
Coding guidelines for WFA
OnCommand Workflow Automation
NetApp
October 09, 2025

This PDF was generated from https://docs.netapp.com/us-en/workflow-automation/workflows/reference-
guidelines-for-variables.html on October 09, 2025. Always check docs.netapp.com for the latest.

Table of Contents

Coding guidelines for WFA. 1

Guidelines for variables . 1

PowerShell variables . 1

Perl variables . 3

Guidelines for indentation . 5

Guidelines for comments . 5

PowerShell comments . 5

Perl comments . 6

Guidelines for logging . 7

PowerShell logging . 7

Perl logging . 8

Guidelines for error handling . 9

PowerShell error handling . 9

Perl error handling . 11

General PowerShell and Perl conventions for WFA. 12

Perl modules bundled with Windows . 13

Considerations for adding custom PowerShell and Perl modules . 13

WFA cmdlets and functions . 14

PowerShell and Perl WFA modules . 14

PowerShell modules . 14

Perl modules . 14

Considerations while converting PowerShell commands to Perl . 17

Command input types . 17

PowerShell statement . 17

Perl statement . 18

Command definition . 20

Guidelines for WFA building blocks . 20

Guidelines for SQL in WFA . 20

Guidelines for WFA functions. 23

Guidelines for WFA dictionary entries . 23

Guidelines for commands . 24

Guidelines for workflows . 26

Guidelines for creating validation scripts for remote system types . 31

Guidelines for creating data source types . 32

Coding guidelines for WFA

You should understand the general OnCommand Workflow Automation (WFA) coding
guidelines, naming conventions, and recommendations on creating various building
blocks such as filters, functions, commands, and workflows.

Guidelines for variables

You must be aware of the guidelines for PowerShell and Perl variables in OnCommand
Workflow Automation (WFA) when you create a command or a data source type.

PowerShell variables

Guidelines Example

For script input parameters:

• Use Pascal case.

• Do not use underscores.

• Do not use abbreviations.

$VolumeName

$AutoDeleteOptions

$Size

For script internal variables:

• Use Camel case.

• Do not use underscores.

• Do not use abbreviations.

$newVolume

$qtreeName

$time

For functions:

• Use Pascal case.

• Do not use underscores.

• Do not use abbreviations.

GetVolumeSize

Variable names are not case-sensitive. However, to
improve readability, you should not use different
capitalization for the same name.

$variable is the same as $Variable.

Variable names should be in plain English and should
be related to the functionality of the script.

Use $name and not $a.

Declare the data type for each variable, explicitly. [string]name

[int]size

Do not use special characters (! @ # & % , .) and
spaces.

None

1

Guidelines Example

Do not use PowerShell reserved keywords. None

Group the input parameters by placing the mandatory
parameters first followed by the optional parameters. param(

[parameter(Mandatory=$true)]

[string]$Type,

[parameter(Mandatory=$true)]

[string]$Ip,

[parameter(Mandatory=$false)]

[string]$VolumeName

)

Comment all input variables using HelpMessage
annotation with a meaningful help message. [parameter(Mandatory=$false,HelpMe

ssage="LUN to map")]

[string]$LUNName

Do not use “Filer” as a variable name; use “Array”
instead.

None

Use ValidateSet annotation in cases where the
argument gets enumerated values. This automatically
translates to Enum data type for the parameter.

[parameter(Mandatory=$false,HelpMe

ssage="Volume state")]

[ValidateSet("online","offline","r

estricted")]

[string]$State

Add an alias to a parameter that ends with
“_Capacity” to indicate that the parameter is of
capacity type.

The “Create Volume” command uses aliases as
follows:

[parameter(Mandatory=$false,HelpMe

ssage="Volume increment size in

MB")]

[Alias("AutosizeIncrementSize_Capa

city")]

[int]$AutosizeIncrementSize

2

Guidelines Example

Add an alias to a parameter that ends with
“_Password” to indicate that the parameter is of
password type.

param (

 [parameter(Mandatory=$false,

HelpMessage="In order to create an

Active Directory machine account

for the CIFS server or setup CIFS

service for Storage Virtual

Machine, you must supply the

password of a Windows account with

sufficient privileges")]

[Alias("Pwd_Password")]

[string]$ADAdminPassword

)

Perl variables

Guidelines Example

For script input parameters:

• Use Pascal case.

• Do not use underscores.

• Do not use abbreviations.

$VolumeName

$AutoDeleteOptions

$Size

Do not use abbreviations for script internal variables. $new_volume

$qtree_name

$time

Do not use abbreviations for functions. get_volume_size

Variable names are case-sensitive. To improve
readability, you should not use different capitalization
for the same name.

$variable is not the same as $Variable.

Variable names should be in plain English and should
be related to the functionality of the script.

Use $name and not $a.

Group the input parameters by placing the mandatory
parameters first, followed by the optional parameters.

