
ONTAP

NetApp Automation
NetApp
November 18, 2025

This PDF was generated from https://docs.netapp.com/zh-cn/netapp-automation/solutions/ontap-day01-
overview.html on November 18, 2025. Always check docs.netapp.com for the latest.



目录
ONTAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Day 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

ONTAP Day 1解决方案概述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

准备使用ONTAP Day 1解决方案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

使用该解决方案部署ONTAP集群 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

定制ONTAP Day 1解决方案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26



ONTAP

Day 1

ONTAP Day 1解决方案概述

您可以使用ONTAP day 0/1 自动化解决方案，通过 Ansible 部署和配置ONTAP集群。解决
方案可从以下途径获得： "NetApp Console自动化中心"。

灵活的ONTAP部署选项

根据您的要求、您可以使用内部硬件或模拟ONTAP来使用ONTAP部署和配置。

内部硬件

您可以使用运行ONTAP的内部硬件(例如FAS或AFF系统)部署此解决方案。您必须使用Linux VM使用ONTAP来
部署和配置Storage Virtual Machine集群。

模拟ONTAP

要使用ONTAP模拟器部署此解决方案、您必须从NetApp支持站点下载最新版本的sim模拟ONTAP。模拟ONTAP

是ONTAP软件的虚拟模拟器。模拟ONTAP在Windows、Linux或Mac系统上的VMware虚拟机管理程序中运行。
对于Windows和Linux主机、必须使用VMware Workstation虚拟机管理程序来运行此解决方案。如果您使用的
是Mac操作系统、请使用VMware Fusion虚拟机管理程序。

分层设计

通过该框架、可以简化自动化执行和逻辑任务的开发和重复使用。该框架区分了自动化中的决策任务(逻辑层)和
执行步骤(执行层)。通过了解这些层的工作原理、您可以自定义配置。

一本安可赛"操作手册"从头到尾执行一系列任务。该 `site.yml`手册包含该手册 `logic.yml`和该 `execution.yml`手
册。

运行请求时，该 `site.yml`操作手册首先调用该操作手册，然后调用该 `logic.yml`操作手册 `execution.yml`以执
行服务请求。

您不需要使用框架的逻辑层。逻辑层提供了一些选项、可将框架的功能扩展到硬编码值之外、以供执行。这样、
您可以根据需要自定义框架功能。

逻辑层

逻辑层由以下部分组成：

• 这是一本操作 `logic.yml`手册

• 目录中的逻辑任务文件 logic-tasks

逻辑层提供了复杂决策的功能、而无需进行大量的自定义集成(例如、连接到ServiceNow)。逻辑层是可配置的、
可为微服务提供输入。

此外、还可以绕过逻辑层。如果要绕过逻辑层、请勿定义 `logic_operation`变量。通过直接调用该 `logic.yml`操
作手册、可以在不执行的情况下执行某种级别的调试。您可以使用"debug "语句验证的值是否
`raw_service_request`正确。
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重要注意事项：

• 该手册将 logic.yml`搜索 `logic_operation`变量。如果在请求中定义了变量、则它会从目录中加载

任务文件 `logic-tasks。任务文件必须是.yml文件。如果没有匹配的任务文件且 `logic_operation`已定义
变量、则逻辑层将失败。

• 变量的默认值 logic_operation`为 `no-op。如果未明确定义变量，则默认为 no-op，而不运行任何操
作。

• 如果 `raw_service_request`已定义变量、则执行将继续到执行层。如果未定义此变量、则逻辑层将失败。

执行层

执行层由以下部分组成：

• 这是一本操作 `execution.yml`手册

执行层通过API调用来配置ONTAP集群。该 `execution.yml`手册要求 `raw_service_request`在执行时定义变
量。

支持自定义

您可以根据自己的要求以各种方式自定义此解决方案。

自定义选项包括：

• 正在修改《安赛尔操作手册》

• 添加角色

自定义Ans｝文件

下表介绍了此解决方案中包含的可自定义的Ansable文件。

位置 说明

playbooks/inventory

/hosts

包含一个包含主机和组列表的文件。

playbooks/group_var

s/all/*

通过Ans可 轻松地一次性将变量应用于多个主机。您可以修改此文件夹中的任何或
所有文件，包括 cfg.yml、、 clusters.yml defaults.yml、

services.yml、 standards.yml`和 `vault.yml。

playbooks/logic-

tasks

支持在Ans可 内执行决策任务、并保持逻辑与执行的分离。您可以向此文件夹添加
与相关服务对应的文件。

playbooks/vars/* 在《Andsability操作手册》和角色中使用动态值、以实现配置的自定义、灵活性和
可重用性。如有必要、您可以修改此文件夹中的任何或所有文件。

自定义角色

此外、您还可以通过添加或更改Ans担负 的角色(也称为微服务)来自定义解决方案。有关详细信息，请参见"自定
义"。
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准备使用ONTAP Day 1解决方案

