Manage and monitor Trident
Trident

NetApp
February 02, 2026

This PDF was generated from https://docs.netapp.com/us-en/trident/trident-managing-k8s/upgrade-
trident.html on February 02, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Manage and monitor Trident

Upgrade Trident
Upgrade Trident
Upgrade with the operator
Upgrade with tridentctl

Manage Trident using tridentctl
Commands and global flags
Command options and flags
Plugin support

Monitor Trident
Overview
Step 1: Define a Prometheus target
Step 2: Create a Prometheus ServiceMonitor
Step 3: Query Trident metrics with PromQL
Learn about Trident AutoSupport telemetry
Disable Trident metrics

Uninstall Trident
Determine the original installation method
Uninstall a Trident operator installation
Uninstall a tridentctl installation

© NN NN =2

N) a2 A @A A
O ©W © © oo o b b~ M

Manage and monitor Trident

Upgrade Trident

Upgrade Trident

Beginning with the 24.02 release, Trident follows a four-month release cadence,
delivering three major releases every calendar year. Each new release builds on the
previous releases and provides new features, performance enhancements, bug fixes, and
improvements. We encourage you to upgrade at least once a year to take advantage of
the new features in Trident.

Considerations before upgrading

When upgrading to the latest release of Trident, consider the following:
» There should be only one Trident instance installed across all the namespaces in a given Kubernetes
cluster.

* Trident 23.07 and later requires v1 volume snapshots and no longer supports alpha or beta snapshots.

* When upgrading, it is important you provide parameter. fsType in StorageClasses used by Trident.
You can delete and re-create StorageClasses without disrupting pre-existing volumes.

o This is a requirement for enforcing security contexts for SAN volumes.

° The sample input directory contains examples, such as storage-class-basic.yaml.templ and
storage-class-bronze-default.yaml.

o For more information, refer to Known Issues.

Step 1: Select a version

Trident versions follow a date-based Yy .MM naming convention, where "YY" is the last two digits of the year
and "MM" is the month. Dot releases follow a YY.MM. X convention, where "X" is the patch level. You will select
the version to upgrade to based on the version you are upgrading from.

* You can perform a direct upgrade to any target release that is within a four-release window of your installed
version. For example, you can directly upgrade from 24.06 (or any 24.06 dot release) to 25.06.

« If you are upgrading from a release outside of the four-release window, perform a multi-step upgrade. Use
the upgrade instructions for the earlier version you are upgrading from to upgrade to the most recent
release that fits the four-release window. For example, if you are running 23.07 and want to upgrade to
25.06:

1. First upgrade from 23.07 to 24.06.
2. Then upgrade from 24.06 to 25.06.

When upgrading using the Trident operator on OpenShift Container Platform, you should
upgrade to Trident 21.01.1 or later. The Trident operator released with 21.01.0 contains a known
issue that has been fixed in 21.01.1. For more details, refer to the issue details on GitHub.

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://github.com/NetApp/trident/tree/master/trident-installer/sample-input
https://github.com/NetApp/trident/blob/master/trident-installer/sample-input/storage-class-samples/storage-class-basic.yaml.templ
https://github.com/NetApp/trident/blob/master/trident-installer/sample-input/storage-class-samples/storage-class-bronze-default.yaml
https://docs.netapp.com/us-en/trident/trident-rn.html
https://docs.netapp.com/us-en/trident/earlier-versions.html
https://github.com/NetApp/trident/issues/517

Step 2: Determine the original installation method

To determine which version you used to originally install Trident:

1. Use kubectl get pods -n trident to examine the pods.
° If there is no operator pod, Trident was installed using tridentctl.

o If there is an operator pod, Trident was installed using the Trident operator either manually or using
Helm.

2. If there is an operator pod, use kubectl describe torc to determine if Trident was installed using
Helm.

o If there is a Helm label, Trident was installed using Helm.

o If there is no Helm label, Trident was installed manually using the Trident operator.

Step 3: Select an upgrade method

Generally, you should upgrade using the same method you used for the initial installation, however you can
move between installation methods. There are two options to upgrade Trident.

* Upgrade using the Trident operator

We suggest you review Understand the operator upgrade workflow before upgrading with
the operator.

