging service, you will need to set the Ansible variable

openshift_enable_unsupported_configurations to true to prevent the installer from failing.

Get started

The logging service can, optionally, be deployed for both applications as well as for the core operations of the

OpenShift cluster itself. If you choose to deploy operations logging, by specifying the variable

openshift_logging_use_ops as true, two instances of the service will be created. The variables which

control the logging instance for operations contain "ops" in them, whereas the instance for applications does

not.

Configuring the Ansible variables according to the deployment method is important to ensure that the correct

storage is utilized by the underlying services. Let’s look at the options for each of the deployment methods.

The tables below contain only the variables relevant for storage configuration as it relates to the

logging service. You can find other options in Red Hat OpenShift logging documentation which

should be reviewed, configured, and used according to your deployment.

The variables in the below table will result in the Ansible playbook creating a PV and PVC for the logging

service using the details provided. This method is significantly less flexible than using the component

installation playbook after OpenShift installation, however, if you have existing volumes available, it is an

option.

Variable Details

openshift_logging_storage_kind Set to nfs to have the installer create an NFS PV for

the logging service.

openshift_logging_storage_host The hostname or IP address of the NFS host. This

should be set to the dataLIF for your virtual machine.

openshift_logging_storage_nfs_directory The mount path for the NFS export. For example, if

the volume is junctioned as /openshift_logging,

you would use that path for this variable.

openshift_logging_storage_volume_name The name, e.g. pv_ose_logs, of the PV to create.

openshift_logging_storage_volume_size The size of the NFS export, for example 100Gi.

If your OpenShift cluster is already running, and therefore Trident has been deployed and configured, the

installer can use dynamic provisioning to create the volumes. The following variables will need to be

configured.

Variable Details

openshift_logging_es_pvc_dynamic Set to true to use dynamically provisioned volumes.

openshift_logging_es_pvc_storage_class_n

ame

The name of the storage class which will be used in

the PVC.

openshift_logging_es_pvc_size The size of the volume requested in the PVC.

openshift_logging_es_pvc_prefix A prefix for the PVCs used by the logging service.

openshift_logging_es_ops_pvc_dynamic Set to true to use dynamically provisioned volumes

for the ops logging instance.

15

https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging.html

Variable Details

openshift_logging_es_ops_pvc_storage_cla

ss_name

The name of the storage class for the ops logging

instance.

openshift_logging_es_ops_pvc_size The size of the volume request for the ops instance.

openshift_logging_es_ops_pvc_prefix A prefix for the ops instance PVCs.

Deploy the logging stack

If you are deploying logging as a part of the initial OpenShift install process, then you only need to follow the

standard deployment process. Ansible will configure and deploy the needed services and OpenShift objects so

that the service is available as soon as Ansible completes.

However, if you are deploying after the initial installation, the component playbook will need to be used by

Ansible. This process may change slightly with different versions of OpenShift, so be sure to read and follow

Red Hat OpenShift Container Platform 3.11 documentation for your version.

Metrics service

The metrics service provides valuable information to the administrator regarding the status, resource utilization,

and availability of the OpenShift cluster. It is also necessary for pod auto-scale functionality and many

organizations use data from the metrics service for their charge back and/or show back applications.

Like with the logging service, and OpenShift as a whole, Ansible is used to deploy the metrics service. Also,

like the logging service, the metrics service can be deployed during an initial setup of the cluster or after its

operational using the component installation method. The following tables contain the variables which are

important when configuring persistent storage for the metrics service.

The tables below only contain the variables which are relevant for storage configuration as it

relates to the metrics service. There are many other options found in the documentation which

should be reviewed, configured, and used according to your deployment.

Variable Details

openshift_metrics_storage_kind Set to nfs to have the installer create an NFS PV for

the logging service.

openshift_metrics_storage_host The hostname or IP address of the NFS host. This

should be set to the dataLIF for your SVM.

openshift_metrics_storage_nfs_directory The mount path for the NFS export. For example, if

the volume is junctioned as /openshift_metrics,

you would use that path for this variable.

openshift_metrics_storage_volume_name The name,

e.g. pv_ose_metrics, of the PV to create.

openshift_metrics_storage_volume_size The size of the NFS export, for example 100Gi.

If your OpenShift cluster is already running, and therefore Trident has been deployed and configured, the

installer can use dynamic provisioning to create the volumes. The following variables will need to be

configured.

16

https://docs.openshift.com/container-platform/3.11/welcome/index.html

Variable Details

openshift_metrics_cassandra_pvc_prefix A prefix to use for the metrics PVCs.

openshift_metrics_cassandra_pvc_size The size of the volumes to request.

openshift_metrics_cassandra_storage_type The type of storage to use for metrics, this must be

set to dynamic for Ansible to create PVCs with the

appropriate storage class.

openshift_metrics_cassanda_pvc_storage_c

lass_name

The name of the storage class to use.

Deploy the metrics service

With the appropriate Ansible variables defined in your hosts/inventory file, deploy the service using Ansible. If

you are deploying at OpenShift install time, then the PV will be created and used automatically. If you’re

deploying using the component playbooks, after OpenShift install, then Ansible creates any PVCs which are

needed and, after Trident has provisioned storage for them, deploy the service.

The variables above, and the process for deploying, may change with each version of OpenShift. Ensure you

review and follow Red Hat’s OpenShift deployment guide for your version so that it is configured for your

environment.