在部署自动化解决方案之前、您必须准备ONTAP环境并安装和配置Ans得。

初始规划注意事项

在使用此解决方案部署ONTAP集群之前、您应查看以下要求和注意事项。

基本要求

要使用此解决方案、您必须满足以下基本要求：

• 您必须能够在内部或通过ONTAP模拟器访问ONTAP软件。

• 您必须了解如何使用ONTAP软件。

• 您必须了解如何使用Ans得 自动化软件工具。

规划注意事项

在部署此自动化解决方案之前、您必须确定：

• 要运行Ans得 可控制节点的位置。

• ONTAP系统、内部硬件或ONTAP模拟器。

• 是否需要自定义。

准备ONTAP系统

无论您是使用内部ONTAP系统还是模拟ONTAP、都必须先准备好环境、然后才能部署自动化解决方案。

(可选)安装和配置模拟ONTAP

如果要通过ONTAP模拟器部署此解决方案、则必须下载并运行模拟ONTAP。

开始之前

• 您必须下载并安装要用于运行模拟ONTAP的VMware虚拟机管理程序。

◦ 如果您使用的是Windows或Linux操作系统、请使用VMware Workstation。

◦ 如果您使用的是Mac操作系统、请使用VMware Fusion。

如果您使用的是Mac OS、则必须使用Intel处理器。

步骤

使用以下过程在本地环境中安装两个ONTAP管理器：

1. 从下载模拟ONTAP"NetApp 支持站点"。

尽管您安装了两个ONTAP联机器、但只需下载一份软件副本即可。

2. 如果尚未运行、请启动VMware应用程序。
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3. 找到已下载的模拟器文件、然后右键单击以使用VMware应用程序打开该文件。

4. 设置第一个ONTAP实例的名称。

5. 等待模拟器启动、然后按照说明创建单节点集群。

对第二个ONTAP实例重复上述步骤。

6. (可选)添加完整磁盘补充。

从每个集群中、运行以下命令：

security unlock -username <user_01>

security login password -username <user_01>

set -priv advanced

systemshell local

disk assign -all -node <Cluster-01>-01

ONTAP系统的状态

您必须验证ONTAP系统的初始状态、无论是内部还是通过ONTAP模拟器运行。

验证是否满足以下ONTAP系统要求：

• ONTAP已安装并正在运行、但尚未定义集群。

• 此时、ONTAP将启动并显示用于访问集群的IP地址。

• 网络可访问。

• 您具有管理员凭据。

• 此时将显示每日消息(Message of the Day、MOTD)横幅以及管理地址。

安装所需的自动化软件

本节介绍有关如何安装Ands还是 准备部署自动化解决方案的信息。

安装Ands器

可以在Linux或Windows系统上安装Ans得。

Ands得以 与ONTAP集群进行通信的默认通信方法是SSH。

请参阅"NetApp 和 Ansible 入门：安装 Ansible"安装Ands得以 安装。

必须在系统的控制节点上安装有Ans得。

下载并准备自动化解决方案

您可以使用以下步骤下载并准备要部署的自动化解决方案。
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1. 下载 "ONTAP - Day 1和amp；运行状况检查" 通过控制台 Web 用户界面实现自动化解决方案。该解决方案
打包如下： ONTAP_DAY0_DAY1.zip。

2. 提取zip文件夹、并将文件复制到您的Ands得以 环境中控制节点上的所需位置。

初始的Ands处理 框架配置

执行Ans担负 框架的初始配置：

1. 导航到 playbooks/inventory/group_vars/all。

2. 解密 `vault.yml`文件：

ansible-vault decrypt playbooks/inventory/group_vars/all/vault.yml

当系统提示您输入存储密码时、输入以下临时密码：

NetApp123!

"NetApp 123！"是用于对文件和相应的存储密码进行解密的临时 `vault.yml`密码。首次使用后
，*必须*使用您自己的密码对文件进行加密。

3. 修改以下的Ans的 文件：

◦ `clusters.yml`修改此文件中的值以适合您的环境。

◦ vault.yml-解密文件后、根据您的环境修改ONTAP集群、用户名和密码值。

◦ cfg.yml-设置的文件路径 log2file，并在下 cfg`设置 `show_request`为 `True`以显示
`raw_service_request。

此 `raw_service_request`变量将显示在日志文件中以及执行期间。

列出的每个文件都包含注释、并说明如何根据您的要求对其进行修改。

4. 重新加密 `vault.yml`文件：

ansible-vault encrypt playbooks/inventory/group_vars/all/vault.yml

系统会提示您在加密时为存储选择新密码。

5. 导航到 `playbooks/inventory/hosts`并设置有效的Python解释器。

6. 部署 `framework_test`服务：

以下命令运行值为 cluster_identity_info`的 `na_ontap_info`模块 `gather_subset。这将验
证基本配置是否正确、并验证您是否可以与集群进行通信。

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<CLUSTER_NAME>

-e logic_operation=framework-test
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对每个集群运行命令。

如果成功、您应看到类似于以下示例的输出：

PLAY RECAP

************************************************************************

*********

localhost : ok=12 changed=1 unreachable=0 failed=0 skipped=6

The key is ‘rescued=0’ and ‘failed=0’..