* Upgrade using tridentctl

Upgrade with the operator

Understand the operator upgrade workflow

Before using the Trident operator to upgrade Trident, you should understand the
background processes that occur during upgrade. This includes changes to the Trident
controller, controller Pod and node Pods, and node DaemonSet that enable rolling
updates.

Trident operator upgrade handling

One of the many benefits of using the Trident operator to install and upgrade Trident is the automatic handling
of Trident and Kubernetes objects without disrupting existing mounted volumes. In this way, Trident can
support upgrades with zero downtime, or rolling updates. In particular, the Trident operator communicates with
the Kubernetes cluster to:
» Delete and recreate the Trident Controller deployment and node DaemonSet.
* Replace the Trident Controller Pod and Trident Node Pods with new versions.
o If a node is not updated, it does not prevent remaining nodes from being updated.

> Only nodes with a running Trident Node Pod can mount volumes.

For more information about Trident architecture on the Kubernetes cluster, refer to Trident
architecture.

https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy.html#moving-between-installation-methods
https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy.html
https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/
https://docs.netapp.com/us-en/trident/trident-get-started/architecture.html
https://docs.netapp.com/us-en/trident/trident-get-started/architecture.html

Operator upgrade workflow

When you initiate an upgrade using the Trident operator:

1. The Trident operator:
a. Detects the currently installed version of Trident (version n).
b. Updates all Kubernetes objects including CRDs, RBAC, and Trident SVC.
c. Deletes the Trident Controller deployment for version n.
d. Creates the Trident Controller deployment for version n+1.
2. Kubernetes creates Trident Controller Pod for n+1.
3. The Trident operator:
a. Deletes the Trident Node DaemonSet for n. The operator does not wait for Node Pod termination.
b. Creates the Trident Node Daemonset for n+17.

4. Kubernetes creates Trident Node Pods on nodes not running Trident Node Pod n. This ensures there is
never more than one Trident Node Pod, of any version, on a node.

Upgrade a Trident installation using Trident operator or Helm

You can upgrade Trident using the Trident operator either manually or using Helm. You
can upgrade from a Trident operator installation to another Trident operator installation or
upgrade from a tridentctl installation to a Trident operator version. Review Select an
upgrade method before upgrading a Trident operator installation.

Upgrade a manual installation

You can upgrade from a cluster-scoped Trident operator installation to another cluster-scoped Trident operator
installation. All Trident versions use a cluster-scoped operator.

@ To upgrade from Trident that was installed using the namespace-scoped operator (versions
20.07 through 20.10), use the upgrade instructions for your installed version of Trident.

About this task

Trident provides a bundle file you can use to install the operator and create associated objects for your
Kubernetes version.

* For clusters running Kubernetes 1.24, use bundle_pre_1_25.yaml.

* For clusters running Kubernetes 1.25 or later, use bundle _post 1 25.yaml.

Before you begin
Ensure you are using a Kubernetes cluster running a supported Kubernetes version.

Steps
1. Verify your Trident version:

./tridentctl -n trident version

https://docs.netapp.com/us-en/trident/earlier-versions.html
https://github.com/NetApp/trident/tree/stable/v25.02/deploy/bundle_pre_1_25.yaml
https://github.com/NetApp/trident/tree/stable/v25.02/deploy/bundle_post_1_25.yaml
https://docs.netapp.com/us-en/trident/trident-get-started/requirements.html

- Update the operator.yaml, tridentorchestrator cr.yaml,and post 1 25 bundle.yaml with
the registry and imagepaths for the version you are upgrading to (e.g.25.06), and the correct secret.

. Delete the Trident operator that was used to install the current Trident instance. For example, if you are
upgrading from 25.02, run the following command:

kubectl delete -f 25.02.0/trident-installer/deploy/<bundle.yaml> -n
trident

. If you customized your initial installation using TridentOrchestrator attributes, you can edit the
TridentOrchestrator object to modify the installation parameters. This might include changes made to
specify mirrored Trident and CSI image registries for offline mode, enable debug logs, or specify image pull
secrets.

- Install Trident using the correct bundle YAML file for your environment, where <bundle.yaml> is
bundle pre 1 25.yaml orbundle post 1 25.yaml based on your Kubernetes version. For
example, if you are installing Trident 25.06.0, run the following command:

kubectl create -f 25.06.0/trident-installer/deploy/<bundle.yaml> -n
trident

6. Edit the trident torc to include the image 25.06.0.

Upgrade a Helm installation

You can upgrade a Trident Helm installation.

