Python {{EE R
ONTAP Select

NetApp
January 10, 2026

This PDF was generated from https://docs.netapp.com/zh-cn/ontap-select/reference_api_script_cc.html
on January 10, 2026. Always check docs.netapp.com for the latest.

H=x

Python A3

AT 6IZ2ONTAP Select&E B RIRIZR

JSON. AT EIZEONTAP SelectEEEEHIHIZS
ESXi LAY &R
£ vCenter B ESXi LRy T SRS
KVM LRI TI e BF

BT RNINONTAP Select™ = 1F AT UERY At 2

FATFMIFRONTAP Select&E BRI Z

ONTAP SelectiVi@ 3z FPythonf&E ik

FATFAEEONTAP Select&E BT s A/ \BIRIZR

© 00 00 =~ -

11
12
16
18
22

Python i35

FHF2IZ2ONTAP SelectEE B2
&0 LUER LU TTRIZSRERIZSF] JSON A AR TE X S eIREERE,

#!/usr/bin/env python

File: cluster.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

S S S S S S S S S S S S % S e

import traceback
import argparse
import json
import logging

from deploy requests import DeployRequests

def add vcenter credentials(deploy, config):
""" Add credentials for the vcenter if present in the config """
log debug trace ()

vcenter = config.get('vcenter', None)
if vcenter and not deploy.resource exists('/security/credentials',
'hostname', vcenter]
'hostname']) :
log_info ("Registering vcenter {} credentials".format (vcenter|
'hostname']))
data = {k: vcenter[k] for k in ['hostname', 'username', 'password

"1}

data['type'] = "vcenter"
deploy.post('/security/credentials', data)

def add standalone_host credentials (deploy, config):
""" Add credentials for standalone hosts if present in the config.
Does nothing if the host credential already exists on the Deploy.

mwn

log _debug trace ()

hosts = config.get('hosts', [])
for host in hosts:
The presense of the 'password' will be used only for standalone
hosts.
If this host is managed by a vcenter, it should not have a host
'password' in the json.
if 'password' in host and not deploy.resource exists (
'/security/credentials',
'hostname',
host['name']) :
log_info ("Registering host {} credentials".format (host['name
"1))
data = {'hostname': host['name'], 'type': 'host',
'username': host['username'], 'password': host|
'password’'] }
deploy.post('/security/credentials', data)

def register unkown hosts(deploy, config):

Registers all hosts with the deploy server.
The host details are read from the cluster config json file.

This method will skip any hosts that are already registered.
This method will exit the script if no hosts are found in the
config.

log _debug trace ()

data = {"hosts": []}
if 'hosts' not in config or not config['hosts']:
log_and exit("The cluster config requires at least 1 entry in the
'hosts' list got {}".format (config))

missing host cnt = 0
for host in config['hosts']:
if not deploy.resource_exists('/hosts', 'name', host['name']):

missing host cnt += 1

host config = {"name": host['name'], "hypervisor type": host]
"type'l}
if 'mgmt server' in host:
host config["management server"] = host['mgmt server']
log_info(
"Registering from vcenter {mgmt server}".format (**
host))

if 'password' in host and 'user' in host:
host config['credential'] = {
"password": host['password'], "username": host['user

log_info("Registering {type} host {name}".format (**host))
data["hosts"] .append (host config)

only post /hosts if some missing hosts were found
if missing host cnt:
deploy.post('/hosts', data, wait for job=True)

def add cluster attributes(deploy, config):
''"'" POST a new cluster with all needed attribute wvalues.
Returns the cluster id of the new config

LI |

log_debug trace ()

cluster config = config['cluster']
cluster id = deploy.find resource('/clusters', 'name', cluster config

["name'])

if not cluster id:
log_info ("Creating cluster config named {name}".format (
**cluster config))

Filter to only the valid attributes, ignores anything else in
the Jjson
data = {k: cluster config[k] for k in [
'name', 'ip', 'gateway', 'netmask', 'ontap image version',
'dns_info', 'ntp servers']}
num nodes = len(config['nodes'])

log_info ("Cluster properties: {}".format (data))

resp = deploy.post('/v3/clusters?node_count:{}'.format(num_nodes),

data)
cluster id = resp.headers.get('Location') .split('/"') [-1]

return cluster id

def get node_ ids (deploy, cluster id):

''' Get the the ids of the nodes in a cluster. Returns a list of
node ids.'"''

log_debug trace ()

response = deploy.get('/clusters/{}/nodes'.format (cluster id))
node ids = [node['id'] for node in response.json() .get('records')]

return node ids

def add node_ attributes(deploy, cluster id, node id, node):
''"'" Set all the needed properties on a node '''

log_debug trace ()
log_info ("Adding node '{}' properties".format (node id))

data = {k: node[k] for k in ['ip', 'serial number', 'instance type',
'is storage efficiency enabled'] if k in
node}
Optional: Set a serial number
if 'license' in node:
data['license'] = {'id': node['license']}