None

3

Guidelines Example

In GetOptions function, explicitly declare the data type
of each variable for input parameters. GetOptions(

 "Name=s"=>\$Name,

 "Size=i"=>\$Size

)

Do not use “Filer” as a variable name; use “Array”
instead.

None

Perl does not include the ValidateSet annotation
for enumerated values. Use explicit “if” statements for
cases where argument gets enumerated values.

if

(defined$SpaceGuarantee&&!($SpaceG

uaranteeeq'none'||$SpaceGuaranteee

q'volume'||$SpaceGuaranteeeq'file'

))

{

 die'Illegal SpaceGuarantee

argument:

\''.$SpaceGuarantee.'\'';

}

All Perl WFA commands must use the “strict” pragma
to discourage the use of unsafe constructs for
variables, references, and subroutines.

use strict;

the above is equivalent to

use strictvars;

use strictsubs;

use strictrefs;

All Perl WFA commands must use the following Perl
modules:

• Getopt

This is used for specifying input parameters.

• WFAUtil

This is used for utility functions that are provided
for command logging, reporting command
progress, connecting to array controllers, and so
on.

use Getopt::Long;

use NaServer;

use WFAUtil;

4

Guidelines for indentation

You must be aware of the guidelines for indentation when writing a PowerShell or Perl
script for OnCommand Workflow Automation (WFA).

Guidelines Example

A tab is equal to four empty spaces.

Use tabs and braces to show the beginning and end
of a block.

PowerShell script

if

($pair.length-ne 2)

{

throw "Got wrong input data"

}

Perl script

if

(defined $MaxDirectorySize)

{

convert from MBytes to Bytes

my $MaxDirectorySizeBytes =

$MaxDirectorySize *

1024 * 1024;

}

Add blank lines between sets of operations or chunks
of code. $options=$option.trim();

$pair=$option.split(" ");

Get-WFAlogger -Info -messages

$("split options: "+

$Pair)

Guidelines for comments

You must be aware of the guidelines for PowerShell and Perl comments in your scripts for
OnCommand Workflow Automation (WFA).

PowerShell comments

5

Guidelines Example

Use the # character for a single line comment.
Single line comment

$options=$option.trim();

Use the # character for an end of line comment.
$options=$option.trim(); # End of

line

comment

Use the <# and #> characters for a block comment.
<#

This is

a

block comment

#>

$options=$option.trim();

Perl comments

Guidelines Example

Use the # character for single line comment.
convert from MBytes to Bytes

my $MaxDirectorySizeBytes =

$MaxDirectorySize *

1024 * 1024;

Use the # character for end of line comment.
my $MaxDirectorySizeBytes =

$MaxDirect

orySiZe * 1024 * 1024; # convert

to Bytes

6

Guidelines Example

Use the # character in every line with an empty # at
the beginning and end to create a comment border for
multi-line comments.

#

This is a multi-line comment.

Perl 5, unlike

Powershell, does not have direct

support for

multi-line comments. Please use

a '#'in every line

with an empty '#' at the

beginning and end to create

a comment border

#

Do not include commented and dead code in WFA
commands. However, for testing purposes, you can
use the Plain Old Documentation (POD) mechanism
to comment out the code.

=begin comment

 # Set deduplication

 if(defined $Deduplication &&

$Deduplication eq "enabled")

 {

 $wfaUtil-

>sendLog("Enabling

Deduplication");

 }

=end comment

=cut

Guidelines for logging

You must be aware of the guidelines for logging when writing a PowerShell or Perl script
for OnCommand Workflow Automation (WFA).

PowerShell logging

Guidelines Example

Use the Get-WFALogger cmdlet for logging.
Get-WFALogger -Info -message

“Creating volume”

7

Guidelines Example

Log every action that requires interaction with internal
packages such as Data ONTAP, VMware, and
PowerCLI.All the log messages are available in
Execution Logs in the execution status history of
workflows.

None

Log every relevant argument that is passed to internal
packages.

None

Use appropriate log levels when using the Get-
WFALogger cmdlet, depending on the usage context.
-Info, -Error, -Warn, and -Debug are the various
available log levels. If a log level is not specified, then
the default log level is Debug.

None

Perl logging

Guidelines Example

Use the WFAUtil sendLog for logging.
my wfa_util = WFAUtil->new();

eval {

$wfa_util->sendLog('INFO',

"Connecting to the

cluster: $DestinationCluster");

}

Log every action that requires interaction with
anything external to the command such as Data
ONTAP, VMware, and WFA. All the log messages that
you create using the WFAUtil sendLog routine are
stored in the WFA database. These log messages are
available for the executed workflow and command.

None

Log every relevant argument passed to the routine
that was called.

None

Use appropriate log levels.-Info, -Error, -Warn, and
-Debug are the various available log levels.

None

8

Guidelines Example

When logging at the -Info level, be precise and
concise. Do not specify implementation details such
as class name and function name in log messages.
Describe the exact step or the exact error in plain
English.

