
Use Trident

Trident
NetApp
February 02, 2026

This PDF was generated from https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html
on February 02, 2026. Always check docs.netapp.com for the latest.



Table of Contents

Use Trident . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Prepare the worker node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Selecting the right tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Node service discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

NFS volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

iSCSI volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

NVMe/TCP volumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

SCSI over FC volumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Prepare to provision SMB volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

Configure and manage backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

Configure backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

Azure NetApp Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

Google Cloud NetApp Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

Configure a NetApp HCI or SolidFire backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

ONTAP SAN drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52

ONTAP NAS drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81

Amazon FSx for NetApp ONTAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118

Create backends with kubectl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151

Manage backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158

Create and manage storage classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  168

Create a storage class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  168

Manage storage classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171

Provision and manage volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173

Provision a volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173

Expand volumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177

Import volumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  188

Customize volume names and labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  198

Share an NFS volume across namespaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201

Clone volumes across namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  205

Replicate volumes using SnapMirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  207

Use CSI Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214

Work with snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221

Work with volume group snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229



Use Trident

Prepare the worker node

All worker nodes in the Kubernetes cluster must be able to mount the volumes you have

provisioned for your pods. To prepare the worker nodes, you must install NFS, iSCSI,

NVMe/TCP, or FC tools based on your driver selection.

Selecting the right tools

If you are using a combination of drivers, you should install all required tools for your drivers. Recent versions

of Red Hat Enterprise Linux CoreOS (RHCOS) have the tools installed by default.

NFS tools

Install the NFS tools if you are using: ontap-nas, ontap-nas-economy, ontap-nas-flexgroup, or

azure-netapp-files.

iSCSI tools

Install the iSCSI tools if you are using: ontap-san, ontap-san-economy, solidfire-san.

NVMe tools

Install the NVMe tools if you are using ontap-san for nonvolatile memory express (NVMe) over TCP

(NVMe/TCP) protocol.

NetApp recommends ONTAP 9.12 or later for NVMe/TCP.

SCSI over FC tools

Refer to Ways to configure FC & FC-NVMe SAN hosts for more information about configuring your FC and FC-

NVMe SAN hosts.

Install the FC tools if you are using ontap-san with sanType fcp (SCSI over FC).

Points to consider:

* SCSI over FC is supported on OpenShift and KubeVirt environments.

* SCSI over FC is not supported on Docker.

* iSCSI self healing is not applicable to SCSI over FC.

SMB tools

Prepare to provision SMB volumes if you are using: ontap-nas to provision SMB volumes.

Node service discovery

Trident attempts to automatically detect if the node can run iSCSI or NFS services.

Node service discovery identifies discovered services but does not guarantee services are

properly configured. Conversely, the absence of a discovered service does not guarantee the

volume mount will fail.

Review events

1

https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html#nfs-volumes
https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html#install-the-iscsi-tools
https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html#nvmetcp-volumes
https://docs.netapp.com/us-en/ontap/san-config/configure-fc-nvme-hosts-ha-pairs-reference.html
https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html#install-the-fc-tools
https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html#prepare-to-provision-smb-volumes


Trident creates events for the node to identify the discovered services. To review these events, run:

kubectl get event -A --field-selector involvedObject.name=<Kubernetes node

name>

Review discovered services

Trident identifies services enabled for each node on the Trident node CR. To view the discovered services, run:

tridentctl get node -o wide -n <Trident namespace>

NFS volumes

Install the NFS tools using the commands for your operating system. Ensure the NFS service is started up

during boot time.

RHEL 8+

sudo yum install -y nfs-utils

Ubuntu

sudo apt-get install -y nfs-common

Reboot your worker nodes after installing the NFS tools to prevent failure when attaching

volumes to containers.

iSCSI volumes

Trident can automatically establish an iSCSI session, scan LUNs, and discover multipath devices, format them,

and mount them to a pod.

iSCSI self-healing capabilities

For ONTAP systems, Trident runs iSCSI self-healing every five minutes to:

1. Identify the desired iSCSI session state and the current iSCSI session state.

2. Compare the desired state to the current state to identify needed repairs. Trident determines repair

priorities and when to preempt repairs.

3. Perform repairs required to return the current iSCSI session state to the desired iSCSI session state.

Logs of self-healing activity are located in the trident-main container on the respective

Daemonset pod. To view logs, you must have set debug to "true" during Trident installation.

Trident iSCSI self-healing capabilities can help prevent:

2



• Stale or unhealthy iSCSI sessions that could occur after a network connectivity issue. In the case of a stale

session, Trident waits seven minutes before logging out to reestablish the connection with a portal.

For example, if CHAP secrets were rotated on the storage controller and the network loses

connectivity, the old (stale) CHAP secrets could persist. Self-healing can recognize this and

automatically reestablish the session to apply the updated CHAP secrets.

• Missing iSCSI sessions

• Missing LUNs

Points to consider before upgrading Trident

• If only per-node igroups (introduced in 23.04+) are in use, iSCSI self-healing will initiate SCSI rescans for

all devices in the SCSI bus.

• If only backend-scoped igroups (deprecated as of 23.04) are in use, iSCSI self-healing will initiate SCSI

rescans for exact LUN IDs in the SCSI bus.

• If a mix of per-node igroups and backend-scoped igroups are in use, iSCSI self-healing will initiate SCSI

rescans for exact LUN IDs in the SCSI bus.

Install the iSCSI tools

Install the iSCSI tools using the commands for your operating system.

Before you begin

• Each node in the Kubernetes cluster must have a unique IQN. This is a necessary prerequisite.

• If using RHCOS version 4.5 or later, or other RHEL-compatible Linux distribution, with the solidfire-

san driver and Element OS 12.5 or earlier, ensure that the CHAP authentication algorithm is set to MD5 in

/etc/iscsi/iscsid.conf. Secure FIPS-compliant CHAP algorithms SHA1, SHA-256, and SHA3-256

are available with Element 12.7.

sudo sed -i 's/^\(node.session.auth.chap_algs\).*/\1 = MD5/'

/etc/iscsi/iscsid.conf

• When using worker nodes that run RHEL/Red Hat Enterprise Linux CoreOS (RHCOS) with iSCSI PVs,

specify the discard mountOption in the StorageClass to perform inline space reclamation. Refer to Red

Hat documentation.

• Ensure that you have upgraded to the latest version of the multipath-tools.

3

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems


RHEL 8+

1. Install the following system packages:

sudo yum install -y lsscsi iscsi-initiator-utils device-mapper-

multipath

2. Check that iscsi-initiator-utils version is 6.2.0.874-2.el7 or later:

rpm -q iscsi-initiator-utils

3. Set scanning to manual:

sudo sed -i 's/^\(node.session.scan\).*/\1 = manual/'

/etc/iscsi/iscsid.conf

4. Enable multipathing:

sudo mpathconf --enable --with_multipathd y --find_multipaths n

Ensure /etc/multipath.conf contains find_multipaths no under defaults.

5. Ensure that iscsid and multipathd are running:

sudo systemctl enable --now iscsid multipathd

6. Enable and start iscsi:

sudo systemctl enable --now iscsi

Ubuntu

1. Install the following system packages:

sudo apt-get install -y open-iscsi lsscsi sg3-utils multipath-tools

scsitools

2. Check that open-iscsi version is 2.0.874-5ubuntu2.10 or later (for bionic) or 2.0.874-7.1ubuntu6.1 or

later (for focal):

4



dpkg -l open-iscsi

3. Set scanning to manual:

sudo sed -i 's/^\(node.session.scan\).*/\1 = manual/'

/etc/iscsi/iscsid.conf

4. Enable multipathing:

sudo tee /etc/multipath.conf <<-EOF

defaults {

    user_friendly_names yes

    find_multipaths no

}

EOF

sudo systemctl enable --now multipath-tools.service

sudo service multipath-tools restart

Ensure /etc/multipath.conf contains find_multipaths no under defaults.

5. Ensure that open-iscsi and multipath-tools are enabled and running:

sudo systemctl status multipath-tools

sudo systemctl enable --now open-iscsi.service

sudo systemctl status open-iscsi

For Ubuntu 18.04, you must discover target ports with iscsiadm before starting

open-iscsi for the iSCSI daemon to start. You can alternatively modify the iscsi

service to start iscsid automatically.

Configure or disable iSCSI self healing

You can configure the following Trident iSCSI self-healing settings to fix stale sessions:

• iSCSI self-healing interval: Determines the frequency at which iSCSI self-healing is invoked (default: 5

minutes). You can configure it to run more frequently by setting a smaller number or less frequently by

setting a larger number.

Setting the iSCSI self-healing interval to 0 stops iSCSI self-healing completely. We do not

recommend disabling iSCSI Self-healing; it should only be disabled in certain scenarios when

iSCSI self-healing is not working as intended or for debugging purposes.

5



• iSCSI Self-Healing Wait Time: Determines the duration iSCSI self-healing waits before logging out of an

unhealthy session and trying to log in again (default: 7 minutes). You can configure it to a larger number so

that sessions that are identified as unhealthy have to wait longer before being logged out and then an

attempt is made to log back in, or a smaller number to log out and log in earlier.

Helm

To configure or change iSCSI self-healing settings, pass the iscsiSelfHealingInterval and

iscsiSelfHealingWaitTime parameters during the helm installation or helm update.

The following example sets the iSCSI self-healing interval to 3 minutes and self-healing wait time to 6

minutes:

helm install trident trident-operator-100.2506.0.tgz --set

iscsiSelfHealingInterval=3m0s --set iscsiSelfHealingWaitTime=6m0s -n

trident

tridentctl

To configure or change iSCSI self-healing settings, pass the iscsi-self-healing-interval and

iscsi-self-healing-wait-time parameters during the tridentctl installation or update.

The following example sets the iSCSI self-healing interval to 3 minutes and self-healing wait time to 6

minutes:

tridentctl install --iscsi-self-healing-interval=3m0s --iscsi-self

-healing-wait-time=6m0s -n trident

NVMe/TCP volumes

Install the NVMe tools using the commands for your operating system.

• NVMe requires RHEL 9 or later.

• If the kernel version of your Kubernetes node is too old or if the NVMe package is not

available for your kernel version, you might have to update the kernel version of your node

to one with the NVMe package.

6



RHEL 9

sudo yum install nvme-cli

sudo yum install linux-modules-extra-$(uname -r)

sudo modprobe nvme-tcp

Ubuntu

sudo apt install nvme-cli

sudo apt -y install linux-modules-extra-$(uname -r)

sudo modprobe nvme-tcp

Verify installation

After installation, verify that each node in the Kubernetes cluster has a unique NQN using the command:

cat /etc/nvme/hostnqn

Trident modifies the ctrl_device_tmo value to ensure NVMe doesn’t give up on the path if it

goes down. Do not change this setting.

SCSI over FC volumes

You can now use the Fibre Channel (FC) protocol with Trident to provision and manage storage resources on

ONTAP system.

Prerequisites

Configure the required network and node settings for FC.

Network settings

1. Get the WWPN of the target interfaces. Refer to network interface show for more information.

2. Get the WWPN for the interfaces on initiator (Host).

Refer to the corresponding host operating system utilities.

3. Configure zoning on the FC switch using WWPNs of the Host and target.

Refer to the respecive switch vendor documentation for information.

Refer to the following ONTAP documentation for details:

◦ Fibre Channel and FCoE zoning overview

◦ Ways to configure FC & FC-NVMe SAN hosts

7

https://docs.netapp.com/us-en/ontap-cli//network-interface-show.html
https://docs.netapp.com/us-en/ontap/san-config/fibre-channel-fcoe-zoning-concept.html
https://docs.netapp.com/us-en/ontap/san-config/configure-fc-nvme-hosts-ha-pairs-reference.html


Install the FC tools

Install the FC tools using the commands for your operating system.

• When using worker nodes that run RHEL/Red Hat Enterprise Linux CoreOS (RHCOS) with FC PVs,

specify the discard mountOption in the StorageClass to perform inline space reclamation. Refer to Red

Hat documentation.

8

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems


RHEL 8+

1. Install the following system packages:

sudo yum install -y lsscsi device-mapper-multipath

2. Enable multipathing:

sudo mpathconf --enable --with_multipathd y --find_multipaths n

Ensure /etc/multipath.conf contains find_multipaths no under defaults.

3. Ensure that multipathd is running:

sudo systemctl enable --now multipathd

Ubuntu

1. Install the following system packages:

sudo apt-get install -y lsscsi sg3-utils multipath-tools scsitools

2. Enable multipathing:

sudo tee /etc/multipath.conf <<-EOF

defaults {

    user_friendly_names yes

    find_multipaths no

}

EOF

sudo systemctl enable --now multipath-tools.service

sudo service multipath-tools restart

Ensure /etc/multipath.conf contains find_multipaths no under defaults.

3. Ensure that multipath-tools is enabled and running:

sudo systemctl status multipath-tools

9



Prepare to provision SMB volumes

You can provision SMB volumes using ontap-nas drivers.

You must configure both NFS and SMB/CIFS protocols on the SVM to create an ontap-nas-

economy SMB volume for ONTAP on-premises clusters. Failure to configure either of these

protocols will cause SMB volume creation to fail.

autoExportPolicy is not supported for SMB volumes.

Before you begin

Before you can provision SMB volumes, you must have the following.

• A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows

Server 2022. Trident supports SMB volumes mounted to pods running on Windows nodes only.

• At least one Trident secret containing your Active Directory credentials. To generate secret smbcreds:

kubectl create secret generic smbcreds --from-literal username=user

--from-literal password='password'

• A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or

GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

Steps

1. For on-premises ONTAP, you can optionally create an SMB share or Trident can create one for you.

SMB shares are required for Amazon FSx for ONTAP.

You can create the SMB admin shares in one of two ways either using the Microsoft Management Console

Shared Folders snap-in or using the ONTAP CLI. To create the SMB shares using the ONTAP CLI:

a. If necessary, create the directory path structure for the share.

The vserver cifs share create command checks the path specified in the -path option during

share creation. If the specified path does not exist, the command fails.

b. Create an SMB share associated with the specified SVM:

vserver cifs share create -vserver vserver_name -share-name

share_name -path path [-share-properties share_properties,...]

[other_attributes] [-comment text]

c. Verify that the share was created:

vserver cifs share show -share-name share_name

10

https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console


Refer to Create an SMB share for full details.

2. When creating the backend, you must configure the following to specify SMB volumes. For all FSx for

ONTAP backend configuration options, refer to FSx for ONTAP configuration options and examples.

Parameter Description Example

smbShare You can specify one of the following: the name of an

SMB share created using the Microsoft

Management Console or ONTAP CLI; a name to

allow Trident to create the SMB share; or you can

leave the parameter blank to prevent common share

access to volumes.

This parameter is optional for on-premises ONTAP.

This parameter is required for Amazon FSx for

ONTAP backends and cannot be blank.

smb-share

nasType Must set to smb. If null, defaults to nfs. smb

securityStyle Security style for new volumes.

Must be set to ntfs or mixed for SMB volumes.

ntfs or mixed for SMB

volumes

unixPermissions Mode for new volumes. Must be left empty for

SMB volumes.

""

Configure and manage backends

Configure backends

A backend defines the relationship between Trident and a storage system. It tells Trident

how to communicate with that storage system and how Trident should provision volumes

from it.

Trident automatically offers up storage pools from backends that match the requirements defined by a storage

class. Learn how to configure the backend for your storage system.

• Configure an Azure NetApp Files backend

• Configure a Google Cloud NetApp Volumes backend

• Configure a NetApp HCI or SolidFire backend

• Configure a backend with ONTAP or Cloud Volumes ONTAP NAS drivers

• Configure a backend with ONTAP or Cloud Volumes ONTAP SAN drivers

• Use Trident with Amazon FSx for NetApp ONTAP

Azure NetApp Files

11

https://docs.netapp.com/us-en/ontap/smb-config/create-share-task.html
https://docs.netapp.com/us-en/trident/trident-use/trident-fsx-examples.html


Configure an Azure NetApp Files backend

You can configure Azure NetApp Files as the backend for Trident. You can attach NFS

and SMB volumes using an Azure NetApp Files backend. Trident also supports credential

management using managed identities for Azure Kubernetes Services (AKS) clusters.

Azure NetApp Files driver details

Trident provides the following Azure NetApp Files storage drivers to communicate with the cluster. Supported

access modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX),

ReadWriteOncePod (RWOP).

Driver Protocol volumeMod

e

Access modes

supported

File systems supported

azure-netapp-files NFS

SMB

Filesystem RWO, ROX, RWX, RWOP nfs, smb

Considerations

• The Azure NetApp Files service does not support volumes smaller than 50 GiB. Trident automatically

creates 50-GiB volumes if a smaller volume is requested.

• Trident supports SMB volumes mounted to pods running on Windows nodes only.

Managed identities for AKS

Trident supports managed identities for Azure Kubernetes Services clusters. To take advantage of streamlined

credential management offered by managed identities, you must have:

• A Kubernetes cluster deployed using AKS

• Managed identities configured on the AKS kubernetes cluster

• Trident installed that includes the cloudProvider to specify "Azure".

12

https://learn.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview


Trident operator

To install Trident using the Trident operator, edit tridentorchestrator_cr.yaml to set

cloudProvider to "Azure". For example:

apiVersion: trident.netapp.io/v1

kind: TridentOrchestrator

metadata:

  name: trident

spec:

  debug: true

  namespace: trident

  imagePullPolicy: IfNotPresent

  cloudProvider: "Azure"

Helm

The following example installs Trident sets cloudProvider to Azure using the environment variable

$CP:

helm install trident trident-operator-100.2506.0.tgz --create

-namespace --namespace <trident-namespace> --set cloudProvider=$CP

tridentctl

The following example installs Trident and sets the cloudProvider flag to Azure:

tridentctl install --cloud-provider="Azure" -n trident

Cloud identity for AKS

Cloud identity enables Kubernetes pods to access Azure resources by authenticating as a workload identity

instead of by providing explicit Azure credentials.

To take advantage of cloud identity in Azure, you must have:

• A Kubernetes cluster deployed using AKS

• Workload identity and oidc-issuer configured on the AKS Kubernetes cluster

• Trident installed that includes the cloudProvider to specify "Azure" and cloudIdentity specifying

workload identity

13



Trident operator

To install Trident using the Trident operator, edit tridentorchestrator_cr.yaml to set

cloudProvider to "Azure" and set cloudIdentity to azure.workload.identity/client-

id: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx.

For example:

apiVersion: trident.netapp.io/v1

kind: TridentOrchestrator

metadata:

  name: trident

spec:

  debug: true

  namespace: trident

  imagePullPolicy: IfNotPresent

  cloudProvider: "Azure"

  cloudIdentity: 'azure.workload.identity/client-id: xxxxxxxx-xxxx-

xxxx-xxxx-xxxxxxxxxxx' # Edit

Helm

Set the values for cloud-provider (CP) and cloud-identity (CI) flags using the following environment

variables:

export CP="Azure"

export CI="'azure.workload.identity/client-id: xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxx'"

The following example installs Trident and sets cloudProvider to Azure using the environment

variable $CP and sets the cloudIdentity using the environment variable $CI:

helm install trident trident-operator-100.6.0.tgz --set

cloudProvider=$CP --set cloudIdentity="$CI"

tridentctl

Set the values for cloud provider and cloud identity flags using the following environment variables:

export CP="Azure"

export CI="azure.workload.identity/client-id: xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxx"

The following example installs Trident and sets the cloud-provider flag to $CP, and cloud-

identity to $CI:

14



tridentctl install --cloud-provider=$CP --cloud-identity="$CI" -n

trident

Prepare to configure an Azure NetApp Files backend

Before you can configure your Azure NetApp Files backend, you need to ensure the

following requirements are met.

Prerequisites for NFS and SMB volumes

If you are using Azure NetApp Files for the first time or in a new location, some initial configuration is required

to set up Azure NetApp files and create an NFS volume. Refer to Azure: Set up Azure NetApp Files and create

an NFS volume.

To configure and use an Azure NetApp Files backend, you need the following:

• subscriptionID, tenantID, clientID, location, and clientSecret are optional

when using managed identities on an AKS cluster.

• tenantID, clientID, and clientSecret are optional when using a cloud identity on an

AKS cluster.

• A capacity pool. Refer to Microsoft: Create a capacity pool for Azure NetApp Files.

• A subnet delegated to Azure NetApp Files. Refer to Microsoft: Delegate a subnet to Azure NetApp Files.

• subscriptionID from an Azure subscription with Azure NetApp Files enabled.

• tenantID, clientID, and clientSecret from an App Registration in Azure Active Directory with

sufficient permissions to the Azure NetApp Files service. The App Registration should use either:

◦ The Owner or Contributor role predefined by Azure.

◦ A custom Contributor role at the subscription level (assignableScopes) with the following

permissions that are limited to only what Trident requires. After creating the custom role, assign the

role using the Azure portal.

15

https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://azure.microsoft.com/en-us/services/netapp/
https://learn.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-set-up-capacity-pool
https://learn.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://learn.microsoft.com/en-us/azure/role-based-access-control/custom-roles-portal
https://learn.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal
https://learn.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal


Custom contributor role

{

  "id": "/subscriptions/<subscription-

id>/providers/Microsoft.Authorization/roleDefinitions/<role-

definition-id>",

  "properties": {

    "roleName": "custom-role-with-limited-perms",

    "description": "custom role providing limited permissions",

    "assignableScopes": [

      "/subscriptions/<subscription-id>"

    ],

    "permissions": [

      {

        "actions": [

          "Microsoft.NetApp/netAppAccounts/capacityPools/read",

          "Microsoft.NetApp/netAppAccounts/capacityPools/write",

 

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/read",

 

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/write",

 

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/delete",

 

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/

read",

 

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/

write",

 

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/

delete",

 

"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/MountTarge

ts/read",

          "Microsoft.Network/virtualNetworks/read",

          "Microsoft.Network/virtualNetworks/subnets/read",

 

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrat

ions/read",

 

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrat

ions/write",

 

"Microsoft.Features/featureProviders/subscriptionFeatureRegistrat

ions/delete",

16



          "Microsoft.Features/features/read",

          "Microsoft.Features/operations/read",

          "Microsoft.Features/providers/features/read",

 

"Microsoft.Features/providers/features/register/action",

 

"Microsoft.Features/providers/features/unregister/action",

 

"Microsoft.Features/subscriptionFeatureRegistrations/read"

        ],

        "notActions": [],

        "dataActions": [],

        "notDataActions": []

      }

    ]

  }

}

• The Azure location that contains at least one delegated subnet. As of Trident 22.01, the location

parameter is a required field at the top level of the backend configuration file. Location values specified in

virtual pools are ignored.

• To use Cloud Identity, get the client ID from a user-assigned managed identity and specify that ID

in azure.workload.identity/client-id: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx.

Additional requirements for SMB volumes

To create an SMB volume, you must have:

• Active Directory configured and connected to Azure NetApp Files. Refer to Microsoft: Create and manage

Active Directory connections for Azure NetApp Files.

• A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows

Server 2022. Trident supports SMB volumes mounted to pods running on Windows nodes only.

• At least one Trident secret containing your Active Directory credentials so Azure NetApp Files can

authenticate to Active Directory. To generate secret smbcreds:

kubectl create secret generic smbcreds --from-literal username=user

--from-literal password='password'

• A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or

GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

Azure NetApp Files backend configuration options and examples

Learn about NFS and SMB backend configuration options for Azure NetApp Files and

review configuration examples.

17

https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet
https://learn.microsoft.com/en-us/entra/identity/managed-identities-azure-resources/how-manage-user-assigned-managed-identities
https://learn.microsoft.com/en-us/azure/azure-netapp-files/create-active-directory-connections
https://learn.microsoft.com/en-us/azure/azure-netapp-files/create-active-directory-connections
https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md


Backend configuration options

Trident uses your backend configuration (subnet, virtual network, service level, and location), to create Azure

NetApp Files volumes on capacity pools that are available in the requested location and match the requested

service level and subnet.

Azure NetApp Files backends provide these configuration options.

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver "azure-netapp-files"

backendName Custom name or the storage

backend

Driver name + "_" + random

characters

subscriptionID The subscription ID from your

Azure subscription

Optional when managed identities

is enabled on an AKS cluster.

tenantID The tenant ID from an App

Registration

Optional when managed identities

or cloud identity is used on an AKS

cluster.

clientID The client ID from an App

Registration

Optional when managed identities

or cloud identity is used on an AKS

cluster.

clientSecret The client secret from an App

Registration

Optional when managed identities

or cloud identity is used on an AKS

cluster.

serviceLevel One of Standard, Premium, or

Ultra

"" (random)

location Name of the Azure location where

the new volumes will be created

Optional when managed identities

is enabled on an AKS cluster.

resourceGroups List of resource groups for filtering

discovered resources

"[]" (no filter)

netappAccounts List of NetApp accounts for filtering

discovered resources

"[]" (no filter)

18



Parameter Description Default

capacityPools List of capacity pools for filtering

discovered resources

"[]" (no filter, random)

virtualNetwork Name of a virtual network with a

delegated subnet

""

subnet Name of a subnet delegated to

Microsoft.Netapp/volumes

""

networkFeatures Set of VNet features for a volume,

may be Basic or Standard.

Network Features is not available in

all regions and might have to be

enabled in a subscription.

Specifying networkFeatures

when the functionality is not

enabled causes volume

provisioning to fail.

""

nfsMountOptions Fine-grained control of NFS mount

options.

Ignored for SMB volumes.

To mount volumes using NFS

version 4.1, include nfsvers=4 in

the comma-delimited mount options

list to choose NFS v4.1.

Mount options set in a storage

class definition override mount

options set in backend

configuration.

"nfsvers=3"

limitVolumeSize Fail provisioning if the requested

volume size is above this value

"" (not enforced by default)

debugTraceFlags Debug flags to use when

troubleshooting. Example,

\{"api": false, "method":

true, "discovery": true}.

Do not use this unless you are

troubleshooting and require a

detailed log dump.

null

nasType Configure NFS or SMB volumes

creation.

Options are nfs, smb or null.

Setting to null defaults to NFS

volumes.

nfs

19



Parameter Description Default

supportedTopologies Represents a list of regions and

zones that are supported by this

backend.

For more information, refer to Use

CSI Topology.

qosType Represents the QoS type: Auto or

Manual.

Auto

maxThroughput Sets the maximum throughput

allowed in MiB/sec.

Supported only for manual QoS

capacity pools.

4 MiB/sec

For more information on Network Features, refer to Configure network features for an Azure

NetApp Files volume.

Required permissions and resources

If you receive a "No capacity pools found" error when creating a PVC, it is likely your app registration doesn’t

have the required permissions and resources (subnet, virtual network, capacity pool) associated. If debug is

enabled, Trident will log the Azure resources discovered when the backend is created. Verify an appropriate

role is being used.

The values for resourceGroups, netappAccounts, capacityPools, virtualNetwork, and subnet

can be specified using short or fully-qualified names. Fully-qualified names are recommended in most

situations as short names can match multiple resources with the same name.

If the vNet is located in a different resource group from the Azure NetApp Files (ANF) storage

account, specify the resource group for the virtual network while configuring the resourceGroups

list for the backend.

The resourceGroups, netappAccounts, and capacityPools values are filters that restrict the set of

discovered resources to those available to this storage backend and may be specified in any combination.

Fully-qualified names follow this format:

Type Format

Resource group <resource group>

NetApp account <resource group>/<netapp account>

Capacity pool <resource group>/<netapp account>/<capacity pool>

Virtual network <resource group>/<virtual network>

Subnet <resource group>/<virtual network>/<subnet>

Volume provisioning

You can control default volume provisioning by specifying the following options in a special section of the

configuration file. Refer to Example configurations for details.

20

https://docs.microsoft.com/en-us/azure/azure-netapp-files/configure-network-features
https://docs.microsoft.com/en-us/azure/azure-netapp-files/configure-network-features


Parameter Description Default

exportRule Export rules for new volumes.

exportRule must be a comma-

separated list of any combination of

IPv4 addresses or IPv4 subnets in

CIDR notation.

Ignored for SMB volumes.

"0.0.0.0/0"

snapshotDir Controls visibility of the .snapshot

directory
"true" for NFSv4

"false" for NFSv3

size The default size of new volumes "100G"

unixPermissions The unix permissions of new

volumes (4 octal digits).

Ignored for SMB volumes.

"" (preview feature, requires

whitelisting in subscription)

Example configurations

The following examples show basic configurations that leave most parameters to default. This is the easiest

way to define a backend.

Minimal configuration

This is the absolute minimum backend configuration. With this configuration, Trident discovers all of your

NetApp accounts, capacity pools, and subnets delegated to Azure NetApp Files in the configured

location, and places new volumes on one of those pools and subnets randomly. Because nasType is

omitted, the nfs default applies and the backend will provision for NFS volumes.

This configuration is ideal when you are just getting started with Azure NetApp Files and trying things out,

but in practice you are going to want to provide additional scoping for the volumes you provision.

---

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  name: backend-tbc-anf-1

  namespace: trident

spec:

  version: 1

  storageDriverName: azure-netapp-files

  subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

  tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf

  clientID: dd043f63-bf8e-fake-8076-8de91e5713aa

  clientSecret: SECRET

  location: eastus

21



Managed identities for AKS

This backend configuration omits subscriptionID, tenantID, clientID, and clientSecret, which

are optional when using managed identities.

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  name: backend-tbc-anf-1

  namespace: trident

spec:

  version: 1

  storageDriverName: azure-netapp-files

  capacityPools:

    - resource-group-1/netapp-account-1/ultra-pool

  resourceGroups:

    - resource-group-1

  netappAccounts:

    -  resource-group-1/netapp-account-1

  virtualNetwork: resource-group-1/eastus-prod-vnet

  subnet: resource-group-1/eastus-prod-vnet/eastus-anf-subnet

22



Cloud identity for AKS

This backend configuration omits tenantID, clientID, and clientSecret, which are optional when

using a cloud identity.

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  name: backend-tbc-anf-1

  namespace: trident

spec:

  version: 1

  storageDriverName: azure-netapp-files

  capacityPools:

    - ultra-pool

  resourceGroups:

    - aks-ami-eastus-rg

  netappAccounts:

    - smb-na

  virtualNetwork: eastus-prod-vnet

  subnet: eastus-anf-subnet

  location: eastus

  subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

Specific service level configuration with capacity pool filters

This backend configuration places volumes in Azure’s eastus location in an Ultra capacity pool.

Trident automatically discovers all of the subnets delegated to Azure NetApp Files in that location and

places a new volume on one of them randomly.

---

version: 1

storageDriverName: azure-netapp-files

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf

clientID: dd043f63-bf8e-fake-8076-8de91e5713aa

clientSecret: SECRET

location: eastus

serviceLevel: Ultra

capacityPools:

  - application-group-1/account-1/ultra-1

  - application-group-1/account-1/ultra-2

23



Backend example with manual QoS capacity pools

This backend configuration places volumes in Azure’s eastus location with manual QoS capacity pools.

---

version: 1

storageDriverName: azure-netapp-files

backendName: anf1

location: eastus

labels:

  clusterName: test-cluster-1

  cloud: anf

  nasType: nfs

defaults:

  qosType: Manual

storage:

  - serviceLevel: Ultra

    labels:

      performance: gold

    defaults:

      maxThroughput: 10

  - serviceLevel: Premium

    labels:

      performance: silver

    defaults:

      maxThroughput: 5

  - serviceLevel: Standard

    labels:

      performance: bronze

    defaults:

      maxThroughput: 3

24



Advanced configuration

This backend configuration further reduces the scope of volume placement to a single subnet, and also

modifies some volume provisioning defaults.

---

version: 1

storageDriverName: azure-netapp-files

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf

clientID: dd043f63-bf8e-fake-8076-8de91e5713aa

clientSecret: SECRET

location: eastus

serviceLevel: Ultra

capacityPools:

  - application-group-1/account-1/ultra-1

  - application-group-1/account-1/ultra-2

virtualNetwork: application-group-1/eastus-prod-vnet

subnet: application-group-1/eastus-prod-vnet/my-subnet

networkFeatures: Standard

nfsMountOptions: vers=3,proto=tcp,timeo=600

limitVolumeSize: 500Gi

defaults:

  exportRule: 10.0.0.0/24,10.0.1.0/24,10.0.2.100

  snapshotDir: "true"

  size: 200Gi

  unixPermissions: "0777"

25



Virtual pool configuration

This backend configuration defines multiple storage pools in a single file. This is useful when you have

multiple capacity pools supporting different service levels and you want to create storage classes in

Kubernetes that represent those. Virtual pool labels were used to differentiate the pools based on

performance.

---

version: 1

storageDriverName: azure-netapp-files

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf

clientID: dd043f63-bf8e-fake-8076-8de91e5713aa

clientSecret: SECRET

location: eastus

resourceGroups:

  - application-group-1

networkFeatures: Basic

nfsMountOptions: vers=3,proto=tcp,timeo=600

labels:

  cloud: azure

storage:

  - labels:

      performance: gold

    serviceLevel: Ultra

    capacityPools:

      - application-group-1/netapp-account-1/ultra-1

      - application-group-1/netapp-account-1/ultra-2

    networkFeatures: Standard

  - labels:

      performance: silver

    serviceLevel: Premium

    capacityPools:

      - application-group-1/netapp-account-1/premium-1

  - labels:

      performance: bronze

    serviceLevel: Standard

    capacityPools:

      - application-group-1/netapp-account-1/standard-1

      - application-group-1/netapp-account-1/standard-2

26



Supported topologies configuration

Trident facilitates provisioning of volumes for workloads based on regions and availability zones. The

supportedTopologies block in this backend configuration is used to provide a list of regions and

zones per backend. The region and zone values specified here must match the region and zone values

from the labels on each Kubernetes cluster node. These regions and zones represent the list of

permissible values that can be provided in a storage class. For storage classes that contain a subset of

the regions and zones provided in a backend, Trident creates volumes in the mentioned region and zone.

For more information, refer to Use CSI Topology.

---

version: 1

storageDriverName: azure-netapp-files

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf

clientID: dd043f63-bf8e-fake-8076-8de91e5713aa

clientSecret: SECRET

location: eastus

serviceLevel: Ultra

capacityPools:

  - application-group-1/account-1/ultra-1

  - application-group-1/account-1/ultra-2

supportedTopologies:

  - topology.kubernetes.io/region: eastus

    topology.kubernetes.io/zone: eastus-1

  - topology.kubernetes.io/region: eastus

    topology.kubernetes.io/zone: eastus-2

Storage class definitions

The following StorageClass definitions refer to the storage pools above.

Example definitions using parameter.selector field

Using parameter.selector you can specify for each StorageClass the virtual pool that is used to host a

volume. The volume will have the aspects defined in the chosen pool.

27



---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: gold

provisioner: csi.trident.netapp.io

parameters:

  selector: performance=gold

allowVolumeExpansion: true

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: silver

provisioner: csi.trident.netapp.io

parameters:

  selector: performance=silver

allowVolumeExpansion: true

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: bronze

provisioner: csi.trident.netapp.io

parameters:

  selector: performance=bronze

allowVolumeExpansion: true

Example definitions for SMB volumes

Using nasType, node-stage-secret-name, and node-stage-secret-namespace, you can specify an

SMB volume and provide the required Active Directory credentials.