When upgrading a Kubernetes cluster from 1.24 to 1.25 or later that has Trident installed, you

@ must update values.yaml to set excludePodSecurityPolicy to true oradd --set
excludePodSecurityPolicy=true tothe helm upgrade command before you can
upgrade the cluster.

If you have already upgraded your Kubernetes cluster from 1.24 to 1.25 without upgrading the Trident helm,
the helm upgrade fails. For the helm upgrade to go through, perform these steps as pre-requisites:

1. Install the helm-mapkubeapis plugin from https://github.com/helm/helm-mapkubeapis.

2. Perform a dry run for the Trident release in the namespace where Trident is installed. This lists out the
resources, which will be cleaned up.

helm mapkubeapis --dry-run trident --namespace trident

3. Perform a full run with helm to do the cleanup.

helm mapkubeapis trident --namespace trident

Steps

https://github.com/helm/helm-mapkubeapis

1. If you installed Trident using Helm, you can use helm upgrade trident netapp-
trident/trident-operator —--version 100.2506.0 to upgrade in one step. If you did not add the
Helm repo or cannot use it to upgrade:

a. Download the latest Trident release from the Assets section on GitHub.

b. Use the helm upgrade command where trident-operator-25.10.0.tgz reflects the version
that you want to upgrade to.

helm upgrade <name> trident-operator-25.10.0.tgz

If you set custom options during the initial installation (such as specifying private,

@ mirrored registries for Trident and CSI images), append the helm upgrade command
using --set to ensure those options are included in the upgrade command, otherwise
the values will reset to default.

2. Run helm list to verify that the chart and app version have both been upgraded. Run tridentctl
logs to review any debug messages.

Upgrade from a tridentctl installation to Trident operator

You can upgrade to the latest release of the Trident operator from a tridentctl installation. The existing
backends and PVCs will automatically be available.

@ Before switching between installation methods, review Moving between installation methods.

Steps
1. Download the latest Trident release.

Download the release required [25.10.0]

mkdir 25.10.0

cd 25.10.0

wget
https://github.com/NetApp/trident/releases/download/v25.10.0/trident-
installer-25.10.0.tar.gz

tar -xf trident-installer-25.10.0.tar.gz

cd trident-installer

2. Create the tridentorchestrator CRD from the manifest.

kubectl create -f
deploy/crds/trident.netapp.io tridentorchestrators crd postl.l6.yaml

3. Deploy the cluster-scoped operator in the same namespace.

https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy-helm.html#deploy-the-trident-operator-and-install-trident-using-helm
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest
https://github.com/NetApp/trident/releases/latest
https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy.html#moving-between-installation-methods

kubectl create -f deploy/<bundle-name.yaml>

serviceaccount/trident-operator created
clusterrole.rbac.authorization.k8s.io/trident-operator created
clusterrolebinding.rbac.authorization.k8s.io/trident-operator created
deployment.apps/trident-operator created
podsecuritypolicy.policy/tridentoperatorpods created

#Examine the pods in the Trident namespace

NAME READY STATUS RESTARTS AGE

trident-controller-79df798bdc-m79dc 6/6 Running 0 150d
trident-node-linux-xrst8 2/2 Running 0 150d
trident-operator-5574dbbc68-nthijv 1/1 Running 0 1m30s

4. Create a TridentOrchestrator CR for installing Trident.

cat deploy/crds/tridentorchestrator cr.yaml
apiVersion: trident.netapp.io/vl
kind: TridentOrchestrator
metadata:
name: trident
spec:
debug: true
namespace: trident

kubectl create -f deploy/crds/tridentorchestrator cr.yaml

#Examine the pods in the Trident namespace

NAME READY STATUS RESTARTS AGE
trident-csi-79d£f798bdc-m79dc 6/6 Running 0 Im
trident-csi-xrst8 2/2 Running 0 1m
trident-operator-5574dbbc68-nthijv 1/1 Running 0 5m4dls

5. Confirm Trident was upgraded to the intended version.

kubectl describe torc trident | grep Message -A 3

Message: Trident installed
Namespace: trident

Status: Installed
Version: v25.10.0

Upgrade with tridentctl
You can easily upgrade an existing Trident installation using tridentctl.