The following code snippet shows an example of a
good message and a bad message:

$wfa_util->sendLog('WARN',

"Removing volume:

'.$VolumeName);

Good Message

$wfa_util->sendLog('WARN',

'Invoking volume-

destroy ZAPI: '.$VolumeName);

Bad message

Guidelines for error handling

You must be aware of the guidelines for error handling when writing a PowerShell or Perl
script for OnCommand Workflow Automation (WFA).

PowerShell error handling

Guidelines Example

Common parameters added to cmdlets by PowerShell
runtime include error handling parameters such as
ErrorAction and WarningAction:

• The ErrorAction parameter determines how a
cmdlet should react to a non-terminating error
from the command.

• The WarningAction parameter determines how a
cmdlet should react to a warning from the
command.

• Stop, SilentlyContinue, Inquire, and Continue are
the valid values for the ErrorAction and
WarningAction parameters.

For more information, you can use the Get-Help

about_CommonParameters command in
PowerShell CLI.

ErrorAction: the following example shows how to
handle a non-terminating error as a terminating error:

New-NcIgroup-Name $IgroupName-

Protocol $Protocol-Type$OSType-

ErrorActionstop

WarningAction

New-VM-Name $VMName-VM $SourceVM-

DataStore$DataStoreName-

VMHost$VMHost-

WarningActionSilentlyContinue

9

Guidelines Example

Use the general “try/catch” statement if the type of the
incoming exception is unknown. try

{

"In Try/catch block"

}

catch

{

"Got exception"

}

Use the specific “try/catch” statement if the type of the
incoming exception is known. try

{

"In Try/catch block"

}

catch[System.Net.WebExceptional],

[System.IO.

IOException]

{

"Got exception"

}

Use the “finally” statement to release resources.
try

{

"In Try/catch block"

}

catch

{

"Got exception"

}

finally

{

"Release resources"

}

10

Guidelines Example

Use PowerShell automatic variables to access
information about exceptions. try

{

Get-WFALogger -Info -message

$("Creating

Ipspace: " + $Ipspace)

New-NaNetIpspace-Name $Ipspace

}

catch

{

Throw "Failed to create Ipspace.

Message:

" + $_.Exception.Message;

}

Perl error handling

11

Guidelines Example

Perl does not include native language support for
try/catch blocks. Use eval blocks for checking and
handling errors. Keep eval blocks as small as
possible.

eval {

$wfa_util->sendLog('INFO',

"Quiescing the relationship :

$DestinationCluster://$Destination

Vserver

/$DestinationVolume"

);

$server->snapmirror_quiesce(

'destination-vserver' =>

$DestinationVserver,

'destination-volume' =>

$DestinationVolume

);

$wfa_util->sendLog('INFO',

'Quiesce operation

started successfully.');

};

$wfa_util->checkEvalFailure(

"Failed to quiesce the SnapMirror

relationship

$DestinationCluster://$Destination

Vserver

/$DestinationVolume",

 $@

);

General PowerShell and Perl conventions for WFA

You must understand certain PowerShell and Perl conventions that are used in WFA to
create scripts that are consistent with existing scripts.

• Use variables that help to clarify what you want the script to do.

• Write readable code that can be understood without comments.

• Keep the scripts and commands as simple as possible.

• For PowerShell scripts:

◦ Use cmdlets whenever possible.

◦ Invoke .NET code when there is no cmdlet available.

• For Perl scripts:

12

◦ Always end “die” statements with newline characters.

In the absence of a newline character, the script line number is printed, which is not useful for
debugging Perl commands executed by WFA.

◦ In the “GetOpt” module, make the string arguments to a command mandatory.

Perl modules bundled with Windows

Some Perl modules are bundled with the Windows Active state Perl distribution for
OnCommand Workflow Automation (WFA). You can use these Perl modules in your Perl
code for writing commands, only if they are bundled with Windows.

The following table lists the Perl database modules that are bundled with Windows for WFA.

Database module Description

DBD::mysql Perl5 database interface driver that enables you to
connect to the MySQL database.

Try::Tiny Minimizes common mistakes with evaluation blocks.

XML::LibXML Interface to libxml2 that provides XML and HTML
parsers with DOM, SAX, and XMLReader interfaces.

DBD::Cassandra Perl5 database interface driver for Cassandra that
uses the CQL3 query language.

Considerations for adding custom PowerShell and Perl
modules

You must be aware of certain considerations before adding custom PowerShell and Perl
modules to OnCommand Workflow Automation (WFA). Custom PowerShell and Perl
modules enable you to use custom commands for creating workflows.

• During the execution of WFA commands, all custom PowerShell modules are added to the WFA install

directory /Posh/modules are automatically imported.

• All custom Perl modules added to the WFA/perl directory are included in the @INC library.

• Custom PowerShell and Perl modules are not backed up as part of the WFA backup operation.

• Custom PowerShell and Perl modules are not restored as part of the WFA restore operation.

You must manually back up custom PowerShell and Perl modules in order to copy them to a new WFA
installation.

The folder name in modules' directory must be same as that of the module name.