28



Basic configuration on default namespace

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: anf-sc-smb

provisioner: csi.trident.netapp.io

parameters:

  backendType: "azure-netapp-files"

  trident.netapp.io/nasType: "smb"

  csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

  csi.storage.k8s.io/node-stage-secret-namespace: "default"

Using different secrets per namespace

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: anf-sc-smb

provisioner: csi.trident.netapp.io

parameters:

  backendType: "azure-netapp-files"

  trident.netapp.io/nasType: "smb"

  csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

  csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

Using different secrets per volume

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: anf-sc-smb

provisioner: csi.trident.netapp.io

parameters:

  backendType: "azure-netapp-files"

  trident.netapp.io/nasType: "smb"

  csi.storage.k8s.io/node-stage-secret-name: ${pvc.name}

  csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

29



nasType: smb filters for pools which support SMB volumes. nasType: nfs or nasType:

null filters for NFS pools.

Create the backend

After you create the backend configuration file, run the following command:

tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to

determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Google Cloud NetApp Volumes

Configure a Google Cloud NetApp Volumes backend

You can now configure Google Cloud NetApp Volumes as the backend for Trident. You

can attach NFS and SMB volumes using a Google Cloud NetApp Volumes backend.

Google Cloud NetApp Volumes driver details

Trident provides the google-cloud-netapp-volumes driver to communicate with the cluster. Supported

access modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX),

ReadWriteOncePod (RWOP).

Driver Protocol volumeMod

e

Access modes

supported

File systems supported

google-cloud-

netapp-volumes

NFS

SMB

Filesystem RWO, ROX, RWX, RWOP nfs, smb

Cloud identity for GKE

Cloud identity enables Kubernetes pods to access Google Cloud resources by authenticating as a workload

identity instead of by providing explicit Google Cloud credentials.

To take advantage of cloud identity in Google Cloud, you must have:

• A Kubernetes cluster deployed using GKE.

• Workload identity configured on the GKE cluster and GKE MetaData Server configured on the node pools.

• A GCP Service account with the Google Cloud NetApp Volumes Admin (roles/netapp.admin) role or a

custom role.

• Trident installed that includes the cloudProvider to specify "GCP" and cloudIdentity specifying the new GCP

30



service account. An example is given below.

31



Trident operator

To install Trident using the Trident operator, edit tridentorchestrator_cr.yaml to set

cloudProvider to "GCP" and set cloudIdentity to iam.gke.io/gcp-service-account:

cloudvolumes-admin-sa@mygcpproject.iam.gserviceaccount.com.

For example:

apiVersion: trident.netapp.io/v1

kind: TridentOrchestrator

metadata:

  name: trident

spec:

  debug: true

  namespace: trident

  imagePullPolicy: IfNotPresent

  cloudProvider: "GCP"

  cloudIdentity: 'iam.gke.io/gcp-service-account: cloudvolumes-

admin-sa@mygcpproject.iam.gserviceaccount.com'

Helm

Set the values for cloud-provider (CP) and cloud-identity (CI) flags using the following environment

variables:

export CP="GCP"

export ANNOTATION="'iam.gke.io/gcp-service-account: cloudvolumes-admin-

sa@mygcpproject.iam.gserviceaccount.com'"

The following example installs Trident and sets cloudProvider to GCP using the environment

variable $CP and sets the cloudIdentity using the environment variable $ANNOTATION:

helm install trident trident-operator-100.6.0.tgz --set

cloudProvider=$CP --set cloudIdentity="$ANNOTATION"

tridentctl

Set the values for cloud provider and cloud identity flags using the following environment variables:

export CP="GCP"

export ANNOTATION="'iam.gke.io/gcp-service-account: cloudvolumes-admin-

sa@mygcpproject.iam.gserviceaccount.com'"

The following example installs Trident and sets the cloud-provider flag to $CP, and cloud-

identity to $ANNOTATION:

32



tridentctl install --cloud-provider=$CP --cloud

-identity="$ANNOTATION" -n trident

Prepare to configure a Google Cloud NetApp Volumes backend

Before you can configure your Google Cloud NetApp Volumes backend, you need to

ensure the following requirements are met.

Prerequisites for NFS volumes

If you are using Google Cloud NetApp Volumes for the first time or in a new location, some initial configuration

is required to set up Google Cloud NetApp Volumes and create an NFS volume. Refer to Before you begin.

Ensure that you have the following before configuring Google Cloud NetApp Volumes backend:

• A Google Cloud account configured with Google Cloud NetApp Volumes service. Refer to Google Cloud

NetApp Volumes.

• Project number of your Google Cloud account. Refer to Identifying projects.

• A Google Cloud service account with the NetApp Volumes Admin (roles/netapp.admin) role. Refer to

Identity and Access Management roles and permissions.

• API key file for your GCNV account. Refer to Create a service account key

• A storage pool. Refer to Storage pools overview .

For more information about how to set up access to Google Cloud NetApp Volumes, refer to Set up access to

Google Cloud NetApp Volumes.

Google Cloud NetApp Volumes backend configuration options and examples

Learn about backend configuration options for Google Cloud NetApp Volumes and review

configuration examples.

Backend configuration options

Each backend provisions volumes in a single Google Cloud region. To create volumes in other regions, you

can define additional backends.

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver The value of

storageDriverName

must be specified as

"google-cloud-netapp-

volumes".

backendName (Optional) Custom name of the storage backend Driver name + "_" + part

of API key

33

https://cloud.google.com/netapp/volumes/docs/before-you-begin/application-resilience
https://cloud.google.com/netapp-volumes
https://cloud.google.com/netapp-volumes
https://cloud.google.com/resource-manager/docs/creating-managing-projects#identifying_projects
https://cloud.google.com/netapp/volumes/docs/get-started/configure-access/iam#roles_and_permissions
https://cloud.google.com/iam/docs/keys-create-delete#creating
https://cloud.google.com/netapp/volumes/docs/configure-and-use/storage-pools/overview
https://cloud.google.com/netapp/volumes/docs/get-started/configure-access/workflow#before_you_begin
https://cloud.google.com/netapp/volumes/docs/get-started/configure-access/workflow#before_you_begin


Parameter Description Default

storagePools Optional parameter used to specify storage pools for

volume creation.

projectNumber Google Cloud account project number. The value is

found on the Google Cloud portal home page.

location The Google Cloud location where Trident creates

GCNV volumes. When creating cross-region

Kubernetes clusters, volumes created in a location

can be used in workloads scheduled on nodes across

multiple Google Cloud regions.

Cross-region traffic incurs an additional cost.

apiKey API key for the Google Cloud service account with the

netapp.admin role.

It includes the JSON-formatted contents of a Google

Cloud service account’s private key file (copied

verbatim into the backend configuration file).

The apiKey must include key-value pairs for the

following keys: type, project_id, client_email,

client_id, auth_uri, token_uri,

auth_provider_x509_cert_url, and

client_x509_cert_url.

nfsMountOptions Fine-grained control of NFS mount options. "nfsvers=3"

limitVolumeSize Fail provisioning if the requested volume size is above

this value.

"" (not enforced by

default)

serviceLevel The service level of a storage pool and its volumes.

The values are flex, standard, premium, or

extreme.

labels Set of arbitrary JSON-formatted labels to apply on

volumes

""

network Google Cloud network used for GCNV volumes.

debugTraceFlags Debug flags to use when troubleshooting. Example,

{"api":false, "method":true}.

Do not use this unless you are troubleshooting and

require a detailed log dump.

null

nasType Configure NFS or SMB volumes creation.

Options are nfs, smb or null. Setting to null defaults

to NFS volumes.

nfs

34



Parameter Description Default

supportedTopologies Represents a list of regions and zones that are

supported by this backend.

For more information, refer to Use CSI Topology.

For example:

supportedTopologies:

- topology.kubernetes.io/region: asia-

east1

topology.kubernetes.io/zone: asia-east1-

a

Volume provisioning options

You can control default volume provisioning in the defaults section of the configuration file.

Parameter Description Default

exportRule The export rules for new volumes.

Must be a comma-separated list of

any combination of IPv4 addresses.

"0.0.0.0/0"

snapshotDir Access to the .snapshot directory "true" for NFSv4

"false" for NFSv3

snapshotReserve Percentage of volume reserved for

snapshots

"" (accept default of 0)

unixPermissions The unix permissions of new

volumes (4 octal digits).

""

Example configurations

The following examples show basic configurations that leave most parameters to default. This is the easiest

way to define a backend.

35



Minimal configuration

This is the absolute minimum backend configuration. With this configuration, Trident discovers all of your

storage pools delegated to Google Cloud NetApp Volumes in the configured location, and places new

volumes on one of those pools randomly. Because nasType is omitted, the nfs default applies and the

backend will provision for NFS volumes.

This configuration is ideal when you are just getting started with Google Cloud NetApp Volumes and

trying things out, but in practice you will most likely need to provide additional scoping for the volumes you

provision.

36



---

apiVersion: v1

kind: Secret

metadata:

  name: backend-tbc-gcnv-secret

type: Opaque

stringData:

  private_key_id: f2cb6ed6d7cc10c453f7d3406fc700c5df0ab9ec

  private_key: |

    -----BEGIN PRIVATE KEY-----

    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

    XsYg6gyxy4zq7OlwWgLwGa==

    -----END PRIVATE KEY-----

---

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  name: backend-tbc-gcnv

spec:

  version: 1

  storageDriverName: google-cloud-netapp-volumes

  projectNumber: "123455380079"

  location: europe-west6

  serviceLevel: premium

  apiKey:

    type: service_account

    project_id: my-gcnv-project

    client_email: myproject-prod@my-gcnv-

project.iam.gserviceaccount.com

    client_id: "103346282737811234567"

    auth_uri: https://accounts.google.com/o/oauth2/auth

    token_uri: https://oauth2.googleapis.com/token

    auth_provider_x509_cert_url:

https://www.googleapis.com/oauth2/v1/certs

    client_x509_cert_url:

https://www.googleapis.com/robot/v1/metadata/x509/myproject-prod%40my-

gcnv-project.iam.gserviceaccount.com

  credentials:

    name: backend-tbc-gcnv-secret

37



Configuration for SMB volumes

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  name: backend-tbc-gcnv1

  namespace: trident

spec:

  version: 1

  storageDriverName: google-cloud-netapp-volumes

  projectNumber: "123456789"

  location: asia-east1

  serviceLevel: flex

  nasType: smb

  apiKey:

    type: service_account

    project_id: cloud-native-data

    client_email: trident-sample@cloud-native-

data.iam.gserviceaccount.com

    client_id: "123456789737813416734"

    auth_uri: https://accounts.google.com/o/oauth2/auth

    token_uri: https://oauth2.googleapis.com/token

    auth_provider_x509_cert_url:

https://www.googleapis.com/oauth2/v1/certs

    client_x509_cert_url:

https://www.googleapis.com/robot/v1/metadata/x509/trident-

sample%40cloud-native-data.iam.gserviceaccount.com

  credentials:

    name: backend-tbc-gcnv-secret

38



Configuration with StoragePools filter

39



---

apiVersion: v1

kind: Secret

metadata:

  name: backend-tbc-gcnv-secret

type: Opaque

stringData:

  private_key_id: f2cb6ed6d7cc10c453f7d3406fc700c5df0ab9ec

  private_key: |

    -----BEGIN PRIVATE KEY-----

    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

    XsYg6gyxy4zq7OlwWgLwGa==

    -----END PRIVATE KEY-----

---

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  name: backend-tbc-gcnv

spec:

  version: 1

  storageDriverName: google-cloud-netapp-volumes

  projectNumber: "123455380079"

  location: europe-west6

  serviceLevel: premium

  storagePools:

    - premium-pool1-europe-west6

    - premium-pool2-europe-west6

  apiKey:

    type: service_account

    project_id: my-gcnv-project

    client_email: myproject-prod@my-gcnv-

project.iam.gserviceaccount.com

    client_id: "103346282737811234567"

    auth_uri: https://accounts.google.com/o/oauth2/auth

    token_uri: https://oauth2.googleapis.com/token

    auth_provider_x509_cert_url:

https://www.googleapis.com/oauth2/v1/certs

    client_x509_cert_url:

https://www.googleapis.com/robot/v1/metadata/x509/myproject-prod%40my-

gcnv-project.iam.gserviceaccount.com

  credentials:

    name: backend-tbc-gcnv-secret

40



Virtual pool configuration

This backend configuration defines multiple virtual pools in a single file. Virtual pools are defined in the

storage section. They are useful when you have multiple storage pools supporting different service

levels and you want to create storage classes in Kubernetes that represent those. Virtual pool labels are

used to differentiate the pools. For instance, in the example below performance label and

serviceLevel type is used to differentiate virtual pools.

You can also set some default values to be applicable to all virtual pools, and overwrite the default values

for individual virtual pools. In the following example, snapshotReserve and exportRule serve as

defaults for all virtual pools.

For more information, refer to Virtual pools.

---

apiVersion: v1

kind: Secret

metadata:

  name: backend-tbc-gcnv-secret

type: Opaque

stringData:

  private_key_id: f2cb6ed6d7cc10c453f7d3406fc700c5df0ab9ec

  private_key: |

    -----BEGIN PRIVATE KEY-----

    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

    znHczZsrrtHisIsAbOguSaPIKeyAZNchRAGzlzZE4jK3bl/qp8B4Kws8zX5ojY9m

    XsYg6gyxy4zq7OlwWgLwGa==

    -----END PRIVATE KEY-----

---

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  name: backend-tbc-gcnv

spec:

  version: 1

  storageDriverName: google-cloud-netapp-volumes

  projectNumber: "123455380079"

  location: europe-west6

  apiKey:

    type: service_account

    project_id: my-gcnv-project

    client_email: myproject-prod@my-gcnv-

project.iam.gserviceaccount.com

    client_id: "103346282737811234567"

41

https://docs.netapp.com/us-en/trident/trident-concepts/virtual-storage-pool.html


    auth_uri: https://accounts.google.com/o/oauth2/auth

    token_uri: https://oauth2.googleapis.com/token

    auth_provider_x509_cert_url:

https://www.googleapis.com/oauth2/v1/certs

    client_x509_cert_url:

https://www.googleapis.com/robot/v1/metadata/x509/myproject-prod%40my-

gcnv-project.iam.gserviceaccount.com

  credentials:

    name: backend-tbc-gcnv-secret

  defaults:

    snapshotReserve: "10"

    exportRule: 10.0.0.0/24

  storage:

    - labels:

        performance: extreme

      serviceLevel: extreme

      defaults:

        snapshotReserve: "5"

        exportRule: 0.0.0.0/0

    - labels:

        performance: premium

      serviceLevel: premium

    - labels:

        performance: standard

      serviceLevel: standard

Cloud identity for GKE

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  name: backend-tbc-gcp-gcnv

spec:

  version: 1

  storageDriverName: google-cloud-netapp-volumes

  projectNumber: '012345678901'

  network: gcnv-network

  location: us-west2

  serviceLevel: Premium

  storagePool: pool-premium1

42



Supported topologies configuration

Trident facilitates provisioning of volumes for workloads based on regions and availability zones. The

supportedTopologies block in this backend configuration is used to provide a list of regions and

zones per backend. The region and zone values specified here must match the region and zone values

from the labels on each Kubernetes cluster node. These regions and zones represent the list of

permissible values that can be provided in a storage class. For storage classes that contain a subset of

the regions and zones provided in a backend, Trident creates volumes in the mentioned region and zone.

For more information, refer to Use CSI Topology.

---

version: 1

storageDriverName: google-cloud-netapp-volumes

subscriptionID: 9f87c765-4774-fake-ae98-a721add45451

tenantID: 68e4f836-edc1-fake-bff9-b2d865ee56cf

clientID: dd043f63-bf8e-fake-8076-8de91e5713aa

clientSecret: SECRET

location: asia-east1

serviceLevel: flex

supportedTopologies:

  - topology.kubernetes.io/region: asia-east1

    topology.kubernetes.io/zone: asia-east1-a

  - topology.kubernetes.io/region: asia-east1

    topology.kubernetes.io/zone: asia-east1-b

What’s next?

After you create the backend configuration file, run the following command:

kubectl create -f <backend-file>

To verify that the backend is successfully created, run the following command:

kubectl get tridentbackendconfig

NAME               BACKEND NAME       BACKEND UUID

PHASE   STATUS

backend-tbc-gcnv   backend-tbc-gcnv   b2fd1ff9-b234-477e-88fd-713913294f65

Bound   Success

If the backend creation fails, something is wrong with the backend configuration. You can describe the backend

using the kubectl get tridentbackendconfig <backend-name> command or view the logs to

determine the cause by running the following command:

43



tridentctl logs

After you identify and correct the problem with the configuration file, you can delete the backend and run the

create command again.

Storage class definitions

The following is a basic StorageClass definition that refers to the backend above.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: gcnv-nfs-sc

provisioner: csi.trident.netapp.io

parameters:

  backendType: "google-cloud-netapp-volumes"

Example definitions using the parameter.selector field:

Using parameter.selector you can specify for each StorageClass the virtual pool that is used to host a

volume. The volume will have the aspects defined in the chosen pool.

44

https://docs.netapp.com/us-en/trident/trident-concepts/virtual-storage-pool.html


apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: extreme-sc

provisioner: csi.trident.netapp.io

parameters:

  selector: performance=extreme

  backendType: google-cloud-netapp-volumes

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: premium-sc

provisioner: csi.trident.netapp.io

parameters:

  selector: performance=premium

  backendType: google-cloud-netapp-volumes

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: standard-sc

provisioner: csi.trident.netapp.io

parameters:

  selector: performance=standard

  backendType: google-cloud-netapp-volumes

For more details on storage classes, refer to Create a storage class.

Example definitions for SMB volumes

Using nasType, node-stage-secret-name, and node-stage-secret-namespace, you can specify an

SMB volume and provide the required Active Directory credentials. Any Active Directory user/password with

any/no permissions can be used for the node stage secret.

45



Basic configuration on default namespace

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: gcnv-sc-smb

provisioner: csi.trident.netapp.io

parameters:

  backendType: "google-cloud-netapp-volumes"

  trident.netapp.io/nasType: "smb"

  csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

  csi.storage.k8s.io/node-stage-secret-namespace: "default"

Using different secrets per namespace

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: gcnv-sc-smb

provisioner: csi.trident.netapp.io

parameters:

  backendType: "google-cloud-netapp-volumes"

  trident.netapp.io/nasType: "smb"

  csi.storage.k8s.io/node-stage-secret-name: "smbcreds"

  csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

Using different secrets per volume

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: gcnv-sc-smb

provisioner: csi.trident.netapp.io

parameters:

  backendType: "google-cloud-netapp-volumes"

  trident.netapp.io/nasType: "smb"

  csi.storage.k8s.io/node-stage-secret-name: ${pvc.name}

  csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}

46



nasType: smb filters for pools which support SMB volumes. nasType: nfs or nasType:

null filters for NFS pools.

PVC definition example

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: gcnv-nfs-pvc

spec:

  accessModes:

    - ReadWriteMany

  resources:

    requests:

      storage: 100Gi

  storageClassName: gcnv-nfs-sc

To verify if the PVC is bound, run the following command:

kubectl get pvc gcnv-nfs-pvc

NAME          STATUS   VOLUME                                    CAPACITY

ACCESS MODES   STORAGECLASS AGE

gcnv-nfs-pvc  Bound    pvc-b00f2414-e229-40e6-9b16-ee03eb79a213  100Gi

RWX            gcnv-nfs-sc  1m

Configure a NetApp HCI or SolidFire backend

Learn how to create and use an Element backend with your Trident installation.

Element driver details

Trident provides the solidfire-san storage driver to communicate with the cluster. Supported access

modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWriteOncePod

(RWOP).

The solidfire-san storage driver supports file and block volume modes. For the Filesystem

volumeMode, Trident creates a volume and creates a filesystem. The filesystem type is specified by the

StorageClass.

Driver Protocol VolumeMode Access modes

supported

File systems

supported

solidfire-san iSCSI Block RWO, ROX, RWX,

RWOP

No Filesystem. Raw

block device.

47



Driver Protocol VolumeMode Access modes

supported

File systems

supported

solidfire-san iSCSI Filesystem RWO, RWOP xfs, ext3, ext4

Before you begin

You’ll need the following before creating an Element backend.

• A supported storage system that runs Element software.

• Credentials to a NetApp HCI/SolidFire cluster admin or tenant user that can manage volumes.

• All of your Kubernetes worker nodes should have the appropriate iSCSI tools installed. Refer to worker

node preparation information.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver Always "solidfire-san"

backendName Custom name or the storage

backend

"solidfire_" + storage (iSCSI) IP

address

Endpoint MVIP for the SolidFire cluster with

tenant credentials

SVIP Storage (iSCSI) IP address and

port

labels Set of arbitrary JSON-formatted

labels to apply on volumes.

""

TenantName Tenant name to use (created if not

found)

InitiatorIFace Restrict iSCSI traffic to a specific

host interface

"default"

UseCHAP Use CHAP to authenticate iSCSI.

Trident uses CHAP.

true

AccessGroups List of Access Group IDs to use Finds the ID of an access group

named "trident"

Types QoS specifications

limitVolumeSize Fail provisioning if requested

volume size is above this value

"" (not enforced by default)

debugTraceFlags Debug flags to use when

troubleshooting. Example,

{"api":false, "method":true}

null

48



Do not use debugTraceFlags unless you are troubleshooting and require a detailed log dump.

Example 1: Backend configuration for solidfire-san driver with three volume types

This example shows a backend file using CHAP authentication and modeling three volume types with specific

QoS guarantees. Most likely you would then define storage classes to consume each of these using the IOPS

storage class parameter.

---

version: 1

storageDriverName: solidfire-san

Endpoint: https://<user>:<password>@<mvip>/json-rpc/8.0

SVIP: <svip>:3260

TenantName: <tenant>

labels:

  k8scluster: dev1

  backend: dev1-element-cluster

UseCHAP: true

Types:

  - Type: Bronze

    Qos:

      minIOPS: 1000

      maxIOPS: 2000

      burstIOPS: 4000

  - Type: Silver

    Qos:

      minIOPS: 4000

      maxIOPS: 6000

      burstIOPS: 8000

  - Type: Gold

    Qos:

      minIOPS: 6000

      maxIOPS: 8000

      burstIOPS: 10000

Example 2: Backend and storage class configuration for solidfire-san driver with virtual pools

This example shows the backend definition file configured with virtual pools along with StorageClasses that

refer back to them.

Trident copies labels present on a storage pool to the backend storage LUN at provisioning. For convenience,

storage administrators can define labels per virtual pool and group volumes by label.

In the sample backend definition file shown below, specific defaults are set for all storage pools, which set the

type at Silver. The virtual pools are defined in the storage section. In this example, some of the storage

pools set their own type, and some pools override the default values set above.

49



---

version: 1

storageDriverName: solidfire-san

Endpoint: https://<user>:<password>@<mvip>/json-rpc/8.0

SVIP: <svip>:3260

TenantName: <tenant>

UseCHAP: true

Types:

  - Type: Bronze

    Qos:

      minIOPS: 1000

      maxIOPS: 2000

      burstIOPS: 4000

  - Type: Silver

    Qos:

      minIOPS: 4000

      maxIOPS: 6000

      burstIOPS: 8000

  - Type: Gold

    Qos:

      minIOPS: 6000

      maxIOPS: 8000

      burstIOPS: 10000

type: Silver

labels:

  store: solidfire

  k8scluster: dev-1-cluster

region: us-east-1

storage:

  - labels:

      performance: gold

      cost: "4"

    zone: us-east-1a

    type: Gold

  - labels:

      performance: silver

      cost: "3"

    zone: us-east-1b

    type: Silver

  - labels:

      performance: bronze

      cost: "2"

    zone: us-east-1c

    type: Bronze

  - labels:

      performance: silver

50



      cost: "1"

    zone: us-east-1d

The following StorageClass definitions refer to the above virtual pools. Using the parameters.selector

field, each StorageClass calls out which virtual pool(s) can be used to host a volume. The volume will have the

aspects defined in the chosen virtual pool.

The first StorageClass (solidfire-gold-four) will map to the first virtual pool. This is the only pool offering

gold performance with a Volume Type QoS of Gold. The last StorageClass (solidfire-silver) calls out

any storage pool which offers a silver performance. Trident will decide which virtual pool is selected and

ensures the storage requirement is met.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: solidfire-gold-four

provisioner: csi.trident.netapp.io

parameters:

  selector: performance=gold; cost=4

  fsType: ext4

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: solidfire-silver-three

provisioner: csi.trident.netapp.io

parameters:

  selector: performance=silver; cost=3

  fsType: ext4

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: solidfire-bronze-two

provisioner: csi.trident.netapp.io

parameters:

  selector: performance=bronze; cost=2

  fsType: ext4

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: solidfire-silver-one

51



provisioner: csi.trident.netapp.io

parameters:

  selector: performance=silver; cost=1

  fsType: ext4

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: solidfire-silver

provisioner: csi.trident.netapp.io

parameters:

  selector: performance=silver

  fsType: ext4

Find more information

• Volume access groups

ONTAP SAN drivers

ONTAP SAN driver overview

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP

SAN drivers.

ONTAP SAN driver details

Trident provides the following SAN storage drivers to communicate with the ONTAP cluster. Supported access

modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWriteOncePod

(RWOP).

Driver Protocol volumeMod

e

Access modes

supported

File systems supported

ontap-san iSCSI

SCSI over

FC

Block RWO, ROX, RWX, RWOP No filesystem; raw block

device

ontap-san iSCSI

SCSI over

FC

Filesystem RWO, RWOP

ROX and RWX are not

available in Filesystem

volume mode.

xfs, ext3, ext4

52

https://docs.netapp.com/us-en/trident/trident-concepts/vol-access-groups.html


Driver Protocol volumeMod

e

Access modes

supported

File systems supported

ontap-san NVMe/TCP

Refer to

Additional

consideratio

ns for

NVMe/TCP.

Block RWO, ROX, RWX, RWOP No filesystem; raw block

device

ontap-san NVMe/TCP

Refer to

Additional

consideratio

ns for

NVMe/TCP.

Filesystem RWO, RWOP

ROX and RWX are not

available in Filesystem

volume mode.

xfs, ext3, ext4

ontap-san-economy iSCSI Block RWO, ROX, RWX, RWOP No filesystem; raw block

device

ontap-san-economy iSCSI Filesystem RWO, RWOP

ROX and RWX are not

available in Filesystem

volume mode.

xfs, ext3, ext4

• Use ontap-san-economy only if persistent volume usage count is expected to be higher

than supported ONTAP volume limits.

• Use ontap-nas-economy only if persistent volume usage count is expected to be higher

than supported ONTAP volume limits and the ontap-san-economy driver cannot be used.

• Do not use use ontap-nas-economy if you anticipate the need for data protection,

disaster recovery, or mobility.

• NetApp does not recommend using Flexvol autogrow in all ONTAP drivers, except ontap-

san. As a workaround, Trident supports the use of snapshot reserve and scales Flexvol

volumes accordingly.

User permissions

Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster user or a

vsadmin SVM user, or a user with a different name that has the same role. For Amazon FSx for NetApp

ONTAP deployments, Trident expects to be run as either an ONTAP or SVM administrator, using the cluster

fsxadmin user or a vsadmin SVM user, or a user with a different name that has the same role. The

fsxadmin user is a limited replacement for the cluster admin user.

53

https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html
https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html


If you use the limitAggregateUsage parameter, cluster admin permissions are required.

When using Amazon FSx for NetApp ONTAP with Trident, the limitAggregateUsage

parameter will not work with the vsadmin and fsxadmin user accounts. The configuration

operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don’t

recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,

making upgrades difficult and error-prone.

Additional considerations for NVMe/TCP

Trident supports the non-volatile memory express (NVMe) protocol using the ontap-san driver including:

• IPv6

• Snapshots and clones of NVMe volumes

• Resizing an NVMe volume

• Importing an NVMe volume that was created outside of Trident so that its lifecycle can be managed by

Trident

• NVMe-native multipathing

• Graceful or ungraceful shutdown of the K8s nodes (24.06)

Trident does not support:

• DH-HMAC-CHAP that is natively supported by NVMe

• Device mapper (DM) multipathing

• LUKS encryption

NVMe is supported only with ONTAP REST APIs and not supported with ONTAPI (ZAPI).

Prepare to configure backend with ONTAP SAN drivers

Understand the requirements and authentication options for configuring an ONTAP

backend with ONTAP SAN drivers.

Requirements

For all ONTAP backends, Trident requires at least one aggregate be assigned to the SVM.

ASA r2 systems differ from other ONTAP systems (ASA, AFF, and FAS) in the implementation of

their storage layer. In ASA r2 systems, storage availability zones are used instead of

aggregates. Refer to this Knowledge Base article on how to assign aggregates to SVMs in ASA

r2 systems.

Remember that you can also run more than one driver, and create storage classes that point to one or the

other. For example, you could configure a san-dev class that uses the ontap-san driver and a san-

default class that uses the ontap-san-economy one.

All your Kubernetes worker nodes must have the appropriate iSCSI tools installed. Refer to Prepare the worker

node for details.

54

https://docs.netapp.com/us-en/asa-r2/get-started/learn-about.html
https://kb.netapp.com/on-prem/ASAr2/ASAr2_KBs/su_create_by_SVM_admin_using_CLI_fails_with_error_No_candidate_aggregates_are_available_for_storage_services


Authenticate the ONTAP backend

Trident offers two modes of authenticating an ONTAP backend.

• Credential-based: The username and password to an ONTAP user with the required permissions. It is

recommended to use a pre-defined security login role, such as admin or vsadmin to ensure maximum

compatibility with ONTAP versions.

• Certificate-based: Trident can also communicate with an ONTAP cluster using a certificate installed on the

backend. Here, the backend definition must contain Base64-encoded values of the client certificate, key,

and the trusted CA certificate if used (recommended).

You can update existing backends to move between credential-based and certificate-based methods. However,

only one authentication method is supported at a time. To switch to a different authentication method, you must

remove the existing method from the backend configuration.

If you attempt to provide both credentials and certificates, backend creation will fail with an

error that more than one authentication method was provided in the configuration file.

Enable credential-based authentication

Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the ONTAP

backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin. This

ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by future

Trident releases. A custom security login role can be created and used with Trident, but is not recommended.

A sample backend definition will look like this:

55



YAML

---

version: 1

backendName: ExampleBackend

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: svm_nfs

username: vsadmin

password: password

JSON

{

  "version": 1,

  "backendName": "ExampleBackend",

  "storageDriverName": "ontap-san",

  "managementLIF": "10.0.0.1",

  "svm": "svm_nfs",

  "username": "vsadmin",

  "password": "password"

}

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the

backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The

creation or update of a backend is the only step that requires knowledge of the credentials. As such, it is an

admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three

parameters are required in the backend definition.

• clientCertificate: Base64-encoded value of client certificate.

• clientPrivateKey: Base64-encoded value of associated private key.

• trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter

must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to

authenticate as.

56



openssl req -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key

-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=admin"

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage

administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-

name> -vserver <vserver-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled

true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-

name> -vserver <vserver-name>

security ssl modify -vserver <vserver-name> -client-enabled true

After running this command, ONTAP prompts for certificate input. Paste the contents of the

k8senv.pem file generated in step 1, then enter END to complete the installation.

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name admin -application ontapi

-authentication-method cert

security login create -user-or-group-name admin -application http

-authentication-method cert

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>

with Management LIF IP and SVM name.

curl -X POST -Lk https://<ONTAP-Management-

LIF>/servlets/netapp.servlets.admin.XMLrequest_filer --key k8senv.key

--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp

xmlns="http://www.netapp.com/filer/admin" version="1.21"

vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>'

6. Encode certificate, key and trusted CA certificate with Base64.

57



base64 -w 0 k8senv.pem >> cert_base64

base64 -w 0 k8senv.key >> key_base64

base64 -w 0 trustedca.pem >> trustedca_base64

7. Create backend using the values obtained from the previous step.

cat cert-backend.json

{

"version": 1,

"storageDriverName": "ontap-san",

"backendName": "SanBackend",

"managementLIF": "1.2.3.4",

"svm": "vserver_test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",

"clientPrivateKey": "LS0tFaKE...0VaLuES0tLS0K",

"trustedCACertificate": "QNFinfO...SiqOyN",

"storagePrefix": "myPrefix_"

}

tridentctl create backend -f cert-backend.json -n trident

+------------+----------------+--------------------------------------

+--------+---------+

|    NAME    | STORAGE DRIVER |                 UUID                 |

STATE  | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| SanBackend | ontap-san      | 586b1cd5-8cf8-428d-a76c-2872713612c1 |

online |       0 |

+------------+----------------+--------------------------------------

+--------+---------+

Update authentication methods or rotate credentials

You can update an existing backend to use a different authentication method or to rotate their credentials. This

works both ways: backends that make use of username/password can be updated to use certificates;

backends that utilize certificates can be updated to username/password based. To do this, you must remove

the existing authentication method and add the new authentication method. Then use the updated

backend.json file containing the required parameters to execute tridentctl backend update.

58



cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-san",

"backendName": "SanBackend",

"managementLIF": "1.2.3.4",

"svm": "vserver_test",

"username": "vsadmin",

"password": "password",

"storagePrefix": "myPrefix_"

}

#Update backend with tridentctl

tridentctl update backend SanBackend -f cert-backend-updated.json -n

trident

+------------+----------------+--------------------------------------

+--------+---------+

|    NAME    | STORAGE DRIVER |                 UUID                 |

STATE  | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| SanBackend | ontap-san      | 586b1cd5-8cf8-428d-a76c-2872713612c1 |

online |       9 |

+------------+----------------+--------------------------------------

+--------+---------+

When rotating passwords, the storage administrator must first update the password for the user

on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates

can be added to the user. The backend is then updated to use the new certificate, following

which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume

connections made after. A successful backend update indicates that Trident can communicate with the ONTAP

backend and handle future volume operations.

Create custom ONTAP role for Trident

You can create an ONTAP cluster role with minimum privileges so that you do not have to use the ONTAP

admin role to perform operations in Trident. When you include the username in a Trident backend

configuration, Trident uses the ONTAP cluster role you created to perform the operations.

Refer to Trident custom-role generator for more information about creating Trident custom roles.

59

https://github.com/NetApp/trident/tree/master/contrib/ontap/trident_role


Using ONTAP CLI

1. Create a new role using the following command:

security login role create <role_name\> -cmddirname "command" -access all

–vserver <svm_name\>

2. Create a usename for the Trident user:

security login create -username <user_name\> -application ontapi

-authmethod <password\> -role <name_of_role_in_step_1\> –vserver

<svm_name\> -comment "user_description"

3. Map the role to the user:

security login modify username <user_name\> –vserver <svm_name\> -role

<role_name\> -application ontapi -application console -authmethod

<password\>

Using System Manager

Perform the following steps in ONTAP System Manager:

1. Create a custom role:

a. To create a custom role at the cluster-level, select Cluster > Settings.

