
NetApp的矢量数据库解决方案
NetApp artificial intelligence solutions
NetApp
February 12, 2026

This PDF was generated from https://docs.netapp.com/zh-cn/netapp-solutions-ai/vector-db/ai-vdb-
solution-with-netapp.html on February 12, 2026. Always check docs.netapp.com for the latest.

目录

NetApp的矢量数据库解决方案 . 1

NetApp的矢量数据库解决方案 . 1

简介 . 2

简介 . 2

解决方案概述 . 2

解决方案概述 . 2

矢量数据库 . 3

矢量数据库 . 3

技术要求 . 5

技术要求. 5

硬件要求. 6

软件要求. 6

部署流程 . 6

部署过程. 6

解决方案验证 . 8

解决方案概述 . 8

在本地使用 Kubernetes 设置 Milvus 集群 . 8

Milvus 与Amazon FSx ONTAP for NetApp ONTAP - 文件和对象二元性 . 15

使用SnapCenter进行矢量数据库保护 . 22

使用NetApp SnapMirror进行灾难恢复 . 32

矢量数据库性能验证. 33

使用 PostgreSQL 的 Instaclustr 矢量数据库：pgvector . 42

使用 PostgreSQL 的 Instaclustr 矢量数据库：pgvector . 42

矢量数据库用例 . 42

矢量数据库用例 . 42

结束语. 44

结束语 . 45

附录 A：Values.yaml . 45

附录 A：Values.yaml . 46

附录 B：prepare_data_netapp_new.py . 66

附录 B：prepare_data_netapp_new.py . 67

附录C：verify_data_netapp.py . 70

附录C：verify_data_netapp.py . 70

附录 D：docker-compose.yml . 74

附录 D：docker-compose.yml . 74

NetApp的矢量数据库解决方案

NetApp的矢量数据库解决方案

Karthikeyan Nagalingam 和 Rodrigo Nascimento， NetApp

本文档深入探讨了使用 NetApp 存储解决方案部署和管理矢量数据库（例如 Milvus 和开源
PostgreSQL 扩展 pgvecto）的方法。它详细介绍了使用NetApp ONTAP和StorageGRID对
象存储的基础设施指南，并验证了 Milvus 数据库在 AWS FSx ONTAP中的应用。该文档阐
明了 NetApp 的文件对象二元性及其对支持矢量嵌入的矢量数据库和应用程序的实用性。
它强调了 NetApp 企业管理产品SnapCenter的功能，为矢量数据库提供备份和恢复功能，
确保数据的完整性和可用性。该文档进一步深入探讨了 NetApp 的混合云解决方案，讨论
了其在本地和云环境中的数据复制和保护中的作用。它包括对NetApp ONTAP上矢量数据
库性能验证的见解，并总结了生成 AI 的两个实际用例：带有 LLM 的 RAG 和 NetApp 的内
部 ChatAI。本文档是利用 NetApp 存储解决方案管理矢量数据库的综合指南。

参考架构重点关注以下内容：

1. "简介"

2. "解决方案概述"

3. "矢量数据库"

4. "技术要求"

5. "部署流程"

6. "解决方案验证概述"

◦ "在本地使用 Kubernetes 设置 Milvus 集群"

◦ Milvus 与Amazon FSx FSx ONTAP for NetApp ONTAP –ONTAP和对象二元NetApp

◦ "使用NetApp SnapCenter进行矢量数据库保护。"

◦ "使用NetApp SnapMirror进行灾难恢复"

◦ "性能验证"

7. "使用 PostgreSQL 的 Instaclustr 矢量数据库：pgvector"

8. "矢量数据库用例"

9. "结束语"

10. "附录 A：values.yaml"

11. "附录 B：prepare_data_netapp_new.py"

12. "附录C：verify_data_netapp.py"

13. "附录 D：docker-compose.yml"

1

简介

本节介绍NetApp的矢量数据库解决方案。

简介

向量数据库有效地解决了旨在处理大型语言模型 (LLM) 和生成人工智能 (AI) 中的语义搜索复杂性的挑战。与传
统的数据管理系统不同，矢量数据库能够使用数据本身的内容而不是标签或标记来处理和搜索各种类型的数据，
包括图像、视频、文本、音频和其他形式的非结构化数据。

关系数据库管理系统 (RDBMS) 的局限性是有据可查的，尤其是它们在处理人工智能应用中常见的高维数据表示
和非结构化数据时遇到的困难。 RDBMS 通常需要将数据扁平化为更易于管理的结构，这一过程既耗时又容易
出错，从而导致搜索延迟和效率低下。矢量数据库的出现解决了这些问题，为复杂高维数据的管理和搜索提供了
更高效、更准确的解决方案，从而促进了人工智能应用的发展。

本文档为当前正在使用或计划使用向量数据库的客户提供全面的指南，详细介绍了在NetApp ONTAP、 NetApp

StorageGRID、 Amazon FSx ONTAP for NetApp ONTAP和SnapCenter等平台上使用向量数据库的最佳实践。
本文提供的内容涵盖了一系列主题：

• NetApp存储通过NetApp ONTAP和StorageGRID对象存储为 Milvus 等矢量数据库提供基础设施指南。

• 通过文件和对象存储验证 AWS FSx ONTAP中的 Milvus 数据库。

• 深入研究 NetApp 的文件对象二元性，展示其对矢量数据库以及其他应用程序中的数据的实用性。

• NetApp 的数据保护管理产品SnapCenter如何为矢量数据库数据提供备份和恢复功能。

• NetApp 的混合云如何在本地和云环境中提供数据复制和保护。

• 提供有关NetApp ONTAP上 Milvus 和 pgvector 等矢量数据库的性能验证的见解。

• 两个具体的用例：具有大型语言模型 (LLM) 的检索增强生成 (RAG) 和NetApp IT 团队的 ChatAI，从而提供
所概述的概念和实践的实际示例。

解决方案概述

本节概述了NetApp矢量数据库解决方案。

解决方案概述

该解决方案展示了NetApp为应对矢量数据库客户面临的挑战所提供的独特优势和功能。通过利用NetApp

ONTAP、 StorageGRID、NetApp 的云解决方案和SnapCenter，客户可以为其业务运营增加显著的价值。这些
工具不仅解决了现有的问题，还提高了效率和生产力，从而促进了整体业务增长。

为什么选择NetApp？

• NetApp 的产品（例如ONTAP和StorageGRID）允许分离存储和计算，从而能够根据特定需求实现最佳资源
利用率。这种灵活性使客户能够使用NetApp存储解决方案独立扩展其存储。

• 通过利用 NetApp 的存储控制器，客户可以使用 NFS 和 S3 协议高效地向其矢量数据库提供数据。这些协议
方便了客户数据存储和管理矢量数据库索引，从而无需通过文件和对象方法访问多个数据副本。

• NetApp ONTAP为 AWS、Azure 和 Google Cloud 等领先的云服务提供商提供对 NAS 和对象存储的原生支
持。这种广泛的兼容性确保了无缝集成，实现了客户数据移动性、全球可访问性、灾难恢复、动态可扩展性

2

和高性能。

• 借助 NetApp 强大的数据管理功能，客户可以放心，因为他们的数据受到良好的保护，不会受到潜在风险和
威胁。 NetApp优先考虑数据安全，让客户对其宝贵信息的安全性和完整性感到放心。

矢量数据库

本节介绍NetApp AI 解决方案中向量数据库的定义和使用。

矢量数据库

矢量数据库是一种特殊类型的数据库，旨在使用机器学习模型的嵌入来处理、索引和搜索非结构化数据。它不以
传统的表格格式组织数据，而是将数据排列为高维向量，也称为向量嵌入。这种独特的结构使得数据库能够更高
效、更准确地处理复杂、多维的数据。

矢量数据库的关键功能之一是使用生成式人工智能进行分析。这包括相似性搜索，其中数据库识别类似于给定输
入的数据点，以及异常检测，其中它可以发现与常态有显著偏差的数据点。

此外，矢量数据库非常适合处理时间数据或带时间戳的数据。这种类型的数据提供了有关“发生了什么”以及何时
发生的信息，按顺序以及与给定 IT 系统中所有其他事件的关系。这种处理和分析时间数据的能力使得矢量数据
库对于需要了解随时间推移的事件的应用程序特别有用。

矢量数据库对于ML和AI的优势：

• 高维搜索：向量数据库擅长管理和检索高维数据，这些数据通常在 AI 和 ML 应用程序中生成。

• 可扩展性：它们可以有效扩展以处理大量数据，支持 AI 和 ML 项目的增长和扩展。

• 灵活性：矢量数据库具有高度的灵活性，可以适应多种数据类型和结构。

• 性能：它们提供高性能数据管理和检索，这对于 AI 和 ML 操作的速度和效率至关重要。

• 可定制的索引：矢量数据库提供可定制的索引选项，从而能够根据特定需求优化数据组织和检索。

矢量数据库和用例。

本节提供各种矢量数据库及其用例详细信息。

Faiss和ScaNN

它们是向量搜索领域中的重要工具库。这些库提供的功能有助于管理和搜索矢量数据，使其成为数据管理这一专
业领域的宝贵资源。

Elasticsearch

它是一种广泛使用的搜索和分析引擎，最近加入了矢量搜索功能。此新功能增强了其功能，使其能够更有效地处
理和搜索矢量数据。

松果

它是一个具有一组独特功能的强大矢量数据库。它的索引功能同时支持密集和稀疏向量，从而增强了其灵活性和
适应性。它的主要优势之一在于能够将传统搜索方法与基于人工智能的密集矢量搜索相结合，从而创造出一种兼
具两全其美的混合搜索方法。

3

Pinecone 主要基于云，专为机器学习应用而设计，可与各种平台良好集成，包括 GCP、AWS、Open AI

、GPT-3、GPT-3.5、GPT-4、Catgut Plus、Elasticsearch、Haystack 等。值得注意的是，Pinecone 是一个闭
源平台，可作为软件即服务 (SaaS) 产品使用。

鉴于其先进的功能，Pinecone 特别适合网络安全行业，其高维搜索和混合搜索功能可以有效地利用来检测和应
对威胁。

色度

它是一个矢量数据库，具有包含四个主要功能的核心 API，其中一个功能包括内存文档矢量存储。它还利用
Face Transformers 库来矢量化文档，增强其功能和多功能性。 Chroma 的设计可在云端和本地运行，可根据用
户需求提供灵活性。特别是在音频相关应用方面表现出色，使其成为基于音频的搜索引擎、音乐推荐系统和其他
音频相关用例的绝佳选择。

威维特

它是一个多功能矢量数据库，允许用户使用其内置模块或自定义模块矢量化其内容，根据特定需求提供灵活性。
它提供完全托管和自托管解决方案，满足各种部署偏好。

Weaviate 的主要功能之一是它能够同时存储矢量和对象，从而增强其数据处理能力。它广泛应用于一系列应用
，包括 ERP 系统中的语义搜索和数据分类。在电子商务领域，它为搜索和推荐引擎提供支持。 Weaviate 还用
于图像搜索、异常检测、自动数据协调和网络安全威胁分析，展示了其在多个领域的多功能性。

Redis

Redis 是一种高性能矢量数据库，以其快速的内存存储而闻名，可为读写操作提供低延迟。这使其成为需要快速
数据访问的推荐系统、搜索引擎和数据分析应用程序的绝佳选择。

Redis 支持向量的各种数据结构，包括列表、集合和有序集。它还提供矢量运算，例如计算矢量之间的距离或查
找交集和并集。这些功能对于相似性搜索、聚类和基于内容的推荐系统特别有用。

在可扩展性和可用性方面，Redis 擅长处理高吞吐量工作负载并提供数据复制。它还可以与其他数据类型很好地
集成，包括传统的关系数据库（RDBMS）。 Redis 包含一个用于实时更新的发布/订阅（Pub/Sub）功能，这有
利于管理实时向量。此外，Redis 轻量级且易于使用，使其成为管理矢量数据的用户友好型解决方案。

Milvus

它是一个多功能的矢量数据库，提供类似文档存储的 API，非常类似于 MongoDB。它因支持多种数据类型而脱
颖而出，成为数据科学和机器学习领域的热门选择。

Milvus 的独特功能之一是其多矢量化功能，它允许用户在运行时指定用于搜索的矢量类型。此外，它利用
Knowwhere（一个位于 Faiss 等其他库之上的库）来管理查询和向量搜索算法之间的通信。

由于与 PyTorch 和 TensorFlow 兼容，Milvus 还提供与机器学习工作流程的无缝集成。这使其成为一系列应用的
绝佳工具，包括电子商务、图像和视频分析、对象识别、图像相似性搜索和基于内容的图像检索。在自然语言处
理领域，Milvus 用于文档聚类、语义搜索和问答系统。

