Provision and manage volumes
Trident

NetApp
February 02, 2026

This PDF was generated from https://docs.netapp.com/us-en/trident/trident-use/vol-provision.html on
February 02, 2026. Always check docs.netapp.com for the latest.



Table of Contents

Provision and manage volumes
Provision a volume
Overview
Create the PVC
Expand volumes
Expand an iSCSI volume
Expand an FC volume
Expand an NFS volume
Import volumes
Overview and considerations
Import a volume
Examples
Customize volume names and labels
Before you begin
Limitations
Key behaviors of customizable volume names
Backend configuration examples with name template and labels
Name template examples
Points to consider
Share an NFS volume across namespaces
Features
Quick start
Configure the source and destination namespaces
Delete a shared volume
Use tridentctl get to query subordinate volumes
Limitations
For more information
Clone volumes across namespaces
Prerequisites
Quick start
Configure the source and destination namespaces
Limitations
Replicate volumes using SnapMirror
Replication prerequisites
Create a mirrored PVC
Volume Replication States
Promote secondary PVC during an unplanned failover
Promote secondary PVC during a planned failover
Restore a mirror relationship after a failover
Additional operations
Update mirror relationships when ONTAP is online
Update mirror relationships when ONTAP is offline
Use CSI Topology

A DN A A A A

15
15
16
18
25
25
25
26
26
27
28
28
28
29
30
31
31
32
32
32
32
32
33
35
35
35
36
39
39
39
39
40
40
41
41



Overview
Step 1: Create a topology-aware backend

Step 2: Define StorageClasses that are topology aware

Step 3: Create and use a PVC

Update backends to include supportedTopologies

Find more information

Work with snapshots

Overview

Create a volume snapshot

Create a PVC from a volume snapshot
Import a volume snapshot

Recover volume data using snapshots
In-place volume restoration from a snapshot
Delete a PV with associated snapshots
Deploy a volume snapshot controller
Related links

Work with volume group snapshots

Create volume group snapshots

Recover volume data using a group snapshot
In-place volume restoration from a snapshot
Delete a PV with associated group snapshots
Deploy a volume snapshot controller

Related links

41
42
44
45
48
48
48
48
49
50
51
53
53
55
55
56
56
57
58
59
59
59
60



Provision and manage volumes

Provision a volume

Create a PersistentVolumeClaim (PVC) that uses the configured Kubernetes
StorageClass to request access to the PV. You can then mount the PV to a pod.

Overview

A PersistentVolumeClaim (PVC) is a request for access to the PersistentVolume on the cluster.

The PVC can be configured to request storage of a certain size or access mode. Using the associated
StorageClass, the cluster administrator can control more than PersistentVolume size and access mode—such

as performance or service level.

After you create the PVC you can mount the volume in a pod.

Create the PVC

Steps
1. Create the PVC.

kubectl create -f pvc.yaml
2. Verify the PVC status.

kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

pvc-storage Bound pv-name 1G1i RWO 5m
1. Mount the volume in a pod.

kubectl create -f pv-pod.yaml

(D You can monitor the progress using kubectl get pod --watch.

2. Verify that the volume is mounted on /my/mount /path.

kubectl exec -it task-pv-pod -- df -h /my/mount/path


https://kubernetes.io/docs/concepts/storage/persistent-volumes

3. You can now delete the Pod. The Pod application will no longer exist, but the volume will remain.

kubectl delete pod pv-pod

Sample manifests

PersistentVolumeClaim sample manifests

These examples show basic PVC configuration options.

PVC with RWO access

This example shows a basic PVC with RWO access that is associated with a StorageClass named
basic-csi.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-storage
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi

storageClassName: basic-csi

PVC with NVMe/TCP

This example shows a basic PVC for NVMe/TCP with RWO access that is associated with a
StorageClass named protection—-gold.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-san-nvme
spec:
accessModes:

- ReadWriteOnce
resources:

requests:

storage: 300Mi

storageClassName: protection-gold



Pod manifest samples

These examples show basic configurations to attach the PVC to a pod.

Basic configuration

kind: Pod
apiVersion: vl
metadata:
name: pv-pod
spec:
volumes:
— name: storage
persistentVolumeClaim:
claimName: pvc-storage
containers:
- name: pv-container
image: nginx
ports:
- containerPort: 80
name: "http-server"
volumeMounts:
- mountPath: "/my/mount/path"

name: storage

Basic NVMe/TCP configuration

apiVersion: vl
kind: Pod
metadata:

name: pod-nginx
spec:

volumes:

- name: basic-pvc
persistentVolumeClaim:

claimName: pvc-san-nvme
containers:

- name: task-pv-container
image: nginx
volumeMounts:

- mountPath: "/my/mount/path"

name: basic-pvc

Refer to Kubernetes and Trident objects for details on how storage classes interact with the
PersistentVolumeClaim and parameters for controlling how Trident provisions volumes.


https://docs.netapp.com/us-en/trident/trident-reference/objects.html

Expand volumes

Trident provides Kubernetes users the ability to expand their volumes after they are
created. Find information about the configurations required to expand iSCSI, NFS, SMB,

NVMe/TCP, and FC volumes.

Expand an iSCSI volume

You can expand an iSCSI Persistent Volume (PV) by using the CSI provisioner.

(D iISCSI volume expansion is supported by the ontap-san, ontap-san-economy, solidfire-
san drivers and requires Kubernetes 1.16 and later.

Step 1: Configure the StorageClass to support volume expansion

Edit the StorageClass definition to set the allowVolumeExpansion field to true.

cat storageclass-ontapsan.yaml

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontap-san
provisioner: csi.trident.netapp.io
parameters:

backendType: "ontap-san"

allowVolumeExpansion: True

For an already existing StorageClass, edit it to include the allowVolumeExpansion parameter.

Step 2: Create a PVC with the StorageClass you created

Edit the PVC definition and update the spec.resources.requests.storage to reflect the newly desired
size, which must be greater than the original size.

cat pvc-ontapsan.yaml



kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: san-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: ontap-san

Trident creates a Persistent Volume (PV) and associates it with this Persistent Volume Claim (PVC).

kubectl get pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82£2885db671 1G1i

RWO ontap-san 8s

kubectl get pv

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-8a814d62-bd58-4253-b0d1-82£2885db671 1G1i RWO

Delete Bound default/san-pvc ontap-san 10s

Step 3: Define a pod that attaches the PVC

Attach the PV to a pod for it to be resized. There are two scenarios when resizing an iSCSI PV:

« If the PV is attached to a pod, Trident expands the volume on the storage backend, rescans the device,
and resizes the filesystem.

* When attempting to resize an unattached PV, Trident expands the volume on the storage backend. After
the PVC is bound to a pod, Trident rescans the device and resizes the filesystem. Kubernetes then
updates the PVC size after the expand operation has successfully completed.

In this example, a pod is created that uses the san-pvc.



kubectl get pod
NAME READY STATUS RESTARTS AGE
ubuntu-pod 1/1 Running 0 65s

kubectl describe pvc san-pvc

Name : san—-pvc

Namespace: default

StorageClass: ontap-san

Status: Bound

Volume: pvc-8a814d62-bd58-4253-b0d1-82£2885db671
Labels: <none>

Annotations: pv.kubernetes.io/bind-completed: yes

pv.kubernetes.io/bound-by-controller: yes
volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers: [kubernetes.io/pvc—protection]
Capacity: 1G1i

Access Modes: RWO

VolumeMode: Filesystem

Mounted By: ubuntu-pod

Step 4: Expand the PV

To resize the PV that has been created from 1Gi to 2Gi, edit the PVC definition and update the
spec.resources.requests.storage to 2Gi.

kubectl edit pvc san-pvc



# Please edit the object below. Lines beginning with a '"#' will be
ignored,
# and an empty file will abort the edit. If an error occurs while saving
this file will be
# reopened with the relevant failures.
#
apiVersion: vl
kind: PersistentVolumeClaim
metadata:
annotations:
pv.kubernetes.io/bind-completed: "yes"
pv.kubernetes.io/bound-by-controller: "yes"
volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
creationTimestamp: "2019-10-10T17:32:292Z"
finalizers:
- kubernetes.io/pvc-protection
name: san-pvc
namespace: default
resourceVersion: "16609"
selflLink: /api/vl/namespaces/default/persistentvolumeclaims/san-pvc
uid: 8a814d62-bd58-4253-b0d1-82£2885db671

spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 2Gi
#

Step 5: Validate the expansion

You can validate the expansion worked correctly by checking the size of the PVC, PV, and the Trident volume:



kubectl get pvc san-pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82£2885db671 2Gi

RWO ontap-san 1lm

kubectl get pv

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-8a814d62-bd58-4253-b0d1-82£2885db671 2G1 RWO

Delete Bound default/san-pvc ontap-san 12m

tridentctl get volumes -n trident

fos=s=ss=s=ssscsessssssssosossssss=s=sssa=s fememe==== e

e L T s frommmem e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

o o e e o o e o o e e o o 5 D ) e e i e e frommmom e e

fremmmm=a==s frememsesessss s s s m s s e o s = = e fremememm=s I
| pvc-8a814d62-bd58-4253-b0d1-82£2885db671 | 2.0 GiB | ontap-san |
block | a%7bfff-0505-4e31-b6c5-59£492e02d33 | online | true |

fomssssess s s s s o s e o s sss s osss fremmmemm=s frememesmeeeeaaa=

fem======== e Bt fmm====== fememe==== 4

Expand an FC volume

You can expand an FC Persistent Volume (PV) by using the CSI provisioner.

@ FC volume expansion is supported by the ontap-san driver and requires Kubernetes 1.16 and
later.

Step 1: Configure the StorageClass to support volume expansion

Edit the StorageClass definition to set the allowvolumeExpansion field to true.

cat storageclass-ontapsan.yaml

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontap-san
provisioner: csi.trident.netapp.io
parameters:

backendType: "ontap-san"
allowVolumeExpansion: True



For an already existing StorageClass, edit it to include the allowVolumeExpansion parameter.