Data protection and disaster recovery

Learn about protection and recovery options for Trident and volumes created using

Trident. You should have a data protection and recovery strategy for each application with

a persistence requirement.

Trident replication and recovery

You can create a backup to restore Trident in the event of a disaster.

Trident replication

Trident uses Kubernetes CRDs to store and manage its own state and the Kubernetes cluster etcd to store its

metadata.

Steps

1. Back up the Kubernetes cluster etcd using Kubernetes: Backing up an etcd cluster.

2. Place the backup artifacts on a FlexVol volume

NetApp recommends you protect the SVM where the FlexVol resides with a SnapMirror

relationship to another SVM.

Trident recovery

Using Kubernetes CRDs and the Kubernetes cluster etcd snapshot, you can recover Trident.

Steps

1. From the destination SVM, mount the volume which contains the Kubernetes etcd data files and certificates

17

https://docs.openshift.com/container-platform/3.11/install_config/cluster_metrics.html
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#backing-up-an-etcd-cluster

on to the host which will be set up as a master node.

2. Copy all required certificates pertaining to the Kubernetes cluster under /etc/kubernetes/pki and the

etcd member files under /var/lib/etcd.

3. Restore the Kubernetes cluster from the etcd backup using Kubernetes: Restoring an etcd cluster.

4. Run kubectl get crd to verify all Trident custom resources have come up and retrieve the Trident

objects to verify all data is available.

SVM replication and recovery

Trident cannot configure replication relationships, however, the storage administrator can use ONTAP

SnapMirror to replicate an SVM.

In the event of a disaster, you can activate the SnapMirror destination SVM to start serving data. You can

switch back to the primary when systems are restored.

About this task

Consider the following when using the SnapMirror SVM Replication feature:

• You should create a distinct backend for each SVM with SVM-DR enabled.

• Configure the storage classes to select the replicated backends only when needed to avoid having

volumes which do not need replication provisioned onto the backends that support SVM-DR.

• Application administrators should understand the additional cost and complexity associated with replication

and carefully consider their recovery plan prior to beginning this process.

SVM replication

You can use ONTAP: SnapMirror SVM replication to create the SVM replication relationship.

SnapMirror allows you to set options to control what to replicate. You’ll need to know which options you

selected when preforming SVM recovery using Trident.

• -identity-preserve true replicates the entire SVM configuration.

• -discard-configs network excludes LIFs and related network settings.

• -identity-preserve false replicates only the volumes and security configuration.

SVM recovery using Trident

Trident does not automatically detect SVM failures. In the event of a disaster, the administrator can manually

initiate Trident failover to the new SVM.

Steps

1. Cancel scheduled and ongoing SnapMirror transfers, break the replication relationship, stop the source

SVM and then activate the SnapMirror destination SVM.

2. If you specified -identity-preserve false or -discard-config network when configuring your

SVM replication, update the managementLIF and dataLIF in the Trident backend definition file.

3. Confirm storagePrefix is present in the Trident backend definition file. This parameter cannot be

changed. Omitting storagePrefix will cause the backend update to fail.

4. Update all the required backends to reflect the new destination SVM name using:

18

https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#restoring-an-etcd-cluster
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-svm-replication-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-svm-replication-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-svm-replication-workflow-concept.html
https://docs.netapp.com/us-en/ontap/data-protection/replicate-entire-svm-config-task.html
https://docs.netapp.com/us-en/ontap/data-protection/exclude-lifs-svm-replication-task.html
https://docs.netapp.com/us-en/ontap/data-protection/exclude-network-name-service-svm-replication-task.html

./tridentctl update backend <backend-name> -f <backend-json-file> -n

<namespace>

5. If you specified -identity-preserve false or discard-config network, you must bounce all

application pods.

If you specified -identity-preserve true, all volumes provisioned by Trident start

serving data when the destination SVM is activated.

Volume replication and recovery

Trident cannot configure SnapMirror replication relationships, however, the storage administrator can use

ONTAP SnapMirror replication and recovery to replicate volumes created by Trident.

You can then import the recovered volumes into Trident using tridentctl volume import.

Import is not supported on ontap-nas-economy, ontap-san-economy, or ontap-

flexgroup-economy drivers.

Snapshot data protection

You can protect and restore data using:

• An external snapshot controller and CRDs to create Kubernetes volume snapshots of Persistent Volumes

(PVs).

Volume snapshots

• ONTAP Snapshots to restore the entire contents of a volume or to recover individual files or LUNs.

ONTAP Snapshots

Automating the failover of stateful applications with Trident

Trident’s force-detach feature allows you to automatically detach volumes from unhealthy

nodes in a Kubernetes cluster, preventing data corruption and ensuring application

availability. This feature is particularly useful in scenarios where nodes become

unresponsive or are taken offline for maintenance.

Details about force detach

Force detach is available for ontap-san, ontap-san-economy, ontap-nas, and ontap-nas-economy

only. Before enabling force detach, non-graceful node shutdown (NGNS) must be enabled on the Kubernetes

cluster. NGNS is enabled by default for Kubernetes 1.28 and above. For more information, refer to Kubernetes:

Non Graceful node shutdown.