13

WFA cmdlets and functions

OnCommand Workflow Automation (WFA) provides several PowerShell cmdlets as well
as PowerShell and Perl functions that you can use in your WFA commands.

You can view all the PowerShell cmdlets and functions provided by the WFA server using the following
PowerShell commands:

• Get-Command -Module WFAWrapper

• Get-Command -Module WFA

You can view all the Perl functions provided by the WFA server in the WFAUtil.pm module. The help sections,
WFA PowerShell cmdlets help and WFA Perl methods help, of the WFA Help module Support Links enables
access to all the PowerShell cmdlets and functions and the Perl functions.

PowerShell and Perl WFA modules

You must be aware of the PowerShell or Perl modules for OnCommand Workflow
Automation (WFA) to write scripts for your workflows.

PowerShell modules

Guidelines Example

Use the Data ONTAP PS Toolkit to invoke APIs
whenever the toolkit is available.

The Add VLAN command uses the toolkit as follows:

Add-NaNetVlan-Interface $Interface-

Vlans$VlanID

If there are no cmdlets available in the Data ONTAP

PS Toolkit, use the Invoke-SSH command to invoke
the CLI on Data ONTAP.

Invoke-NaSsh-Name $ArrayName-Command

"ifconfig -a"-Credential $Credentials

Perl modules

The NaServer module is used in WFA commands. The NaServer module allows the invocation of Data ONTAP
APIs, which are used in active management of Data ONTAP systems.

14

15

Guidelines Example

Use the NaServer module to invoke APIs whenever
the NetApp Manageability SDK is available.

The following example shows how the NaServer
module is used for a resume SnapMirror operation:

 eval {

 $wfa_util->sendLog('INFO',

 "Connecting to the

cluster: $DestinationCluster"

);

 my $server

 = $wfa_util-

>connect($DestinationClusterIp,

$DestinationVserver);

 my $sm_info = $server-

>snapmirror_get(

 'destination-vserver' =>

$DestinationVserver,

 'destination-volume' =>

$DestinationVolume

);

 my $sm_state = $sm_info-

>{'attributes'}->{'snapmirror-

info'}->{'mirror-state'};

 my $sm_status = $sm_info-

>{'attributes'}->{'snapmirror-

info'}->{'relationship-status'};

 $wfa_util->sendLog('INFO',

 "SnapMirror relationship

is $sm_state ($sm_status)");

 if ($sm_status ne 'quiesced')

{

 $wfa_util->sendLog('INFO',

 'The status needs to

be quiesced to resume transfer.');

 } else {

 my $result = $server-

>snapmirror_resume(

 'destination-vserver'

=> $DestinationVserver,

 'destination-volume'

=> $DestinationVolume

);

 $wfa_util->sendLog('INFO',

"Result of resume: $result");
16

 $wfa_util->sendLog('INFO',

'Resume operation started

successfully.');

 }

}

Guidelines Example

If a Data ONTAP API is not available, invoke the Data
ONTAP CLI using the executeSystemCli utility
method.

executeSystemCli is not supported and
is currently available only for Data
ONTAP operating in 7-Mode.

None

Considerations while converting PowerShell commands to
Perl

You must be aware of certain important considerations when you convert PowerShell
commands to Perl because PowerShell and Perl have different capabilities.

Command input types

OnCommand Workflow Automation (WFA) allows workflow designers to use arrays and hash as input for the
command when defining a command. These input types cannot be used when the command is defined using
Perl. If you want a Perl command to accept array and hash inputs, you can define the input as a string in the
designer. The command definition can then parse the input, which is passed to create an array or hash as
required. The description for the input describes the format in which the input is expected.

my @input_as_array = split(',', $InputString); #Parse the input string of

format val1,val2 into an array

my %input_as_hash = split /[;=]/, $InputString; #Parse the input string of

format key1=val1;key2=val2 into a hash.

PowerShell statement

The following examples show how an array input can be passed into PowerShell and Perl. The examples
describe the input CronMonth, which specifies the month when the cron job is scheduled to run. The valid
values are integers -1 to 11. A value of -1 indicates that the schedule executes every month. Any other value
denotes a specific month, with 0 being January and 11 being December.

[parameter(Mandatory=$false, HelpMessage="Months in which the schedule

executes. This is a comma separated list of values from 0 through 11.

Value -1 means all months.")]