(Or) To create a custom role at the SVM level, select Storage > Storage VMs > required SVM>

Settings > Users and Roles.

b. Select the arrow icon (→) next to Users and Roles.

c. Select +Add under Roles.

d. Define the rules for the role and click Save.

2. Map the role to the Trident user:

+ Perform the following steps on the Users and Roles page:

a. Select Add icon + under Users.

b. Select the required username, and select a role in the drop-down menu for Role.

c. Click Save.

Refer to the following pages for more information:

• Custom roles for administration of ONTAP or Define custom roles

• Work with roles and users

Authenticate connections with bidirectional CHAP

Trident can authenticate iSCSI sessions with bidirectional CHAP for the ontap-san and ontap-san-

economy drivers. This requires enabling the useCHAP option in your backend definition. When set to true,

Trident configures the SVM’s default initiator security to bidirectional CHAP and set the username and secrets

from the backend file. NetApp recommends using bidirectional CHAP to authenticate connections. See the

following sample configuration:

60

https://kb.netapp.com/on-prem/ontap/Ontap_OS/OS-KBs/FAQ__Custom_roles_for_administration_of_ONTAP
https://docs.netapp.com/us-en/ontap/authentication/define-custom-roles-task.html
https://docs.netapp.com/us-en/ontap-automation/rest/rbac_roles_users.html#rest-api


---

version: 1

storageDriverName: ontap-san

backendName: ontap_san_chap

managementLIF: 192.168.0.135

svm: ontap_iscsi_svm

useCHAP: true

username: vsadmin

password: password

chapInitiatorSecret: cl9qxIm36DKyawxy

chapTargetInitiatorSecret: rqxigXgkesIpwxyz

chapTargetUsername: iJF4heBRT0TCwxyz

chapUsername: uh2aNCLSd6cNwxyz

The useCHAP parameter is a Boolean option that can be configured only once. It is set to false

by default. After you set it to true, you cannot set it to false.

In addition to useCHAP=true, the chapInitiatorSecret, chapTargetInitiatorSecret,

chapTargetUsername, and chapUsername fields must be included in the backend definition. The secrets

can be changed after a backend is created by running tridentctl update.

How it works

By setting useCHAP to true, the storage administrator instructs Trident to configure CHAP on the storage

backend. This includes the following:

• Setting up CHAP on the SVM:

◦ If the SVM’s default initiator security type is none (set by default) and there are no pre-existing LUNs

already present in the volume, Trident will set the default security type to CHAP and proceed to

configuring the CHAP initiator and target username and secrets.

◦ If the SVM contains LUNs, Trident will not enable CHAP on the SVM. This ensures that access to

LUNs that are already present on the SVM isn’t restricted.

• Configuring the CHAP initiator and target username and secrets; these options must be specified in the

backend configuration (as shown above).

After the backend is created, Trident creates a corresponding tridentbackend CRD and stores the CHAP

secrets and usernames as Kubernetes secrets. All PVs that are created by Trident on this backend will be

mounted and attached over CHAP.

Rotate credentials and update backends

You can update the CHAP credentials by updating the CHAP parameters in the backend.json file. This will

require updating the CHAP secrets and using the tridentctl update command to reflect these changes.

When updating the CHAP secrets for a backend, you must use tridentctl to update the

backend. Do not update the credentials on the storage cluster using the ONTAP CLI or ONTAP

System Manager as Trident will not be able to pick up these changes.

61



cat backend-san.json

{

    "version": 1,

    "storageDriverName": "ontap-san",

    "backendName": "ontap_san_chap",

    "managementLIF": "192.168.0.135",

    "svm": "ontap_iscsi_svm",

    "useCHAP": true,

    "username": "vsadmin",

    "password": "password",

    "chapInitiatorSecret": "cl9qxUpDaTeD",

    "chapTargetInitiatorSecret": "rqxigXgkeUpDaTeD",

    "chapTargetUsername": "iJF4heBRT0TCwxyz",

    "chapUsername": "uh2aNCLSd6cNwxyz",

}

./tridentctl update backend ontap_san_chap -f backend-san.json -n trident

+----------------+----------------+--------------------------------------

+--------+---------+

|   NAME         | STORAGE DRIVER |                 UUID                 |

STATE  | VOLUMES |

+----------------+----------------+--------------------------------------

+--------+---------+

| ontap_san_chap | ontap-san      | aa458f3b-ad2d-4378-8a33-1a472ffbeb5c |

online |       7 |

+----------------+----------------+--------------------------------------

+--------+---------+

Existing connections will remain unaffected; they will continue to remain active if the credentials are updated by

Trident on the SVM. New connections use the updated credentials and existing connections continue to remain

active. Disconnecting and reconnecting old PVs will result in them using the updated credentials.

ONTAP SAN configuration options and examples

Learn how to create and use ONTAP SAN drivers with your Trident installation. This

section provides backend configuration examples and details for mapping backends to

StorageClasses.

ASA r2 systems differ from other ONTAP systems (ASA, AFF, and FAS) in the implementation of their storage

layer. These variations impact the usage of certain parameters as notated. Learn more about the differences

between ASA r2 systems and other ONTAP systems.

Only the ontap-san driver (with iSCSI, NVMe/TCP, and FC protocols) is supported for ASA r2

systems.

In the Trident backend configuration, you need not specify that your system is ASA r2. When you select

ontap-san as the storageDriverName, Trident detects automatically the ASA r2 or other ONTAP systems.

62

https://docs.netapp.com/us-en/asa-r2/get-started/learn-about.html
https://docs.netapp.com/us-en/asa-r2/learn-more/hardware-comparison.html
https://docs.netapp.com/us-en/asa-r2/learn-more/hardware-comparison.html


Some backend configuration parameters are not applicable to ASA r2 systems as noted in the table below.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

storageDrive

rName

Name of the storage driver ontap-san or ontap-san-

economy

backendName Custom name or the storage backend Driver name + "_" + dataLIF

managementLI

F

IP address of a cluster or SVM management LIF.

A fully-qualified domain name (FQDN) can be

specified.

Can be set to use IPv6 addresses if Trident was

installed using the IPv6 flag. IPv6 addresses must be

defined in square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:355

5].

For seamless MetroCluster switchover, see the

MetroCluster example.

If you are using "vsadmin" credentials,

managementLIF must be that of the

SVM; if using "admin" credentials,

managementLIF must be that of the

cluster.

"10.0.0.1", "[2001:1234:abcd::fefe]"

dataLIF IP address of protocol LIF.

Can be set to use IPv6 addresses if Trident was

installed using the IPv6 flag. IPv6 addresses must be

defined in square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555

].

Do not specify for iSCSI. Trident uses ONTAP

Selective LUN Map to discover the iSCSI LIFs needed

to establish a multi path session. A warning is

generated if dataLIF is explicitly defined.

Omit for Metrocluster. See the MetroCluster

example.

Derived by the SVM

svm Storage virtual machine to use

Omit for Metrocluster. See the MetroCluster

example.

Derived if an SVM

managementLIF is specified

63

https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html
https://docs.netapp.com/us-en/ontap/san-admin/selective-lun-map-concept.html


Parameter Description Default

useCHAP Use CHAP to authenticate iSCSI for ONTAP SAN

drivers [Boolean].

Set to true for Trident to configure and use

bidirectional CHAP as the default authentication for

the SVM given in the backend. Refer to Prepare to

configure backend with ONTAP SAN drivers for

details.

Not supported for FCP or NVMe/TCP.

false

chapInitiato

rSecret

CHAP initiator secret. Required if useCHAP=true ""

labels Set of arbitrary JSON-formatted labels to apply on

volumes

""

chapTargetIn

itiatorSecre

t

CHAP target initiator secret. Required if

useCHAP=true

""

chapUsername Inbound username. Required if useCHAP=true ""

chapTargetUs

ername

Target username. Required if useCHAP=true ""

clientCertif

icate

Base64-encoded value of client certificate. Used for

certificate-based auth

""

clientPrivat

eKey

Base64-encoded value of client private key. Used for

certificate-based auth

""

trustedCACer

tificate

Base64-encoded value of trusted CA certificate.

Optional. Used for certificate-based authentication.

""

username Username needed to communicate with the ONTAP

cluster. Used for credential-based authentication.

For Active Directory authentication, see Authenticate

Trident to a backend SVM using Active Directory

credentials.

""

password Password needed to communicate with the ONTAP

cluster. Used for credential-based authentication.

For Active Directory authentication, see Authenticate

Trident to a backend SVM using Active Directory

credentials.

""

svm Storage virtual machine to use Derived if an SVM

managementLIF is specified

storagePrefi

x

Prefix used when provisioning new volumes in the

SVM.

Cannot be modified later. To update this parameter,

you will need to create a new backend.

trident

64



Parameter Description Default

aggregate Aggregate for provisioning (optional; if set, must be

assigned to the SVM). For the ontap-nas-

flexgroup driver, this option is ignored. If not

assigned, any of the available aggregates can be

used to provision a FlexGroup volume.

When the aggregate is updated in

SVM, it is updated in Trident

automatically by polling SVM without

having to restart the Trident Controller.

When you have configured a specific

aggregate in Trident to provision

volumes, if the aggregate is renamed

or moved out of the SVM, the backend

will move to failed state in Trident while

polling the SVM aggregate. You must

either change the aggregate to one that

is present on the SVM or remove it

altogether to bring the backend back

online.

Do not specify for ASA r2 systems.

""

limitAggrega

teUsage

Fail provisioning if usage is above this percentage.

If you are using an Amazon FSx for NetApp ONTAP

backend, do not specify limitAggregateUsage.

The provided fsxadmin and vsadmin do not contain

the permissions required to retrieve aggregate usage

and limit it using Trident.

Do not specify for ASA r2 systems.

"" (not enforced by default)

limitVolumeS

ize

Fail provisioning if requested volume size is above

this value.

Also restricts the maximum size of the volumes it

manages for LUNs.

"" (not enforced by default)

lunsPerFlexv

ol

Maximum LUNs per Flexvol, must be in range [50,

200]
100

debugTraceFl

ags

Debug flags to use when troubleshooting. Example,

{"api":false, "method":true}

Do not use unless you are troubleshooting and require

a detailed log dump.

null

65



Parameter Description Default

useREST Boolean parameter to use ONTAP REST APIs.

useREST When set to true, Trident uses ONTAP

REST APIs to communicate with the backend; when

set to false, Trident uses ONTAPI (ZAPI) calls to

communicate with the backend. This feature requires

ONTAP 9.11.1 and later. In addition, the ONTAP login

role used must have access to the ontapi

application. This is satisfied by the pre-defined

vsadmin and cluster-admin roles. Beginning with

the Trident 24.06 release and ONTAP 9.15.1 or later,

useREST is set to true by default; change useREST

to false to use ONTAPI (ZAPI) calls.

useREST is fully qualified for NVMe/TCP.

NVMe is supported only with ONTAP

REST APIs and not supported with

ONTAPI (ZAPI).

If specified, always set to true for ASA r2

systems.

true for ONTAP 9.15.1 or later,

otherwise false.

sanType Use to select iscsi for iSCSI, nvme for NVMe/TCP

or fcp for SCSI over Fibre Channel (FC).

iscsi if blank

formatOption

s

Use formatOptions to specify command line

arguments for the mkfs command, which will be

applied whenever a volume is formatted. This allows

you to format the volume according to your

preferences. Make sure to specify the formatOptions

similar to that of the mkfs command options,

excluding the device path.

Example: "-E nodiscard"

Supported for ontap-san and ontap-san-

economy drivers with iSCSI protocol.

Additionally, supported for ASA r2 systems when

using iSCSI and NVMe/TCP protocols.

limitVolumeP

oolSize

Maximum requestable FlexVol size when using LUNs

in ontap-san-economy backend.

"" (not enforced by default)

denyNewVolum

ePools

Restricts ontap-san-economy backends from

creating new FlexVol volumes to contain their LUNs.

Only preexisting Flexvols are used for provisioning

new PVs.

66



Recommendations for using formatOptions

Trident recommends the following options to expedite the formatting process:

• -E nodiscard (ext3, ext4): Do not attempt to discard blocks at mkfs time (discarding blocks initially is

useful on solid state devices and sparse / thin-provisioned storage). This replaces the deprecated option "-

K" and it is applicable to ext3, ext4 file systems.

• -K (xfs): Do not attempt to discard blocks at mkfs time. This option is applicable to xfs file system.

Authenticate Trident to a backend SVM using Active Directory credentials

You can configure Trident to authenticate to a backend SVM using Active Directory (AD) credentials. Before an

AD account can access the SVM, you must configure AD domain controller access to the cluster or SVM. For

cluster administration with an AD account, you must create domain tunnel. Refer to Configure Active Directory

domain controller access in ONTAP for details.

steps

1. Configure Domain Name System (DNS) settings for a backend SVM:

vserver services dns create -vserver <svm_name> -dns-servers

<dns_server_ip1>,<dns_server_ip2>

2. Run the following command to create a computer account for the SVM in Active Directory:

vserver active-directory create -vserver DataSVM -account-name ADSERVER1

-domain demo.netapp.com

3. Use this command to create an AD user or group to manage the cluster or SVM

security login create -vserver <svm_name> -user-or-group-name

<ad_user_or_group> -application <application> -authentication-method domain

-role vsadmin

4. In the Trident backend configuration file, set the username and password parameters to the AD user or

group name and password, respectively.

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an

example, see the configuration examples below.

Parameter Description Default

spaceAllocat

ion

Space-allocation for LUNs "true"

If specified, set to true for ASA

r2 systems.

spaceReserve Space reservation mode; "none" (thin) or "volume"

(thick).

Set to none for ASA r2 systems.

"none"

67

https://docs.netapp.com/us-en/ontap/authentication/enable-ad-users-groups-access-cluster-svm-task.html
https://docs.netapp.com/us-en/ontap/authentication/enable-ad-users-groups-access-cluster-svm-task.html


Parameter Description Default

snapshotPoli

cy

Snapshot policy to use.

Set to none for ASA r2 systems.

"none"

qosPolicy QoS policy group to assign for volumes created.

Choose one of qosPolicy or adaptiveQosPolicy per

storage pool/backend.

Using QoS policy groups with Trident requires ONTAP

9.8 or later. You should use a non-shared QoS policy

group and ensuring the policy group is applied to each

constituent individually. A shared QoS policy group

enforces the ceiling for the total throughput of all

workloads.

""

adaptiveQosP

olicy

Adaptive QoS policy group to assign for volumes

created. Choose one of qosPolicy or

adaptiveQosPolicy per storage pool/backend

""

snapshotRese

rve

Percentage of volume reserved for snapshots.

Do not specify for ASA r2 systems.

"0" if snapshotPolicy is "none",

otherwise ""

splitOnClone Split a clone from its parent upon creation "false"

encryption Enable NetApp Volume Encryption (NVE) on the new

volume; defaults to false. NVE must be licensed and

enabled on the cluster to use this option.

If NAE is enabled on the backend, any volume

provisioned in Trident will be NAE enabled.

For more information, refer to: How Trident works with

NVE and NAE.

"false"

If specified, set to true for ASA

r2 systems.

luksEncrypti

on

Enable LUKS encryption. Refer to Use Linux Unified

Key Setup (LUKS).
""

Set to false for ASA r2 systems.

tieringPolic

y

Tiering policy to use "none"

Do not specify for ASA r2 systems .

nameTemplate Template to create custom volume names. ""

Volume provisioning examples

Here’s an example with defaults defined:

68

https://docs.netapp.com/us-en/trident/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident/trident-reco/security-luks.html
https://docs.netapp.com/us-en/trident/trident-reco/security-luks.html


---

version: 1

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: trident_svm

username: admin

password: <password>

labels:

  k8scluster: dev2

  backend: dev2-sanbackend

storagePrefix: alternate-trident

debugTraceFlags:

  api: false

  method: true

defaults:

  spaceReserve: volume

  qosPolicy: standard

  spaceAllocation: 'false'

  snapshotPolicy: default

  snapshotReserve: '10'

For all volumes created using the ontap-san driver, Trident adds an extra 10 percent capacity

to the FlexVol to accommodate the LUN metadata. The LUN will be provisioned with the exact

size that the user requests in the PVC. Trident adds 10 percent to the FlexVol (shows as

Available size in ONTAP). Users will now get the amount of usable capacity they requested. This

change also prevents LUNs from becoming read-only unless the available space is fully utilized.

This does not apply to ontap-san-economy.

For backends that define snapshotReserve, Trident calculates the size of volumes as follows:

Total volume size = [(PVC requested size) / (1 - (snapshotReserve

percentage) / 100)] * 1.1

The 1.1 is the extra 10 percent Trident adds to the FlexVol to accommodate the LUN metadata. For

snapshotReserve = 5%, and PVC request = 5 GiB, the total volume size is 5.79 GiB and the available size is

5.5 GiB. The volume show command should show results similar to this example:

69



Currently, resizing is the only way to use the new calculation for an existing volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest

way to define a backend.

If you are using Amazon FSx on NetApp ONTAP with Trident, NetApp recommends that you

specify DNS names for LIFs instead of IP addresses.

ONTAP SAN example

This is a basic configuration using the ontap-san driver.

---

version: 1

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: svm_iscsi

labels:

  k8scluster: test-cluster-1

  backend: testcluster1-sanbackend

username: vsadmin

password: <password>

MetroCluster example

You can configure the backend to avoid having to manually update the backend definition after switchover

and switchback during SVM replication and recovery.

For seamless switchover and switchback, specify the SVM using managementLIF and omit the svm

parameters. For example:

version: 1

storageDriverName: ontap-san

managementLIF: 192.168.1.66

username: vsadmin

password: password

70

https://docs.netapp.com/us-en/trident/trident-reco/backup.html#svm-replication-and-recovery


ONTAP SAN economy example

version: 1

storageDriverName: ontap-san-economy

managementLIF: 10.0.0.1

svm: svm_iscsi_eco

username: vsadmin

password: <password>

Certificate-based authentication example

In this basic configuration example clientCertificate, clientPrivateKey, and

trustedCACertificate (optional, if using trusted CA) are populated in backend.json and take the

base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

---

version: 1

storageDriverName: ontap-san

backendName: DefaultSANBackend

managementLIF: 10.0.0.1

svm: svm_iscsi

useCHAP: true

chapInitiatorSecret: cl9qxIm36DKyawxy

chapTargetInitiatorSecret: rqxigXgkesIpwxyz

chapTargetUsername: iJF4heBRT0TCwxyz

chapUsername: uh2aNCLSd6cNwxyz

clientCertificate: ZXR0ZXJwYXB...ICMgJ3BhcGVyc2

clientPrivateKey: vciwKIyAgZG...0cnksIGRlc2NyaX

trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz

71



Bidirectional CHAP examples

These examples create a backend with useCHAP set to true.

ONTAP SAN CHAP example

---

version: 1

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: svm_iscsi

labels:

  k8scluster: test-cluster-1

  backend: testcluster1-sanbackend

useCHAP: true

chapInitiatorSecret: cl9qxIm36DKyawxy

chapTargetInitiatorSecret: rqxigXgkesIpwxyz

chapTargetUsername: iJF4heBRT0TCwxyz

chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

ONTAP SAN economy CHAP example

---

version: 1

storageDriverName: ontap-san-economy

managementLIF: 10.0.0.1

svm: svm_iscsi_eco

useCHAP: true

chapInitiatorSecret: cl9qxIm36DKyawxy

chapTargetInitiatorSecret: rqxigXgkesIpwxyz

chapTargetUsername: iJF4heBRT0TCwxyz

chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

72



NVMe/TCP example

You must have an SVM configured with NVMe on your ONTAP backend. This is a basic backend

configuration for NVMe/TCP.

---

version: 1

backendName: NVMeBackend

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: svm_nvme

username: vsadmin

password: password

sanType: nvme

useREST: true

SCSI over FC (FCP) example

You must have an SVM configured with FC on your ONTAP backend. This is a basic backend

configuration for FC.

---

version: 1

backendName: fcp-backend

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: svm_fc

username: vsadmin

password: password

sanType: fcp

useREST: true

73



Backend configuration example with nameTemplate

---

version: 1

storageDriverName: ontap-san

backendName: ontap-san-backend

managementLIF: <ip address>

svm: svm0

username: <admin>

password: <password>

defaults:

  nameTemplate:

"{{.volume.Name}}_{{.labels.cluster}}_{{.volume.Namespace}}_{{.vo\

    lume.RequestName}}"

labels:

  cluster: ClusterA

  PVC: "{{.volume.Namespace}}_{{.volume.RequestName}}"

formatOptions example for ontap-san-economy driver

---

version: 1

storageDriverName: ontap-san-economy

managementLIF: ""

svm: svm1

username: ""

password: "!"

storagePrefix: whelk_

debugTraceFlags:

  method: true

  api: true

defaults:

  formatOptions: -E nodiscard

Examples of backends with virtual pools

In these sample backend definition files, specific defaults are set for all storage pools, such as spaceReserve

at none, spaceAllocation at false, and encryption at false. The virtual pools are defined in the storage

section.

Trident sets provisioning labels in the "Comments" field. Comments are set on the FlexVol volume Trident

copies all labels present on a virtual pool to the storage volume at provisioning. For convenience, storage

administrators can define labels per virtual pool and group volumes by label.

74



In these examples, some of the storage pools set their own spaceReserve, spaceAllocation, and

encryption values, and some pools override the default values.

75



ONTAP SAN example

76



---

version: 1

storageDriverName: ontap-san

managementLIF: 10.0.0.1

svm: svm_iscsi

useCHAP: true

chapInitiatorSecret: cl9qxIm36DKyawxy

chapTargetInitiatorSecret: rqxigXgkesIpwxyz

chapTargetUsername: iJF4heBRT0TCwxyz

chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

defaults:

  spaceAllocation: "false"

  encryption: "false"

  qosPolicy: standard

labels:

  store: san_store

  kubernetes-cluster: prod-cluster-1

region: us_east_1

storage:

  - labels:

      protection: gold

      creditpoints: "40000"

    zone: us_east_1a

    defaults:

      spaceAllocation: "true"

      encryption: "true"

      adaptiveQosPolicy: adaptive-extreme

  - labels:

      protection: silver

      creditpoints: "20000"

    zone: us_east_1b

    defaults:

      spaceAllocation: "false"

      encryption: "true"

      qosPolicy: premium

  - labels:

      protection: bronze

      creditpoints: "5000"

    zone: us_east_1c

    defaults:

      spaceAllocation: "true"

      encryption: "false"

77



ONTAP SAN economy example

---

version: 1

storageDriverName: ontap-san-economy

managementLIF: 10.0.0.1

svm: svm_iscsi_eco

useCHAP: true

chapInitiatorSecret: cl9qxIm36DKyawxy

chapTargetInitiatorSecret: rqxigXgkesIpwxyz

chapTargetUsername: iJF4heBRT0TCwxyz

chapUsername: uh2aNCLSd6cNwxyz

username: vsadmin

password: <password>

defaults:

  spaceAllocation: "false"

  encryption: "false"

labels:

  store: san_economy_store

region: us_east_1

storage:

  - labels:

      app: oracledb

      cost: "30"

    zone: us_east_1a

    defaults:

      spaceAllocation: "true"

      encryption: "true"

  - labels:

      app: postgresdb

      cost: "20"

    zone: us_east_1b

    defaults:

      spaceAllocation: "false"

      encryption: "true"

  - labels:

      app: mysqldb

      cost: "10"

    zone: us_east_1c

    defaults:

      spaceAllocation: "true"

      encryption: "false"

  - labels:

      department: legal

      creditpoints: "5000"

    zone: us_east_1c

78



    defaults:

      spaceAllocation: "true"

      encryption: "false"

NVMe/TCP example

---

version: 1

storageDriverName: ontap-san

sanType: nvme

managementLIF: 10.0.0.1

svm: nvme_svm

username: vsadmin

password: <password>

useREST: true

defaults:

  spaceAllocation: "false"

  encryption: "true"

storage:

  - labels:

      app: testApp

      cost: "20"

    defaults:

      spaceAllocation: "false"

      encryption: "false"

Map backends to StorageClasses

The following StorageClass definitions refer to the Examples of backends with virtual pools. Using the

parameters.selector field, each StorageClass calls out which virtual pools can be used to host a volume.

The volume will have the aspects defined in the chosen virtual pool.

• The protection-gold StorageClass will map to the first virtual pool in the ontap-san backend. This is

the only pool offering gold-level protection.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: protection-gold

provisioner: csi.trident.netapp.io

parameters:

  selector: "protection=gold"

  fsType: "ext4"

79



• The protection-not-gold StorageClass will map to the second and third virtual pool in ontap-san

backend. These are the only pools offering a protection level other than gold.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: protection-not-gold

provisioner: csi.trident.netapp.io

parameters:

  selector: "protection!=gold"

  fsType: "ext4"

• The app-mysqldb StorageClass will map to the third virtual pool in ontap-san-economy backend. This

is the only pool offering storage pool configuration for the mysqldb type app.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: app-mysqldb

provisioner: csi.trident.netapp.io

parameters:

  selector: "app=mysqldb"

  fsType: "ext4"

• The protection-silver-creditpoints-20k StorageClass will map to the second virtual pool in

ontap-san backend. This is the only pool offering silver-level protection and 20000 creditpoints.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: protection-silver-creditpoints-20k

provisioner: csi.trident.netapp.io

parameters:

  selector: "protection=silver; creditpoints=20000"

  fsType: "ext4"

• The creditpoints-5k StorageClass will map to the third virtual pool in ontap-san backend and the

fourth virtual pool in the ontap-san-economy backend. These are the only pool offerings with 5000

creditpoints.

80



apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: creditpoints-5k

provisioner: csi.trident.netapp.io

parameters:

  selector: "creditpoints=5000"

  fsType: "ext4"

• The my-test-app-sc StorageClass will map to the testAPP virtual pool in the ontap-san driver with

sanType: nvme. This is the only pool offering testApp.

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: my-test-app-sc

provisioner: csi.trident.netapp.io

parameters:

  selector: "app=testApp"

  fsType: "ext4"

Trident will decide which virtual pool is selected and ensures the storage requirement is met.

ONTAP NAS drivers

ONTAP NAS driver overview

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP

NAS drivers.

ONTAP NAS driver details

Trident provides the following NAS storage drivers to communicate with the ONTAP cluster. Supported access

modes are: ReadWriteOnce (RWO), ReadOnlyMany (ROX), ReadWriteMany (RWX), ReadWriteOncePod

(RWOP).

Driver Protocol volumeMod

e

Access modes

supported

File systems supported

ontap-nas NFS

SMB

Filesystem RWO, ROX, RWX, RWOP "", nfs, smb

ontap-nas-economy NFS

SMB

Filesystem RWO, ROX, RWX, RWOP "", nfs, smb

81



Driver Protocol volumeMod

e

Access modes

supported

File systems supported

ontap-nas-flexgroup NFS

SMB

Filesystem RWO, ROX, RWX, RWOP "", nfs, smb

• Use ontap-san-economy only if persistent volume usage count is expected to be higher

than supported ONTAP volume limits.

• Use ontap-nas-economy only if persistent volume usage count is expected to be higher

than supported ONTAP volume limits and the ontap-san-economy driver cannot be used.

• Do not use use ontap-nas-economy if you anticipate the need for data protection,

disaster recovery, or mobility.

• NetApp does not recommend using Flexvol autogrow in all ONTAP drivers, except ontap-

san. As a workaround, Trident supports the use of snapshot reserve and scales Flexvol

volumes accordingly.

User permissions

Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster user or a

vsadmin SVM user, or a user with a different name that has the same role.

For Amazon FSx for NetApp ONTAP deployments, Trident expects to be run as either an ONTAP or SVM

administrator, using the cluster fsxadmin user or a vsadmin SVM user, or a user with a different name that

has the same role. The fsxadmin user is a limited replacement for the cluster admin user.

If you use the limitAggregateUsage parameter, cluster admin permissions are required.

When using Amazon FSx for NetApp ONTAP with Trident, the limitAggregateUsage

parameter will not work with the vsadmin and fsxadmin user accounts. The configuration

operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don’t

recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,

making upgrades difficult and error-prone.

Prepare to configure a backend with ONTAP NAS drivers

Understand the requirements, authentication options, and export policies for configuring

an ONTAP backend with ONTAP NAS drivers.

Beginning with the 25.10 release, NetApp Trident supports NetApp AFX storage system. NetApp AFX storage

systems differ from other ONTAP systems (ASA, AFF, and FAS) in the implementation of their storage layer.

Only the ontap-nas driver (with NFS protocol) is supported for AFX systems; SMB protocol is

not supported.

In the Trident backend configuration, you need not specify that your system is AFX. When you select ontap-

nas as the storageDriverName, Trident detects automatically the AFX systems.

82

https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html
https://docs.netapp.com/us-en/ontap/volumes/storage-limits-reference.html
https://docs.netapp.com/us-en/ontap-afx/index.html


Requirements

• For all ONTAP backends, Trident requires at least one aggregate be assigned to the SVM.

• You can run more than one driver, and create storage classes that point to one or the other. For example,

you could configure a Gold class that uses the ontap-nas driver and a Bronze class that uses the

ontap-nas-economy one.

• All your Kubernetes worker nodes must have the appropriate NFS tools installed. Refer to here for more

details.

• Trident supports SMB volumes mounted to pods running on Windows nodes only. Refer to Prepare to

provision SMB volumes for details.

Authenticate the ONTAP backend

Trident offers two modes of authenticating an ONTAP backend.

• Credential-based: This mode requires sufficient permissions to the ONTAP backend. It is recommended to

use an account associated with a pre-defined security login role, such as admin or vsadmin to ensure

maximum compatibility with ONTAP versions.

• Certificate-based: This mode requires a certificate installed on the backend for Trident to communicate with

an ONTAP cluster. Here, the backend definition must contain Base64-encoded values of the client

certificate, key, and the trusted CA certificate if used (recommended).

You can update existing backends to move between credential-based and certificate-based methods. However,

only one authentication method is supported at a time. To switch to a different authentication method, you must

remove the existing method from the backend configuration.

If you attempt to provide both credentials and certificates, backend creation will fail with an

error that more than one authentication method was provided in the configuration file.

Enable credential-based authentication

Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the ONTAP

backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin. This

ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by future

Trident releases. A custom security login role can be created and used with Trident, but is not recommended.

A sample backend definition will look like this:

83



YAML

---

version: 1

backendName: ExampleBackend

storageDriverName: ontap-nas

managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm_nfs

credentials:

  name: secret-backend-creds

JSON

{

  "version": 1,

  "backendName": "ExampleBackend",

  "storageDriverName": "ontap-nas",

  "managementLIF": "10.0.0.1",

  "dataLIF": "10.0.0.2",

  "svm": "svm_nfs",

  "credentials": {

        "name": "secret-backend-creds"

    }

}

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the

backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The

creation/updation of a backend is the only step that requires knowledge of the credentials. As such, it is an

admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based Authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three

parameters are required in the backend definition.

• clientCertificate: Base64-encoded value of client certificate.

• clientPrivateKey: Base64-encoded value of associated private key.

• trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter

must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to

authenticate as.

84



openssl req -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key

-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=vsadmin"

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage

administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-

name> -vserver <vserver-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled

true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-

name> -vserver <vserver-name>

security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name vsadmin -application ontapi

-authentication-method cert -vserver <vserver-name>

security login create -user-or-group-name vsadmin -application http

-authentication-method cert -vserver <vserver-name>

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>

with Management LIF IP and SVM name. You must ensure the LIF has its service policy set to default-

data-management.

curl -X POST -Lk https://<ONTAP-Management-

LIF>/servlets/netapp.servlets.admin.XMLrequest_filer --key k8senv.key

--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp

xmlns="http://www.netapp.com/filer/admin" version="1.21"

vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert_base64

base64 -w 0 k8senv.key >> key_base64

base64 -w 0 trustedca.pem >> trustedca_base64

85



7. Create backend using the values obtained from the previous step.

cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "NasBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver_test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",

"clientPrivateKey": "LS0tFaKE...0VaLuES0tLS0K",

"storagePrefix": "myPrefix_"

}

#Update backend with tridentctl

tridentctl update backend NasBackend -f cert-backend-updated.json -n

trident

+------------+----------------+--------------------------------------

+--------+---------+

|    NAME    | STORAGE DRIVER |                 UUID                 |

STATE  | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| NasBackend | ontap-nas      | 98e19b74-aec7-4a3d-8dcf-128e5033b214 |

online |       9 |

+------------+----------------+--------------------------------------

+--------+---------+

Update authentication methods or rotate credentials

You can update an existing backend to use a different authentication method or to rotate their credentials. This

works both ways: backends that make use of username/password can be updated to use certificates;

backends that utilize certificates can be updated to username/password based. To do this, you must remove

the existing authentication method and add the new authentication method. Then use the updated

backend.json file containing the required parameters to execute tridentctl update backend.

cat cert-backend-updated.json

86



{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "NasBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver_test",

"username": "vsadmin",

"password": "password",

"storagePrefix": "myPrefix_"

}

#Update backend with tridentctl

tridentctl update backend NasBackend -f cert-backend-updated.json -n

trident

+------------+----------------+--------------------------------------

+--------+---------+

|    NAME    | STORAGE DRIVER |                 UUID                 |

STATE  | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| NasBackend | ontap-nas      | 98e19b74-aec7-4a3d-8dcf-128e5033b214 |

online |       9 |

+------------+----------------+--------------------------------------

+--------+---------+

When rotating passwords, the storage administrator must first update the password for the user

on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates

can be added to the user. The backend is then updated to use the new certificate, following

which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume

connections made after. A successful backend update indicates that Trident can communicate with the ONTAP

backend and handle future volume operations.

Create custom ONTAP role for Trident

You can create an ONTAP cluster role with minimum privileges so that you do not have to use the ONTAP

admin role to perform operations in Trident. When you include the username in a Trident backend

configuration, Trident uses the ONTAP cluster role you created to perform the operations.

Refer to Trident custom-role generator for more information about creating Trident custom roles.

87

https://github.com/NetApp/trident/tree/master/contrib/ontap/trident_role


Using ONTAP CLI

1. Create a new role using the following command:

security login role create <role_name\> -cmddirname "command" -access all

–vserver <svm_name\>

2. Create a usename for the Trident user:

security login create -username <user_name\> -application ontapi

-authmethod <password\> -role <name_of_role_in_step_1\> –vserver

<svm_name\> -comment "user_description"

3. Map the role to the user:

security login modify username <user_name\> –vserver <svm_name\> -role

<role_name\> -application ontapi -application console -authmethod

<password\>

Using System Manager

Perform the following steps in ONTAP System Manager:

1. Create a custom role:

a. To create a custom role at the cluster-level, select Cluster > Settings.

(Or) To create a custom role at the SVM level, select Storage > Storage VMs > required SVM>

Settings > Users and Roles.

b. Select the arrow icon (→) next to Users and Roles.

c. Select +Add under Roles.

d. Define the rules for the role and click Save.

2. Map the role to the Trident user:

+ Perform the following steps on the Users and Roles page:

a. Select Add icon + under Users.

b. Select the required username, and select a role in the drop-down menu for Role.

c. Click Save.