19

https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-disaster-recovery-concept.html
https://docs.netapp.com/us-en/trident/trident-use/vol-import.html
https://docs.netapp.com/us-en/trident/trident-use/vol-snapshots.html
https://docs.netapp.com/us-en/ontap/data-protection/manage-local-snapshot-copies-concept.html
https://kubernetes.io/docs/concepts/cluster-administration/node-shutdown/#non-graceful-node-shutdown
https://kubernetes.io/docs/concepts/cluster-administration/node-shutdown/#non-graceful-node-shutdown

When using the ontap-nas or ontap-nas-economy driver, you need to set the

autoExportPolicy parameter in the backend configuration to true so that Trident can

restrict access from the Kubernetes node with the taint applied using managed export policies.

Because Trident relies on Kubernetes NGNS, do not remove out-of-service taints from an

unhealthy node until all non-tolerable workloads are rescheduled. Recklessly applying or

removing the taint can jeopardize backend data protection.

When the Kubernetes cluster administrator has applied the node.kubernetes.io/out-of-

service=nodeshutdown:NoExecute taint to the node and enableForceDetach is set to true, Trident

will determine the node status and:

1. Stop backend I/O access for volumes mounted to that node.

2. Mark the Trident node object as dirty (not safe for new publications).

The Trident controller will reject new publish volume requests until the node is re-qualified

(after having been marked as dirty) by the Trident node pod. Any workloads scheduled

with a mounted PVC (even after the cluster node is healthy and ready) will be not be

accepted until Trident can verify the node clean (safe for new publications).

When node health is restored and the taint is removed, Trident will:

1. Identify and clean stale published paths on the node.

2. If the node is in a cleanable state (the out-of-service taint has been removed and the node is in Ready

state) and all stale, published paths are clean, Trident will readmit the node as clean and allow new

published volumes to the node.

Details about automated failover

You can automate the force-detach process through integration with node health check (NHC) operator. When

a node failure occurs, NHC triggers Trident node remediation (TNR) and force-detach automatically by creating

a TridentNodeRemediation CR in Trident’s namespace defining the failed node. TNR is created only upon

node failure, and removed by NHC once the node comes back online or the node is deleted.

Failed node pod removal process

Automated-failover selects the workloads to remove from the failed node. When a TNR is created, the TNR

controller marks the node as dirty, preventing any new volume publications and begins removing force-detach

supported pods and their volume attachments.

All volumes/PVCs supported by force-detach are supported by automated-failover:

• NAS, and NAS-economy volumes using auto-export policies (SMB is not yet supported).

• SAN, and SAN-economy volumes.

Refer to Details about force detach.

Default behavior:

• Pods using volumes supported by force-detach are removed from the failed node. Kubernetes will

20

https://github.com/medik8s/node-healthcheck-operator

reschedule these onto a healthy node.

• Pods using a volume not supported by force-detach, including non-Trident volumes, are not removed from

the failed node.

• Stateless pods (not PVCs) are not removed from the failed node, unless the pod annotation

trident.netapp.io/podRemediationPolicy: delete is set.

Overriding the pod removal behavior:

Pod removal behavior can be customized using a pod annotation:

trident.netapp.io/podRemediationPolicy[retain, delete]. These annotations are examined

and used when a failover occurs.

Apply annotations to the Kubernetes deployment/replicaset pod spec to prevent the annotation from

disappearing after a failover:

• retain - Pod WILL NOT be removed from the failed node during an automated-failover.

• delete - Pod WILL be removed from the failed node during an automated-failover.

These annotations can be applied to any pod.

• I/O operations will be blocked only on failed nodes for volumes that support force-detach.

• For volumes that do not support force-detach, there is a risk of data corruption and multi-

attach issues.

TridentNodeRemediation CR

The TridentNodeRemediation (TNR) CR defines a failed node. The name of the TNR is the name of the failed

node.

Example TNR:

apiVersion: trident.netapp.io/v1

kind: TridentNodeRemediation

metadata:

 name: <K8s-node-name>

spec: {}

TNR states:

Use the following commands to view the status of TNRs:

kubectl get tnr <name> -n <trident-namespace>

TNRs can be in one of the following states:

• Remediating:

◦ Cease backend I/O access for volumes supported by force-detach mounted to that node.

◦ The Trident node object is marked dirty (not safe for new publications).

◦ Remove pods and volume attachments from the node

• NodeRecoveryPending:

21

◦ The controller is waiting for the node to come back online.

◦ Once the node is online, publish-enforcement will ensure the node is clean and ready for new volume

publications.

• If the node is deleted from K8s, the TNR controller will remove the TNR and cease reconciliation.

• Succeeded:

◦ All remediation and node recovery steps completed successfully. The node is clean and ready for new

volume publications.

• Failed:

◦ Unrecoverable error. Error reasons are set in the status.message field of the CR.

Enabling automated-failover

Prerequisites:

• Ensure that force detach is enabled before enabling automated-failover. For more information, refer to

Details about force detach.

• Install node health check (NHC) in the Kubernetes cluster.

◦ Install operator-sdk.

◦ Install Operator Lifecycle Manager (OLM) in the cluster if not already installed: operator-sdk olm

install.

◦ Install Node Health check Operator: kubectl create -f https://operatorhub.io/install/

node-healthcheck-operator.yaml.

You can also use alternative ways to detect node failure as specified in the [Integrating Custom

Node Health Check Solutions] section below.

See Node Health Check Operator for more information.