Step 2: Create a PVC with the StorageClass you created

Edit the PVC definition and update the spec.resources.requests.storage to reflect the newly desired
size, which must be greater than the original size.

cat pvc-ontapsan.yaml

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: san-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: ontap-san

Trident creates a Persistent Volume (PV) and associates it with this Persistent Volume Claim (PVC).

kubectl get pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82£2885db671 1G1i

RWO ontap-san 8s

kubectl get pv

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-8a814d62-bd58-4253-b0d1-82£2885db671 1G1i RWO

Delete Bound default/san-pvc ontap-san 10s

Step 3: Define a pod that attaches the PVC

Attach the PV to a pod for it to be resized. There are two scenarios when resizing an FC PV:

« If the PV is attached to a pod, Trident expands the volume on the storage backend, rescans the device,
and resizes the filesystem.

* When attempting to resize an unattached PV, Trident expands the volume on the storage backend. After
the PVC is bound to a pod, Trident rescans the device and resizes the filesystem. Kubernetes then
updates the PVC size after the expand operation has successfully completed.



In this example, a pod is created that uses the san-pvc.

kubectl get pod
NAME READY STATUS RESTARTS AGE
ubuntu-pod 1/1 Running 0 65s

kubectl describe pvc san-pvc

Name: san-pvc

Namespace: default

StorageClass: ontap-san

Status: Bound

Volume: pvc-8a814d62-bd58-4253-b0d1-82£2885db671
Labels: <none>

Annotations: pv.kubernetes.io/bind-completed: yes

pv.kubernetes.io/bound-by-controller: yes
volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers: [kubernetes.io/pvc-protection]
Capacity: 1G1i

Access Modes: RWO

VolumeMode: Filesystem

Mounted By: ubuntu-pod

Step 4: Expand the PV
To resize the PV that has been created from 1Gi to 2Gi, edit the PVC definition and update the

spec.resources.requests.storage to 2Gi.

kubectl edit pvc san-pvc

10



# Please edit the object below. Lines beginning with a '"#' will be
ignored,
# and an empty file will abort the edit. If an error occurs while saving
this file will be
# reopened with the relevant failures.
#
apiVersion: vl
kind: PersistentVolumeClaim
metadata:
annotations:
pv.kubernetes.io/bind-completed: "yes"
pv.kubernetes.io/bound-by-controller: "yes"
volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
creationTimestamp: "2019-10-10T17:32:292Z"
finalizers:
- kubernetes.io/pvc-protection
name: san-pvc
namespace: default
resourceVersion: "16609"
selflLink: /api/vl/namespaces/default/persistentvolumeclaims/san-pvc
uid: 8a814d62-bd58-4253-b0d1-82£2885db671

spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 2Gi
#

Step 5: Validate the expansion

You can validate the expansion worked correctly by checking the size of the PVC, PV, and the Trident volume:

11



kubectl get pvc san-pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82£2885db671 2Gi

RWO ontap-san 1lm

kubectl get pv

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-8a814d62-bd58-4253-b0d1-82£2885db671 2G1i RWO

Delete Bound default/san-pvc ontap-san 12m
tridentctl get volumes -n trident
e f————————— f———————————————
e e R L L L L el Fommmmmm= S +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
oo e e oo o= R S e
et et o= S et +
| pvc-8a814d62-bd58-4253-b0d1-82£2885db671 | 2.0 GiB | ontap-san |
block | a%7bfff-0505-4e31-b6c5-59£492e02d33 | online | true |
ittt i S et o=
R o fom—— +———— +

Expand an NFS volume

Trident supports volume expansion for NFS PVs provisioned on ontap-nas, ontap—-nas-economy, ontap-
nas-flexgroup, and azure-netapp-files backends.

Step 1: Configure the StorageClass to support volume expansion

To resize an NFS PV, the admin first needs to configure the storage class to allow volume expansion by setting
the allowVolumeExpansion field to true:

cat storageclass-ontapnas.yaml

apiVersion:
kind:

metadata:

storage.k8s.io0/vl

StorageClass

name: ontapnas

provisioner: csi.trident.netapp.io

parameters:
backendType: ontap-nas

allowVolumeExpansion: true

If you have already created a storage class without this option, you can simply edit the existing storage class

12



by using kubectl edit storageclass to allow volume expansion.

Step 2: Create a PVC with the StorageClass you created

cat pvc-ontapnas.yaml

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: ontapnas20mb
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 20Mi

storageClassName: ontapnas

Trident should create a 20 MiB NFS PV for this PVC:

kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08£3d561-b199-11e9-8d9£f-5254004dfdb7 20M1i
RWO ontapnas 9s

kubectl get pv pvc-08£f3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON
AGE

pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7 20Mi RWO

Delete Bound default/ontapnas20mb ontapnas

2mé2s

Step 3: Expand the PV

To resize the newly created 20 MiB PV to 1 GiB, edit the PVC and set
spec.resources.requests.storage to 1 GiB:

kubectl edit pvc ontapnas20mb



# Please edit the object below. Lines beginning with a '"#' will be
ignored,
# and an empty file will abort the edit. If an error occurs while saving
this file will be
# reopened with the relevant failures.
#
apiVersion: vl
kind: PersistentVolumeClaim
metadata:
annotations:
pv.kubernetes.io/bind-completed: "yes"
pv.kubernetes.io/bound-by-controller: "yes"
volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
creationTimestamp: 2018-08-21T18:26:447%
finalizers:
- kubernetes.io/pvc-protection
name: ontapnas20mb
namespace: default
resourceVersion: "1958015"
selflLink: /api/vl/namespaces/default/persistentvolumeclaims/ontapnas20mb
uid: clbd7fab5-a56f-11e8-b8d7-fal63e59%eaab

spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
#

Step 4: Validate the expansion

You can validate the resize worked correctly by checking the size of the PVC, PV, and the Trident volume:

14



kubectl get pvc ontapnas20mb

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08£f3d561-b199-11e9-8d9£f-5254004dfdb7 1G1i
RWO ontapnas 4médds

kubectl get pv pvc-08£3d561-b199-11e9-8d9£-5254004dfdb7

NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON
AGE

pvc-08£3d561-0199-11e9-8d9£f-5254004dfdb7 1Gi RWO

Delete Bound default/ontapnas20mb ontapnas

5m35s

tridentctl get volume pvc-08£3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

o e Fomm -
fom - o fom - fom— +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

- fom o
fom - o fomm - fomm - +
| pvc-08£3d561-b199-11e9-8d9£-5254004dfdb7 | 1.0 GiB | ontapnas |
file | cS5abf6ad-b052-423b-80d4-8fb491alda22 | online | true |

et ittt L fommm - fom e
fom - oo fom - e +

Import volumes

You can import existing storage volumes as a Kubernetes PV using tridentctl
import or by creating a Persistent Volume Claim (PVC) with Trident import annotations.

Overview and considerations
You might import a volume into Trident to:

« Containerize an application and reuse its existing data set
* Use a clone of a data set for an ephemeral application
» Rebuild a failed Kubernetes cluster

» Migrate application data during disaster recovery

Considerations

Before importing a volume, review the following considerations.

 Trident can import RW (read-write) type ONTAP volumes only. DP (data protection) type volumes are
SnapMirror destination volumes. You should break the mirror relationship before importing the volume into

15



Trident.

* We suggest importing volumes without active connections. To import an actively-used volume, clone the
volume and then perform the import.

This is especially important for block volumes as Kubernetes would be unaware of the
@ previous connection and could easily attach an active volume to a pod. This can result in
data corruption.

* Though storageClass must be specified on a PVC, Trident does not use this parameter during import.
Storage classes are used during volume creation to select from available pools based on storage
characteristics. Because the volume already exists, no pool selection is required during import. Therefore,
the import will not fail even if the volume exists on a backend or pool that does not match the storage class
specified in the PVC.

* The existing volume size is determined and set in the PVC. After the volume is imported by the storage
driver, the PV is created with a ClaimRef to the PVC.

° The reclaim policy is initially set to retain in the PV. After Kubernetes successfully binds the PVC and
PV, the reclaim policy is updated to match the reclaim policy of the Storage Class.

° If the reclaim policy of the Storage Class is delete, the storage volume will be deleted when the PV is
deleted.

+ By default, Trident manages the PVC and renames the FlexVol volume and LUN on the backend. You can
pass the --no-manage flag to import an unmanaged volume and the --no-rename flag to retain the
volume name.

° --no-manage - If you use the --no-manage flag, Trident does not perform any additional operations
on the PVC or PV for the lifecycle of the objects. The storage volume is not deleted when the PV is
deleted and other operations such as volume clone and volume resize are also ignored.

° --no-rename - If you use the --no-rename flag, Trident retains the existing volume name while
importing volumes, and manages the lifecycle of the volumes. This option is supported only for the
ontap-nas, ontap-san (including ASA r2 systems), and ontap-san-economy drivers.

These options are useful if you want to use Kubernetes for containerized workloads but
otherwise want to manage the lifecycle of the storage volume outside of Kubernetes.

* An annotation is added to the PVC and PV that serves a dual purpose of indicating that the volume was
imported and if the PVC and PV are managed. This annotation should not be modified or removed.

Import a volume

You can import a volume using either tridentctl import or by creating a PVC with Trident import
annotations.

@ If you use PVC annotations, you don’t need to download or use tridentctl to import the
volume.

16



Using tridentctl
Steps

1. Create a PVC file (for example, pvc.yaml) that will be used to create the PVC. The PVC file should
include name, namespace, accessModes, and storageClassName. Optionally, you can specify
unixPermissions in your PVC definition

The following is an example of a minimum specification:

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: my claim
namespace: my namespace
spec:
accessModes:
- ReadWriteOnce
storageClassName: my storage class

(D Include only the required parameters. Additional parameters such as PV name or
volume size can cause the import command to fail.