对于这个解决方案，我们选择了 milvus 进行解决方案验证。为了提高性能，我们同时使用了 milvus 和 postgres

（pgvecto.rs）。

为什么我们选择 milvus 作为这个解决方案？

• 开源：Milvus 是一个开源矢量数据库，鼓励社区驱动的开发和改进。

4

• AI 集成：它利用嵌入相似性搜索和 AI 应用程序来增强矢量数据库功能。

• 大容量处理：Milvus 有能力存储、索引和管理由深度神经网络 (DNN) 和机器学习 (ML) 模型生成的超过十亿
个嵌入向量。

• 用户友好：易于使用，设置只需不到一分钟。 Milvus 还为不同的编程语言提供 SDK。

• 速度：它提供极快的检索速度，比一些替代方案快 10 倍。

• 可扩展性和可用性：Milvus 具有高度可扩展性，可以根据需要进行扩展和缩小。

• 功能丰富：它支持不同的数据类型、属性过滤、用户定义函数 (UDF) 支持、可配置的一致性级别和旅行时间
，使其成为各种应用的多功能工具。

Milvus 架构概述

本节提供 Milvus 架构中使用的更高级别的组件和服务。 * 访问层——由一组无状态代理组成，作为系统的前端
层和用户的端点。 * 协调器服务——它将任务分配给工作节点并充当系统的大脑。它有三种协调器类型：根协调
器、数据协调器和查询协调器。 * 工作节点：它遵循协调服务的指令并执行用户触发的DML / DDL命令。它有三
种类型的工作节点，例如查询节点，数据节点和索引节点。 * 存储：负责数据持久化。它包括元存储、日志代理
和对象存储。 NetApp存储（例如ONTAP和StorageGRID）为 Milvus 提供对象存储和基于文件的存储，用于客
户数据和矢量数据库数据。

技术要求

本节概述了NetApp矢量数据库解决方案的要求。

技术要求

除性能外，下面概述的硬件和软件配置用于本文档中执行的大部分验证。这些配置可作为帮助您设置环境的指

5

南。但请注意，具体组件可能会因个别客户的要求而有所不同。

硬件要求

硬件 详细信息

NetApp AFF存储阵列 HA 对 * A800 * ONTAP 9.14.1 * 48 x 3.49TB SSD-NVM * 两
个灵活组卷：元数据和数据。 * 元数据 NFS 卷有 12

个持久卷，每个卷为 250GB。 * 数据是ONTAP NAS

S3 卷

6台富士通PRIMERGY RX2540 M4 * 64 个 CPU * Intel® Xeon® Gold 6142 CPU @

2.60GHz * 256 GM 物理内存 * 1 x 100GbE 网络端口

网络连接 100 GbE

StorageGRID * 1 x SG100，3xSGF6024 * 3 x 24 x 7.68TB

软件要求

软件 详细信息

Milvus 集群 * 图表 - milvus-4.1.11。 * APP 版本 – 2.3.4 * 依赖的
bundles，例如 bookkeeper、zookeeper、pulsar

、etcd、proxy、querynode、worker

Kubernetes * 5 节点 K8s 集群 * 1 个主节点和 4 个工作节点 * 版本
– 1.7.2

Python *3.10.12.

部署流程

本节讨论NetApp矢量数据库解决方案的部署过程。

部署过程

在本部署部分中，我们使用 milvus 矢量数据库和 Kubernetes 进行如下实验设置。

6

NetApp 存储为集群提供存储，以保存客户数据和 Milvus 集群数据。

NetApp存储设置 – ONTAP

• 存储系统初始化

• 存储虚拟机 (SVM) 创建

• 逻辑网络接口的分配

• NFS、S3 配置和许可

对于 NFS（网络文件系统），请按照以下步骤操作：

1. 为 NFSv4 创建FlexGroup卷。在我们为此次验证所做的设置中，我们使用了 48 个 SSD，其中 1 个 SSD 专
用于控制器的根卷，另外 47 个 SSD 分布用于 NFSv4]].验证FlexGroup卷的 NFS 导出策略是否对
Kubernetes（K8s）节点网络具有读/写权限。如果没有这些权限，请授予 K8s 节点网络的读/写 (rw) 权限。

2. 在所有 K8s 节点上，创建一个文件夹，并通过每个 K8s 节点上的逻辑接口 (LIF) 将FlexGroup卷挂载到该文
件夹上。

对于 NAS S3（网络附加存储简单存储服务），请按照以下步骤操作：

1. 为 NFS 创建FlexGroup卷。

7

2. 使用“vserver object-store-server create”命令设置一个启用 HTTP 的对象存储服务器，并将管理状态设置
为“up”。您可以选择启用 HTTPS 并设置自定义侦听器端口。

3. 使用“vserver object-store-server user create -user <username>”命令创建 object-store-server 用户。

4. 要获取访问密钥和密钥，可以运行以下命令：“set diag; vserver object-store-server user show -user

<username>”。但是，今后这些密钥将在用户创建过程中提供，或者可以使用 REST API 调用来检索。

5. 使用步骤 2 中创建的用户建立对象存储服务器组并授予访问权限。在这个例子中，我们提供了
“FullAccess”。

6. 通过将其类型设置为“nas”并提供 NFSv3 卷的路径来创建 NAS 存储桶。也可以利用 S3 存储桶来实现此目
的。

NetApp存储设置 – StorageGRID

1. 安装 storageGRID 软件。

2. 创建租户和存储桶。

3. 创建具有所需权限的用户。

请查看更多详细信息 https://docs.netapp.com/us-en/storagegrid-116/primer/index.html

解决方案验证

解决方案概述

我们针对五个关键领域进行了全面的解决方案验证，具体细节概述如下。每个部分都深入
探讨了客户面临的挑战、 NetApp提供的解决方案以及随后给客户带来的好处。

1. "在本地使用 Kubernetes 设置 Milvus 集群"客户面临的挑战是独立扩展存储和计算、有效的基础设施管理和
数据管理。在本节中，我们详细介绍了在 Kubernetes 上安装 Milvus 集群的过程，并利用NetApp存储控制
器存储集群数据和客户数据。

2. milvus 与 Amazon FSx ONTAP for NetApp ONTAP – 文件和对象二元性 在本节中，我们将介绍为什
么ONTAP在云中部署矢量数据库，以及在NetApp Amazon FSxAmazon FSxONTAPNetAppONTAP（milvus

独立版）的步骤。

3. "使用NetApp SnapCenter进行矢量数据库保护。"在本节中，我们将深入探讨SnapCenter如何保护驻留
在ONTAP中的矢量数据库数据和 Milvus 数据。在此示例中，我们利用源自 NFS ONTAP卷（vol1）的 NAS

存储桶（milvusdbvol1）来存储客户数据，并使用单独的 NFS 卷（vectordbpv）来存储 Milvus 集群配置数
据。

4. "使用NetApp SnapMirror进行灾难恢复"在本节中，我们讨论灾难恢复（DR）对于矢量数据库的重要性以
及NetApp灾难恢复产品SnapMirror如何为矢量数据库提供DR解决方案。

5. "性能验证"在本节中，我们旨在深入研究矢量数据库（例如 Milvus 和 pgvecto.rs）的性能验证，重点关注它
们的存储性能特征，例如 I/O 配置文件和 NetApp 存储控制器在 LLM 生命周期内支持 RAG 和推理工作负载
的行为。当这些数据库与ONTAP存储解决方案结合时，我们将评估并识别任何性能差异因素。我们的分析将
基于关键性能指标，例如每秒处理的查询数（QPS）。

在本地使用 Kubernetes 设置 Milvus 集群

本节讨论针对NetApp矢量数据库解决方案的 milvus 集群设置。

8

https://docs.netapp.com/us-en/storagegrid-116/primer/index.html

在本地使用 Kubernetes 设置 Milvus 集群

客户面临的挑战是在存储和计算上独立扩展、有效的基础设施管理和数据管理，Kubernetes 和矢量数据库共同
构成了管理大数据操作的强大、可扩展的解决方案。 Kubernetes 优化资源并管理容器，而矢量数据库则高效处
理高维数据和相似性搜索。这种组合能够快速处理大型数据集上的复杂查询，并随着数据量的增加而无缝扩展，
使其成为大数据应用程序和人工智能工作负载的理想选择。

1. 在本节中，我们详细介绍了在 Kubernetes 上安装 Milvus 集群的过程，并利用NetApp存储控制器存储集群
数据和客户数据。

2. 要安装 Milvus 集群，需要持久卷 (PV) 来存储来自各个 Milvus 集群组件的数据。这些组件包括 etcd（三个
实例）、pulsar-bookie-journal（三个实例）、pulsar-bookie-ledgers（三个实例）和 pulsar-zookeeper-data

（三个实例）。

在 milvus 集群中，我们可以使用 pulsar 或者 kafka 作为支撑 Milvus 集群可靠存储以及消息
流发布/订阅的底层引擎。对于使用 NFS 的 Kafka， NetApp在ONTAP 9.12.1 及更高版本中
做出了改进，这些增强功能以及 RHEL 8.7 或 9.1 及更高版本中包含的 NFSv4.1 和 Linux 更
改解决了在 NFS 上运行 Kafka 时可能出现的“愚蠢重命名”问题。如果您对使用 NetApp NFS

解决方案运行 Kafka 主题的更多深入信息感兴趣，请查看 -"此链接" 。

3. 我们从NetApp ONTAP创建了一个 NFS 卷，并建立了 12 个持久卷，每个卷具有 250GB 的存储空间。存储
大小可能因集群大小而异；例如，我们有另一个集群，其中每个 PV 有 50GB。请参阅下面的 PV YAML 文
件之一以了解更多详细信息；我们总共有 12 个这样的文件。在每个文件中，storageClassName 设置
为“default”，并且存储和路径对于每个 PV 都是唯一的。

9

../data-analytics/kafka-nfs-introduction.html
../data-analytics/kafka-nfs-introduction.html
../data-analytics/kafka-nfs-introduction.html
../data-analytics/kafka-nfs-introduction.html
../data-analytics/kafka-nfs-introduction.html
../data-analytics/kafka-nfs-introduction.html
../data-analytics/kafka-nfs-introduction.html

root@node2:~# cat sai_nfs_to_default_pv1.yaml

apiVersion: v1

kind: PersistentVolume

metadata:

 name: karthik-pv1

spec:

 capacity:

 storage: 250Gi

 volumeMode: Filesystem

 accessModes:

 - ReadWriteOnce

 persistentVolumeReclaimPolicy: Retain

 storageClassName: default

 local:

 path: /vectordbsc/milvus/milvus1

 nodeAffinity:

 required:

 nodeSelectorTerms:

 - matchExpressions:

 - key: kubernetes.io/hostname

 operator: In

 values:

 - node2

 - node3

 - node4

 - node5

 - node6

root@node2:~#

4. 对每个 PV YAML 文件执行“kubectl apply”命令来创建持久卷，然后使用“kubectl get pv”验证其创建

10

root@node2:~# for i in $(seq 1 12); do kubectl apply -f

sai_nfs_to_default_pv$i.yaml; done

persistentvolume/karthik-pv1 created

persistentvolume/karthik-pv2 created

persistentvolume/karthik-pv3 created

persistentvolume/karthik-pv4 created

persistentvolume/karthik-pv5 created

persistentvolume/karthik-pv6 created

persistentvolume/karthik-pv7 created

persistentvolume/karthik-pv8 created

persistentvolume/karthik-pv9 created

persistentvolume/karthik-pv10 created

persistentvolume/karthik-pv11 created

persistentvolume/karthik-pv12 created

root@node2:~#

5. 为了存储客户数据，Milvus 支持对象存储解决方案，例如 MinIO、Azure Blob 和 S3。在本指南中，我们使
用 S3。以下步骤适用于ONTAP S3 和StorageGRID对象存储。我们使用 Helm 来部署 Milvus 集群。从
Milvus 下载位置下载配置文件 values.yaml。有关我们在本文档中使用的 values.yaml 文件，请参阅附录。

6. 确保每个部分中的“storageClass”设置为“default”，包括日志、etcd、zookeeper 和 bookkeeper。

7. 在 MinIO 部分，禁用 MinIO。

8. 从ONTAP或StorageGRID对象存储创建 NAS 存储桶，并使用对象存储凭据将其包含在外部 S3 中。

###################################

External S3

- these configs are only used when `externalS3.enabled` is true

###################################

externalS3:

 enabled: true

 host: "192.168.150.167"

 port: "80"

 accessKey: "24G4C1316APP2BIPDE5S"

 secretKey: "Zd28p43rgZaU44PX_ftT279z9nt4jBSro97j87Bx"

 useSSL: false

 bucketName: "milvusdbvol1"

 rootPath: ""

 useIAM: false

 cloudProvider: "aws"

 iamEndpoint: ""

 region: ""

 useVirtualHost: false

9. 在创建 Milvus 集群之前，请确保 PersistentVolumeClaim（PVC）没有任何预先存在的资源。

11

root@node2:~# kubectl get pvc

No resources found in default namespace.

root@node2:~#

10. 利用 Helm 和 values.yaml 配置文件安装并启动 Milvus 集群。

root@node2:~# helm upgrade --install my-release milvus/milvus --set

global.storageClass=default -f values.yaml

Release "my-release" does not exist. Installing it now.