Steps

1. Create a NodeHealthCheck (NHC) CR in the Trident namespace to monitor the worker nodes in the

cluster. Example:

22

https://sdk.operatorframework.io/docs/installation/
https://operatorhub.io/install/node-healthcheck-operator.yaml
https://operatorhub.io/install/node-healthcheck-operator.yaml
https://operatorhub.io/install/node-healthcheck-operator.yaml
https://operatorhub.io/install/node-healthcheck-operator.yaml
https://operatorhub.io/install/node-healthcheck-operator.yaml
https://www.redhat.com/en/blog/node-health-check-operator

apiVersion: remediation.medik8s.io/v1alpha1

kind: NodeHealthCheck

metadata:

 name: <CR name>

spec:

 selector:

 matchExpressions:

 - key: node-role.kubernetes.io/control-plane

 operator: DoesNotExist

 - key: node-role.kubernetes.io/master

 operator: DoesNotExist

 remediationTemplate:

 apiVersion: trident.netapp.io/v1

 kind: TridentNodeRemediationTemplate

 namespace: <Trident installation namespace>

 name: trident-node-remediation-template

 minHealthy: 0 # Trigger force-detach upon one or more node failures

 unhealthyConditions:

 - type: Ready

 status: "False"

 duration: 0s

 - type: Ready

 status: Unknown

 duration: 0s

2. Apply the node health check CR in the trident namespace.

kubectl apply -f <nhc-cr-file>.yaml -n <trident-namespace>

The above CR is configured to watch K8s worker nodes for node conditions Ready: false and Unknown.

Automated-Failover will be triggered upon a node going into Ready: false, or Ready: Unknown state.

The unhealthyConditions in the CR uses a 0 second grace period. This causes automated-failover to

trigger immediately upon K8s setting node condition Ready: false, which is set after K8s loses the heartbeat

from a node. K8s has a default of 40sec wait after the last heartbeat before setting Ready: false. This grace-

period can be customized in K8s deployment options.

For additional configuration options, refer to Node-Healthcheck-Operator documentation.

Additional setup information

When Trident is installed with force-detach enabled, two additional resources are automatically created in the

Trident namespace to facilitate integration with NHC: TridentNodeRemediationTemplate (TNRT) and

ClusterRole.

TridentNodeRemediationTemplate (TNRT):

The TNRT serves as a template for the NHC controller, which uses TNRT to generate TNR resources as

23

https://github.com/medik8s/node-healthcheck-operator/blob/main/docs/configuration.md

needed.

apiVersion: trident.netapp.io/v1

kind: TridentNodeRemediationTemplate

metadata:

 name: trident-node-remediation-template

 namespace: trident

spec:

 template:

 spec: {}

ClusterRole:

A cluster role is also added during the installation when force-detach is enabled. This gives NHC permissions

to TNRs in the Trident namespace.

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 labels:

 rbac.ext-remediation/aggregate-to-ext-remediation: "true"

 name: tridentnoderemediation-access

rules:

- apiGroups:

 - trident.netapp.io

 resources:

 - tridentnoderemediationtemplates

 - tridentnoderemediations

 verbs:

 - get

 - list

 - watch

 - create

 - update

 - patch

 - delete

K8s cluster upgrades and maintenance

To prevent any failovers, pause automated-failover during K8s maintenance or upgrades, where the nodes are

expected to go down or reboot. You can pause the NHC CR (described above) by patching its CR:

kubectl patch NodeHealthCheck <cr-name> --patch

'{"spec":{"pauseRequests":["<description-for-reason-of-pause>"]}}' --type=merge

This pauses the automated-failover. To re-enable automated-failover, remove the pauseRequests from the

24

spec after the maintenance is complete.

Limitations

• I/O operations are prevented only on the failed nodes for volumes supported by force-detach. Only pods

using volumes/PVCs supported by force-detach are automatically removed.

• Automatic-failover and force-detach run inside the trident-controller pod. If the node hosting trident-

controller fails, automated-failover will be delayed until K8s moves the pod to a healthy node.

Integrating custom node health check solutions

You can replace Node Healthcheck Operator with alternative node failure detection tools to trigger automatic-

failover.

To ensure compatibility with the automated failover mechanism, your custom solution should:

• Create a TNR when a node failure is detected, using the failed node’s name as the TNR CR name.

• Delete the TNR when the node has recovered and the TNR is in the Succeeded state.

Security

Security

Use the recommendations listed here to ensure your Trident installation is secure.

Run Trident in its own namespace

It is important to prevent applications, application administrators, users, and management applications from

accessing Trident object definitions or the pods to ensure reliable storage and block potential malicious activity.

To separate the other applications and users from Trident, always install Trident in its own Kubernetes

namespace (trident). Putting Trident in its own namespace assures that only the Kubernetes administrative

personnel have access to the Trident pod and the artifacts (such as backend and CHAP secrets if applicable)

stored in the namespaced CRD objects.

You should ensure that you allow only administrators access to the Trident namespace and thus access to the

tridentctl application.

Use CHAP authentication with ONTAP SAN backends

Trident supports CHAP-based authentication for ONTAP SAN workloads (using the ontap-san and ontap-

san-economy drivers). NetApp recommends using bidirectional CHAP with Trident for authentication between

a host and the storage backend.

For ONTAP backends that use the SAN storage drivers, Trident can set up bidirectional CHAP and manage

CHAP usernames and secrets through tridentctl.

Refer to Prepare to configure backend with ONTAP SAN drivers to understand how Trident configures CHAP

on ONTAP backends.

