
Manage and protect applications
Trident
NetApp
February 02, 2026

This PDF was generated from https://docs.netapp.com/us-en/trident/trident-protect/trident-protect-
appvault-custom-resources.html on February 02, 2026. Always check docs.netapp.com for the latest.

Table of Contents

Manage and protect applications . 1

Use Trident Protect AppVault objects to manage buckets . 1

Configure AppVault authentication and passwords . 1

AppVault creation examples. 5

View AppVault information . 12

Remove an AppVault . 13

Define an application for management with Trident Protect. 14

Create an AppVault CR . 14

Define an application . 14

Protect applications using Trident Protect . 18

Create an on-demand snapshot . 18

Create an on-demand backup . 20

Create a data protection schedule . 22

Delete a snapshot . 27

Delete a backup . 27

Check the status of a backup operation. 28

Enable backup and restore for azure-netapp-files (ANF) operations. 28

Restore applications. 29

Restore applications using Trident Protect . 29

Use advanced Trident Protect restore settings . 45

Replicate applications using NetApp SnapMirror and Trident Protect . 47

Namespace annotations and labels during restore and failover operations . 47

Execution hooks during failover and reverse operations . 49

Set up a replication relationship. 49

Reverse application replication direction . 60

Migrate applications using Trident Protect . 63

Backup and restore operations . 63

Migrate applications from one storage class to another storage class . 64

Manage Trident Protect execution hooks. 67

Types of execution hooks. 67

Important notes about custom execution hooks . 68

Execution hook filters . 68

Execution hook examples . 69

Create an execution hook . 69

Manually run an execution hook . 72

Manage and protect applications

Use Trident Protect AppVault objects to manage buckets

The bucket custom resource (CR) for Trident Protect is known as an AppVault. AppVault

objects are the declarative Kubernetes workflow representation of a storage bucket. An

AppVault CR contains the configurations necessary for a bucket to be used in protection

operations, such as backups, snapshots, restore operations, and SnapMirror replication.

Only administrators can create AppVaults.

You need to create an AppVault CR manually or from the command line when you perform data protection

operations on an application. The AppVault CR is specific to your environment, and you can use the examples

on this page as a guide when creating AppVault CRs.

Ensure the AppVault CR is on the cluster where Trident Protect is installed. If the AppVault CR

does not exist or you cannot access it, the command line shows an error.

Configure AppVault authentication and passwords

Before you create an AppVault CR, ensure the AppVault and the data mover you choose can authenticate with

the provider and any related resources.

Data mover repository passwords

When you create AppVault objects using CRs or the Trident Protect CLI plugin, you can specify a Kubernetes

secret with custom passwords for Restic and Kopia encryption. If you don’t specify a secret, Trident Protect

uses a default password.

• When manually creating AppVault CRs, use the spec.dataMoverPasswordSecretRef field to specify the

secret.

• When creating AppVault objects using the Trident Protect CLI, use the --data-mover-password

-secret-ref argument to specify the secret.

Create a data mover repository password secret

Use the following examples to create the password secret. When you create AppVault objects, you can instruct

Trident Protect to use this secret to authenticate with the data mover repository.

• Depending on which data mover you are using, you only need to include the corresponding

password for that data mover. For example, if you are using Restic and do not plan to use

Kopia in the future, you can include only the Restic password when you create the secret.

• Keep the password in a safe place. You will need it to restore data on the same cluster or a

different one. If the cluster or the trident-protect namespace is deleted, you will not be

able to restore your backups or snapshots without the password.

1

Use a CR

apiVersion: v1

data:

 KOPIA_PASSWORD: <base64-encoded-password>

 RESTIC_PASSWORD: <base64-encoded-password>

kind: Secret

metadata:

 name: my-optional-data-mover-secret

 namespace: trident-protect

type: Opaque

Use the CLI

kubectl create secret generic my-optional-data-mover-secret \

--from-literal=KOPIA_PASSWORD=<plain-text-password> \

--from-literal=RESTIC_PASSWORD=<plain-text-password> \

-n trident-protect

S3-compatible storage IAM permissions

When you access S3-compatible storage such as Amazon S3, Generic S3, StorageGrid S3, or ONTAP S3

using Trident Protect, you need to ensure that the user credentials you provide have the necessary

permissions to access the bucket. The following is an example of a policy that grants the minimum required

permissions for access with Trident Protect. You can apply this policy to the user that manages S3-compatible

bucket policies.

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "s3:PutObject",

 "s3:GetObject",

 "s3:ListBucket",

 "s3:DeleteObject"

],

 "Resource": "*"

 }

]

}

2

https://docs.netapp.com/us-en/storagegrid/s3/index.html
https://docs.netapp.com/us-en/ontap/s3-config/

For more information about Amazon S3 policies, refer to the examples in the Amazon S3 documentation.

EKS Pod Identity for Amazon S3 (AWS) authentication

Trident Protect supports EKS Pod Identity for Kopia data mover operations. This feature enables secure

access to S3 buckets without storing AWS credentials in Kubernetes secrets.

Requirements for EKS Pod Identity with Trident Protect

Before using EKS Pod Identity with Trident Protect, ensure the following:

• Your EKS cluster has Pod Identity enabled.

• You have created an IAM role with the necessary S3 bucket permissions. To learn more, refer to S3-

compatible storage IAM permissions.

• The IAM role is associated with the following Trident Protect service accounts:

◦ <trident-protect>-controller-manager

◦ <trident-protect>-resource-backup

◦ <trident-protect>-resource-restore

◦ <trident-protect>-resource-delete

For detailed instructions on enabling Pod Identity and associating IAM roles with service accounts, refer to the

AWS EKS Pod Identity documentation.

AppVault Configuration

When using EKS Pod Identity, configure your AppVault CR with the useIAM: true flag instead of explicit

credentials:

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

 name: eks-protect-vault

 namespace: trident-protect

spec:

 providerType: AWS

 providerConfig:

 s3:

 bucketName: trident-protect-aws

 endpoint: s3.example.com

 useIAM: true

AppVault key generation examples for cloud providers

When defining an AppVault CR, you need to include credentials to access the resources hosted by the

provider, unless you are using IAM authentication. How you generate the keys for the credentials will differ

depending on the provider. The following are command line key generation examples for several providers.

You can use the following examples to create keys for the credentials of each cloud provider.

3

https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-policies-s3.html
https://docs.netapp.com/us-en/trident/trident-protect/trident-protect-appvault-custom-resources.html#s3-compatible-storage-iam-permissions
https://docs.netapp.com/us-en/trident/trident-protect/trident-protect-appvault-custom-resources.html#s3-compatible-storage-iam-permissions
https://docs.aws.amazon.com/eks/latest/userguide/pod-identities.html

Google Cloud

kubectl create secret generic <secret-name> \

--from-file=credentials=<mycreds-file.json> \

-n trident-protect

Amazon S3 (AWS)

kubectl create secret generic <secret-name> \

--from-literal=accessKeyID=<objectstorage-accesskey> \

--from-literal=secretAccessKey=<amazon-s3-trident-protect-src-bucket

-secret> \

-n trident-protect

Microsoft Azure

kubectl create secret generic <secret-name> \

--from-literal=accountKey=<secret-name> \

-n trident-protect

Generic S3

kubectl create secret generic <secret-name> \

--from-literal=accessKeyID=<objectstorage-accesskey> \

--from-literal=secretAccessKey=<generic-s3-trident-protect-src-bucket

-secret> \

-n trident-protect

ONTAP S3

kubectl create secret generic <secret-name> \

--from-literal=accessKeyID=<objectstorage-accesskey> \

--from-literal=secretAccessKey=<ontap-s3-trident-protect-src-bucket

-secret> \

-n trident-protect

StorageGrid S3

kubectl create secret generic <secret-name> \

--from-literal=accessKeyID=<objectstorage-accesskey> \

--from-literal=secretAccessKey=<storagegrid-s3-trident-protect-src

-bucket-secret> \

-n trident-protect

4

AppVault creation examples

The following are example AppVault definitions for each provider.

AppVault CR examples

You can use the following CR examples to create AppVault objects for each cloud provider.

• You can optionally specify a Kubernetes secret that contains custom passwords for the

Restic and Kopia repository encryption. Refer to Data mover repository passwords for more

information.

• For Amazon S3 (AWS) AppVault objects, you can optionally specify a sessionToken, which

is useful if you are using single sign-on (SSO) for authentication. This token is created when

you generate keys for the provider in AppVault key generation examples for cloud providers.

• For S3 AppVault objects, you can optionally specify an egress proxy URL for outbound S3

traffic using the spec.providerConfig.S3.proxyURL key.

5

Google Cloud

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

 name: gcp-trident-protect-src-bucket

 namespace: trident-protect

spec:

 dataMoverPasswordSecretRef: my-optional-data-mover-secret

 providerType: GCP

 providerConfig:

 gcp:

 bucketName: trident-protect-src-bucket

 projectID: project-id

 providerCredentials:

 credentials:

 valueFromSecret:

 key: credentials

 name: gcp-trident-protect-src-bucket-secret

Amazon S3 (AWS)

6

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

 name: amazon-s3-trident-protect-src-bucket

 namespace: trident-protect

spec:

 dataMoverPasswordSecretRef: my-optional-data-mover-secret

 providerType: AWS

 providerConfig:

 s3:

 bucketName: trident-protect-src-bucket

 endpoint: s3.example.com

 proxyURL: http://10.1.1.1:3128

 providerCredentials:

 accessKeyID:

 valueFromSecret:

 key: accessKeyID

 name: s3-secret

 secretAccessKey:

 valueFromSecret:

 key: secretAccessKey

 name: s3-secret

 sessionToken:

 valueFromSecret:

 key: sessionToken

 name: s3-secret

For EKS environments using Pod Identity with Kopia data mover, you can remove the

providerCredentials section and add useIAM: true under the s3 configuration

instead.

Microsoft Azure

7

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

 name: azure-trident-protect-src-bucket

 namespace: trident-protect

spec:

 dataMoverPasswordSecretRef: my-optional-data-mover-secret

 providerType: Azure

 providerConfig:

 azure:

 accountName: account-name

 bucketName: trident-protect-src-bucket

 providerCredentials:

 accountKey:

 valueFromSecret:

 key: accountKey

 name: azure-trident-protect-src-bucket-secret

Generic S3

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

 name: generic-s3-trident-protect-src-bucket

 namespace: trident-protect

spec:

 dataMoverPasswordSecretRef: my-optional-data-mover-secret

 providerType: GenericS3

 providerConfig:

 s3:

 bucketName: trident-protect-src-bucket

 endpoint: s3.example.com

 proxyURL: http://10.1.1.1:3128

 providerCredentials:

 accessKeyID:

 valueFromSecret:

 key: accessKeyID

 name: s3-secret

 secretAccessKey:

 valueFromSecret:

 key: secretAccessKey

 name: s3-secret

ONTAP S3

8

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

 name: ontap-s3-trident-protect-src-bucket

 namespace: trident-protect

spec:

 dataMoverPasswordSecretRef: my-optional-data-mover-secret

 providerType: OntapS3

 providerConfig:

 s3:

 bucketName: trident-protect-src-bucket

 endpoint: s3.example.com

 proxyURL: http://10.1.1.1:3128

 providerCredentials:

 accessKeyID:

 valueFromSecret:

 key: accessKeyID

 name: s3-secret

 secretAccessKey:

 valueFromSecret:

 key: secretAccessKey

 name: s3-secret

StorageGrid S3

9

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

 name: storagegrid-s3-trident-protect-src-bucket

 namespace: trident-protect

spec:

 dataMoverPasswordSecretRef: my-optional-data-mover-secret

 providerType: StorageGridS3

 providerConfig:

 s3:

 bucketName: trident-protect-src-bucket

 endpoint: s3.example.com

 proxyURL: http://10.1.1.1:3128

 providerCredentials:

 accessKeyID:

 valueFromSecret:

 key: accessKeyID

 name: s3-secret

 secretAccessKey:

 valueFromSecret:

 key: secretAccessKey

 name: s3-secret

AppVault creation examples using the Trident Protect CLI

You can use the following CLI command examples to create AppVault CRs for each provider.

• You can optionally specify a Kubernetes secret that contains custom passwords for the

Restic and Kopia repository encryption. Refer to Data mover repository passwords for more

information.

• For S3 AppVault objects, you can optionally specify an egress proxy URL for outbound S3

traffic using the --proxy-url <ip_address:port> argument.