2. Use the tridentctl import command to specify the name of the Trident backend containing the
volume and the name that uniquely identifies the volume on the storage (for example: ONTAP
FlexVol, Element Volume). The —-f argument is required to specify the path to the PVC file.

tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-
file>

Using PVC annotations
Steps

1. Create a PVC YAML file (for example, pvc. yaml) with the required Trident import annotations. The
PVC file should include:

° name and namespace in metadata
° accessModes, resources.requests.storage, and storageClassName in spec

o Annotations:

" trident.netapp.io/importOriginalName: Volume name on the backend
" trident.netapp.io/importBackendUUID: Backend UUID where volume exists

" trident.netapp.io/notManaged (Optional): Setto "true" for unmanaged volumes.
Defaultis "false".

The following is an example specification for importing a managed volume:

17



kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: <pvc-name>
namespace: <namespace>
annotations:
trident.netapp.io/importOriginalName: "<volume-name>"
trident.netapp.io/importBackendUUID: "<backend-uuid>"
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: <size>

storageClassName: <storage-class-name>
2. Apply the PVC YAML file to your Kubernetes cluster:
kubectl apply -f <pvc-file>.yaml

Trident will automatically import the volume and bind it to the PVC.

Examples

Review the following volume import examples for supported drivers.

ONTAP NAS and ONTAP NAS FlexGroup

Trident supports volume import using the ontap-nas and ontap-nas-flexgroup drivers.

* Trident does not support volume import using the ontap-nas-economy driver.

@ * The ontap—-nas and ontap-nas-flexgroup drivers do not allow duplicate volume
names.

Each volume created with the ontap-nas driver is a FlexVol volume on the ONTAP cluster. Importing FlexVol
volumes with the ontap-nas driver works the same. A FlexVol volumes that already exists on an ONTAP
cluster can be imported as a ontap-nas PVC. Similarly, FlexGroup vols can be imported as ontap-nas-
flexgroup PVCs.

ONTAP NAS examples using tridentctl
The following examples show how to import managed and unmanaged volumes using tridentctl.

18



Managed volume

The following example imports a volume named managed volume on a backend named ontap nas:

tridentctl import volume ontap nas managed volume -f <path-to-pvc-file>

fossssss=s=ssscscssssssesosossssssss==ssa=s fememe==== fememmmsaemaaa=a
T e e e e e e S D e fro— e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

L fr e fr e e
fress=m=m==s fremeosesesssssss e s s s s s o s e fremememm=s I
| pvc-bf5ad463-afbb-11e9-8d9£-5254004dfdb7 | 1.0 GiB | standard |
file | cba6f6ad-b052-423b-80d4-8fb491ald4a22 | online | true |
fossssssssssssesessssoees oo ssssss s s s e e
femm======a femessesessss s e e se s e eessssaa s fmmm==== femememm== 4

Unmanaged volume

When using the --no-manage argument, Trident does not rename the volume.

The following example imports unmanaged volume on the ontap nas backend:

tridentctl import volume nas blog unmanaged volume -f <path-to-pvc-
file> --no-manage

o fomm - Fomm -
fomm - o fom - fomm - +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

e ittt L e fomm - fomm e
Fommcmmomo= B e Fommcomo= oo +
| pvc-df07d542-afbc-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |
file | c5a6f6ad-b052-423b-80d4-8fb491aldaz22 | online | false |
o Fommm - Fomm -
fom - o fom— - e +

ONTAP NAS examples using PVC annotations
The following examples show how to import managed and unmanaged volumes using PVC annotations.

19



Managed volume

The following example imports a 1GiB ontap-nas volume named ontap_ volumel from backend
8labcb27-ea63-49bb-b606-0a5315ac5£21 with RWO access mode set using PVC annotations:

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: <managed-imported-volume>
namespace: <namespace>
annotations:
trident.netapp.io/importOriginalName: "ontap volumel"
trident.netapp.io/importBackendUUID: "8labcb27-ea63-49bb-b606-
0a5315achf21"
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi

storageClassName: <storage-class-name>

Unmanaged volume

The following example imports 1Gi ontap-nas volume named ontap-volume?2 from backend
34abcb27-ea63-49bb-b606-0a5315ac5£34 with RWO access mode set using PVC annotations:

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: <umanaged-imported-volume>
namespace: <namespace>
annotations:
trident.netapp.io/importOriginalName: "ontap-volume2"
trident.netapp.io/importBackendUUID: "34abcb27-ea63-49bb-b606-
0ab5315ac5£34"
trident.netapp.io/notManaged: "true"
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: <storage-class-name>



ONTAP SAN

Trident supports volume import using the ontap-san (iISCSI, NVMe/TCP, and FC) and ontap-san-economy
drivers.

Trident can import ONTAP SAN FlexVol volumes that contain a single LUN. This is consistent with the ontap-
san driver, which creates a FlexVol volume for each PVC and a LUN within the FlexVol volume. Trident imports
the FlexVol volume and associates it with the PVC definition. Trident can import ontap-san-economy
volumes that contain multiple LUNSs.

The following examples show how to import managed and unmanaged volumes:

21



22

Managed volume

For managed volumes, Trident renames the FlexVol volume to the pvc-<uuid> format and the LUN
within the FlexVol volume to 1un0.

The following example imports the ontap-san-managed FlexVol volume that is present on the
ontap san default backend:

tridentctl import volume ontapsan san default ontap-san-managed -f pvc-

basic-import.yaml -n trident -d

Fommmmmmmmsmeososorreroememememe oo memmm o Frommomoms Fommmmmmomoomoms
Fommemmomo= o memererserererr s eseee s ee e Focmcomo= ommmcemos +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

o fomm - fomm e
Fommmmmmm== e Fommmmm== o= +
| pvc-d6eedf54-4e40-4454-92£fd-d00£c228d74a | 20 MiB | basic |
block | cd394786-ddd5-4470-adc3-10c5ced4ca’57 | online | true |
Fommmmmmemsmssesese s s s s s e e i Fommmmmmemememe=
Fommmomomme Fommememerossrsreemenessosoeseoomomoms Fomomomme Fommomomos +

Unmanaged volume

The following example imports unmanaged example volume onthe ontap san backend:

tridentctl import volume -n trident san blog unmanaged example volume
-f pvc-import.yaml --no-manage

Fommmmmmemssesesese s s s s e e e P o=
Fommmmmomo= B e e e Fommmmmoe e +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
i e et ommmmomos e e
Pommmmmmm== ettt Fommmmm== o= +
| pvc-1£c999c9-ce8c-459c-82e4-ed4380a4b228 | 1.0 GiB | san-blog

block | €3275890-7d80-4af6-90cc-c7a0759£555a | online | false |
et P P
Fommmmmmm== e et Fommmmm== o= +



If you have LUNS mapped to igroups that share an IQN with a Kubernetes node IQN, as
shown in the following example, you will receive the error: LUN already mapped to
initiator(s) in this group. You will need to remove the initiator or unmap the LUN
to import the volume.

(::) Vserver  Igroup Protocol 0S Type Initiators

k8s-nodename. example. com-fe5d36f2-cded-4138-9eb@-c7719fc2193

iscsi linux iqn.1994-05.com.redhat:4c2elcf35e0

unmanaged-example-igroup
mixed linux ign.1994-05.com.redhat:4c2elcf35e0

Element

Trident supports NetApp Element software and NetApp HCI volume import using the solidfire-san driver.

The Element driver supports duplicate volume names. However, Trident returns an error if there
are duplicate volume names. As a workaround, clone the volume, provide a unique volume
name, and import the cloned volume.

The following example imports an element-managed volume on backend element default.

tridentctl import volume element default element-managed -f pvc-basic-
import.yaml -n trident -d

et Fommmmom= Fommemmcemeoeo=e
Fommmmmmm== e mes e s s s s s s s ee s Fommmmm== o= +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |
Fommmmmmmmsmeseseseses s s s s e o= Fommmmmmememem=
Fommmommmme Fommomemeressrsreemenessosoeseeoomomoms Fomomomme e e +
| pvc-970celca-2096-4ecd-8545-ac7/edc24a8fe | 10 GiB | basic-element |
block | d3bal47a-ealb-43£9-9¢c42-e38e58301c49 | online | true |
Fommmmmmemsmeosormrrerosmememe oo oeoememmm o Fommomome Fommmmmmemoomoos
Fommmmmmmos FosmsmsmsrorsrsrossoosososEsEeneses oo o Fommmmmos Fosmmmmmes +

Azure NetApp Files

Trident supports volume import using the azure-netapp-£files driver.

To import an Azure NetApp Files volume, identify the volume by its volume path. The volume
path is the portion of the volume’s export path after the : /. For example, if the mount path is
10.0.0.2:/importvoll, the volume path is importvoll.

The following example imports an azure-netapp-files volume on backend azurenetappfiles 40517

23



with the volume path importvoll.

tridentctl import volume azurenetappfiles 40517 importvoll -f <path-to-
pvc-file> -n trident

Fommmmmmemsmssesese s s s s s e o= e
Fommmmmomme Fommmmemeressrereemenessssoesen oo moms Fomommmme Frommmmomos +
| NAME | SIZE | STORAGE CLASS |
PROTOCOL | BACKEND UUID | STATE | MANAGED |

e L L Fommmmomos Fommmmememesemos
et ettt Fommmmmos Fosommmmes +
| pvc-0ee95d60-£d5¢c-448d-b505-b72901b3ad4ab | 100 GiB | anf-storage |
file | 1c01274f-d94b-44a3-98a3-04c953c9%a5le | online | true |

e Fommmmmme= Pomemmsmsmssemss
Pommmmmmm== e mes e s s s s s ssss Pommmmm== o= +

Google Cloud NetApp Volumes

Trident supports volume import using the google-cloud-netapp-volumes driver.