About this task

Uninstalling and reinstalling Trident acts as an upgrade. When you uninstall Trident, the Persistent Volume
Claim (PVC) and Persistent Volume (PV) used by the Trident deployment are not deleted. PVs that have
already been provisioned will remain available while Trident is offline, and Trident will provision volumes for any
PVCs that are created in the interim after it is back online.

Before you begin

Review Select an upgrade method before upgrading using tridentctl.

Steps

1. Run the uninstall command in tridentctl to remove all of the resources associated with Trident except
for the CRDs and related objects.

./tridentctl uninstall -n <namespace>

2. Reinstall Trident. Refer to Install Trident using tridentctl.

@ Do not interrupt the upgrade process. Ensure the installer runs to completion.

Manage Trident using tridentctl

The Trident installer bundle includes the tridentctl command-line utility to provide
simple access to Trident. Kubernetes users with sufficient privileges can use it to install
Trident or manage the namespace that contains the Trident pod.

Commands and global flags

You canrun tridentctl help to get a list of available commands for tridentctl or append the --help
flag to any command to get a list of options and flags for that specific command.

tridentctl [command] [--optional-flag]

The Trident tridentctl utility supports the following commands and global flags.

https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy-tridentctl.html
https://github.com/NetApp/trident/releases

Commands

create

Add a resource to Trident.

delete
Remove one or more resources from Trident.

get
Get one or more resources from Trident.

help
Help about any command.

images

Print a table of the container images Trident needs.

import

Import an existing resource to Trident.

install

Install Trident.

logs
Print the logs from Trident.

send

Send a resource from Trident.

uninstall

Uninstall Trident.

update
Modify a resource in Trident.

update backend state
Temporarily suspend backend operations.

upgrade
Upgrade a resource in Trident.

version

Print the version of Trident.

Global flags

-d, --debug
Debug output.

-h, --help
Help for tridentctl.

-k, -—kubeconfig string

Specify the KUBECONFIG path to run commands locally or from one Kubernetes cluster to another.

@ Alternatively, you can export the KUBECONFIG variable to point to a specific Kubernetes
cluster and issue tridentctl commands to that cluster.

-n, --namespace string

Namespace of Trident deployment.

-0, ——output string

Output format. One of json|yaml|name|wide|ps (default).

-s, --server string

Address/port of Trident REST interface.

(D Trident REST interface can be configured to listen and serve at 127.0.0.1 (for IPv4) or
[::1] (for IPv6) only.

Command options and flags

create

Use the create command to add a resource to Trident.
tridentctl create [option]

Options
backend: Add a backend to Trident.

delete

Use the delete command to remove one or more resources from Trident.
tridentctl delete [option]

Options

backend: Delete one or more storage backends from Trident.
snapshot: Delete one or more volume snapshots from Trident.
storageclass: Delete one or more storage classes from Trident.
volume: Delete one or more storage volumes from Trident.

get

Use the get command to get one or more resources from Trident.
tridentctl get [option]

Options

backend: Get one or more storage backends from Trident.
snapshot: Get one or more snapshots from Trident.
storageclass: Get one or more storage classes from Trident.
volume: Get one or more volumes from Trident.

Flags

-h, --help: Help for volumes.
--parentOfSubordinate string: Limit query to subordinate source volume.
--subordinateOf string: Limit query to subordinates of volume.

images
Use images flags to print a table of the container images Trident needs.
tridentctl images [flags]

Flags

-h, ——help: Help for images.
-v, --k8s-version string: Semantic version of Kubernetes cluster.

import volume

Use the import volume command to import an existing volume to Trident.
tridentctl import volume <backendName> <volumeName> [flags]

Aliases

volume, v

Flags

-f, --filename string: Path to YAML or JSON PVC file.
-h, -—help: Help for volume.
--no-manage: Create PV/PVC only. Don’t assume volume lifecycle management.

install
Use the install flags to install Trident.
tridentctl install [flags]

Flags

--autosupport-image string: The container image for Autosupport Telemetry (default "netapp/trident
autosupport:<current-version>").
--autosupport-proxy string: The address/port of a proxy for sending Autosupport Telemetry.