10

Google Cloud

tridentctl-protect create vault GCP <vault-name> \

--bucket <mybucket> \

--project <my-gcp-project> \

--secret <secret-name>/credentials \

--data-mover-password-secret-ref <my-optional-data-mover-secret> \

-n trident-protect

Amazon S3 (AWS)

tridentctl-protect create vault AWS <vault-name> \

--bucket <bucket-name> \

--secret <secret-name> \

--endpoint <s3-endpoint> \

--data-mover-password-secret-ref <my-optional-data-mover-secret> \

-n trident-protect

Microsoft Azure

tridentctl-protect create vault Azure <vault-name> \

--account <account-name> \

--bucket <bucket-name> \

--secret <secret-name> \

--data-mover-password-secret-ref <my-optional-data-mover-secret> \

-n trident-protect

Generic S3

tridentctl-protect create vault GenericS3 <vault-name> \

--bucket <bucket-name> \

--secret <secret-name> \

--endpoint <s3-endpoint> \

--data-mover-password-secret-ref <my-optional-data-mover-secret> \

-n trident-protect

ONTAP S3

11

tridentctl-protect create vault OntapS3 <vault-name> \

--bucket <bucket-name> \

--secret <secret-name> \

--endpoint <s3-endpoint> \

--data-mover-password-secret-ref <my-optional-data-mover-secret> \

-n trident-protect

StorageGrid S3

tridentctl-protect create vault StorageGridS3 <vault-name> \

--bucket <bucket-name> \

--secret <secret-name> \

--endpoint <s3-endpoint> \

--data-mover-password-secret-ref <my-optional-data-mover-secret> \

-n trident-protect

Supported providerConfig.s3 configuration options

See the following table for the S3 provider configuration options:

Parameter Description Default Example

providerCo

nfig.s3.sk

ipCertVali

dation

Disable SSL/TLS certificate verification. false "true", "false"

providerCo

nfig.s3.se

cure

Enable secure HTTPS communication with

the S3 endpoint.

true "true", "false"

providerCo

nfig.s3.pr

oxyURL

Specify the URL of the proxy server used to

connect to S3.

None http://proxy.ex

ample.com:80

80

providerCo

nfig.s3.ro

otCA

Provide a custom root CA certificate for

SSL/TLS verification.

None "CN=MyCusto

mCA"

providerCo

nfig.s3.us

eIAM

Enable IAM authentication for accessing S3

buckets. Applicable for EKS Pod Identity.

false true, false

View AppVault information

You can use the Trident Protect CLI plugin to view information about AppVault objects that you have created on

the cluster.

Steps

12

http://proxy.example.com:8080
http://proxy.example.com:8080
http://proxy.example.com:8080

1. View the contents of an AppVault object:

tridentctl-protect get appvaultcontent gcp-vault \

--show-resources all \

-n trident-protect

Example output:

+-------------+-------+----------+-----------------------------

+---------------------------+

| CLUSTER | APP | TYPE | NAME |

TIMESTAMP |

+-------------+-------+----------+-----------------------------

+---------------------------+

| | mysql | snapshot | mysnap | 2024-

08-09 21:02:11 (UTC) |

| production1 | mysql | snapshot | hourly-e7db6-20240815180300 | 2024-

08-15 18:03:06 (UTC) |

| production1 | mysql | snapshot | hourly-e7db6-20240815190300 | 2024-

08-15 19:03:06 (UTC) |

| production1 | mysql | snapshot | hourly-e7db6-20240815200300 | 2024-

08-15 20:03:06 (UTC) |

| production1 | mysql | backup | hourly-e7db6-20240815180300 | 2024-

08-15 18:04:25 (UTC) |

| production1 | mysql | backup | hourly-e7db6-20240815190300 | 2024-

08-15 19:03:30 (UTC) |

| production1 | mysql | backup | hourly-e7db6-20240815200300 | 2024-

08-15 20:04:21 (UTC) |

| production1 | mysql | backup | mybackup5 | 2024-

08-09 22:25:13 (UTC) |

| | mysql | backup | mybackup | 2024-

08-09 21:02:52 (UTC) |

+-------------+-------+----------+-----------------------------

+---------------------------+

2. Optionally, to see the AppVaultPath for each resource, use the flag --show-paths.

The cluster name in the first column of the table is only available if a cluster name was specified in the

Trident Protect helm installation. For example: --set clusterName=production1.

Remove an AppVault

You can remove an AppVault object at any time.

13

Do not remove the finalizers key in the AppVault CR before deleting the AppVault object. If

you do so, it can result in residual data in the AppVault bucket and orphaned resources in the

cluster.

Before you begin

Ensure that you have deleted all snapshot and backup CRs being used by the AppVault you want to delete.

Remove an AppVault using the Kubernetes CLI

1. Remove the AppVault object, replacing appvault-name with the name of the AppVault object to

remove:

kubectl delete appvault <appvault-name> \

-n trident-protect

Remove an AppVault using the Trident Protect CLI

1. Remove the AppVault object, replacing appvault-name with the name of the AppVault object to

remove:

tridentctl-protect delete appvault <appvault-name> \

-n trident-protect

Define an application for management with Trident Protect

You can define an application that you want to manage with Trident Protect by creating an

application CR and an associated AppVault CR.

Create an AppVault CR

You need to create an AppVault CR that will be used when performing data protection operations on the

application, and the AppVault CR needs to reside on the cluster where Trident Protect is installed. The

AppVault CR is specific to your environment; for examples of AppVault CRs, refer to AppVault custom

resources.

Define an application

You need to define each application that you want to manage with Trident Protect. You can define an

application for management by either manually creating an application CR or by using the Trident Protect CLI.

14

Add an application using a CR

Steps

1. Create the destination application CR file:

a. Create the custom resource (CR) file and name it (for example, maria-app.yaml).

b. Configure the following attributes:

▪ metadata.name: (Required) The name of the application custom resource. Note the name

you choose because other CR files needed for protection operations refer to this value.

▪ spec.includedNamespaces: (Required) Use namespace and label selector to specify the

namespaces and resources that the application uses. The application namespace must be

part of this list. The label selector is optional and can be used to filter resources within each

specified namespace.

▪ spec.includedClusterScopedResources: (Optional) Use this attribute to specify cluster-

scoped resources to be included in the application definition. This attribute allows you to

select these resources based on their group, version, kind, and labels.

▪ groupVersionKind: (Required) Specifies the API group, version, and kind of the cluster-

scoped resource.

▪ labelSelector: (Optional) Filters the cluster-scoped resources based on their labels.

▪ metadata.annotations.protect.trident.netapp.io/skip-vm-freeze: (Optional) This annotation

is only applicable to applications defined from virtual machines, such as in KubeVirt

environments, where filesystem freezes occur before snapshots. Specify whether this

application can write to the filesystem during a snapshot. If set to true, the application ignores

the global setting and can write to the filesystem during a snapshot. If set to false, the

application ignores the global setting and the filesystem is frozen during a snapshot. If

specified but the application has no virtual machines in the application definition, the

annotation is ignored. If not specified, the application follows the global Trident Protect freeze

setting.

If you need to apply this annotation after an application has already been

created, you can use the following command:

kubectl annotate application -n <application CR

namespace> <application CR name>

protect.trident.netapp.io/skip-vm-freeze="true"

Example YAML:

15

https://docs.netapp.com/us-en/trident/trident-protect/trident-protect-requirements.html#protecting-data-with-kubevirt-vms
https://docs.netapp.com/us-en/trident/trident-protect/trident-protect-requirements.html#protecting-data-with-kubevirt-vms

apiVersion: protect.trident.netapp.io/v1

kind: Application

metadata:

 annotations:

 protect.trident.netapp.io/skip-vm-freeze: "false"

 name: my-app-name

 namespace: my-app-namespace

spec:

 includedNamespaces:

 - namespace: namespace-1

 labelSelector:

 matchLabels:

 app: example-app

 - namespace: namespace-2

 labelSelector:

 matchLabels:

 app: another-example-app

 includedClusterScopedResources:

 - groupVersionKind:

 group: rbac.authorization.k8s.io

 kind: ClusterRole

 version: v1

 labelSelector:

 matchLabels:

 mylabel: test

2. (Optional) Add filtering that includes or excludes resources marked with particular labels:

◦ resourceFilter.resourceSelectionCriteria: (Required for filtering) Use Include or Exclude to

include or exclude a resource defined in resourceMatchers. Add the following resourceMatchers

parameters to define the resources to be included or excluded:

▪ resourceFilter.resourceMatchers: An array of resourceMatcher objects. If you define

multiple elements in this array, they match as an OR operation, and the fields inside each

element (group, kind, version) match as an AND operation.

▪ resourceMatchers[].group: (Optional) Group of the resource to be filtered.

▪ resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.

▪ resourceMatchers[].version: (Optional) Version of the resource to be filtered.

▪ resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of

the resource to be filtered.

▪ resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes

metadata.name field of the resource to be filtered.

▪ resourceMatchers[].labelSelectors: (Optional) Label selector string in the Kubernetes

metadata.name field of the resource as defined in the Kubernetes documentation. For

example: "trident.netapp.io/os=linux".

16

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

When both resourceFilter and labelSelector are used,

resourceFilter runs first, and then labelSelector is applied to the

resulting resources.

For example:

spec:

 resourceFilter:

 resourceSelectionCriteria: "Include"

 resourceMatchers:

 - group: my-resource-group-1

 kind: my-resource-kind-1

 version: my-resource-version-1

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

 - group: my-resource-group-2

 kind: my-resource-kind-2

 version: my-resource-version-2

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

3. After you create the application CR to match your environment, apply the CR. For example:

kubectl apply -f maria-app.yaml

Add an application using the CLI

Steps

1. Create and apply the application definition using one of the following examples, replacing values in

brackets with information from your environment. You can include namespaces and resources in the

application definition using comma-separated lists with the arguments shown in the examples.

You can optionally use an annotation when you create an app to specify whether the application can

write to the filesystem during a snapshot. This is only applicable to applications defined from virtual

machines, such as in KubeVirt environments, where filesystem freezes occur before snapshots. If you

set the annotation to true, the application ignores the global setting and can write to the filesystem

during a snapshot. If you set it to false, the application ignores the global setting and the filesystem

is frozen during a snapshot. If you use the annotation but the application has no virtual machines in

the application definition, the annotation is ignored. If you don’t use the annotation, the application

follows the global Trident Protect freeze setting.

To specify the annotation when you use the CLI to create an application, you can use the

--annotation flag.

◦ Create the application and use the global setting for filesystem freeze behavior:

17

https://docs.netapp.com/us-en/trident/trident-protect/trident-protect-requirements.html#protecting-data-with-kubevirt-vms

tridentctl-protect create application <my_new_app_cr_name>

--namespaces <namespaces_to_include> --csr

<cluster_scoped_resources_to_include> --namespace <my-app-

namespace>

◦ Create the application and configure the local application setting for filesystem freeze behavior:

tridentctl-protect create application <my_new_app_cr_name>

--namespaces <namespaces_to_include> --csr

<cluster_scoped_resources_to_include> --namespace <my-app-

namespace> --annotation protect.trident.netapp.io/skip-vm-freeze

=<"true"|"false">

You can use --resource-filter-include and --resource-filter-exclude flags to

include or exclude resources based on resourceSelectionCriteria such as group, kind,

version, labels, names, and namespaces, as shown in the following example:

tridentctl-protect create application <my_new_app_cr_name>

--namespaces <namespaces_to_include> --csr

<cluster_scoped_resources_to_include> --namespace <my-app-

namespace> --resource-filter-include

'[{"Group":"apps","Kind":"Deployment","Version":"v1","Names":["my

-deployment"],"Namespaces":["my

-namespace"],"LabelSelectors":["app=my-app"]}]'

Protect applications using Trident Protect

You can protect all apps managed by Trident Protect by taking snapshots and backups

using an automated protection policy or on an ad-hoc basis.

You can configure Trident Protect to freeze and unfreeze filesystems during data protection

operations. Learn more about configuring filesystem freezing with Trident Protect.

Create an on-demand snapshot

You can create an on-demand snapshot at any time.

Cluster-scoped resources are included in a backup, snapshot, or clone if they are explicitly

referenced in the application definition or if they have references to any of the application

namespaces.

18

https://docs.netapp.com/us-en/trident/trident-protect/trident-protect-requirements.html#protecting-data-with-kubevirt-vms

Create a snapshot using a CR

Steps

1. Create the custom resource (CR) file and name it trident-protect-snapshot-cr.yaml.

2. In the file you created, configure the following attributes:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.applicationRef: The Kubernetes name of the application to snapshot.

◦ spec.appVaultRef: (Required) The name of the AppVault where the snapshot contents

(metadata) should be stored.

◦ spec.reclaimPolicy: (Optional) Defines what happens to the AppArchive of a snapshot when the

snapshot CR is deleted. This means that even when set to Retain, the snapshot will be deleted.

Valid options:

▪ Retain (default)

▪ Delete

apiVersion: protect.trident.netapp.io/v1

kind: Snapshot

metadata:

 namespace: my-app-namespace

 name: my-cr-name

spec:

 applicationRef: my-application

 appVaultRef: appvault-name

 reclaimPolicy: Delete

3. After you populate the trident-protect-snapshot-cr.yaml file with the correct values, apply

the CR:

kubectl apply -f trident-protect-snapshot-cr.yaml

Create a snapshot using the CLI

Steps

1. Create the snapshot, replacing values in brackets with information from your environment. For

example:

tridentctl-protect create snapshot <my_snapshot_name> --appvault

<my_appvault_name> --app <name_of_app_to_snapshot> -n

<application_namespace>

19

Create an on-demand backup

You can back up an app at any time.