The following example imports a volume on backend backend-tbc-gcnvl with the volume
testvoleasiaeastl.

tridentctl import volume backend-tbc-gcnvl "testvoleasiaeastl" -f < path-
to-pvec> -n trident

LBttt P
Fommmmmmmmemeoeseomoom= Fommmmomom= Fommmmmmmmesrrrrrrrre e reme s e mmm o
Fommmmme Pommmmmme= +

| NAME | SIZE | STORAGE CLASS

| PROTOCOL | BACKEND UUID | STATE | MANAGED |
T Tttt o=

o essesesesee= fommmmm=e== oo sesesesse s s s s e s
Fommeomo= ommmmomos +

| pvc-a69cdal9-218c-4ca%-a%41-aeal5ddl3dcO0 | 10 GiB | gcnv-nfs-sc-—
identity | file | 8cl8cdfl-0770-4bcO0-bcc5-c6295fe6d837 | online | true
|

et P

o essesesesees o= Bt et
Fomomomoe S +

The following example imports a google-cloud-netapp-volumes volume when two volumes are present
in the same region:

24



tridentctl import volume backend-tbc-gcnvl
"projects/123456789100/1locations/asia-eastl-a/volumes/testvoleasiaeastl"
-f <path-to-pvc> -n trident

o fomm -
e R e et
fmm====== fememe==== 4

| NAME | SIZE | STORAGE CLASS

| PROTOCOL | BACKEND UUID | STATE | MANAGED |
fossssssss=ssscscssssssssosossssssss=sssa=s fememe====

fm e e
e e +F

| pvc-a69cdal9-218c-4caf%-a9%41-aeal5ddl3dcO | 10 GiB | gcnv-nfs-sc-
identity | file | 8cl1l8cdfl-0770-4bc0-bcc5-c6295fe6d837 | online | true
|

fossssssssssssesessssssasosossssssasssssass fememema=a

frosssssmeemes e from=mee==== frecsmeeem s m s s o s e e
fre=m====s fremmmeme=s WF

Customize volume names and labels

With Trident, you can assign meaningful names and labels to volumes you create. This
helps you identify and easily map volumes to their respective Kubernetes resources
(PVCs). You can also define templates at the backend level for creating custom volume
names and custom labels; any volumes that you create, import, or clone will adhere to
the templates.

Before you begin

Customizable volume names and labels support:

* Volume create, import, and clone operations.

* In the case of the ontap-nas-economy driver, only the name of the Qtree volume complies with the
name template.

* In the case of the ontap-san-economy driver, only the LUN name complies with the name template.

Limitations

* Custom volume names are compatible with ONTAP on-premises drivers only.
* Custom labels are supported only for the ontap-san, ontap-nas, and ontap-nas-flexgroup drivers.

* Custom volume names do not apply to existing volumes.

25



Key behaviors of customizable volume names

« If a failure occurs due to invalid syntax in a name template, the backend creation fails. However, if the
template application fails, the volume will be named according to existing naming convention.

» Storage prefix is not applicable when a volume is named using a name template from the backend
configuration. Any desired prefix value may be directly added to the template.

Backend configuration examples with name template and labels
Custom name templates can be defined at the root and/or pool level.

Root level example

"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "ontap-nfs-backend",
"managementLIF": "<ip address>",
"svm": "svmQ0",
"username": "<admin>",
"password": "<password>",
"defaults": {
"nameTemplate":
"{{.volume.Name}} {{.labels.cluster}} {{.volume.Namespace}} {{.volume.Requ
estName} "

by

"labels": {
"cluster": "ClusterA",
"PVC": "{{.volume.Namespace}} {{.volume.RequestName}}"

26



Pool level example

"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "ontap-nfs-backend",
"managementLIF": "<ip address>",
"svm": "svmQO",
"username": "<admin>",
"password": "<password>",
"useREST": true,
"storage": [
{
"labels": {
"labelname": "labell",
"name": "{{ .volume.Name }}"

Py {H

P A

bo
"defaults": {

"nameTemplate": "poolOl {{ .volume.Name }} {{ .labels.cluster

.volume.Namespace }} {{ .volume.RequestName }}"

}

"labels": {
"cluster": "label2",
"name": "{{ .volume.Name }}"

}o
"defaults": {

"nameTemplate": "pool02 {{ .volume.Name }} {{ .labels.cluster

.volume.Namespace }} {{ .volume.RequestName }}"

}

Name template examples

Example 1:

"nameTemplate”: "{{ .config.StoragePrefix }} {{ .volume.Name }} {{

.config.BackendName }}"

Example 2:

27



"nameTemplate": "pool {{ .config.StoragePrefix }} {{ .volume.Name }} {{
slice .volume.RequestName 1 5 }}""

Points to consider

1.

In the case of volume imports, the labels are updated only if the existing volume has labels in a specific
format. For example: {"provisioning":{"Cluster":"ClusterA", "PVC": "pvcname"}}.

. In the case of managed volume imports, the volume name follows the name template defined at the root

level in the backend definition.

3. Trident does not support the use of a slice operator with the storage prefix.

S

. If the templates do not result in unique volume names, Trident will append a few random characters to

create unique volume names.

. If the custom name for a NAS economy volume exceeds 64 characters in length, Trident will name the

volumes according to the existing naming convention. For all other ONTAP drivers, if the volume name
exceeds the name limit, the volume creation process fails.

hare an NFS volume across namespaces

Using Trident, you can create a volume in a primary namespace and share it in one or
more secondary nhamespaces.

Features

The TridentVolumeReference CR allows you to securely share ReadWriteMany (RWX) NFS volumes across

on

e or more Kubernetes namespaces. This Kubernetes-native solution has the following benefits:

» Multiple levels of access control to ensure security

* Works with all Trident NFS volume drivers

* No reliance on tridentctl or any other non-native Kubernetes feature

This diagram illustrates NFS volume sharing across two Kubernetes namespaces.

28



................. : Primary PV Secondary PV

npl"il'l'"lar}f" o . a = :,’

R D T T e 0

¢ Trident
namespace

TVol €—p» TVol

1
1
]
1
1
primary secondary |
1
:
1
1

.......................

TridentVolumeReference

primary/pvci

O [
H

Slorage = tt-cecemecsecosno-e
Volume

Quick start

You can set up NFS volume sharing in just a few steps.

Configure source PVC to share the volume
The source namespace owner grants permission to access the data in the source PVC.

Grant permission to create a CR in the destination namespace

The cluster administrator grants permission to the owner of the destination namespace to create the
TridentVolumeReference CR.

Create TridentVolumeReference in the destination namespace
The owner of the destination namespace creates the TridentVolumeReference CR to refer to the source PVC.

Create the subordinate PVC in the destination namespace

The owner of the destination namespace creates the subordinate PVC to use the data source from the source
PVC.

29



Configure the source and destination namespaces

To ensure security, cross namespace sharing requires collaboration and action by the source namespace
owner, cluster administrator, and destination namespace owner. The user role is designated in each step.

Steps
1. Source namespace owner: Create the PVC (pvc1) in the source namespace that grants permission to
share with the destination namespace (namespace?2) using the shareToNamespace annotation.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvcl
namespace: namespacel
annotations:

trident.netapp.io/shareToNamespace: namespace?

spec:
accessModes:

- ReadWriteMany
storageClassName: trident-csi
resources:

requests:

storage: 100Gi

Trident creates the PV and its backend NFS storage volume.

> You can share the PVC to multiple namespaces using a comma-delimited list. For
example, trident.netapp.io/shareToNamespace:
namespace?2, namespace3, namespaced.

@ ° You can share to all namespaces using *. For example,
trident.netapp.io/shareToNamespace: *

° You can update the PVC to include the shareToNamespace annotation at any time.

2. Cluster admin: Ensure that proper RBAC is in place to grant permission to the destination namespace
owner to create the TridentVolumeReference CR in the destination namespace.

3. Destination namespace owner: Create a TridentVolumeReference CR in the destination namespace that
refers to the source namespace pvcl.

30



apiVersion: trident.netapp.io/vl
kind: TridentVolumeReference
metadata:

name: my-first-tvr

namespace: namespace?2
spec:

pvcName: pvcl

pvcNamespace: namespacel

4. Destination namespace owner: Create a PVC (pvc2) in destination namespace (namespace?2) using
the shareFromPVC annotation to designate the source PVC.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:

annotations:

trident.netapp.io/shareFromPVC: namespacel/pvcl
name: pvc2
namespace: namespace?2

spec:
accessModes:

- ReadWriteMany
storageClassName: trident-csi
resources:

requests:

storage: 100Gi

@ The size of the destination PVC must be less than or equal than the source PVC.

Results

Trident reads the shareFromPVC annotation on the destination PVC and creates the destination PV as a
subordinate volume with no storage resource of its own that points to the source PV and shares the source PV
storage resource. The destination PVC and PV appear bound as normal.

Delete a shared volume

You can delete a volume that is shared across multiple namespaces. Trident will remove access to the volume
on the source namespace and maintain access for other namespaces that share the volume. When all
namespaces that reference the volume are removed, Trident deletes the volume.

Use tridentctl get to query subordinate volumes

Using the tridentctl utility, you can run the get command to get subordinate volumes. For more
information, refer to tridentctl commands and options.

31


https://docs.netapp.com/us-en/trident/trident-reference/tridentctl.html
https://docs.netapp.com/us-en/trident/trident-reference/tridentctl.html

Usage:
tridentctl get [option]

Flags:

* *-h, --help: Help for volumes.
* —-parentOfSubordinate string: Limit query to subordinate source volume.

* ——subordinateOf string: Limit query to subordinates of volume.

Limitations

 Trident cannot prevent destination namespaces from writing to the shared volume. You should use file
locking or other processes to prevent overwriting shared volume data.