Refer to the following pages for more information:

• Custom roles for administration of ONTAP or Define custom roles

• Work with roles and users

Manage NFS export policies

Trident uses NFS export policies to control access to the volumes that it provisions.

Trident provides two options when working with export policies:

• Trident can dynamically manage the export policy itself; in this mode of operation, the storage administrator

88

https://kb.netapp.com/on-prem/ontap/Ontap_OS/OS-KBs/FAQ__Custom_roles_for_administration_of_ONTAP
https://docs.netapp.com/us-en/ontap/authentication/define-custom-roles-task.html
https://docs.netapp.com/us-en/ontap-automation/rest/rbac_roles_users.html#rest-api


specifies a list of CIDR blocks that represent admissible IP addresses. Trident adds applicable node IPs

that fall in these ranges to the export policy automatically at publish time. Alternatively, when no CIDRs are

specified, all global-scoped unicast IPs found on the node that the volume being published to will be added

to the export policy.

• Storage administrators can create an export policy and add rules manually. Trident uses the default export

policy unless a different export policy name is specified in the configuration.

Dynamically manage export policies

Trident provides the ability to dynamically manage export policies for ONTAP backends. This provides the

storage administrator the ability to specify a permissible address space for worker node IPs, rather than

defining explicit rules manually. It greatly simplifies export policy management; modifications to the export

policy no longer require manual intervention on the storage cluster. Moreover, this helps restrict access to the

storage cluster only to worker nodes that are mounting volumes and have IPs in the range specified,

supporting a fine-grained and automated management.

Do not use Network Address Translation (NAT) when using dynamic export policies. With NAT,

the storage controller sees the frontend NAT address and not the actual IP host address, so

access will be denied when no match is found in the export rules.

Example

There are two configuration options that must be used. Here’s an example backend definition:

---

version: 1

storageDriverName: ontap-nas-economy

backendName: ontap_nas_auto_export

managementLIF: 192.168.0.135

svm: svm1

username: vsadmin

password: password

autoExportCIDRs:

  - 192.168.0.0/24

autoExportPolicy: true

When using this feature, you must ensure that the root junction in your SVM has a previously

created export policy with an export rule that permits the node CIDR block (such as the default

export policy). Always follow NetApp recommended best practice to dedicate an SVM for

Trident.

Here is an explanation of how this feature works using the example above:

• autoExportPolicy is set to true. This indicates that Trident creates an export policy for each volume

provisioned with this backend for the svm1 SVM and handle the addition and deletion of rules using

autoexportCIDRs address blocks. Until a volume is attached to a node, the volume uses an empty

export policy with no rules to prevent unwanted access to that volume. When a volume is published to a

node Trident creates an export policy with the same name as the underlying qtree containing the node IP

within the specified CIDR block. These IPs will also be added to the export policy used by the parent

89



FlexVol volume

◦ For example:

▪ backend UUID 403b5326-8482-40db-96d0-d83fb3f4daec

▪ autoExportPolicy set to true

▪ storage prefix trident

▪ PVC UUID a79bcf5f-7b6d-4a40-9876-e2551f159c1c

▪ qtree named trident_pvc_a79bcf5f_7b6d_4a40_9876_e2551f159c1c creates an export policy for

the FlexVol named trident-403b5326-8482-40db�96d0-d83fb3f4daec , an export policy for

the qtree named

trident_pvc_a79bcf5f_7b6d_4a40_9876_e2551f159c1c, and an empty export policy

named trident_empty on the SVM. The rules for the FlexVol export policy will be a superset of

any rules contained in the qtree export policies. The empty export policy will be reused by any

volumes that are not attached.

• autoExportCIDRs contains a list of address blocks. This field is optional and it defaults to ["0.0.0.0/0",

"::/0"]. If not defined, Trident adds all globally-scoped unicast addresses found on the worker nodes with

publications.

In this example, the 192.168.0.0/24 address space is provided. This indicates that Kubernetes node IPs

that fall within this address range with publications will be added to the export policy that Trident creates. When

Trident registers a node it runs on, it retrieves the IP addresses of the node and checks them against the

address blocks provided in autoExportCIDRs. At publish time, after filtering the IPs, Trident creates the

export policy rules for the client IPs for the node it is publishing to.

You can update autoExportPolicy and autoExportCIDRs for backends after you create them. You can

append new CIDRs for a backend that is automatically managed or delete existing CIDRs. Exercise care when

deleting CIDRs to ensure that existing connections are not dropped. You can also choose to disable

autoExportPolicy for a backend and fall back to a manually created export policy. This will require setting

the exportPolicy parameter in your backend config.

After Trident creates or updates a backend, you can check the backend using tridentctl or the

corresponding tridentbackend CRD:

90



./tridentctl get backends ontap_nas_auto_export -n trident -o yaml

items:

- backendUUID: 403b5326-8482-40db-96d0-d83fb3f4daec

  config:

    aggregate: ""

    autoExportCIDRs:

    - 192.168.0.0/24

    autoExportPolicy: true

    backendName: ontap_nas_auto_export

    chapInitiatorSecret: ""

    chapTargetInitiatorSecret: ""

    chapTargetUsername: ""

    chapUsername: ""

    dataLIF: 192.168.0.135

    debug: false

    debugTraceFlags: null

    defaults:

      encryption: "false"

      exportPolicy: <automatic>

      fileSystemType: ext4

When a node is removed, Trident checks all export policies to remove the access rules corresponding to the

node. By removing this node IP from the export policies of managed backends, Trident prevents rogue mounts,

unless this IP is reused by a new node in the cluster.

For previously existing backends, updating the backend with tridentctl update backend ensures that

Trident manages the export policies automatically. This creates two new export policies named after the

backend’s UUID and qtree name when they are needed. Volumes that are present on the backend will use the

newly created export policies after they are unmounted and mounted again.

Deleting a backend with auto-managed export policies will delete the dynamically created export

policy. If the backend is re-created, it is treated as a new backend and will result in the creation

of a new export policy.

If the IP address of a live node is updated, you must restart the Trident pod on the node. Trident will then

update the export policy for backends it manages to reflect this IP change.

Prepare to provision SMB volumes

With a little additional preparation, you can provision SMB volumes using ontap-nas drivers.

You must configure both NFS and SMB/CIFS protocols on the SVM to create an ontap-nas-

economy SMB volume for ONTAP on-premises clusters. Failure to configure either of these

protocols will cause SMB volume creation to fail.

autoExportPolicy is not supported for SMB volumes.

91



Before you begin

Before you can provision SMB volumes, you must have the following.

• A Kubernetes cluster with a Linux controller node and at least one Windows worker node running Windows

Server 2022. Trident supports SMB volumes mounted to pods running on Windows nodes only.

• At least one Trident secret containing your Active Directory credentials. To generate secret smbcreds:

kubectl create secret generic smbcreds --from-literal username=user

--from-literal password='password'

• A CSI proxy configured as a Windows service. To configure a csi-proxy, refer to GitHub: CSI Proxy or

GitHub: CSI Proxy for Windows for Kubernetes nodes running on Windows.

Steps

1. For on-premises ONTAP, you can optionally create an SMB share or Trident can create one for you.

SMB shares are required for Amazon FSx for ONTAP.

You can create the SMB admin shares in one of two ways either using the Microsoft Management Console

Shared Folders snap-in or using the ONTAP CLI. To create the SMB shares using the ONTAP CLI:

a. If necessary, create the directory path structure for the share.

The vserver cifs share create command checks the path specified in the -path option during

share creation. If the specified path does not exist, the command fails.

b. Create an SMB share associated with the specified SVM:

vserver cifs share create -vserver vserver_name -share-name

share_name -path path [-share-properties share_properties,...]

[other_attributes] [-comment text]

c. Verify that the share was created:

vserver cifs share show -share-name share_name

Refer to Create an SMB share for full details.

2. When creating the backend, you must configure the following to specify SMB volumes. For all FSx for

ONTAP backend configuration options, refer to FSx for ONTAP configuration options and examples.

92

https://github.com/kubernetes-csi/csi-proxy
https://github.com/Azure/aks-engine/blob/master/docs/topics/csi-proxy-windows.md
https://learn.microsoft.com/en-us/troubleshoot/windows-server/system-management-components/what-is-microsoft-management-console
https://docs.netapp.com/us-en/ontap/smb-config/create-share-task.html
https://docs.netapp.com/us-en/trident/trident-use/trident-fsx-examples.html


Parameter Description Example

smbShare You can specify one of the following: the name of an

SMB share created using the Microsoft

Management Console or ONTAP CLI; a name to

allow Trident to create the SMB share; or you can

leave the parameter blank to prevent common share

access to volumes.

This parameter is optional for on-premises ONTAP.

This parameter is required for Amazon FSx for

ONTAP backends and cannot be blank.

smb-share

nasType Must set to smb. If null, defaults to nfs. smb

securityStyle Security style for new volumes.

Must be set to ntfs or mixed for SMB volumes.

ntfs or mixed for SMB

volumes

unixPermissions Mode for new volumes. Must be left empty for

SMB volumes.

""

Enable secure SMB

Beginning with the 25.06 release, NetApp Trident supports secure provisioning of SMB volumes created using

ontap-nas and ontap-nas-economy backends. When secure SMB is enabled, you can provide controlled

access to SMB the shares for Active Directory (AD) users and user groups using Access Control Lists (ACLs).

Points to remember

• Importing ontap-nas-economy volumes is not supported.

• Only read-only clones are supported for ontap-nas-economy volumes.

• If Secure SMB is enabled, Trident will ignore the SMB share mentioned in the backend.

• Updating the PVC annotation, storage class annotation, and backend field does not update the SMB share

ACL.

• The SMB share ACL specified in the annotation of the clone PVC will take precedence over those in the

source PVC.

• Ensure that you provide valid AD users while enabling secure SMB. Invalid users will not be added to the

ACL.

• If you provide the same AD user in the backend, storage class, and PVC with different permissions, the

permission priority will be: PVC, storage class, and then backend.

• Secure SMB is supported for ontap-nas managed volume imports and not applicable to unmanaged

volume imports.

Steps

1. Specify adAdminUser in TridentBackendConfig as shown in the following example:

93



apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  name: backend-tbc-ontap

  namespace: trident

spec:

  version: 1

  storageDriverName: ontap-nas

  managementLIF: 10.193.176.x

  svm: svm0

  useREST: true

  defaults:

    adAdminUser: tridentADtest

  credentials:

    name: backend-tbc-ontap-invest-secret

2. Add the annotation in the storage class.

Add the trident.netapp.io/smbShareAdUser annotation to the storage class to enable secure SMB

without fail.

The user value specified for the annotation trident.netapp.io/smbShareAdUser should be the same

as the username specified in the smbcreds secret.

You can choose one of the following for smbShareAdUserPermission: full_control, change, or

read. The default permission is full_control.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontap-smb-sc

  annotations:

    trident.netapp.io/smbShareAdUserPermission: change

    trident.netapp.io/smbShareAdUser: tridentADuser

parameters:

  backendType: ontap-nas

  csi.storage.k8s.io/node-stage-secret-name: smbcreds

  csi.storage.k8s.io/node-stage-secret-namespace: trident

  trident.netapp.io/nasType: smb

provisioner: csi.trident.netapp.io

reclaimPolicy: Delete

volumeBindingMode: Immediate

3. Create a PVC.

The following example creates a PVC:

94



apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  name: my-pvc4

  namespace: trident

  annotations:

    trident.netapp.io/snapshotDirectory: "true"

    trident.netapp.io/smbShareAccessControl: |

      read:

        - tridentADtest

spec:

  accessModes:

    - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

  storageClassName: ontap-smb-sc

ONTAP NAS configuration options and examples

Learn to create and use ONTAP NAS drivers with your Trident installation. This section

provides backend configuration examples and details for mapping backends to

StorageClasses.

Beginning with the 25.10 release, NetApp Trident supports NetApp AFX storage systems. NetApp AFX storage

systems differ from other ONTAP-based systems (ASA, AFF, and FAS) in the implementation of their storage

layer.

Only the ontap-nas driver (with NFS protocol) is supported for NetApp AFX systems; SMB

protocol is not supported.

In the Trident backend configuration, you need not specify that your system is an NetApp AFX storage system.

When you select ontap-nas as the storageDriverName, Trident detects automatically the AFX storage

system. Some backend configuration parameters are not applicable to AFX storage systems as noted in the

table below.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

95

https://docs.netapp.com/us-en/ontap-afx/index.html


Parameter Description Default

storageDrive

rName

Name of the storage driver

For NetApp AFX systems, only

ontap-nas is supported.

ontap-nas, ontap-nas-

economy, or ontap-nas-

flexgroup

backendName Custom name or the storage backend Driver name + "_" + dataLIF

managementLI

F

IP address of a cluster or SVM management LIF

A fully-qualified domain name (FQDN) can be

specified.

Can be set to use IPv6 addresses if Trident was

installed using the IPv6 flag. IPv6 addresses must be

defined in square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555

].

For seamless MetroCluster switchover, see the

MetroCluster example.

"10.0.0.1", "[2001:1234:abcd::fefe]"

dataLIF IP address of protocol LIF.

NetApp recommends specifying dataLIF. If not

provided, Trident fetches dataLIFs from the SVM. You

can specify a fully-qualified domain name (FQDN) to

be used for the NFS mount operations, allowing you

to create a round-robin DNS to load-balance across

multiple dataLIFs.

Can be changed after initial setting. Refer to Update

dataLIF after initial configuration.

Can be set to use IPv6 addresses if Trident was

installed using the IPv6 flag. IPv6 addresses must be

defined in square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555

].

Omit for Metrocluster. See the MetroCluster

example.

Specified address or derived from

SVM, if not specified (not

recommended)

svm Storage virtual machine to use

Omit for Metrocluster. See the MetroCluster

example.

Derived if an SVM

managementLIF is specified

96



Parameter Description Default

autoExportPo

licy

Enable automatic export policy creation and updating

[Boolean].

Using the autoExportPolicy and

autoExportCIDRs options, Trident can manage

export policies automatically.

false

autoExportCI

DRs

List of CIDRs to filter Kubernetes' node IPs against

when autoExportPolicy is enabled.

Using the autoExportPolicy and

autoExportCIDRs options, Trident can manage

export policies automatically.

["0.0.0.0/0", "::/0"]`

labels Set of arbitrary JSON-formatted labels to apply on

volumes

""

clientCertif

icate

Base64-encoded value of client certificate. Used for

certificate-based auth

""

clientPrivat

eKey

Base64-encoded value of client private key. Used for

certificate-based auth

""

trustedCACer

tificate

Base64-encoded value of trusted CA certificate.

Optional. Used for certificate-based auth

""

username Username to connect to the cluster/SVM. Used for

credential-based auth.

For Active Directory authentication, see Authenticate

Trident to a backend SVM using Active Directory

credentials.

password Password to connect to the cluster/SVM. Used for

credential-based auth.

For Active Directory authentication, see Authenticate

Trident to a backend SVM using Active Directory

credentials.

storagePrefi

x

Prefix used when provisioning new volumes in the

SVM. Cannot be updated after you set it

When using ontap-nas-economy and a

storagePrefix that is 24 or more

characters, the qtrees will not have the

storage prefix embedded, though it will

be in the volume name.

"trident"

97



Parameter Description Default

aggregate Aggregate for provisioning (optional; if set, must be

assigned to the SVM). For the ontap-nas-

flexgroup driver, this option is ignored. If not

assigned, any of the available aggregates can be

used to provision a FlexGroup volume.

When the aggregate is updated in

SVM, it is updated in Trident

automatically by polling SVM without

having to restart the Trident Controller.

When you have configured a specific

aggregate in Trident to provision

volumes, if the aggregate is renamed

or moved out of the SVM, the backend

will move to failed state in Trident while

polling the SVM aggregate. You must

either change the aggregate to one that

is present on the SVM or remove it

altogether to bring the backend back

online.

Do not specify for AFX storage systems.

""

limitAggrega

teUsage

Fail provisioning if usage is above this percentage.

Does not apply to Amazon FSx for ONTAP.

Do not specify for AFX storage systems.

"" (not enforced by default)

flexgroupAggreg

ateList

List of aggregates for provisioning (optional; if set,

must be assigned to the SVM). All aggregates

assigned to the SVM are used to provision a

FlexGroup volume. Supported for the ontap-nas-

flexgroup storage driver.

When the aggregate list is updated in

SVM, the list is updated in Trident

automatically by polling SVM without

having to restart the Trident Controller.

When you have configured a specific

aggregate list in Trident to provision

volumes, if the aggregate list is

renamed or moved out of SVM, the

backend will move to failed state in

Trident while polling the SVM

aggregate. You must either change the

aggregate list to one that is present on

the SVM or remove it altogether to

bring the backend back online.

""

98



Parameter Description Default

limitVolumeS

ize

Fail provisioning if requested volume size is above

this value.

"" (not enforced by default)

debugTraceFl

ags

Debug flags to use when troubleshooting. Example,

{"api":false, "method":true}

Do not use debugTraceFlags unless you are

troubleshooting and require a detailed log dump.

null

nasType Configure NFS or SMB volumes creation.

Options are nfs, smb or null. Setting to null defaults

to NFS volumes.

If specified, always set to nfs for AFX storage

systems.

nfs

nfsMountOpti

ons

Comma-separated list of NFS mount options.

The mount options for Kubernetes-persistent volumes

are normally specified in storage classes, but if no

mount options are specified in a storage class, Trident

will fall back to using the mount options specified in

the storage backend’s configuration file.

If no mount options are specified in the storage class

or the configuration file, Trident will not set any mount

options on an associated persistent volume.

""

qtreesPerFle

xvol

Maximum Qtrees per FlexVol, must be in range [50,

300]

"200"

smbShare You can specify one of the following: the name of an

SMB share created using the Microsoft Management

Console or ONTAP CLI; a name to allow Trident to

create the SMB share; or you can leave the parameter

blank to prevent common share access to volumes.

This parameter is optional for on-premises ONTAP.

This parameter is required for Amazon FSx for

ONTAP backends and cannot be blank.

smb-share

99



Parameter Description Default

useREST Boolean parameter to use ONTAP REST APIs.

useREST When set to true, Trident uses ONTAP

REST APIs to communicate with the backend; when

set to false, Trident uses ONTAPI (ZAPI) calls to

communicate with the backend. This feature requires

ONTAP 9.11.1 and later. In addition, the ONTAP login

role used must have access to the ontapi

application. This is satisfied by the pre-defined

vsadmin and cluster-admin roles.

Beginning with the Trident 24.06 release and ONTAP

9.15.1 or later, useREST is set to true by default;

change useREST to false to use ONTAPI (ZAPI)

calls.

If specified, always set to true for AFX storage

systems.

true for ONTAP 9.15.1 or later,

otherwise false.

limitVolumeP

oolSize

Maximum requestable FlexVol size when using Qtrees

in ontap-nas-economy backend.

"" (not enforced by default)

denyNewVolum

ePools

Restricts ontap-nas-economy backends from

creating new FlexVol volumes to contain their Qtrees.

Only preexisting Flexvols are used for provisioning

new PVs.

adAdminUser Active Directory admin user or user group with full

access to SMB shares. Use this parameter to provide

admin rights to the SMB share with full control.

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an

example, see the configuration examples below.

Parameter Description Default

spaceAllocat

ion

Space-allocation for Qtrees "true"

spaceReserve Space reservation mode; "none" (thin) or "volume"

(thick)

"none"

snapshotPoli

cy

Snapshot policy to use "none"

qosPolicy QoS policy group to assign for volumes created.

Choose one of qosPolicy or adaptiveQosPolicy per

storage pool/backend

""

100



Parameter Description Default

adaptiveQosP

olicy

Adaptive QoS policy group to assign for volumes

created. Choose one of qosPolicy or

adaptiveQosPolicy per storage pool/backend.

Not supported by ontap-nas-economy.

""

snapshotRese

rve

Percentage of volume reserved for snapshots "0" if snapshotPolicy is "none",

otherwise ""

splitOnClone Split a clone from its parent upon creation "false"

encryption Enable NetApp Volume Encryption (NVE) on the new

volume; defaults to false. NVE must be licensed and

enabled on the cluster to use this option.

If NAE is enabled on the backend, any volume

provisioned in Trident will be NAE enabled.

For more information, refer to: How Trident works with

NVE and NAE.

"false"

tieringPolic

y

Tiering policy to use "none"

unixPermissi

ons

Mode for new volumes "777" for NFS volumes; empty (not

applicable) for SMB volumes

snapshotDir Controls access to the .snapshot directory "true" for NFSv4

"false" for NFSv3

exportPolicy Export policy to use "default"

securityStyl

e

Security style for new volumes.

NFS supports mixed and unix security styles.

SMB supports mixed and ntfs security styles.

NFS default is unix.

SMB default is ntfs.

nameTemplate Template to create custom volume names. ""

Using QoS policy groups with Trident requires ONTAP 9.8 or later. You should use a non-shared

QoS policy group and ensure the policy group is applied to each constituent individually. A

shared QoS policy group enforces the ceiling for the total throughput of all workloads.

Volume provisioning examples

Here’s an example with defaults defined:

101

https://docs.netapp.com/us-en/trident/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident/trident-reco/security-reco.html


---

version: 1

storageDriverName: ontap-nas

backendName: customBackendName

managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

labels:

  k8scluster: dev1

  backend: dev1-nasbackend

svm: trident_svm

username: cluster-admin

password: <password>

limitAggregateUsage: 80%

limitVolumeSize: 50Gi

nfsMountOptions: nfsvers=4

debugTraceFlags:

  api: false

  method: true

defaults:

  spaceReserve: volume

  qosPolicy: premium

  exportPolicy: myk8scluster

  snapshotPolicy: default

  snapshotReserve: "10"

For ontap-nas and ontap-nas-flexgroups, Trident now uses a new calculation to ensure that the FlexVol

is sized correctly with the snapshotReserve percentage and PVC. When the user requests a PVC, Trident

creates the original FlexVol with more space by using the new calculation. This calculation ensures that the

user receives the writable space they requested for in the PVC, and not less space than what they requested.

Before v21.07, when the user requests a PVC (for example, 5 GiB), with the snapshotReserve to 50 percent,

they get only 2.5 GiB of writeable space. This is because what the user requested for is the whole volume and

snapshotReserve is a percentage of that. With Trident 21.07, what the user requests for is the writeable

space and Trident defines the snapshotReserve number as the percentage of the whole volume. This does

not apply to ontap-nas-economy. See the following example to see how this works:

The calculation is as follows:

Total volume size = <PVC requested size> / (1 - (<snapshotReserve

percentage> / 100))

For snapshotReserve = 50%, and PVC request = 5 GiB, the total volume size is 5/.5 = 10 GiB and the

available size is 5 GiB, which is what the user requested in the PVC request. The volume show command

should show results similar to this example:

102



Existing backends from previous installs will provision volumes as explained above when upgrading Trident.

For volumes that you created before upgrading, you should resize their volumes for the change to be

observed. For example, a 2 GiB PVC with snapshotReserve=50 earlier resulted in a volume that provides 1

GiB of writable space. Resizing the volume to 3 GiB, for example, provides the application with 3 GiB of

writable space on a 6 GiB volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest

way to define a backend.

If you are using Amazon FSx on NetApp ONTAP with Trident, the recommendation is to specify

DNS names for LIFs instead of IP addresses.

ONTAP NAS economy example

---

version: 1

storageDriverName: ontap-nas-economy

managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm_nfs

username: vsadmin

password: password

ONTAP NAS Flexgroup example

---

version: 1

storageDriverName: ontap-nas-flexgroup

managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm_nfs

username: vsadmin

password: password

103



MetroCluster example

You can configure the backend to avoid having to manually update the backend definition after switchover

and switchback during SVM replication and recovery.

For seamless switchover and switchback, specify the SVM using managementLIF and omit the

dataLIF and svm parameters. For example:

---

version: 1

storageDriverName: ontap-nas

managementLIF: 192.168.1.66

username: vsadmin

password: password

SMB volumes example

---

version: 1

backendName: ExampleBackend

storageDriverName: ontap-nas

managementLIF: 10.0.0.1

nasType: smb

securityStyle: ntfs

unixPermissions: ""

dataLIF: 10.0.0.2

svm: svm_nfs

username: vsadmin

password: password

104

https://docs.netapp.com/us-en/trident/trident-reco/backup.html#svm-replication-and-recovery


Certificate-based authentication example

This is a minimal backend configuration example. clientCertificate, clientPrivateKey, and

trustedCACertificate (optional, if using trusted CA) are populated in backend.json and take the

base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

---

version: 1

backendName: DefaultNASBackend

storageDriverName: ontap-nas

managementLIF: 10.0.0.1

dataLIF: 10.0.0.15

svm: nfs_svm

clientCertificate: ZXR0ZXJwYXB...ICMgJ3BhcGVyc2

clientPrivateKey: vciwKIyAgZG...0cnksIGRlc2NyaX

trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz

storagePrefix: myPrefix_

Auto export policy example

This example shows you how you can instruct Trident to use dynamic export policies to create and

manage the export policy automatically. This works the same for the ontap-nas-economy and ontap-

nas-flexgroup drivers.

---

version: 1

storageDriverName: ontap-nas

managementLIF: 10.0.0.1

dataLIF: 10.0.0.2

svm: svm_nfs

labels:

  k8scluster: test-cluster-east-1a

  backend: test1-nasbackend

autoExportPolicy: true

autoExportCIDRs:

- 10.0.0.0/24

username: admin

password: password

nfsMountOptions: nfsvers=4

105



IPv6 addresses example

This example shows managementLIF using an IPv6 address.

---

version: 1

storageDriverName: ontap-nas

backendName: nas_ipv6_backend

managementLIF: "[5c5d:5edf:8f:7657:bef8:109b:1b41:d491]"

labels:

  k8scluster: test-cluster-east-1a

  backend: test1-ontap-ipv6

svm: nas_ipv6_svm

username: vsadmin

password: password

Amazon FSx for ONTAP using SMB volumes example

The smbShare parameter is required for FSx for ONTAP using SMB volumes.

---

version: 1

backendName: SMBBackend

storageDriverName: ontap-nas

managementLIF: example.mgmt.fqdn.aws.com

nasType: smb

dataLIF: 10.0.0.15

svm: nfs_svm

smbShare: smb-share

clientCertificate: ZXR0ZXJwYXB...ICMgJ3BhcGVyc2

clientPrivateKey: vciwKIyAgZG...0cnksIGRlc2NyaX

trustedCACertificate: zcyBbaG...b3Igb3duIGNsYXNz

storagePrefix: myPrefix_

106



Backend configuration example with nameTemplate

---

version: 1

storageDriverName: ontap-nas

backendName: ontap-nas-backend

managementLIF: <ip address>

svm: svm0

username: <admin>

password: <password>

defaults:

  nameTemplate:

"{{.volume.Name}}_{{.labels.cluster}}_{{.volume.Namespace}}_{{.vo\

    lume.RequestName}}"

labels:

  cluster: ClusterA

  PVC: "{{.volume.Namespace}}_{{.volume.RequestName}}"

Examples of backends with virtual pools

In the sample backend definition files shown below, specific defaults are set for all storage pools, such as

spaceReserve at none, spaceAllocation at false, and encryption at false. The virtual pools are defined

in the storage section.

Trident sets provisioning labels in the "Comments" field. Comments are set on FlexVol for ontap-nas or

FlexGroup for ontap-nas-flexgroup. Trident copies all labels present on a virtual pool to the storage

volume at provisioning. For convenience, storage administrators can define labels per virtual pool and group

volumes by label.

In these examples, some of the storage pools set their own spaceReserve, spaceAllocation, and

encryption values, and some pools override the default values.

107



ONTAP NAS example

---

version: 1

storageDriverName: ontap-nas

managementLIF: 10.0.0.1

svm: svm_nfs

username: admin

password: <password>

nfsMountOptions: nfsvers=4

defaults:

  spaceReserve: none

  encryption: "false"

  qosPolicy: standard

labels:

  store: nas_store

  k8scluster: prod-cluster-1

region: us_east_1

storage:

  - labels:

      app: msoffice

      cost: "100"

    zone: us_east_1a

    defaults:

      spaceReserve: volume

      encryption: "true"

      unixPermissions: "0755"

      adaptiveQosPolicy: adaptive-premium

  - labels:

      app: slack

      cost: "75"

    zone: us_east_1b

    defaults:

      spaceReserve: none

      encryption: "true"

      unixPermissions: "0755"

  - labels:

      department: legal

      creditpoints: "5000"

    zone: us_east_1b

    defaults:

      spaceReserve: none

      encryption: "true"

      unixPermissions: "0755"

  - labels:

      app: wordpress

108



      cost: "50"

    zone: us_east_1c

    defaults:

      spaceReserve: none

      encryption: "true"

      unixPermissions: "0775"

  - labels:

      app: mysqldb

      cost: "25"

    zone: us_east_1d

    defaults:

      spaceReserve: volume

      encryption: "false"

      unixPermissions: "0775"

109



ONTAP NAS FlexGroup example

---

version: 1

storageDriverName: ontap-nas-flexgroup

managementLIF: 10.0.0.1

svm: svm_nfs

username: vsadmin

password: <password>

defaults:

  spaceReserve: none

  encryption: "false"

labels:

  store: flexgroup_store

  k8scluster: prod-cluster-1

region: us_east_1

storage:

  - labels:

      protection: gold

      creditpoints: "50000"

    zone: us_east_1a

    defaults:

      spaceReserve: volume

      encryption: "true"

      unixPermissions: "0755"

  - labels:

      protection: gold

      creditpoints: "30000"

    zone: us_east_1b

    defaults:

      spaceReserve: none

      encryption: "true"

      unixPermissions: "0755"

  - labels:

      protection: silver

      creditpoints: "20000"

    zone: us_east_1c

    defaults:

      spaceReserve: none

      encryption: "true"

      unixPermissions: "0775"

  - labels:

      protection: bronze

      creditpoints: "10000"

    zone: us_east_1d

    defaults:

110



      spaceReserve: volume

      encryption: "false"

      unixPermissions: "0775"

111



ONTAP NAS economy example

---

version: 1

storageDriverName: ontap-nas-economy

managementLIF: 10.0.0.1

svm: svm_nfs

username: vsadmin

password: <password>

defaults:

  spaceReserve: none

  encryption: "false"

labels:

  store: nas_economy_store

region: us_east_1

storage:

  - labels:

      department: finance

      creditpoints: "6000"

    zone: us_east_1a

    defaults:

      spaceReserve: volume

      encryption: "true"

      unixPermissions: "0755"

  - labels:

      protection: bronze

      creditpoints: "5000"

    zone: us_east_1b

    defaults:

      spaceReserve: none

      encryption: "true"

      unixPermissions: "0755"

  - labels:

      department: engineering

      creditpoints: "3000"

    zone: us_east_1c

    defaults:

      spaceReserve: none

      encryption: "true"

      unixPermissions: "0775"

  - labels:

      department: humanresource

      creditpoints: "2000"

    zone: us_east_1d

    defaults:

      spaceReserve: volume

112



      encryption: "false"

      unixPermissions: "0775"

Map backends to StorageClasses

The following StorageClass definitions refer to Examples of backends with virtual pools. Using the

parameters.selector field, each StorageClass calls out which virtual pools can be used to host a volume.

The volume will have the aspects defined in the chosen virtual pool.

• The protection-gold StorageClass will map to the first and second virtual pool in the ontap-nas-

flexgroup backend. These are the only pools offering gold level protection.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: protection-gold

provisioner: csi.trident.netapp.io

parameters:

  selector: "protection=gold"

  fsType: "ext4"

• The protection-not-gold StorageClass will map to the third and fourth virtual pool in the ontap-

nas-flexgroup backend. These are the only pools offering protection level other than gold.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: protection-not-gold

provisioner: csi.trident.netapp.io

parameters:

  selector: "protection!=gold"

  fsType: "ext4"

• The app-mysqldb StorageClass will map to the fourth virtual pool in the ontap-nas backend. This is the

only pool offering storage pool configuration for mysqldb type app.

113



apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: app-mysqldb

provisioner: csi.trident.netapp.io

parameters:

  selector: "app=mysqldb"

  fsType: "ext4"

• TThe protection-silver-creditpoints-20k StorageClass will map to the third virtual pool in the

ontap-nas-flexgroup backend. This is the only pool offering silver-level protection and 20000

creditpoints.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: protection-silver-creditpoints-20k

provisioner: csi.trident.netapp.io

parameters:

  selector: "protection=silver; creditpoints=20000"

  fsType: "ext4"

• The creditpoints-5k StorageClass will map to the third virtual pool in the ontap-nas backend and the

second virtual pool in the ontap-nas-economy backend. These are the only pool offerings with 5000

creditpoints.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: creditpoints-5k

provisioner: csi.trident.netapp.io

parameters:

  selector: "creditpoints=5000"

  fsType: "ext4"

Trident will decide which virtual pool is selected and ensures the storage requirement is met.

Update dataLIF after initial configuration

You can change the dataLIF after initial configuration by running the following command to provide the new

backend JSON file with updated dataLIF.

114



tridentctl update backend <backend-name> -f <path-to-backend-json-file-

with-updated-dataLIF>

If PVCs are attached to one or multiple pods, you must bring down all corresponding pods and

then bring them back up in order to for the new dataLIF to take effect.

Secure SMB examples

Backend configuration with ontap-nas driver

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  name: backend-tbc-ontap-nas

  namespace: trident

spec:

  version: 1

  storageDriverName: ontap-nas

  managementLIF: 10.0.0.1

  svm: svm2

  nasType: smb

  defaults:

    adAdminUser: tridentADtest

  credentials:

    name: backend-tbc-ontap-invest-secret

Backend configuration with ontap-nas-economy driver

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  name: backend-tbc-ontap-nas

  namespace: trident

spec:

  version: 1

  storageDriverName: ontap-nas-economy

  managementLIF: 10.0.0.1

  svm: svm2

  nasType: smb

  defaults:

    adAdminUser: tridentADtest

  credentials:

    name: backend-tbc-ontap-invest-secret

115



Backend configuration with storage pool

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  name: backend-tbc-ontap-nas

  namespace: trident

spec:

  version: 1

  storageDriverName: ontap-nas

  managementLIF: 10.0.0.1

  svm: svm0

  useREST: false

  storage:

  - labels:

      app: msoffice

    defaults:

      adAdminUser: tridentADuser

  nasType: smb

  credentials:

    name: backend-tbc-ontap-invest-secret

Storage class example with ontap-nas driver

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontap-smb-sc

  annotations:

    trident.netapp.io/smbShareAdUserPermission: change

    trident.netapp.io/smbShareAdUser: tridentADtest

parameters:

  backendType: ontap-nas

  csi.storage.k8s.io/node-stage-secret-name: smbcreds

  csi.storage.k8s.io/node-stage-secret-namespace: trident

  trident.netapp.io/nasType: smb

provisioner: csi.trident.netapp.io

reclaimPolicy: Delete

volumeBindingMode: Immediate

Ensure that you add annotations to enable secure SMB. Secure SMB does not work without

the annotations, irrespective of configurations set in the Backend or PVC.