Cluster-scoped resources are included in a backup, snapshot, or clone if they are explicitly

referenced in the application definition or if they have references to any of the application

namespaces.

Before you begin

Ensure that the AWS session token expiration is sufficient for any long-running s3 backup operations. If the

token expires during the backup operation, the operation can fail.

• Refer to the AWS API documentation for more information about checking the current session token

expiration.

• Refer to the AWS IAM documentation for more information about credentials with AWS resources.

20

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

Create a backup using a CR

Steps

1. Create the custom resource (CR) file and name it trident-protect-backup-cr.yaml.

2. In the file you created, configure the following attributes:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.applicationRef: (Required) The Kubernetes name of the application to back up.

◦ spec.appVaultRef: (Required) The name of the AppVault where the backup contents should be

stored.

◦ spec.dataMover: (Optional) A string indicating which backup tool to use for the backup operation.

Possible values (case sensitive):

▪ Restic

▪ Kopia (default)

◦ spec.reclaimPolicy: (Optional) Defines what happens to a backup when released from its claim.

Possible values:

▪ Delete

▪ Retain (default)

◦ spec.snapshotRef: (Optional): Name of the snapshot to use as the source of the backup. If not

provided, a temporary snapshot will be created and backed up.

Example YAML:

apiVersion: protect.trident.netapp.io/v1

kind: Backup

metadata:

 namespace: my-app-namespace

 name: my-cr-name

spec:

 applicationRef: my-application

 appVaultRef: appvault-name

 dataMover: Kopia

3. After you populate the trident-protect-backup-cr.yaml file with the correct values, apply the

CR:

kubectl apply -f trident-protect-backup-cr.yaml

Create a backup using the CLI

Steps

1. Create the backup, replacing values in brackets with information from your environment. For example:

21

tridentctl-protect create backup <my_backup_name> --appvault <my-

vault-name> --app <name_of_app_to_back_up> --data-mover

<Kopia_or_Restic> -n <application_namespace>

You can optionally use the --full-backup flag to specify whether a backup should be non-

incremental. By default, all backups are incremental. When this flag is used, the backup becomes

non-incremental. It is best practice to perform a full backup periodically and then perform incremental

backups in between full backups to minimize the risk associated with restores.

Supported backup annotations

The following table describes the annotations you can use when creating a backup CR:

Annotation Type Description Default value

protect.trident.netapp.io/full-

backup

string Specifies whether a backup should be non-

incremental. Set to true to create a non-

incremental backup. It is best practice to

perform a full backup periodically and then

perform incremental backups in between full

backups to minimize the risk associated with

restores.

"false"

protect.trident.netapp.io/snaps

hot-completion-timeout

string The maximum time allowed for the overall

snapshot operation to complete.

"60m"

protect.trident.netapp.io/volum

e-snapshots-ready-to-use-

timeout

string The maximum time allowed for volume

snapshots to reach the ready-to-use state.

"30m"

protect.trident.netapp.io/volum

e-snapshots-created-timeout

string The maximum time allowed for volume

snapshots to be created.

"5m"

protect.trident.netapp.io/pvc-

bind-timeout-sec

string Maximum time (in seconds) to wait for any

newly created PersistentVolumeClaims

(PVCs) to reach the Bound phase before the

operations fails.

"1200" (20

minutes)

Create a data protection schedule

A protection policy protects an app by creating snapshots, backups, or both at a defined schedule. You can

choose to create snapshots and backups hourly, daily, weekly, and monthly, and you can specify the number of

copies to retain. You can schedule a non-incremental full backup by using the full-backup-rule annotation. By

default, all backups are incremental. Performing a full backup periodically, along with incremental backups in

between, helps reduce the risk associated with restores.

22

• You can create schedules for snapshots only by setting backupRetention to zero and

snapshotRetention to a value greater than zero. Setting snapshotRetention to zero

means any scheduled backups will still create snapshots, but those are temporary and get

deleted immediately after the backup is completed.

• Cluster-scoped resources are included in a backup, snapshot, or clone if they are explicitly

referenced in the application definition or if they have references to any of the application

namespaces.

23

Create a schedule using a CR

Steps

1. Create the custom resource (CR) file and name it trident-protect-schedule-cr.yaml.

2. In the file you created, configure the following attributes:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.dataMover: (Optional) A string indicating which backup tool to use for the backup operation.

Possible values (case sensitive):

▪ Restic

▪ Kopia (default)

◦ spec.applicationRef: The Kubernetes name of the application to back up.

◦ spec.appVaultRef: (Required) The name of the AppVault where the backup contents should be

stored.

◦ spec.backupRetention: (Required) The number of backups to retain. Zero indicates that no

backups should be created (snapshots only).

◦ spec.backupReclaimPolicy: (Optional) Determines what happens to a backup if the backup CR

is deleted during its retention period. After the retention period, backups are always deleted.

Possible values (case sensitive):

▪ Retain (default)

▪ Delete

◦ spec.snapshotRetention: (Required) The number of snapshots to retain. Zero indicates that no

snapshots should be created.

◦ spec.snapshotReclaimPolicy: (Optional) Determines what happens to a snapshot if the

snapshot CR is deleted during its retention period. After the retention period, snapshots are

always deleted. Possible values (case sensitive):

▪ Retain

▪ Delete (default)

◦ spec.granularity: The frequency at which the schedule should run. Possible values, along with

required associated fields:

▪ Hourly (requires that you specify spec.minute)

▪ Daily (requires that you specify spec.minute and spec.hour)

▪ Weekly (requires that you specify spec.minute, spec.hour, and spec.dayOfWeek)

▪ Monthly (requires that you specify spec.minute, spec.hour, and spec.dayOfMonth)

▪ Custom

◦ spec.dayOfMonth: (Optional) The day of the month (1 - 31) that the schedule should run. This

field is required if the granularity is set to Monthly. The value must be provided as a string.

◦ spec.dayOfWeek: (Optional) The day of the week (0 - 7) that the schedule should run. Values of

0 or 7 indicate Sunday. This field is required if the granularity is set to Weekly. The value must be

provided as a string.

24

◦ spec.hour: (Optional) The hour of the day (0 - 23) that the schedule should run. This field is

required if the granularity is set to Daily, Weekly, or Monthly. The value must be provided as a

string.

◦ spec.minute: (Optional) The minute of the hour (0 - 59) that the schedule should run. This field is

required if the granularity is set to Hourly, Daily, Weekly, or Monthly. The value must be

provided as a string.

Example YAML for backup and snapshot schedule:

apiVersion: protect.trident.netapp.io/v1

kind: Schedule

metadata:

 namespace: my-app-namespace

 name: my-cr-name

spec:

 dataMover: Kopia

 applicationRef: my-application

 appVaultRef: appvault-name

 backupRetention: "15"

 snapshotRetention: "15"

 granularity: Daily

 hour: "0"

 minute: "0"

Example YAML for snapshot-only schedule:

apiVersion: protect.trident.netapp.io/v1

kind: Schedule

metadata:

 namespace: my-app-namespace

 name: my-snapshot-schedule

spec:

 applicationRef: my-application

 appVaultRef: appvault-name

 backupRetention: "0"

 snapshotRetention: "15"

 granularity: Daily

 hour: "2"

 minute: "0"

3. After you populate the trident-protect-schedule-cr.yaml file with the correct values, apply

the CR:

25

kubectl apply -f trident-protect-schedule-cr.yaml

Create a schedule using the CLI

Steps

1. Create the protection schedule, replacing values in brackets with information from your environment.

For example:

You can use tridentctl-protect create schedule --help to view detailed

help information for this command.

tridentctl-protect create schedule <my_schedule_name> \

 --appvault <my_appvault_name> \

 --app <name_of_app_to_snapshot> \

 --backup-retention <how_many_backups_to_retain> \

 --backup-reclaim-policy <Retain|Delete (default Retain)> \

 --data-mover <Kopia_or_Restic> \

 --day-of-month <day_of_month_to_run_schedule> \

 --day-of-week <day_of_week_to_run_schedule> \

 --granularity <frequency_to_run> \

 --hour <hour_of_day_to_run> \

 --minute <minute_of_hour_to_run> \

 --recurrence-rule <recurrence> \

 --snapshot-retention <how_many_snapshots_to_retain> \

 --snapshot-reclaim-policy <Retain|Delete (default Delete)> \

 --full-backup-rule <string> \

 --run-immediately <true|false> \

 -n <application_namespace>

The following flags provide additional control over your schedule:

◦ Full backup scheduling: Use the --full-backup-rule flag to schedule non-incremental full

backups. This flag only works with --granularity Daily. Possible values:

▪ Always: Create a full backup every day.

▪ Specific weekdays: Specify one or more days separated by commas (for example,

"Monday,Thursday"). Valid values: Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday, Sunday.

The --full-backup-rule flag does not work with Hourly, Weekly, or

Monthly granularity.

◦ Snapshot-only schedules: Set --backup-retention 0 and specify a value greater than zero

for --snapshot-retention.

26

Supported schedule annotations

The following table describes the annotations you can use when creating a schedule CR:

Annotation Type Description Default value

protect.trident.netapp.io/full-

backup-rule

string Specifies the rule for scheduling full backups.

You can set it to Always for constant full

backup or customize it based on your

requirements. For example, if you choose

daily granularity, you can specify the

weekdays on which full backup should occur

(for example, "Monday,Thursday"). Valid

weekday values are: Monday, Tuesday,

Wednesday, Thursday, Friday, Saturday,

Sunday. Note that this annotation can only be

used with schedules that have granularity

set to Daily.

Not set (all

backups are

incremental)

protect.trident.netapp.io/snaps

hot-completion-timeout

string The maximum time allowed for the overall

snapshot operation to complete.

"60m"

protect.trident.netapp.io/volum

e-snapshots-ready-to-use-

timeout

string The maximum time allowed for volume

snapshots to reach the ready-to-use state.

"30m"

protect.trident.netapp.io/volum

e-snapshots-created-timeout

string The maximum time allowed for volume

snapshots to be created.

"5m"

protect.trident.netapp.io/pvc-

bind-timeout-sec

string Maximum time (in seconds) to wait for any

newly created PersistentVolumeClaims

(PVCs) to reach the Bound phase before the

operations fails.

"1200" (20

minutes)

Delete a snapshot

Delete the scheduled or on-demand snapshots that you no longer need.

Steps

1. Remove the snapshot CR associated with the snapshot:

kubectl delete snapshot <snapshot_name> -n my-app-namespace

Delete a backup

Delete the scheduled or on-demand backups that you no longer need.

Ensure the reclaim policy is set to Delete to remove all backup data from object storage. The

default setting of the policy is Retain to avoid accidental data loss. If the policy is not changed

to Delete, the backup data will remain in object storage and will require manual deletion.

Steps

27

1. Remove the backup CR associated with the backup:

kubectl delete backup <backup_name> -n my-app-namespace

Check the status of a backup operation

You can use the command line to check the status of a backup operation that is in progress, has completed, or

has failed.

Steps

1. Use the following command to retrieve status of the backup operation, replacing values in brackes with

information from your environment:

kubectl get backup -n <namespace_name> <my_backup_cr_name> -o jsonpath

='{.status}'

Enable backup and restore for azure-netapp-files (ANF) operations

If you have installed Trident Protect, you can enable space-efficient backup and restore functionality for

storage backends that use the azure-netapp-files storage class and were created prior to Trident 24.06. This

funtionality works with NFSv4 volumes and does not consume additional space from the capacity pool.

Before you begin

Ensure the following:

• You have installed Trident Protect.

• You have defined an application in Trident Protect. This application will have limited protection functionality

until you complete this procedure.

• You have azure-netapp-files selected as the default storage class for your storage backend.

28

Expand for configuration steps

1. Do the following in Trident if the ANF volume was created prior to upgrading to Trident 24.10:

a. Enable the snapshot directory for each PV that is azure-netapp-files based and associated with

the application:

tridentctl update volume <pv name> --snapshot-dir=true -n trident

b. Confirm that the snapshot directory has been enabled for each associated PV:

tridentctl get volume <pv name> -n trident -o yaml | grep

snapshotDir

Response:

snapshotDirectory: "true"

When the snapshot directory is not enabled, Trident Protect chooses the regular backup

functionality, which temporarily consumes space in the capacity pool during the backup process.

In this case, ensure that sufficient space is available in the capacity pool to create a temporary

volume of the size of the volume being backed up.

Result

The application is ready for backup and restore using Trident Protect. Each PVC is also available to be

used by other applications for backups and restores.

Restore applications

Restore applications using Trident Protect

You can use Trident Protect to restore your application from a snapshot or backup.

Restoring from an existing snapshot will be faster when restoring the application to the

same cluster.

• When you restore an application, all execution hooks configured for the application are

restored with the app. If a post-restore execution hook is present, it runs automatically as

part of the restore operation.