* You cannot revoke access to the source PVC by removing the shareToNamespace or
shareFromNamespace annotations or deleting the TridentvolumeReference CR. To revoke access,
you must delete the subordinate PVC.

» Snapshots, clones, and mirroring are not possible on subordinate volumes.

For more information
To learn more about cross-namespace volume access:

+ Visit Sharing volumes between namespaces: Say hello to cross-namespace volume access.

* Watch the demo on NetAppTV.

Clone volumes across namespaces

Using Trident, you can create new volumes using existing volumes or volumesnapshots
from a different namespace inside the same Kubernetes cluster.

Prerequisites

Before cloning volumes, ensure that the source and destination backends are of the same type and have the
same storage class.

@ Cloning across namespaces is supported only for the ontap-san and ontap-nas storage
drivers. Read-only clones are not supported.

Quick start

You can set up volume cloning in just a few steps.

o Configure source PVC to clone the volume
The source namespace owner grants permission to access the data in the source PVC.

32


https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products

o Grant permission to create a CR in the destination namespace

The cluster administrator grants permission to the owner of the destination namespace to create the
TridentVolumeReference CR.

e Create TridentVolumeReference in the destination namespace
The owner of the destination namespace creates the TridentVolumeReference CR to refer to the source PVC.

o Create the clone PVC in the destination namespace
The owner of the destination namespace creates PVC to clone the PVC from the source namespace.

Configure the source and destination namespaces

To ensure security, cloning volumes across namespaces requires collaboration and action by the source
namespace owner, cluster administrator, and destination namespace owner. The user role is designated in

each step.

Steps
1. Source namespace owner: Create the PVC (pvc1) in the source namespace (namespacel) that grants
permission to share with the destination namespace (namespace?2) using the cloneToNamespace
annotation.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvcl
namespace: namespacel
annotations:

trident.netapp.io/cloneToNamespace: namespace?

spec:
accessModes:

- ReadWriteMany
storageClassName: trident-csi
resources:

requests:

storage: 100Gi

Trident creates the PV and its backend storage volume.

33



> You can share the PVC to multiple namespaces using a comma-delimited list. For
example, trident.netapp.io/cloneToNamespace:

namespace2,namespace3, namespace4.

@ ° You can share to all namespaces using *. For example,

trident.netapp.io/cloneToNamespace:

*

° You can update the PVC to include the cloneToNamespace annotation at any time.

2. Cluster admin: Ensure that proper RBAC is in place to grant permission to the destination namespace

owner to create the TridentVolumeReference CR in the destination namespace (namespace?).

3. Destination namespace owner: Create a TridentVolumeReference CR in the destination namespace that

refers to the source namespace pvcl.

apiVersion: trident.netapp.io/vl
kind: TridentVolumeReference
metadata:

name: my-first-tvr

namespace: namespace?2
spec:

pvcName: pvcl

pvcNamespace: namespacel

4. Destination namespace owner: Create a PVC (pvc2) in destination namespace (namespace?2) using

34

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
annotations:
trident.netapp.io/cloneFromPVC: pvcl

trident.netapp.io/cloneFromNamespace:

name: pvc2

namespace: namespace?2
spec:

accessModes:

- ReadWriteMany
storageClassName: trident-csi
resources:

requests:

storage: 100Gi

the cloneFromPVC or cloneFromSnapshot, and cloneFromNamespace annotations to designate the
source PVC.

namespacel



Limitations

» For PVCs provisioned using ontap-nas-economy drivers, read-only clones are not supported.

Replicate volumes using SnapMirror

Trident supports mirror relationships between a source volume on one cluster and the
destination volume on the peered cluster for replicating data for disaster recovery. You
can use a namespaced Custom Resource Definition (CRD), called Trident Mirror
Relationship (TMR) to perform the following operations:

 Create mirror relationships between volumes (PVCs)

* Remove mirror relationships between volumes

» Break the mirror relationships

* Promote the secondary volume during disaster conditions (failovers)

 Perform lossless transition of applications from cluster to cluster (during planned failovers or migrations)

Replication prerequisites
Ensure that the following prerequisites are met before you begin:

ONTAP clusters
* Trident: Trident version 22.10 or later must exist on both the source and destination Kubernetes clusters
that utilize ONTAP as a backend.

» Licenses: ONTAP SnapMirror asynchronous licenses using the Data Protection bundle must be enabled
on both the source and destination ONTAP clusters. Refer to SnapMirror licensing overview in ONTAP for
more information.

Beginning with ONTAP 9.10.1, all licenses are delivered as a NetApp license file (NLF), which is a single
file that enables multiple features. Refer to Licenses included with ONTAP One for more information.

@ Only SnapMirror asynchronous protection is supported.

Peering

» Cluster and SVM: The ONTAP storage backends must be peered. Refer to Cluster and SVM peering
overview for more information.

@ Ensure that the SVM names used in the replication relationship between two ONTAP
clusters are unique.

* Trident and SVM: The peered remote SVMs must be available to Trident on the destination cluster.

Supported drivers

NetApp Trident supports volume replication with NetApp SnapMirror technology using storage classes backed
by the following drivers:

ontap-nas: NFS

ontap-san: iSCSI

ontap-san: FC

35


https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/system-admin/manage-licenses-concept.html#licenses-included-with-ontap-one
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html

ontap-san: NVMe/TCP (requires minimum ONTAP version 9.15.1)

@ Volume replication using SnapMirror is not supported for ASA r2 systems. For information about
ASA r2 systems, see Learn about ASA r2 storage systems.

Create a mirrored PVC

Follow these steps and use the CRD examples to create mirror relationship between primary and secondary
volumes.

Steps
1. Perform the following steps on the primary Kubernetes cluster:

a. Create a StorageClass object with the trident.netapp.io/replication: true parameter.

Example

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: csi-nas
provisioner: csi.trident.netapp.io
parameters:

backendType: "ontap-nas"

fsType: "nfs"

A

trident.netapp.io/replication: "true

b. Create a PVC with previously created StorageClass.

Example

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: csi-nas
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 1Gi

storageClassName: csi-nas

c. Create a MirrorRelationship CR with local information.

36


https://docs.netapp.com/us-en/asa-r2/get-started/learn-about.html

Example

kind: TridentMirrorRelationship
apiVersion: trident.netapp.io/vl
metadata:
name: csi-nas
spec:
state: promoted
volumeMappings:

- localPVCName: csi-nas

Trident fetches the internal information for the volume and the volume’s current data protection (DP)
state, then populates the status field of the MirrorRelationship.

d. Get the TridentMirrorRelationship CR to obtain the internal name and SVM of the PVC.

kubectl get tmr csi-nas

kind: TridentMirrorRelationship
apiVersion: trident.netapp.io/vl
metadata:
name: csi-nas
generation: 1
spec:
state: promoted
volumeMappings:
- localPVCName: csi-nas
status:
conditions:
- state: promoted
localVolumeHandle:
"datavserver:trident pvc 3bedd23c 46a8 4384 bl2b 3c38b313clel"”
localPVCName: csi-nas

observedGeneration: 1

2. Perform the following steps on the secondary Kubernetes cluster:

a. Create a StorageClass with the trident.netapp.io/replication: true parameter.

37



Example

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: csi-nas
provisioner: csi.trident.netapp.io
parameters:

trident.netapp.io/replication: true

b. Create a MirrorRelationship CR with destination and source information.

Example

kind: TridentMirrorRelationship
apiVersion: trident.netapp.io/vl
metadata:

name: csi-nas

spec:
state: established
volumeMappings:

- localPVCName: csi-nas
remoteVolumeHandle:
"datavserver:trident pvc 3bedd23c 46a8 4384 bl2b 3c38b313clel”

Trident will create a SnapMirror relationship with the configured relationship policy name (or default for
ONTAP) and initialize it.

c. Create a PVC with previously created StorageClass to act as the secondary (SnapMirror destination).

Example

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: csi-nas
annotations:
trident.netapp.io/mirrorRelationship: csi-nas
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 1Gi
storageClassName: csi-nas

Trident will check for the TridentMirrorRelationship CRD and fail to create the volume if the relationship

38



does not exist. If the relationship exists, Trident will ensure the new FlexVol volume is placed onto an
SVM that is peered with the remote SVM defined in the MirrorRelationship.

Volume Replication States

A Trident Mirror Relationship (TMR) is a CRD that represents one end of a replication relationship between
PVCs. The destination TMR has a state, which tells Trident what the desired state is. The destination TMR has

the following states:
» Established: the local PVC is the destination volume of a mirror relationship, and this is a new relationship.
* Promoted: the local PVC is ReadWrite and mountable, with no mirror relationship currently in effect.

» Reestablished: the local PVC is the destination volume of a mirror relationship and was also previously in
that mirror relationship.

o The reestablished state must be used if the destination volume was ever in a relationship with the
source volume because it overwrites the destination volume contents.

o The reestablished state will fail if the volume was not previously in a relationship with the source.

Promote secondary PVC during an unplanned failover

Perform the following step on the secondary Kubernetes cluster:

* Update the spec.state field of TridentMirrorRelationship to promoted.

Promote secondary PVC during a planned failover

During a planned failover (migration), perform the following steps to promote the secondary PVC:

Steps
1. On the primary Kubernetes cluster, create a snapshot of the PVC and wait until the snapshot is created.

2. On the primary Kubernetes cluster, create the Snapshotinfo CR to obtain internal details.

Example

kind: SnapshotInfo
apiVersion: trident.netapp.io/vl
metadata:
name: csi-nas
spec:
snapshot-name: csi-nas-snapshot

3. On secondary Kubernetes cluster, update the spec.state field of the TridentMirrorRelationship CR to
promoted and spec.promotedSnapshotHandle to be the internalName of the snapshot.