使用该解决方案部署ONTAP集群

完成准备和规划后、您便可以使用ONTAP Day 1解决方案使用ONTAP来快速配置使用Ans

得 集群了。

在执行本节中的步骤期间、您可以随时选择测试请求、而不是实际执行请求。要测试请求，请将命令行上的操作
手册更 site.yml`改为 `logic.yml。

该 `docs/tutorial-requests.txt`位置包含此过程中使用的所有服务请求的最终版本。如果您在运行
服务请求时遇到困难、可以将相关请求从文件复制 `tutorial-requests.txt`到该
`playbooks/inventory/group_vars/all/tutorial-requests.yml`位置、并根据需要修改硬编码值(IP地
址、聚合名称等)。然后、您应该能够成功运行此请求。

开始之前

• 您必须安装了Ans得。

• 您必须已下载ONTAP Day 1解决方案并将该文件夹解压缩到了Ands得以 控制的节点上的所需位置。

• ONTAP系统状态必须满足要求、并且您必须具有必要的凭据。

• 您必须已完成本节中所述的所有必需任务"准备"。

本解决方案中的示例使用"Cluster_01"和"Cluster_02"作为两个集群的名称。您必须将这些值替换
为环境中集群的名称。

第1步：初始集群配置

在此阶段、您必须执行一些初始集群配置步骤。

步骤

1. 导航到该 `playbooks/inventory/group_vars/all/tutorial-requests.yml`位置并查看 `cluster_initial`文件中的请
求。对您的环境进行任何必要的更改。

2. 在文件夹中为服务请求创建一个文件 logic-tasks。例如，创建一个名为的文件
cluster_initial.yml。

将以下行复制到新文件：
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- name: Validate required inputs

  ansible.builtin.assert:

    that:

    - service is defined

- name: Include data files

  ansible.builtin.include_vars:

    file:   "{{ data_file_name }}.yml"

  loop:

  - common-site-stds

  - user-inputs

  - cluster-platform-stds

  - vserver-common-stds

  loop_control:

    loop_var:    data_file_name

- name: Initial cluster configuration

  set_fact:

    raw_service_request:

3. 定义 `raw_service_request`变量。

您可以使用以下选项之一在文件夹中创建的文件 logic-tasks`中定义 `raw_service_request`变量

`cluster_initial.yml：

◦ 选项1:手动定义 `raw_service_request`变量。

使用编辑器打开 tutorial-requests.yml`文件、并将内容从第11行复制到第165行。将内容粘贴到
新文件中的变量 `cluster_initial.yml`下 `raw service request、如以下示例所示：
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显示示例

示例 `cluster_initial.yml`文件：

- name: Validate required inputs

  ansible.builtin.assert:

    that:

    - service is defined

- name: Include data files

  ansible.builtin.include_vars:

    file:   "{{ data_file_name }}.yml"

  loop:

  - common-site-stds

  - user-inputs

  - cluster-platform-stds

  - vserver-common-stds

  loop_control:

    loop_var:    data_file_name

- name: Initial cluster configuration

  set_fact:

    raw_service_request:

     service:          cluster_initial

     operation:         create

     std_name:           none

     req_details:

      ontap_aggr:

      - hostname:                   "{{ cluster_name }}"

        disk_count:                 24

        name:                       n01_aggr1

        nodes:                      "{{ cluster_name }}-01"

        raid_type:                  raid4

      - hostname:                   "{{ peer_cluster_name }}"

        disk_count:                 24

        name:                       n01_aggr1

        nodes:                      "{{ peer_cluster_name }}-01"

        raid_type:                  raid4

      ontap_license:

      - hostname:                   "{{ cluster_name }}"

        license_codes:

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA
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        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

    - hostname:                   "{{ peer_cluster_name }}"

      license_codes:

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA
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        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

        - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

    ontap_motd:

    - hostname:                   "{{ cluster_name }}"

      vserver:                    "{{ cluster_name }}"

      message:                    "New MOTD"

    - hostname:                   "{{ peer_cluster_name }}"

      vserver:                    "{{ peer_cluster_name }}"

      message:                    "New MOTD"

    ontap_interface:

    - hostname:                   "{{ cluster_name }}"

      vserver:                    "{{ cluster_name }}"

      interface_name:             ic01

      role:                       intercluster

      address:                    10.0.0.101

      netmask:                    255.255.255.0

      home_node:                  "{{ cluster_name }}-01"

      home_port:                  e0c

      ipspace:                    Default

      use_rest:                   never

    - hostname:                   "{{ cluster_name }}"

      vserver:                    "{{ cluster_name }}"

      interface_name:             ic02

      role:                       intercluster

      address:                    10.0.0.101

      netmask:                    255.255.255.0

      home_node:                  "{{ cluster_name }}-01"

      home_port:                  e0c
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      ipspace:                    Default

      use_rest:                   never

    - hostname:                   "{{ peer_cluster_name }}"

      vserver:                    "{{ peer_cluster_name }}"

      interface_name:             ic01

      role:                       intercluster

      address:                    10.0.0.101

      netmask:                    255.255.255.0

      home_node:                  "{{ peer_cluster_name }}-01"

      home_port:                  e0c

      ipspace:                    Default

      use_rest:                   never

    - hostname:                   "{{ peer_cluster_name }}"

      vserver:                    "{{ peer_cluster_name }}"

      interface_name:             ic02

      role:                       intercluster

      address:                    10.0.0.101

      netmask:                    255.255.255.0

      home_node:                  "{{ peer_cluster_name }}-01"

      home_port:                  e0c

      ipspace:                    Default

      use_rest:                   never

    ontap_cluster_peer:

    - hostname:                   "{{ cluster_name }}"

      dest_cluster_name:          "{{ peer_cluster_name }}"

      dest_intercluster_lifs:     "{{ peer_lifs }}"

      source_cluster_name:        "{{ cluster_name }}"

      source_intercluster_lifs:   "{{ cluster_lifs }}"

      peer_options:

        hostname:                 "{{ peer_cluster_name }}"

◦ 选项2:使用Jinja模板定义请求:

您也可以使用以下Jinja模板格式获取该 `raw_service_request`值。

raw_service_request: "{{ cluster_initial }}"

4. 对第一个集群执行初始集群配置：

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_01>
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继续操作前、请确认没有错误。

5. 对第二个集群重复此命令：

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_02>

确认第二个集群没有错误。

向上滚动到Andsent输出的开头时、您应看到发送到框架的请求、如以下示例所示：
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显示示例

TASK [Show the raw_service_request]

********************************************************************

****************************************

ok: [localhost] => {

    "raw_service_request": {

        "operation": "create",

        "req_details": {

            "ontap_aggr": [

                {

                    "disk_count": 24,

                    "hostname": "Cluster_01",

                    "name": "n01_aggr1",

                    "nodes": "Cluster_01-01",

                    "raid_type": "raid4"

                }

            ],

            "ontap_license": [

                {

                    "hostname": "Cluster_01",

                    "license_codes": [

                        "XXXXXXXXXXXXXXXAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",
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                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

                        "XXXXXXXXXXXXXXAAAAAAAAAAAAA"

                    ]

                }

            ],

            "ontap_motd": [

                {

                    "hostname": "Cluster_01",

                    "message": "New MOTD",

                    "vserver": "Cluster_01"

                }

            ]

        },

        "service": "cluster_initial",

        "std_name": "none"

    }

}

6. 登录到每个ONTAP实例并验证请求是否成功。

第2步：配置集群间的生命周期

现在、您可以通过向请求添加LIF定义并定义 ontap_interface`微服务来配置集群间LIF
`cluster_initial。

服务定义和请求共同确定操作：

• 如果您为服务定义中未包含的微服务提供服务请求、则不会执行此请求。

• 如果您为服务请求提供服务定义中定义的一个或多个微服务、但在请求中省略了该服务、则不会执行该请
求。

该 `execution.yml`操作手册将按所列顺序扫描微服务列表、以评估服务定义：

• 如果请求中有一个条目，其词典密钥与微服务定义中包含的条目匹配 args，则执行该请求。

• 如果服务请求中没有匹配的条目、则会跳过此请求、并且不会出现错误。

步骤
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1. 导航到 `cluster_initial.yml`先前创建的文件，并通过向请求定义添加以下行来修改请求：
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    ontap_interface:

    - hostname:                   "{{ cluster_name }}"

      vserver:                    "{{ cluster_name }}"

      interface_name:             ic01

      role:                       intercluster

      address:                    <ip_address>

      netmask:                    <netmask_address>

      home_node:                  "{{ cluster_name }}-01"

      home_port:                  e0c

      ipspace:                    Default

      use_rest:                   never

    - hostname:                   "{{ cluster_name }}"

      vserver:                    "{{ cluster_name }}"

      interface_name:             ic02

      role:                       intercluster

      address:                    <ip_address>

      netmask:                    <netmask_address>

      home_node:                  "{{ cluster_name }}-01"

      home_port:                  e0c

      ipspace:                    Default

      use_rest:                   never

    - hostname:                   "{{ peer_cluster_name }}"

      vserver:                    "{{ peer_cluster_name }}"

      interface_name:             ic01

      role:                       intercluster

      address:                    <ip_address>

      netmask:                    <netmask_address>

      home_node:                  "{{ peer_cluster_name }}-01"

      home_port:                  e0c

      ipspace:                    Default

      use_rest:                   never

    - hostname:                   "{{ peer_cluster_name }}"

      vserver:                    "{{ peer_cluster_name }}"

      interface_name:             ic02

      role:                       intercluster

      address:                    <ip_address>

      netmask:                    <netmask_address>

      home_node:                  "{{ peer_cluster_name }}-01"

      home_port:                  e0c

      ipspace:                    Default

      use_rest:                   never
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2. 运行命令：

ansible-playbook -i inventory/hosts  site.yml -e

cluster_name=<Cluster_01> -e peer_cluster_name=<Cluster_02>

3. 登录到每个实例以检查是否已将这些RIF添加到集群：

显示示例

Cluster_01::> net int show

  (network interface show)