116



Storage class example with ontap-nas-economy driver

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontap-smb-sc

  annotations:

    trident.netapp.io/smbShareAdUserPermission: change

    trident.netapp.io/smbShareAdUser: tridentADuser3

parameters:

  backendType: ontap-nas-economy

  csi.storage.k8s.io/node-stage-secret-name: smbcreds

  csi.storage.k8s.io/node-stage-secret-namespace: trident

  trident.netapp.io/nasType: smb

provisioner: csi.trident.netapp.io

reclaimPolicy: Delete

volumeBindingMode: Immediate

PVC example with a single AD user

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  name: my-pvc4

  namespace: trident

  annotations:

    trident.netapp.io/smbShareAccessControl: |

      change:

        - tridentADtest

      read:

        - tridentADuser

spec:

  accessModes:

    - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

  storageClassName: ontap-smb-sc

PVC example with multiple AD users

117



apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  name: my-test-pvc

  annotations:

    trident.netapp.io/smbShareAccessControl: |

      full_control:

        - tridentTestuser

        - tridentuser

        - tridentTestuser1

        - tridentuser1

      change:

        - tridentADuser

        - tridentADuser1

        - tridentADuser4

        - tridentTestuser2

      read:

        - tridentTestuser2

        - tridentTestuser3

        - tridentADuser2

        - tridentADuser3

spec:

  accessModes:

    - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

Amazon FSx for NetApp ONTAP

Use Trident with Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP is a fully managed AWS service that enables customers

to launch and run file systems powered by the NetApp ONTAP storage operating system.

FSx for ONTAP enables you to leverage NetApp features, performance, and

administrative capabilities you are familiar with, while taking advantage of the simplicity,

agility, security, and scalability of storing data on AWS. FSx for ONTAP supports ONTAP

file system features and administration APIs.

You can integrate your Amazon FSx for NetApp ONTAP file system with Trident to ensure Kubernetes clusters

running in Amazon Elastic Kubernetes Service (EKS) can provision block and file persistent volumes backed

by ONTAP.

A file system is the primary resource in Amazon FSx, analogous to an ONTAP cluster on premises. Within

each SVM you can create one or multiple volumes, which are data containers that store the files and folders in

your file system. With Amazon FSx for NetApp ONTAP will be provided as a managed file system in the cloud.

118

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html


The new file system type is called NetApp ONTAP.

Using Trident with Amazon FSx for NetApp ONTAP, you can ensure Kubernetes clusters running in Amazon

Elastic Kubernetes Service (EKS) can provision block and file persistent volumes backed by ONTAP.

Requirements

In addition to Trident requirements, to integrate FSx for ONTAP with Trident, you need:

• An existing Amazon EKS cluster or self-managed Kubernetes cluster with kubectl installed.

• An existing Amazon FSx for NetApp ONTAP file system and storage virtual machine (SVM) that is

reachable from your cluster’s worker nodes.

• Worker nodes that are prepared for NFS or iSCSI.

Ensure you follow the node preparation steps required for Amazon Linux and Ubuntu

Amazon Machine Images (AMIs) depending on your EKS AMI type.

Considerations

• SMB volumes:

◦ SMB volumes are supported using the ontap-nas driver only.

◦ SMB volumes are not supported with Trident EKS add-on.

◦ Trident supports SMB volumes mounted to pods running on Windows nodes only. Refer to Prepare to

provision SMB volumes for details.

• Prior to Trident 24.02, volumes created on Amazon FSx file systems that have automatic backups enabled,

could not be deleted by Trident. To prevent this issue in Trident 24.02 or later, specify the

fsxFilesystemID, AWS apiRegion, AWS apikey, and AWS secretKey in the backend configuration

file for AWS FSx for ONTAP.

If you are specifying an IAM role to Trident, then you can omit specifying the apiRegion,

apiKey, and secretKey fields to Trident explicitly. For more information, refer to FSx for

ONTAP configuration options and examples.

Simultaneous usage of Trident SAN/iSCSI and EBS-CSI driver

If you plan to use ontap-san drivers (e.g., iSCSI) with AWS (EKS, ROSA, EC2, or any other instance), the

multipath configuration required on the nodes might conflict with the Amazon Elastic Block Store (EBS) CSI

driver. To ensure that multipathing functions without interfering with EBS disks on the same node, you need to

exclude EBS in your multipathing setup. This example shows a multipath.conf file that includes the

required Trident settings while excluding EBS disks from multipathing:

119

https://docs.netapp.com/us-en/trident/trident-get-started/requirements.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.netapp.com/us-en/trident/trident-use/trident-fsx-examples.html
https://docs.netapp.com/us-en/trident/trident-use/trident-fsx-examples.html


defaults {

    find_multipaths no

}

blacklist {

    device {

        vendor "NVME"

        product "Amazon Elastic Block Store"

    }

}

Authentication

Trident offers two modes of authentication.

• Credential-based(Recommended): Stores credentials securely in AWS Secrets Manager. You can use the

fsxadmin user for your file system or the vsadmin user configured for your SVM.

Trident expects to be run as a vsadmin SVM user or as a user with a different name that

has the same role. Amazon FSx for NetApp ONTAP has an fsxadmin user that is a limited

replacement of the ONTAP admin cluster user. We strongly recommend using vsadmin

with Trident.

• Certificate-based: Trident will communicate with the SVM on your FSx file system using a certificate

installed on your SVM.

For details on enabling authentication, refer to the authentication for your driver type:

• ONTAP NAS authentication

• ONTAP SAN authentication

Tested Amazon Machine Images (AMIs)

EKS cluster supports various operating systems, but AWS has optimized certain Amazon Machine Images

(AMIs) for containers and EKS. The following AMIs have been tested with NetApp Trident 25.02.

AMI NAS NAS-economy iSCSI iSCSI-economy

AL2023_x86_64_ST

ANDARD

Yes Yes Yes Yes

AL2_x86_64 Yes Yes Yes* Yes*

BOTTLEROCKET_x

86_64

Yes** Yes N/A N/A

AL2023_ARM_64_S

TANDARD

Yes Yes Yes Yes

AL2_ARM_64 Yes Yes Yes* Yes*

BOTTLEROCKET_A

RM_64

Yes** Yes N/A N/A

120



• * Unable to delete the PV without restarting the node

• ** Doesn’t work with NFSv3 with Trident version 25.02.

If your desired AMI is not listed here, it does not mean that it is not supported; it simply means it

has not been tested. This list serves as a guide for AMIs are known to work.

Tests performed with:

• EKS version: 1.32

• Installation Method: Helm 25.06 and as an AWS add-On 25.06

• For NAS both NFSv3 and NFSv4.1 were tested.

• For SAN only iSCSI was tested, not NVMe-oF.

Tests performed:

• Create: Storage Class, pvc, pod

• Delete: pod, pvc (regular, qtree/lun – economy, NAS with AWS backup)

Find more information

• Amazon FSx for NetApp ONTAP documentation

• Blog post on Amazon FSx for NetApp ONTAP

Create an IAM role and AWS Secret

You can configure Kubernetes pods to access AWS resources by authenticating as an

AWS IAM role instead of by providing explicit AWS credentials.

To authenticate using an AWS IAM role, you must have a Kubernetes cluster deployed using

EKS.

Create AWS Secrets Manager secret

Since Trident will be issuing APIs against an FSx vserver to manage the storage for you, it will need

credentials to do so. The secure way to pass those credentials is through an AWS Secrets Manager secret.

Therefore, if you don’t already have one, you’ll need to create an AWS Secrets Manager secret that contains

the credentials for the vsadmin account.

This example creates an AWS Secrets Manager secret to store Trident CSI credentials:

aws secretsmanager create-secret --name trident-secret --description

"Trident CSI credentials"\

  --secret-string

"{\"username\":\"vsadmin\",\"password\":\"<svmpassword>\"}"

Create IAM Policy

Trident also needs AWS permissions to run correctly. Therefore, you need to create a policy that gives Trident

121

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://www.netapp.com/blog/amazon-fsx-for-netapp-ontap/


the permissions it needs.

The following examples creates an IAM policy using the AWS CLI:

aws iam create-policy --policy-name AmazonFSxNCSIDriverPolicy --policy

-document file://policy.json

  --description "This policy grants access to Trident CSI to FSxN and

Secrets manager"

Policy JSON example:

{

  "Statement": [

    {

      "Action": [

        "fsx:DescribeFileSystems",

        "fsx:DescribeVolumes",

        "fsx:CreateVolume",

        "fsx:RestoreVolumeFromSnapshot",

        "fsx:DescribeStorageVirtualMachines",

        "fsx:UntagResource",

        "fsx:UpdateVolume",

        "fsx:TagResource",

        "fsx:DeleteVolume"

      ],

      "Effect": "Allow",

      "Resource": "*"

    },

    {

      "Action": "secretsmanager:GetSecretValue",

      "Effect": "Allow",

      "Resource": "arn:aws:secretsmanager:<aws-region>:<aws-account-

id>:secret:<aws-secret-manager-name>*"

    }

  ],

  "Version": "2012-10-17"

}

Create Pod Identity or IAM role for Service account association (IRSA)

You can configure a Kubernetes service account to assume an AWS Identity and Access Management (IAM)

role with EKS Pod Identity or IAM role for Service account association (IRSA). Any Pods that are configured to

use the service account can then access any AWS service that the role has permissions to access.

122



Pod Identity

Amazon EKS Pod Identity associations provide the ability to manage credentials for your applications,

similar to the way that Amazon EC2 instance profiles provide credentials to Amazon EC2 instances.

Install Pod Identity on your EKS cluster:

You can create Pod identity via the AWS console or using the following AWS CLI command:

aws eks create-addon --cluster-name <EKS_CLUSTER_NAME> --addon-name

eks-pod-identity-agent

For more information refer to Set up the Amazon EKS Pod Identity Agent.

Create trust-relationship.json:

Create trust-relationship.json to enable EKS Service Principal to assume this role for Pod Identity. Then

create a role with this trust policy:

aws iam create-role \

  --role-name fsxn-csi-role --assume-role-policy-document file://trust-

relationship.json \

  --description "fsxn csi pod identity role"

trust-relationship.json file:

{

  "Version": "2012-10-17",

  "Statement": [

    {

      "Effect": "Allow",

      "Principal": {

        "Service": "pods.eks.amazonaws.com"

      },

      "Action": [

        "sts:AssumeRole",

        "sts:TagSession"

      ]

    }

  ]

}

Attach the role policy to the IAM role:

Attach the role policy from the previous step to the IAM role that was created:

123

https://docs.aws.amazon.com/eks/latest/userguide/pod-id-agent-setup.html


aws iam attach-role-policy \

  --policy-arn arn:aws:iam::aws:111122223333:policy/fsxn-csi-policy \

  --role-name fsxn-csi-role

Create a pod identity association:

Create a pod identity association between IAM role and the Trident service account(trident-controller)

aws eks create-pod-identity-association \

  --cluster-name <EKS_CLUSTER_NAME> \

  --role-arn arn:aws:iam::111122223333:role/fsxn-csi-role \

  --namespace trident --service-account trident-controller

IAM role for Service account association (IRSA)

Using the AWS CLI:

aws iam create-role --role-name AmazonEKS_FSxN_CSI_DriverRole \

  --assume-role-policy-document file://trust-relationship.json

trust-relationship.json file:

{

  "Version": "2012-10-17",

  "Statement": [

    {

      "Effect": "Allow",

      "Principal": {

        "Federated": "arn:aws:iam::<account_id>:oidc-

provider/<oidc_provider>"

      },

      "Action": "sts:AssumeRoleWithWebIdentity",

      "Condition": {

        "StringEquals": {

          "<oidc_provider>:aud": "sts.amazonaws.com",

          "<oidc_provider>:sub":

"system:serviceaccount:trident:trident-controller"

        }

      }

    }

  ]

}

124



Update the following values in the trust-relationship.json file:

• <account_id> - Your AWS account ID

• <oidc_provider> - The OIDC of your EKS cluster. You can obtain the oidc_provider by running:

aws eks describe-cluster --name my-cluster --query

"cluster.identity.oidc.issuer"\

  --output text | sed -e "s/^https:\/\///"

Attach the IAM role with the IAM policy:

Once the role has been created, attach the policy (that was created in the step above) to the role using

this command:

aws iam attach-role-policy --role-name my-role --policy-arn <IAM policy

ARN>

Verify OICD provider is associated:

Verify that your OIDC provider is associated with your cluster. You can verify it using this command:

aws iam list-open-id-connect-providers | grep $oidc_id | cut -d "/" -f4

If the output is empty, use the following command to associate IAM OIDC to your cluster:

eksctl utils associate-iam-oidc-provider --cluster $cluster_name

--approve

If you are using eksctl, use the following example to create an IAM role for service account in EKS:

eksctl create iamserviceaccount --name trident-controller --namespace

trident \

  --cluster <my-cluster> --role-name AmazonEKS_FSxN_CSI_DriverRole

--role-only \

  --attach-policy-arn <IAM-Policy ARN> --approve

Install Trident

Trident streamlines Amazon FSx for NetApp ONTAP storage management in Kubernetes

to enable your developers and administrators focus on application deployment.

You can install Trident using one of the following methods:

125



• Helm

• EKS add-on

If you want to make use of the snapshot functionality, install the CSI snapshot controller add-on. Refer to

Enable snapshot functionality for CSI volumes for more information.

Install Trident via helm

126

https://docs.aws.amazon.com/eks/latest/userguide/csi-snapshot-controller.html


Pod Identity

1. Add the Trident Helm repository:

helm repo add netapp-trident https://netapp.github.io/trident-helm-

chart

2. Install Trident using the following example:

helm install trident-operator netapp-trident/trident-operator

--version 100.2502.1 --namespace trident --create-namespace

You can use the helm list command to review installation details such as name, namespace,

chart, status, app version, and revision number.

helm list -n trident

NAME                NAMESPACE   REVISION    UPDATED

STATUS       CHART                          APP VERSION

trident-operator    trident     1           2024-10-14

14:31:22.463122 +0300 IDT    deployed     trident-operator-

100.2502.0    25.02.0

Service account association (IRSA)

1. Add the Trident Helm repository:

helm repo add netapp-trident https://netapp.github.io/trident-helm-

chart

2. Set the values for cloud provider and cloud identity:

helm install trident-operator netapp-trident/trident-operator

--version 100.2502.1  \

--set cloudProvider="AWS" \

--set cloudIdentity="'eks.amazonaws.com/role-arn:

arn:aws:iam::<accountID>:role/<AmazonEKS_FSxN_CSI_DriverRole>'" \

--namespace trident \

--create-namespace

127



You can use the helm list command to review installation details such as name, namespace,

chart, status, app version, and revision number.

helm list -n trident

NAME                NAMESPACE   REVISION    UPDATED

STATUS       CHART                          APP VERSION

trident-operator    trident     1           2024-10-14

14:31:22.463122 +0300 IDT    deployed     trident-operator-

100.2510.0    25.10.0

If you’re planning to use iSCSI, make sure iSCSI is enabled on your client machine. If you’re

using AL2023 Worker node OS, you can automate the installation of the iSCSI client by adding

the node prep parameter in the helm installation:

helm install trident-operator netapp-trident/trident-operator

--version 100.2502.1 --namespace trident --create-namespace –-

set nodePrep={iscsi}

Install Trident via the EKS add-on

The Trident EKS add-on includes the latest security patches, bug fixes, and is validated by AWS to work with

Amazon EKS. The EKS add-on enables you to consistently ensure that your Amazon EKS clusters are secure

and stable and reduce the amount of work that you need to do in order to install, configure, and update add-

ons.

Prerequisites

Ensure that you have the following before configuring the Trident add-on for AWS EKS:

• An Amazon EKS cluster account with add-on subscription

• AWS permissions to the AWS marketplace:

"aws-marketplace:ViewSubscriptions",

"aws-marketplace:Subscribe",

"aws-marketplace:Unsubscribe

• AMI type: Amazon Linux 2 (AL2_x86_64) or Amazon Linux 2 Arm(AL2_ARM_64)

• Node type: AMD or ARM

• An existing Amazon FSx for NetApp ONTAP file system

Enable the Trident add-on for AWS

128



Management console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. On the left navigation pane, select Clusters.

3. Select the name of the cluster that you want to configure the NetApp Trident CSI add-on for.

4. Select Add-ons and then select Get more add-ons.

5. Follow these steps to select the add-on:

a. Scroll down to the AWS Marketplace add-ons section and type "Trident” in the search box.

b. Select the check box at the top right corner of the Trident by NetApp box.

c. Select Next.

6. On the Configure selected add-ons settings page, do the following:

Skip these steps if you are using Pod Identity association.

a. Select the Version you would like to use.

b. If you’re using IRSA authentication, make sure to set configuration values available in the Optional

configuration settings:

▪ Select the Version you would like to use.

▪ Follow the Add-on configuration schema and set the configurationValues parameter on

the Configuration values section to the role-arn you created on the previous step ( Value

should be in the following format):

{

  "cloudIdentity": "'eks.amazonaws.com/role-arn: <role ARN>'",

  "cloudProvider": "AWS"

}

If you select Override for the Conflict resolution method, one or more of the settings for the existing

add-on can be overwritten with the Amazon EKS add-on settings. If you don’t enable this option and

there’s a conflict with your existing settings, the operation fails. You can use the resulting error

message to troubleshoot the conflict. Before selecting this option, make sure that the Amazon EKS

add-on doesn’t manage settings that you need to self-manage.

7. Choose Next.

8. On the Review and add page, choose Create.

After the add-on installation is complete, you see your installed add-on.

AWS CLI

1. Create the add-on.json file:

For Pod Identity, use the following format:

129

https://console.aws.amazon.com/eks/home#/clusters


Use the

{

  "clusterName": "<eks-cluster>",

  "addonName": "netapp_trident-operator",

  "addonVersion": "v25.6.0-eksbuild.1",

}

For IRSA authentication, use the following format:

{

  "clusterName": "<eks-cluster>",

  "addonName": "netapp_trident-operator",

  "addonVersion": "v25.6.0-eksbuild.1",

  "serviceAccountRoleArn": "<role ARN>",

  "configurationValues": {

    "cloudIdentity": "'eks.amazonaws.com/role-arn: <role ARN>'",

    "cloudProvider": "AWS"

  }

}

Replace <role ARN> with the ARN of the role that was created in the previous step.

2. Install the Trident EKS add-on.

aws eks create-addon --cli-input-json file://add-on.json

eksctl

The following example command installs the Trident EKS add-on:

eksctl create addon --name netapp_trident-operator --cluster

<cluster_name> --force

Update the Trident EKS add-on

130



Management console

1. Open the Amazon EKS console https://console.aws.amazon.com/eks/home#/clusters.

2. On the left navigation pane, select Clusters.

3. Select the name of the cluster that you want to update the NetApp Trident CSI add-on for.

4. Select the Add-ons tab.

5. Select Trident by NetApp and then select Edit.

6. On the Configure Trident by NetApp page, do the following:

a. Select the Version you would like to use.

b. Expand the Optional configuration settings and modify as needed.

c. Select Save changes.

AWS CLI

The following example updates the EKS add-on:

aws eks update-addon --cluster-name <eks_cluster_name> --addon-name

netapp_trident-operator --addon-version v25.6.0-eksbuild.1 \

  --service-account-role-arn <role-ARN> --resolve-conflict preserve \

  --configuration-values “{\"cloudIdentity\":

\"'eks.amazonaws.com/role-arn: <role ARN>'\"}"

eksctl

• Check the current version of your FSxN Trident CSI add-on. Replace my-cluster with your cluster

name.

eksctl get addon --name netapp_trident-operator --cluster my-cluster

Example output:

NAME                        VERSION             STATUS    ISSUES

IAMROLE    UPDATE AVAILABLE    CONFIGURATION VALUES

netapp_trident-operator    v25.6.0-eksbuild.1    ACTIVE    0

{"cloudIdentity":"'eks.amazonaws.com/role-arn:

arn:aws:iam::139763910815:role/AmazonEKS_FSXN_CSI_DriverRole'"}

• Update the add-on to the version returned under UPDATE AVAILABLE in the output of the previous

step.

eksctl update addon --name netapp_trident-operator --version

v25.6.0-eksbuild.1 --cluster my-cluster --force

131

https://console.aws.amazon.com/eks/home#/clusters


If you remove the --force option and any of the Amazon EKS add-on settings conflict with your existing

settings, then updating the Amazon EKS add-on fails; you receive an error message to help you resolve

the conflict. Before specifying this option, make sure that the Amazon EKS add-on does not manage

settings that you need to manage, because those settings are overwritten with this option.

For more information about other options for this setting, see Addons.

For more information about Amazon EKS Kubernetes field management, see Kubernetes field

management.

Uninstall/remove the Trident EKS add-on

You have two options for removing an Amazon EKS add-on:

• Preserve add-on software on your cluster – This option removes Amazon EKS management of any

settings. It also removes the ability for Amazon EKS to notify you of updates and automatically update the

Amazon EKS add-on after you initiate an update. However, it preserves the add-on software on your

cluster. This option makes the add-on a self-managed installation, rather than an Amazon EKS add-on.

With this option, there’s no downtime for the add-on. Retain the --preserve option in the command to

preserve the add-on.

• Remove add-on software entirely from your cluster – NetApp recommends that you remove the

Amazon EKS add-on from your cluster only if there are no resources on your cluster that are dependent on

it. Remove the --preserve option from the delete command to remove the add-on.

If the add-on has an IAM account associated with it, the IAM account is not removed.

132

https://eksctl.io/usage/addons/
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-field-management.html
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-field-management.html


Management console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, select Clusters.

3. Select the name of the cluster that you want to remove the NetApp Trident CSI add-on for.

4. Select the Add-ons tab and then select Trident by NetApp.*

5. Select Remove.

6. In the Remove netapp_trident-operator confirmation dialog, do the following:

a. If you want Amazon EKS to stop managing settings for the add-on, select Preserve on cluster.

Do this if you want to retain the add-on software on your cluster so that you can manage all of the

settings of the add-on on your own.

b. Enter netapp_trident-operator.

c. Select Remove.

AWS CLI

Replace my-cluster with the name of your cluster, and then run the following command.

aws eks delete-addon --cluster-name my-cluster --addon-name

netapp_trident-operator --preserve

eksctl

The following command uninstalls the Trident EKS add-on:

eksctl delete addon --cluster K8s-arm --name netapp_trident-operator

Configure the Storage Backend

ONTAP SAN and NAS driver integration

To create a storage backend, you need to create a configuration file in either JSON or YAML format. The file

needs to specify the type of storage you want (NAS or SAN), the file system, and SVM to get it from and how

to authenticate with it. The following example shows how to define NAS-based storage and using an AWS

secret to store the credentials to the SVM you want to use:

133

https://console.aws.amazon.com/eks/home#/clusters


YAML

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  name: backend-tbc-ontap-nas

  namespace: trident

spec:

  version: 1

  storageDriverName: ontap-nas

  backendName: tbc-ontap-nas

  svm: svm-name

  aws:

    fsxFilesystemID: fs-xxxxxxxxxx

  credentials:

    name: "arn:aws:secretsmanager:us-west-2:xxxxxxxx:secret:secret-

name"

    type: awsarn

JSON

{

  "apiVersion": "trident.netapp.io/v1",

  "kind": "TridentBackendConfig",

  "metadata": {

    "name": "backend-tbc-ontap-nas"

    "namespace": "trident"

  },

  "spec": {

    "version": 1,

    "storageDriverName": "ontap-nas",

    "backendName": "tbc-ontap-nas",

    "svm": "svm-name",

    "aws": {

      "fsxFilesystemID": "fs-xxxxxxxxxx"

    },

    "managementLIF": null,

    "credentials": {

      "name": "arn:aws:secretsmanager:us-west-2:xxxxxxxx:secret:secret-

name",

      "type": "awsarn"

    }

  }

}

134



Run the following commands to create and validate the Trident Backend Configuration (TBC):

• Create trident backend configuration (TBC) from yaml file and run the following command:

kubectl create -f backendconfig.yaml -n trident

tridentbackendconfig.trident.netapp.io/backend-tbc-ontap-nas created

• Validate the trident backend configuration (TBC) was created successfully:

Kubectl get tbc -n trident

NAME                         BACKEND NAME         BACKEND UUID

PHASE   STATUS

backend-tbc-ontap-nas        tbc-ontap-nas        933e0071-66ce-4324-

b9ff-f96d916ac5e9   Bound   Success

FSx for ONTAP driver details

You can integrate Trident with Amazon FSx for NetApp ONTAP using the following drivers:

• ontap-san: Each PV provisioned is a LUN within its own Amazon FSx for NetApp ONTAP volume.

Recommended for block storage.

• ontap-nas: Each PV provisioned is a full Amazon FSx for NetApp ONTAP volume. Recommended for

NFS and SMB.

• ontap-san-economy: Each PV provisioned is a LUN with a configurable number of LUNs per Amazon

FSx for NetApp ONTAP volume.

• ontap-nas-economy: Each PV provisioned is a qtree, with a configurable number of qtrees per Amazon

FSx for NetApp ONTAP volume.

• ontap-nas-flexgroup: Each PV provisioned is a full Amazon FSx for NetApp ONTAP FlexGroup

volume.

For driver details, refer to NAS drivers and SAN drivers.

Once the configuration file has been created, run this command to create it within your EKS:

kubectl create -f configuration_file

To verify the status, run this command:

135



kubectl get tbc -n trident

NAME                    BACKEND NAME            BACKEND UUID

PHASE   STATUS

backend-fsx-ontap-nas   backend-fsx-ontap-nas   7a551921-997c-4c37-a1d1-

f2f4c87fa629   Bound   Success

Backend advanced configuration and examples

See the following table for the backend configuration options:

Parameter Description Example

version Always 1

storageDriverName Name of the storage driver ontap-nas, ontap-nas-

economy, ontap-nas-

flexgroup, ontap-san, ontap-

san-economy

backendName Custom name or the storage

backend

Driver name + "_" + dataLIF

managementLIF IP address of a cluster or SVM

management LIF

A fully-qualified domain name

(FQDN) can be specified.

Can be set to use IPv6 addresses if

Trident was installed using the IPv6

flag. IPv6 addresses must be

defined in square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e

7b:3555].

If you provide the

fsxFilesystemID under the aws

field, you need not to provide the

managementLIF because Trident

retrieves the SVM

managementLIF information from

AWS. So, you must provide

credentials for a user under the

SVM (For example: vsadmin) and

the user must have the vsadmin

role.

"10.0.0.1", "[2001:1234:abcd::fefe]"

136



Parameter Description Example

dataLIF IP address of protocol LIF.

ONTAP NAS drivers: NetApp

recommends specifying dataLIF. If

not provided, Trident fetches

dataLIFs from the SVM. You can

specify a fully-qualified domain

name (FQDN) to be used for the

NFS mount operations, allowing

you to create a round-robin DNS to

load-balance across multiple

dataLIFs. Can be changed after

initial setting. Refer to Update

dataLIF after initial configuration.

ONTAP SAN drivers: Do not

specify for iSCSI. Trident uses

ONTAP Selective LUN Map to

discover the iSCI LIFs needed to

establish a multi path session. A

warning is generated if dataLIF is

explicitly defined.

Can be set to use IPv6 addresses if

Trident was installed using the IPv6

flag. IPv6 addresses must be

defined in square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e

7b:3555].

autoExportPolicy Enable automatic export policy

creation and updating [Boolean].

Using the autoExportPolicy

and autoExportCIDRs options,

Trident can manage export policies

automatically.

false

autoExportCIDRs List of CIDRs to filter Kubernetes'

node IPs against when

autoExportPolicy is enabled.

Using the autoExportPolicy

and autoExportCIDRs options,

Trident can manage export policies

automatically.

"["0.0.0.0/0", "::/0"]"

labels Set of arbitrary JSON-formatted

labels to apply on volumes

""

clientCertificate Base64-encoded value of client

certificate. Used for certificate-

based auth

""

137



Parameter Description Example

clientPrivateKey Base64-encoded value of client

private key. Used for certificate-

based auth

""

trustedCACertificate Base64-encoded value of trusted

CA certificate. Optional. Used for

certificate-based authentication.

""

username Username to connect to the cluster

or SVM. Used for credential-based

authentication. For example,

vsadmin.

password Password to connect to the cluster

or SVM. Used for credential-based

authentication.

svm Storage virtual machine to use Derived if an SVM managementLIF

is specified.

storagePrefix Prefix used when provisioning new

volumes in the SVM.

Cannot be modified after creation.

To update this parameter, you will

need to create a new backend.

trident

limitAggregateUsage Do not specify for Amazon FSx

for NetApp ONTAP.

The provided fsxadmin and

vsadmin do not contain the

permissions required to retrieve

aggregate usage and limit it using

Trident.

Do not use.

limitVolumeSize Fail provisioning if requested

volume size is above this value.

Also restricts the maximum size of

the volumes it manages for qtrees

and LUNs, and the

qtreesPerFlexvol option allows

customizing the maximum number

of qtrees per FlexVol volume

"" (not enforced by default)

lunsPerFlexvol Maximum LUNs per Flexvol

volume, must be in range [50, 200].

SAN only.

“100”

138



Parameter Description Example

debugTraceFlags Debug flags to use when

troubleshooting. Example,

{"api":false, "method":true}

Do not use debugTraceFlags

unless you are troubleshooting and

require a detailed log dump.

null

nfsMountOptions Comma-separated list of NFS

mount options.

The mount options for Kubernetes-

persistent volumes are normally

specified in storage classes, but if

no mount options are specified in a

storage class, Trident will fall back

to using the mount options

specified in the storage backend’s

configuration file.

If no mount options are specified in

the storage class or the

configuration file, Trident will not set

any mount options on an

associated persistent volume.

""

nasType Configure NFS or SMB volumes

creation.

Options are nfs, smb, or null.

Must set to smb for SMB

volumes. Setting to null defaults to

NFS volumes.

nfs

qtreesPerFlexvol Maximum Qtrees per FlexVol

volume, must be in range [50, 300]
"200"

smbShare You can specify one of the

following: the name of an SMB

share created using the Microsoft

Management Console or ONTAP

CLI or a name to allow Trident to

create the SMB share.

This parameter is required for

Amazon FSx for ONTAP backends.

smb-share

139



Parameter Description Example

useREST Boolean parameter to use ONTAP

REST APIs.

When set to true, Trident will use

ONTAP REST APIs to

communicate with the backend.

This feature requires ONTAP 9.11.1

and later. In addition, the ONTAP

login role used must have access to

the ontap application. This is

satisfied by the pre-defined

vsadmin and cluster-admin

roles.

false

aws You can specify the following in the

configuration file for AWS FSx for

ONTAP:

- fsxFilesystemID: Specify the

ID of the AWS FSx file system.

- apiRegion: AWS API region

name.

- apikey: AWS API key.

- secretKey: AWS secret key.

""

""

""

credentials Specify the FSx SVM credentials to

store in AWS Secrets Manager.

- name: Amazon Resource Name

(ARN) of the secret, which contains

the credentials of SVM.

- type: Set to awsarn.

Refer to Create an AWS Secrets

Manager secret for more

information.

Backend configuration options for provisioning volumes

You can control default provisioning using these options in the defaults section of the configuration. For an

example, see the configuration examples below.

Parameter Description Default

spaceAllocation Space-allocation for LUNs true

spaceReserve Space reservation mode; "none"

(thin) or "volume" (thick)
none

snapshotPolicy Snapshot policy to use none

140

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html


Parameter Description Default

qosPolicy QoS policy group to assign for

volumes created. Choose one of

qosPolicy or adaptiveQosPolicy per

storage pool or backend.

Using QoS policy groups with

Trident requires ONTAP 9.8 or later.

You should use a non-shared QoS

policy group and ensuring the

policy group is applied to each

constituent individually. A shared

QoS policy group enforces the

ceiling for the total throughput of all

workloads.

""

adaptiveQosPolicy Adaptive QoS policy group to

assign for volumes created.

Choose one of qosPolicy or

adaptiveQosPolicy per storage pool

or backend.

Not supported by ontap-nas-

economy.

""

snapshotReserve Percentage of volume reserved for

snapshots "0"
If snapshotPolicy is none, else

""

splitOnClone Split a clone from its parent upon

creation
false

encryption Enable NetApp Volume Encryption

(NVE) on the new volume; defaults

to false. NVE must be licensed

and enabled on the cluster to use

this option.

If NAE is enabled on the backend,

any volume provisioned in Trident

will be NAE enabled.

For more information, refer to: How

Trident works with NVE and NAE.

false

luksEncryption Enable LUKS encryption. Refer to

Use Linux Unified Key Setup

(LUKS).

SAN only.

""

tieringPolicy Tiering policy to use none

unixPermissions Mode for new volumes.

Leave empty for SMB volumes.

""

141

https://docs.netapp.com/us-en/trident/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident/trident-reco/security-reco.html
https://docs.netapp.com/us-en/trident/trident-reco/security-reco.html#Use-Linux-Unified-Key-Setup-(LUKS)
https://docs.netapp.com/us-en/trident/trident-reco/security-reco.html#Use-Linux-Unified-Key-Setup-(LUKS)


Parameter Description Default

securityStyle Security style for new volumes.

NFS supports mixed and unix

security styles.

SMB supports mixed and ntfs

security styles.

NFS default is unix.

SMB default is ntfs.

Provision SMB volumes

You can provision SMB volumes using the ontap-nas driver.

Before you complete ONTAP SAN and NAS driver integration complete these steps: Prepare to provision SMB

volumes.

Configure a storage class and PVC

Configure a Kubernetes StorageClass object and create the storage class to instruct

Trident how to provision volumes. Create a PersistentVolumeClaim (PVC) that uses the

configured Kubernetes StorageClass to request access to the PV. You can then mount

the PV to a pod.

Create a storage class

Configure a Kubernetes StorageClass object

The Kubernetes StorageClass object object identifies Trident as the provisioner that is used for that class and

instructs Trident how to provision a volume. Use this example to setup Storageclass for volumes using NFS

(Refer to Trident Attribute section below for the full list of attributes):

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontap-gold

provisioner: csi.trident.netapp.io

parameters:

  backendType: "ontap-nas"

  provisioningType: "thin"

  snapshots: "true"

Use this example to setup Storageclass for volumes using iSCSI:

142

https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html#prepare-to-provision-smb-volumes
https://docs.netapp.com/us-en/trident/trident-use/worker-node-prep.html#prepare-to-provision-smb-volumes
https://kubernetes.io/docs/concepts/storage/storage-classes/


apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontap-gold

provisioner: csi.trident.netapp.io

parameters:

  backendType: "ontap-san"

  provisioningType: "thin"

  snapshots: "true"

To provision NFSv3 volumes on AWS Bottlerocket, add the required mountOptions to the storage class:

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontap-gold

provisioner: csi.trident.netapp.io

parameters:

  backendType: "ontap-nas"

  media: "ssd"

  provisioningType: "thin"

  snapshots: "true"

mountOptions:

  - nfsvers=3

  - nolock

Refer to Kubernetes and Trident objects for details on how storage classes interact with the

PersistentVolumeClaim and parameters for controlling how Trident provisions volumes.