Assign the host
host id = deploy.find_resource('/hosts', 'name', node['host name'])
if not host id:
log_and exit("Host names must match in the 'hosts' array, and the
nodes.host name property")

data['host'] = {'id': host id}

Set the correct raid type

is hw raid = not node['storage'].get('disks"') # The presence of a
list of disks indicates sw raid

data['passthrough disks'] = not is hw raid

Optionally set a custom node name
if 'name' in node:

data['name'] = node['name']

log_info ("Node properties: {}".format (data))

deploy.patch('/clusters/{}/nodes/{}"'.format(cluster id, node id),
data)

def add_node networks (deploy, cluster id, node id, node):

Set the network information for a node '''
log _debug trace ()

log_info ("Adding node '{}' network properties".format (node id))

num nodes = deploy.get num records('/clusters/{}/nodes'.format
(cluster id))

for network in node['networks']:

single node clusters do not use the 'internal' network
if num nodes == 1 and network['purpose'] == 'internal':
continue

Deduce the network id given the purpose for each entry
network id = deploy.find resource('/clusters/{}/nodes/{}/networks
'.format (cluster id, node_ id),
'purpose', network|['purpose'])
data = {"name": network['name']}
if 'vlian' in network and network['vlan']:

data['vlan id'] = network['vlan']

deploy.patch('/clusters/{}/nodes/{}/networks/{}"'.format (
cluster id, node id, network id), data)

def add node_ storage (deploy, cluster id, node id, node):
'''" Set all the storage information on a node '''

log _debug trace ()

log_info ("Adding node '{}' storage properties".format (node id))

log_info ("Node storage: {}".format (node['storage']['pools']))
data = {'pool array': node['storage']['pools']} # use all the json
properties

deploy.post (
'/clusters/{}/nodes/{}/storage/pools'.format (cluster id, node id),
data)

if 'disks' in node['storage'] and node['storage']['disks']:
data = {'disks': node['storage'](['disks']}
deploy.post (

'/clusters/{}/nodes/{}/storage/disks'.format (cluster id,

node id), data)

def

create cluster config(deploy, config):

""" Construct a cluster config in the deploy server using the input

json data '''

def

log_debug_ trace ()
cluster id = add cluster attributes(deploy, config)

node ids = get node ids(deploy, cluster id)
node configs = config['nodes']

for node id, node config in zip(node ids, node configs):
add node_ attributes (deploy, cluster id, node id, node config)
add node networks (deploy, cluster id, node id, node config)
add node_ storage (deploy, cluster id, node id, node config)

return cluster id

deploy cluster (deploy, cluster id, config):

'''" Deploy the cluster config to create the ONTAP Select VMs. '''
log_debug trace ()

log_info ("Deploying cluster: {}".format(cluster id))

data = {'ontap credential': {'password': config['cluster']|

'ontap admin password']}}

deploy.post('/clusters/{}/deploy?inhibit rollback=true'.format

(cluster id),

def

def

def

data, wait for job=True)

log_debug trace():
stack = traceback.extract stack()
parent function = stack[-2] [2]

o

logging.getLogger ('deploy') .debug('Calling %s()' % parent function)

log_info (msg) :
logging.getlLogger ('deploy') .info (msqg)

log _and exit (msg) :
logging.getlLogger ('deploy') .error (msqg)
exit (1)

def configure logging (verbose) :
FORMAT = 'S (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
if verbose:

logging.basicConfig(level=1logging.DEBUG, format=FORMAT)
else:

logging.basicConfig(level=1logging.INFO, format=FORMAT)

logging.getlLogger ('requests.packages.urllib3.connectionpool’
) .setLevel (

logging.WARNING)

def main (args):
configure logging(args.verbose)
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

add vcenter credentials (deploy, config)

add standalone host credentials (deploy, config)
register unkown hosts (deploy, config)

cluster id = create_cluster config(deploy, config)
deploy cluster (deploy, cluster id, config)

def parseArgs() :

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to construct and deploy a cluster.')

parser.add argument('-d', '--deploy', help='Hostname or IP address of
Deploy server')

parser.add argument('-p', '--password', help='Admin password of Deploy
server')
parser.add argument('-c', '--config file', help='Filename of the

cluster config')
parser.add argument('-v', '--verbose', help='Display extra debugging
messages for seeing exact API calls and responses',
action='store true', default=False)
return parser.parse_args ()

if name == ' main g

args = parseArgs ()

main (args)

JSON. FHTF6IZEONTAP SelectEEEHIZS

TE1ERA Python NEBRGICIZESMIPR ONTAP Select S£8%8Y, WAZiRH— JSON XH1E
FRZARYEEN &R LUARTESRE 1 X E FIFECAAERAY JSON R=fl,

ESXi BRI n5E

"hosts": [
{
"password": "mypasswordl",
"name": "host-1234",
"type": "ESX",
"username": "admin"
}
1,
"cluster": {
"dns_info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