Use CHAP authentication with NetApp HCI and SolidFire backends

NetApp recommends deploying bidirectional CHAP to ensure authentication between a host and the NetApp

HCI and SolidFire backends. Trident uses a secret object that includes two CHAP passwords per tenant. When

Trident is installed, it manages the CHAP secrets and stores them in a tridentvolume CR object for the

25

https://docs.netapp.com/us-en/trident/trident-use/ontap-san-prep.html

respective PV. When you create a PV, Trident uses the CHAP secrets to initiate an iSCSI session and

communicate with the NetApp HCI and SolidFire system over CHAP.

The volumes that are created by Trident are not associated with any Volume Access Group.

Use Trident with NVE and NAE

NetApp ONTAP provides data-at-rest encryption to protect sensitive data in the event a disk is stolen, returned,

or repurposed. For details, refer to Configure NetApp Volume Encryption overview.

• If NAE is enabled on the backend, any volume provisioned in Trident will be NAE-enabled.

◦ You can set the NVE encryption flag to "" to create NAE-enabled volumes.

• If NAE is not enabled on the backend, any volume provisioned in Trident will be NVE-enabled unless the

NVE encryption flag is set to false (the default value) in the backend configuration.

Volumes created in Trident on an NAE-enabled backend must be NVE or NAE encrypted.

• You can set the NVE encryption flag to true in the Trident backend configuration to override

the NAE encryption and use a specific encryption key on a per volume basis.

• Setting the NVE encryption flag to false on an NAE-enabled backend creates an NAE-

enabled volume. You cannot disable NAE encryption by setting the NVE encryption flag to

false.

• You can manually create an NVE volume in Trident by explicitly setting the NVE encryption flag to true.

For more information on backend configuration options, refer to:

• ONTAP SAN configuration options

• ONTAP NAS configuration options

Linux Unified Key Setup (LUKS)

You can enable Linux Unified Key Setup (LUKS) to encrypt ONTAP SAN and ONTAP

SAN ECONOMY volumes on Trident. Trident supports passphrase rotation and volume

expansion for LUKS-encrypted volumes.

In Trident, LUKS-encrypted volumes use the aes-xts-plain64 cypher and mode, as recommended by NIST.

LUKS encryption is not supported for ASA r2 systems. For information about ASA r2 systems,

see Learn about ASA r2 storage systems.

Before you begin

• Worker nodes must have cryptsetup 2.1 or higher (but lower than 3.0) installed. For more information, visit

Gitlab: cryptsetup.

• For performance reasons, NetApp recommends that worker nodes support Advanced Encryption Standard

New Instructions (AES-NI). To verify AES-NI support, run the following command:

26

https://docs.netapp.com/us-en/ontap/encryption-at-rest/configure-netapp-volume-encryption-concept.html
https://docs.netapp.com/us-en/trident/trident-use/ontap-san-examples.html
https://docs.netapp.com/us-en/trident/trident-use/ontap-nas-examples.html
https://csrc.nist.gov/publications/detail/sp/800-38e/final
https://docs.netapp.com/us-en/asa-r2/get-started/learn-about.html
https://gitlab.com/cryptsetup/cryptsetup

grep "aes" /proc/cpuinfo

If nothing is returned, your processor does not support AES-NI. For more information on AES-NI, visit:

Intel: Advanced Encryption Standard Instructions (AES-NI).

Enable LUKS encryption

You can enable per-volume, host-side encryption using Linux Unified Key Setup (LUKS) for ONTAP SAN and

ONTAP SAN ECONOMY volumes.

Steps

1. Define LUKS encryption attributes in the backend configuration. For more information on backend

configuration options for ONTAP SAN, refer to ONTAP SAN configuration options.

{

 "storage": [

 {

 "labels": {

 "luks": "true"

 },

 "zone": "us_east_1a",

 "defaults": {

 "luksEncryption": "true"

 }

 },

 {

 "labels": {

 "luks": "false"

 },

 "zone": "us_east_1a",

 "defaults": {

 "luksEncryption": "false"

 }

 }

]

}

2. Use parameters.selector to define the storage pools using LUKS encryption. For example:

27

https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://docs.netapp.com/us-en/trident/trident-use/ontap-san-examples.html

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: luks

provisioner: csi.trident.netapp.io

parameters:

 selector: "luks=true"

 csi.storage.k8s.io/node-stage-secret-name: luks-${pvc.name}

 csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

3. Create a secret that contains the LUKS passphrase. For example:

kubectl -n trident create -f luks-pvc1.yaml

apiVersion: v1

kind: Secret

metadata:

 name: luks-pvc1

stringData:

 luks-passphrase-name: A

 luks-passphrase: secretA

Limitations

LUKS-encrypted volumes cannot take advantage of ONTAP deduplication and compression.

Backend configuration for importing LUKS volumes

To import a LUKS volume, you must set luksEncryption to true on the backend. The luksEncryption

option tells Trident if the volume is LUKS-compliant (true) or not LUKS-compliant (false) as shown in the

following example.

version: 1

storageDriverName: ontap-san

managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: trident_svm

username: admin

password: password

defaults:

 luksEncryption: 'true'

 spaceAllocation: 'false'

 snapshotPolicy: default

 snapshotReserve: '10'

28

PVC configuration for importing LUKS volumes

To import LUKS volumes dynamically, set the annotation trident.netapp.io/luksEncryption to true

and include a LUKS-enabled storage class in the PVC as shown in this example.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: luks-pvc

 namespace: trident

 annotations:

 trident.netapp.io/luksEncryption: "true"

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: luks-sc

Rotate a LUKS passphrase

You can rotate the LUKS passphrase and confirm rotation.