• Restoring from a backup to a different namespace or to the original namespace is supported

for qtree volumes. However, restoring from a snapshot to a different namespace or to the

original namespace is not supported for qtree volumes.

• You can use advanced settings to customize restore operations. To learn more, refer to Use

advanced Trident Protect restore settings.

29

Restore from a backup to a different namespace

When you restore a backup to a different namespace using a BackupRestore CR, Trident Protect restores the

application in a new namespace and creates an application CR for the restored application. To protect the

restored application, create on-demand backups or snapshots, or establish a protection schedule.

• Restoring a backup to a different namespace with existing resources will not alter any

resources that share names with those in the backup. To restore all resources in the backup,

either delete and re-create the target namespace, or restore the backup to a new

namespace.

• When using a CR to restore to a new namespace, you must manually create the destination

namespace before applying the CR. Trident Protect automatically creates namespaces only

when using the CLI.

Before you begin

Ensure that the AWS session token expiration is sufficient for any long-running s3 restore operations. If the

token expires during the restore operation, the operation can fail.

• Refer to the AWS API documentation for more information about checking the current session token

expiration.

• Refer to the AWS IAM documentation for more information about credentials with AWS resources.

When you restore backups using Kopia as the data mover, you can optionally specify

annotations in the CR or using the CLI to control the behavior of the temporary storage used by

Kopia. Refer to the Kopia documentation for more information about the options you can

configure. Use the tridentctl-protect create --help command for more information

about specifying annotations with the Trident Protect CLI.

30

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://kopia.io/docs/getting-started/

Use a CR

Steps

1. Create the custom resource (CR) file and name it trident-protect-backup-restore-

cr.yaml.

2. In the file you created, configure the following attributes:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.appArchivePath: The path inside AppVault where the backup contents are stored. You can

use the following command to find this path:

kubectl get backups <BACKUP_NAME> -n my-app-namespace -o

jsonpath='{.status.appArchivePath}'

◦ spec.appVaultRef: (Required) The name of the AppVault where the backup contents are stored.

◦ spec.namespaceMapping: The mapping of the source namespace of the restore operation to the

destination namespace. Replace my-source-namespace and my-destination-namespace

with information from your environment.

apiVersion: protect.trident.netapp.io/v1

kind: BackupRestore

metadata:

 name: my-cr-name

 namespace: my-destination-namespace

spec:

 appArchivePath: my-backup-path

 appVaultRef: appvault-name

 namespaceMapping: [{"source": "my-source-namespace",

"destination": "my-destination-namespace"}]

3. (Optional) If you need to select only certain resources of the application to restore, add filtering that

includes or excludes resources marked with particular labels:

Trident Protect selects some resources automatically because of their relationship with

resources that you select. For example, if you select a persistent volume claim

resource and it has an associated pod, Trident Protect will also restore the associated

pod.

◦ resourceFilter.resourceSelectionCriteria: (Required for filtering) Use Include or Exclude to

include or exclude a resource defined in resourceMatchers. Add the following resourceMatchers

parameters to define the resources to be included or excluded:

▪ resourceFilter.resourceMatchers: An array of resourceMatcher objects. If you define

multiple elements in this array, they match as an OR operation, and the fields inside each

element (group, kind, version) match as an AND operation.

31

▪ resourceMatchers[].group: (Optional) Group of the resource to be filtered.

▪ resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.

▪ resourceMatchers[].version: (Optional) Version of the resource to be filtered.

▪ resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of

the resource to be filtered.

▪ resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes

metadata.name field of the resource to be filtered.

▪ resourceMatchers[].labelSelectors: (Optional) Label selector string in the Kubernetes

metadata.name field of the resource as defined in the Kubernetes documentation. For

example: "trident.netapp.io/os=linux".

For example:

spec:

 resourceFilter:

 resourceSelectionCriteria: "Include"

 resourceMatchers:

 - group: my-resource-group-1

 kind: my-resource-kind-1

 version: my-resource-version-1

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

 - group: my-resource-group-2

 kind: my-resource-kind-2

 version: my-resource-version-2

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

4. After you populate the trident-protect-backup-restore-cr.yaml file with the correct values,

apply the CR:

kubectl apply -f trident-protect-backup-restore-cr.yaml

Use the CLI

Steps

1. Restore the backup to a different namespace, replacing values in brackets with information from your

environment. The namespace-mapping argument uses colon-separated namespaces to map

source namespaces to the correct destination namespaces in the format

source1:dest1,source2:dest2. For example:

32

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

tridentctl-protect create backuprestore <my_restore_name> \

--backup <backup_namespace>/<backup_to_restore> \

--namespace-mapping <source_to_destination_namespace_mapping> \

-n <application_namespace>

Restore from a backup to the original namespace

You can restore a backup to the original namespace at any time.

Before you begin

Ensure that the AWS session token expiration is sufficient for any long-running s3 restore operations. If the

token expires during the restore operation, the operation can fail.

• Refer to the AWS API documentation for more information about checking the current session token

expiration.

• Refer to the AWS IAM documentation for more information about credentials with AWS resources.

When you restore backups using Kopia as the data mover, you can optionally specify

annotations in the CR or using the CLI to control the behavior of the temporary storage used by

Kopia. Refer to the Kopia documentation for more information about the options you can

configure. Use the tridentctl-protect create --help command for more information

about specifying annotations with the Trident Protect CLI.

33

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://kopia.io/docs/getting-started/

Use a CR

Steps

1. Create the custom resource (CR) file and name it trident-protect-backup-ipr-cr.yaml.

2. In the file you created, configure the following attributes:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.appArchivePath: The path inside AppVault where the backup contents are stored. You can

use the following command to find this path:

kubectl get backups <BACKUP_NAME> -n my-app-namespace -o

jsonpath='{.status.appArchivePath}'

◦ spec.appVaultRef: (Required) The name of the AppVault where the backup contents are stored.

For example:

apiVersion: protect.trident.netapp.io/v1

kind: BackupInplaceRestore

metadata:

 name: my-cr-name

 namespace: my-app-namespace

spec:

 appArchivePath: my-backup-path

 appVaultRef: appvault-name

3. (Optional) If you need to select only certain resources of the application to restore, add filtering that

includes or excludes resources marked with particular labels:

Trident Protect selects some resources automatically because of their relationship with

resources that you select. For example, if you select a persistent volume claim

resource and it has an associated pod, Trident Protect will also restore the associated

pod.

◦ resourceFilter.resourceSelectionCriteria: (Required for filtering) Use Include or Exclude to

include or exclude a resource defined in resourceMatchers. Add the following resourceMatchers

parameters to define the resources to be included or excluded:

▪ resourceFilter.resourceMatchers: An array of resourceMatcher objects. If you define

multiple elements in this array, they match as an OR operation, and the fields inside each

element (group, kind, version) match as an AND operation.

▪ resourceMatchers[].group: (Optional) Group of the resource to be filtered.

▪ resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.

▪ resourceMatchers[].version: (Optional) Version of the resource to be filtered.

34

▪ resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of

the resource to be filtered.

▪ resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes

metadata.name field of the resource to be filtered.

▪ resourceMatchers[].labelSelectors: (Optional) Label selector string in the Kubernetes

metadata.name field of the resource as defined in the Kubernetes documentation. For

example: "trident.netapp.io/os=linux".

For example:

spec:

 resourceFilter:

 resourceSelectionCriteria: "Include"

 resourceMatchers:

 - group: my-resource-group-1

 kind: my-resource-kind-1

 version: my-resource-version-1

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

 - group: my-resource-group-2

 kind: my-resource-kind-2

 version: my-resource-version-2

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

4. After you populate the trident-protect-backup-ipr-cr.yaml file with the correct values,

apply the CR:

kubectl apply -f trident-protect-backup-ipr-cr.yaml

Use the CLI

Steps

1. Restore the backup to the original namespace, replacing values in brackets with information from your

environment. The backup argument uses a namespace and backup name in the format

<namespace>/<name>. For example:

tridentctl-protect create backupinplacerestore <my_restore_name> \

--backup <namespace/backup_to_restore> \

-n <application_namespace>

35

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

Restore from a backup to a different cluster

You can restore a backup to a different cluster if there is an issue with the original cluster.

• When you restore backups using Kopia as the data mover, you can optionally specify

annotations in the CR or using the CLI to control the behavior of the temporary storage used

by Kopia. Refer to the Kopia documentation for more information about the options you can

configure. Use the tridentctl-protect create --help command for more

information about specifying annotations with the Trident Protect CLI.

• When using a CR to restore to a new namespace, you must manually create the destination

namespace before applying the CR. Trident Protect automatically creates namespaces only

when using the CLI.

Before you begin

Ensure the following prerequisites are met:

• The destination cluster has Trident Protect installed.

• The destination cluster has access to the bucket path of the same AppVault as the source cluster, where

the backup is stored.

• Ensure that your local environment can connect to the object storage bucket defined in the AppVault CR

when running the tridentctl-protect get appvaultcontent command. If network restrictions

prevent access, run the Trident Protect CLI from within a pod on the destination cluster instead.

• Ensure that the AWS session token expiration is sufficient for any long-running restore operations. If the

token expires during the restore operation, the operation can fail.

◦ Refer to the AWS API documentation for more information about checking the current session token

expiration.

◦ Refer to the AWS documentation for more information about credentials with AWS resources.

Steps

1. Check the availability of the AppVault CR on the destination cluster using Trident Protect CLI plugin:

tridentctl-protect get appvault --context <destination_cluster_name>

Ensure that the namespace intended for the application restore exists on the destination

cluster.

2. View the backup contents of the available AppVault from the destination cluster:

tridentctl-protect get appvaultcontent <appvault_name> \

--show-resources backup \

--show-paths \

--context <destination_cluster_name>

Running this command displays the available backups in the AppVault, including their originating clusters,

corresponding application names, timestamps, and archive paths.

36

https://kopia.io/docs/getting-started/
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

Example output:

+-------------+-----------+--------+-----------------

+--------------------------+-------------+

| CLUSTER | APP | TYPE | NAME | TIMESTAMP

| PATH |

+-------------+-----------+--------+-----------------

+--------------------------+-------------+

| production1 | wordpress | backup | wordpress-bkup-1| 2024-10-30

08:37:40 (UTC)| backuppath1 |

| production1 | wordpress | backup | wordpress-bkup-2| 2024-10-30

08:37:40 (UTC)| backuppath2 |

+-------------+-----------+--------+-----------------

+--------------------------+-------------+

3. Restore the application to the destination cluster using the AppVault name and archive path:

37

Use a CR

4. Create the custom resource (CR) file and name it trident-protect-backup-restore-

cr.yaml.

5. In the file you created, configure the following attributes:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.appVaultRef: (Required) The name of the AppVault where the backup contents are stored.

◦ spec.appArchivePath: The path inside AppVault where the backup contents are stored. You can

use the following command to find this path:

kubectl get backups <BACKUP_NAME> -n my-app-namespace -o

jsonpath='{.status.appArchivePath}'

If BackupRestore CR is not available, you can use the command mentioned in step

2 to view the backup contents.

◦ spec.namespaceMapping: The mapping of the source namespace of the restore operation to the

destination namespace. Replace my-source-namespace and my-destination-namespace

with information from your environment.

For example:

apiVersion: protect.trident.netapp.io/v1

kind: BackupRestore

metadata:

 name: my-cr-name

 namespace: my-destination-namespace

spec:

 appVaultRef: appvault-name

 appArchivePath: my-backup-path

 namespaceMapping: [{"source": "my-source-namespace",

"destination": "my-destination-namespace"}]

6. After you populate the trident-protect-backup-restore-cr.yaml file with the correct values,

apply the CR:

kubectl apply -f trident-protect-backup-restore-cr.yaml

Use the CLI

4. Use the following command to restore the application, replacing values in brackets with information

from your environment. The namespace-mapping argument uses colon-separated namespaces to

map source namespaces to the correct destination namespaces in the format

source1:dest1,source2:dest2. For example:

38

tridentctl-protect create backuprestore <restore_name> \

--namespace-mapping <source_to_destination_namespace_mapping> \

--appvault <appvault_name> \

--path <backup_path> \

--context <destination_cluster_name> \

-n <application_namespace>

Restore from a snapshot to a different namespace

You can restore data from a snapshot using a custom resource (CR) file either to a different namespace or the

original source namespace. When you restore a snapshot to a different namespace using a SnapshotRestore

CR, Trident Protect restores the application in a new namespace and creates an application CR for the

restored application. To protect the restored application, create on-demand backups or snapshots, or establish

a protection schedule.

• SnapshotRestore supports the spec.storageClassMapping attribute, but only when the

source and destination storage classes use the same storage backend. If you attempt to

restore to a StorageClass that uses a different storage backend, the restore operation will

fail.

• When using a CR to restore to a new namespace, you must manually create the destination

namespace before applying the CR. Trident Protect automatically creates namespaces only

when using the CLI.

Before you begin

Ensure that the AWS session token expiration is sufficient for any long-running s3 restore operations. If the

token expires during the restore operation, the operation can fail.