4. On secondary Kubernetes cluster, confirm the status (status.state field) of TridentMirrorRelationship to
promoted.

Restore a mirror relationship after a failover

Before restoring a mirror relationship, choose the side that you want to make as the new primary.

39



Steps

1. On the secondary Kubernetes cluster, ensure that the values for the spec.remoteVolumeHandle field on
the TridentMirrorRelationship is updated.

2. On secondary Kubernetes cluster, update the spec.mirror field of TridentMirrorRelationship to
reestablished.
Additional operations

Trident supports the following operations on the primary and secondary volumes:

Replicate primary PVC to a new secondary PVC

Ensure that you already have a primary PVC and a secondary PVC.

Steps

1. Delete the PersistentVolumeClaim and TridentMirrorRelationship CRDs from the established secondary
(destination) cluster.

2. Delete the TridentMirrorRelationship CRD from the primary (source) cluster.

3. Create a new TridentMirrorRelationship CRD on the primary (source) cluster for the new secondary
(destination) PVC you want to establish.

Resize a mirrored, primary or secondary PVC

The PVC can be resized as normal, ONTAP will automatically expand any destination flevxols if the amount of
data exceeds the current size.

Remove replication from a PVC

To remove replication, perform one of the following operations on the current secondary volume:

 Delete the MirrorRelationship on the secondary PVC. This breaks the replication relationship.

* Or, update the spec.state field to promoted.

Delete a PVC (that was previously mirrored)

Trident checks for replicated PVCs, and releases the replication relationship before attempting to delete the
volume.

Delete a TMR

Deleting a TMR on one side of a mirrored relationship causes the remaining TMR to transition to promoted
state before Trident completes the deletion. If the TMR selected for deletion is already in promoted state, there
is no existing mirror relationship and the TMR will be removed and Trident will promote the local PVC to
ReadWrite. This deletion releases SnapMirror metadata for the local volume in ONTAP. If this volume is used
in a mirror relationship in the future, it must use a new TMR with an established volume replication state when
creating the new mirror relationship.

Update mirror relationships when ONTAP is online

Mirror relationships can be updated any time after they are established. You can use the state: promoted
or state: reestablished fields to update the relationships.

40



When promoting a destination volume to a regular ReadWrite volume, you can use promotedSnapshotHandle
to specify a specific snapshot to restore the current volume to.

Update mirror relationships when ONTAP is offline

You can use a CRD to perform a SnapMirror update without Trident having direct connectivity to the ONTAP
cluster. Refer to the following example format of the TridentActionMirrorUpdate:

Example

apiVersion: trident.netapp.io/vl

kind: TridentActionMirrorUpdate

metadata:
name: update-mirror-Db

spec:
snapshotHandle: "pvc-1234/snapshot-1234"
tridentMirrorRelationshipName: mirror-b

status.state reflects the state of the TridentActionMirrorUpdate CRD. It can take a value from Succeeded,
In Progress, or Failed.

Use CSI Topology

Trident can selectively create and attach volumes to nodes present in a Kubernetes
cluster by making use of the CSI Topology feature.

Overview

Using the CSI Topology feature, access to volumes can be limited to a subset of nodes, based on regions and
availability zones. Cloud providers today enable Kubernetes administrators to spawn nodes that are zone
based. Nodes can be located in different availability zones within a region, or across various regions. To
facilitate the provisioning of volumes for workloads in a multi-zone architecture, Trident uses CSI Topology.

Learn more about the CSI Topology feature here.

Kubernetes provides two unique volume binding modes:

* With VolumeBindingMode set to Immediate, Trident creates the volume without any topology
awareness. Volume binding and dynamic provisioning are handled when the PVC is created. This is the
default volumeBindingMode and is suited for clusters that do not enforce topology constraints. Persistent
Volumes are created without having any dependency on the requesting pod’s scheduling requirements.

* With VolumeBindingMode set to WaitForFirstConsumer, the creation and binding of a Persistent
Volume for a PVC is delayed until a pod that uses the PVC is scheduled and created. This way, volumes
are created to meet the scheduling constraints that are enforced by topology requirements.

@ The WaitForFirstConsumer binding mode does not require topology labels. This can be
used independent of the CSI Topology feature.

What you’ll need

41


https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/

To make use of CSI Topology, you need the following:

» A Kubernetes cluster running a supported Kubernetes version

kubectl version

Client Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"1el1le4a2108024935ecfcb2912226cedeafd99df",
GitTreeState:"clean", BuildDate:"2020-10-14T12:50:192",
GoVersion:"gol.15.2", Compiler:"gc", Platform:"linux/amdoc4"}
Server Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"1elleda2108024935ecfcb2912226cedeafd99dft",
GitTreeState:"clean", BuildDate:"2020-10-14T12:41:492",
GoVersion:"gol.15.2", Compiler:"gc", Platform:"linux/amd64"}

* Nodes in the cluster should have labels that introduce topology awareness
(topology.kubernetes.io/region and topology.kubernetes.io/zone). These labels should
be present on nodes in the cluster before Trident is installed for Trident to be topology aware.

kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{ .metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"
[nodel,
{"beta.kubernetes.io/arch":"amdo64", "beta.kubernetes.io/os":"1linux", "kube

rnetes.io/arch":"amd64", "kubernetes.io/hostname" :"nodel", "kubernetes.io/
os":"linux", "node-

role.kubernetes.io/master":"", "topology.kubernetes.io/region":"us-
eastl", "topology.kubernetes.io/zone":"us-eastl-a"}]

[node?2,

{"beta.kubernetes.io/arch":"amdo64", "beta.kubernetes.io/os":"1linux", "kube
rnetes.io/arch":"amd64", "kubernetes.io/hostname" :"node2", "kubernetes.io/
os":"linux", "node-
role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-
eastl", "topology.kubernetes.io/zone":"us-eastl-b"}]

[node3,

{"beta.kubernetes.io/arch":"amdo64", "beta.kubernetes.io/os":"1linux", "kube
rnetes.io/arch":"amd64", "kubernetes.io/hostname" :"node3", "kubernetes.io/
os":"linux", "node-
role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

eastl", "topology.kubernetes.io/zone":"us-eastl-c"}]

Step 1: Create a topology-aware backend

Trident storage backends can be designed to selectively provision volumes based on availability zones. Each
backend can carry an optional supportedTopologies block that represents a list of zones and regions that

42


https://docs.netapp.com/us-en/trident/trident-get-started/requirements.html

are supported. For StorageClasses that make use of such a backend, a volume would only be created if

requested by an application that is scheduled in a supported region/zone.

Here is an example backend definition:

YAML

version: 1

storageDriverName: ontap-san

backendName: san-backend-us-eastl

managementLIF: 192.168.27.5

svm: iscsi svm
username: admin
password: password
supportedTopologies:

- topology.kubernetes.io/region: us-eastl

topology.kubernetes.io/zone: us-eastl-a

- topology.kubernetes.io/region: us—-eastl

topology.kubernetes.io/zone: us-eastl-Db

JSON
{

"version": 1,
"storageDriverName": "ontap-san",
"backendName": "san-backend-us-eastl",
"managementLIF": "192.168.27.5",
"svm": "iscsi svm",
"username": "admin",
"password": "password",
"supportedTopologies": [

{

"topology.kubernetes.
"topology.kubernetes.

"topology.kubernetes.

"topology. kubernetes

io/region": "us-eastl",
io/zone": "us-eastl-a"
io/region": "us-eastl",
.1o/zone": "us-eastl-b"

43



supportedTopologies is used to provide a list of regions and zones per backend. These

@ regions and zones represent the list of permissible values that can be provided in a
StorageClass. For StorageClasses that contain a subset of the regions and zones provided in a
backend, Trident creates a volume on the backend.

You can define supportedTopologies per storage pool as well. See the following example:

version: 1
storageDriverName: ontap-nas
backendName: nas-backend-us-centrall
managementLIF: 172.16.238.5
svm: nfs svm
username: admin
password: password
supportedTopologies:
- topology.kubernetes.io/region: us—-centrall
topology.kubernetes.io/zone: us-centrall-a
- topology.kubernetes.io/region: us-centrall
topology.kubernetes.io/zone: us-centrall-b
storage:
- labels:
workload: production
supportedTopologies:
- topology.kubernetes.io/region: us-centrall
topology.kubernetes.io/zone: us-centrall-a
- labels:
workload: dev
supportedTopologies:
- topology.kubernetes.io/region: us-centrall
topology.kubernetes.io/zone: us-centrall-b

In this example, the region and zone labels stand for the location of the storage pool.
topology.kubernetes.io/region and topology.kubernetes.io/zone dictate where the storage
pools can be consumed from.

Step 2: Define StorageClasses that are topology aware

Based on the topology labels that are provided to the nodes in the cluster, StorageClasses can be defined to
contain topology information. This will determine the storage pools that serve as candidates for PVC requests
made, and the subset of nodes that can make use of the volumes provisioned by Trident.

See the following example:

44



apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata: null
name: netapp-san-us-eastl
provisioner: csi.trident.netapp.io
volumeBindingMode: WaitForFirstConsumer
allowedTopologies:
- matchLabelExpressions: null
- key: topology.kubernetes.io/zone
values:
- us-eastl-a
- us-eastl-b
- key: topology.kubernetes.io/region
values:
- us-eastl
parameters:
fsType: extd

In the StorageClass definition provided above, volumeBindingMode is set to WaitForFirstConsumer.
PVCs that are requested with this StorageClass will not be acted upon until they are referenced in a pod. And,
allowedTopologies provides the zones and region to be used. The netapp-san-us-east1 StorageClass
creates PVCs on the san-backend-us-east1 backend defined above.

Step 3: Create and use a PVC

With the StorageClass created and mapped to a backend, you can now create PVCs.