            Logical    Status     Network            Current

Current Is

Vserver     Interface  Admin/Oper Address/Mask       Node

Port    Home

----------- ---------- ---------- ------------------ -------------

------- ----

Cluster_01

            Cluster_01-01_mgmt up/up 10.0.0.101/24   Cluster_01-01

e0c     true

            Cluster_01-01_mgmt_auto up/up 10.101.101.101/24

Cluster_01-01 e0c true

            cluster_mgmt up/up    10.0.0.110/24      Cluster_01-01

e0c     true

5 entries were displayed.

输出显示已*未*添加Lifs。这是因为 ontap_interface`仍需要在文件中定义微服务 `services.yml。

4. 验证是否已将这些生命周期添加到此变量中 raw_service_request。
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显示示例

以下示例显示已将这些生命周期管理器添加到请求中：

           "ontap_interface": [

                {

                    "address": "10.0.0.101",

                    "home_node": "Cluster_01-01",

                    "home_port": "e0c",

                    "hostname": "Cluster_01",

                    "interface_name": "ic01",

                    "ipspace": "Default",

                    "netmask": "255.255.255.0",

                    "role": "intercluster",

                    "use_rest": "never",

                    "vserver": "Cluster_01"

                },

                {

                    "address": "10.0.0.101",

                    "home_node": "Cluster_01-01",

                    "home_port": "e0c",

                    "hostname": "Cluster_01",

                    "interface_name": "ic02",

                    "ipspace": "Default",

                    "netmask": "255.255.255.0",

                    "role": "intercluster",

                    "use_rest": "never",

                    "vserver": "Cluster_01"

                },

                {

                    "address": "10.0.0.101",

                    "home_node": "Cluster_02-01",

                    "home_port": "e0c",

                    "hostname": "Cluster_02",

                    "interface_name": "ic01",

                    "ipspace": "Default",

                    "netmask": "255.255.255.0",

                    "role": "intercluster",

                    "use_rest": "never",

                    "vserver": "Cluster_02"

                },

                {

                    "address": "10.0.0.126",

                    "home_node": "Cluster_02-01",

                    "home_port": "e0c",

                    "hostname": "Cluster_02",
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                    "interface_name": "ic02",

                    "ipspace": "Default",

                    "netmask": "255.255.255.0",

                    "role": "intercluster",

                    "use_rest": "never",

                    "vserver": "Cluster_02"

                }

            ],

5. 在文件中 services.yml`的下定义 `ontap_interface`微服务 `cluster_initial。

将以下行复制到文件中以定义微服务：

        - name: ontap_interface

          args: ontap_interface

          role: na/ontap_interface

6. ontap_interface`已在请求和文件中定义微服务 `services.yml、请再次运行请求：

ansible-playbook -i inventory/hosts  site.yml -e

cluster_name=<Cluster_01> -e peer_cluster_name=<Cluster_02>

7. 登录到每个ONTAP实例并验证是否已添加这些LUN。

第3步：(可选)配置多个集群

如果需要、您可以在同一请求中配置多个集群。定义请求时、必须为每个集群提供变量名称。

步骤

1. 在文件中为第二个集群添加一个条目 cluster_initial.yml、以便在同一请求中配置这两个集群。

以下示例将在添加第二个条目后显示 `ontap_aggr`字段。
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   ontap_aggr:

    - hostname:                   "{{ cluster_name }}"

      disk_count:                 24

      name:                       n01_aggr1

      nodes:                      "{{ cluster_name }}-01"

      raid_type:                  raid4

    - hostname:                   "{{ peer_cluster_name }}"

      disk_count:                 24

      name:                       n01_aggr1

      nodes:                      "{{ peer_cluster_name }}-01"

      raid_type:                  raid4

2. 将更改应用于下的所有其他项目 cluster_initial。

3. 通过将以下行复制到文件来向请求添加集群对等关系：

    ontap_cluster_peer:

    - hostname:                   "{{ cluster_name }}"

      dest_cluster_name:          "{{ cluster_peer }}"

      dest_intercluster_lifs:     "{{ peer_lifs }}"

      source_cluster_name:        "{{ cluster_name }}"

      source_intercluster_lifs:   "{{ cluster_lifs }}"

      peer_options:

        hostname:                 "{{ cluster_peer }}"