NAME: my-release

LAST DEPLOYED: Thu Mar 14 15:00:07 2024

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

root@node2:~#

11. 验证 PersistentVolumeClaims (PVC) 的状态。

root@node2:~# kubectl get pvc

NAME STATUS

VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

data-my-release-etcd-0 Bound

karthik-pv8 250Gi RWO default 3s

data-my-release-etcd-1 Bound

karthik-pv5 250Gi RWO default 2s

data-my-release-etcd-2 Bound

karthik-pv4 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-0 Bound

karthik-pv10 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-1 Bound

karthik-pv3 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-2 Bound

karthik-pv1 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-0 Bound

karthik-pv2 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-1 Bound

karthik-pv9 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-2 Bound

karthik-pv11 250Gi RWO default 3s

my-release-pulsar-zookeeper-data-my-release-pulsar-zookeeper-0 Bound

karthik-pv7 250Gi RWO default 3s

root@node2:~#

12

12. 检查 pod 的状态。

root@node2:~# kubectl get pods -o wide

NAME READY STATUS

RESTARTS AGE IP NODE NOMINATED NODE

READINESS GATES

<content removed to save page space>

请确保 Pod 状态为“正在运行”且按预期工作

13. 测试在 Milvus 和NetApp对象存储中写入和读取数据。

◦ 使用“prepare_data_netapp_new.py”Python 程序写入数据。

root@node2:~# date;python3 prepare_data_netapp_new.py ;date

Thu Apr 4 04:15:35 PM UTC 2024

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_update2_sc exist in Milvus:

False

=== Drop collection - hello_milvus_ntapnew_update2_sc ===

=== Drop collection - hello_milvus_ntapnew_update2_sc2 ===

=== Create collection `hello_milvus_ntapnew_update2_sc` ===

=== Start inserting entities ===

Number of entities in hello_milvus_ntapnew_update2_sc: 3000

Thu Apr 4 04:18:01 PM UTC 2024

root@node2:~#

◦ 使用“verify_data_netapp.py”Python 文件读取数据。

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_update2_sc exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_ntapnew_update2_sc',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:

5>, 'is_primary': True, 'auto_id': False}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 16}}]}

Number of entities in Milvus: hello_milvus_ntapnew_update2_sc : 3000

=== Start Creating index IVF_FLAT ===

13

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 2600, distance: 0.602496862411499, entity: {'random':

0.3098157043984633}, random field: 0.3098157043984633

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':

0.6331477114129169}, random field: 0.6331477114129169

hit: id: 2999, distance: 0.0, entity: {'random':

0.02316334456872482}, random field: 0.02316334456872482

hit: id: 2524, distance: 0.5918987989425659, entity: {'random':

0.285283165889066}, random field: 0.285283165889066

hit: id: 264, distance: 0.7254047393798828, entity: {'random':

0.3329096143562196}, random field: 0.3329096143562196

search latency = 0.4533s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514,

0.39746657, 0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446,

0.21096309, 0.52323616, 0.8035404, 0.77824664, 0.80369574, 0.4914803,

0.8265614, 0.6145269, 0.80234545], 'pk': 0}

search latency = 0.4476s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':

0.6331477114129169}, random field: 0.6331477114129169

hit: id: 678, distance: 0.7351570129394531, entity: {'random':

0.5195484662306603}, random field: 0.5195484662306603

hit: id: 2644, distance: 0.8620758056640625, entity: {'random':

0.9785952878381153}, random field: 0.9785952878381153

hit: id: 1960, distance: 0.9083120226860046, entity: {'random':

0.6376039340439571}, random field: 0.6376039340439571

hit: id: 106, distance: 0.9792704582214355, entity: {'random':

0.9679994241326673}, random field: 0.9679994241326673

search latency = 0.1232s

Does collection hello_milvus_ntapnew_update2_sc2 exist in Milvus:

True

{'auto_id': True, 'description': 'hello_milvus_ntapnew_update2_sc2',

14

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:

5>, 'is_primary': True, 'auto_id': True}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 16}}]}

基于以上验证，Kubernetes 与矢量数据库的集成，通过使用NetApp存储控制器在 Kubernetes 上部署
Milvus 集群，为客户提供了强大、可扩展且高效的大规模数据操作管理解决方案。此设置为客户提供了
处理高维数据和快速高效地执行复杂查询的能力，使其成为大数据应用和人工智能工作负载的理想解决
方案。对各种集群组件使用持久卷 (PV)，以及从NetApp ONTAP创建单个 NFS 卷，可确保最佳资源利
用率和数据管理。验证 PersistentVolumeClaims (PVC) 和 pod 的状态以及测试数据写入和读取的过程为
客户提供了可靠且一致的数据操作的保证。使用ONTAP或StorageGRID对象存储客户数据进一步增强了
数据的可访问性和安全性。总体而言，这种设置为客户提供了一种有弹性且高性能的数据管理解决方案
，可以随着客户不断增长的数据需求而无缝扩展。

Milvus 与Amazon FSx ONTAP for NetApp ONTAP - 文件和对象二元性

本节讨论使用Amazon FSx ONTAP为NetApp提供矢量数据库解决方案的 milvus 集群设
置。

Milvus 与Amazon FSx ONTAP for NetApp ONTAP – 文件和对象二元性

在本节中，我们将介绍为什么需要在云中部署矢量数据库，以及在 Docker 容器中的Amazon FSx ONTAP for

NetApp ONTAP中部署矢量数据库（milvus 独立版）的步骤。

在云中部署矢量数据库有几个显著的好处，特别是对于需要处理高维数据和执行相似性搜索的应用程序。首先，
基于云的部署提供了可扩展性，允许轻松调整资源以适应不断增长的数据量和查询负载。这确保数据库能够有效
地处理增加的需求，同时保持高性能。其次，云部署提供了高可用性和灾难恢复，因为数据可以在不同的地理位
置复制，最大限度地降低数据丢失的风险，并确保即使在意外事件期间也能持续提供服务。第三，它具有成本效
益，因为您只需为您使用的资源付费，并且可以根据需求扩大或缩小规模，从而无需在硬件上进行大量的前期投
资。最后，在云中部署矢量数据库可以增强协作，因为可以从任何地方访问和共享数据，从而促进基于团队的工
作和数据驱动的决策。请使用Amazon FSx ONTAP for NetApp ONTAP检查此验证中使用的 milvus 独立架构。

15

1. 为NetApp ONTAP实例创建Amazon FSx ONTAP ，并记下 VPC、VPC 安全组和子网的详细信息。创建
EC2 实例时需要此信息。您可以在此处找到更多详细信息 - https://us-east-1.console.aws.amazon.com/fsx/

home?region=us-east-1#file-system-create

2. 创建一个 EC2 实例，确保 VPC、安全组和子网与Amazon FSx ONTAP for NetApp ONTAP实例的 VPC、安
全组和子网匹配。

3. 使用命令“apt-get install nfs-common”安装 nfs-common，并使用“sudo apt-get update”更新包信息。

4. 创建一个挂载文件夹并在其上挂载适用于NetApp ONTAP 的Amazon FSx ONTAP 。

ubuntu@ip-172-31-29-98:~$ mkdir /home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ sudo mount 172.31.255.228:/vol1

/home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ df -h /home/ubuntu/milvusvectordb

Filesystem Size Used Avail Use% Mounted on

172.31.255.228:/vol1 973G 126G 848G 13% /home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$

5. 使用“apt-get install”安装 Docker 和 Docker Compose。

6. 根据 docker-compose.yaml 文件搭建 Milvus 集群，该文件可以从 Milvus 网站下载。

16

https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create
https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create

root@ip-172-31-22-245:~# wget https://github.com/milvus-

io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml

-O docker-compose.yml

--2024-04-01 14:52:23-- https://github.com/milvus-

io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml

<removed some output to save page space>

7. 在 docker-compose.yml 文件的“volumes”部分中，将NetApp NFS 挂载点映射到相应的 Milvus 容器路径，
具体在 etcd、minio 和 standalone 中。检查"附录 D：docker-compose.yml"有关 yml 更改的详细信息

8. 验证已安装的文件夹和文件。

ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh

/home/ubuntu/milvusvectordb

total 8.0K

-rw-r--r-- 1 root root 1.8K Apr 2 16:35 s3_access.py

drwxrwxrwx 2 root root 4.0K Apr 4 20:19 volumes

ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh

/home/ubuntu/milvusvectordb/volumes/

total 0

ubuntu@ip-172-31-29-98:~/milvusvectordb$ cd

ubuntu@ip-172-31-29-98:~$ ls

docker-compose.yml docker-compose.yml~ milvus.yaml milvusvectordb

vectordbvol1

ubuntu@ip-172-31-29-98:~$

9. 从包含 docker-compose.yml 文件的目录运行“docker-compose up -d”。

10. 检查 Milvus 容器的状态。

17

ai-vdb-docker-compose.html
ai-vdb-docker-compose.html
ai-vdb-docker-compose.html
ai-vdb-docker-compose.html
ai-vdb-docker-compose.html
ai-vdb-docker-compose.html
ai-vdb-docker-compose.html

ubuntu@ip-172-31-29-98:~$ sudo docker-compose ps

 Name Command State

Ports

--

--

milvus-etcd etcd -advertise-client-url ... Up (healthy)

2379/tcp, 2380/tcp

milvus-minio /usr/bin/docker-entrypoint ... Up (healthy)

0.0.0.0:9000->9000/tcp,:::9000->9000/tcp, 0.0.0.0:9001-

>9001/tcp,:::9001->9001/tcp

milvus-standalone /tini -- milvus run standalone Up (healthy)

0.0.0.0:19530->19530/tcp,:::19530->19530/tcp, 0.0.0.0:9091-

>9091/tcp,:::9091->9091/tcp

ubuntu@ip-172-31-29-98:~$

ubuntu@ip-172-31-29-98:~$ ls -ltrh /home/ubuntu/milvusvectordb/volumes/

total 12K

drwxr-xr-x 3 root root 4.0K Apr 4 20:21 etcd

drwxr-xr-x 4 root root 4.0K Apr 4 20:21 minio

drwxr-xr-x 5 root root 4.0K Apr 4 20:21 milvus

ubuntu@ip-172-31-29-98:~$

11. 为了验证Amazon FSx ONTAP for NetApp ONTAP中矢量数据库及其数据的读写功能，我们使用了 Python

Milvus SDK 和来自 PyMilvus 的示例程序。使用“apt-get install python3-numpy python3-pip”安装必要的软件
包，并使用“pip3 install pymilvus”安装 PyMilvus。

12. 验证向量数据库中Amazon FSx ONTAP for NetApp ONTAP的数据写入和读取操作。

root@ip-172-31-29-98:~/pymilvus/examples# python3

prepare_data_netapp_new.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_sc exist in Milvus: True

=== Drop collection - hello_milvus_ntapnew_sc ===

=== Drop collection - hello_milvus_ntapnew_sc2 ===

=== Create collection `hello_milvus_ntapnew_sc` ===

=== Start inserting entities ===

Number of entities in hello_milvus_ntapnew_sc: 9000

root@ip-172-31-29-98:~/pymilvus/examples# find

/home/ubuntu/milvusvectordb/

…

<removed content to save page space >

…

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

18

91411923/b3def25f-c117-4fba-8256-96cb7557cd6c

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/b3def25f-c117-4fba-8256-96cb7557cd6c/part.1

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0/448789845791

411924

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0/448789845791

411924/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1/448789845791

411925

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1/448789845791

411925/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100/4487898457

91411920

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100/4487898457

91411920/xl.meta

13. 使用verify_data_netapp.py脚本检查读取操作。

root@ip-172-31-29-98:~/pymilvus/examples# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_sc exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_ntapnew_sc', 'fields':

[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': False}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

19

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False}

Number of entities in Milvus: hello_milvus_ntapnew_sc : 9000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2248, distance: 0.0, entity: {'random': 0.2777646777746381},

random field: 0.2777646777746381

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':

0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':

0.6141351712303128}, random field: 0.6141351712303128

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},

random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':

0.8544487225667627}, random field: 0.8544487225667627

hit: id: 8562, distance: 0.07971227169036865, entity: {'random':

0.4464554280115878}, random field: 0.4464554280115878

search latency = 0.1266s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.3017092, 0.74452263,

0.8009826, 0.4927033, 0.12762444, 0.29869467, 0.52859956, 0.23734547],

'pk': 0}

search latency = 0.3294s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':

0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':

0.6141351712303128}, random field: 0.6141351712303128

hit: id: 515, distance: 0.09590047597885132, entity: {'random':

0.8013175797590888}, random field: 0.8013175797590888

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},

random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':

0.8544487225667627}, random field: 0.8544487225667627

hit: id: 1627, distance: 0.08096684515476227, entity: {'random':

20

0.9302397069516164}, random field: 0.9302397069516164

search latency = 0.2674s

Does collection hello_milvus_ntapnew_sc2 exist in Milvus: True

{'auto_id': True, 'description': 'hello_milvus_ntapnew_sc2', 'fields':

[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': True}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False}

14. 如果客户想要通过 S3 协议访问（读取）矢量数据库中测试的 NFS 数据以用于 AI 工作负载，则可以使用简
单的 Python 程序进行验证。一个例子可以是来自另一个应用程序的图像的相似性搜索，如本节开头的图片
中提到的那样。

root@ip-172-31-29-98:~/pymilvus/examples# sudo python3

/home/ubuntu/milvusvectordb/s3_access.py -i 172.31.255.228 --bucket

milvusnasvol --access-key PY6UF318996I86NBYNDD --secret-key

hoPctr9aD88c1j0SkIYZ2uPa03vlbqKA0c5feK6F

OBJECTS in the bucket milvusnasvol are :

…

<output content removed to save page space>

…

bucket/files/insert_log/448789845791611912/448789845791611913/4487898457

91611920/0/448789845791411917/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/1/448789845791411918/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/100/448789845791411913/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/101/448789845791411914/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/102/448789845791411915/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/103/448789845791411916/1c48ab6e-

1546-4503-9084-28c629216c33/part.1

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/103/448789845791411916/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/0/448789845791411924/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/1/448789845791411925/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/100/448789845791411920/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

21

/448789845791611913/448789845791611939/101/448789845791411921/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/102/448789845791411922/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-

c117-4fba-8256-96cb7557cd6c/part.1

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/103/448789845791411923/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791211880

/448789845791211881/448789845791411889/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791211880