• Refer to the AWS API documentation for more information about checking the current session token

expiration.

• Refer to the AWS IAM documentation for more information about credentials with AWS resources.

39

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

Use a CR

Steps

1. Create the custom resource (CR) file and name it trident-protect-snapshot-restore-

cr.yaml.

2. In the file you created, configure the following attributes:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.appVaultRef: (Required) The name of the AppVault where the snapshot contents are

stored.

◦ spec.appArchivePath: The path inside AppVault where the snapshot contents are stored. You

can use the following command to find this path:

kubectl get snapshots <SNAPHOT_NAME> -n my-app-namespace -o

jsonpath='{.status.appArchivePath}'

◦ spec.namespaceMapping: The mapping of the source namespace of the restore operation to the

destination namespace. Replace my-source-namespace and my-destination-namespace

with information from your environment.

apiVersion: protect.trident.netapp.io/v1

kind: SnapshotRestore

metadata:

 name: my-cr-name

 namespace: my-app-namespace

spec:

 appVaultRef: appvault-name

 appArchivePath: my-snapshot-path

 namespaceMapping: [{"source": "my-source-namespace",

"destination": "my-destination-namespace"}]

3. (Optional) If you need to select only certain resources of the application to restore, add filtering that

includes or excludes resources marked with particular labels:

Trident Protect selects some resources automatically because of their relationship with

resources that you select. For example, if you select a persistent volume claim

resource and it has an associated pod, Trident Protect will also restore the associated

pod.

◦ resourceFilter.resourceSelectionCriteria: (Required for filtering) Use Include or Exclude to

include or exclude a resource defined in resourceMatchers. Add the following resourceMatchers

parameters to define the resources to be included or excluded:

▪ resourceFilter.resourceMatchers: An array of resourceMatcher objects. If you define

multiple elements in this array, they match as an OR operation, and the fields inside each

40

element (group, kind, version) match as an AND operation.

▪ resourceMatchers[].group: (Optional) Group of the resource to be filtered.

▪ resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.

▪ resourceMatchers[].version: (Optional) Version of the resource to be filtered.

▪ resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of

the resource to be filtered.

▪ resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes

metadata.name field of the resource to be filtered.

▪ resourceMatchers[].labelSelectors: (Optional) Label selector string in the Kubernetes

metadata.name field of the resource as defined in the Kubernetes documentation. For

example: "trident.netapp.io/os=linux".

For example:

spec:

 resourceFilter:

 resourceSelectionCriteria: "Include"

 resourceMatchers:

 - group: my-resource-group-1

 kind: my-resource-kind-1

 version: my-resource-version-1

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

 - group: my-resource-group-2

 kind: my-resource-kind-2

 version: my-resource-version-2

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

4. After you populate the trident-protect-snapshot-restore-cr.yaml file with the correct

values, apply the CR:

kubectl apply -f trident-protect-snapshot-restore-cr.yaml

Use the CLI

Steps

1. Restore the snapshot to a different namespace, replacing values in brackets with information from

your environment.

◦ The snapshot argument uses a namespace and snapshot name in the format

<namespace>/<name>.

◦ The namespace-mapping argument uses colon-separated namespaces to map source

41

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

namespaces to the correct destination namespaces in the format

source1:dest1,source2:dest2.

For example:

tridentctl-protect create snapshotrestore <my_restore_name> \

--snapshot <namespace/snapshot_to_restore> \

--namespace-mapping <source_to_destination_namespace_mapping> \

-n <application_namespace>

Restore from a snapshot to the original namespace

You can restore a snapshot to the original namespace at any time.

Before you begin

Ensure that the AWS session token expiration is sufficient for any long-running s3 restore operations. If the

token expires during the restore operation, the operation can fail.

• Refer to the AWS API documentation for more information about checking the current session token

expiration.

• Refer to the AWS IAM documentation for more information about credentials with AWS resources.

42

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

Use a CR

Steps

1. Create the custom resource (CR) file and name it trident-protect-snapshot-ipr-cr.yaml.

2. In the file you created, configure the following attributes:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.appVaultRef: (Required) The name of the AppVault where the snapshot contents are

stored.

◦ spec.appArchivePath: The path inside AppVault where the snapshot contents are stored. You

can use the following command to find this path:

kubectl get snapshots <SNAPSHOT_NAME> -n my-app-namespace -o

jsonpath='{.status.appArchivePath}'

apiVersion: protect.trident.netapp.io/v1

kind: SnapshotInplaceRestore

metadata:

 name: my-cr-name

 namespace: my-app-namespace

spec:

 appVaultRef: appvault-name

 appArchivePath: my-snapshot-path

3. (Optional) If you need to select only certain resources of the application to restore, add filtering that

includes or excludes resources marked with particular labels:

Trident Protect selects some resources automatically because of their relationship with

resources that you select. For example, if you select a persistent volume claim

resource and it has an associated pod, Trident Protect will also restore the associated

pod.

◦ resourceFilter.resourceSelectionCriteria: (Required for filtering) Use Include or Exclude to

include or exclude a resource defined in resourceMatchers. Add the following resourceMatchers

parameters to define the resources to be included or excluded:

▪ resourceFilter.resourceMatchers: An array of resourceMatcher objects. If you define

multiple elements in this array, they match as an OR operation, and the fields inside each

element (group, kind, version) match as an AND operation.

▪ resourceMatchers[].group: (Optional) Group of the resource to be filtered.

▪ resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.

▪ resourceMatchers[].version: (Optional) Version of the resource to be filtered.

▪ resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of

the resource to be filtered.

43

▪ resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes

metadata.name field of the resource to be filtered.

▪ resourceMatchers[].labelSelectors: (Optional) Label selector string in the Kubernetes

metadata.name field of the resource as defined in the Kubernetes documentation. For

example: "trident.netapp.io/os=linux".

For example:

spec:

 resourceFilter:

 resourceSelectionCriteria: "Include"

 resourceMatchers:

 - group: my-resource-group-1

 kind: my-resource-kind-1

 version: my-resource-version-1

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

 - group: my-resource-group-2

 kind: my-resource-kind-2

 version: my-resource-version-2

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

4. After you populate the trident-protect-snapshot-ipr-cr.yaml file with the correct values,

apply the CR:

kubectl apply -f trident-protect-snapshot-ipr-cr.yaml

Use the CLI

Steps

1. Restore the snapshot to the original namespace, replacing values in brackets with information from

your environment. For example:

tridentctl-protect create snapshotinplacerestore <my_restore_name> \

--snapshot <namespace/snapshot_to_restore> \

-n <application_namespace>

Check the status of a restore operation

You can use the command line to check the status of a restore operation that is in progress, has completed, or

has failed.

44

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

Steps

1. Use the following command to retrieve status of the restore operation, replacing values in brackes with

information from your environment:

kubectl get backuprestore -n <namespace_name> <my_restore_cr_name> -o

jsonpath='{.status}'

Use advanced Trident Protect restore settings

You can customize restore operations using advanced settings such as annotations,

namespace settings, and storage options to meet your specific requirements.

Namespace annotations and labels during restore and failover operations

During restore and failover operations, labels and annotations in the destination namespace are made to

match the labels and annotations in the source namespace. Labels or annotations from the source namespace

that don’t exist in the destination namespace are added, and any labels or annotations that already exist are

overwritten to match the value from the source namespace. Labels or annotations that exist only on the

destination namespace remain unchanged.

If you use Red Hat OpenShift, it’s important to note the critical role of namespace annotations in

OpenShift environments. Namespace annotations ensure that restored pods adhere to the

appropriate permissions and security configurations defined by OpenShift security context

constraints (SCCs) and can access volumes without permission issues. For more information,

refer to the OpenShift security context constraints documentation.

You can prevent specific annotations in the destination namespace from being overwritten by setting the

Kubernetes environment variable RESTORE_SKIP_NAMESPACE_ANNOTATIONS before you perform the

restore or failover operation. For example:

helm upgrade trident-protect -n trident-protect netapp-trident-

protect/trident-protect \

 --set-string

restoreSkipNamespaceAnnotations="{<annotation_key_to_skip_1>,<annotation_k

ey_to_skip_2>}" \

 --reuse-values

When performing restore or failover operation, any namespace annotations and labels specified

in restoreSkipNamespaceAnnotations and restoreSkipNamespaceLabels are

excluded from the restore or failover operation. Ensure these settings are configured during the

initial Helm installation. To learn more, refer to Configure additional Trident Protect helm chart

settings.

If you installed the source application using Helm with the --create-namespace flag, special treatment is

given to the name label key. During the restore or failover process, Trident Protect copies this label to the

destination namespace, but updates the value to the destination namespace value if the value from source

matches the source namespace. If this value doesn’t match the source namespace it is copied to the

45

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html/authentication_and_authorization/managing-pod-security-policies
https://docs.netapp.com/us-en/trident/trident-protect/trident-protect-customize-installation.html#configure-additional-trident-protect-helm-chart-settings
https://docs.netapp.com/us-en/trident/trident-protect/trident-protect-customize-installation.html#configure-additional-trident-protect-helm-chart-settings

destination namespace with no changes.

Example

The following example presents a source and destination namespace, each with different annotations and

labels. You can see the state of the destination namespace before and after the operation, and how the

annotations and labels are combined or overwritten in the destination namespace.

Before the restore or failover operation

The following table illustrates the state of the example source and destination namespaces before the restore

or failover operation:

Namespace Annotations Labels

Namespace ns-1

(source)

• annotation.one/key: "updatedvalue"

• annotation.two/key: "true"

• environment=production

• compliance=hipaa

• name=ns-1

Namespace ns-2

(destination)

• annotation.one/key: "true"

• annotation.three/key: "false"

• role=database

After the restore operation

The following table illustrates the state of the example destination namespace after the restore or failover

operation. Some keys have been added, some have been overwritten, and the name label has been updated

to match the destination namespace:

Namespace Annotations Labels

Namespace ns-2

(destination)

• annotation.one/key: "updatedvalue"

• annotation.two/key: "true"

• annotation.three/key: "false"

• name=ns-2

• compliance=hipaa

• environment=production

• role=database

Supported fields

This section describes additional fields available for restore operations.

Storage class mapping

The spec.storageClassMapping attribute defines a mapping from a storage class present in the source

application to a new storage class on the target cluster. You can use this when migrating applications between

clusters with different storage classes or when changing the storage backend for BackupRestore operations.

Example:

46

storageClassMapping:

 - destination: "destinationStorageClass1"

 source: "sourceStorageClass1"

 - destination: "destinationStorageClass2"

 source: "sourceStorageClass2"

Supported annotations

This section lists the supported annotations for configuring various behaviors in the system. If an annotation is

not explicitly set by the user, the system will use the default value.

Annotation Type Description Default value

protect.trident.ne

tapp.io/data-

mover-timeout-

sec

string The maximum time (in seconds) allowed for data

mover operation to be stalled.

"300"

protect.trident.ne

tapp.io/kopia-

content-cache-

size-limit-mb

string The maximum size limit (in megabytes) for the Kopia

content cache.

"1000"

protect.trident.ne

tapp.io/pvc-bind-

timeout-sec

string Maximum time (in seconds) to wait for any newly

created PersistentVolumeClaims (PVCs) to reach the

Bound phase before the operations fails. Applies to all

restore CR types (BackupRestore,

BackupInplaceRestore, SnapshotRestore,

SnapshotInplaceRestore). Use a higher value if your

storage backend or cluster often requires more time.

"1200" (20

minutes)

Replicate applications using NetApp SnapMirror and Trident
Protect

Using Trident Protect, you can use the asynchronous replication capabilities of NetApp

SnapMirror technology to replicate data and application changes from one storage

backend to another, on the same cluster or between different clusters.

Namespace annotations and labels during restore and failover operations

During restore and failover operations, labels and annotations in the destination namespace are made to

match the labels and annotations in the source namespace. Labels or annotations from the source namespace

that don’t exist in the destination namespace are added, and any labels or annotations that already exist are

overwritten to match the value from the source namespace. Labels or annotations that exist only on the

destination namespace remain unchanged.

47

If you use Red Hat OpenShift, it’s important to note the critical role of namespace annotations in

OpenShift environments. Namespace annotations ensure that restored pods adhere to the

appropriate permissions and security configurations defined by OpenShift security context

constraints (SCCs) and can access volumes without permission issues. For more information,

refer to the OpenShift security context constraints documentation.

You can prevent specific annotations in the destination namespace from being overwritten by setting the

Kubernetes environment variable RESTORE_SKIP_NAMESPACE_ANNOTATIONS before you perform the

restore or failover operation. For example:

helm upgrade trident-protect -n trident-protect netapp-trident-

protect/trident-protect \

 --set-string

restoreSkipNamespaceAnnotations="{<annotation_key_to_skip_1>,<annotation_k

ey_to_skip_2>}" \

 --reuse-values

When performing restore or failover operation, any namespace annotations and labels specified

in restoreSkipNamespaceAnnotations and restoreSkipNamespaceLabels are

excluded from the restore or failover operation. Ensure these settings are configured during the

initial Helm installation. To learn more, refer to Configure additional Trident Protect helm chart

settings.