4. 运行Ands处理 请求：

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01>

site.yml -e peer_cluster_name=<Cluster_02> -e

cluster_lifs=<cluster_lif_1_IP_address,cluster_lif_2_IP_address>

-e peer_lifs=<peer_lif_1_IP_address,peer_lif_2_IP_address>

第4步：初始SVM配置

在此过程的此阶段、您需要配置集群中的SVM。

步骤

1. 更新 `svm_initial`文件中的请求 `tutorial-requests.yml`以配置SVM和SVM对等关系。

您必须配置以下内容：

◦ SVM
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◦ SVM对等关系

◦ 每个SVM的SVM接口

2. 更新请求定义中的变量定义 svm_initial。您必须修改以下变量定义：

◦ cluster_name

◦ vserver_name

◦ peer_cluster_name

◦ peer_vserver

要更新定义，请删除 `svm_initial`定义后的*‘{}'* `req_details`并添加正确的定义。

3. 在文件夹中为服务请求创建一个文件 logic-tasks。例如，创建一个名为的文件 svm_initial.yml。

将以下行复制到文件：

- name: Validate required inputs

  ansible.builtin.assert:

    that:

    - service is defined

- name: Include data files

  ansible.builtin.include_vars:

    file:   "{{ data_file_name }}.yml"

  loop:

  - common-site-stds

  - user-inputs

  - cluster-platform-stds

  - vserver-common-stds

  loop_control:

    loop_var:    data_file_name

- name: Initial SVM configuration

  set_fact:

    raw_service_request:

4. 定义 `raw_service_request`变量。

您可以使用以下选项之一为文件夹中 logic-tasks`的定义 `raw_service_request`变量

`svm_initial：

◦ 选项1:手动定义 `raw_service_request`变量。

使用编辑器打开 tutorial-requests.yml`文件、并将内容从第179行复制到第222行。将内容粘贴
到新文件中的变量 `svm_initial.yml`下 `raw service request、如以下示例所示：
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显示示例

示例 `svm_initial.yml`文件：

- name: Validate required inputs

  ansible.builtin.assert:

    that:

    - service is defined

- name: Include data files

  ansible.builtin.include_vars:

    file:   "{{ data_file_name }}.yml"

  loop:

  - common-site-stds

  - user-inputs

  - cluster-platform-stds

  - vserver-common-stds

  loop_control:

    loop_var:    data_file_name

- name: Initial SVM configuration

  set_fact:

    raw_service_request:

     service:          svm_initial

     operation:        create

     std_name:         none

     req_details:

      ontap_vserver:

      - hostname:                   "{{ cluster_name }}"

        name:                       "{{ vserver_name }}"

        root_volume_aggregate:      n01_aggr1

      - hostname:                   "{{ peer_cluster_name }}"

       name:                       "{{ peer_vserver }}"

       root_volume_aggregate:      n01_aggr1

      ontap_vserver_peer:

      - hostname:                   "{{ cluster_name }}"

        vserver:                    "{{ vserver_name }}"

        peer_vserver:               "{{ peer_vserver }}"

        applications:               snapmirror

        peer_options:

          hostname:                 "{{ peer_cluster_name }}"

      ontap_interface:
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      - hostname:                   "{{ cluster_name }}"

        vserver:                    "{{ vserver_name }}"

        interface_name:             data01

        role:                       data

        address:                    10.0.0.200

        netmask:                    255.255.255.0

        home_node:                  "{{ cluster_name }}-01"

        home_port:                  e0c

        ipspace:                    Default

        use_rest:                   never

      - hostname:                   "{{ peer_cluster_name }}"

        vserver:                    "{{ peer_vserver }}"

        interface_name:             data01

        role:                       data

        address:                    10.0.0.201

        netmask:                    255.255.255.0

        home_node:                  "{{ peer_cluster_name }}-01"

        home_port:                  e0c

        ipspace:                    Default

        use_rest:                   never

◦ 选项2:使用Jinja模板定义请求:

您也可以使用以下Jinja模板格式获取该 `raw_service_request`值。

raw_service_request: "{{ svm_initial }}"

5. 运行请求：

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01> -e

peer_cluster_name=<Cluster_02> -e peer_vserver=<SVM_02>  -e

vserver_name=<SVM_01> site.yml

6. 登录到每个ONTAP实例并验证配置。

7. 添加SVM接口。

在文件中 services.yml`的下定义 `ontap_interface`服务 `svm_initial、然后再次运行请求：

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01> -e

peer_cluster_name=<Cluster_02> -e peer_vserver=<SVM_02>  -e

vserver_name=<SVM_01> site.yml
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8. 登录到每个ONTAP实例并验证是否已配置SVM接口。