/448789845791211881/448789845791411889/100/448789845791411912/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611920/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611920/100/448789845791411919/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611939/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611939/100/448789845791411926/xl.meta

root@ip-172-31-29-98:~/pymilvus/examples#

本节有效地演示了客户如何在 Docker 容器中部署和操作独立的 Milvus 设置，并利用 Amazon 的NetApp

FSx ONTAP进行NetApp ONTAP数据存储。此设置允许客户利用矢量数据库的强大功能来处理高维数据和
执行复杂查询，所有这些都可以在可扩展且高效的 Docker 容器环境中完成。通过创建适用于NetApp

ONTAP实例和匹配的 EC2 实例的Amazon FSx ONTAP ，客户可以确保最佳的资源利用率和数据管理。
FSx ONTAP在矢量数据库中数据写入和读取操作的成功验证为客户提供了可靠、一致的数据操作的保证。
此外，通过 S3 协议列出（读取）来自 AI 工作负载的数据的能力增强了数据可访问性。因此，这一全面的流
程为客户提供了一个强大而高效的解决方案，用于管理他们的大规模数据操作，并利用了 Amazon FSx

ONTAP for NetApp ONTAP的功能。

使用SnapCenter进行矢量数据库保护

本节介绍如何使用NetApp SnapCenter为矢量数据库提供数据保护。

使用NetApp SnapCenter进行矢量数据库保护。

例如，在电影制作行业，客户通常拥有关键的嵌入式数据，如视频和音频文件。由于硬盘故障等问题而导致的数
据丢失可能会对其运营产生重大影响，甚至可能危及价值数百万美元的企业。我们曾遇到过宝贵内容丢失的情况
，造成严重的混乱和经济损失。因此，确保这些重要数据的安全性和完整性对该行业至关重要。在本节中，我们
将深入探讨SnapCenter如何保护驻留在ONTAP中的矢量数据库数据和 Milvus 数据。在此示例中，我们使用了从
NFS ONTAP卷 (vol1) 派生的 NAS 存储桶 (milvusdbvol1) 来存储客户数据，并使用了单独的 NFS 卷
(vectordbpv) 来存储 Milvus 集群配置数据。请查看"此处"Snapcenter 备份工作流程

1. 设置将用于执行SnapCenter命令的主机。

22

https://docs.netapp.com/us-en/snapcenter-47/protect-sco/backup-workflow.html
https://docs.netapp.com/us-en/snapcenter-47/protect-sco/backup-workflow.html
https://docs.netapp.com/us-en/snapcenter-47/protect-sco/backup-workflow.html
https://docs.netapp.com/us-en/snapcenter-47/protect-sco/backup-workflow.html
https://docs.netapp.com/us-en/snapcenter-47/protect-sco/backup-workflow.html

2. 安装并配置存储插件。从添加的主机中，选择“更多选项”。导航到并选择下载的存储插件"NetApp自动化商
店"。安装插件并保存配置。

3. 设置存储系统和卷：在“存储系统”下添加存储系统，并选择SVM（存储虚拟机）。在这个例子中，我们选择

23

https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0
https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0
https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0
https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0
https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0
https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0
https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0
https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0
https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0
https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0
https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0

了“vs_nvidia”。

4. 为矢量数据库建立资源，包含备份策略和自定义快照名称。

◦ 使用默认值启用一致性组备份，并启用不具有文件系统一致性的SnapCenter 。

◦ 在存储占用空间部分，选择与矢量数据库客户数据和 Milvus 集群数据关联的卷。在我们的示例中，这些
是“vol1”和“vectordbpv”。

◦ 创建矢量数据库保护策略，并利用该策略保护矢量数据库资源。

5. 使用 Python 脚本将数据插入 S3 NAS 存储桶。在我们的案例中，我们修改了 Milvus 提供的备份脚本，
即“prepare_data_netapp.py”，并执行“sync”命令从操作系统中刷新数据。

24

root@node2:~# python3 prepare_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_test exist in Milvus: False

=== Create collection `hello_milvus_netapp_sc_test` ===

=== Start inserting entities ===

Number of entities in hello_milvus_netapp_sc_test: 3000

=== Create collection `hello_milvus_netapp_sc_test2` ===

Number of entities in hello_milvus_netapp_sc_test2: 6000

root@node2:~# for i in 2 3 4 5 6 ; do ssh node$i "hostname; sync; echo

'sync executed';" ; done

node2

sync executed

node3

sync executed

node4

sync executed

node5

sync executed

node6

sync executed

root@node2:~#

6. 验证 S3 NAS 存储桶中的数据。在我们的示例中，带有时间戳“2024-04-08 21:22”的文件是
由“prepare_data_netapp.py”脚本创建的。

25

root@node2:~# aws s3 ls --profile ontaps3 s3://milvusdbvol1/

--recursive | grep '2024-04-08'

<output content removed to save page space>

2024-04-08 21:18:14 5656

stats_log/448950615991000809/448950615991000810/448950615991001854/100/1

2024-04-08 21:18:12 5654

stats_log/448950615991000809/448950615991000810/448950615991001854/100/4

48950615990800869

2024-04-08 21:18:17 5656

stats_log/448950615991000809/448950615991000810/448950615991001872/100/1

2024-04-08 21:18:15 5654

stats_log/448950615991000809/448950615991000810/448950615991001872/100/4

48950615990800876

2024-04-08 21:22:46 5625

stats_log/448950615991003377/448950615991003378/448950615991003385/100/1

2024-04-08 21:22:45 5623

stats_log/448950615991003377/448950615991003378/448950615991003385/100/4

48950615990800899

2024-04-08 21:22:49 5656

stats_log/448950615991003408/448950615991003409/448950615991003416/100/1

2024-04-08 21:22:47 5654

stats_log/448950615991003408/448950615991003409/448950615991003416/100/4

48950615990800906

2024-04-08 21:22:52 5656

stats_log/448950615991003408/448950615991003409/448950615991003434/100/1

2024-04-08 21:22:50 5654

stats_log/448950615991003408/448950615991003409/448950615991003434/100/4

48950615990800913

root@node2:~#

7. 使用“milvusdb”资源中的一致性组 (CG) 快照启动备份

26

8. 为了测试备份功能，我们在备份过程后添加了一个新表，或者从 NFS（S3 NAS 存储桶）中删除了一些数
据。

对于此测试，想象一下有人在备份后创建了新的、不必要的或不适当的集合的场景。在这种情况下，我们需
要将矢量数据库恢复到添加新集合之前的状态。例如，已插入“hello_milvus_netapp_sc_testnew”

和“hello_milvus_netapp_sc_testnew2”等新集合。

27

root@node2:~# python3 prepare_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_testnew exist in Milvus: False

=== Create collection `hello_milvus_netapp_sc_testnew` ===

=== Start inserting entities ===

Number of entities in hello_milvus_netapp_sc_testnew: 3000

=== Create collection `hello_milvus_netapp_sc_testnew2` ===

Number of entities in hello_milvus_netapp_sc_testnew2: 6000

root@node2:~#

9. 从上一个快照执行 S3 NAS 存储桶的完整恢复。

28

10. 使用 Python 脚本验证来自“hello_milvus_netapp_sc_test”和“hello_milvus_netapp_sc_test2”集合的数据。

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_test exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_netapp_sc_test', '

fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': False}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}]}

Number of entities in Milvus: hello_milvus_netapp_sc_test : 3000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 1262, distance: 0.08883658051490784, entity: {'random':

0.2978858685751561}, random field: 0.2978858685751561

hit: id: 1265, distance: 0.09590047597885132, entity: {'random':

0.3042039939240304}, random field: 0.3042039939240304

hit: id: 2999, distance: 0.0, entity: {'random': 0.02316334456872482},

random field: 0.02316334456872482

hit: id: 1580, distance: 0.05628091096878052, entity: {'random':

0.3855988746044062}, random field: 0.3855988746044062

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':

0.8745922204004368}, random field: 0.8745922204004368

search latency = 0.2832s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514, 0.39746657,

0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446, 0.21096309],

29

'pk': 0}

search latency = 0.2257s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 747, distance: 0.14606499671936035, entity: {'random':

0.5648774800635661}, random field: 0.5648774800635661

hit: id: 2527, distance: 0.1530652642250061, entity: {'random':

0.8928974315571507}, random field: 0.8928974315571507

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':

0.8745922204004368}, random field: 0.8745922204004368

hit: id: 2034, distance: 0.20354536175727844, entity: {'random':

0.5526117606328499}, random field: 0.5526117606328499

hit: id: 958, distance: 0.21908017992973328, entity: {'random':

0.6647383716417955}, random field: 0.6647383716417955

search latency = 0.5480s

Does collection hello_milvus_netapp_sc_test2 exist in Milvus: True

{'auto_id': True, 'description': 'hello_milvus_netapp_sc_test2', '

fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': True}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'

name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR:

101>, 'params': {'dim': 8}}]}

Number of entities in Milvus: hello_milvus_netapp_sc_test2 : 6000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990645009, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990640618, distance: 0.13562293350696564, entity: {

'random': 0.7864676926688837}, random field: 0.7864676926688837

hit: id: 448950615990642314, distance: 0.10414951294660568, entity: {

'random': 0.2209597460821181}, random field: 0.2209597460821181

hit: id: 448950615990645315, distance: 0.10414951294660568, entity: {

'random': 0.2209597460821181}, random field: 0.2209597460821181

30

hit: id: 448950615990640004, distance: 0.11571306735277176, entity: {

'random': 0.7765521996186631}, random field: 0.7765521996186631

search latency = 0.2381s

=== Start querying with `random > 0.5` ===

query result:

-{'embeddings': [0.15983285, 0.72214717, 0.7414838, 0.44471496,

0.50356466, 0.8750043, 0.316556, 0.7871702], 'pk': 448950615990639798,

'random': 0.7820620141382767}

search latency = 0.3106s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990645009, distance: 0.07805602252483368, entity: {

'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990640618, distance: 0.13562293350696564, entity: {

'random': 0.7864676926688837}, random field: 0.7864676926688837

hit: id: 448950615990640004, distance: 0.11571306735277176, entity: {

'random': 0.7765521996186631}, random field: 0.7765521996186631

hit: id: 448950615990643005, distance: 0.11571306735277176, entity: {

'random': 0.7765521996186631}, random field: 0.7765521996186631

hit: id: 448950615990640402, distance: 0.13665105402469635, entity: {

'random': 0.9742541034109935}, random field: 0.9742541034109935

search latency = 0.4906s

root@node2:~#

11. 验证数据库中不再存在不必要或不适当的集合。

31

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_testnew exist in Milvus: False

Traceback (most recent call last):

 File "/root/verify_data_netapp.py", line 37, in <module>

 recover_collection = Collection(recover_collection_name)

 File "/usr/local/lib/python3.10/dist-

packages/pymilvus/orm/collection.py", line 137, in __init__

 raise SchemaNotReadyException(

pymilvus.exceptions.SchemaNotReadyException: <SchemaNotReadyException:

(code=1, message=Collection 'hello_milvus_netapp_sc_testnew' not exist,

or you can pass in schema to create one.)>

root@node2:~#

总之，使用 NetApp 的SnapCenter来保护驻留在ONTAP中的矢量数据库数据和 Milvus 数据可以为客户带来显著
的优势，特别是在数据完整性至关重要的行业，例如电影制作。 SnapCenter 能够创建一致的备份并执行完整的
数据恢复，确保关键数据（例如嵌入式视频和音频文件）不会因硬盘故障或其他问题而丢失。这不仅可以防止运
营中断，还可以防止重大财务损失。

在本节中，我们演示了如何配置SnapCenter来保护驻留在ONTAP中的数据，包括主机的设置、存储插件的安装
和配置，以及使用自定义快照名称为矢量数据库创建资源。我们还展示了如何使用一致性组快照执行备份并验证
S3 NAS 存储桶中的数据。

此外，我们模拟了备份后创建不必要或不适当的集合的情况。在这种情况下，SnapCenter 从以前的快照执行完
整恢复的能力可确保矢量数据库可以恢复到添加新集合之前的状态，从而保持数据库的完整性。这种将数据恢复
到特定时间点的功能对于客户来说非常宝贵，它为他们提供了保证，确保他们的数据不仅安全，而且得到正确的
维护。因此，NetApp 的SnapCenter产品为客户提供了强大而可靠的数据保护和管理解决方案。

使用NetApp SnapMirror进行灾难恢复

本节讨论使用SnapMirror为NetApp实现矢量数据库解决方案的 DR（灾难恢复）。

使用NetApp SnapMirror进行灾难恢复

32

灾难恢复对于维护矢量数据库的完整性和可用性至关重要，尤其是考虑到其在管理高维数据和执行复杂相似性搜
索中的作用。精心规划和实施的灾难恢复策略可确保在发生硬件故障、自然灾害或网络攻击等不可预见的事件时
数据不会丢失或受到损害。这对于依赖矢量数据库的应用程序尤其重要，因为数据的丢失或损坏可能导致严重的
运营中断和财务损失。此外，强大的灾难恢复计划还可以最大限度地减少停机时间并允许快速恢复服务，从而确
保业务连续性。这是通过NetApp数据复制产品 SnapMirror 跨不同地理位置、定期备份和故障转移机制实现的。
因此，灾难恢复不仅仅是一种保护措施，而且是负责任、高效的矢量数据库管理的重要组成部分。