10

--enable-node-prep: Attempt to install required packages on nodes.

--generate-custom-yaml: Generate YAML files without installing anything.

-h, --help: Help for install.

--http-request-timeout: Override the HTTP request timeout for Trident controller's REST API (default
1m30s).

--image-registry string: The address/port of an internal image registry.

--k8s-timeout duration: The timeout for all Kubernetes operations (default 3m0s).
--kubelet-dir string: The host location of kubelet’s internal state (default "/var/lib/kubelet").
--log-format string: The Trident logging format (text, json) (default "text").

--node-prep: Enables Trident to prepare the nodes of the Kubernetes cluster to manage volumes using
the specified data storage protocol. Currently, iscsi is the only value supported. Beginning with
OpenShift 4.19, the minimum Trident version supported for this feature is 25.06.1.

--pv string: The name of the legacy PV used by Trident, makes sure this doesn’t exist (default
"trident").

--pvc string: The name of the legacy PVC used by Trident, makes sure this doesn’t exist (default
"trident").

--silence-autosupport: Don't send autosupport bundles to NetApp automatically (default true).
--silent: Disable most output during installation.

-—trident-image string: The Trident image to install.

--k8s-api-gps: The queries per second (QPS) limit for Kubernetes API requests (default 100; optional).
--use-custom-yaml: Use any existing YAML files that exist in setup directory.

--use-ipvé6: Use IPv6 for Trident’'s communication.

logs

Use logs flags to print the logs from Trident.
tridentctl logs [flags]

Flags

-a, ——archive: Create a support archive with all logs unless otherwise specified.

-h, -—help: Help for logs.

-1, --log string: Trident log to display. One of trident|auto|trident-operator|all (default "auto").
--node string: The Kubernetes node name from which to gather node pod logs.

-p, ——previous: Get the logs for the previous container instance if it exists.

--sidecars: Get the logs for the sidecar containers.

send
Use the send command to send a resource from Trident.

tridentctl send [option]

Options
autosupport: Send an Autosupport archive to NetApp.

uninstall

Use uninstall flags to uninstall Trident.

tridentctl uninstall [flags]

11

Flags

-h, --help: Help for uninstall.
--silent: Disable most output during uninstall.

update

Use the update command to modify a resource in Trident.
tridentctl update [option]

Options
backend: Update a backend in Trident.

update backend state

Use the update backend state command to suspend or resume backend operations.

tridentctl update backend state <backend-name> [flag]

Points to consider

« If a backend is created using a TridentBackendConfig (tbc), the backend cannot be updated using a
backend. json file.

* If the userState has been set in a tbc, it cannot be modified using the tridentctl update backend
state <backend-name> --user-state suspended/normal command.

* To regain the ability to set the usersState via tridentctl after it has been set via tbc, the userstate field
must be removed from the tbc. This can be done using the kubectl edit tbc command. After the
userState field is removed, you can use the tridentctl update backend state command to
change the userState of a backend.

* Use the tridentctl update backend state to change the userState. You can also update the
userState using TridentBackendConfig or backend. json file; this triggers a complete re-
initialization of the backend and can be time-consuming.

Flags

-h, --help: Help for backend state.
--user-state: Setto suspended to pause backend operations. Set to normal to resume backend
operations. When set to suspended:

* AddVolume and Import Volume are paused.

®* CloneVolume, ResizeVolume, PublishVolume, UnPublishVolume, CreateSnapshot,
GetSnapshot, RestoreSnapshot, DeleteSnapshot, RemoveVolume, GetVolumeExternal,
ReconcileNodeAccess remain available.

You can also update the backend state using userState field in the backend configuration file
TridentBackendConfig or backend. json.

For more information, refer to Options for managing backends and Perform backend management with
kubectl.