第5步：(可选)动态定义服务请求

在前面的步骤中、 `raw_service_request`变量是硬编码的。这对于学习、开发和测试非常有用。您还可以动态
生成服务请求。

如果您不想将所需的与更高级别的系统集成、则下一节提供了一个动态生成所需的选项
raw_service_request。

• 如果 logic_operation`未在命令中定义变量、则该 `logic.yml`文件不会从文件夹导
入任何文件 `logic-tasks。这意味着 `raw_service_request`必须在Ands还是 外部定义、
并在执行时提供给框架。

• 文件夹中的任务文件名 logic-tasks`必须与不带.yml扩展名的变量值匹配
`logic_operation。

• 文件夹中的任务文件 logic-tasks`会动态定义 `raw_service_request。唯一的要求
是将有效定义为相关文件中的最后一个任务。 raw_service_request

如何动态定义服务请求

可以通过多种方法应用逻辑任务来动态定义服务请求。下面列出了其中一些选项：

• 使用文件夹中的一个Ans｝任务文件 logic-tasks

• 调用返回适合转换为变量的数据的自定义角色 raw_service_request。

• 调用Ands得以 环境外部的另一个工具以提供所需数据。例如、对Active IQ Unified Manager的REST API调
用。

以下示例命令使用文件为每个集群动态定义服务请求 tutorial-requests.yml：

ansible-playbook -i inventory/hosts -e cluster2provision=Cluster_01

-e logic_operation=tutorial-requests site.yml

ansible-playbook -i inventory/hosts -e cluster2provision=Cluster_02

-e logic_operation=tutorial-requests site.yml

第6步：部署ONTAP Day 1解决方案

在此阶段、您应已完成以下操作：

• 已根据您的要求查看和修改中的所有文件 playbooks/inventory/group_vars/all。每个文件中都有
详细的注释、以帮助您进行更改。

• 已将任何所需的任务文件添加到 `logic-tasks`目录。

• 已将任何所需的数据文件添加到 `playbook/vars`目录。

使用以下命令部署ONTAP Day 1解决方案并验证部署的运行状况：
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在此阶段、您应已解密并修改 `vault.yml`文件、并且必须使用新密码对其进行加密。

• 运行ONTAP Day 0服务：

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_day_0 -e service=cluster_day_0 -vvvv --ask-vault

-pass <your_vault_password>

• 运行ONTAP Day 1服务：

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_day_1 -e service=cluster_day_0 -vvvv --ask-vault

-pass <your_vault_password>

• 应用集群范围设置：

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_wide_settings -e service=cluster_wide_settings

-vvvv --ask-vault-pass <your_vault_password>

• 运行运行状况检查：

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=health_checks -e service=health_checks -e

enable_health_reports=true -vvvv --ask-vault-pass <your_vault_password>

定制ONTAP Day 1解决方案

要根据您的需求自定义ONTAP Day 1解决方案、您可以添加或更改Ands还是 角色。

角色表示在Andsent框架内的微服务。每个微服务执行一个操作。例如、ONTAP Day 0是包含多个微服务的服
务。

添加Ands处理 角色

您可以添加Ans可 通过角色为您的环境自定义解决方案。所需角色由在Ands还是 在框架中定义的服务定义来定
义。

角色必须满足以下要求才能用作微服务：

• 接受变量中的参数列表 args。

• 对于每个块、使用具有特定要求的"Andsing"结构。
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• 使用单个Ans还是 模块并在块中定义单个任务。

• 根据本节详细介绍的要求实施每个可用的模块参数。

所需的微服务结构

每个角色都必须支持以下变量：

• mode：如果将模式设置为角色，则 `test`尝试导入显示该角色所执行的 `test.yml`操作而不实际执行该角色。

由于某些相互依赖关系、并非总是可以实现这一点。

• status：执行手册的整体状态。如果未将此值设置为 success、则不会执行此角色。

• args：具有与角色参数名称匹配的关键字的角色专用词典列表。

• global_log_messages：在执行播放手册期间收集日志消息。每次执行角色时都会生成一个条目。

• log_name：用于引用条目中的角色的名称 global_log_messages。

• task_descr：有关该角色的作用的简要说明。

• service_start_time：用于跟踪每个角色执行时间的时间戳。

• playbook_status：Ans负责人 的状态。

• role_result：包含角色输出并包含在条目中的每条消息中的变量 global_log_messages。

示例角色结构

以下示例提供了实施微服务的角色的基本结构。您必须更改此示例中适用于您的配置的变量。
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显示示例

基本角色结构：

- name:  Set some role attributes

  set_fact:

    log_name:     "<LOG_NAME>"

    task_descr:   "<TASK_DESCRIPTION>"

-  name: "{{ log_name }}"

   block:

      -  set_fact:

            service_start_time: "{{ lookup('pipe', 'date

+%Y%m%d%H%M%S') }}"

      -  name: "Provision the new user"

         <MODULE_NAME>:

 

#-------------------------------------------------------------

            # COMMON ATTRIBUTES

 