NetApp 的SnapMirror提供从一个NetApp ONTAP存储控制器到另一个存储控制器的数据复制，主要用于灾难恢
复 (DR) 和混合解决方案。在矢量数据库的背景下，该工具有助于实现数据在本地和云环境之间的平稳过渡。这
种转变无需任何数据转换或应用程序重构即可实现，从而提高了跨多个平台数据管理的效率和灵活性。

NetApp Hybrid解决方案在矢量数据库场景下可以带来更多优势：

1. 可扩展性：NetApp 的混合云解决方案能够根据您的需求扩展您的资源。您可以利用本地资源来处理常规、
可预测的工作负载，并利用云资源（例如Amazon FSx ONTAP for NetApp ONTAP和 Google Cloud NetApp

Volume（NetApp Volumes））来应对高峰时段或意外负载。

2. 成本效益：NetApp 的混合云模型允许您通过使用内部资源来处理常规工作负载并仅在需要时支付云资源费
用，从而优化成本。这种按需付费模式通过NetApp instaclustr 服务产品可以实现相当高的成本效益。对于
本地和主要云服务提供商，instaclustr 提供支持和咨询。

3. 灵活性：NetApp 的混合云让您可以灵活地选择在何处处理数据。例如，您可能选择在拥有更强大硬件的本
地执行复杂的矢量操作，而在云中执行不太密集的操作。

4. 业务连续性：如果发生灾难，将数据保存在NetApp混合云中可以确保业务连续性。如果您的本地资源受到影
响，您可以快速切换到云端。我们可以利用NetApp SnapMirror将数据从本地移动到云端，反之亦然。

5. 创新：NetApp 的混合云解决方案还可以通过提供对尖端云服务和技术的访问来实现更快的创新。 NetApp在
云领域的创新，例如Amazon FSx ONTAP for NetApp ONTAP、 Azure NetApp Files和Google Cloud

NetApp Volumes都是云服务提供商的创新产品和首选 NAS。

矢量数据库性能验证

本节重点介绍在矢量数据库上执行的性能验证。

33

性能验证

性能验证在矢量数据库和存储系统中都起着至关重要的作用，是确保最佳运行和高效资源利用的关键因素。矢量
数据库以处理高维数据和执行相似性搜索而闻名，需要保持高性能水平才能快速准确地处理复杂查询。性能验证
有助于识别瓶颈、微调配置并确保系统能够处理预期负载而不会降低服务质量。同样，在存储系统中，性能验证
对于确保数据高效存储和检索至关重要，不会出现可能影响整体系统性能的延迟问题或瓶颈。它还有助于对存储
基础设施的必要升级或变更做出明智的决策。因此，性能验证是系统管理的一个重要方面，对维持高服务质量、
运行效率和整体系统可靠性有重要贡献。

在本节中，我们旨在深入研究矢量数据库（例如 Milvus 和 pgvecto.rs）的性能验证，重点关注它们的存储性能
特征，例如 I/O 配置文件和 NetApp 存储控制器在 LLM 生命周期内支持 RAG 和推理工作负载的行为。当这些数
据库与ONTAP存储解决方案结合时，我们将评估并识别任何性能差异因素。我们的分析将基于关键性能指标，
例如每秒处理的查询数（QPS）。

请检查下面用于 milvus 和进度的方法。

详细信息 Milvus（单机和集群） Postgres（pgvecto.rs）#

version 2.3.2 0.2.0

Filesystem iSCSI LUN 上的 XFS

工作负载生成器 "VectorDB-Bench"– v0.0.5

数据集 LAION 数据集 * 1000 万个嵌入 *

768 个维度 * 数据集大小约为
300GB

存储控制器 AFF 800 * 版本 — 9.14.1 * 4 x

100GbE — 用于 milvus，2x

100GbE 用于 postgres * iscsi

带有 Milvus 独立集群的 VectorDB-Bench

我们使用vectorDB-Bench在milvus独立集群上进行了以下性能验证。 milvus 独立集群的网络和服务器连接如
下。

34

https://github.com/zilliztech/VectorDBBench

在本节中，我们分享测试 Milvus 独立数据库的观察和结果。。我们选择 DiskANN 作为这些测试的索引类型。。
提取、优化和创建大约 100GB 数据集的索引大约需要 5 个小时。在此持续时间的大部分时间里，配备 20 个内
核（启用超线程时相当于 40 个 vCPU）的 Milvus 服务器都以其最大 CPU 容量 100% 运行。我们发现 DiskANN

对于超过系统内存大小的大型数据集尤为重要。。在查询阶段，我们观察到每秒查询次数 (QPS) 为 10.93，召
回率为 0.9987。查询的第 99 个百分位延迟测量为 708.2 毫秒。

从存储角度来看，数据库在摄取、插入后优化和索引创建阶段发出大约 1,000 个操作/秒。在查询阶段，它要求
每秒 32,000 次操作。

以下部分介绍存储性能指标。

工作负载阶段 指标 值

数据提取和插入后优化 IOPS < 1,000

延迟 < 400 微秒

工作量 读/写混合，主要是写入

IO 大小 64 KB

查询 IOPS 峰值为32,000

延迟 < 400 微秒

工作量 100% 缓存读取

IO 大小 主要为8KB

VectorDB-bench 结果如下。

35

从独立 Milvus 实例的性能验证来看，当前的设置不足以支持 500 万个向量、维度为 1536 的数据集。我们已确
定存储拥有足够的资源，不会构成系统的瓶颈。

带有 milvus 集群的 VectorDB-Bench

在本节中，我们讨论在 Kubernetes 环境中部署 Milvus 集群。此 Kubernetes 设置构建于 VMware vSphere 部署
之上，该部署托管 Kubernetes 主节点和工作节点。

以下部分介绍 VMware vSphere 和 Kubernetes 部署的详细信息。

36

37

在本节中，我们介绍了测试 Milvus 数据库的观察结果和结果。 * 使用的索引类型是 DiskANN。 * 下表比较了在
处理 500 万个向量（维度为 1536）时独立部署和集群部署的差异。我们观察到，在集群部署中，数据提取和插
入后优化所需的时间较短。与独立设置相比，集群部署中查询的第 99 个百分位延迟减少了六倍。 * 尽管集群部
署中的每秒查询数 (QPS) 率较高，但并未达到预期水平。

下图提供了各种存储指标的视图，包括存储集群延迟和总 IOPS（每秒输入/输出操作）。

38

以下部分介绍关键的存储性能指标。

工作负载阶段 指标 值

数据提取和插入后优化 IOPS < 1,000

延迟 < 400 微秒

工作量 读/写混合，主要是写入

IO 大小 64 KB

查询 IOPS 峰值为147,000

延迟 < 400 微秒

工作量 100% 缓存读取

IO 大小 主要为8KB

基于独立 Milvus 和 Milvus 集群的性能验证，我们展示了存储 I/O 配置文件的详细信息。 * 我们观察到 I/O 配置
文件在独立部署和集群部署中保持一致。 * 峰值 IOPS 的观察到的差异可以归因于集群部署中的客户端数量较
多。

带有 Postgres 的vectorDB-Bench（pgvecto.rs）

我们使用 VectorDB-Bench 对 PostgreSQL（pgvecto.rs）进行了如下操作：PostgreSQL（具体来说
，pgvecto.rs）的网络和服务器连接详情如下：

39

在本节中，我们分享测试 PostgreSQL 数据库（特别是使用 pgvecto.rs）的观察和结果。 * 我们选择 HNSW 作
为这些测试的索引类型，因为在测试时，DiskANN 不适用于 pgvecto.rs。 * 在数据提取阶段，我们加载了
Cohere 数据集，该数据集包含 1000 万个向量，维度为 768。该过程大约耗时 4.5 小时。 * 在查询阶段，我们
观察到每秒查询次数 (QPS) 为 1,068，召回率为 0.6344。查询的第 99 个百分位延迟测量为 20 毫秒。在大部分
运行时间内，客户端 CPU 都以 100% 的容量运行。

下图提供了各种存储指标的视图，包括存储集群延迟总 IOPS（每秒输入/输出操作）。

 The following section presents the key storage performance metrics.

image:pgvecto-storage-perf-metrics.png["该图显示输入/输出对话框或表示书面内容"]

milvus 与 postgres 在 Vector DB Bench 上的性能对比

40

根据我们使用 VectorDBBench 对 Milvus 和 PostgreSQL 进行的性能验证，我们观察到以下情况：

• 索引类型：HNSW

• 数据集：包含 768 个维度的 1000 万个向量

我们发现 pgvecto.rs 的每秒查询数 (QPS) 达到 1,068，召回率为 0.6344，而 Milvus 的每秒查询数 (QPS) 达到
106，召回率为 0.9842。

如果您优先考虑查询的高精度，那么 Milvus 的性能优于 pgvecto.rs，因为它在每个查询中检索到更高比例的相
关项目。但是，如果每秒查询次数是一个更关键的因素，那么 pgvecto.rs 就超过了 Milvus。但值得注意的是，
通过 pgvecto.rs 检索的数据质量较低，大约 37% 的搜索结果是不相关的项目。

根据我们的性能验证得出的观察结果：

根据我们的性能验证，我们做出了以下观察：

在 Milvus 中，I/O 配置文件与 OLTP 工作负载非常相似，例如 Oracle SLOB 中的工作负载。基准测试包括三个
阶段：数据提取、后优化和查询。初始阶段主要以 64KB 写入操作为特征，而查询阶段主要涉及 8KB 读取。我

41

们希望ONTAP能够熟练地处理 Milvus I/O 负载。

PostgreSQL I/O 配置文件不会带来具有挑战性的存储工作负载。鉴于目前正在进行的内存实现，我们在查询阶
段没有观察到任何磁盘 I/O。

DiskANN 成为存储区分的关键技术。它使得向量数据库搜索能够超越系统内存边界进行有效扩展。然而，不太
可能通过内存中的向量数据库索引（例如 HNSW）建立存储性能差异。

还值得注意的是，当索引类型为 HSNW 时，存储在查询阶段并不起关键作用，而查询阶段是支持 RAG 应用的
矢量数据库最重要的操作阶段。这里的含义是存储性能不会显著影响这些应用程序的整体性能。

使用 PostgreSQL 的 Instaclustr 矢量数据库：pgvector

本节讨论 instaclustr 产品如何与NetApp矢量数据库解决方案中的 postgreSQL 的 pgvector

功能集成的具体细节。

使用 PostgreSQL 的 Instaclustr 矢量数据库：pgvector

在本节中，我们将深入探讨 instaclustr 产品如何在 pgvector 功能上与 postgreSQL 集成的具体细节。我们有一
个例子“如何使用 PGVector 和 PostgreSQL 提高 LLM 准确性和性能：嵌入简介和 PGVector 的作用”。请检查"

博客"以获取更多信息。

矢量数据库用例

本节概述了NetApp矢量数据库解决方案的用例。

矢量数据库用例

在本节中，我们讨论两个用例，例如使用大型语言模型的检索增强生成和NetApp IT 聊天机器人。

使用大型语言模型 (LLM) 进行检索增强生成 (RAG)

Retrieval-augmented generation, or RAG, is a technique for enhancing the

accuracy and reliability of Large Language Models, or LLMs, by augmenting

prompts with facts fetched from external sources. In a traditional RAG

deployment, vector embeddings are generated from an existing dataset and

then stored in a vector database, often referred to as a knowledgebase.

Whenever a user submits a prompt to the LLM, a vector embedding

representation of the prompt is generated, and the vector database is

searched using that embedding as the search query. This search operation

returns similar vectors from the knowledgebase, which are then fed to the

LLM as context alongside the original user prompt. In this way, an LLM can

be augmented with additional information that was not part of its original

training dataset.

NVIDIA Enterprise RAG LLM Operator 是在企业中实施 RAG 的有用工具。该操作员可用于部署完整的 RAG 管

42

https://www.instaclustr.com/blog/how-to-improve-your-llm-accuracy-and-performance-with-pgvector-and-postgresql-introduction-to-embeddings-and-the-role-of-pgvector/
https://www.instaclustr.com/blog/how-to-improve-your-llm-accuracy-and-performance-with-pgvector-and-postgresql-introduction-to-embeddings-and-the-role-of-pgvector/
https://www.instaclustr.com/blog/how-to-improve-your-llm-accuracy-and-performance-with-pgvector-and-postgresql-introduction-to-embeddings-and-the-role-of-pgvector/
https://www.instaclustr.com/blog/how-to-improve-your-llm-accuracy-and-performance-with-pgvector-and-postgresql-introduction-to-embeddings-and-the-role-of-pgvector/
https://www.instaclustr.com/blog/how-to-improve-your-llm-accuracy-and-performance-with-pgvector-and-postgresql-introduction-to-embeddings-and-the-role-of-pgvector/

道。 RAG 管道可以定制为使用 Milvus 或 pgvecto 作为存储知识库嵌入的向量数据库。有关详细信息，请参
阅文档。

NetApp has validated an enterprise RAG architecture powered by the NVIDIA

Enterprise RAG LLM Operator alongside NetApp storage. Refer to our blog

post for more information and to see a demo. Figure 1 provides an overview

of this architecture.