Create a storage class

Steps

1. This is a Kubernetes object, so use kubectl to create it in Kubernetes.

kubectl create -f storage-class-ontapnas.yaml

2. You should now see a basic-csi storage class in both Kubernetes and Trident, and Trident should have

discovered the pools on the backend.

kubectl get sc basic-csi

143

https://docs.netapp.com/us-en/trident/trident-reference/objects.html


NAME         PROVISIONER             AGE

basic-csi    csi.trident.netapp.io   15h

Create the PVC

A PersistentVolumeClaim (PVC) is a request for access to the PersistentVolume on the cluster.

The PVC can be configured to request storage of a certain size or access mode. Using the associated

StorageClass, the cluster administrator can control more than PersistentVolume size and access mode—such

as performance or service level.

After you create the PVC, you can mount the volume in a pod.

Sample manifests

144

https://kubernetes.io/docs/concepts/storage/persistent-volumes


PersistentVolumeClaim sample manifests

These examples show basic PVC configuration options.

PVC with RWX access

This example shows a basic PVC with RWX access that is associated with a StorageClass named

basic-csi.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: pvc-storage

spec:

  accessModes:

    - ReadWriteMany

  resources:

    requests:

      storage: 1Gi

  storageClassName: ontap-gold

PVC using iSCSI example

This example shows a basic PVC for iSCSI with RWO access that is associated with a StorageClass

named protection-gold.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san

spec:

accessModes:

  - ReadWriteOnce

resources:

  requests:

    storage: 1Gi

storageClassName: protection-gold

Create PVC

Steps

1. Create the PVC.

kubectl create -f pvc.yaml

145



2. Verify the PVC status.

kubectl get pvc

NAME        STATUS VOLUME     CAPACITY ACCESS MODES STORAGECLASS AGE

pvc-storage Bound  pv-name 2Gi      RWO                       5m

Refer to Kubernetes and Trident objects for details on how storage classes interact with the

PersistentVolumeClaim and parameters for controlling how Trident provisions volumes.

Trident attributes

These parameters determine which Trident-managed storage pools should be utilized to provision volumes of

a given type.

Attribute Type Values Offer Request Supported by

media1 string hdd, hybrid, ssd Pool contains

media of this

type; hybrid

means both

Media type

specified

ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroup,

ontap-san,

solidfire-san

provisioningType string thin, thick Pool supports

this provisioning

method

Provisioning

method specified

thick: all ontap;

thin: all ontap &

solidfire-san

backendType string ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroup,

ontap-san,

solidfire-san,

azure-netapp-

files, ontap-san-

economy

Pool belongs to

this type of

backend

Backend

specified

All drivers

snapshots bool true, false Pool supports

volumes with

snapshots

Volume with

snapshots

enabled

ontap-nas,

ontap-san,

solidfire-san

clones bool true, false Pool supports

cloning volumes

Volume with

clones enabled

ontap-nas,

ontap-san,

solidfire-san

encryption bool true, false Pool supports

encrypted

volumes

Volume with

encryption

enabled

ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroups,

ontap-san

146

https://docs.netapp.com/us-en/trident/trident-reference/objects.html


Attribute Type Values Offer Request Supported by

IOPS int positive integer Pool is capable

of guaranteeing

IOPS in this

range

Volume

guaranteed

these IOPS

solidfire-san

1: Not supported by ONTAP Select systems

Deploy sample application

When the storage class and PVC are created, you can mount the PV to a pod. This

section lists the example command and configuration to attach the PV to a pod.

Steps

1. Mount the volume in a pod.

kubectl create -f pv-pod.yaml

These examples show basic configurations to attach the PVC to a pod:

Basic configuration:

kind: Pod

apiVersion: v1

metadata:

  name: pv-pod

spec:

  volumes:

    - name: pv-storage

      persistentVolumeClaim:

       claimName: basic

  containers:

    - name: pv-container

      image: nginx

      ports:

        - containerPort: 80

          name: "http-server"

      volumeMounts:

        - mountPath: "/my/mount/path"

          name: pv-storage

You can monitor the progress using kubectl get pod --watch.

2. Verify that the volume is mounted on /my/mount/path.

147



kubectl exec -it pv-pod -- df -h /my/mount/path

Filesystem                                                        Size

Used  Avail Use%  Mounted on

192.168.188.78:/trident_pvc_ae45ed05_3ace_4e7c_9080_d2a83ae03d06  1.1G

320K  1.0G   1%   /my/mount/path

You can now delete the Pod. The Pod application will no longer exist, but the volume will remain.

kubectl delete pod pv-pod

Configure the Trident EKS add-on on an EKS cluster

NetApp Trident streamlines Amazon FSx for NetApp ONTAP storage management in

Kubernetes to enable your developers and administrators focus on application

deployment. The NetApp Trident EKS add-on includes the latest security patches, bug

fixes, and is validated by AWS to work with Amazon EKS. The EKS add-on enables you

to consistently ensure that your Amazon EKS clusters are secure and stable and reduce

the amount of work that you need to do in order to install, configure, and update add-ons.

Prerequisites

Ensure that you have the following before configuring the Trident add-on for AWS EKS:

• An Amazon EKS cluster account with permissions to work with add-ons. Refer to Amazon EKS add-ons.

• AWS permissions to the AWS marketplace:

"aws-marketplace:ViewSubscriptions",

"aws-marketplace:Subscribe",

"aws-marketplace:Unsubscribe

• AMI type: Amazon Linux 2 (AL2_x86_64) or Amazon Linux 2 Arm(AL2_ARM_64)

• Node type: AMD or ARM

• An existing Amazon FSx for NetApp ONTAP file system

Steps

1. Make sure to create IAM role and AWS secret to enable EKS pods to access AWS resources. For

instructions, see Create an IAM role and AWS Secret.

2. On your EKS Kubernetes cluster, navigate to the Add-ons tab.

148

https://docs.aws.amazon.com/eks/latest/userguide/eks-add-ons.html


3. Go to AWS Marketplace add-ons and choose the storage category.

4. Locate NetApp Trident and select the checkbox for the Trident add-on, and click Next.

5. Choose the desired version of the add-on.

149



6. Configure the required add-on settings.

7. If you are using IRSA (IAM roles for service account), refer to the additional configuration steps here.

8. Select Create.

9. Verify that the status of the add-on is Active.

150

https://docs.netapp.com/us-en/trident/trident-use/trident-fsx-install-trident.html#enable-the-trident-add-on-for-aws


10. Run the following command to verify that Trident is properly installed on the cluster:

kubectl get pods -n trident

11. Continue the setup and configure the storage backend. For information, see Configure the Storage

Backend.

Install/uninstall the Trident EKS add-on using CLI

Install the  NetApp Trident EKS add-on using CLI:

The following example command installs the Trident EKS add-on:

eksctl create addon --cluster clusterName --name netapp_trident-operator

--version v25.6.0-eksbuild.1 (with a dedicated version)

The following example command installs the Trident EKS add-on version 25.6.1:

eksctl create addon --cluster clusterName --name netapp_trident-operator

--version v25.6.1-eksbuild.1 (with a dedicated version)

The following example command installs the Trident EKS add-on version 25.6.2:

eksctl create addon --cluster clusterName --name netapp_trident-operator

--version v25.6.2-eksbuild.1 (with a dedicated version)

Uninstall the NetApp Trident EKS add-on using CLI:

The following command uninstalls the Trident EKS add-on:

eksctl delete addon --cluster K8s-arm --name netapp_trident-operator

Create backends with kubectl

A backend defines the relationship between Trident and a storage system. It tells Trident

how to communicate with that storage system and how Trident should provision volumes

from it. After Trident is installed, the next step is to create a backend. The

TridentBackendConfig Custom Resource Definition (CRD) enables you to create and

manage Trident backends directly through the Kubernetes interface. You can do this by

using kubectl or the equivalent CLI tool for your Kubernetes distribution.

151



TridentBackendConfig

TridentBackendConfig (tbc, tbconfig, tbackendconfig) is a frontend, namespaced CRD that

enables you to manage Trident backends using kubectl. Kubernetes and storage admins can now create

and manage backends directly through the Kubernetes CLI without requiring a dedicated command-line utility

(tridentctl).

Upon the creation of a TridentBackendConfig object, the following happens:

• A backend is created automatically by Trident based on the configuration you provide. This is represented

internally as a TridentBackend (tbe, tridentbackend) CR.

• The TridentBackendConfig is uniquely bound to a TridentBackend that was created by Trident.

Each TridentBackendConfig maintains a one-to-one mapping with a TridentBackend. The former is the

interface provided to the user to design and configure backends; the latter is how Trident represents the actual

backend object.

TridentBackend CRs are created automatically by Trident. You should not modify them. If

you want to make updates to backends, do this by modifying the TridentBackendConfig

object.

See the following example for the format of the TridentBackendConfig CR:

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  name: backend-tbc-ontap-san

spec:

  version: 1

  backendName: ontap-san-backend

  storageDriverName: ontap-san

  managementLIF: 10.0.0.1

  dataLIF: 10.0.0.2

  svm: trident_svm

  credentials:

    name: backend-tbc-ontap-san-secret

You can also take a look at the examples in the trident-installer directory for sample configurations for the

desired storage platform/service.

The spec takes backend-specific configuration parameters. In this example, the backend uses the ontap-

san storage driver and uses the configuration parameters that are tabulated here. For the list of configuration

options for your desired storage driver, refer to the backend configuration information for your storage driver.

The spec section also includes credentials and deletionPolicy fields, which are newly introduced in

the TridentBackendConfig CR:

• credentials: This parameter is a required field and contains the credentials used to authenticate with

the storage system/service. This is set to a user-created Kubernetes Secret. The credentials cannot be

152

https://github.com/NetApp/trident/tree/stable/v21.07/trident-installer/sample-input/backends-samples


passed in plain text and will result in an error.

• deletionPolicy: This field defines what should happen when the TridentBackendConfig is deleted.

It can take one of two possible values:

◦ delete: This results in the deletion of both TridentBackendConfig CR and the associated

backend. This is the default value.

◦ retain: When a TridentBackendConfig CR is deleted, the backend definition will still be present

and can be managed with tridentctl. Setting the deletion policy to retain lets users downgrade to

an earlier release (pre-21.04) and retain the created backends. The value for this field can be updated

after a TridentBackendConfig is created.

The name of a backend is set using spec.backendName. If unspecified, the name of the

backend is set to the name of the TridentBackendConfig object (metadata.name). It is

recommended to explicitly set backend names using spec.backendName.

Backends that were created with tridentctl do not have an associated

TridentBackendConfig object. You can choose to manage such backends with kubectl by

creating a TridentBackendConfig CR. Care must be taken to specify identical config

parameters (such as spec.backendName, spec.storagePrefix,

spec.storageDriverName, and so on). Trident will automatically bind the newly-created

TridentBackendConfig with the pre-existing backend.

Steps overview

To create a new backend by using kubectl, you should do the following:

1. Create a Kubernetes Secret. The secret contains the credentials Trident needs to communicate with the

storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and

references the secret created in the previous step.

After you create a backend, you can observe its status by using kubectl get tbc <tbc-name> -n

<trident-namespace> and gather additional details.

Step 1: Create a Kubernetes Secret

Create a Secret that contains the access credentials for the backend. This is unique to each storage

service/platform. Here’s an example:

kubectl -n trident create -f backend-tbc-ontap-san-secret.yaml

153

https://kubernetes.io/docs/concepts/configuration/secret/


apiVersion: v1

kind: Secret

metadata:

  name: backend-tbc-ontap-san-secret

type: Opaque

stringData:

  username: cluster-admin

  password: password

This table summarizes the fields that must be included in the Secret for each storage platform:

Storage platform Secret Fields

description

Secret Fields description

Azure NetApp Files clientID The client ID from an app

registration

Element (NetApp HCI/SolidFire) Endpoint MVIP for the SolidFire cluster with

tenant credentials

ONTAP username Username to connect to the

cluster/SVM. Used for credential-

based authentication

ONTAP password Password to connect to the

cluster/SVM. Used for credential-

based authentication

ONTAP clientPrivateKey Base64-encoded value of client

private key. Used for certificate-

based authentication

ONTAP chapUsername Inbound username. Required if

useCHAP=true. For ontap-san

and ontap-san-economy

ONTAP chapInitiatorSecret CHAP initiator secret. Required if

useCHAP=true. For ontap-san

and ontap-san-economy

ONTAP chapTargetUsername Target username. Required if

useCHAP=true. For ontap-san

and ontap-san-economy

154



Storage platform Secret Fields

description

Secret Fields description

ONTAP chapTargetInitiatorSecret CHAP target initiator secret.

Required if useCHAP=true. For

ontap-san and ontap-san-

economy

The Secret created in this step will be referenced in the spec.credentials field of the

TridentBackendConfig object that is created in the next step.

Step 2: Create the TridentBackendConfig CR

You are now ready to create your TridentBackendConfig CR. In this example, a backend that uses the

ontap-san driver is created by using the TridentBackendConfig object shown below:

kubectl -n trident create -f backend-tbc-ontap-san.yaml

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  name: backend-tbc-ontap-san

spec:

  version: 1

  backendName: ontap-san-backend

  storageDriverName: ontap-san

  managementLIF: 10.0.0.1

  dataLIF: 10.0.0.2

  svm: trident_svm

  credentials:

    name: backend-tbc-ontap-san-secret

Step 3: Verify the status of the TridentBackendConfig CR

Now that you created the TridentBackendConfig CR, you can verify the status. See the following example:

kubectl -n trident get tbc backend-tbc-ontap-san

NAME                    BACKEND NAME          BACKEND UUID

PHASE   STATUS

backend-tbc-ontap-san   ontap-san-backend     8d24fce7-6f60-4d4a-8ef6-

bab2699e6ab8   Bound   Success

A backend was successfully created and bound to the TridentBackendConfig CR.

155



Phase can take one of the following values:

• Bound: The TridentBackendConfig CR is associated with a backend, and that backend contains

configRef set to the TridentBackendConfig CR’s uid.

• Unbound: Represented using "". The TridentBackendConfig object is not bound to a backend. All

newly created TridentBackendConfig CRs are in this phase by default. After the phase changes, it

cannot revert to Unbound again.

• Deleting: The TridentBackendConfig CR’s deletionPolicy was set to delete. When the

TridentBackendConfig CR is deleted, it transitions to the Deleting state.

◦ If no persistent volume claims (PVCs) exist on the backend, deleting the TridentBackendConfig

will result in Trident deleting the backend as well as the TridentBackendConfig CR.

◦ If one or more PVCs are present on the backend, it goes to a deleting state. The

TridentBackendConfig CR subsequently also enters deleting phase. The backend and

TridentBackendConfig are deleted only after all PVCs are deleted.

• Lost: The backend associated with the TridentBackendConfig CR was accidentally or deliberately

deleted and the TridentBackendConfig CR still has a reference to the deleted backend. The

TridentBackendConfig CR can still be deleted irrespective of the deletionPolicy value.

• Unknown: Trident is unable to determine the state or existence of the backend associated with the

TridentBackendConfig CR. For example, if the API server is not responding or if the

tridentbackends.trident.netapp.io CRD is missing. This might require intervention.

At this stage, a backend is successfully created! There are several operations that can additionally be handled,

such as backend updates and backend deletions.

(Optional) Step 4: Get more details

You can run the following command to get more information about your backend:

kubectl -n trident get tbc backend-tbc-ontap-san -o wide

NAME                    BACKEND NAME        BACKEND UUID

PHASE   STATUS    STORAGE DRIVER   DELETION POLICY

backend-tbc-ontap-san   ontap-san-backend   8d24fce7-6f60-4d4a-8ef6-

bab2699e6ab8   Bound   Success   ontap-san        delete

In addition, you can also obtain a YAML/JSON dump of TridentBackendConfig.

kubectl -n trident get tbc backend-tbc-ontap-san -o yaml

156



apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  creationTimestamp: 2021-04-21T20:45:11Z

  finalizers:

    - trident.netapp.io

  generation: 1

  name: backend-tbc-ontap-san

  namespace: trident

  resourceVersion: "947143"

  uid: 35b9d777-109f-43d5-8077-c74a4559d09c

spec:

  backendName: ontap-san-backend

  credentials:

    name: backend-tbc-ontap-san-secret

  managementLIF: 10.0.0.1

  dataLIF: 10.0.0.2

  storageDriverName: ontap-san

  svm: trident_svm

  version: 1

status:

  backendInfo:

    backendName: ontap-san-backend

    backendUUID: 8d24fce7-6f60-4d4a-8ef6-bab2699e6ab8

  deletionPolicy: delete

  lastOperationStatus: Success

  message: Backend 'ontap-san-backend' created

  phase: Bound

backendInfo contains the backendName and the backendUUID of the backend that got created in

response to the TridentBackendConfig CR. The lastOperationStatus field represents the status of

the last operation of the TridentBackendConfig CR, which can be user-triggered (for example, user

changed something in spec) or triggered by Trident (for example, during Trident restarts). It can either be

Success or Failed. phase represents the status of the relation between the TridentBackendConfig CR

and the backend. In the example above, phase has the value Bound, which means that the

TridentBackendConfig CR is associated with the backend.

You can run the kubectl -n trident describe tbc <tbc-cr-name> command to get details of the

event logs.

You cannot update or delete a backend which contains an associated

TridentBackendConfig object using tridentctl. To understand the steps involved in

switching between tridentctl and TridentBackendConfig, see here.

157



Manage backends

Perform backend management with kubectl

Learn about how to perform backend management operations by using kubectl.

Delete a backend

By deleting a TridentBackendConfig, you instruct Trident to delete/retain backends (based on

deletionPolicy). To delete a backend, ensure that deletionPolicy is set to delete. To delete just the

TridentBackendConfig, ensure that deletionPolicy is set to retain. This ensures the backend is still

present and can be managed by using tridentctl.

Run the following command:

kubectl delete tbc <tbc-name> -n trident

Trident does not delete the Kubernetes Secrets that were in use by TridentBackendConfig. The

Kubernetes user is responsible for cleaning up secrets. Care must be taken when deleting secrets. You should

delete secrets only if they are not in use by the backends.

View the existing backends

Run the following command:

kubectl get tbc -n trident

You can also run tridentctl get backend -n trident or tridentctl get backend -o yaml -n

trident to obtain a list of all backends that exist. This list will also include backends that were created with

tridentctl.

Update a backend

There can be multiple reasons to update a backend:

• Credentials to the storage system have changed. To update credentials, the Kubernetes Secret that is used

in the TridentBackendConfig object must be updated. Trident will automatically update the backend

with the latest credentials provided. Run the following command to update the Kubernetes Secret:

kubectl apply -f <updated-secret-file.yaml> -n trident

• Parameters (such as the name of the ONTAP SVM being used) need to be updated.

◦ You can update TridentBackendConfig objects directly through Kubernetes using the following

command:

kubectl apply -f <updated-backend-file.yaml>

158



◦ Alternatively, you can make changes to the existing TridentBackendConfig CR using the following

command:

kubectl edit tbc <tbc-name> -n trident

• If a backend update fails, the backend continues to remain in its last known configuration.

You can view the logs to determine the cause by running kubectl get tbc <tbc-name>

-o yaml -n trident or kubectl describe tbc <tbc-name> -n trident.

• After you identify and correct the problem with the configuration file, you can re-run the

update command.

Perform backend management with tridentctl

Learn about how to perform backend management operations by using tridentctl.

Create a backend

After you create a backend configuration file, run the following command:

tridentctl create backend -f <backend-file> -n trident

If backend creation fails, something was wrong with the backend configuration. You can view the logs to

determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the create command

again.

Delete a backend

To delete a backend from Trident, do the following:

1. Retrieve the backend name:

tridentctl get backend -n trident

2. Delete the backend:

tridentctl delete backend <backend-name> -n trident

159



If Trident has provisioned volumes and snapshots from this backend that still exist, deleting the

backend prevents new volumes from being provisioned by it. The backend will continue to exist

in a "Deleting" state.

View the existing backends

To view the backends that Trident knows about, do the following:

• To get a summary, run the following command:

tridentctl get backend -n trident

• To get all the details, run the following command:

tridentctl get backend -o json -n trident

Update a backend

After you create a new backend configuration file, run the following command:

tridentctl update backend <backend-name> -f <backend-file> -n trident

If backend update fails, something was wrong with the backend configuration or you attempted an invalid

update. You can view the logs to determine the cause by running the following command:

tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the update command

again.

Identify the storage classes that use a backend

This is an example of the kind of questions you can answer with the JSON that tridentctl outputs for

backend objects. This uses the jq utility, which you need to install.

tridentctl get backend -o json | jq '[.items[] | {backend: .name,

storageClasses: [.storage[].storageClasses]|unique}]'

This also applies for backends that were created by using TridentBackendConfig.

Move between backend management options

Learn about the different ways of managing backends in Trident.

160



Options for managing backends

With the introduction of TridentBackendConfig, administrators now have two unique ways of managing

backends. This poses the following questions:

• Can backends created using tridentctl be managed with TridentBackendConfig?

• Can backends created using TridentBackendConfig be managed using tridentctl?

Manage tridentctl backends using TridentBackendConfig

This section covers the steps required to manage backends that were created using tridentctl directly

through the Kubernetes interface by creating TridentBackendConfig objects.

This will apply to the following scenarios:

• Pre-existing backends, that don’t have a TridentBackendConfig because they were created with

tridentctl.

• New backends that were created with tridentctl, while other TridentBackendConfig objects exist.

In both scenarios, backends will continue to be present, with Trident scheduling volumes and operating on

them. Administrators have one of two choices here:

• Continue using tridentctl to manage backends that were created using it.

• Bind backends created using tridentctl to a new TridentBackendConfig object. Doing so would

mean the backends will be managed using kubectl and not tridentctl.

To manage a pre-existing backend using kubectl, you will need to create a TridentBackendConfig that

binds to the existing backend. Here is an overview of how that works:

1. Create a Kubernetes Secret. The secret contains the credentials Trident needs to communicate with the

storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and

references the secret created in the previous step. Care must be taken to specify identical config

parameters (such as spec.backendName, spec.storagePrefix, spec.storageDriverName, and

so on). spec.backendName must be set to the name of the existing backend.

Step 0: Identify the backend

To create a TridentBackendConfig that binds to an existing backend, you will need to obtain the backend

configuration. In this example, let us assume a backend was created using the following JSON definition:

161



tridentctl get backend ontap-nas-backend -n trident

+---------------------+----------------

+--------------------------------------+--------+---------+

|          NAME       | STORAGE DRIVER |                 UUID

| STATE  | VOLUMES |

+---------------------+----------------

+--------------------------------------+--------+---------+

| ontap-nas-backend   | ontap-nas      | 52f2eb10-e4c6-4160-99fc-

96b3be5ab5d7 | online |      25 |

+---------------------+----------------

+--------------------------------------+--------+---------+

cat ontap-nas-backend.json

162



{

  "version": 1,

  "storageDriverName": "ontap-nas",

  "managementLIF": "10.10.10.1",

  "dataLIF": "10.10.10.2",

  "backendName": "ontap-nas-backend",

  "svm": "trident_svm",

  "username": "cluster-admin",

  "password": "admin-password",

  "defaults": {

    "spaceReserve": "none",

    "encryption": "false"

  },

  "labels": {

    "store": "nas_store"

  },

  "region": "us_east_1",

  "storage": [

    {

      "labels": {

        "app": "msoffice",

        "cost": "100"

      },

      "zone": "us_east_1a",

      "defaults": {

        "spaceReserve": "volume",

        "encryption": "true",

        "unixPermissions": "0755"

      }

    },

    {

      "labels": {

        "app": "mysqldb",

        "cost": "25"

      },

      "zone": "us_east_1d",

      "defaults": {

        "spaceReserve": "volume",

        "encryption": "false",

        "unixPermissions": "0775"

      }

    }

  ]

}

163



Step 1: Create a Kubernetes Secret

Create a Secret that contains the credentials for the backend, as shown in this example:

cat tbc-ontap-nas-backend-secret.yaml

apiVersion: v1

kind: Secret

metadata:

  name: ontap-nas-backend-secret

type: Opaque

stringData:

  username: cluster-admin

  password: admin-password

kubectl create -f tbc-ontap-nas-backend-secret.yaml -n trident

secret/backend-tbc-ontap-san-secret created

Step 2: Create a TridentBackendConfig CR

The next step is to create a TridentBackendConfig CR that will automatically bind to the pre-existing

ontap-nas-backend (as in this example). Ensure the following requirements are met:

• The same backend name is defined in spec.backendName.

• Configuration parameters are identical to the original backend.

• Virtual pools (if present) must retain the same order as in the original backend.

• Credentials are provided through a Kubernetes Secret and not in plain text.

In this case, the TridentBackendConfig will look like this:

cat backend-tbc-ontap-nas.yaml

164



apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

  name: tbc-ontap-nas-backend

spec:

  version: 1

  storageDriverName: ontap-nas

  managementLIF: 10.10.10.1

  dataLIF: 10.10.10.2

  backendName: ontap-nas-backend

  svm: trident_svm

  credentials:

    name: mysecret

  defaults:

    spaceReserve: none

    encryption: 'false'

  labels:

    store: nas_store

  region: us_east_1

  storage:

  - labels:

      app: msoffice

      cost: '100'

    zone: us_east_1a

    defaults:

      spaceReserve: volume

      encryption: 'true'

      unixPermissions: '0755'

  - labels:

      app: mysqldb

      cost: '25'

    zone: us_east_1d

    defaults:

      spaceReserve: volume

      encryption: 'false'

      unixPermissions: '0775'

kubectl create -f backend-tbc-ontap-nas.yaml -n trident

tridentbackendconfig.trident.netapp.io/tbc-ontap-nas-backend created

Step 3: Verify the status of the TridentBackendConfig CR

After the TridentBackendConfig has been created, its phase must be Bound. It should also reflect the

same backend name and UUID as that of the existing backend.

165



kubectl get tbc tbc-ontap-nas-backend -n trident

NAME                   BACKEND NAME          BACKEND UUID

PHASE   STATUS

tbc-ontap-nas-backend  ontap-nas-backend     52f2eb10-e4c6-4160-99fc-

96b3be5ab5d7   Bound   Success

#confirm that no new backends were created (i.e., TridentBackendConfig did

not end up creating a new backend)

tridentctl get backend -n trident

+---------------------+----------------

+--------------------------------------+--------+---------+

|          NAME       | STORAGE DRIVER |                 UUID

| STATE  | VOLUMES |

+---------------------+----------------

+--------------------------------------+--------+---------+

| ontap-nas-backend   | ontap-nas      | 52f2eb10-e4c6-4160-99fc-

96b3be5ab5d7 | online |      25 |

+---------------------+----------------

+--------------------------------------+--------+---------+

The backend will now be completely managed using the tbc-ontap-nas-backend

TridentBackendConfig object.

Manage TridentBackendConfig backends using tridentctl

tridentctl can be used to list backends that were created using TridentBackendConfig. In addition,

administrators can also choose to completely manage such backends through tridentctl by deleting

TridentBackendConfig and making sure spec.deletionPolicy is set to retain.

Step 0: Identify the backend

For example, let us assume the following backend was created using TridentBackendConfig:

166



kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME                    BACKEND NAME        BACKEND UUID

PHASE   STATUS    STORAGE DRIVER   DELETION POLICY

backend-tbc-ontap-san   ontap-san-backend   81abcb27-ea63-49bb-b606-

0a5315ac5f82   Bound   Success   ontap-san        delete

tridentctl get backend ontap-san-backend -n trident

+-------------------+----------------

+--------------------------------------+--------+---------+

|       NAME        | STORAGE DRIVER |                 UUID

| STATE  | VOLUMES |

+-------------------+----------------

+--------------------------------------+--------+---------+

| ontap-san-backend | ontap-san      | 81abcb27-ea63-49bb-b606-

0a5315ac5f82 | online |      33 |

+-------------------+----------------

+--------------------------------------+--------+---------+

From the output, it is seen that TridentBackendConfig was created successfully and is bound to a

backend [observe the backend’s UUID].

Step 1: Confirm deletionPolicy is set to retain

Let us take a look at the value of deletionPolicy. This needs to be set to retain. This ensures that when

a TridentBackendConfig CR is deleted, the backend definition will still be present and can be managed

with tridentctl.

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME                    BACKEND NAME        BACKEND UUID

PHASE   STATUS    STORAGE DRIVER   DELETION POLICY

backend-tbc-ontap-san   ontap-san-backend   81abcb27-ea63-49bb-b606-

0a5315ac5f82   Bound   Success   ontap-san        delete

# Patch value of deletionPolicy to retain

kubectl patch tbc backend-tbc-ontap-san --type=merge -p

'{"spec":{"deletionPolicy":"retain"}}' -n trident

tridentbackendconfig.trident.netapp.io/backend-tbc-ontap-san patched

#Confirm the value of deletionPolicy

kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME                    BACKEND NAME        BACKEND UUID

PHASE   STATUS    STORAGE DRIVER   DELETION POLICY

backend-tbc-ontap-san   ontap-san-backend   81abcb27-ea63-49bb-b606-

0a5315ac5f82   Bound   Success   ontap-san        retain

167



Do not proceed to the next step unless deletionPolicy is set to retain.

Step 2: Delete the TridentBackendConfig CR

The final step is to delete the TridentBackendConfig CR. After confirming the deletionPolicy is set to

retain, you can go ahead with the deletion:

kubectl delete tbc backend-tbc-ontap-san -n trident

tridentbackendconfig.trident.netapp.io "backend-tbc-ontap-san" deleted

tridentctl get backend ontap-san-backend -n trident

+-------------------+----------------

+--------------------------------------+--------+---------+

|       NAME        | STORAGE DRIVER |                 UUID

| STATE  | VOLUMES |

+-------------------+----------------

+--------------------------------------+--------+---------+

| ontap-san-backend | ontap-san      | 81abcb27-ea63-49bb-b606-

0a5315ac5f82 | online |      33 |

+-------------------+----------------

+--------------------------------------+--------+---------+

Upon the deletion of the TridentBackendConfig object, Trident simply removes it without actually deleting

the backend itself.

Create and manage storage classes

Create a storage class

Configure a Kubernetes StorageClass object and create the storage class to instruct

Trident how to provision volumes.

Configure a Kubernetes StorageClass object

The Kubernetes StorageClass object identifies Trident as the provisioner that is used for that class and

instructs Trident how to provision a volume. For example:

168

https://kubernetes.io/docs/concepts/storage/storage-classes/


apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontap-gold

provisioner: csi.trident.netapp.io

mountOptions:

  - nfsvers=3

  - nolock

parameters:

  backendType: "ontap-nas"

  media: "ssd"

allowVolumeExpansion: true

volumeBindingMode: Immediate

Refer to Kubernetes and Trident objects for details on how storage classes interact with the

PersistentVolumeClaim and parameters for controlling how Trident provisions volumes.

Create a storage class

After you create the StorageClass object, you can create the storage class. Storage class samples provides

some basic samples you can use or modify.

Steps

1. This is a Kubernetes object, so use kubectl to create it in Kubernetes.

kubectl create -f sample-input/storage-class-basic-csi.yaml

2. You should now see a basic-csi storage class in both Kubernetes and Trident, and Trident should have

discovered the pools on the backend.

kubectl get sc basic-csi

NAME         PROVISIONER             AGE

basic-csi    csi.trident.netapp.io   15h

./tridentctl -n trident get storageclass basic-csi -o json

169

https://docs.netapp.com/us-en/trident/trident-reference/objects.html


{

  "items": [

    {

      "Config": {

        "version": "1",

        "name": "basic-csi",

        "attributes": {

          "backendType": "ontap-nas"

        },

        "storagePools": null,

        "additionalStoragePools": null

      },

      "storage": {

        "ontapnas_10.0.0.1": [

          "aggr1",

          "aggr2",

          "aggr3",

          "aggr4"

        ]

      }

    }

  ]

}

Storage class samples

Trident provides simple storage class definitions for specific backends.

Alternatively, you can edit sample-input/storage-class-csi.yaml.templ file that comes with the

installer and replace BACKEND_TYPE with the storage driver name.

170

https://github.com/NetApp/trident/tree/master/trident-installer/sample-input/storage-class-samples


./tridentctl -n trident get backend

+-------------+----------------+--------------------------------------

+--------+---------+

|    NAME     | STORAGE DRIVER |                 UUID                 |

STATE  | VOLUMES |

+-------------+----------------+--------------------------------------

+--------+---------+

| nas-backend | ontap-nas      | 98e19b74-aec7-4a3d-8dcf-128e5033b214 |

online |       0 |

+-------------+----------------+--------------------------------------

+--------+---------+

cp sample-input/storage-class-csi.yaml.templ sample-input/storage-class-

basic-csi.yaml

# Modify __BACKEND_TYPE__ with the storage driver field above (e.g.,

ontap-nas)

vi sample-input/storage-class-basic-csi.yaml

Manage storage classes

You can view existing storage classes, set a default storage class, identify the storage

class backend, and delete storage classes.

View the existing storage classes

• To view existing Kubernetes storage classes, run the following command:

kubectl get storageclass

• To view Kubernetes storage class detail, run the following command:

kubectl get storageclass <storage-class> -o json

• To view Trident’s synchronized storage classes, run the following command:

tridentctl get storageclass

• To view Trident’s synchronized storage class detail, run the following command:

tridentctl get storageclass <storage-class> -o json

171



Set a default storage class

Kubernetes 1.6 added the ability to set a default storage class. This is the storage class that will be used to

provision a Persistent Volume if a user does not specify one in a Persistent Volume Claim (PVC).

• Define a default storage class by setting the annotation storageclass.kubernetes.io/is-

default-class to true in the storage class definition. According to the specification, any other value or

absence of the annotation is interpreted as false.

• You can configure an existing storage class to be the default storage class by using the following

command:

kubectl patch storageclass <storage-class-name> -p '{"metadata":

{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

• Similarly, you can remove the default storage class annotation by using the following command:

kubectl patch storageclass <storage-class-name> -p '{"metadata":

{"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}}'

There are also examples in the Trident installer bundle that include this annotation.

There should be only one default storage class in your cluster at a time. Kubernetes does not

technically prevent you from having more than one, but it will behave as if there is no default

storage class at all.

Identify the backend for a storage class

This is an example of the kind of questions you can answer with the JSON that tridentctl outputs for

Trident backend objects. This uses the jq utility, which you may need to install first.

tridentctl get storageclass -o json | jq  '[.items[] | {storageClass:

.Config.name, backends: [.storage]|unique}]'

Delete a storage class

To delete a storage class from Kubernetes, run the following command:

kubectl delete storageclass <storage-class>

<storage-class> should be replaced with your storage class.

Any persistent volumes that were created through this storage class will remain untouched, and Trident will

continue to manage them.

172



Trident enforces a blank fsType for the volumes it creates. For iSCSI backends, it is

recommended to enforce parameters.fsType in the StorageClass. You should delete

existing StorageClasses and re-create them with parameters.fsType specified.

Provision and manage volumes

Provision a volume

Create a PersistentVolumeClaim (PVC) that uses the configured Kubernetes

StorageClass to request access to the PV. You can then mount the PV to a pod.

Overview

A PersistentVolumeClaim (PVC) is a request for access to the PersistentVolume on the cluster.