Example:

12

https://docs.netapp.com/us-en/trident/trident-use/backend_options.html
https://docs.netapp.com/us-en/trident/trident-use/backend_ops_kubectl.html
https://docs.netapp.com/us-en/trident/trident-use/backend_ops_kubectl.html

JSON

Follow these steps to update the userState using the backend. json file:

1. Edit the backend. json file to include the usersState field with its value set to 'suspended'.

2. Update the backend using the tridentctl update backend command and the path to the
updated backend. json file.

Example: tridentctl update backend -f /<path to backend JSON
file>/backend.json -n trident

"version": 1,
"storageDriverName": "ontap-nas",
"managementLIF": "<redacted>",
"svm": "nas-svm",

"backendName": "customBackend",
"username": "<redacted>",
"password": "<redacted>",
"userState": "suspended"

YAML

You can edit the tbc after it has been applied using the kubectl edit <tbc-name> -n
<namespace> command

The following example updates the backend state to suspend using the userState: suspended
option:

apiVersion: trident.netapp.io/vl
kind: TridentBackendConfig
metadata:
name: backend-ontap-nas
spec:
version: 1
backendName: customBackend
storageDriverName: ontap-nas
managementLIF: <redacted>
SVm: nas-svm
userState: suspended
credentials:
name: backend-tbc-ontap-nas-secret

version

Use version flags to print the version of tridentctl and the running Trident service.
tridentctl version [flags]

Flags

--client: Client version only (no server required).
-h, --help: Help for version.

Plugin support

Tridentctl supports plugins similar to kubectl. Tridentctl detects a plugin if the plugin binary file name follows the
scheme "tridentctl-<plugin>", and the binary is located in a folder listed the PATH environment variable. All the
detected plugins are listed in the plugin section of the tridentctl help. Optionally, you can also limit the search
by specifying a plugin folder in the the enviornment variable TRIDENTCTL_PLUGIN_PATH (Example:
TRIDENTCTL PLUGIN PATH=~/tridentctl-plugins/). If the variable is used, tridenctl searches only in
the specified folder.

Monitor Trident

Trident provides a set of Prometheus metrics endpoints that you can use to monitor
Trident performance.

Overview
The metrics provided by Trident enable you to do the following:
» Keep tabs on Trident’s health and configuration. You can examine how successful operations are and if it

can communicate with the backends as expected.

* Examine backend usage information and understand how many volumes are provisioned on a backend
and the amount of space consumed, and so on.

* Maintain a mapping of the amount of volumes provisioned on available backends.

« Track performance. You can take a look at how long it takes for Trident to communicate to backends and
perform operations.

By default, Trident’'s metrics are exposed on the target port 8001 at the /metrics endpoint.
These metrics are enabled by default when Trident is installed. You can configure to consume
Trident metrics over HTTPS on port 8444 as well.

What you’ll need
« A Kubernetes cluster with Trident installed.

* A Prometheus instance. This can be a containerized Prometheus deployment or you can choose to run
Prometheus as a native application.

Step 1: Define a Prometheus target

You should define a Prometheus target to gather the metrics and obtain information about the backends
Trident manages, the volumes it creates, and so on. See Prometheus Operator documentation.

14

https://github.com/prometheus-operator/prometheus-operator
https://prometheus.io/download/
https://prometheus-operator.dev/docs/developer/getting-started/

Step 2: Create a Prometheus ServiceMonitor

To consume the Trident metrics, you should create a Prometheus ServiceMonitor that watches the trident-
csi service and listens on the metrics port. A sample ServiceMonitor looks like this:

apiVersion: monitoring.coreos.com/v1l
kind: ServiceMonitor
metadata:

name: trident-sm

namespace: monitoring

labels:

release: prom-operator

spec:
jobLabel: trident
selector:
matchLabels:

app: controller.csi.trident.netapp.io
namespaceSelector:
matchNames:
- trident
endpoints:
- port: metrics

interval: 15s

This ServiceMonitor definition retrieves metrics returned by the trident-csi service and specifically looks
for the metrics endpoint of the service. As a result, Prometheus is now configured to understand Trident’s
metrics.

In addition to metrics available directly from Trident, kubelet exposes many kubelet volume * metrics via
it's own metrics endpoint. Kubelet can provide information about the volumes that are attached, and pods and
other internal operations it handles. Refer to here.