Do not forget a passphrase until you have verified it is no longer referenced by any volume,

snapshot, or secret. If a referenced passphrase is lost, you might be unable to mount the

volume and the data will remain encrypted and inaccessible.

About this task

LUKS passphrase rotation occurs when a pod that mounts the volume is created after a new LUKS

passphrase is specified. When a new pod is created, Trident compares the LUKS passphrase on the volume to

the active passphrase in the secret.

• If the passphrase on the volume does not match the active passphrase in the secret, rotation occurs.

• If the passphrase on the volume matches the active passphrase in the secret, the previous-luks-

passphrase parameter is ignored.

Steps

1. Add the node-publish-secret-name and node-publish-secret-namespace StorageClass

parameters. For example:

29

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: csi-san

provisioner: csi.trident.netapp.io

parameters:

 trident.netapp.io/backendType: "ontap-san"

 csi.storage.k8s.io/node-stage-secret-name: luks

 csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

 csi.storage.k8s.io/node-publish-secret-name: luks

 csi.storage.k8s.io/node-publish-secret-namespace: ${pvc.namespace}

2. Identify existing passphrases on the volume or snapshot.

Volume

tridentctl -d get volume luks-pvc1

GET http://127.0.0.1:8000/trident/v1/volume/<volumeID>

...luksPassphraseNames:["A"]

Snapshot

tridentctl -d get snapshot luks-pvc1

GET http://127.0.0.1:8000/trident/v1/volume/<volumeID>/<snapshotID>

...luksPassphraseNames:["A"]

3. Update the LUKS secret for the volume to specify the new and previous passphrases. Ensure previous-

luke-passphrase-name and previous-luks-passphrase match the previous passphrase.

apiVersion: v1

kind: Secret

metadata:

 name: luks-pvc1

stringData:

 luks-passphrase-name: B

 luks-passphrase: secretB

 previous-luks-passphrase-name: A

 previous-luks-passphrase: secretA

4. Create a new pod mounting the volume. This is required to initiate the rotation.

5. Verify the the passphrase was rotated.

30

Volume

tridentctl -d get volume luks-pvc1

GET http://127.0.0.1:8000/trident/v1/volume/<volumeID>

...luksPassphraseNames:["B"]

Snapshot

tridentctl -d get snapshot luks-pvc1

GET http://127.0.0.1:8000/trident/v1/volume/<volumeID>/<snapshotID>

...luksPassphraseNames:["B"]

Results

The passphrase was rotated when only the new passphrase is returned on the volume and snapshot.

If two passphrases are returned, for example luksPassphraseNames: ["B", "A"], the

rotation is incomplete. You can trigger a new pod to attempt to complete the rotation.

Enable volume expansion

You can enable volume expansion on a LUKS-encrypted volume.

Steps

1. Enable the CSINodeExpandSecret feature gate (beta 1.25+). Refer to Kubernetes 1.25: Use Secrets for

Node-Driven Expansion of CSI Volumes for details.

2. Add the node-expand-secret-name and node-expand-secret-namespace StorageClass

parameters. For example:

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: luks

provisioner: csi.trident.netapp.io

parameters:

 selector: "luks=true"

 csi.storage.k8s.io/node-stage-secret-name: luks-${pvc.name}

 csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

 csi.storage.k8s.io/node-expand-secret-name: luks-${pvc.name}

 csi.storage.k8s.io/node-expand-secret-namespace: ${pvc.namespace}

allowVolumeExpansion: true

Results

When you initiate online storage expansion, the kubelet passes the appropriate credentials to the driver.

31

https://kubernetes.io/blog/2022/09/21/kubernetes-1-25-use-secrets-while-expanding-csi-volumes-on-node-alpha/
https://kubernetes.io/blog/2022/09/21/kubernetes-1-25-use-secrets-while-expanding-csi-volumes-on-node-alpha/

Kerberos in-flight encryption

Using Kerberos in-flight encryption, you can improve data access security by enabling

encryption for the traffic between your managed cluster and the storage backend.

Trident supports Kerberos encryption for ONTAP as a storage backend:

• On-premise ONTAP - Trident supports Kerberos encryption over NFSv3 and NFSv4 connections from Red

Hat OpenShift and upstream Kubernetes clusters to on-premise ONTAP volumes.

You can create, delete, resize, snapshot, clone, read-only clone, and import volumes that use NFS encryption.

Configure in-flight Kerberos encryption with on-premise ONTAP volumes

You can enable Kerberos encryption on the storage traffic between your managed cluster and an on-premise

ONTAP storage backend.

Kerberos encryption for NFS traffic with on-premise ONTAP storage backends is only supported

using the ontap-nas storage driver.

Before you begin

• Ensure that you have access to the tridentctl utility.

• Ensure you have administrator access to the ONTAP storage backend.

• Ensure you know the name of the volume or volumes you will be sharing from the ONTAP storage

backend.

• Ensure that you have prepared the ONTAP storage VM to support Kerberos encryption for NFS volumes.

Refer to Enable Kerberos on a dataLIF for instructions.