See the example spec below:

kind: PersistentVolumeClaim
apiVersion: vl
metadata: null
name: pvc-san
spec: null
accessModes:

- ReadWriteOnce
resources:

requests:

storage: 300Mi

storageClassName: netapp-san-us-eastl

Creating a PVC using this manifest would result in the following:

45



kubectl create -f pvc.yaml
persistentvolumeclaim/pvc-san created
kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

AGE

pvc-san Pending netapp-san-us-eastl

2s

kubectl describe pvc

Name: pvc-san

Namespace: default

StorageClass: netapp-san-us-eastl

Status: Pending

Volume:

Labels: <none>

Annotations: <none>

Finalizers: [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode: Filesystem

Mounted By: <none>

Events:
Type Reason Age From Message
Normal WaitForFirstConsumer ©6s persistentvolume-controller waiting

for first consumer to be created before binding

For Trident to create a volume and bind it to the PVC, use the PVC in a pod. See the following example:

46



apiVersion: vl
kind: Pod
metadata:
name: app-pod-1
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: topology.kubernetes.io/region
operator: In
values:
- us-eastl
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
preference:
matchExpressions:
- key: topology.kubernetes.io/zone
operator: In
values:
- us-eastl-a
- us-eastl-b
securityContext:
runAsUser: 1000
runAsGroup: 3000
fsGroup: 2000
volumes:
- name: voll
persistentVolumeClaim:
claimName: pvc-san
containers:
- name: sec-ctx-demo
image: busybox
command: [ "sh", "-c", "sleep 1h" ]
volumeMounts:
- name: voll
mountPath: /data/demo
securityContext:
allowPrivilegeEscalation: false

This podSpec instructs Kubernetes to schedule the pod on nodes that are present in the us-east1 region,
and choose from any node that is present in the us-eastl-a or us-eastl-b zones.

See the following output:



kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES

app-pod-1 1/1 Running 0 19s 192.168.25.131 node?2
<none> <none>

kubectl get pvc -o wide

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE VOLUMEMODE

pvc-san Bound pvc-ecblelal0-840c-463b-8b65-b3d033e2e62b 300Mi
RWO netapp-san-us-eastl 48s Filesystem

Update backends to include supportedTopologies

Pre-existing backends can be updated to include a list of supportedTopologies using tridentctl
backend update. This will not affect volumes that have already been provisioned, and will only be used for
subsequent PVCs.

Find more information

* Manage resources for containers
* nodeSelector
+ Affinity and anti-affinity

* Taints and Tolerations

Work with snapshots

Kubernetes volume snapshots of Persistent Volumes (PVs) enable point-in-time copies of
volumes. You can create a snapshot of a volume created using Trident, import a snapshot
created outside of Trident, create a new volume from an existing snapshot, and recover
volume data from snapshots.

Overview

Volume snapshot is supported by ontap-nas, ontap-nas-flexgroup, ontap-san, ontap-san-
economy, solidfire-san, azure-netapp-files, and google-cloud-netapp-volumes drivers.

Before you begin

You must have an external snapshot controller and Custom Resource Definitions (CRDs) to work with
snapshots. This is the responsibility of the Kubernetes orchestrator (for example: Kubeadm, GKE, OpenShift).

If your Kubernetes distribution does not include the snapshot controller and CRDs, refer to Deploy a volume
snapshot controller.

@ Don’t create a snapshot controller if creating on-demand volume snapshots in a GKE
environment. GKE uses a built-in, hidden snapshot controller.

48


https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Create a volume snapshot

Steps
1. Create a VolumeSnapshotClass. For more information, refer to VolumeSnapshotClass.

° The driver points to the Trident CSI driver.

° deletionPolicy can be Delete or Retain. When set to Retain, the underlying physical snapshot
on the storage cluster is retained even when the VolumeSnapshot object is deleted.

Example

cat snap-sc.yaml

apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshotClass
metadata:

name: csi-snapclass
driver: csi.trident.netapp.io
deletionPolicy: Delete

2. Create a snapshot of an existing PVC.
Examples
o This example creates a snapshot of an existing PVC.

cat snap.yaml

apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshot
metadata:
name: pvcl-snap
spec:
volumeSnapshotClassName: csi-snapclass
source:

persistentVolumeClaimName: pvcl

° This example creates a volume snapshot object for a PVC named pvcl and the name of the snapshot
is set to pvcl-snap. A VolumeSnapshot is analogous to a PVC and is associated with a
VolumeSnapshotContent object that represents the actual snapshot.

49


https://docs.netapp.com/us-en/trident/trident-reference/objects.html#kubernetes-volumesnapshotclass-objects

kubectl create -f snap.yaml
volumesnapshot.snapshot.storage.k8s.io/pvcl-snap created

kubectl get volumesnapshots
NAME AGE
pvcl-snap 50s

° You can identify the volumeSnapshotContent object for the pvcl-snap VolumeSnapshot by
describing it. The Snapshot Content Name identifies the VolumeSnapshotContent object which
serves this snapshot. The Ready To Use parameter indicates that the snapshot can be used to
create a new PVC.

kubectl describe volumesnapshots pvcl-snap

Name: pvcl-snap
Namespace: default
Spec:
Snapshot Class Name: pvcl-snap
Snapshot Content Name: snapcontent-e8d8a0ca-9826-11e9-9807-
525400£3£660
source:
API Group:
Kind: PersistentVolumeClaim
Name : pvcl
Status:
Creation Time: 2019-06-26T15:27:29%Z
Ready To Use: true
Restore Size: 3Gi

Create a PVC from a volume snapshot

You can use dataSource to create a PVC using a VolumeSnapshot named <pvc-name> as the source of the
data. After the PVC is created, it can be attached to a pod and used just like any other PVC.

@ The PVC will be created in the same backend as the source volume. Refer to KB: Creating a
PVC from a Trident PVC Snapshot cannot be created in an alternate backend.

The following example creates the PVC using pvcl-snap as the data source.

cat pvc-from-snap.yaml

50


https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: pvc-from-snap
spec:
accessModes:

- ReadWriteOnce
storageClassName: golden
resources:

requests:

storage: 3Gi
dataSource:

name: pvcl-snap

kind: VolumeSnapshot

apiGroup: snapshot.storage.k8s.io

Import a volume snapshot

Trident supports the Kubernetes pre-provisioned snapshot process to enable the cluster administrator to create
a VolumeSnapshotContent object and import snapshots created outside of Trident.

Before you begin

Trident must have created or imported the snapshot’s parent volume.

Steps

1. Cluster admin: Create a VolumeSnapshotContent object that references the backend snapshot. This
initiates the snapshot workflow in Trident.

° Specify the name of the backend snapshot in annotations as
trident.netapp.io/internalSnapshotName: <"backend-snapshot—-name">.

° Specify <name-of-parent-volume-in-trident>/<volume-snapshot-content-name> in
snapshotHandle. This is the only information provided to Trident by the external snapshotter in the
ListSnapshots call.

@ The <volumeSnapshotContentName> cannot always match the backend snapshot
name due to CR naming constraints.

Example

The following example creates a VolumeSnapshotContent object that references backend snapshot
snap-01.

51


https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static

2.

52

apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshotContent
metadata:
name: import-snap-content
annotations:
trident.netapp.io/internalSnapshotName: "snap-01" # This is the
name of the snapshot on the backend
spec:
deletionPolicy: Retain
driver: csi.trident.netapp.io
source:
snapshotHandle: pvc-£f71223b5-23b9-4235-bbfe-e269ac7b84b0/import—-
snap-content # <import PV name or source PV name>/<volume-snapshot-
content-name>
volumeSnapshotRef:
name: import-snap

namespace: default

Cluster admin: Create the VolumeSnapshot CR that references the volumeSnapshotContent object.
This requests access to use the VolumeSnapshot in a given namespace.

Example

The following example creates a VolumeSnapshot CR named import-snap that references the
VolumeSnapshotContent named import-snap-content.

apiVersion: snapshot.storage.k8s.io/vl
kind: VolumeSnapshot
metadata:

name: import-snap
spec:

# volumeSnapshotClassName: csi-snapclass (not required for pre-
provisioned or imported snapshots)

source:

volumeSnapshotContentName: import-snap-content

. Internal processing (no action required): The external snapshotter recognizes the newly created

VolumeSnapshotContent and runs the ListSnapshots call. Trident creates the TridentSnapshot.

° The external snapshotter sets the VolumeSnapshotContent to readyToUse and the
VolumeSnapshot to true.

° Trident returns readyToUse=true.

. Any user: Create a PersistentVolumeClaim to reference the new volumeSnapshot, where the

spec.dataSource (Or spec.dataSourceRef) name is the VolumeSnapshot name.

Example



The following example creates a PVC referencing the VolumeSnapshot named import-snap.

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: pvc-from-snap
spec:
accessModes:

- ReadWriteOnce
storageClassName: simple-sc
resources:

requests:

storage: 1Gi
dataSource:

name: import-snap

kind: VolumeSnapshot

apiGroup: snapshot.storage.k8s.io

Recover volume data using snapshots

The snapshot directory is hidden by default to facilitate maximum compatibility of volumes provisioned using
the ontap-nas and ontap-nas-economy drivers. Enable the . snapshot directory to recover data from
snapshots directly.

Use the volume snapshot restore ONTAP CLI to to restore a volume to a state recorded in a prior snapshot.

clusterl::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3 snap archive

(D When you restore a snapshot copy, the existing volume configuration is overwritten. Changes
made to volume data after the snapshot copy was created are lost.
In-place volume restoration from a snapshot

Trident provides rapid, in-place volume restoration from a snapshot using the
TridentActionSnapshotRestore (TASR) CR. This CR functions as an imperative Kubernetes action and
does not persist after the operation completes.

Trident supports snapshot restore on the ontap-san, ontap-san-economy, ontap-nas, ontap-nas-
flexgroup, azure-netapp-files, google-cloud-netapp-volumes, and solidfire-san drivers.

Before you begin
You must have a bound PVC and available volume snapshot.

« Verify the PVC status is bound.