If you installed the source application using Helm with the --create-namespace flag, special treatment is

given to the name label key. During the restore or failover process, Trident Protect copies this label to the

destination namespace, but updates the value to the destination namespace value if the value from source

matches the source namespace. If this value doesn’t match the source namespace it is copied to the

destination namespace with no changes.

Example

The following example presents a source and destination namespace, each with different annotations and

labels. You can see the state of the destination namespace before and after the operation, and how the

annotations and labels are combined or overwritten in the destination namespace.

Before the restore or failover operation

The following table illustrates the state of the example source and destination namespaces before the restore

or failover operation:

Namespace Annotations Labels

Namespace ns-1

(source)

• annotation.one/key: "updatedvalue"

• annotation.two/key: "true"

• environment=production

• compliance=hipaa

• name=ns-1

Namespace ns-2

(destination)

• annotation.one/key: "true"

• annotation.three/key: "false"

• role=database

48

https://docs.redhat.com/en/documentation/openshift_container_platform/4.20/html/authentication_and_authorization/managing-pod-security-policies
https://docs.netapp.com/us-en/trident/trident-protect/trident-protect-customize-installation.html#configure-additional-trident-protect-helm-chart-settings
https://docs.netapp.com/us-en/trident/trident-protect/trident-protect-customize-installation.html#configure-additional-trident-protect-helm-chart-settings

After the restore operation

The following table illustrates the state of the example destination namespace after the restore or failover

operation. Some keys have been added, some have been overwritten, and the name label has been updated

to match the destination namespace:

Namespace Annotations Labels

Namespace ns-2

(destination)

• annotation.one/key: "updatedvalue"

• annotation.two/key: "true"

• annotation.three/key: "false"

• name=ns-2

• compliance=hipaa

• environment=production

• role=database

You can configure Trident Protect to freeze and unfreeze filesystems during data protection

operations. Learn more about configuring filesystem freezing with Trident Protect.

Execution hooks during failover and reverse operations

When using AppMirror relationship to protect your application, there are specific behaviors related to execution

hooks that you should be aware of during failover and reverse operations.

• During failover, the execution hooks are automatically copied from the source cluster to the destination

cluster. You do not need to manually recreate them. After failover, execution hooks are present on the

application and will execute during any relevant actions.

• During reverse or reverse resync, any existing execution hooks on the application are removed. When the

source application becomes the destination application, these execution hooks are not valid and are

deleted to prevent their execution.

To learn more about execution hooks, refer to Manage Trident Protect execution hooks.

Set up a replication relationship

Setting up a replication relationship involves the following:

• Choosing how frequently you want Trident Protect to take an app snapshot (which includes the app’s

Kubernetes resources as well as the volume snapshots for each of the app’s volumes)

• Choosing the replication schedule (includes Kubernetes resources as well as persistent volume data)

• Setting the time for the snapshot to be taken

Steps

1. On the source cluster, create an AppVault for the source application. Depending on your storage provider,

modify an example in AppVault custom resources to fit your environment:

49

https://docs.netapp.com/us-en/trident/trident-protect/trident-protect-requirements.html#protecting-data-with-kubevirt-vms

Create an AppVault using a CR

a. Create the custom resource (CR) file and name it (for example, trident-protect-appvault-

primary-source.yaml).

b. Configure the following attributes:

▪ metadata.name: (Required) The name of the AppVault custom resource. Make note of the

name you choose, because other CR files needed for a replication relationship refer to this

value.

▪ spec.providerConfig: (Required) Stores the configuration necessary to access the AppVault

using the specified provider. Choose a bucketName and any other necessary details for your

provider. Make note of the values you choose, because other CR files needed for a replication

relationship refer to these values. Refer to AppVault custom resources for examples of

AppVault CRs with other providers.

▪ spec.providerCredentials: (Required) Stores references to any credential required to access

the AppVault using the specified provider.

▪ spec.providerCredentials.valueFromSecret: (Required) Indicates that the credential

value should come from a secret.

▪ key: (Required) The valid key of the secret to select from.

▪ name: (Required) Name of the secret containing the value for this field. Must be in the

same namespace.

▪ spec.providerCredentials.secretAccessKey: (Required) The access key used to

access the provider. The name should match

spec.providerCredentials.valueFromSecret.name.

▪ spec.providerType: (Required) Determines what provides the backup; for example, NetApp

ONTAP S3, generic S3, Google Cloud, or Microsoft Azure. Possible values:

▪ aws

▪ azure

▪ gcp

▪ generic-s3

▪ ontap-s3

▪ storagegrid-s3

c. After you populate the trident-protect-appvault-primary-source.yaml file with the

correct values, apply the CR:

kubectl apply -f trident-protect-appvault-primary-source.yaml -n

trident-protect

Create an AppVault using the CLI

a. Create the AppVault, replacing values in brackets with information from your environment:

50

tridentctl-protect create vault Azure <vault-name> --account

<account-name> --bucket <bucket-name> --secret <secret-name> -n

trident-protect

2. On the source cluster, create the source application CR:

51

Create the source application using a CR

a. Create the custom resource (CR) file and name it (for example, trident-protect-app-

source.yaml).

b. Configure the following attributes:

▪ metadata.name: (Required) The name of the application custom resource. Make note of the

name you choose, because other CR files needed for a replication relationship refer to this

value.

▪ spec.includedNamespaces: (Required) An array of namespaces and associated labels. Use

namespace names and optionally narrow the scope of the namespaces with labels to specify

resources that exist in the namespaces listed here. The application namespace must be part

of this array.

Example YAML:

apiVersion: protect.trident.netapp.io/v1

kind: Application

metadata:

 name: my-app-name

 namespace: my-app-namespace

spec:

 includedNamespaces:

 - namespace: my-app-namespace

 labelSelector: {}

c. After you populate the trident-protect-app-source.yaml file with the correct values, apply

the CR:

kubectl apply -f trident-protect-app-source.yaml -n my-app-

namespace

Create the source application using the CLI

a. Create the source application. For example:

tridentctl-protect create app <my-app-name> --namespaces

<namespaces-to-be-included> -n <my-app-namespace>

3. Optionally, on the source cluster, take a snapshot of the source application. This snapshot is used as the

basis for the application on the destination cluster. If you skip this step, you’ll need to wait for the next

scheduled snapshot to run so that you have a recent snapshot. To create an on-demand snapshot, refer to

Create an on-demand snapshot.

4. On the source cluster, create the replication schedule CR:

52

https://docs.netapp.com/us-en/trident/trident-protect/trident-protect-protect-apps.html#create-an-on-demand-snapshot

Alongside the schedule provided below, it is recommended to create a separate daily

snapshot schedule with a retention period of 7 days to maintain a common snapshot

between peered ONTAP clusters. This ensures that snapshots are available for up to 7

days, but the retention period can be customized based on user requirements.

If a failover happens, the system can use these snapshots for up to 7 days for reverse

operations. This approach makes the reverse process faster and more efficient because

only the changes made since the last snapshot will be transferred, not all the data.

If an existing schedule for the application already meets the desired retention requirements,

no additional schedules are required.

53

Create the replication schedule using a CR

a. Create a replication schedule for the source application:

i. Create the custom resource (CR) file and name it (for example, trident-protect-

schedule.yaml).

ii. Configure the following attributes:

▪ metadata.name: (Required) The name of the schedule custom resource.

▪ spec.appVaultRef: (Required) This value must match the metadata.name field of the

AppVault for the source application.

▪ spec.applicationRef: (Required) This value must match the metadata.name field of the

source application CR.

▪ spec.backupRetention: (Required) This field is required, and the value must be set to 0.

▪ spec.enabled: Must be set to true.

▪ spec.granularity: Must be set to Custom.

▪ spec.recurrenceRule: Define a start date in UTC time and a recurrence interval.

▪ spec.snapshotRetention: Must be set to 2.

Example YAML:

apiVersion: protect.trident.netapp.io/v1

kind: Schedule

metadata:

 name: appmirror-schedule

 namespace: my-app-namespace

spec:

 appVaultRef: my-appvault-name

 applicationRef: my-app-name

 backupRetention: "0"

 enabled: true

 granularity: Custom

 recurrenceRule: |-

 DTSTART:20220101T000200Z

 RRULE:FREQ=MINUTELY;INTERVAL=5

 snapshotRetention: "2"

iii. After you populate the trident-protect-schedule.yaml file with the correct values,

apply the CR:

kubectl apply -f trident-protect-schedule.yaml -n my-app-

namespace

54

Create the replication schedule using the CLI

a. Create the replication schedule, replacing values in brackets with information from your

environment:

tridentctl-protect create schedule --name appmirror-schedule

--app <my_app_name> --appvault <my_app_vault> --granularity

Custom --recurrence-rule <rule> --snapshot-retention

<snapshot_retention_count> -n <my_app_namespace>

Example:

tridentctl-protect create schedule --name appmirror-schedule

--app <my_app_name> --appvault <my_app_vault> --granularity

Custom --recurrence-rule "DTSTART:20220101T000200Z

\nRRULE:FREQ=MINUTELY;INTERVAL=5" --snapshot-retention 2 -n

<my_app_namespace>

5. On the destination cluster, create a source application AppVault CR that is identical to the AppVault CR you

applied on the source cluster and name it (for example, trident-protect-appvault-primary-

destination.yaml).

6. Apply the CR:

kubectl apply -f trident-protect-appvault-primary-destination.yaml -n

trident-protect

7. Create a destination AppVault CR for the destination application on the destination cluster. Depending on

your storage provider, modify an example in AppVault custom resources to fit your environment:

a. Create the custom resource (CR) file and name it (for example, trident-protect-appvault-

secondary-destination.yaml).

b. Configure the following attributes:

▪ metadata.name: (Required) The name of the AppVault custom resource. Make note of the name

you choose, because other CR files needed for a replication relationship refer to this value.

▪ spec.providerConfig: (Required) Stores the configuration necessary to access the AppVault using

the specified provider. Choose a bucketName and any other necessary details for your provider.

Make note of the values you choose, because other CR files needed for a replication relationship

refer to these values. Refer to AppVault custom resources for examples of AppVault CRs with other

providers.

▪ spec.providerCredentials: (Required) Stores references to any credential required to access the

AppVault using the specified provider.

▪ spec.providerCredentials.valueFromSecret: (Required) Indicates that the credential value

should come from a secret.

▪ key: (Required) The valid key of the secret to select from.

55

▪ name: (Required) Name of the secret containing the value for this field. Must be in the

same namespace.

▪ spec.providerCredentials.secretAccessKey: (Required) The access key used to access the

provider. The name should match spec.providerCredentials.valueFromSecret.name.

▪ spec.providerType: (Required) Determines what provides the backup; for example, NetApp

ONTAP S3, generic S3, Google Cloud, or Microsoft Azure. Possible values:

▪ aws

▪ azure

▪ gcp

▪ generic-s3

▪ ontap-s3

▪ storagegrid-s3

c. After you populate the trident-protect-appvault-secondary-destination.yaml file with

the correct values, apply the CR:

kubectl apply -f trident-protect-appvault-secondary-destination.yaml

-n trident-protect

8. On the destination cluster, create an AppMirrorRelationship CR file.

When using a CR, manually create the destination namespace before applying the CR.

Trident Protect automatically creates namespaces only when using the CLI.

56

Create an AppMirrorRelationship using a CR

a. Create the custom resource (CR) file and name it (for example, trident-protect-

relationship.yaml).

b. Configure the following attributes:

▪ metadata.name: (Required) The name of the AppMirrorRelationship custom resource.

▪ spec.destinationAppVaultRef: (Required) This value must match the name of the AppVault

for the destination application on the destination cluster.

▪ spec.namespaceMapping: (Required) The destination and source namespaces must match

the application namespace defined in the respective application CR.

▪ spec.sourceAppVaultRef: (Required) This value must match the name of the AppVault for

the source application.

▪ spec.sourceApplicationName: (Required) This value must match the name of the source

application you defined in the source application CR.

▪ spec.sourceApplicationUID: (Required) This value must match the UID of the source

application you defined in the source application CR.

▪ spec.storageClassName: (Optional) Choose the name of a valid storage class on the cluster.

The storage class must be linked to an ONTAP storage VM that is peered with the source

environment. If the storage class is not provided, the default storage class on the cluster will

be used by default.

▪ spec.recurrenceRule: Define a start date in UTC time and a recurrence interval.