• Ensure that any NFSv4 volumes you use with Kerberos encryption are configured correctly. Refer to the

NetApp NFSv4 Domain Configuration section (page 13) of the NetApp NFSv4 Enhancements and Best

Practices Guide.

Add or modify ONTAP export policies

You need to add rules to existing ONTAP export policies or create new export polices that support Kerberos

encryption for the ONTAP storage VM root volume as well as any ONTAP volumes shared with the upstream

Kubernetes cluster. The export policy rules you add, or new export policies you create, need to support the

following access protocols and access permissions:

Access protocols

Configure the export policy with NFS, NFSv3, and NFSv4 access protocols.

Access details

You can configure one of three different versions of Kerberos encryption, depending on your needs for the

volume:

• Kerberos 5 - (authentication and encryption)

• Kerberos 5i - (authentication and encryption with identity protection)

• Kerberos 5p - (authentication and encryption with identity and privacy protection)

Configure the ONTAP export policy rule with the appropriate access permissions. For example, if clusters will

32

https://docs.netapp.com/us-en/ontap/nfs-config/create-kerberos-config-task.html
https://www.netapp.com/media/16398-tr-3580.pdf
https://www.netapp.com/media/16398-tr-3580.pdf

be mounting the NFS volumes with a mixture of Kerberos 5i and Kerberos 5p encryption, use the following

access settings:

Type Read-only access Read/Write access Superuser access

UNIX Enabled Enabled Enabled

Kerberos 5i Enabled Enabled Enabled

Kerberos 5p Enabled Enabled Enabled

Refer to the following documentation for how to create ONTAP export policies and export policy rules:

• Create an export policy

• Add a rule to an export policy

Create a storage backend

You can create a Trident storage backend configuration that includes Kerberos encryption capability.

About this task

When you create a storage backend configuration file that configures Kerberos encryption, you can specify one

of three different versions of Kerberos encryption using the spec.nfsMountOptions parameter:

• spec.nfsMountOptions: sec=krb5 (authentication and encryption)

• spec.nfsMountOptions: sec=krb5i (authentication and encryption with identity protection)

• spec.nfsMountOptions: sec=krb5p (authentication and encryption with identity and privacy

protection)

Specify only one Kerberos level. If you specify more than one Kerberos encryption level in the parameter list,

only the first option is used.

Steps

1. On the managed cluster, create a storage backend configuration file using the following example. Replace

values in brackets <> with information from your environment:

33

https://docs.netapp.com/us-en/ontap/nfs-config/create-export-policy-task.html
https://docs.netapp.com/us-en/ontap/nfs-config/add-rule-export-policy-task.html

apiVersion: v1

kind: Secret

metadata:

 name: backend-ontap-nas-secret

type: Opaque

stringData:

 clientID: <CLIENT_ID>

 clientSecret: <CLIENT_SECRET>

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-ontap-nas

spec:

 version: 1

 storageDriverName: "ontap-nas"

 managementLIF: <STORAGE_VM_MGMT_LIF_IP_ADDRESS>

 dataLIF: <PROTOCOL_LIF_FQDN_OR_IP_ADDRESS>

 svm: <STORAGE_VM_NAME>

 username: <STORAGE_VM_USERNAME_CREDENTIAL>

 password: <STORAGE_VM_PASSWORD_CREDENTIAL>

 nasType: nfs

 nfsMountOptions: ["sec=krb5i"] #can be krb5, krb5i, or krb5p

 qtreesPerFlexvol:

 credentials:

 name: backend-ontap-nas-secret

2. Use the configuration file you created in the previous step to create the backend:

tridentctl create backend -f <backend-configuration-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to

determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command

again.

Create a storage class

You can create a storage class to provision volumes with Kerberos encryption.

About this task

34

When you create a storage class object, you can specify one of three different versions of Kerberos encryption

using the mountOptions parameter:

• mountOptions: sec=krb5 (authentication and encryption)

• mountOptions: sec=krb5i (authentication and encryption with identity protection)

• mountOptions: sec=krb5p (authentication and encryption with identity and privacy protection)

Specify only one Kerberos level. If you specify more than one Kerberos encryption level in the parameter list,

only the first option is used. If the level of encryption you specified in the storage backend configuration is

different than the level you specify in the storage class object, the storage class object takes precedence.

Steps

1. Create a StorageClass Kubernetes object, using the following example:

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-nas-sc

provisioner: csi.trident.netapp.io

mountOptions:

 - sec=krb5i #can be krb5, krb5i, or krb5p

parameters:

 backendType: ontap-nas

 storagePools: ontapnas_pool

 trident.netapp.io/nasType: nfs

allowVolumeExpansion: true

2. Create the storage class:

kubectl create -f sample-input/storage-class-ontap-nas-sc.yaml

3. Make sure that the storage class has been created:

kubectl get sc ontap-nas-sc

You should see output similar to the following:

NAME PROVISIONER AGE

ontap-nas-sc csi.trident.netapp.io 15h

Provision volumes

After you create a storage backend and a storage class, you can now provision a volume. For instructions,

35

refer to Provision a volume.

Configure in-flight Kerberos encryption with Azure NetApp Files volumes

You can enable Kerberos encryption on the storage traffic between your managed cluster and a single Azure

NetApp Files storage backend or a virtual pool of Azure NetApp Files storage backends.

Before you begin

• Ensure that you have enabled Trident on the managed Red Hat OpenShift cluster.