 [ValidateRange(-1, 11)]

 [array]$CronMonths,

17

Perl statement

18

GetOptions(

 "Cluster=s" => \$Cluster,

 "ScheduleName=s" => \$ScheduleName,

 "Type=s" => \$Type,

 "CronMonths=s" => \$CronMonths,

) or die 'Illegal command parameters\n';

sub get_cron_months {

 return get_cron_input_hash('CronMonths', $CronMonths, 'cron-month',

-1,

 11);

}

sub get_cron_input_hash {

 my $input_name = shift;

 my $input_value = shift;

 my $zapi_element = shift;

 my $low = shift;

 my $high = shift;

 my $exclude = shift;

 if (!defined $input_value) {

 return undef;

 }

 my @values = split(',', $input_value);

 foreach my $val (@values) {

 if ($val !~ /^[+-]?\d+$/) {

 die

 "Invalid value '$input_value' for $input_name: $val must

be an integer.\n";

 }

 if ($val < $low || $val > $high) {

 die

 "Invalid value '$input_value' for $input_name: $val must

be from $low to $high.\n";

 }

 if (defined $exclude && $val == $exclude) {

 die

 "Invalid value '$input_value' for $input_name: $val is not

valid.\n";

 }

 }

 # do something

}

19

Command definition

A one-line expression in PowerShell using a pipe operator might have to be expanded into multiple blocks of
statements in Perl in order to achieve the same functionality. An example from one of the wait commands is
shown in the following table.

PowerShell statement Perl statement

Get the latest job which moves

the specified volume to the

specified

 aggregate.

$job = Get-NcJob -Query $query |

where

{$_.JobDescription -eq "Split" +

$VolumeCloneName} | Select-Object

-First 1

my $result = $server-

>job_get_iter(

 'query' => {'job-type' =>

'VOL_CLONE_SPLIT'},

 'desired-attributes' => {

 'job-type' => '',

 'job-description' => '',

 'job-progress' => '',

 'job-state' => ''

 }

);

my @jobarray;

for my $job (@{ $result-

>{'attributes-list'}})

{

 my $description = $job->{'job-

description'};

 if($description =~

/$VolumeCloneName/)

 {

 push(@jobarray, $job)

 }

}

Guidelines for WFA building blocks

You must be aware of the guidelines for using Workflow Automation building blocks.

Guidelines for SQL in WFA

You must be aware of the guidelines for using SQL in OnCommand Workflow Automation
(WFA) to write SQL queries for WFA.

SQL is used in the following places in WFA:

• SQL queries to populate user inputs for selection

• SQL queries for creating filters to filter objects of a specific dictionary entry type

20

• Static data in tables in the playground database

• A custom data source type of SQL type where the data has to be extracted from an external data source
such as a custom configuration management database (CMDB).

• SQL queries for reservation and verification scripts

Guidelines Example

SQL reserved keywords must be in uppercase
characters. SELECT

 vserver.name

FROM

 cm_storage.vserver vserver

Table and column names must be in lowercase
characters.

Table: aggregate

Column: used_space_mb

Separate words with an underscore (_) character.
Spaces are not allowed.

array_performance

Table name is defined in singular. A table is a
collection of one or more entries.

“function”, not “functions”

Use table aliases with meaningful names in SELECT
queries. SELECT

 vserver.name

FROM

 cm_storage.cluster cluster,

 cm_storage.vserver vserver

WHERE

 vserver.cluster_id =

cluster.id

 AND cluster.name =

'${ClusterName}'

 AND vserver.type = 'cluster'

ORDER BY

 vserver.name ASC

21

Guidelines Example

If you have to refer to a filter input parameter or user
input parameter in a filter query or user query, use the
syntax as '${inputVariableName}.You can also use the
syntax to refer to a command definition parameter in
reservation scripts and verification scripts.

SELECT

 volume.name AS Name,

 aggregate.name as Aggregate,

 volume.size_mb AS 'Total Size

(MB)',

 voulme.used_size_mb AS 'Used

Size (MB)',

 volume.space_guarantee AS

'Space Guarantee'

FROM

 cm_storage.cluster,

 cm_storage.aggregate,

 cm_storage.vserver,

 cm_storage.volume

WHERE

 cluster.id =

vserver.cluster_id

 AND aggregate.id =

volume.aggregate_id

 AND vserver.id =

voulme.vserver_id

 AND vserver.name =

'${VserverName}'

 AND cluster.name =

'${ClusterName}'

ORDER BY

 volume.name ASC

Use comments for complex queries. Some of the
supported comment styles in queries are as follows:

• “--” until the end of the line

A space is mandatory after the second hyphen in
this comment style.

• From a “#” character until the end of the line

• From a “/” to the following "`/`"sequence

/*

multi-line

comment

*/

--line comment

SELECT

 ip as ip, # comment till end

of this line

 NAME as name

FROM --end of line comment

 storage.array

22

Guidelines for WFA functions

You can create functions to encapsulate commonly used and more complex logic in a
named function, and then reuse the function as command parameter values or filter
parameters values in OnCommand Workflow Automation (WFA).

Guidelines Example

Use Camel case for a function name. calculateVolumeSize

Variable names should be in plain English and related
to the functionality of the function.

splitByDelimiter

Do not use abbreviations. calculateVolumeSize, not calcVolSize

Functions are defined using MVFLEX Expression
Language (MVEL).

None

The function definition should be specified according
to the official Java Programming Language
guidelines.

None

Guidelines for WFA dictionary entries

You must be aware of the guidelines for creating dictionary entries in OnCommand
Workflow Automation (WFA).

Guidelines Example

Dictionary entry names must contain only
alphanumeric characters and underscores.