#-------------------------------------------------------------

            hostname:            "{{

clusters[loop_arg['hostname']]['mgmt_ip'] }}"

            username:            "{{

clusters[loop_arg['hostname']]['username'] }}"

            password:            "{{

clusters[loop_arg['hostname']]['password'] }}"

            cert_filepath:       "{{ loop_arg['cert_filepath']

| default(omit) }}"

            feature_flags:       "{{ loop_arg['feature_flags']

| default(omit) }}"

            http_port:           "{{ loop_arg['http_port']

| default(omit) }}"

            https:               "{{ loop_arg['https']

| default('true') }}"

            ontapi:              "{{ loop_arg['ontapi']

| default(omit) }}"

            key_filepath:        "{{ loop_arg['key_filepath']

| default(omit) }}"

            use_rest:            "{{ loop_arg['use_rest']

| default(omit) }}"

            validate_certs:      "{{ loop_arg['validate_certs']

| default('false') }}"
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            <MODULE_SPECIFIC_PARAMETERS>

 

#-------------------------------------------------------------

            # REQUIRED ATTRIBUTES

 

#-------------------------------------------------------------

            required_parameter:     "{{ loop_arg['required_parameter']

}}"

 

#-------------------------------------------------------------

            # ATTRIBUTES w/ DEFAULTS

 

#-------------------------------------------------------------

            defaulted_parameter:    "{{ loop_arg['defaulted_parameter']

| default('default_value') }}"

 

#-------------------------------------------------------------

            # OPTIONAL ATTRIBUTES

 

#-------------------------------------------------------------

            optional_parameter:     "{{ loop_arg['optional_parameter']

| default(omit) }}"

         loop:    "{{ args }}"

         loop_control:

            loop_var:   loop_arg

         register:   role_result

   rescue:

      -  name: Set role status to FAIL

         set_fact:

            playbook_status:   "failed"

   always:

      -  name: add log msg

         vars:

            role_log:

               role: "{{ log_name }}"

               timestamp:

                  start_time: "{{service_start_time}}"

                  end_time: "{{ lookup('pipe', 'date +%Y-%m-

%d@%H:%M:%S') }}"

               service_status: "{{ playbook_status }}"

               result: "{{role_result}}"

         set_fact:

            global_log_msgs:   "{{ global_log_msgs + [ role_log ] }}"
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示例角色中使用的变量：

• <NAME>：必须为每个微服务提供的可替换值。

• <LOG_NAME>：用于日志记录的角色的简称。例如， ONTAP_VOLUME。

• <TASK_DESCRIPTION>：微服务功能的简要说明。

• <MODULE_NAME>：任务的Ans担负 模块名称。

顶级 execute.yml`操作手册用于指定 `netapp.ontap`集合。如果模块是集合的一部分
`netapp.ontap，则无需完全指定模块名称。

• <MODULE_SPECIFIC_PARAMETERS>:特定于用于实施微服务的模块的Ans得 模块参数。以下列表介绍了参
数的类型以及应如何对其进行分组。

◦ 必需参数：所有必需参数均指定、无默认值。

◦ 具有特定于微服务的默认值的参数(与模块文档指定的默认值不同)。

◦ 所有剩余参数均 `default(omit)`用作默认值。

使用多层词典作为模块参数

某些NetApp提供的Ans典 模块使用多级别词典作为模块参数(例如、固定和自适应QoS策略组)。

如果使用这些词典、则单独使用 `default(omit)`不起作用、尤其是当有多个词典且它们互斥时。

如果您需要使用多级别词典作为模块参数、则应将此功能拆分为多个微服务(角色)、以确保每个微服务都能为相
关词典至少提供一个二级词典值。

以下示例显示了固定和自适应QoS策略组、它们分别分布在两个微服务中。

第一个微服务包含固定的QoS策略组值：

fixed_qos_options:

  capacity_shared:           "{{

loop_arg['fixed_qos_options']['capacity_shared']         | default(omit)

}}"

  max_throughput_iops:       "{{

loop_arg['fixed_qos_options']['max_throughput_iops']     | default(omit)

}}"

  min_throughput_iops:       "{{

loop_arg['fixed_qos_options']['min_throughput_iops']     | default(omit)

}}"

  max_throughput_mbps:       "{{

loop_arg['fixed_qos_options']['max_throughput_mbps']     | default(omit)

}}"

  min_throughput_mbps:       "{{

loop_arg['fixed_qos_options']['min_throughput_mbps']     | default(omit)

}}"
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第二个微服务包含自适应QoS策略组值：

adaptive_qos_options:

  absolute_min_iops:         "{{

loop_arg['adaptive_qos_options']['absolute_min_iops'] | default(omit) }}"

  expected_iops:             "{{

loop_arg['adaptive_qos_options']['expected_iops']     | default(omit) }}"

  peak_iops:                 "{{

loop_arg['adaptive_qos_options']['peak_iops']         | default(omit) }}"
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