图 1) 由NVIDIA NeMo 微服务和NetApp提供支持的企业 RAG

NetApp IT 聊天机器人用例

NetApp 的聊天机器人是矢量数据库的另一个实时用例。在这种情况下， NetApp Private OpenAI Sandbox 为管
理来自 NetApp 内部用户的查询提供了一个有效、安全且高效的平台。通过结合严格的安全协议、高效的数据管
理系统和复杂的人工智能处理能力，它保证通过 SSO 身份验证根据组织中用户的角色和职责为他们提供高质
量、精确的响应。这种架构凸显了融合先进技术以创建以用户为中心的智能系统的潜力。

43

用例可以分为四个主要部分。

用户身份验证和验证：

• 用户查询首先经过NetApp单点登录 (SSO) 流程来确认用户的身份。

• 身份验证成功后，系统会检查VPN连接以确保数据传输的安全。

数据传输和处理：

• 一旦 VPN 验证通过，数据就会通过 NetAIChat 或 NetAICreate Web 应用程序发送到 MariaDB。 MariaDB

是一个快速高效的数据库系统，用于管理和存储用户数据。

• 然后，MariaDB 将信息发送到NetApp Azure 实例，该实例将用户数据连接到 AI 处理单元。

与 OpenAI 和内容过滤的交互：

• Azure 实例将用户的问题发送到内容过滤系统。该系统清理查询并准备进行处理。

• 清理后的输入随后被发送到 Azure OpenAI 基础模型，该模型根据输入生成响应。

响应生成和审核：

• 首先检查基础模型的响应，以确保其准确性并符合内容标准。

• 检查通过后，将响应发送回用户。此过程可确保用户收到对其查询的清晰、准确和适当的答案。

结束语

本节总结了NetApp的矢量数据库解决方案。

44

结束语

总而言之，本文档全面概述了在NetApp存储解决方案上部署和管理矢量数据库（例如 Milvus 和 pgvector）。我
们讨论了利用NetApp ONTAP和StorageGRID对象存储的基础设施指南，并通过文件和对象存储验证了 AWS

FSx ONTAP中的 Milvus 数据库。

我们探索了 NetApp 的文件对象二元性，证明了它不仅适用于矢量数据库中的数据，也适用于其他应用程序。我
们还重点介绍了 NetApp 的企业管理产品SnapCenter如何为矢量数据库数据提供备份、恢复和克隆功能，确保
数据的完整性和可用性。

该文档还深入探讨了 NetApp 的混合云解决方案如何在本地和云环境中提供数据复制和保护，从而提供无缝、安
全的数据管理体验。我们对NetApp ONTAP上 Milvus 和 pgvecto 等矢量数据库的性能验证提供了见解，并提供
了有关其效率和可扩展性的宝贵信息。

最后，我们讨论了两个生成式 AI 用例：带有 LLM 的 RAG 和 NetApp 的内部 ChatAI。这些实际示例强调了本文
档中概述的概念和实践的实际应用和好处。总的来说，对于任何希望利用 NetApp 强大的存储解决方案来管理矢
量数据库的人来说，本文档都是一份全面的指南。

声明

作者衷心感谢以下贡献者以及其他提供反馈和评论的人，使本文对NetApp客户和NetApp领域具有价值。

1. Sathish Thyagarajan， NetApp ONTAP AI 与分析技术营销工程师

2. NetApp技术营销工程师 Mike Oglesby

3. NetApp高级总监 AJ Mahajan

4. NetApp工作负载性能工程经理 Joe Scott

5. NetApp Fsx 产品管理高级总监 Puneet Dhawan

6. NetApp FSx 产品团队高级产品经理 Yuval Kalderon

在哪里可以找到更多信息

要了解有关本文档中描述的信息的更多信息，请查看以下文档和/或网站：

• Milvus 文档 - https://milvus.io/docs/overview.md

• Milvus 独立文档 - https://milvus.io/docs/v2.0.x/install_standalone-docker.md

• NetApp产品文档https://www.netapp.com/support-and-training/documentation/[]

• instaclustr -"installclustr 文档"

版本历史

版本 日期 文档版本历史

1.0 版 2024年4月 初始版本

附录 A：Values.yaml

本节提供NetApp矢量数据库解决方案中使用的值的示例 YAML 代码。

45

https://milvus.io/docs/overview.md
https://milvus.io/docs/v2.0.x/install_standalone-docker.md
https://www.instaclustr.com/support/documentation/?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=1467100120&hsa_cam=20766399079&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=CjwKCAjw26KxBhBDEiwAu6KXtzOZhN0dl0H1smOMcj9nsC0qBQphdMqFR7IrVQqeG2Y4aHWydUMj2BoCdFwQAvD_BwE
https://www.instaclustr.com/support/documentation/?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=1467100120&hsa_cam=20766399079&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=CjwKCAjw26KxBhBDEiwAu6KXtzOZhN0dl0H1smOMcj9nsC0qBQphdMqFR7IrVQqeG2Y4aHWydUMj2BoCdFwQAvD_BwE
https://www.instaclustr.com/support/documentation/?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=1467100120&hsa_cam=20766399079&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=CjwKCAjw26KxBhBDEiwAu6KXtzOZhN0dl0H1smOMcj9nsC0qBQphdMqFR7IrVQqeG2Y4aHWydUMj2BoCdFwQAvD_BwE
https://www.instaclustr.com/support/documentation/?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=1467100120&hsa_cam=20766399079&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=CjwKCAjw26KxBhBDEiwAu6KXtzOZhN0dl0H1smOMcj9nsC0qBQphdMqFR7IrVQqeG2Y4aHWydUMj2BoCdFwQAvD_BwE
https://www.instaclustr.com/support/documentation/?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=1467100120&hsa_cam=20766399079&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=CjwKCAjw26KxBhBDEiwAu6KXtzOZhN0dl0H1smOMcj9nsC0qBQphdMqFR7IrVQqeG2Y4aHWydUMj2BoCdFwQAvD_BwE

附录 A：Values.yaml

root@node2:~# cat values.yaml

Enable or disable Milvus Cluster mode

cluster:

 enabled: true

image:

 all:

 repository: milvusdb/milvus

 tag: v2.3.4

 pullPolicy: IfNotPresent

 ## Optionally specify an array of imagePullSecrets.

 ## Secrets must be manually created in the namespace.

 ## ref: https://kubernetes.io/docs/tasks/configure-pod-container/pull-

image-private-registry/

 ##

 # pullSecrets:

 # - myRegistryKeySecretName

 tools:

 repository: milvusdb/milvus-config-tool

 tag: v0.1.2

 pullPolicy: IfNotPresent

Global node selector

If set, this will apply to all milvus components

Individual components can be set to a different node selector

nodeSelector: {}

Global tolerations

If set, this will apply to all milvus components

Individual components can be set to a different tolerations

tolerations: []

Global affinity

If set, this will apply to all milvus components

Individual components can be set to a different affinity

affinity: {}

Global labels and annotations

If set, this will apply to all milvus components

labels: {}

annotations: {}

Extra configs for milvus.yaml

If set, this config will merge into milvus.yaml

46

Please follow the config structure in the milvus.yaml

at https://github.com/milvus-io/milvus/blob/master/configs/milvus.yaml

Note: this config will be the top priority which will override the

config

in the image and helm chart.

extraConfigFiles:

 user.yaml: |+

 # For example enable rest http for milvus proxy

 # proxy:

 # http:

 # enabled: true

 ## Enable tlsMode and set the tls cert and key

 # tls:

 # serverPemPath: /etc/milvus/certs/tls.crt

 # serverKeyPath: /etc/milvus/certs/tls.key

 # common:

 # security:

 # tlsMode: 1

Expose the Milvus service to be accessed from outside the cluster

(LoadBalancer service).

or access it from within the cluster (ClusterIP service). Set the

service type and the port to serve it.

ref: http://kubernetes.io/docs/user-guide/services/

##

service:

 type: ClusterIP

 port: 19530

 portName: milvus

 nodePort: ""

 annotations: {}

 labels: {}

 ## List of IP addresses at which the Milvus service is available

 ## Ref: https://kubernetes.io/docs/user-guide/services/#external-ips

 ##

 externalIPs: []

 # - externalIp1

 # LoadBalancerSourcesRange is a list of allowed CIDR values, which are

combined with ServicePort to

 # set allowed inbound rules on the security group assigned to the master

load balancer

 loadBalancerSourceRanges:

 - 0.0.0.0/0

 # Optionally assign a known public LB IP

47

 # loadBalancerIP: 1.2.3.4

ingress:

 enabled: false

 annotations:

 # Annotation example: set nginx ingress type

 # kubernetes.io/ingress.class: nginx

 nginx.ingress.kubernetes.io/backend-protocol: GRPC

 nginx.ingress.kubernetes.io/listen-ports-ssl: '[19530]'

 nginx.ingress.kubernetes.io/proxy-body-size: 4m

 nginx.ingress.kubernetes.io/ssl-redirect: "true"

 labels: {}

 rules:

 - host: "milvus-example.local"

 path: "/"

 pathType: "Prefix"

 # - host: "milvus-example2.local"

 # path: "/otherpath"

 # pathType: "Prefix"

 tls: []

 # - secretName: chart-example-tls

 # hosts:

 # - milvus-example.local

serviceAccount:

 create: false

 name:

 annotations:

 labels:

metrics:

 enabled: true

 serviceMonitor:

 # Set this to `true` to create ServiceMonitor for Prometheus operator

 enabled: false

 interval: "30s"

 scrapeTimeout: "10s"

 # Additional labels that can be used so ServiceMonitor will be

discovered by Prometheus

 additionalLabels: {}

livenessProbe:

 enabled: true

 initialDelaySeconds: 90

 periodSeconds: 30

48

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

readinessProbe:

 enabled: true

 initialDelaySeconds: 90

 periodSeconds: 10

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

log:

 level: "info"

 file:

 maxSize: 300 # MB

 maxAge: 10 # day

 maxBackups: 20

 format: "text" # text/json

 persistence:

 mountPath: "/milvus/logs"

 ## If true, create/use a Persistent Volume Claim

 ## If false, use emptyDir

 ##

 enabled: false

 annotations:

 helm.sh/resource-policy: keep

 persistentVolumeClaim:

 existingClaim: ""

 ## Milvus Logs Persistent Volume Storage Class

 ## If defined, storageClassName: <storageClass>

 ## If set to "-", storageClassName: "", which disables dynamic

provisioning

 ## If undefined (the default) or set to null, no storageClassName

spec is

 ## set, choosing the default provisioner.

 ## ReadWriteMany access mode required for milvus cluster.

 ##

 storageClass: default

 accessModes: ReadWriteMany

 size: 10Gi

 subPath: ""

Heaptrack traces all memory allocations and annotates these events with

stack traces.

49

See more: https://github.com/KDE/heaptrack

Enable heaptrack in production is not recommended.

heaptrack:

 image:

 repository: milvusdb/heaptrack

 tag: v0.1.0

 pullPolicy: IfNotPresent

standalone:

 replicas: 1 # Run standalone mode with replication disabled

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 disk:

 enabled: true

 size:

 enabled: false # Enable local storage size limit

 profiling:

 enabled: false # Enable live profiling

 ## Default message queue for milvus standalone

 ## Supported value: rocksmq, natsmq, pulsar and kafka

 messageQueue: rocksmq

 persistence:

 mountPath: "/var/lib/milvus"

 ## If true, alertmanager will create/use a Persistent Volume Claim

 ## If false, use emptyDir

 ##

 enabled: true

 annotations:

 helm.sh/resource-policy: keep

 persistentVolumeClaim:

 existingClaim: ""

 ## Milvus Persistent Volume Storage Class

 ## If defined, storageClassName: <storageClass>

 ## If set to "-", storageClassName: "", which disables dynamic

provisioning

 ## If undefined (the default) or set to null, no storageClassName

spec is

50

 ## set, choosing the default provisioner.

 ##

 storageClass:

 accessModes: ReadWriteOnce

 size: 50Gi

 subPath: ""

proxy:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 http:

 enabled: true # whether to enable http rest server

 debugMode:

 enabled: false

 # Mount a TLS secret into proxy pod

 tls:

 enabled: false

when enabling proxy.tls, all items below should be uncommented and the

key and crt values should be populated.

enabled: true

secretName: milvus-tls

expecting base64 encoded values here: i.e. $(cat tls.crt | base64 -w 0)

and $(cat tls.key | base64 -w 0)

key: LS0tLS1CRUdJTiBQU--REDUCT

crt: LS0tLS1CRUdJTiBDR--REDUCT

volumes:

- secret:

secretName: milvus-tls

name: milvus-tls

volumeMounts:

- mountPath: /etc/milvus/certs/

name: milvus-tls

rootCoordinator:

 enabled: true

51

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Root Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for root coordinator

 service:

 port: 53100

 annotations: {}

 labels: {}

 clusterIP: ""

queryCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Query Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for query coordinator

 service:

 port: 19531

 annotations: {}

 labels: {}

 clusterIP: ""

52

queryNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 disk:

 enabled: true # Enable querynode load disk index, and search on disk

index

 size:

 enabled: false # Enable local storage size limit

 profiling:

 enabled: false # Enable live profiling

indexCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Index Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for index coordinator

 service:

 port: 31000

 annotations: {}

 labels: {}

 clusterIP: ""

53

indexNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 disk:

 enabled: true # Enable index node build disk vector index

 size:

 enabled: false # Enable local storage size limit

dataCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Data Coordinator mode with replication

disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for data coordinator

 service:

 port: 13333

 annotations: {}

 labels: {}

54

 clusterIP: ""

dataNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

mixCoordinator contains all coord

If you want to use mixcoord, enable this and disable all of other

coords

mixCoordinator:

 enabled: false

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Mixture Coordinator mode with replication

disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for Mixture coordinator

 service:

 annotations: {}

 labels: {}

 clusterIP: ""

attu:

 enabled: false

55

 name: attu

 image:

 repository: zilliz/attu

 tag: v2.2.8

 pullPolicy: IfNotPresent

 service:

 annotations: {}

 labels: {}

 type: ClusterIP

 port: 3000

 # loadBalancerIP: ""

 resources: {}

 podLabels: {}

 ingress:

 enabled: false

 annotations: {}

 # Annotation example: set nginx ingress type

 # kubernetes.io/ingress.class: nginx

 labels: {}

 hosts:

 - milvus-attu.local

 tls: []

 # - secretName: chart-attu-tls

 # hosts:

 # - milvus-attu.local

Configuration values for the minio dependency

ref: https://github.com/minio/charts/blob/master/README.md

##

minio:

 enabled: false

 name: minio

 mode: distributed

 image:

 tag: "RELEASE.2023-03-20T20-16-18Z"

 pullPolicy: IfNotPresent

 accessKey: minioadmin

 secretKey: minioadmin

 existingSecret: ""

 bucketName: "milvus-bucket"

 rootPath: file

 useIAM: false

 iamEndpoint: ""

 region: ""

56

 useVirtualHost: false

 podDisruptionBudget:

 enabled: false

 resources:

 requests:

 memory: 2Gi

 gcsgateway:

 enabled: false

 replicas: 1

 gcsKeyJson: "/etc/credentials/gcs_key.json"

 projectId: ""

 service:

 type: ClusterIP

 port: 9000

 persistence:

 enabled: true

 existingClaim: ""

 storageClass:

 accessMode: ReadWriteOnce

 size: 500Gi

 livenessProbe:

 enabled: true

 initialDelaySeconds: 5

 periodSeconds: 5

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

 readinessProbe:

 enabled: true

 initialDelaySeconds: 5

 periodSeconds: 5

 timeoutSeconds: 1

 successThreshold: 1

 failureThreshold: 5

 startupProbe:

 enabled: true

 initialDelaySeconds: 0

 periodSeconds: 10

 timeoutSeconds: 5

 successThreshold: 1

57

 failureThreshold: 60

Configuration values for the etcd dependency

ref: https://artifacthub.io/packages/helm/bitnami/etcd

##

etcd:

 enabled: true

 name: etcd

 replicaCount: 3

 pdb:

 create: false

 image:

 repository: "milvusdb/etcd"

 tag: "3.5.5-r2"

 pullPolicy: IfNotPresent

 service:

 type: ClusterIP

 port: 2379

 peerPort: 2380

 auth:

 rbac:

 enabled: false

 persistence:

 enabled: true

 storageClass: default

 accessMode: ReadWriteOnce

 size: 10Gi

 ## Change default timeout periods to mitigate zoobie probe process

 livenessProbe:

 enabled: true

 timeoutSeconds: 10

 readinessProbe:

 enabled: true

 periodSeconds: 20

 timeoutSeconds: 10

 ## Enable auto compaction

 ## compaction by every 1000 revision

 ##

 autoCompactionMode: revision

58

 autoCompactionRetention: "1000"

 ## Increase default quota to 4G

 ##

 extraEnvVars:

 - name: ETCD_QUOTA_BACKEND_BYTES

 value: "4294967296"

 - name: ETCD_HEARTBEAT_INTERVAL

 value: "500"

 - name: ETCD_ELECTION_TIMEOUT

 value: "2500"

Configuration values for the pulsar dependency

ref: https://github.com/apache/pulsar-helm-chart

##

pulsar:

 enabled: true

 name: pulsar

 fullnameOverride: ""

 persistence: true

 maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes, Maximum size of each

message in pulsar.

 rbac:

 enabled: false

 psp: false

 limit_to_namespace: true

 affinity:

 anti_affinity: false

enableAntiAffinity: no

 components:

 zookeeper: true

 bookkeeper: true

 # bookkeeper - autorecovery

 autorecovery: true

 broker: true

 functions: false

 proxy: true

 toolset: false

 pulsar_manager: false

59

 monitoring:

 prometheus: false

 grafana: false

 node_exporter: false

 alert_manager: false

 images:

 broker:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 autorecovery:

 repository: apachepulsar/pulsar

 tag: 2.8.2

 pullPolicy: IfNotPresent

 zookeeper:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 bookie:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 proxy:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 pulsar_manager:

 repository: apachepulsar/pulsar-manager

 pullPolicy: IfNotPresent

 tag: v0.1.0

 zookeeper:

 volumes:

 persistence: true

 data:

 name: data

 size: 20Gi #SSD Required

 storageClassName: default

 resources:

 requests:

 memory: 1024Mi

 cpu: 0.3

 configData:

 PULSAR_MEM: >

 -Xms1024m

60

 -Xmx1024m

 PULSAR_GC: >

 -Dcom.sun.management.jmxremote

 -Djute.maxbuffer=10485760

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:+DisableExplicitGC

 -XX:+PerfDisableSharedMem

 -Dzookeeper.forceSync=no

 pdb:

 usePolicy: false

 bookkeeper:

 replicaCount: 3

 volumes:

 persistence: true

 journal:

 name: journal

 size: 100Gi

 storageClassName: default

 ledgers:

 name: ledgers

 size: 200Gi

 storageClassName: default

 resources:

 requests:

 memory: 2048Mi

 cpu: 1

 configData:

 PULSAR_MEM: >

 -Xms4096m

 -Xmx4096m

 -XX:MaxDirectMemorySize=8192m

 PULSAR_GC: >

 -Dio.netty.leakDetectionLevel=disabled

 -Dio.netty.recycler.linkCapacity=1024

 -XX:+UseG1GC -XX:MaxGCPauseMillis=10

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:ParallelGCThreads=32

 -XX:ConcGCThreads=32

 -XX:G1NewSizePercent=50

 -XX:+DisableExplicitGC

 -XX:-ResizePLAB

61

 -XX:+ExitOnOutOfMemoryError

 -XX:+PerfDisableSharedMem

 -XX:+PrintGCDetails

 nettyMaxFrameSizeBytes: "104867840"

 pdb:

 usePolicy: false

 broker:

 component: broker

 podMonitor:

 enabled: false

 replicaCount: 1

 resources:

 requests:

 memory: 4096Mi

 cpu: 1.5

 configData:

 PULSAR_MEM: >

 -Xms4096m

 -Xmx4096m

 -XX:MaxDirectMemorySize=8192m

 PULSAR_GC: >

 -Dio.netty.leakDetectionLevel=disabled

 -Dio.netty.recycler.linkCapacity=1024

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:ParallelGCThreads=32

 -XX:ConcGCThreads=32

 -XX:G1NewSizePercent=50

 -XX:+DisableExplicitGC

 -XX:-ResizePLAB

 -XX:+ExitOnOutOfMemoryError

 maxMessageSize: "104857600"

 defaultRetentionTimeInMinutes: "10080"

 defaultRetentionSizeInMB: "-1"

 backlogQuotaDefaultLimitGB: "8"

 ttlDurationDefaultInSeconds: "259200"

 subscriptionExpirationTimeMinutes: "3"

 backlogQuotaDefaultRetentionPolicy: producer_exception

 pdb:

 usePolicy: false

 autorecovery:

 resources:

 requests:

62

 memory: 512Mi

 cpu: 1

 proxy:

 replicaCount: 1

 podMonitor:

 enabled: false

 resources:

 requests:

 memory: 2048Mi

 cpu: 1

 service:

 type: ClusterIP

 ports:

 pulsar: 6650

 configData:

 PULSAR_MEM: >

 -Xms2048m -Xmx2048m

 PULSAR_GC: >

 -XX:MaxDirectMemorySize=2048m

 httpNumThreads: "100"

 pdb:

 usePolicy: false

 pulsar_manager:

 service:

 type: ClusterIP

 pulsar_metadata:

 component: pulsar-init

 image:

 # the image used for running `pulsar-cluster-initialize` job

 repository: apachepulsar/pulsar

 tag: 2.8.2

Configuration values for the kafka dependency

ref: https://artifacthub.io/packages/helm/bitnami/kafka

##

kafka:

 enabled: false

 name: kafka

 replicaCount: 3

 image:

 repository: bitnami/kafka

63

 tag: 3.1.0-debian-10-r52

 ## Increase graceful termination for kafka graceful shutdown

 terminationGracePeriodSeconds: "90"

 pdb:

 create: false

 ## Enable startup probe to prevent pod restart during recovering

 startupProbe:

 enabled: true

 ## Kafka Java Heap size

 heapOpts: "-Xmx4096m -Xms4096m"

 maxMessageBytes: _10485760

 defaultReplicationFactor: 3

 offsetsTopicReplicationFactor: 3

 ## Only enable time based log retention

 logRetentionHours: 168

 logRetentionBytes: _-1

 extraEnvVars:

 - name: KAFKA_CFG_MAX_PARTITION_FETCH_BYTES

 value: "5242880"

 - name: KAFKA_CFG_MAX_REQUEST_SIZE

 value: "5242880"

 - name: KAFKA_CFG_REPLICA_FETCH_MAX_BYTES

 value: "10485760"

 - name: KAFKA_CFG_FETCH_MESSAGE_MAX_BYTES

 value: "5242880"

 - name: KAFKA_CFG_LOG_ROLL_HOURS

 value: "24"

 persistence:

 enabled: true

 storageClass:

 accessMode: ReadWriteOnce

 size: 300Gi

 metrics:

 ## Prometheus Kafka exporter: exposes complimentary metrics to JMX

exporter

 kafka:

 enabled: false

 image:

 repository: bitnami/kafka-exporter

 tag: 1.4.2-debian-10-r182

 ## Prometheus JMX exporter: exposes the majority of Kafkas metrics

64

 jmx:

 enabled: false

 image:

 repository: bitnami/jmx-exporter

 tag: 0.16.1-debian-10-r245

 ## To enable serviceMonitor, you must enable either kafka exporter or

jmx exporter.

 ## And you can enable them both

 serviceMonitor:

 enabled: false

 service:

 type: ClusterIP

 ports:

 client: 9092

 zookeeper:

 enabled: true

 replicaCount: 3

###################################

External S3

- these configs are only used when `externalS3.enabled` is true

###################################

externalS3:

 enabled: true

 host: "192.168.150.167"

 port: "80"

 accessKey: "24G4C1316APP2BIPDE5S"

 secretKey: "Zd28p43rgZaU44PX_ftT279z9nt4jBSro97j87Bx"

 useSSL: false

 bucketName: "milvusdbvol1"

 rootPath: ""

 useIAM: false

 cloudProvider: "aws"

 iamEndpoint: ""

 region: ""

 useVirtualHost: false

###################################

GCS Gateway

- these configs are only used when `minio.gcsgateway.enabled` is true

###################################

externalGcs:

 bucketName: ""

65

###################################

External etcd

- these configs are only used when `externalEtcd.enabled` is true

###################################

externalEtcd:

 enabled: false

 ## the endpoints of the external etcd

 ##

 endpoints:

 - localhost:2379

###################################

External pulsar

- these configs are only used when `externalPulsar.enabled` is true

###################################

externalPulsar:

 enabled: false

 host: localhost

 port: 6650

 maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes, Maximum size of each

message in pulsar.

 tenant: public

 namespace: default

 authPlugin: ""

 authParams: ""

###################################

External kafka

- these configs are only used when `externalKafka.enabled` is true

###################################

externalKafka:

 enabled: false

 brokerList: localhost:9092

 securityProtocol: SASL_SSL

 sasl:

 mechanisms: PLAIN

 username: ""

 password: ""

root@node2:~#

附录 B：prepare_data_netapp_new.py

本节提供用于准备矢量数据库数据的Python脚本示例。

66

附录 B：prepare_data_netapp_new.py

root@node2:~# cat prepare_data_netapp_new.py

hello_milvus.py demonstrates the basic operations of PyMilvus, a Python

SDK of Milvus.

1. connect to Milvus

2. create collection

3. insert data

4. create index

5. search, query, and hybrid search on entities

6. delete entities by PK

7. drop collection

import time

import os

import numpy as np

from pymilvus import (

 connections,

 utility,

 FieldSchema, CollectionSchema, DataType,

 Collection,

)

fmt = "\n=== {:30} ===\n"

search_latency_fmt = "search latency = {:.4f}s"

#num_entities, dim = 3000, 8

num_entities, dim = 3000, 16

##

#######

1. connect to Milvus

Add a new connection alias `default` for Milvus server in

`localhost:19530`

Actually the "default" alias is a buildin in PyMilvus.

If the address of Milvus is the same as `localhost:19530`, you can omit

all

parameters and call the method as: `connections.connect()`.

#

Note: the `using` parameter of the following methods is default to

"default".

print(fmt.format("start connecting to Milvus"))

host = os.environ.get('MILVUS_HOST')

if host == None:

 host = "localhost"

print(fmt.format(f"Milvus host: {host}"))

#connections.connect("default", host=host, port="19530")

67

connections.connect("default", host=host, port="27017")

has = utility.has_collection("hello_milvus_ntapnew_update2_sc")

print(f"Does collection hello_milvus_ntapnew_update2_sc exist in Milvus:

{has}")

#drop the collection

print(fmt.format(f"Drop collection - hello_milvus_ntapnew_update2_sc"))

utility.drop_collection("hello_milvus_ntapnew_update2_sc")

#drop the collection

print(fmt.format(f"Drop collection - hello_milvus_ntapnew_update2_sc2"))

utility.drop_collection("hello_milvus_ntapnew_update2_sc2")

##

#######

2. create collection

We're going to create a collection with 3 fields.