53



kubectl get pvc
« Verify the volume snapshot is ready to use.

kubectl get vs

Steps
1. Create the TASR CR. This example creates a CR for PVC pvc1 and volume snapshot pvcl-snapshot.

@ The TASR CR must be in a namespace where the PVC & VS exist.

cat tasr-pvcl-snapshot.yaml

apiVersion: trident.netapp.io/vl
kind: TridentActionSnapshotRestore
metadata:

name: trident-snap

namespace: trident
spec:

pvcName: pvcl

volumeSnapshotName: pvcl-snapshot

2. Apply the CR to restore from the snapshot. This example restores from snapshot pvci.

kubectl create -f tasr-pvcl-snapshot.yaml

tridentactionsnapshotrestore.trident.netapp.io/trident-snap created

Results
Trident restores the data from the snapshot. You can verify the snapshot restore status:

kubectl get tasr -o yaml

54



apiVersion: trident.netapp.io/vl
items:
- apiVersion: trident.netapp.io/vl
kind: TridentActionSnapshotRestore
metadata:
creationTimestamp: "2023-04-14T00:20:332Z"
generation: 3
name: trident-snap
namespace: trident
resourceVersion: "3453847"
uid: <uid>
spec:
pvcName: pvcl
volumeSnapshotName: pvcl-snapshot
status:
startTime: "2023-04-14T00:20:3427z"
completionTime: "2023-04-14T00:20:372"
state: Succeeded
kind: List
metadata:

resourceVersion: ""

* In most cases, Trident will not automatically retry the operation in case of failure. You will
@ need to perform the operation again.

» Kubernetes users without admin access might have to be granted permission by the admin
to create a TASR CR in their application namespace.

Delete a PV with associated snapshots

When deleting a Persistent Volume with associated snapshots, the corresponding Trident volume is updated to
a "Deleting state". Remove the volume snapshots to delete the Trident volume.

Deploy a volume snapshot controller

If your Kubernetes distribution does not include the snapshot controller and CRDs, you can deploy them as
follows.

Steps
1. Create volume snapshot CRDs.

cat snapshot-setup.sh

55



#!/bin/bash

# Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshotclasses.yaml
kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshotcontents.yam
1

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io volumesnapshots.yaml

2. Create the snapshot controller.

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

(:) If necessary, open deploy/kubernetes/snapshot-controller/rbac-snapshot-
controller.yaml and update namespace to your namespace.

Related links

* Volume snapshots

* VolumeSnapshotClass

Work with volume group snapshots

Kubernetes volume group snapshots of Persistent Volumes (PVs) NetApp Trident
provides the ability to create snapshots of multiple volumes ( a group of volume
snapshots). This volume group snapshot represents copies from multiple volumes that
are taken at the same point-in-time.

@ VolumeGroupSnapshot is a beta feature in Kubernetes with beta APIs. Kubernetes 1.32 is the
minimum version required for VolumeGroupSnapshot.

56


https://docs.netapp.com/us-en/trident/trident-concepts/snapshots.html
https://docs.netapp.com/us-en/trident/trident-reference/objects.html

Create volume group snapshots

Volume group snapshot is supported with the following storage drivers:

* ontap-san driver - only for the iSCSI and FC protocols, not for the NVMe/TCP protocol.
* ontap-san-economy - only for the iSCSI protocol.

®* ontap-nas
@ Volume group snapshot is not supported for NetApp ASA r2 or AFX storage systems.

Before you begin
» Ensure that your Kubernetes version is K8s 1.32 or higher.
* You must have an external snapshot controller and Custom Resource Definitions (CRDs) to work with

snapshots. This is the responsibility of the Kubernetes orchestrator (for example: Kubeadm, GKE,
OpenShift).

If your Kubernetes distribution does not include the external snapshot controller and CRDs, refer to Deploy

a volume snapshot controller.

@ Don’t create a snapshot controller if creating on-demand volume group snapshots in a GKE
environment. GKE uses a built-in, hidden snapshot controller.

* In the snapshot controller YAML, set the CSIVolumeGroupSnapshot feature gate to 'true' to ensure that

volume group snapshot is enabled.
 Create the required volume group snapshot classes before creating a volume group snapshot.

* Ensure that all PVCs/volumes are on the same SVM to be able to create VolumeGroupSnapshot.

Steps

» Create a VolumeGroupSnapshotClass prior to creating a VolumeGroupSnapshot. For more information,
refer to VolumeGroupSnapshotClass.

apiVersion: groupsnapshot.storage.k8s.io/vlbetal
kind: VolumeGroupSnapshotClass
metadata:

name: csi-group-snap-class

annotations:

kubernetes.io/description: "Trident group snapshot class"

driver: csi.trident.netapp.io
deletionPolicy: Delete

* Create PVCs with required labels using existing storage classes, or add these labels to existing PVCs.

The following example creates the PVC using pvcl-group-snap as the data source and label
consistentGroupSnapshot: groupA. Define the label key and value based on your requirements.

57


https://docs.netapp.com/us-en/trident/trident-reference/objects.html#kubernetes-volumegroupsnapshotclass-objects

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvcl-group-snap
labels:
consistentGroupSnapshot: groupA
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 100Mi
storageClassName: scl-1

* Create a VolumeGroupSnapshot with the same label (consistentGroupSnapshot:

in the PVC.

This example creates a volume group snapshot:

apiVersion: groupsnapshot.storage.k8s.io/vlbetal
kind: VolumeGroupSnapshot
metadata:

name: "vgsl"

namespace: trident
spec:

volumeGroupSnapshotClassName: csi-group-snap-class

source:

selector:
matchLabels:
consistentGroupSnapshot: groupA

Recover volume data using a group snapshot

groupA) specified

You can restore individual Persistent Volumes using the individual snapshots which have been created as part

of the Volume Group Snapshot. You cannot recover the Volume Group Snapshot as a unit.

Use the volume snapshot restore ONTAP CLI to to restore a volume to a state recorded in a prior snapshot.

clusterl::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3 snap archive

@ When you restore a snapshot copy, the existing volume configuration is overwritten. Changes

made to volume data after the snapshot copy was created are lost.

58



In-place volume restoration from a snapshot

Trident provides rapid, in-place volume restoration from a snapshot using the
TridentActionSnapshotRestore (TASR) CR. This CR functions as an imperative Kubernetes action and
does not persist after the operation completes.

For more information, see In-place volume restoration from a snapshot.

Delete a PV with associated group snapshots
When deleting a group volume snapshot:

* You can delete VolumeGroupSnapshots as a whole, not individual snapshots in the group.

« If PersistentVolumes are deleted while a snapshot exists for that PersistentVolume, Trident will move that
volume to a "deleting" state because the snapshot must be removed before the volume can be safely
removed.

« If a clone has been created using a grouped snapshot and then the group is to be deleted, a split-on-clone
operation will begin and the group cannot be deleted until the split is complete.

Deploy a volume snapshot controller

If your Kubernetes distribution does not include the snapshot controller and CRDs, you can deploy them as
follows.

Steps
1. Create volume snapshot CRDs.

cat snapshot-setup.sh

#!/bin/bash

# Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
8.2/client/config/crd/groupsnapshot.storage.k8s.io volumegroupsnapshotcl
asses.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
8.2/client/config/crd/groupsnapshot.storage.k8s.io volumegroupsnapshotco
ntents.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
8.2/client/config/crd/groupsnapshot.storage.k8s.io volumegroupsnapshots.

yaml

2. Create the snapshot controller.

59



kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-8.2/deploy/kubernetes/snapshot-
controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-8.2/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

(:) If necessary, open deploy/kubernetes/snapshot-controller/rbac-snapshot-
controller.yaml and update namespace to your namespace.

Related links

* VolumeGroupSnapshotClass

* Volume snapshots

60


https://docs.netapp.com/us-en/trident/trident-reference/objects.html#kubernetes-volumegroupsnapshotclass-objects
https://docs.netapp.com/us-en/trident/trident-concepts/snapshots.html

Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

61


http://www.netapp.com/TM

	Provision and manage volumes : Trident
	Table of Contents
	Provision and manage volumes
	Provision a volume
	Overview
	Create the PVC

	Expand volumes
	Expand an iSCSI volume
	Expand an FC volume
	Expand an NFS volume

	Import volumes
	Overview and considerations
	Import a volume
	Examples

	Customize volume names and labels
	Before you begin
	Limitations
	Key behaviors of customizable volume names
	Backend configuration examples with name template and labels
	Name template examples
	Points to consider

	Share an NFS volume across namespaces
	Features
	Quick start
	Configure the source and destination namespaces
	Delete a shared volume
	Use tridentctl get to query subordinate volumes
	Limitations
	For more information

	Clone volumes across namespaces
	Prerequisites
	Quick start
	Configure the source and destination namespaces
	Limitations

	Replicate volumes using SnapMirror
	Replication prerequisites
	Create a mirrored PVC
	Volume Replication States
	Promote secondary PVC during an unplanned failover
	Promote secondary PVC during a planned failover
	Restore a mirror relationship after a failover
	Additional operations
	Update mirror relationships when ONTAP is online
	Update mirror relationships when ONTAP is offline

	Use CSI Topology
	Overview
	Step 1: Create a topology-aware backend
	Step 2: Define StorageClasses that are topology aware
	Step 3: Create and use a PVC
	Update backends to include supportedTopologies
	Find more information

	Work with snapshots
	Overview
	Create a volume snapshot
	Create a PVC from a volume snapshot
	Import a volume snapshot
	Recover volume data using snapshots
	In-place volume restoration from a snapshot
	Delete a PV with associated snapshots
	Deploy a volume snapshot controller
	Related links

	Work with volume group snapshots
	Create volume group snapshots
	Recover volume data using a group snapshot
	In-place volume restoration from a snapshot
	Delete a PV with associated group snapshots
	Deploy a volume snapshot controller
	Related links