Cluster_License

Switch_23

Dictionary entry names must start with an uppercase
character. Begin every word in the name with an
uppercase character and separate each word with an
underscore (_).

Volume

Array_License

Dictionary entry attribute names should not include
the name of the dictionary entry.

None

Attributes and references in a dictionary entry must be
in lowercase characters.

aggregate, size_mb

Separate words with an underscore. Spaces are not
allowed.

resource_pool

23

Guidelines Example

Dictionary entries cannot include references that are
from a different scheme. When a dictionary entry
requires cross-reference to an object in a different
scheme, ensure that all the natural keys of the object
being referred to are present in the dictionary entry.

Array_Performance dictionary entry requires all the
natural keys of the Array dictionary entry as direct
attributes in it.

Use appropriate data types for attributes. None

Use Long data type for size or space-related
attributes.

size_mb and available_size_mb in storage.Volume
dictionary entry

Use Enum when an attribute has a fixed set of values. raid_type in storage.Volume dictionary entry

Set “To be Cached” as true for an attribute or
reference when a data source provides value for that
attribute or reference.For Active IQ Unified Manager
data source, add cacheable attributes if the data
source can provide the value to it.

None

Set “Can be Null” as true if the data source providing
the value for this attribute or reference can return
NULL.

None

Provide a meaningful description to each attribute and
reference.The description is displayed in command
details when designing a workflow.

None

Do not use “id” as the name of an attribute in
dictionary entries.It is reserved for internal WFA
usage.

None

Related information

References to learning material

Guidelines for commands

You must be aware of the guidelines for creating commands in OnCommand Workflow
Automation (WFA).

Guidelines Example

Use an easily identifiable name for commands. Create Qtree

Use spaces to delimit words and each word must start
with an uppercase character.

Create Volume

24

https://docs.netapp.com/us-en/workflow-automation/workflows/reference-references-to-learning-material.html

Guidelines Example

Provide a description to explain the functionality of the
command, including the expected outcome of the
optional parameters.

None

By default, the timeout for standard commands is 600
seconds. The default timeout is set while creating the
command. Change the default value only if the
command might take a longer time to complete.

Create Volume command

In case of long-running operations, create two
commands—one to invoke the long-running operation
and another to report the progress of the operation
periodically. The first command should be a

Standard Execution command type and the

second should be Wait for Condition command
type.

Create VSM and Wait for VSM commands

Prefix the Wait for condition command names
with “Wait” for easy identification.

Wait for CM Volume Move

Use an appropriate waiting interval for the “Wait for
condition” commands. The specified value governs
the interval at which the polling command gets
executed to check if the long-running operation is
complete.

60s sampling interval for the Wait for VSM
command

For the Wait for condition commands, use an
appropriate timeout based on the expected time for
the long-running operation to complete. The expected
time might be considerably longer if the operation
involves data transfer over a network.

A VSM baseline transfer can take many days to
complete. Therefore, the specified timeout is 6 days.

String representation

The string representation for a command displays the details of a command in a workflow design during
planning and execution. Only the command parameters can be used in the string representation for a
command.

Guidelines Example

Avoid using attributes that do not have any value. An
attribute without a value is displayed as NA.

VolName 10.68.66.212[NA]aggr1/testVol7

Separate different entries in the string representation
using the following delimiters: [] , / :

ArrayName[ArrayIp]

25

Guidelines Example

Provide meaningful labels to every value in string
representation.

Volume name=VolumeName

Command definition language

Commands can be written using the following supported scripting languages:

• PowerShell

• Perl

Command parameter definition

The command parameters are described by Name, Description, Type, a default value for the parameter, and
whether the parameter is mandatory. The parameter type can be String, Boolean, Integer, Long, Double,
Enum, DateTime, Capacity, Array, Hashtable, Password, or an XmlDocument. While the values for most of the
types are intuitive, the values for Array and Hashtable should be in a particular format as described in the
following table:

Guidelines Example

Ensure that the value for an Array input type is a list
of values, separated by comma. [parameter(Mandatory=$false,

HelpMessage="Months in which the

schedule executes.")]

[array]$CronMonths

Input is passed as following: 0,3,6,9

Ensure that the value for a Hashtable input type is a
list of key=value pairs, separated by semicolon. [parameter(Mandatory=$false,

HelpMessage="Volume names and size

(in MB)")]

[hashtable]$VolumeNamesAndSize

Input is passed as following:
Volume1=100;Volume2=250;Volume3=50

Guidelines for workflows

You must be aware of the guidelines for creating or modifying a predefined workflow for
OnCommand Workflow Automation (WFA).

General guidelines

26

Guidelines Example

Name the workflow such that it reflects the operation
that is executed by the storage operator.

Create a CIFS Share

For workflow names, capitalize the initial letter of the
first word and every word that is an object. Capitalize
letters for abbreviations and acronyms.

Volume

Qtree

Create a Clustered Data ONTAP Qtree CIFS Share

For workflow descriptions, include all of the important
steps of the workflow, including any prerequisites,
result of the workflow, or conditional aspects of
execution.