Consume Trident metrics over HTTPS

To consume Trident metrics over HTTPS (port 8444), you must modify the ServiceMonitor definition to include
TLS configuration. You also need to copy the trident-csi secret from the trident namespace to the
namespace where Prometheus is running. You can do this using the following command:

kubectl get secret trident-csi -n trident -o yaml | sed 's/namespace:
trident/namespace: monitoring/' | kubectl apply -f -

A sample ServiceMonitor for HTTPS metrics looks like this:

15

https://kubernetes.io/docs/concepts/cluster-administration/monitoring/

apiVersion: monitoring.coreos.com/v1l
kind: ServiceMonitor
metadata:
name: trident-sm
namespace: monitoring
labels:
release: prom-operator
spec:
jobLabel: trident
selector:
matchLabels:
app: controller.csi.trident.netapp.io
namespaceSelector:
matchNames:
- trident
endpoints:
- interval: 15s
path: /metrics
port: https-metrics
scheme: https
tlsConfig:
ca:
secret:
key: caCert
name: trident-csi

cert:
secret:
key: clientCert
name: trident-csi
keySecret:

key: clientKey
name: trident-csi

serverName: trident-csi

Trident support HTTPS metrics in all the installation methods: tridentctl, Helm chart, and Operator:

* If you are using the tridentctl install command, you can pass the --https-metrics flag to
enable HTTPS metrics.

* If you are using the Helm chart, you can set the httpsMetrics parameter to enable HTTPS metrics.

* If you are using YAML files, you can add the --https metrics flag to the trident-main container in
the trident-deployment.yamnl file.

Step 3: Query Trident metrics with PromQL

PromQL is good for creating expressions that return time-series or tabular data.

16

Here are some PromQL queries that you can use:

Get Trident health information

* Percentage of HTTP 2XX responses from Trident

(sum (trident rest ops seconds total count{status code=~"2.."} OR on()
vector (0)) / sum (trident rest ops seconds total count)) * 100

» Percentage of REST responses from Trident via status code

(sum (trident rest ops seconds total count) by (status code) / scalar
(sum (trident rest ops seconds total count))) * 100

* Average duration in ms of operations performed by Trident

sum by (operation)

(trident operation duration milliseconds sum{success="true"}) / sum by
(operation)

(trident operation duration milliseconds count{success="true"})

Get Trident usage information

* Average volume size
trident volume allocated bytes/trident volume count
» Total volume space provisioned by each backend

sum (trident volume allocated bytes) by (backend uuid)

Get individual volume usage
@ This is enabled only if kubelet metrics are also gathered.

* Percentage of used space for each volume

kubelet volume stats used bytes / kubelet volume stats capacity bytes *
100

17

Learn about Trident AutoSupport telemetry

By default, Trident sends Prometheus metrics and basic backend information to NetApp on a daily cadence.

* To stop Trident from sending Prometheus metrics and basic backend information to NetApp, pass the
--silence-autosupport flag during Trident installation.

* Trident can also send container logs to NetApp Support on-demand via tridentctl send
autosupport. You will need to trigger Trident to upload it's logs. Before you submit logs, you should
accept NetApp’s
privacy policy.

* Unless specified, Trident fetches the logs from the past 24 hours.

* You can specify the log retention time frame with the --since flag. For example: tridentctl send
autosupport --since=1h. This information is collected and sent via a trident-autosupport
container
that is installed alongside Trident. You can obtain the container image at Trident AutoSupport.

 Trident AutoSupport does not gather or transmit Personally Identifiable Information (PIl) or Personal
Information. It comes with a EULA that is not applicable to the Trident container image itself. You can learn
more about NetApp’s commitment to data security and trust here.

An example payload sent by Trident looks like this:

items:
- backendUUID: ff3852el1-18a5-4df4-b2d3-f59f829627ed

protocol: file

config:
version: 1
storageDriverName: ontap-nas
debug: false
debugTraceFlags: null
disableDelete: false
serialNumbers:

- nwkvzfanek SN

limitVolumeSize: ""

state: online

online: true

* The AutoSupport messages are sent to NetApp’s AutoSupport endpoint. If you are using a private registry
to store container images, you can use the --image-registry flag.

* You can also configure proxy URLs by generating the installation YAML files. This can be done by using
tridentctl install --generate-custom-yaml to create the YAML files and adding the --proxy
—-url argument for the trident-autosupport containerin trident-deployment.yaml.