The PVC can be configured to request storage of a certain size or access mode. Using the associated

StorageClass, the cluster administrator can control more than PersistentVolume size and access mode—such

as performance or service level.

After you create the PVC you can mount the volume in a pod.

Create the PVC

Steps

1. Create the PVC.

kubectl create -f pvc.yaml

2. Verify the PVC status.

kubectl get pvc

NAME        STATUS  VOLUME     CAPACITY   ACCESS MODES  STORAGECLASS AGE

pvc-storage Bound   pv-name    1Gi        RWO                  5m

1. Mount the volume in a pod.

kubectl create -f pv-pod.yaml

You can monitor the progress using kubectl get pod --watch.

2. Verify that the volume is mounted on /my/mount/path.

173

https://kubernetes.io/docs/concepts/storage/persistent-volumes


kubectl exec -it task-pv-pod -- df -h /my/mount/path

3. You can now delete the Pod. The Pod application will no longer exist, but the volume will remain.

kubectl delete pod pv-pod

Sample manifests

174



PersistentVolumeClaim sample manifests

These examples show basic PVC configuration options.

PVC with RWO access

This example shows a basic PVC with RWO access that is associated with a StorageClass named

basic-csi.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: pvc-storage

spec:

  accessModes:

    - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

  storageClassName: basic-csi

PVC with NVMe/TCP

This example shows a basic PVC for NVMe/TCP with RWO access that is associated with a

StorageClass named protection-gold.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san-nvme

spec:

accessModes:

  - ReadWriteOnce

resources:

  requests:

    storage: 300Mi

storageClassName: protection-gold

175



Pod manifest samples

These examples show basic configurations to attach the PVC to a pod.

Basic configuration

kind: Pod

apiVersion: v1

metadata:

  name: pv-pod

spec:

  volumes:

    - name: storage

      persistentVolumeClaim:

       claimName: pvc-storage

  containers:

    - name: pv-container

      image: nginx

      ports:

        - containerPort: 80

          name: "http-server"

      volumeMounts:

        - mountPath: "/my/mount/path"

          name: storage

Basic NVMe/TCP configuration

apiVersion: v1

kind: Pod

metadata:

  name: pod-nginx

spec:

  volumes:

    - name: basic-pvc

      persistentVolumeClaim:

        claimName: pvc-san-nvme

  containers:

    - name: task-pv-container

      image: nginx

      volumeMounts:

        - mountPath: "/my/mount/path"

          name: basic-pvc

Refer to Kubernetes and Trident objects for details on how storage classes interact with the

PersistentVolumeClaim and parameters for controlling how Trident provisions volumes.

176

https://docs.netapp.com/us-en/trident/trident-reference/objects.html


Expand volumes

Trident provides Kubernetes users the ability to expand their volumes after they are

created. Find information about the configurations required to expand iSCSI, NFS, SMB,

NVMe/TCP, and FC volumes.

Expand an iSCSI volume

You can expand an iSCSI Persistent Volume (PV) by using the CSI provisioner.

iSCSI volume expansion is supported by the ontap-san, ontap-san-economy, solidfire-

san drivers and requires Kubernetes 1.16 and later.

Step 1: Configure the StorageClass to support volume expansion

Edit the StorageClass definition to set the allowVolumeExpansion field to true.

cat storageclass-ontapsan.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontap-san

provisioner: csi.trident.netapp.io

parameters:

  backendType: "ontap-san"

allowVolumeExpansion: True

For an already existing StorageClass, edit it to include the allowVolumeExpansion parameter.

Step 2: Create a PVC with the StorageClass you created

Edit the PVC definition and update the spec.resources.requests.storage to reflect the newly desired

size, which must be greater than the original size.

cat pvc-ontapsan.yaml

177



kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: san-pvc

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

  storageClassName: ontap-san

Trident creates a Persistent Volume (PV) and associates it with this Persistent Volume Claim (PVC).

kubectl get pvc

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS   AGE

san-pvc   Bound    pvc-8a814d62-bd58-4253-b0d1-82f2885db671   1Gi

RWO            ontap-san      8s

kubectl get pv

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM             STORAGECLASS   REASON   AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671   1Gi        RWO

Delete           Bound    default/san-pvc   ontap-san               10s

Step 3: Define a pod that attaches the PVC

Attach the PV to a pod for it to be resized. There are two scenarios when resizing an iSCSI PV:

• If the PV is attached to a pod, Trident expands the volume on the storage backend, rescans the device,

and resizes the filesystem.

• When attempting to resize an unattached PV, Trident expands the volume on the storage backend. After

the PVC is bound to a pod, Trident rescans the device and resizes the filesystem. Kubernetes then

updates the PVC size after the expand operation has successfully completed.

In this example, a pod is created that uses the san-pvc.

178



 kubectl get pod

NAME         READY   STATUS    RESTARTS   AGE

ubuntu-pod   1/1     Running   0          65s

 kubectl describe pvc san-pvc

Name:          san-pvc

Namespace:     default

StorageClass:  ontap-san

Status:        Bound

Volume:        pvc-8a814d62-bd58-4253-b0d1-82f2885db671

Labels:        <none>

Annotations:   pv.kubernetes.io/bind-completed: yes

               pv.kubernetes.io/bound-by-controller: yes

               volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers:    [kubernetes.io/pvc-protection]

Capacity:      1Gi

Access Modes:  RWO

VolumeMode:    Filesystem

Mounted By:    ubuntu-pod

Step 4: Expand the PV

To resize the PV that has been created from 1Gi to 2Gi, edit the PVC definition and update the

spec.resources.requests.storage to 2Gi.

kubectl edit pvc san-pvc

179



# Please edit the object below. Lines beginning with a '#' will be

ignored,

# and an empty file will abort the edit. If an error occurs while saving

this file will be

# reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  annotations:

    pv.kubernetes.io/bind-completed: "yes"

    pv.kubernetes.io/bound-by-controller: "yes"

    volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

  creationTimestamp: "2019-10-10T17:32:29Z"

  finalizers:

  - kubernetes.io/pvc-protection

  name: san-pvc

  namespace: default

  resourceVersion: "16609"

  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/san-pvc

  uid: 8a814d62-bd58-4253-b0d1-82f2885db671

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 2Gi

 # ...

Step 5: Validate the expansion

You can validate the expansion worked correctly by checking the size of the PVC, PV, and the Trident volume:

180



kubectl get pvc san-pvc

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS   AGE

san-pvc   Bound    pvc-8a814d62-bd58-4253-b0d1-82f2885db671   2Gi

RWO            ontap-san      11m

kubectl get pv

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM             STORAGECLASS   REASON   AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671   2Gi        RWO

Delete           Bound    default/san-pvc   ontap-san               12m

tridentctl get volumes -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-8a814d62-bd58-4253-b0d1-82f2885db671 | 2.0 GiB | ontap-san     |

block    | a9b7bfff-0505-4e31-b6c5-59f492e02d33 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

Expand an FC volume

You can expand an FC Persistent Volume (PV) by using the CSI provisioner.

FC volume expansion is supported by the ontap-san driver and requires Kubernetes 1.16 and

later.

Step 1: Configure the StorageClass to support volume expansion

Edit the StorageClass definition to set the allowVolumeExpansion field to true.

cat storageclass-ontapsan.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontap-san

provisioner: csi.trident.netapp.io

parameters:

  backendType: "ontap-san"

allowVolumeExpansion: True

181



For an already existing StorageClass, edit it to include the allowVolumeExpansion parameter.

Step 2: Create a PVC with the StorageClass you created

Edit the PVC definition and update the spec.resources.requests.storage to reflect the newly desired

size, which must be greater than the original size.

cat pvc-ontapsan.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: san-pvc

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

  storageClassName: ontap-san

Trident creates a Persistent Volume (PV) and associates it with this Persistent Volume Claim (PVC).

kubectl get pvc

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS   AGE

san-pvc   Bound    pvc-8a814d62-bd58-4253-b0d1-82f2885db671   1Gi

RWO            ontap-san      8s

kubectl get pv

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM             STORAGECLASS   REASON   AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671   1Gi        RWO

Delete           Bound    default/san-pvc   ontap-san               10s

Step 3: Define a pod that attaches the PVC

Attach the PV to a pod for it to be resized. There are two scenarios when resizing an FC PV:

• If the PV is attached to a pod, Trident expands the volume on the storage backend, rescans the device,

and resizes the filesystem.

• When attempting to resize an unattached PV, Trident expands the volume on the storage backend. After

the PVC is bound to a pod, Trident rescans the device and resizes the filesystem. Kubernetes then

updates the PVC size after the expand operation has successfully completed.

182



In this example, a pod is created that uses the san-pvc.

 kubectl get pod

NAME         READY   STATUS    RESTARTS   AGE

ubuntu-pod   1/1     Running   0          65s

 kubectl describe pvc san-pvc

Name:          san-pvc

Namespace:     default

StorageClass:  ontap-san

Status:        Bound

Volume:        pvc-8a814d62-bd58-4253-b0d1-82f2885db671

Labels:        <none>

Annotations:   pv.kubernetes.io/bind-completed: yes

               pv.kubernetes.io/bound-by-controller: yes

               volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers:    [kubernetes.io/pvc-protection]

Capacity:      1Gi

Access Modes:  RWO

VolumeMode:    Filesystem

Mounted By:    ubuntu-pod

Step 4: Expand the PV

To resize the PV that has been created from 1Gi to 2Gi, edit the PVC definition and update the

spec.resources.requests.storage to 2Gi.

kubectl edit pvc san-pvc

183



# Please edit the object below. Lines beginning with a '#' will be

ignored,

# and an empty file will abort the edit. If an error occurs while saving

this file will be

# reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  annotations:

    pv.kubernetes.io/bind-completed: "yes"

    pv.kubernetes.io/bound-by-controller: "yes"

    volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

  creationTimestamp: "2019-10-10T17:32:29Z"

  finalizers:

  - kubernetes.io/pvc-protection

  name: san-pvc

  namespace: default

  resourceVersion: "16609"

  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/san-pvc

  uid: 8a814d62-bd58-4253-b0d1-82f2885db671

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 2Gi

 # ...

Step 5: Validate the expansion

You can validate the expansion worked correctly by checking the size of the PVC, PV, and the Trident volume:

184



kubectl get pvc san-pvc

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS   AGE

san-pvc   Bound    pvc-8a814d62-bd58-4253-b0d1-82f2885db671   2Gi

RWO            ontap-san      11m

kubectl get pv

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM             STORAGECLASS   REASON   AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671   2Gi        RWO

Delete           Bound    default/san-pvc   ontap-san               12m

tridentctl get volumes -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-8a814d62-bd58-4253-b0d1-82f2885db671 | 2.0 GiB | ontap-san     |

block    | a9b7bfff-0505-4e31-b6c5-59f492e02d33 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

Expand an NFS volume

Trident supports volume expansion for NFS PVs provisioned on ontap-nas, ontap-nas-economy, ontap-

nas-flexgroup, and azure-netapp-files backends.

Step 1: Configure the StorageClass to support volume expansion

To resize an NFS PV, the admin first needs to configure the storage class to allow volume expansion by setting

the allowVolumeExpansion field to true:

cat storageclass-ontapnas.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontapnas

provisioner: csi.trident.netapp.io

parameters:

  backendType: ontap-nas

allowVolumeExpansion: true

If you have already created a storage class without this option, you can simply edit the existing storage class

185



by using kubectl edit storageclass to allow volume expansion.

Step 2: Create a PVC with the StorageClass you created

cat pvc-ontapnas.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: ontapnas20mb

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 20Mi

  storageClassName: ontapnas

Trident should create a 20 MiB NFS PV for this PVC:

kubectl get pvc

NAME           STATUS   VOLUME

CAPACITY     ACCESS MODES   STORAGECLASS    AGE

ontapnas20mb   Bound    pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   20Mi

RWO            ontapnas        9s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM                  STORAGECLASS    REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   20Mi       RWO

Delete           Bound    default/ontapnas20mb   ontapnas

2m42s

Step 3: Expand the PV

To resize the newly created 20 MiB PV to 1 GiB, edit the PVC and set

spec.resources.requests.storage to 1 GiB:

kubectl edit pvc ontapnas20mb

186



# Please edit the object below. Lines beginning with a '#' will be

ignored,

# and an empty file will abort the edit. If an error occurs while saving

this file will be

# reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  annotations:

    pv.kubernetes.io/bind-completed: "yes"

    pv.kubernetes.io/bound-by-controller: "yes"

    volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

  creationTimestamp: 2018-08-21T18:26:44Z

  finalizers:

  - kubernetes.io/pvc-protection

  name: ontapnas20mb

  namespace: default

  resourceVersion: "1958015"

  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/ontapnas20mb

  uid: c1bd7fa5-a56f-11e8-b8d7-fa163e59eaab

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

# ...

Step 4: Validate the expansion

You can validate the resize worked correctly by checking the size of the PVC, PV, and the Trident volume:

187



kubectl get pvc ontapnas20mb

NAME           STATUS   VOLUME

CAPACITY   ACCESS MODES   STORAGECLASS    AGE

ontapnas20mb   Bound    pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   1Gi

RWO            ontapnas        4m44s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM                  STORAGECLASS    REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   1Gi        RWO

Delete           Bound    default/ontapnas20mb   ontapnas

5m35s

tridentctl get volume pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 | 1.0 GiB | ontapnas      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

Import volumes

You can import existing storage volumes as a Kubernetes PV using tridentctl

import or by creating a Persistent Volume Claim (PVC) with Trident import annotations.

Overview and considerations

You might import a volume into Trident to:

• Containerize an application and reuse its existing data set

• Use a clone of a data set for an ephemeral application

• Rebuild a failed Kubernetes cluster

• Migrate application data during disaster recovery

Considerations

Before importing a volume, review the following considerations.

• Trident can import RW (read-write) type ONTAP volumes only. DP (data protection) type volumes are

SnapMirror destination volumes. You should break the mirror relationship before importing the volume into

Trident.

188



• We suggest importing volumes without active connections. To import an actively-used volume, clone the

volume and then perform the import.

This is especially important for block volumes as Kubernetes would be unaware of the

previous connection and could easily attach an active volume to a pod. This can result in

data corruption.

• Though StorageClass must be specified on a PVC, Trident does not use this parameter during import.

Storage classes are used during volume creation to select from available pools based on storage

characteristics. Because the volume already exists, no pool selection is required during import. Therefore,

the import will not fail even if the volume exists on a backend or pool that does not match the storage class

specified in the PVC.

• The existing volume size is determined and set in the PVC. After the volume is imported by the storage

driver, the PV is created with a ClaimRef to the PVC.

◦ The reclaim policy is initially set to retain in the PV. After Kubernetes successfully binds the PVC and

PV, the reclaim policy is updated to match the reclaim policy of the Storage Class.

◦ If the reclaim policy of the Storage Class is delete, the storage volume will be deleted when the PV is

deleted.

• By default, Trident manages the PVC and renames the FlexVol volume and LUN on the backend. You can

pass the --no-manage flag to import an unmanaged volume and the --no-rename flag to retain the

volume name.

◦ --no-manage - If you use the --no-manage flag, Trident does not perform any additional operations

on the PVC or PV for the lifecycle of the objects. The storage volume is not deleted when the PV is

deleted and other operations such as volume clone and volume resize are also ignored.

◦ --no-rename - If you use the --no-rename flag, Trident retains the existing volume name while

importing volumes, and manages the lifecycle of the volumes. This option is supported only for the

ontap-nas, ontap-san (including ASA r2 systems), and ontap-san-economy drivers.

These options are useful if you want to use Kubernetes for containerized workloads but

otherwise want to manage the lifecycle of the storage volume outside of Kubernetes.

• An annotation is added to the PVC and PV that serves a dual purpose of indicating that the volume was

imported and if the PVC and PV are managed. This annotation should not be modified or removed.

Import a volume

You can import a volume using either tridentctl import or by creating a PVC with Trident import

annotations.

If you use PVC annotations, you don’t need to download or use tridentctl to import the

volume.

189



Using tridentctl

Steps

1. Create a PVC file (for example, pvc.yaml) that will be used to create the PVC. The PVC file should

include name, namespace, accessModes, and storageClassName. Optionally, you can specify

unixPermissions in your PVC definition.

The following is an example of a minimum specification:

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: my_claim

  namespace: my_namespace

spec:

  accessModes:

    - ReadWriteOnce

  storageClassName: my_storage_class

Include only the required parameters. Additional parameters such as PV name or

volume size can cause the import command to fail.

2. Use the tridentctl import command to specify the name of the Trident backend containing the

volume and the name that uniquely identifies the volume on the storage (for example: ONTAP

FlexVol, Element Volume). The -f argument is required to specify the path to the PVC file.

tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-

file>

Using PVC annotations

Steps

1. Create a PVC YAML file (for example, pvc.yaml) with the required Trident import annotations. The

PVC file should include:

◦ name and namespace in metadata

◦ accessModes, resources.requests.storage, and storageClassName in spec

◦ Annotations:

▪ trident.netapp.io/importOriginalName: Volume name on the backend

▪ trident.netapp.io/importBackendUUID: Backend UUID where volume exists

▪ trident.netapp.io/notManaged (Optional): Set to "true" for unmanaged volumes.

Default is "false".

The following is an example specification for importing a managed volume:

190



kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: <pvc-name>

  namespace: <namespace>

  annotations:

    trident.netapp.io/importOriginalName: "<volume-name>"

    trident.netapp.io/importBackendUUID: "<backend-uuid>"

spec:

  accessModes:

    - ReadWriteOnce

  resources:

    requests:

      storage: <size>

  storageClassName: <storage-class-name>

2. Apply the PVC YAML file to your Kubernetes cluster:

kubectl apply -f <pvc-file>.yaml

Trident will automatically import the volume and bind it to the PVC.

Examples

Review the following volume import examples for supported drivers.

ONTAP NAS and ONTAP NAS FlexGroup

Trident supports volume import using the ontap-nas and ontap-nas-flexgroup drivers.

• Trident does not support volume import using the ontap-nas-economy driver.

• The ontap-nas and ontap-nas-flexgroup drivers do not allow duplicate volume

names.

Each volume created with the ontap-nas driver is a FlexVol volume on the ONTAP cluster. Importing FlexVol

volumes with the ontap-nas driver works the same. A FlexVol volumes that already exists on an ONTAP

cluster can be imported as a ontap-nas PVC. Similarly, FlexGroup vols can be imported as ontap-nas-

flexgroup PVCs.

ONTAP NAS examples using tridentctl

The following examples show how to import managed and unmanaged volumes using tridentctl.

191



Managed volume

The following example imports a volume named managed_volume on a backend named ontap_nas:

tridentctl import volume ontap_nas managed_volume -f <path-to-pvc-file>

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

Unmanaged volume

When using the --no-manage argument, Trident does not rename the volume.

The following example imports unmanaged_volume on the ontap_nas backend:

tridentctl import volume nas_blog unmanaged_volume -f <path-to-pvc-

file> --no-manage

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-df07d542-afbc-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | false   |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

ONTAP NAS examples using PVC annotations

The following examples show how to import managed and unmanaged volumes using PVC annotations.

192



Managed volume

The following example imports a 1GiB ontap-nas volume named ontap_volume1 from backend

81abcb27-ea63-49bb-b606-0a5315ac5f21 with RWO access mode set using PVC annotations:

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: <managed-imported-volume>

  namespace: <namespace>

  annotations:

    trident.netapp.io/importOriginalName: "ontap_volume1"

    trident.netapp.io/importBackendUUID: "81abcb27-ea63-49bb-b606-

0a5315ac5f21"

spec:

  accessModes:

    - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

  storageClassName: <storage-class-name>

Unmanaged volume

The following example imports 1Gi ontap-nas volume named ontap-volume2 from backend

34abcb27-ea63-49bb-b606-0a5315ac5f34 with RWO access mode set using PVC annotations:

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: <umanaged-imported-volume>

  namespace: <namespace>

  annotations:

    trident.netapp.io/importOriginalName: "ontap-volume2"

    trident.netapp.io/importBackendUUID: "34abcb27-ea63-49bb-b606-

0a5315ac5f34"

    trident.netapp.io/notManaged: "true"

spec:

  accessModes:

    - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

  storageClassName: <storage-class-name>

193



ONTAP SAN

Trident supports volume import using the ontap-san (iSCSI, NVMe/TCP, and FC) and ontap-san-economy

drivers.

Trident can import ONTAP SAN FlexVol volumes that contain a single LUN. This is consistent with the ontap-

san driver, which creates a FlexVol volume for each PVC and a LUN within the FlexVol volume. Trident imports

the FlexVol volume and associates it with the PVC definition. Trident can import ontap-san-economy

volumes that contain multiple LUNs.

The following examples show how to import managed and unmanaged volumes:

194



Managed volume

For managed volumes, Trident renames the FlexVol volume to the pvc-<uuid> format and the LUN

within the FlexVol volume to lun0.

The following example imports the ontap-san-managed FlexVol volume that is present on the

ontap_san_default backend:

tridentctl import volume ontapsan_san_default ontap-san-managed -f pvc-

basic-import.yaml -n trident -d

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-d6ee4f54-4e40-4454-92fd-d00fc228d74a | 20 MiB | basic         |

block    | cd394786-ddd5-4470-adc3-10c5ce4ca757 | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

Unmanaged volume

The following example imports unmanaged_example_volume on the ontap_san backend:

tridentctl import volume -n trident san_blog unmanaged_example_volume

-f pvc-import.yaml --no-manage

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-1fc999c9-ce8c-459c-82e4-ed4380a4b228 | 1.0 GiB | san-blog      |

block    | e3275890-7d80-4af6-90cc-c7a0759f555a | online | false   |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

195



If you have LUNS mapped to igroups that share an IQN with a Kubernetes node IQN, as

shown in the following example, you will receive the error: LUN already mapped to

initiator(s) in this group. You will need to remove the initiator or unmap the LUN

to import the volume.

Element

Trident supports NetApp Element software and NetApp HCI volume import using the solidfire-san driver.

The Element driver supports duplicate volume names. However, Trident returns an error if there

are duplicate volume names. As a workaround, clone the volume, provide a unique volume

name, and import the cloned volume.

The following example imports an element-managed volume on backend element_default.

tridentctl import volume element_default element-managed -f pvc-basic-

import.yaml -n trident -d

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-970ce1ca-2096-4ecd-8545-ac7edc24a8fe | 10 GiB | basic-element |

block    | d3ba047a-ea0b-43f9-9c42-e38e58301c49 | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

Azure NetApp Files

Trident supports volume import using the azure-netapp-files driver.

To import an Azure NetApp Files volume, identify the volume by its volume path. The volume

path is the portion of the volume’s export path after the :/. For example, if the mount path is

10.0.0.2:/importvol1, the volume path is importvol1.

The following example imports an azure-netapp-files volume on backend azurenetappfiles_40517

196



with the volume path importvol1.

tridentctl import volume azurenetappfiles_40517 importvol1 -f <path-to-

pvc-file> -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-0ee95d60-fd5c-448d-b505-b72901b3a4ab | 100 GiB | anf-storage   |

file     | 1c01274f-d94b-44a3-98a3-04c953c9a51e | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

Google Cloud NetApp Volumes

Trident supports volume import using the google-cloud-netapp-volumes driver.

The following example imports a volume on backend backend-tbc-gcnv1 with the volume

testvoleasiaeast1.

tridentctl import volume backend-tbc-gcnv1 "testvoleasiaeast1" -f < path-

to-pvc> -n trident

+------------------------------------------+---------

+----------------------+----------+--------------------------------------

+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS

| PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------

+----------------------+----------+--------------------------------------

+--------+---------+

| pvc-a69cda19-218c-4ca9-a941-aea05dd13dc0 |  10 GiB | gcnv-nfs-sc-

identity | file     | 8c18cdf1-0770-4bc0-bcc5-c6295fe6d837 | online | true

|

+------------------------------------------+---------

+----------------------+----------+--------------------------------------

+--------+---------+

The following example imports a google-cloud-netapp-volumes volume when two volumes are present

in the same region:

197



tridentctl import volume backend-tbc-gcnv1

"projects/123456789100/locations/asia-east1-a/volumes/testvoleasiaeast1"

-f <path-to-pvc> -n trident

+------------------------------------------+---------

+----------------------+----------+--------------------------------------

+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS

| PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------

+----------------------+----------+--------------------------------------

+--------+---------+

| pvc-a69cda19-218c-4ca9-a941-aea05dd13dc0 |  10 GiB | gcnv-nfs-sc-

identity | file     | 8c18cdf1-0770-4bc0-bcc5-c6295fe6d837 | online | true

|

+------------------------------------------+---------

+----------------------+----------+--------------------------------------

+--------+---------+

Customize volume names and labels

With Trident, you can assign meaningful names and labels to volumes you create. This

helps you identify and easily map volumes to their respective Kubernetes resources

(PVCs). You can also define templates at the backend level for creating custom volume

names and custom labels; any volumes that you create, import, or clone will adhere to

the templates.

Before you begin

Customizable volume names and labels support:

• Volume create, import, and clone operations.

• In the case of the ontap-nas-economy driver, only the name of the Qtree volume complies with the

name template.

• In the case of the ontap-san-economy driver, only the LUN name complies with the name template.

Limitations

• Custom volume names are compatible with ONTAP on-premises drivers only.

• Custom labels are supported only for the ontap-san, ontap-nas, and ontap-nas-flexgroup drivers.

• Custom volume names do not apply to existing volumes.

Key behaviors of customizable volume names

• If a failure occurs due to invalid syntax in a name template, the backend creation fails. However, if the

template application fails, the volume will be named according to existing naming convention.

198



• Storage prefix is not applicable when a volume is named using a name template from the backend

configuration. Any desired prefix value may be directly added to the template.

Backend configuration examples with name template and labels

Custom name templates can be defined at the root and/or pool level.

Root level example

{

  "version": 1,

  "storageDriverName": "ontap-nas",

  "backendName": "ontap-nfs-backend",

  "managementLIF": "<ip address>",

  "svm": "svm0",

  "username": "<admin>",

  "password": "<password>",

  "defaults": {

    "nameTemplate":

"{{.volume.Name}}_{{.labels.cluster}}_{{.volume.Namespace}}_{{.volume.Requ

estName}}"

  },

  "labels": {

    "cluster": "ClusterA",

    "PVC": "{{.volume.Namespace}}_{{.volume.RequestName}}"

  }

}

199



Pool level example

{

  "version": 1,

  "storageDriverName": "ontap-nas",

  "backendName": "ontap-nfs-backend",

  "managementLIF": "<ip address>",

  "svm": "svm0",

  "username": "<admin>",

  "password": "<password>",

  "useREST": true,

  "storage": [

    {

      "labels": {

        "labelname": "label1",

        "name": "{{ .volume.Name }}"

      },

      "defaults": {

        "nameTemplate": "pool01_{{ .volume.Name }}_{{ .labels.cluster

}}_{{ .volume.Namespace }}_{{ .volume.RequestName }}"

      }

    },

    {

      "labels": {

        "cluster": "label2",

        "name": "{{ .volume.Name }}"

      },

      "defaults": {

        "nameTemplate": "pool02_{{ .volume.Name }}_{{ .labels.cluster

}}_{{ .volume.Namespace }}_{{ .volume.RequestName }}"

      }

    }

  ]

}

Name template examples

Example 1:

"nameTemplate": "{{ .config.StoragePrefix }}_{{ .volume.Name }}_{{

.config.BackendName }}"

Example 2:

200



"nameTemplate": "pool_{{ .config.StoragePrefix }}_{{ .volume.Name }}_{{

slice .volume.RequestName 1 5 }}""

Points to consider

1. In the case of volume imports, the labels are updated only if the existing volume has labels in a specific

format. For example: {"provisioning":{"Cluster":"ClusterA", "PVC": "pvcname"}}.

2. In the case of managed volume imports, the volume name follows the name template defined at the root

level in the backend definition.

3. Trident does not support the use of a slice operator with the storage prefix.

4. If the templates do not result in unique volume names, Trident will append a few random characters to

create unique volume names.

5. If the custom name for a NAS economy volume exceeds 64 characters in length, Trident will name the

volumes according to the existing naming convention. For all other ONTAP drivers, if the volume name

exceeds the name limit, the volume creation process fails.

Share an NFS volume across namespaces

Using Trident, you can create a volume in a primary namespace and share it in one or

more secondary namespaces.

Features

The TridentVolumeReference CR allows you to securely share ReadWriteMany (RWX) NFS volumes across

one or more Kubernetes namespaces. This Kubernetes-native solution has the following benefits:

• Multiple levels of access control to ensure security

• Works with all Trident NFS volume drivers

• No reliance on tridentctl or any other non-native Kubernetes feature

This diagram illustrates NFS volume sharing across two Kubernetes namespaces.

201



Quick start

You can set up NFS volume sharing in just a few steps.

 Configure source PVC to share the volume

The source namespace owner grants permission to access the data in the source PVC.

 Grant permission to create a CR in the destination namespace

The cluster administrator grants permission to the owner of the destination namespace to create the

TridentVolumeReference CR.

 Create TridentVolumeReference in the destination namespace

The owner of the destination namespace creates the TridentVolumeReference CR to refer to the source PVC.

 Create the subordinate PVC in the destination namespace

The owner of the destination namespace creates the subordinate PVC to use the data source from the source

PVC.

Configure the source and destination namespaces

To ensure security, cross namespace sharing requires collaboration and action by the source namespace

202



owner, cluster administrator, and destination namespace owner. The user role is designated in each step.

Steps

1. Source namespace owner: Create the PVC (pvc1) in the source namespace that grants permission to

share with the destination namespace (namespace2) using the shareToNamespace annotation.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: pvc1

  namespace: namespace1

  annotations:

    trident.netapp.io/shareToNamespace: namespace2

spec:

  accessModes:

    - ReadWriteMany

  storageClassName: trident-csi

  resources:

    requests:

      storage: 100Gi

Trident creates the PV and its backend NFS storage volume.

◦ You can share the PVC to multiple namespaces using a comma-delimited list. For

example, trident.netapp.io/shareToNamespace:

namespace2,namespace3,namespace4.

◦ You can share to all namespaces using *. For example,

trident.netapp.io/shareToNamespace: *

◦ You can update the PVC to include the shareToNamespace annotation at any time.

2. Cluster admin: Ensure that proper RBAC is in place to grant permission to the destination namespace

owner to create the TridentVolumeReference CR in the destination namespace.

3. Destination namespace owner: Create a TridentVolumeReference CR in the destination namespace that

refers to the source namespace pvc1.

apiVersion: trident.netapp.io/v1

kind: TridentVolumeReference

metadata:

  name: my-first-tvr

  namespace: namespace2

spec:

  pvcName: pvc1

  pvcNamespace: namespace1

203



4. Destination namespace owner: Create a PVC (pvc2) in destination namespace (namespace2) using

the shareFromPVC annotation to designate the source PVC.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  annotations:

    trident.netapp.io/shareFromPVC: namespace1/pvc1

  name: pvc2

  namespace: namespace2

spec:

  accessModes:

    - ReadWriteMany

  storageClassName: trident-csi

  resources:

    requests:

      storage: 100Gi

The size of the destination PVC must be less than or equal than the source PVC.

Results

Trident reads the shareFromPVC annotation on the destination PVC and creates the destination PV as a

subordinate volume with no storage resource of its own that points to the source PV and shares the source PV

storage resource. The destination PVC and PV appear bound as normal.

Delete a shared volume

You can delete a volume that is shared across multiple namespaces. Trident will remove access to the volume

on the source namespace and maintain access for other namespaces that share the volume. When all

namespaces that reference the volume are removed, Trident deletes the volume.

Use tridentctl get to query subordinate volumes

Using the tridentctl utility, you can run the get command to get subordinate volumes. For more

information, refer to tridentctl commands and options.

Usage:

  tridentctl get [option]

Flags:

• `-h, --help: Help for volumes.

• --parentOfSubordinate string: Limit query to subordinate source volume.

• --subordinateOf string: Limit query to subordinates of volume.

204

https://docs.netapp.com/us-en/trident/trident-reference/tridentctl.html
https://docs.netapp.com/us-en/trident/trident-reference/tridentctl.html


Limitations

• Trident cannot prevent destination namespaces from writing to the shared volume. You should use file

locking or other processes to prevent overwriting shared volume data.

• You cannot revoke access to the source PVC by removing the shareToNamespace or

shareFromNamespace annotations or deleting the TridentVolumeReference CR. To revoke access,

you must delete the subordinate PVC.

• Snapshots, clones, and mirroring are not possible on subordinate volumes.

For more information

To learn more about cross-namespace volume access:

• Visit Sharing volumes between namespaces: Say hello to cross-namespace volume access.

• Watch the demo on NetAppTV.

Clone volumes across namespaces

Using Trident, you can create new volumes using existing volumes or volumesnapshots

from a different namespace inside the same Kubernetes cluster.

Prerequisites

Before cloning volumes, ensure that the source and destination backends are of the same type and have the

same storage class.

Cloning across namespaces is supported only for the ontap-san and ontap-nas storage

drivers. Read-only clones are not supported.

Quick start

You can set up volume cloning in just a few steps.

 Configure source PVC to clone the volume

The source namespace owner grants permission to access the data in the source PVC.

 Grant permission to create a CR in the destination namespace

The cluster administrator grants permission to the owner of the destination namespace to create the

TridentVolumeReference CR.

 Create TridentVolumeReference in the destination namespace

The owner of the destination namespace creates the TridentVolumeReference CR to refer to the source PVC.

 Create the clone PVC in the destination namespace

205

https://cloud.netapp.com/blog/astra-blg-sharing-volumes-between-namespaces-say-hello-to-cross-namespace-volume-access
https://media.netapp.com/page/9071d19d-1438-5ed3-a7aa-ea4d73c28b7f/solutions-products


The owner of the destination namespace creates PVC to clone the PVC from the source namespace.

Configure the source and destination namespaces

To ensure security, cloning volumes across namespaces requires collaboration and action by the source

namespace owner, cluster administrator, and destination namespace owner. The user role is designated in

each step.

Steps

1. Source namespace owner: Create the PVC (pvc1) in the source namespace (namespace1) that grants

permission to share with the destination namespace (namespace2) using the cloneToNamespace

annotation.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: pvc1

  namespace: namespace1

  annotations:

    trident.netapp.io/cloneToNamespace: namespace2

spec:

  accessModes:

    - ReadWriteMany

  storageClassName: trident-csi

  resources:

    requests:

      storage: 100Gi

Trident creates the PV and its backend storage volume.

◦ You can share the PVC to multiple namespaces using a comma-delimited list. For

example, trident.netapp.io/cloneToNamespace:

namespace2,namespace3,namespace4.

◦ You can share to all namespaces using *. For example,

trident.netapp.io/cloneToNamespace: *

◦ You can update the PVC to include the cloneToNamespace annotation at any time.

2. Cluster admin: Ensure that proper RBAC is in place to grant permission to the destination namespace

owner to create the TridentVolumeReference CR in the destination namespace (namespace2).

3. Destination namespace owner: Create a TridentVolumeReference CR in the destination namespace that

refers to the source namespace pvc1.