See the description of the sample workflow Create

VMware NFS Datastore on Clustered Data

ONTAP Storage, which includes the prerequisites.

Set “Ready For Production” to true only when the
workflow is ready for production and can be displayed
in the portal page.

None

By default, set “Consider reserved elements” to true.
When previewing a workflow for execution, the WFA
planner considers all of the objects that are reserved
along with the existing objects in the cache database.
Effects of other scheduled workflows or workflows
executing in parallel are considered when planning a

specific workflow if this option is set to true.

• Scenario 1

Workflow 1 creates a volume, and is scheduled to
execute one week later. Workflow 2 creates
qtrees or LUNs in volumes that are searched for,
and if workflow 2 is executed within a day or so,
you should turn off “Consider reserved elements”
for workflow 2 to prevent it from considering the
volume that is to be created in a week.

• Scenario 2

Workflow 1 uses the Create Volume command.
If there is a scheduled workflow 2 that consumes
100 GB from an aggregate, then workflow 1 must
consider the requirements for workflow 2 during
planning.

27

Guidelines Example

By default, “Enable element existence validation” is

set to true.

• Scenario 1

If you create a workflow that first removes a

volume by name using the command Remove

Volume only if the volume exists, and the re-
creates it using another command such as

Create Volume or Clone Volume, then the
workflow should not use this flag. The effect of
removing the volume will not be available to the

Create volume command, thereby causing the
workflow to fail.

• Scenario 2

The Create Volume command is used in a
workflow with a specific name as “vol198”.

If this option is set to true, WFA planner checks
during planning to see if a volume by that name
exists in the given array. If the volume exists, the
workflow fails during planning.

When the same command is selected more than once
in a workflow, provide appropriate display names for
the command instances.

The “Create, map, and protect LUNs with SnapVault”

sample workflow uses the Create Volume
command twice. However, it uses the display names

as Create Primary Volume and Create

Secondary Volume appropriately for the primary
volume and the mirrored destination volume.

User inputs

Guidelines Example

Names:

• Start the name with the “$” character.

• Use an uppercase letter at the beginning of each
word.

• Use uppercase letters for all terms and
abbreviations.

• Do not use underscores.

$Array

$VolumeName

28

Guidelines Example

Display names:

• Use an uppercase letter at the beginning of each
word.

• Separate words with spaces.

• If inputs have specific units, specify the unit in
brackets in the display name directly.

Volume Name

Volume Size (MB)

Descriptions:

• Provide a meaningful description for each user
input.

• Provide examples when required.

You should do this especially when the user input
is expected to be in a specific format.

The user input descriptions are displayed as tooltips
for the user inputs during workflow execution.

Initiators to be added to an “iGroup”. For example,
IQN or WWPN of the initiator.

Type: Select Enum as the type if you want to restrict
the input to a specific set of values.

Protocol: “iscsi”, “fcp”, “mixed”

Type: Select Query as the type when the user can
select from values available in the WFA cache.

$Array: QUERY type with query as follows:

SELECT

 ip, name

FROM

 storage.array

Type: Mark the user input as locked when the user
input should be restricted to the values that are
obtained from a query or should be restricted to only
the supported Enum types.

$Array: Locked Query type: Only arrays in the cache
can be selected.$Protocol: Locked Enum type with
valid values as iscsi, fcp, mixed. No other value than
the valid value is supported.

Type: Query TypeAdd additional columns as return
values in the query when it helps the storage operator
to make the right choice of user input.

$Aggregate: Provide name, total size, available size
so that the operator knows the attributes before
selecting the aggregate.

29

Guidelines Example

Type: Query TypeSQL query for user inputs can refer
to any other user inputs preceding it. This can be
used to limit the results from a query based on other
user inputs such as vFiler units of an array, volumes
of an aggregate, LUNs in a storage virtual machine
(SVM).

In the sample workflow Create a Clustered

Data ONTAP Volume, the query for VserverName
is as follows:

SELECT

 vserver.name

FROM

 cm_storage.cluster cluster,

 cm_storage.vserver vserver

WHERE

 vserver.cluster_id =

cluster.id

 AND cluster.name =

'${ClusterName}'

 AND vserver.type = 'cluster'

ORDER BY

 vserver.name ASC

The query refers to ${ClusterName}, where
$ClusterName is the name of the user input preceding
the $VserverName user input.

Type: Use Boolean type with values as “true, false” for
user inputs that are Boolean in nature. This helps in
writing internal expressions in the workflow design
using the user input directly. For example,
$UserInputName rather than $UserInputName ==
'`Yes'.

$CreateCIFSShare: Boolean type with valid values
as “true” or “false”

Type:For string and number type, use regular
expressions in the values column when you want to
validate the value with specific formats.

Use regular expressions for IP address and network
mask inputs.

Location-specific user input can be expressed as “[A-
Z][A-Z]\-0[1-9]”. This user input accepts values such
as “US-01”, “NB-02”, but not “nb-00”.