+-+------------+------------+------------------

+------------------------------+

| | field name | field type | other attributes | field description

|

+-+------------+------------+------------------

+------------------------------+

|1| "pk" | Int64 | is_primary=True | "primary field"

|

| | | | auto_id=False |

|

+-+------------+------------+------------------

+------------------------------+

|2| "random" | Double | | "a double field"

|

+-+------------+------------+------------------

+------------------------------+

|3|"embeddings"| FloatVector| dim=8 | "float vector with dim

8" |

+-+------------+------------+------------------

+------------------------------+

fields = [

 FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id

=False),

 FieldSchema(name="random", dtype=DataType.DOUBLE),

 FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535),

 FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)

]

schema = CollectionSchema(fields, "hello_milvus_ntapnew_update2_sc")

68

print(fmt.format("Create collection `hello_milvus_ntapnew_update2_sc`"))

hello_milvus_ntapnew_update2_sc = Collection(

"hello_milvus_ntapnew_update2_sc", schema, consistency_level="Strong")

##

######

3. insert data

We are going to insert 3000 rows of data into

`hello_milvus_ntapnew_update2_sc`

Data to be inserted must be organized in fields.

#

The insert() method returns:

- either automatically generated primary keys by Milvus if auto_id=True

in the schema;

- or the existing primary key field from the entities if auto_id=False

in the schema.

print(fmt.format("Start inserting entities"))

rng = np.random.default_rng(seed=19530)

entities = [

 # provide the pk field because `auto_id` is set to False

 [i for i in range(num_entities)],

 rng.random(num_entities).tolist(), # field random, only supports list

 [str(i) for i in range(num_entities)],

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

insert_result = hello_milvus_ntapnew_update2_sc.insert(entities)

hello_milvus_ntapnew_update2_sc.flush()

print(f"Number of entities in hello_milvus_ntapnew_update2_sc:

{hello_milvus_ntapnew_update2_sc.num_entities}") # check the num_entites

create another collection

fields2 = [

 FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id

=True),

 FieldSchema(name="random", dtype=DataType.DOUBLE),

 FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535),

 FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)

]

schema2 = CollectionSchema(fields2, "hello_milvus_ntapnew_update2_sc2")

69

print(fmt.format("Create collection `hello_milvus_ntapnew_update2_sc2`"))

hello_milvus_ntapnew_update2_sc2 = Collection(

"hello_milvus_ntapnew_update2_sc2", schema2, consistency_level="Strong")

entities2 = [

 rng.random(num_entities).tolist(), # field random, only supports list

 [str(i) for i in range(num_entities)],

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

insert_result2 = hello_milvus_ntapnew_update2_sc2.insert(entities2)

hello_milvus_ntapnew_update2_sc2.flush()

insert_result2 = hello_milvus_ntapnew_update2_sc2.insert(entities2)

hello_milvus_ntapnew_update2_sc2.flush()

index_params = {"index_type": "IVF_FLAT", "params": {"nlist": 128},

"metric_type": "L2"}

hello_milvus_ntapnew_update2_sc.create_index("embeddings", index_params)

#

hello_milvus_ntapnew_update2_sc2.create_index(field_name="var",index_name=

"scalar_index")

index_params2 = {"index_type": "Trie"}

hello_milvus_ntapnew_update2_sc2.create_index("var", index_params2)

print(f"Number of entities in hello_milvus_ntapnew_update2_sc2:

{hello_milvus_ntapnew_update2_sc2.num_entities}") # check the num_entites

root@node2:~#

附录C：verify_data_netapp.py

本节包含一个示例 Python 脚本，可用于验证NetApp矢量数据库解决方案中的矢量数据
库。

附录C：verify_data_netapp.py

root@node2:~# cat verify_data_netapp.py

import time

import os

import numpy as np

from pymilvus import (

 connections,

 utility,

70

 FieldSchema, CollectionSchema, DataType,

 Collection,

)

fmt = "\n=== {:30} ===\n"

search_latency_fmt = "search latency = {:.4f}s"

num_entities, dim = 3000, 16

rng = np.random.default_rng(seed=19530)

entities = [

 # provide the pk field because `auto_id` is set to False

 [i for i in range(num_entities)],

 rng.random(num_entities).tolist(), # field random, only supports list

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

##

######

1. get recovered collection hello_milvus_ntapnew_update2_sc

print(fmt.format("start connecting to Milvus"))

host = os.environ.get('MILVUS_HOST')

if host == None:

 host = "localhost"

print(fmt.format(f"Milvus host: {host}"))

#connections.connect("default", host=host, port="19530")

connections.connect("default", host=host, port="27017")

recover_collections = ["hello_milvus_ntapnew_update2_sc",

"hello_milvus_ntapnew_update2_sc2"]

for recover_collection_name in recover_collections:

 has = utility.has_collection(recover_collection_name)

 print(f"Does collection {recover_collection_name} exist in Milvus:

{has}")

 recover_collection = Collection(recover_collection_name)

 print(recover_collection.schema)

 recover_collection.flush()

 print(f"Number of entities in Milvus: {recover_collection_name} :

{recover_collection.num_entities}") # check the num_entites

##

######

 # 4. create index

 # We are going to create an IVF_FLAT index for

71

hello_milvus_ntapnew_update2_sc collection.

 # create_index() can only be applied to `FloatVector` and

`BinaryVector` fields.

 print(fmt.format("Start Creating index IVF_FLAT"))

 index = {

 "index_type": "IVF_FLAT",

 "metric_type": "L2",

 "params": {"nlist": 128},

 }

 recover_collection.create_index("embeddings", index)

##

######

 # 5. search, query, and hybrid search

 # After data were inserted into Milvus and indexed, you can perform:

 # - search based on vector similarity

 # - query based on scalar filtering(boolean, int, etc.)

 # - hybrid search based on vector similarity and scalar filtering.

 #

 # Before conducting a search or a query, you need to load the data in

`hello_milvus` into memory.

 print(fmt.format("Start loading"))

 recover_collection.load()

 #

--

 # search based on vector similarity

 print(fmt.format("Start searching based on vector similarity"))

 vectors_to_search = entities[-1][-2:]

 search_params = {

 "metric_type": "L2",

 "params": {"nprobe": 10},

 }

 start_time = time.time()

 result = recover_collection.search(vectors_to_search, "embeddings",

search_params, limit=3, output_fields=["random"])

 end_time = time.time()

 for hits in result:

 for hit in hits:

 print(f"hit: {hit}, random field: {hit.entity.get('random')}")

72

 print(search_latency_fmt.format(end_time - start_time))

 #

--

 # query based on scalar filtering(boolean, int, etc.)

 print(fmt.format("Start querying with `random > 0.5`"))

 start_time = time.time()

 result = recover_collection.query(expr="random > 0.5", output_fields=

["random", "embeddings"])

 end_time = time.time()

 print(f"query result:\n-{result[0]}")

 print(search_latency_fmt.format(end_time - start_time))

 #

--

 # hybrid search

 print(fmt.format("Start hybrid searching with `random > 0.5`"))

 start_time = time.time()

 result = recover_collection.search(vectors_to_search, "embeddings",

search_params, limit=3, expr="random > 0.5", output_fields=["random"])

 end_time = time.time()

 for hits in result:

 for hit in hits:

 print(f"hit: {hit}, random field: {hit.entity.get('random')}")

 print(search_latency_fmt.format(end_time - start_time))

##

#####

 # 7. drop collection

 # Finally, drop the hello_milvus, hello_milvus_ntapnew_update2_sc

collection

 #print(fmt.format(f"Drop collection {recover_collection_name}"))

 #utility.drop_collection(recover_collection_name)

root@node2:~#

73

附录 D：docker-compose.yml

本节包含NetApp矢量数据库解决方案的示例 YAML 代码。

附录 D：docker-compose.yml

version: '3.5'

services:

 etcd:

 container_name: milvus-etcd

 image: quay.io/coreos/etcd:v3.5.5

 environment:

 - ETCD_AUTO_COMPACTION_MODE=revision

 - ETCD_AUTO_COMPACTION_RETENTION=1000

 - ETCD_QUOTA_BACKEND_BYTES=4294967296

 - ETCD_SNAPSHOT_COUNT=50000

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/etcd:/etcd

 command: etcd -advertise-client-urls=http://127.0.0.1:2379 -listen

-client-urls http://0.0.0.0:2379 --data-dir /etcd

 healthcheck:

 test: ["CMD", "etcdctl", "endpoint", "health"]

 interval: 30s

 timeout: 20s

 retries: 3

 minio:

 container_name: milvus-minio

 image: minio/minio:RELEASE.2023-03-20T20-16-18Z

 environment:

 MINIO_ACCESS_KEY: minioadmin

 MINIO_SECRET_KEY: minioadmin

 ports:

 - "9001:9001"

 - "9000:9000"

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/minio:/minio_data

 command: minio server /minio_data --console-address ":9001"

 healthcheck:

 test: ["CMD", "curl", "-f",

"http://localhost:9000/minio/health/live"]

 interval: 30s

 timeout: 20s

 retries: 3

74

 standalone:

 container_name: milvus-standalone

 image: milvusdb/milvus:v2.4.0-rc.1

 command: ["milvus", "run", "standalone"]

 security_opt:

 - seccomp:unconfined

 environment:

 ETCD_ENDPOINTS: etcd:2379

 MINIO_ADDRESS: minio:9000

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/milvus:/var/lib/milvus

 healthcheck:

 test: ["CMD", "curl", "-f", "http://localhost:9091/healthz"]

 interval: 30s

 start_period: 90s

 timeout: 20s

 retries: 3

 ports:

 - "19530:19530"

 - "9091:9091"

 depends_on:

 - "etcd"

 - "minio"

networks:

 default:

 name: milvus

75

版权信息

版权所有 © 2026 NetApp, Inc.。保留所有权利。中国印刷。未经版权所有者事先书面许可，本文档中受版权保
护的任何部分不得以任何形式或通过任何手段（图片、电子或机械方式，包括影印、录音、录像或存储在电子检
索系统中）进行复制。

从受版权保护的 NetApp 资料派生的软件受以下许可和免责声明的约束：

本软件由 NetApp 按“原样”提供，不含任何明示或暗示担保，包括但不限于适销性以及针对特定用途的适用性的
隐含担保，特此声明不承担任何责任。在任何情况下，对于因使用本软件而以任何方式造成的任何直接性、间接
性、偶然性、特殊性、惩罚性或后果性损失（包括但不限于购买替代商品或服务；使用、数据或利润方面的损失
；或者业务中断），无论原因如何以及基于何种责任理论，无论出于合同、严格责任或侵权行为（包括疏忽或其
他行为），NetApp 均不承担责任，即使已被告知存在上述损失的可能性。

NetApp 保留在不另行通知的情况下随时对本文档所述的任何产品进行更改的权利。除非 NetApp 以书面形式明
确同意，否则 NetApp 不承担因使用本文档所述产品而产生的任何责任或义务。使用或购买本产品不表示获得
NetApp 的任何专利权、商标权或任何其他知识产权许可。

本手册中描述的产品可能受一项或多项美国专利、外国专利或正在申请的专利的保护。

有限权利说明：政府使用、复制或公开本文档受 DFARS 252.227-7013（2014 年 2 月）和 FAR 52.227-19

（2007 年 12 月）中“技术数据权利 — 非商用”条款第 (b)(3) 条规定的限制条件的约束。

本文档中所含数据与商业产品和/或商业服务（定义见 FAR 2.101）相关，属于 NetApp, Inc. 的专有信息。根据
本协议提供的所有 NetApp 技术数据和计算机软件具有商业性质，并完全由私人出资开发。 美国政府对这些数
据的使用权具有非排他性、全球性、受限且不可撤销的许可，该许可既不可转让，也不可再许可，但仅限在与交
付数据所依据的美国政府合同有关且受合同支持的情况下使用。除本文档规定的情形外，未经 NetApp, Inc. 事先
书面批准，不得使用、披露、复制、修改、操作或显示这些数据。美国政府对国防部的授权仅限于 DFARS 的第
252.227-7015(b)（2014 年 2 月）条款中明确的权利。

商标信息

NetApp、NetApp 标识和 http://www.netapp.com/TM 上所列的商标是 NetApp, Inc. 的商标。其他公司和产品名
称可能是其各自所有者的商标。

76

http://www.netapp.com/TM

	NetApp的矢量数据库解决方案 : NetApp artificial intelligence solutions
	目录
	NetApp的矢量数据库解决方案
	NetApp的矢量数据库解决方案
	简介
	简介

	解决方案概述
	解决方案概述

	矢量数据库
	矢量数据库

	技术要求
	技术要求
	硬件要求
	软件要求

	部署流程
	部署过程

	解决方案验证
	解决方案概述
	在本地使用 Kubernetes 设置 Milvus 集群
	Milvus 与Amazon FSx ONTAP for NetApp ONTAP - 文件和对象二元性
	使用SnapCenter进行矢量数据库保护
	使用NetApp SnapMirror进行灾难恢复
	矢量数据库性能验证

	使用 PostgreSQL 的 Instaclustr 矢量数据库：pgvector
	使用 PostgreSQL 的 Instaclustr 矢量数据库：pgvector

	矢量数据库用例
	矢量数据库用例

	结束语
	结束语

	附录 A：Values.yaml
	附录 A：Values.yaml

	附录 B：prepare_data_netapp_new.py
	附录 B：prepare_data_netapp_new.py

	附录C：verify_data_netapp.py
	附录C：verify_data_netapp.py

	附录 D：docker-compose.yml
	附录 D：docker-compose.yml