• Ensure that you have access to the tridentctl utility.

• Ensure that you have prepared the Azure NetApp Files storage backend for Kerberos encryption by noting

the requirements and following the instructions in Azure NetApp Files documentation.

• Ensure that any NFSv4 volumes you use with Kerberos encryption are configured correctly. Refer to the

NetApp NFSv4 Domain Configuration section (page 13) of the NetApp NFSv4 Enhancements and Best

Practices Guide.

Create a storage backend

You can create an Azure NetApp Files storage backend configuration that includes Kerberos encryption

capability.

About this task

When you create a storage backend configuration file that configures Kerberos encryption, you can define it so

that it should be applied at one of two possible levels:

• The storage backend level using the spec.kerberos field

• The virtual pool level using the spec.storage.kerberos field

When you define the configuration at the virtual pool level, the pool is selected using the label in the storage

class.

At either level, you can specify one of three different versions of Kerberos encryption:

• kerberos: sec=krb5 (authentication and encryption)

• kerberos: sec=krb5i (authentication and encryption with identity protection)

• kerberos: sec=krb5p (authentication and encryption with identity and privacy protection)

Steps

1. On the managed cluster, create a storage backend configuration file using one of the following examples,

depending on where you need to define the storage backend (storage backend level or virtual pool level).

Replace values in brackets <> with information from your environment:

36

https://docs.netapp.com/us-en/trident/trident-use/vol-provision.html
https://learn.microsoft.com/en-us/azure/azure-netapp-files/configure-kerberos-encryption
https://www.netapp.com/media/16398-tr-3580.pdf
https://www.netapp.com/media/16398-tr-3580.pdf

Storage backend level example

apiVersion: v1

kind: Secret

metadata:

 name: backend-tbc-secret

type: Opaque

stringData:

 clientID: <CLIENT_ID>

 clientSecret: <CLIENT_SECRET>

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc

spec:

 version: 1

 storageDriverName: azure-netapp-files

 subscriptionID: <SUBSCRIPTION_ID>

 tenantID: <TENANT_ID>

 location: <AZURE_REGION_LOCATION>

 serviceLevel: Standard

 networkFeatures: Standard

 capacityPools: <CAPACITY_POOL>

 resourceGroups: <RESOURCE_GROUP>

 netappAccounts: <NETAPP_ACCOUNT>

 virtualNetwork: <VIRTUAL_NETWORK>

 subnet: <SUBNET>

 nasType: nfs

 kerberos: sec=krb5i #can be krb5, krb5i, or krb5p

 credentials:

 name: backend-tbc-secret

Virtual pool level example

37

apiVersion: v1

kind: Secret

metadata:

 name: backend-tbc-secret

type: Opaque

stringData:

 clientID: <CLIENT_ID>

 clientSecret: <CLIENT_SECRET>

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc

spec:

 version: 1

 storageDriverName: azure-netapp-files

 subscriptionID: <SUBSCRIPTION_ID>

 tenantID: <TENANT_ID>

 location: <AZURE_REGION_LOCATION>

 serviceLevel: Standard

 networkFeatures: Standard

 capacityPools: <CAPACITY_POOL>

 resourceGroups: <RESOURCE_GROUP>

 netappAccounts: <NETAPP_ACCOUNT>

 virtualNetwork: <VIRTUAL_NETWORK>

 subnet: <SUBNET>

 nasType: nfs

 storage:

 - labels:

 type: encryption

 kerberos: sec=krb5i #can be krb5, krb5i, or krb5p

 credentials:

 name: backend-tbc-secret

2. Use the configuration file you created in the previous step to create the backend:

tridentctl create backend -f <backend-configuration-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to

determine the cause by running the following command:

38

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command

again.

Create a storage class

You can create a storage class to provision volumes with Kerberos encryption.

Steps

1. Create a StorageClass Kubernetes object, using the following example:

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: sc-nfs

provisioner: csi.trident.netapp.io

parameters:

 backendType: azure-netapp-files

 trident.netapp.io/nasType: nfs

 selector: type=encryption

2. Create the storage class:

kubectl create -f sample-input/storage-class-sc-nfs.yaml

3. Make sure that the storage class has been created:

kubectl get sc -sc-nfs

You should see output similar to the following:

NAME PROVISIONER AGE

sc-nfs csi.trident.netapp.io 15h

Provision volumes

After you create a storage backend and a storage class, you can now provision a volume. For instructions,

refer to Provision a volume.

39

https://docs.netapp.com/us-en/trident/trident-use/vol-provision.html

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

40

http://www.netapp.com/TM

	Best practices and recommendations : Trident
	Table of Contents
	Best practices and recommendations
	Deployment
	Deploy to a dedicated namespace
	Use quotas and range limits to control storage consumption

	Storage configuration
	Platform overview
	ONTAP and Cloud Volumes ONTAP best practices
	SolidFire best practices
	Where to find more information?

	Integrate Trident
	Driver selection and deployment
	Storage class design
	Virtual pool design
	Volume operations
	Metrics service

	Data protection and disaster recovery
	Trident replication and recovery
	SVM replication and recovery
	Volume replication and recovery
	Snapshot data protection

	Automating the failover of stateful applications with Trident
	Details about force detach
	Details about automated failover

	Security
	Security
	Linux Unified Key Setup (LUKS)
	Kerberos in-flight encryption