Type: For number type, a range-based validation can
be specified in the values column.

For Number of LUNs to be created, the entry in the
Values column is 1-20.

Group: Group related user inputs into appropriate
buckets and name the group.

“Storage Details” for all storage-related user inputs.
“Datastore Details” for all VMware-related user inputs.

30

Guidelines Example

Mandatory: If the value of any user input is necessary
for the workflow to execute, mark the user input as
mandatory. This ensures that the user input screen
mandatorily accepts that input from the user.

“$VolumeName” in the “Create NFS Volume”
workflow.

Default value: If a user input has a default value that
can work for most of the workflow executions, provide
the values. This helps in allowing the user to provide
fewer inputs during execution, if the default serves the
purpose.

None

Constants, variables, and returns parameters

Guidelines Example

Constants: Define constants when using a common
value for defining parameters to multiple commands.

AGGREGATE_OVERCOMMITMENT_THRESHOLD

in the Create, map, and protect LUNs with

SnapVault sample workflow.

Constants:Names

• Use an uppercase letter at the beginning of each
word.

• Use uppercase letters for all terms and
abbreviations.

• Do not use underscores.

• Use uppercase letters for all letters of constant
names.

AGGREGATE_USED_SPACE_THRESHOLD

ActualVolumeSizeInMB

Variables: Provide a name to an object defined in one
of the command parameter boxes. Variables are
automatically generated names and can be changed.

None

Variables: Names Use lowercase characters for
variable names.

volume1

cifs_share

Return parameters: Use return parameters when the
workflow planning and execution should return some
calculated or selected values during planning. The
values are made available in the preview mode when
the workflow is executed from a web service as well.

Aggregate: If the aggregate is selected using the
resource selection logic, then the actual selected
aggregate can be defined as a return parameter.

Guidelines for creating validation scripts for remote system types

You must be aware of the guidelines for creating validation scripts that are used to test

31

the remote system types that you define in OnCommand Workflow Automation (WFA).

• The Perl script that you create must be similar to the sample script provided in the Validation Script window.

• The output of your validation script must be similar to that of the sample script.

Sample validation script

Check connectivity.

Return 1 on success.

Return 0 on failure and set $message

sub checkCredentials {

my ($host, $user, $passwd, $protocol, $port, $timeout) = @_;

#

Please add the code to check connectivity to $host using $protocol here.

#

return 1;

}

Guidelines for creating data source types

You must be aware of the guidelines for creating data source types that are used to
define custom data sources for OnCommand Workflow Automation (WFA).

You can define a data source type by using one of the following methods:

• SQL: You can use the WFA SQL guidelines to define select queries from data sources based on an
external database.

• SCRIPT: You can write a PowerShell script that provides the data for a specific scheme of dictionary
entries.

The guidelines for creating data source types are as follows:

• You should use PowerShell language must be used to create script.

• The PowerShell script should provide the output for each dictionary entry in its current working directory.

• The data files should be named dictionary_entry.csv, where the name of the dictionary entry should
be in lower-case characters.

The predefined data source type that collects information from Performance Advisor uses a SCRIPT-based

data source type. The output files are named array_performance.csv and

aggregate_performance.csv.

• The .csv file should include the content in the exact order as that of the dictionary entry attributes.

A dictionary entry includes attributes in the following order: array_ip, date, day, hour, cpu_busy,
total_ops_per_sec, disk_throughput_per_sec.

The PowerShell script adds data to the .csv file in the same order.

32

$values = get-Array-CounterValueString ([REF]$data)

Add-Content $arrayFile ([byte[]][char[]] "\N

t$arrayIP't$date't$day't$hour't$values'n")

• You should use Encoding to ensure that the data output from the script is loaded into the WFA cache
accurately.

• You should use \N while entering a Null value in the .csv file.

33

Copyright information

Copyright © 2025 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

34

http://www.netapp.com/TM

	Coding guidelines for WFA : OnCommand Workflow Automation
	Table of Contents
	Coding guidelines for WFA
	Guidelines for variables
	PowerShell variables
	Perl variables

	Guidelines for indentation
	Guidelines for comments
	PowerShell comments
	Perl comments

	Guidelines for logging
	PowerShell logging
	Perl logging

	Guidelines for error handling
	PowerShell error handling
	Perl error handling

	General PowerShell and Perl conventions for WFA
	Perl modules bundled with Windows

	Considerations for adding custom PowerShell and Perl modules
	WFA cmdlets and functions
	PowerShell and Perl WFA modules
	PowerShell modules
	Perl modules

	Considerations while converting PowerShell commands to Perl
	Command input types
	PowerShell statement
	Perl statement
	Command definition

	Guidelines for WFA building blocks
	Guidelines for SQL in WFA
	Guidelines for WFA functions
	Guidelines for WFA dictionary entries
	Guidelines for commands
	Guidelines for workflows
	Guidelines for creating validation scripts for remote system types
	Guidelines for creating data source types