206



apiVersion: trident.netapp.io/v1

kind: TridentVolumeReference

metadata:

  name: my-first-tvr

  namespace: namespace2

spec:

  pvcName: pvc1

  pvcNamespace: namespace1

4. Destination namespace owner: Create a PVC (pvc2) in destination namespace (namespace2) using

the cloneFromPVC or cloneFromSnapshot, and cloneFromNamespace annotations to designate the

source PVC.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  annotations:

    trident.netapp.io/cloneFromPVC: pvc1

    trident.netapp.io/cloneFromNamespace: namespace1

  name: pvc2

  namespace: namespace2

spec:

  accessModes:

    - ReadWriteMany

  storageClassName: trident-csi

  resources:

    requests:

      storage: 100Gi

Limitations

• For PVCs provisioned using ontap-nas-economy drivers, read-only clones are not supported.

Replicate volumes using SnapMirror

Trident supports mirror relationships between a source volume on one cluster and the

destination volume on the peered cluster for replicating data for disaster recovery.  You

can use a namespaced Custom Resource Definition (CRD), called Trident Mirror

Relationship (TMR) to perform the following operations:

• Create mirror relationships between volumes (PVCs)

• Remove mirror relationships between volumes

• Break the mirror relationships

• Promote the secondary volume during disaster conditions (failovers)

207



• Perform lossless transition of applications from cluster to cluster (during planned failovers or migrations)

Replication prerequisites

Ensure that the following prerequisites are met before you begin:

ONTAP clusters

• Trident: Trident version 22.10 or later must exist on both the source and destination Kubernetes clusters

that utilize ONTAP as a backend.

• Licenses: ONTAP SnapMirror asynchronous licenses using the Data Protection bundle must be enabled

on both the source and destination ONTAP clusters. Refer to SnapMirror licensing overview in ONTAP for

more information.

Beginning with ONTAP 9.10.1, all licenses are delivered as a NetApp license file (NLF), which is a single

file that enables multiple features. Refer to Licenses included with ONTAP One for more information.

Only SnapMirror asynchronous protection is supported.

Peering

• Cluster and SVM: The ONTAP storage backends must be peered. Refer to Cluster and SVM peering

overview for more information.

Ensure that the SVM names used in the replication relationship between two ONTAP

clusters are unique.

• Trident and SVM: The peered remote SVMs must be available to Trident on the destination cluster.

Supported drivers

NetApp Trident supports volume replication with NetApp SnapMirror technology using storage classes backed

by the following drivers:

ontap-nas: NFS

ontap-san: iSCSI

ontap-san: FC

ontap-san: NVMe/TCP (requires minimum ONTAP version 9.15.1)

Volume replication using SnapMirror is not supported for ASA r2 systems. For information about

ASA r2 systems, see Learn about ASA r2 storage systems.

Create a mirrored PVC

Follow these steps and use the CRD examples to create mirror relationship between primary and secondary

volumes.

Steps

1. Perform the following steps on the primary Kubernetes cluster:

a. Create a StorageClass object with the trident.netapp.io/replication: true parameter.

208

https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-licensing-concept.html
https://docs.netapp.com/us-en/ontap/system-admin/manage-licenses-concept.html#licenses-included-with-ontap-one
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/ontap-sm-classic/peering/index.html
https://docs.netapp.com/us-en/asa-r2/get-started/learn-about.html


Example

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: csi-nas

provisioner: csi.trident.netapp.io

parameters:

  backendType: "ontap-nas"

  fsType: "nfs"

  trident.netapp.io/replication: "true"

b. Create a PVC with previously created StorageClass.

Example

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: csi-nas

spec:

  accessModes:

  - ReadWriteMany

  resources:

    requests:

      storage: 1Gi

  storageClassName: csi-nas

c. Create a MirrorRelationship CR with local information.

Example

kind: TridentMirrorRelationship

apiVersion: trident.netapp.io/v1

metadata:

  name: csi-nas

spec:

  state: promoted

  volumeMappings:

  - localPVCName: csi-nas

Trident fetches the internal information for the volume and the volume’s current data protection (DP)

state, then populates the status field of the MirrorRelationship.

d. Get the TridentMirrorRelationship CR to obtain the internal name and SVM of the PVC.

209



kubectl get tmr csi-nas

kind: TridentMirrorRelationship

apiVersion: trident.netapp.io/v1

metadata:

  name: csi-nas

  generation: 1

spec:

  state: promoted

  volumeMappings:

  - localPVCName: csi-nas

status:

  conditions:

  - state: promoted

    localVolumeHandle:

"datavserver:trident_pvc_3bedd23c_46a8_4384_b12b_3c38b313c1e1"

    localPVCName: csi-nas

    observedGeneration: 1

2. Perform the following steps on the secondary Kubernetes cluster:

a. Create a StorageClass with the trident.netapp.io/replication: true parameter.

Example

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: csi-nas

provisioner: csi.trident.netapp.io

parameters:

  trident.netapp.io/replication: true

b. Create a MirrorRelationship CR with destination and source information.

210



Example

kind: TridentMirrorRelationship

apiVersion: trident.netapp.io/v1

metadata:

  name: csi-nas

spec:

  state: established

  volumeMappings:

  - localPVCName: csi-nas

    remoteVolumeHandle:

"datavserver:trident_pvc_3bedd23c_46a8_4384_b12b_3c38b313c1e1"

Trident will create a SnapMirror relationship with the configured relationship policy name (or default for

ONTAP) and initialize it.

c. Create a PVC with previously created StorageClass to act as the secondary (SnapMirror destination).

Example

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: csi-nas

  annotations:

    trident.netapp.io/mirrorRelationship: csi-nas

spec:

  accessModes:

  - ReadWriteMany

resources:

  requests:

    storage: 1Gi

storageClassName: csi-nas

Trident will check for the TridentMirrorRelationship CRD and fail to create the volume if the relationship

does not exist. If the relationship exists, Trident will ensure the new FlexVol volume is placed onto an

SVM that is peered with the remote SVM defined in the MirrorRelationship.

Volume Replication States

A Trident Mirror Relationship (TMR) is a CRD that represents one end of a replication relationship between

PVCs. The destination TMR has a state, which tells Trident what the desired state is. The destination TMR has

the following states:

• Established: the local PVC is the destination volume of a mirror relationship, and this is a new relationship.

• Promoted: the local PVC is ReadWrite and mountable, with no mirror relationship currently in effect.

• Reestablished: the local PVC is the destination volume of a mirror relationship and was also previously in

211



that mirror relationship.

◦ The reestablished state must be used if the destination volume was ever in a relationship with the

source volume because it overwrites the destination volume contents.

◦ The reestablished state will fail if the volume was not previously in a relationship with the source.

Promote secondary PVC during an unplanned failover

Perform the following step on the secondary Kubernetes cluster:

• Update the spec.state field of TridentMirrorRelationship to promoted.

Promote secondary PVC during a planned failover

During a planned failover (migration), perform the following steps to promote the secondary PVC:

Steps

1. On the primary Kubernetes cluster, create a snapshot of the PVC and wait until the snapshot is created.

2. On the primary Kubernetes cluster, create the SnapshotInfo CR to obtain internal details.

Example

kind: SnapshotInfo

apiVersion: trident.netapp.io/v1

metadata:

  name: csi-nas

spec:

  snapshot-name: csi-nas-snapshot

3. On secondary Kubernetes cluster, update the spec.state field of the TridentMirrorRelationship CR to

promoted and spec.promotedSnapshotHandle to be the internalName of the snapshot.

4. On secondary Kubernetes cluster, confirm the status (status.state field) of TridentMirrorRelationship to

promoted.

Restore a mirror relationship after a failover

Before restoring a mirror relationship, choose the side that you want to make as the new primary.

Steps

1. On the secondary Kubernetes cluster, ensure that the values for the spec.remoteVolumeHandle field on

the TridentMirrorRelationship is updated.

2. On secondary Kubernetes cluster, update the spec.mirror field of TridentMirrorRelationship to

reestablished.

Additional operations

Trident supports the following operations on the primary and secondary volumes:

212



Replicate primary PVC to a new secondary PVC

Ensure that you already have a primary PVC and a secondary PVC.

Steps

1. Delete the PersistentVolumeClaim and TridentMirrorRelationship CRDs from the established secondary

(destination) cluster.

2. Delete the TridentMirrorRelationship CRD from the primary (source) cluster.

3. Create a new TridentMirrorRelationship CRD on the primary (source) cluster for the new secondary

(destination) PVC you want to establish.

Resize a mirrored, primary or secondary PVC

The PVC can be resized as normal, ONTAP will automatically expand any destination flevxols if the amount of

data exceeds the current size.

Remove replication from a PVC

To remove replication, perform one of the following operations on the current secondary volume:

• Delete the MirrorRelationship on the secondary PVC. This breaks the replication relationship.

• Or, update the spec.state field to promoted.

Delete a PVC (that was previously mirrored)

Trident checks for replicated PVCs, and releases the replication relationship before attempting to delete the

volume.

Delete a TMR

Deleting a TMR on one side of a mirrored relationship causes the remaining TMR to transition to promoted

state before Trident completes the deletion. If the TMR selected for deletion is already in promoted state, there

is no existing mirror relationship and the TMR will be removed and Trident will promote the local PVC to

ReadWrite. This deletion releases SnapMirror metadata for the local volume in ONTAP. If this volume is used

in a mirror relationship in the future, it must use a new TMR with an established volume replication state when

creating the new mirror relationship.

Update mirror relationships when ONTAP is online

Mirror relationships can be updated any time after they are established. You can use the state: promoted

or state: reestablished fields to update the relationships.

When promoting a destination volume to a regular ReadWrite volume, you can use promotedSnapshotHandle

to specify a specific snapshot to restore the current volume to.

Update mirror relationships when ONTAP is offline

You can use a CRD to perform a SnapMirror update without Trident having direct connectivity to the ONTAP

cluster. Refer to the following example format of the TridentActionMirrorUpdate:

213



Example

apiVersion: trident.netapp.io/v1

kind: TridentActionMirrorUpdate

metadata:

  name: update-mirror-b

spec:

  snapshotHandle: "pvc-1234/snapshot-1234"

  tridentMirrorRelationshipName: mirror-b

status.state reflects the state of the TridentActionMirrorUpdate CRD. It can take a value from Succeeded,

In Progress, or Failed.

Use CSI Topology

Trident can selectively create and attach volumes to nodes present in a Kubernetes

cluster by making use of the CSI Topology feature.

Overview

Using the CSI Topology feature, access to volumes can be limited to a subset of nodes, based on regions and

availability zones. Cloud providers today enable Kubernetes administrators to spawn nodes that are zone

based. Nodes can be located in different availability zones within a region, or across various regions. To

facilitate the provisioning of volumes for workloads in a multi-zone architecture, Trident uses CSI Topology.

Learn more about the CSI Topology feature here.

Kubernetes provides two unique volume binding modes:

• With VolumeBindingMode set to Immediate, Trident creates the volume without any topology

awareness. Volume binding and dynamic provisioning are handled when the PVC is created. This is the

default VolumeBindingMode and is suited for clusters that do not enforce topology constraints. Persistent

Volumes are created without having any dependency on the requesting pod’s scheduling requirements.

• With VolumeBindingMode set to WaitForFirstConsumer, the creation and binding of a Persistent

Volume for a PVC is delayed until a pod that uses the PVC is scheduled and created. This way, volumes

are created to meet the scheduling constraints that are enforced by topology requirements.

The WaitForFirstConsumer binding mode does not require topology labels. This can be

used independent of the CSI Topology feature.

What you’ll need

To make use of CSI Topology, you need the following:

• A Kubernetes cluster running a supported Kubernetes version

214

https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://docs.netapp.com/us-en/trident/trident-get-started/requirements.html


kubectl version

Client Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:50:19Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

Server Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:41:49Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

• Nodes in the cluster should have labels that introduce topology awareness

(topology.kubernetes.io/region and topology.kubernetes.io/zone). These labels should

be present on nodes in the cluster before Trident is installed for Trident to be topology aware.

kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{.metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"

[node1,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node1","kubernetes.io/

os":"linux","node-

role.kubernetes.io/master":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-a"}]

[node2,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node2","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-b"}]

[node3,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node3","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-c"}]

Step 1: Create a topology-aware backend

Trident storage backends can be designed to selectively provision volumes based on availability zones. Each

backend can carry an optional supportedTopologies block that represents a list of zones and regions that

are supported. For StorageClasses that make use of such a backend, a volume would only be created if

requested by an application that is scheduled in a supported region/zone.

Here is an example backend definition:

215



YAML

---

version: 1

storageDriverName: ontap-san

backendName: san-backend-us-east1

managementLIF: 192.168.27.5

svm: iscsi_svm

username: admin

password: password

supportedTopologies:

  - topology.kubernetes.io/region: us-east1

    topology.kubernetes.io/zone: us-east1-a

  - topology.kubernetes.io/region: us-east1

    topology.kubernetes.io/zone: us-east1-b

JSON

{

  "version": 1,

  "storageDriverName": "ontap-san",

  "backendName": "san-backend-us-east1",

  "managementLIF": "192.168.27.5",

  "svm": "iscsi_svm",

  "username": "admin",

  "password": "password",

  "supportedTopologies": [

    {

      "topology.kubernetes.io/region": "us-east1",

      "topology.kubernetes.io/zone": "us-east1-a"

    },

    {

      "topology.kubernetes.io/region": "us-east1",

      "topology.kubernetes.io/zone": "us-east1-b"

    }

  ]

}

supportedTopologies is used to provide a list of regions and zones per backend. These

regions and zones represent the list of permissible values that can be provided in a

StorageClass. For StorageClasses that contain a subset of the regions and zones provided in a

backend, Trident creates a volume on the backend.

You can define supportedTopologies per storage pool as well. See the following example:

216



---

version: 1

storageDriverName: ontap-nas

backendName: nas-backend-us-central1

managementLIF: 172.16.238.5

svm: nfs_svm

username: admin

password: password

supportedTopologies:

  - topology.kubernetes.io/region: us-central1

    topology.kubernetes.io/zone: us-central1-a

  - topology.kubernetes.io/region: us-central1

    topology.kubernetes.io/zone: us-central1-b

storage:

  - labels:

      workload: production

    supportedTopologies:

      - topology.kubernetes.io/region: us-central1

        topology.kubernetes.io/zone: us-central1-a

  - labels:

      workload: dev

    supportedTopologies:

      - topology.kubernetes.io/region: us-central1

        topology.kubernetes.io/zone: us-central1-b

In this example, the region and zone labels stand for the location of the storage pool.

topology.kubernetes.io/region and topology.kubernetes.io/zone dictate where the storage

pools can be consumed from.

Step 2: Define StorageClasses that are topology aware

Based on the topology labels that are provided to the nodes in the cluster, StorageClasses can be defined to

contain topology information. This will determine the storage pools that serve as candidates for PVC requests

made, and the subset of nodes that can make use of the volumes provisioned by Trident.

See the following example:

217



apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata: null

name: netapp-san-us-east1

provisioner: csi.trident.netapp.io

volumeBindingMode: WaitForFirstConsumer

allowedTopologies:

  - matchLabelExpressions: null

  - key: topology.kubernetes.io/zone

    values:

      - us-east1-a

      - us-east1-b

  - key: topology.kubernetes.io/region

    values:

      - us-east1

parameters:

  fsType: ext4

In the StorageClass definition provided above, volumeBindingMode is set to WaitForFirstConsumer.

PVCs that are requested with this StorageClass will not be acted upon until they are referenced in a pod. And,

allowedTopologies provides the zones and region to be used. The netapp-san-us-east1 StorageClass

creates PVCs on the san-backend-us-east1 backend defined above.

Step 3: Create and use a PVC

With the StorageClass created and mapped to a backend, you can now create PVCs.

See the example spec below:

---

kind: PersistentVolumeClaim

apiVersion: v1

metadata: null

name: pvc-san

spec: null

accessModes:

  - ReadWriteOnce

resources:

  requests:

    storage: 300Mi

storageClassName: netapp-san-us-east1

Creating a PVC using this manifest would result in the following:

218



kubectl create -f pvc.yaml

persistentvolumeclaim/pvc-san created

kubectl get pvc

NAME      STATUS    VOLUME   CAPACITY   ACCESS MODES   STORAGECLASS

AGE

pvc-san   Pending                                      netapp-san-us-east1

2s

kubectl describe pvc

Name:          pvc-san

Namespace:     default

StorageClass:  netapp-san-us-east1

Status:        Pending

Volume:

Labels:        <none>

Annotations:   <none>

Finalizers:    [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode:    Filesystem

Mounted By:    <none>

Events:

  Type    Reason                Age   From                         Message

  ----    ------                ----  ----                         -------

  Normal  WaitForFirstConsumer  6s    persistentvolume-controller  waiting

for first consumer to be created before binding

For Trident to create a volume and bind it to the PVC, use the PVC in a pod. See the following example:

219



apiVersion: v1

kind: Pod

metadata:

  name: app-pod-1

spec:

  affinity:

    nodeAffinity:

      requiredDuringSchedulingIgnoredDuringExecution:

        nodeSelectorTerms:

        - matchExpressions:

          - key: topology.kubernetes.io/region

            operator: In

            values:

            - us-east1

      preferredDuringSchedulingIgnoredDuringExecution:

      - weight: 1

        preference:

          matchExpressions:

          - key: topology.kubernetes.io/zone

            operator: In

            values:

            - us-east1-a

            - us-east1-b

  securityContext:

    runAsUser: 1000

    runAsGroup: 3000

    fsGroup: 2000

  volumes:

  - name: vol1

    persistentVolumeClaim:

      claimName: pvc-san

  containers:

  - name: sec-ctx-demo

    image: busybox

    command: [ "sh", "-c", "sleep 1h" ]

    volumeMounts:

    - name: vol1

      mountPath: /data/demo

    securityContext:

      allowPrivilegeEscalation: false

This podSpec instructs Kubernetes to schedule the pod on nodes that are present in the us-east1 region,

and choose from any node that is present in the us-east1-a or us-east1-b zones.

See the following output:

220



kubectl get pods -o wide

NAME        READY   STATUS    RESTARTS   AGE   IP               NODE

NOMINATED NODE   READINESS GATES

app-pod-1   1/1     Running   0          19s   192.168.25.131   node2

<none>           <none>

kubectl get pvc -o wide

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS          AGE   VOLUMEMODE

pvc-san   Bound    pvc-ecb1e1a0-840c-463b-8b65-b3d033e2e62b   300Mi

RWO            netapp-san-us-east1   48s   Filesystem

Update backends to include supportedTopologies

Pre-existing backends can be updated to include a list of supportedTopologies using tridentctl

backend update. This will not affect volumes that have already been provisioned, and will only be used for

subsequent PVCs.

Find more information

• Manage resources for containers

• nodeSelector

• Affinity and anti-affinity

• Taints and Tolerations

Work with snapshots

Kubernetes volume snapshots of Persistent Volumes (PVs) enable point-in-time copies of

volumes. You can create a snapshot of a volume created using Trident, import a snapshot

created outside of Trident, create a new volume from an existing snapshot, and recover

volume data from snapshots.

Overview

Volume snapshot is supported by ontap-nas, ontap-nas-flexgroup, ontap-san, ontap-san-

economy, solidfire-san, azure-netapp-files, and google-cloud-netapp-volumes drivers.

Before you begin

You must have an external snapshot controller and Custom Resource Definitions (CRDs) to work with

snapshots. This is the responsibility of the Kubernetes orchestrator (for example: Kubeadm, GKE, OpenShift).

If your Kubernetes distribution does not include the snapshot controller and CRDs, refer to Deploy a volume

snapshot controller.

Don’t create a snapshot controller if creating on-demand volume snapshots in a GKE

environment. GKE uses a built-in, hidden snapshot controller.

221

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/


Create a volume snapshot

Steps

1. Create a VolumeSnapshotClass. For more information, refer to VolumeSnapshotClass.

◦ The driver points to the Trident CSI driver.

◦ deletionPolicy can be Delete or Retain. When set to Retain, the underlying physical snapshot

on the storage cluster is retained even when the VolumeSnapshot object is deleted.

Example

cat snap-sc.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

  name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

2. Create a snapshot of an existing PVC.

Examples

◦ This example creates a snapshot of an existing PVC.

cat snap.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

  name: pvc1-snap

spec:

  volumeSnapshotClassName: csi-snapclass

  source:

    persistentVolumeClaimName: pvc1

◦ This example creates a volume snapshot object for a PVC named pvc1 and the name of the snapshot

is set to pvc1-snap. A VolumeSnapshot is analogous to a PVC and is associated with a

VolumeSnapshotContent object that represents the actual snapshot.

222

https://docs.netapp.com/us-en/trident/trident-reference/objects.html#kubernetes-volumesnapshotclass-objects


kubectl create -f snap.yaml

volumesnapshot.snapshot.storage.k8s.io/pvc1-snap created

kubectl get volumesnapshots

NAME                   AGE

pvc1-snap              50s

◦ You can identify the VolumeSnapshotContent object for the pvc1-snap VolumeSnapshot by

describing it. The Snapshot Content Name identifies the VolumeSnapshotContent object which

serves this snapshot. The Ready To Use parameter indicates that the snapshot can be used to

create a new PVC.

kubectl describe volumesnapshots pvc1-snap

Name:         pvc1-snap

Namespace:    default

...

Spec:

  Snapshot Class Name:    pvc1-snap

  Snapshot Content Name:  snapcontent-e8d8a0ca-9826-11e9-9807-

525400f3f660

  Source:

    API Group:

    Kind:       PersistentVolumeClaim

    Name:       pvc1

Status:

  Creation Time:  2019-06-26T15:27:29Z

  Ready To Use:   true

  Restore Size:   3Gi

...

Create a PVC from a volume snapshot

You can use dataSource to create a PVC using a VolumeSnapshot named <pvc-name> as the source of the

data. After the PVC is created, it can be attached to a pod and used just like any other PVC.

The PVC will be created in the same backend as the source volume. Refer to KB: Creating a

PVC from a Trident PVC Snapshot cannot be created in an alternate backend.

The following example creates the PVC using pvc1-snap as the data source.

cat pvc-from-snap.yaml

223

https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend
https://kb.netapp.com/Cloud/Astra/Trident/Creating_a_PVC_from_a_Trident_PVC_Snapshot_cannot_be_created_in_an_alternate_backend


apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  name: pvc-from-snap

spec:

  accessModes:

    - ReadWriteOnce

  storageClassName: golden

  resources:

    requests:

      storage: 3Gi

  dataSource:

    name: pvc1-snap

    kind: VolumeSnapshot

    apiGroup: snapshot.storage.k8s.io

Import a volume snapshot

Trident supports the Kubernetes pre-provisioned snapshot process to enable the cluster administrator to create

a VolumeSnapshotContent object and import snapshots created outside of Trident.

Before you begin

Trident must have created or imported the snapshot’s parent volume.

Steps

1. Cluster admin: Create a VolumeSnapshotContent object that references the backend snapshot. This

initiates the snapshot workflow in Trident.

◦ Specify the name of the backend snapshot in annotations as

trident.netapp.io/internalSnapshotName: <"backend-snapshot-name">.

◦ Specify <name-of-parent-volume-in-trident>/<volume-snapshot-content-name> in

snapshotHandle. This is the only information provided to Trident by the external snapshotter in the

ListSnapshots call.

The <volumeSnapshotContentName> cannot always match the backend snapshot

name due to CR naming constraints.

Example

The following example creates a VolumeSnapshotContent object that references backend snapshot

snap-01.

224

https://kubernetes.io/docs/concepts/storage/volume-snapshots/#static


apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotContent

metadata:

  name: import-snap-content

  annotations:

    trident.netapp.io/internalSnapshotName: "snap-01"  # This is the

name of the snapshot on the backend

spec:

  deletionPolicy: Retain

  driver: csi.trident.netapp.io

  source:

    snapshotHandle: pvc-f71223b5-23b9-4235-bbfe-e269ac7b84b0/import-

snap-content # <import PV name or source PV name>/<volume-snapshot-

content-name>

  volumeSnapshotRef:

    name: import-snap

    namespace: default

2. Cluster admin: Create the VolumeSnapshot CR that references the VolumeSnapshotContent object.

This requests access to use the VolumeSnapshot in a given namespace.

Example

The following example creates a VolumeSnapshot CR named import-snap that references the

VolumeSnapshotContent named import-snap-content.

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

  name: import-snap

spec:

  # volumeSnapshotClassName: csi-snapclass (not required for pre-

provisioned or imported snapshots)

  source:

    volumeSnapshotContentName: import-snap-content

3. Internal processing (no action required): The external snapshotter recognizes the newly created

VolumeSnapshotContent and runs the ListSnapshots call. Trident creates the TridentSnapshot.

◦ The external snapshotter sets the VolumeSnapshotContent to readyToUse and the

VolumeSnapshot to true.

◦ Trident returns readyToUse=true.

4. Any user: Create a PersistentVolumeClaim to reference the new VolumeSnapshot, where the

spec.dataSource (or spec.dataSourceRef) name is the VolumeSnapshot name.

Example

225



The following example creates a PVC referencing the VolumeSnapshot named import-snap.

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  name: pvc-from-snap

spec:

  accessModes:

    - ReadWriteOnce

  storageClassName: simple-sc

  resources:

    requests:

      storage: 1Gi

  dataSource:

    name: import-snap

    kind: VolumeSnapshot

    apiGroup: snapshot.storage.k8s.io

Recover volume data using snapshots

The snapshot directory is hidden by default to facilitate maximum compatibility of volumes provisioned using

the ontap-nas and ontap-nas-economy drivers. Enable the .snapshot directory to recover data from

snapshots directly.

Use the volume snapshot restore ONTAP CLI to to restore a volume to a state recorded in a prior snapshot.

cluster1::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3_snap_archive

When you restore a snapshot copy, the existing volume configuration is overwritten. Changes

made to volume data after the snapshot copy was created are lost.

In-place volume restoration from a snapshot

Trident provides rapid, in-place volume restoration from a snapshot using the

TridentActionSnapshotRestore (TASR) CR. This CR functions as an imperative Kubernetes action and

does not persist after the operation completes.

Trident supports snapshot restore on the ontap-san, ontap-san-economy, ontap-nas, ontap-nas-

flexgroup, azure-netapp-files, google-cloud-netapp-volumes, and solidfire-san drivers.

Before you begin

You must have a bound PVC and available volume snapshot.

• Verify the PVC status is bound.

226



kubectl get pvc

• Verify the volume snapshot is ready to use.

kubectl get vs

Steps

1. Create the TASR CR. This example creates a CR for PVC pvc1 and volume snapshot pvc1-snapshot.

The TASR CR must be in a namespace where the PVC & VS exist.

cat tasr-pvc1-snapshot.yaml

apiVersion: trident.netapp.io/v1

kind: TridentActionSnapshotRestore

metadata:

  name: trident-snap

  namespace: trident

spec:

  pvcName: pvc1

  volumeSnapshotName: pvc1-snapshot

2. Apply the CR to restore from the snapshot. This example restores from snapshot pvc1.

kubectl create -f tasr-pvc1-snapshot.yaml

tridentactionsnapshotrestore.trident.netapp.io/trident-snap created

Results

Trident restores the data from the snapshot. You can verify the snapshot restore status:

kubectl get tasr -o yaml

227



apiVersion: trident.netapp.io/v1

items:

- apiVersion: trident.netapp.io/v1

  kind: TridentActionSnapshotRestore

  metadata:

    creationTimestamp: "2023-04-14T00:20:33Z"

    generation: 3

    name: trident-snap

    namespace: trident

    resourceVersion: "3453847"

    uid: <uid>

  spec:

    pvcName: pvc1

    volumeSnapshotName: pvc1-snapshot

  status:

    startTime: "2023-04-14T00:20:34Z"

    completionTime: "2023-04-14T00:20:37Z"

    state: Succeeded

kind: List

metadata:

  resourceVersion: ""

• In most cases, Trident will not automatically retry the operation in case of failure. You will

need to perform the operation again.

• Kubernetes users without admin access might have to be granted permission by the admin

to create a TASR CR in their application namespace.

Delete a PV with associated snapshots

When deleting a Persistent Volume with associated snapshots, the corresponding Trident volume is updated to

a "Deleting state". Remove the volume snapshots to delete the Trident volume.

Deploy a volume snapshot controller

If your Kubernetes distribution does not include the snapshot controller and CRDs, you can deploy them as

follows.

Steps

1. Create volume snapshot CRDs.

cat snapshot-setup.sh

228



#!/bin/bash

# Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents.yam

l

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml

2. Create the snapshot controller.

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

If necessary, open deploy/kubernetes/snapshot-controller/rbac-snapshot-

controller.yaml and update namespace to your namespace.

Related links

• Volume snapshots

• VolumeSnapshotClass

Work with volume group snapshots

Kubernetes volume group snapshots of Persistent Volumes (PVs) NetApp Trident

provides the ability to create snapshots of multiple volumes ( a group of volume

snapshots). This volume group snapshot represents copies from multiple volumes that

are taken at the same point-in-time.

VolumeGroupSnapshot is a beta feature in Kubernetes with beta APIs. Kubernetes 1.32 is the

minimum version required for VolumeGroupSnapshot.

229

https://docs.netapp.com/us-en/trident/trident-concepts/snapshots.html
https://docs.netapp.com/us-en/trident/trident-reference/objects.html


Create volume group snapshots

Volume group snapshot is supported with the following storage drivers:

• ontap-san driver - only for the iSCSI and FC protocols, not for the NVMe/TCP protocol.

• ontap-san-economy - only for the iSCSI protocol.

• ontap-nas

Volume group snapshot is not supported for NetApp ASA r2 or AFX storage systems.

Before you begin

• Ensure that your Kubernetes version is K8s 1.32 or higher.

• You must have an external snapshot controller and Custom Resource Definitions (CRDs) to work with

snapshots. This is the responsibility of the Kubernetes orchestrator (for example: Kubeadm, GKE,

OpenShift).

If your Kubernetes distribution does not include the external snapshot controller and CRDs, refer to Deploy

a volume snapshot controller.

Don’t create a snapshot controller if creating on-demand volume group snapshots in a GKE

environment. GKE uses a built-in, hidden snapshot controller.

• In the snapshot controller YAML, set the CSIVolumeGroupSnapshot feature gate to 'true' to ensure that

volume group snapshot is enabled.

• Create the required volume group snapshot classes before creating a volume group snapshot.

• Ensure that all PVCs/volumes are on the same SVM to be able to create VolumeGroupSnapshot.

Steps

• Create a VolumeGroupSnapshotClass prior to creating a VolumeGroupSnapshot. For more information,

refer to VolumeGroupSnapshotClass.

apiVersion: groupsnapshot.storage.k8s.io/v1beta1

kind: VolumeGroupSnapshotClass

metadata:

  name: csi-group-snap-class

  annotations:

    kubernetes.io/description: "Trident group snapshot class"

driver: csi.trident.netapp.io

deletionPolicy: Delete

• Create PVCs with required labels using existing storage classes, or add these labels to existing PVCs.

The following example creates the PVC using pvc1-group-snap as the data source and label

consistentGroupSnapshot: groupA. Define the label key and value based on your requirements.

230

https://docs.netapp.com/us-en/trident/trident-reference/objects.html#kubernetes-volumegroupsnapshotclass-objects


kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: pvc1-group-snap

  labels:

    consistentGroupSnapshot: groupA

spec:

  accessModes:

    - ReadWriteOnce

  resources:

    requests:

      storage: 100Mi

  storageClassName: sc1-1

• Create a VolumeGroupSnapshot with the same label (consistentGroupSnapshot: groupA) specified

in the PVC.

This example creates a volume group snapshot:

apiVersion: groupsnapshot.storage.k8s.io/v1beta1

kind: VolumeGroupSnapshot

metadata:

  name: "vgs1"

  namespace: trident

spec:

  volumeGroupSnapshotClassName: csi-group-snap-class

  source:

    selector:

      matchLabels:

        consistentGroupSnapshot: groupA

Recover volume data using a group snapshot

You can restore individual Persistent Volumes using the individual snapshots which have been created as part

of the Volume Group Snapshot. You cannot recover the Volume Group Snapshot as a unit.

Use the volume snapshot restore ONTAP CLI to to restore a volume to a state recorded in a prior snapshot.

cluster1::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3_snap_archive

When you restore a snapshot copy, the existing volume configuration is overwritten. Changes

made to volume data after the snapshot copy was created are lost.

231



In-place volume restoration from a snapshot

Trident provides rapid, in-place volume restoration from a snapshot using the

TridentActionSnapshotRestore (TASR) CR. This CR functions as an imperative Kubernetes action and

does not persist after the operation completes.

For more information, see In-place volume restoration from a snapshot.

Delete a PV with associated group snapshots

When deleting a group volume snapshot:

• You can delete VolumeGroupSnapshots as a whole, not individual snapshots in the group.

• If PersistentVolumes are deleted while a snapshot exists for that PersistentVolume, Trident will move that

volume to a "deleting" state because the snapshot must be removed before the volume can be safely

removed.

• If a clone has been created using a grouped snapshot and then the group is to be deleted, a split-on-clone

operation will begin and the group cannot be deleted until the split is complete.

Deploy a volume snapshot controller

If your Kubernetes distribution does not include the snapshot controller and CRDs, you can deploy them as

follows.

Steps

1. Create volume snapshot CRDs.

cat snapshot-setup.sh

#!/bin/bash

# Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

8.2/client/config/crd/groupsnapshot.storage.k8s.io_volumegroupsnapshotcl

asses.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

8.2/client/config/crd/groupsnapshot.storage.k8s.io_volumegroupsnapshotco

ntents.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

8.2/client/config/crd/groupsnapshot.storage.k8s.io_volumegroupsnapshots.

yaml

2. Create the snapshot controller.

232



kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-8.2/deploy/kubernetes/snapshot-

controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-8.2/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

If necessary, open deploy/kubernetes/snapshot-controller/rbac-snapshot-

controller.yaml and update namespace to your namespace.

Related links

• VolumeGroupSnapshotClass

• Volume snapshots

233

https://docs.netapp.com/us-en/trident/trident-reference/objects.html#kubernetes-volumegroupsnapshotclass-objects
https://docs.netapp.com/us-en/trident/trident-concepts/snapshots.html


Copyright information

Copyright © 2026 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

234

http://www.netapp.com/TM

	Use Trident : Trident
	Table of Contents
	Use Trident
	Prepare the worker node
	Selecting the right tools
	Node service discovery
	NFS volumes
	iSCSI volumes
	NVMe/TCP volumes
	SCSI over FC volumes
	Prepare to provision SMB volumes

	Configure and manage backends
	Configure backends
	Azure NetApp Files
	Google Cloud NetApp Volumes
	Configure a NetApp HCI or SolidFire backend
	ONTAP SAN drivers
	ONTAP NAS drivers
	Amazon FSx for NetApp ONTAP
	Create backends with kubectl
	Manage backends

	Create and manage storage classes
	Create a storage class
	Manage storage classes

	Provision and manage volumes
	Provision a volume
	Expand volumes
	Import volumes
	Customize volume names and labels
	Share an NFS volume across namespaces
	Clone volumes across namespaces
	Replicate volumes using SnapMirror
	Use CSI Topology
	Work with snapshots
	Work with volume group snapshots