Example YAML:

57

apiVersion: protect.trident.netapp.io/v1

kind: AppMirrorRelationship

metadata:

 name: amr-16061e80-1b05-4e80-9d26-d326dc1953d8

 namespace: my-app-namespace

spec:

 desiredState: Established

 destinationAppVaultRef: generic-s3-trident-protect-dst-

bucket-8fe0b902-f369-4317-93d1-ad7f2edc02b5

 namespaceMapping:

 - destination: my-app-namespace

 source: my-app-namespace

 recurrenceRule: |-

 DTSTART:20220101T000200Z

 RRULE:FREQ=MINUTELY;INTERVAL=5

 sourceAppVaultRef: generic-s3-trident-protect-src-bucket-

b643cc50-0429-4ad5-971f-ac4a83621922

 sourceApplicationName: my-app-name

 sourceApplicationUID: 7498d32c-328e-4ddd-9029-122540866aeb

 storageClassName: sc-vsim-2

c. After you populate the trident-protect-relationship.yaml file with the correct values,

apply the CR:

kubectl apply -f trident-protect-relationship.yaml -n my-app-

namespace

Create an AppMirrorRelationship using the CLI

a. Create and apply the AppMirrorRelationship object, replacing values in brackets with information

from your environment:

tridentctl-protect create appmirrorrelationship

<name_of_appmirorrelationship> --destination-app-vault

<my_vault_name> --source-app-vault <my_vault_name> --recurrence

-rule <rule> --namespace-mapping <ns_mapping> --source-app-id

<source_app_UID> --source-app <my_source_app_name> --storage

-class <storage_class_name> -n <application_namespace>

Example:

58

tridentctl-protect create appmirrorrelationship my-amr

--destination-app-vault appvault2 --source-app-vault appvault1

--recurrence-rule

"DTSTART:20220101T000200Z\nRRULE:FREQ=MINUTELY;INTERVAL=5"

--source-app my-app --namespace-mapping "my-source-ns1:my-dest-

ns1,my-source-ns2:my-dest-ns2" --source-app-id 373f24c1-5769-

404c-93c3-5538af6ccc36 --storage-class my-storage-class -n my-

dest-ns1

9. (Optional) On the destination cluster, check the state and status of the replication relationship:

kubectl get amr -n my-app-namespace <relationship name> -o=jsonpath

='{.status}' | jq

Fail over to destination cluster

Using Trident Protect, you can fail over replicated applications to a destination cluster. This procedure stops

the replication relationship and brings the app online on the destination cluster. Trident Protect does not stop

the app on the source cluster if it was operational.

Steps

1. On the destination cluster, edit the AppMirrorRelationship CR file (for example, trident-protect-

relationship.yaml) and change the value of spec.desiredState to Promoted.

2. Save the CR file.

3. Apply the CR:

kubectl apply -f trident-protect-relationship.yaml -n my-app-namespace

4. (Optional) Create any protection schedules that you need on the failed over application.

5. (Optional) Check the state and status of the replication relationship:

kubectl get amr -n my-app-namespace <relationship name> -o=jsonpath

='{.status}' | jq

Resync a failed over replication relationship

The resync operation re-establishes the replication relationship. After you perform a resync operation, the

original source application becomes the running application, and any changes made to the running application

on the destination cluster are discarded.

The process stops the app on the destination cluster before re-establishing replication.

59

Any data written to the destination application during failover will be lost.

Steps

1. Optional: On the source cluster, create a snapshot of the source application. This ensures that the latest

changes from the source cluster are captured.

2. On the destination cluster, edit the AppMirrorRelationship CR file (for example, trident-protect-

relationship.yaml) and change the value of spec.desiredState to Established.

3. Save the CR file.

4. Apply the CR:

kubectl apply -f trident-protect-relationship.yaml -n my-app-namespace

5. If you created any protection schedules on the destination cluster to protect the failed over application,

remove them. Any schedules that remain cause volume snapshot failures.

Reverse resync a failed over replication relationship

When you reverse resync a failed over replication relationship, the destination application becomes the source

application, and the source becomes the destination. Changes made to the destination application during

failover are kept.

Steps

1. On the original destination cluster, delete the AppMirrorRelationship CR. This causes the destination to

become the source. If there are any protection schedules remaining on the new destination cluster, remove

them.

2. Set up a replication relationship by applying the CR files you originally used to set up the relationship to the

opposite clusters.

3. Ensure the new destination (original source cluster) is configured with both AppVault CRs.

4. Set up a replication relationship on the opposite cluster, configuring values for the reverse direction.

Reverse application replication direction

When you reverse replication direction, Trident Protect moves the application to the destination storage

backend while continuing to replicate back to the original source storage backend. Trident Protect stops the

source application and replicates the data to the destination before failing over to the destination app.

In this situation, you are swapping the source and destination.

Steps

1. On the source cluster, create a shutdown snapshot:

60

Create a shutdown snapshot using a CR

a. Disable the protection policy schedules for the source application.

b. Create a ShutdownSnapshot CR file:

i. Create the custom resource (CR) file and name it (for example, trident-protect-

shutdownsnapshot.yaml).

ii. Configure the following attributes:

▪ metadata.name: (Required) The name of the custom resource.

▪ spec.AppVaultRef: (Required) This value must match the metadata.name field of the

AppVault for the source application.

▪ spec.ApplicationRef: (Required) This value must match the metadata.name field of the

source application CR file.

Example YAML:

apiVersion: protect.trident.netapp.io/v1

kind: ShutdownSnapshot

metadata:

 name: replication-shutdown-snapshot-afc4c564-e700-4b72-

86c3-c08a5dbe844e

 namespace: my-app-namespace

spec:

 appVaultRef: generic-s3-trident-protect-src-bucket-

04b6b4ec-46a3-420a-b351-45795e1b5e34

 applicationRef: my-app-name

c. After you populate the trident-protect-shutdownsnapshot.yaml file with the correct

values, apply the CR:

kubectl apply -f trident-protect-shutdownsnapshot.yaml -n my-app-

namespace

Create a shutdown snapshot using the CLI

a. Create the shutdown snapshot, replacing values in brackets with information from your

environment. For example:

tridentctl-protect create shutdownsnapshot <my_shutdown_snapshot>

--appvault <my_vault> --app <app_to_snapshot> -n

<application_namespace>

61

2. On the source cluster, after the shutdown snapshot completes, get the status of the shutdown snapshot:

kubectl get shutdownsnapshot -n my-app-namespace

<shutdown_snapshot_name> -o yaml

3. On the source cluster, find the value of shutdownsnapshot.status.appArchivePath using the following

command, and record the last part of the file path (also called the basename; this will be everything after

the last slash):

k get shutdownsnapshot -n my-app-namespace <shutdown_snapshot_name> -o

jsonpath='{.status.appArchivePath}'

4. Perform a fail over from the new destination cluster to the new source cluster, with the following change:

In step 2 of the fail over procedure, include the spec.promotedSnapshot field in the

AppMirrorRelationship CR file, and set its value to the basename you recorded in step 3

above.

5. Perform the reverse resync steps in Reverse resync a failed over replication relationship.

6. Enable protection schedules on the new source cluster.

Result

The following actions occur because of the reverse replication:

• A snapshot is taken of the original source app’s Kubernetes resources.

• The original source app’s pods are gracefully stopped by deleting the app’s Kubernetes resources (leaving

PVCs and PVs in place).

• After the pods are shut down, snapshots of the app’s volumes are taken and replicated.

• The SnapMirror relationships are broken, making the destination volumes ready for read/write.

• The app’s Kubernetes resources are restored from the pre-shutdown snapshot, using the volume data

replicated after the original source app was shut down.

• Replication is re-established in the reverse direction.

Fail back applications to the original source cluster

Using Trident Protect, you can achieve "fail back" after a failover operation by using the following sequence of

operations. In this workflow to restore the original replication direction, Trident Protect replicates (resyncs) any

application changes back to the original source application before reversing the replication direction.

This process starts from a relationship that has completed a failover to a destination and involves the following

steps:

• Start with a failed over state.

• Reverse resync the replication relationship.

62

Do not perform a normal resync operation, as this will discard data written to the destination

cluster during the fail over procedure.

• Reverse the replication direction.

Steps

1. Perform the Reverse resync a failed over replication relationship steps.

2. Perform the Reverse application replication direction steps.

Delete a replication relationship

You can delete a replication relationship at any time. When you delete the application replication relationship, it

results in two separate applications with no relationship between them.

Steps

1. On the current desination cluster, delete the AppMirrorRelationship CR:

kubectl delete -f trident-protect-relationship.yaml -n my-app-namespace

Migrate applications using Trident Protect

You can migrate your applications between clusters or to different storage classes by

restoring backup data.

When you migrate an application, all execution hooks configured for the application are migrated

with the app. If a post-restore execution hook is present, it runs automatically as part of the

restore operation.

Backup and restore operations

To perform backup and restore operations for the following scenarios, you can automate specific backup and

restore tasks.

Clone to same cluster

To clone an application to the same cluster, create a snapshot or backup and restore the data to the same

cluster.

Steps

1. Do one of the following:

a. Create a snapshot.

b. Create a backup.

2. On the same cluster, do one of the following, depending on if you created a snapshot or a backup:

a. Restore your data from the snapshot.

b. Restore your data from the backup.

63

Clone to different cluster

To clone an application to a different cluster (perform a cross-cluster clone), create a backup on the source

cluster, and then restore the backup to a different cluster. Make sure that Trident Protect is installed on the

destination cluster.

You can replicate an application between different clusters using SnapMirror replication.

Steps

1. Create a backup.

2. Ensure that the AppVault CR for the object storage bucket that contains the backup has been configured

on the destination cluster.

3. On the destination cluster, restore your data from the backup.

Migrate applications from one storage class to another storage class

You can migrate applications from one storage class to a different storage class by restoring a backup to the

destination storage class.

For example (excluding the secrets from the restore CR):

apiVersion: protect.trident.netapp.io/v1

kind: SnapshotRestore

metadata:

 name: "${snapshotRestoreCRName}"

spec:

 appArchivePath: "${snapshotArchivePath}"

 appVaultRef: "${appVaultCRName}"

 namespaceMapping:

 - destination: "${destinationNamespace}"

 source: "${sourceNamespace}"

 storageClassMapping:

 - destination: "${destinationStorageClass}"

 source: "${sourceStorageClass}"

 resourceFilter:

 resourceMatchers:

 kind: Secret

 version: v1

 resourceSelectionCriteria: exclude

64

Restore the snapshot using a CR

Steps

1. Create the custom resource (CR) file and name it trident-protect-snapshot-restore-

cr.yaml.

2. In the file you created, configure the following attributes:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.appArchivePath: The path inside AppVault where the snapshot contents are stored. You

can use the following command to find this path:

kubectl get snapshots <my-snapshot-name> -n trident-protect -o

jsonpath='{.status.appArchivePath}'

◦ spec.appVaultRef: (Required) The name of the AppVault where the snapshot contents are

stored.

◦ spec.namespaceMapping: The mapping of the source namespace of the restore operation to the

destination namespace. Replace my-source-namespace and my-destination-namespace

with information from your environment.

apiVersion: protect.trident.netapp.io/v1

kind: SnapshotRestore

metadata:

 name: my-cr-name

 namespace: trident-protect

spec:

 appArchivePath: my-snapshot-path

 appVaultRef: appvault-name

 namespaceMapping: [{"source": "my-source-namespace",

"destination": "my-destination-namespace"}]

3. Optionally, if you need to select only certain resources of the application to restore, add filtering that

includes or excludes resources marked with particular labels:

◦ resourceFilter.resourceSelectionCriteria: (Required for filtering) Use include or exclude

to include or exclude a resource defined in resourceMatchers. Add the following

resourceMatchers parameters to define the resources to be included or excluded:

▪ resourceFilter.resourceMatchers: An array of resourceMatcher objects. If you define

multiple elements in this array, they match as an OR operation, and the fields inside each

element (group, kind, version) match as an AND operation.

▪ resourceMatchers[].group: (Optional) Group of the resource to be filtered.

▪ resourceMatchers[].kind: (Optional) Kind of the resource to be filtered.

▪ resourceMatchers[].version: (Optional) Version of the resource to be filtered.

65

▪ resourceMatchers[].names: (Optional) Names in the Kubernetes metadata.name field of

the resource to be filtered.

▪ resourceMatchers[].namespaces: (Optional) Namespaces in the Kubernetes

metadata.name field of the resource to be filtered.

▪ resourceMatchers[].labelSelectors: (Optional) Label selector string in the Kubernetes

metadata.name field of the resource as defined in the Kubernetes documentation. For

example: "trident.netapp.io/os=linux".

For example:

spec:

 resourceFilter:

 resourceSelectionCriteria: "include"

 resourceMatchers:

 - group: my-resource-group-1

 kind: my-resource-kind-1

 version: my-resource-version-1

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

 - group: my-resource-group-2

 kind: my-resource-kind-2

 version: my-resource-version-2

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

4. After you populate the trident-protect-snapshot-restore-cr.yaml file with the correct

values, apply the CR:

kubectl apply -f trident-protect-snapshot-restore-cr.yaml

Restore the snapshot using the CLI

Steps

1. Restore the snapshot to a different namespace, replacing values in brackets with information from

your environment.

◦ The snapshot argument uses a namespace and snapshot name in the format

<namespace>/<name>.

◦ The namespace-mapping argument uses colon-separated namespaces to map source

namespaces to the correct destination namespaces in the format

source1:dest1,source2:dest2.