Disable Trident metrics

To disable metrics from being reported, you should generate custom YAMLs (using the -—generate-custom
-yaml flag) and edit them to remove the --metrics flag from being invoked for the trident-main

18

https://www.netapp.com/company/legal/privacy-policy/
https://hub.docker.com/r/netapp/trident-autosupport
https://www.netapp.com/us/media/enduser-license-agreement-worldwide.pdf
https://www.netapp.com/pdf.html?item=/media/14114-enduserlicenseagreementworldwidepdf.pdf

container.

Uninstall Trident
You should use the same method to uninstall Trident that you used to install Trident.

About this task

* If you need a fix for bugs observed after an upgrade, dependency issues, or an unsuccessful or incomplete
upgrade, you should uninstall Trident and reinstall the earlier version using the specific instructions for that
version. This is the only recommended way to downgrade to an earlier version.

» For easy upgrade and reinstallation, uninstalling Trident does not remove the CRDs or related objects
created by Trident. If you need to completely remove Trident and all of its data, refer to Completely remove
Trident and CRDs.

Before you begin
If you are decommissioning Kubernetes clusters, you must delete all applications that use volumes created by

Trident prior to uninstalling. This ensures that PVCs are unpublished on Kubernetes nodes before they are
deleted.
Determine the original installation method

You should use the same method to uninstall Trident that you used to install it. Before uninstalling, verify which
version you used to originally install Trident.

1. Use kubectl get pods -n trident to examine the pods.
° If there is no operator pod, Trident was installed using tridentctl.

o If there is an operator pod, Trident was installed using the Trident operator either manually or using
Helm.

2. If there is an operator pod, use kubectl describe tproc trident to determine if Trident was
installed using Helm.

o If there is a Helm label, Trident was installed using Helm.

o If there is no Helm label, Trident was installed manually using the Trident operator.

Uninstall a Trident operator installation

You can uninstall a trident operator installation manually or using Helm.

Uninstall manual installation

If you installed Trident using the operator, you can uninstall it by doing one of the following:

1. Edit TridentOrchestrator CR and set the uninstall flag:

kubectl patch torc <trident-orchestrator-name> --type=merge -p
"{"spec":{"uninstall":true}}'

When the uninstall flag is set to true, the Trident operator uninstalls Trident, but does not remove the
TridentOrchestrator itself. You should clean up the TridentOrchestrator and create a new one if you want to

19

https://docs.netapp.com/us-en/trident/earlier-versions.html
https://docs.netapp.com/us-en/trident/troubleshooting.html#completely-remove-trident-and-crds
https://docs.netapp.com/us-en/trident/troubleshooting.html#completely-remove-trident-and-crds

install Trident again.

2. Delete TridentOrchestrator: By removing the TridentOrchestrator CR that was used to deploy
Trident, you instruct the operator to uninstall Trident. The operator processes the removal of
TridentOrchestrator and proceeds to remove the Trident deployment and daemonset, deleting the
Trident pods it had created as part of the installation.

kubectl delete -f deploy/<bundle.yaml> -n <namespace>

Uninstall Helm installation

If you installed Trident by using Helm, you can uninstall it by using helm uninstall.

#List the Helm release corresponding to the Trident install.
helm 1s -n trident

NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION

trident trident 1 2021-04-20
00:26:42.417764794 +0000 UTC deployed trident-operator-21.07.1
21.07.1

#Uninstall Helm release to remove Trident
helm uninstall trident -n trident
release "trident" uninstalled

Uninstall a tridentctl installation
Use the uninstall command in tridentctl to remove all of the resources associated with Trident except

for the CRDs and related objects:

./tridentctl uninstall -n <namespace>

20

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

21

http://www.netapp.com/TM

	Manage and monitor Trident : Trident
	Table of Contents
	Manage and monitor Trident
	Upgrade Trident
	Upgrade Trident
	Upgrade with the operator
	Upgrade with tridentctl

	Manage Trident using tridentctl
	Commands and global flags
	Command options and flags
	Plugin support

	Monitor Trident
	Overview
	Step 1: Define a Prometheus target
	Step 2: Create a Prometheus ServiceMonitor
	Step 3: Query Trident metrics with PromQL
	Learn about Trident AutoSupport telemetry
	Disable Trident metrics

	Uninstall Trident
	Determine the original installation method
	Uninstall a Trident operator installation
	Uninstall a tridentctl installation