For example:

66

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

tridentctl-protect create snapshotrestore <my_restore_name>

--snapshot <namespace/snapshot_to_restore> --namespace-mapping

<source_to_destination_namespace_mapping>

Manage Trident Protect execution hooks

An execution hook is a custom action that you can configure to run in conjunction with a

data protection operation of a managed app. For example, if you have a database app,

you can use an execution hook to pause all database transactions before a snapshot,

and resume transactions after the snapshot is complete. This ensures application-

consistent snapshots.

Types of execution hooks

Trident Protect supports the following types of execution hooks, based on when they can be run:

• Pre-snapshot

• Post-snapshot

• Pre-backup

• Post-backup

• Post-restore

• Post-failover

Order of execution

When a data protection operation is run, execution hook events take place in the following order:

1. Any applicable custom pre-operation execution hooks are run on the appropriate containers. You can

create and run as many custom pre-operation hooks as you need, but the order of execution of these

hooks before the operation is neither guaranteed nor configurable.

2. Filesystem freezes occur, if applicable. Learn more about configuring filesystem freezing with Trident

Protect.

3. The data protection operation is performed.

4. Frozen filesystems are unfrozen, if applicable.

5. Any applicable custom post-operation execution hooks are run on the appropriate containers. You can

create and run as many custom post-operation hooks as you need, but the order of execution of these

hooks after the operation is neither guaranteed nor configurable.

If you create multiple execution hooks of the same type (for example, pre-snapshot), the order of execution of

those hooks is not guaranteed. However, the order of execution of hooks of different types is guaranteed. For

example, the following is the order of execution of a configuration that has all of the different types of hooks:

1. Pre-snapshot hooks executed

2. Post-snapshot hooks executed

67

https://docs.netapp.com/us-en/trident/trident-protect/trident-protect-requirements.html#protecting-data-with-kubevirt-vms
https://docs.netapp.com/us-en/trident/trident-protect/trident-protect-requirements.html#protecting-data-with-kubevirt-vms

3. Pre-backup hooks executed

4. Post-backup hooks executed

The preceding order example only applies when you run a backup that does not use an existing

snapshot.

You should always test your execution hook scripts before enabling them in a production

environment. You can use the 'kubectl exec' command to conveniently test the scripts. After you

enable the execution hooks in a production environment, test the resulting snapshots and

backups to ensure they are consistent. You can do this by cloning the app to a temporary

namespace, restoring the snapshot or backup, and then testing the app.

If a pre-snapshot execution hook adds, changes, or removes Kubernetes resources, those

changes are included in the snapshot or backup and in any subsequent restore operation.

Important notes about custom execution hooks

Consider the following when planning execution hooks for your apps.

• An execution hook must use a script to perform actions. Many execution hooks can reference the same

script.

• Trident Protect requires the scripts that execution hooks use to be written in the format of executable shell

scripts.

• Script size is limited to 96KB.

• Trident Protect uses execution hook settings and any matching criteria to determine which hooks are

applicable to a snapshot, backup, or restore operation.

Because execution hooks often reduce or completely disable the functionality of the application

they are running against, you should always try to minimize the time your custom execution

hooks take to run. If you start a backup or snapshot operation with associated execution hooks

but then cancel it, the hooks are still allowed to run if the backup or snapshot operation has

already begun. This means that the logic used in a post-backup execution hook cannot assume

that the backup was completed.

Execution hook filters

When you add or edit an execution hook for an application, you can add filters to the execution hook to

manage which containers the hook will match. Filters are useful for applications that use the same container

image on all containers, but might use each image for a different purpose (such as Elasticsearch). Filters allow

you to create scenarios where execution hooks run on some but not necessarily all identical containers. If you

create multiple filters for a single execution hook, they are combined with a logical AND operator. You can have

up to 10 active filters per execution hook.

Each filter you add to an execution hook uses a regular expression to match containers in your cluster. When a

hook matches a container, the hook will run its associated script on that container. Regular expressions for

filters use the Regular Expression 2 (RE2) syntax, which does not support creating a filter that excludes

containers from the list of matches. For information on the syntax that Trident Protect supports for regular

expressions in execution hook filters, see Regular Expression 2 (RE2) syntax support.

68

https://github.com/google/re2/wiki/Syntax

If you add a namespace filter to an execution hook that runs after a restore or clone operation

and the restore or clone source and destination are in different namespaces, the namespace

filter is only applied to the destination namespace.

Execution hook examples

Visit the NetApp Verda GitHub project to download real execution hooks for popular apps such as Apache

Cassandra and Elasticsearch. You can also see examples and get ideas for structuring your own custom

execution hooks.

Create an execution hook

You can create a custom execution hook for an app using Trident Protect. You need to have Owner, Admin, or

Member permissions to create execution hooks.

69

https://github.com/NetApp/Verda

Use a CR

Steps

1. Create the custom resource (CR) file and name it trident-protect-hook.yaml.

2. Configure the following attributes to match your Trident Protect environment and cluster configuration:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and sensible

name for your environment.

◦ spec.applicationRef: (Required) The Kubernetes name of the application for which to run the

execution hook.

◦ spec.stage: (Required) A string indicating which stage during the action that the execution hook

should run. Possible values:

▪ Pre

▪ Post

◦ spec.action: (Required) A string indicating which action the execution hook will take, assuming

any execution hook filters specified are matched. Possible values:

▪ Snapshot

▪ Backup

▪ Restore

▪ Failover

◦ spec.enabled: (Optional) Indicates whether this execution hook is enabled or disabled. If not

specified, the default value is true.

◦ spec.hookSource: (Required) A string containing the base64-encoded hook script.

◦ spec.timeout: (Optional) A number defining how long in minutes that the execution hook is

allowed to run. The minimum value is 1 minute, and the default value is 25 minutes if not

specified.

◦ spec.arguments: (Optional) A YAML list of arguments that you can specify for the execution

hook.

◦ spec.matchingCriteria: (Optional) An optional list of criteria key value pairs, each pair making up

an execution hook filter. You can add up to 10 filters per execution hook.

◦ spec.matchingCriteria.type: (Optional) A string identifying the execution hook filter type.

Possible values:

▪ ContainerImage

▪ ContainerName

▪ PodName

▪ PodLabel

▪ NamespaceName

◦ spec.matchingCriteria.value: (Optional) A string or regular expression identifying the execution

hook filter value.

Example YAML:

70

apiVersion: protect.trident.netapp.io/v1

kind: ExecHook

metadata:

 name: example-hook-cr

 namespace: my-app-namespace

 annotations:

 astra.netapp.io/astra-control-hook-source-id:

/account/test/hookSource/id

spec:

 applicationRef: my-app-name

 stage: Pre

 action: Snapshot

 enabled: true

 hookSource: IyEvYmluL2Jhc2gKZWNobyAiZXhhbXBsZSBzY3JpcHQiCg==

 timeout: 10

 arguments:

 - FirstExampleArg

 - SecondExampleArg

 matchingCriteria:

 - type: containerName

 value: mysql

 - type: containerImage

 value: bitnami/mysql

 - type: podName

 value: mysql

 - type: namespaceName

 value: mysql-a

 - type: podLabel

 value: app.kubernetes.io/component=primary

 - type: podLabel

 value: helm.sh/chart=mysql-10.1.0

 - type: podLabel

 value: deployment-type=production

3. After you populate the CR file with the correct values, apply the CR:

kubectl apply -f trident-protect-hook.yaml

Use the CLI

Steps

1. Create the execution hook, replacing values in brackets with information from your environment. For

example:

71

tridentctl-protect create exechook <my_exec_hook_name> --action

<action_type> --app <app_to_use_hook> --stage <pre_or_post_stage>

--source-file <script-file> -n <application_namespace>

Manually run an execution hook

You can manually run an execution hook for testing purposes or if you need to re-run the hook manually after a

failure. You need to have Owner, Admin, or Member permissions to manually run execution hooks.

Manually running an execution hook consists of two basic steps:

1. Create a resource backup, which collects resources and creates a backup of them, determining where the

hook will run

2. Run the execution hook against the backup

72

Step 1: Create a resource backup

73

Use a CR

Steps

1. Create the custom resource (CR) file and name it trident-protect-resource-

backup.yaml.

2. Configure the following attributes to match your Trident Protect environment and cluster

configuration:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and

sensible name for your environment.

◦ spec.applicationRef: (Required) The Kubernetes name of the application for which to

create the resource backup.

◦ spec.appVaultRef: (Required) The name of the AppVault where the backup contents are

stored.

◦ spec.appArchivePath: The path inside AppVault where the backup contents are stored. You

can use the following command to find this path:

kubectl get backups <BACKUP_NAME> -n my-app-namespace -o

jsonpath='{.status.appArchivePath}'

Example YAML:

apiVersion: protect.trident.netapp.io/v1

kind: ResourceBackup

metadata:

 name: example-resource-backup

spec:

 applicationRef: my-app-name

 appVaultRef: my-appvault-name

 appArchivePath: example-resource-backup

3. After you populate the CR file with the correct values, apply the CR:

kubectl apply -f trident-protect-resource-backup.yaml

Use the CLI

Steps

1. Create the backup, replacing values in brackets with information from your environment. For

example:

74

tridentctl protect create resourcebackup <my_backup_name> --app

<my_app_name> --appvault <my_appvault_name> -n

<my_app_namespace> --app-archive-path <app_archive_path>

2. View the status of the backup. You can use this example command repeatedly until the operation

is complete:

tridentctl protect get resourcebackup -n <my_app_namespace>

<my_backup_name>

3. Verify that the backup was successful:

kubectl describe resourcebackup <my_backup_name>

75

Step 2: Run the execution hook

76

Use a CR

Steps

1. Create the custom resource (CR) file and name it trident-protect-hook-run.yaml.

2. Configure the following attributes to match your Trident Protect environment and cluster

configuration:

◦ metadata.name: (Required) The name of this custom resource; choose a unique and

sensible name for your environment.

◦ spec.applicationRef: (Required) Ensure this value matches the application name from the

ResourceBackup CR you created in step 1.

◦ spec.appVaultRef: (Required) Ensure this value matches the appVaultRef from the

ResourceBackup CR you created in step 1.

◦ spec.appArchivePath: Ensure this value matches the appArchivePath from the

ResourceBackup CR you created in step 1.

kubectl get backups <BACKUP_NAME> -n my-app-namespace -o

jsonpath='{.status.appArchivePath}'

◦ spec.action: (Required) A string indicating which action the execution hook will take,

assuming any execution hook filters specified are matched. Possible values:

▪ Snapshot

▪ Backup

▪ Restore

▪ Failover

◦ spec.stage: (Required) A string indicating which stage during the action that the execution

hook should run. This hook run will not run hooks in any other stage. Possible values:

▪ Pre

▪ Post

Example YAML:

apiVersion: protect.trident.netapp.io/v1

kind: ExecHooksRun

metadata:

 name: example-hook-run

spec:

 applicationRef: my-app-name

 appVaultRef: my-appvault-name

 appArchivePath: example-resource-backup

 stage: Post

 action: Failover

77

3. After you populate the CR file with the correct values, apply the CR:

kubectl apply -f trident-protect-hook-run.yaml

Use the CLI

Steps

1. Create the manual execution hook run request:

tridentctl protect create exechooksrun <my_exec_hook_run_name>

-n <my_app_namespace> --action snapshot --stage <pre_or_post>

--app <my_app_name> --appvault <my_appvault_name> --path

<my_backup_name>

2. Check the status of the execution hook run. You can run this command repeatedly until the

operation is complete:

tridentctl protect get exechooksrun -n <my_app_namespace>

<my_exec_hook_run_name>

3. Describe the exechooksrun object to see the final details and status:

kubectl -n <my_app_namespace> describe exechooksrun

<my_exec_hook_run_name>

78

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

79

http://www.netapp.com/TM

	Manage and protect applications : Trident
	Table of Contents
	Manage and protect applications
	Use Trident Protect AppVault objects to manage buckets
	Configure AppVault authentication and passwords
	AppVault creation examples
	View AppVault information
	Remove an AppVault

	Define an application for management with Trident Protect
	Create an AppVault CR
	Define an application

	Protect applications using Trident Protect
	Create an on-demand snapshot
	Create an on-demand backup
	Create a data protection schedule
	Delete a snapshot
	Delete a backup
	Check the status of a backup operation
	Enable backup and restore for azure-netapp-files (ANF) operations

	Restore applications
	Restore applications using Trident Protect
	Use advanced Trident Protect restore settings

	Replicate applications using NetApp SnapMirror and Trident Protect
	Namespace annotations and labels during restore and failover operations
	Execution hooks during failover and reverse operations
	Set up a replication relationship
	Reverse application replication direction

	Migrate applications using Trident Protect
	Backup and restore operations
	Migrate applications from one storage class to another storage class

	Manage Trident Protect execution hooks
	Types of execution hooks
	Important notes about custom execution hooks
	Execution hook filters
	Execution hook examples
	Create an execution hook
	Manually run an execution hook