I

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",
"gateway": "10.206.80.1",
"ip": "10.206.80.115",
"name": "mycluster",
"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",
"netmask": "255.255.254.0"
by
"nodes": [
{
"serial number": "3200000nn",
"ip": "10.206.80.114",
"name": "node-1",
"networks": |
{
"name": "ontap-external",

"purpose": "mgmt",
"vlan": 1234

"name": "ontap-external",
"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlan": null
}
1y

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {

"disk": [],

"pools": [

{
"name": "storage-pool-1",

"capacity": 4802666790125

{EF vCenter Y ESXi FRYBETI &R

"hosts": [
{
"name" :"host-1234",
"type" :"ESX",
"mgmt server":"vcenter-1234"
}
I

"cluster": {
"dns info": {"domains": ["labl.company-demo.com", "labZ2.company-
demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"

1,
"dns ips": ["10.206.80.135","10.206.80.136"]

by

"ontap image version":"9.7",
"gateway":"10.206.80.1",

"ip":"10.206.80.115",

"name":"mycluster",

"ntp servers": ["10.206.80.183","10.206.80.142"],
"ontap admin password":"mypassword2",
"netmask":"255.255.254.0"

by

"vcenter": {

"password" :"mypassword2",

"hostname":"vcenter-1234",
"username" :"selectadmin"
bo
"nodes": [

{
"serial number": "3200000nn",
"ip":"10.206.80.114",
"name" :"node-1",
"networks": [
{
"name" : "ONTAP-Management",
"purpose":"mgmt",
"vlan" :null

"name": "ONTAP-External",
"purpose":"data",
"vlan" :null

"name": "ONTAP-Internal",
"purpose":"internal",

"vlan" :null

1,

"host name": "host-1234",

"is storage efficiency enabled": false,
"instance type": "small",

"storage": {

"disk":[1,
"pools": [
{
"name": "storage-pool-1",
"capacity":5685190380748

KVM R T &t

"hosts": [
{
"password": "mypasswordl",
"name" :"host-1234",
"type'":"KVM",
"username" :"root"
}
I

"cluster": {
"dns_info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",
"gateway":"10.206.80.1",
"ip":"10.206.80.115",
"name" :"CBF4ED97",
"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",
"netmask":"255.255.254.0"
by
"nodes": [
{
"serial number":"3200000nn",
"ip":"10.206.80.115",

11

"name": "node-1",
"networks": [
{
"name": "ontap-external",

"purpose": "mgmt",

"vlan":1234

y

{
"name": "ontap-external",
"purpose": "data",

"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlan": null
}
1y

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk": [1,
"pools": [

{
"name": "storage-pool-1",
"capacity": 4802666790125

FHF7RNINONTAP SelectT =i] IERI 2
el LUER LU TRIZS /9 ONTAP Select 15 SN BI5E,

#!/usr/bin/env python

File: add license.py

#
(C) Copyright 2019 NetApp, Inc.

12

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

R T

import argparse
import logging
import json

from deploy requests import DeployRequests

def post new license (deploy, license filename) :
log_info('Posting a new license: {}'.format(license filename))
Stream the file as multipart/form-data
deploy.post('/licensing/licenses', data={},

files={'"'license file': open(license filename, 'rb')})

Alternative if the NLF license data is converted to a string.

with open(license filename, 'rb') as f:

nlf data = f.read()

it r = deploy.post('/licensing/licenses', data={},

files={'"'license file': (license filename,
nlf data)})

def put license(deploy, serial number, data, files):
log_info('Adding license for serial number: {}'.format(serial number))

deploy.put('/licensing/licenses/{}'.format(serial number), data=data,
files=files)

def put used license (deploy, serial number, license filename,
ontap username, ontap password) :
'"'"' If the license is used by an 'online' cluster, a username/password

must be given. '''

14

data = {'ontap username': ontap username, 'ontap password':

ontap password}

def

def

files = {'license file': open(license filename, 'rb')}

put license (deploy, serial number, data, files)

put free license (deploy, serial number, license filename) :
data = {}
files = {'license file': open(license filename, 'rb')}

put license (deploy, serial number, data, files)

get _serial number from license(license filename) :
'''" Read the NLF file to extract the serial number '''
with open(license filename) as f:

data = json.load(f)

statusResp = data.get('statusResp', {1})
serialNumber = statusResp.get('serialNumber')
if not serialNumber:
log _and exit("The license file seems to be missing the

serialNumber")

def

def

def

return serialNumber

log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

log_and exit (msqg) :
logging.getlLogger ('deploy') .error (msqg)
exit (1)

configure logging () :

FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool') .

setLevel (logging.WARNING)

def

main (args) :
configure logging ()
serial number = get serial number from license (args.license)

deploy = DeployRequests (args.deploy, args.password)

First check if there is already a license resource for this serial-
number

if deploy.find resource('/licensing/licenses', 'id', serial number):

If the license already exists in the Deploy server, determine if
its used
if deploy.find resource('/clusters', 'nodes.serial number',

serial number) :

In this case, requires ONTAP creds to push the license to
the node
if args.ontap username and args.ontap password:
put_used license(deploy, serial number, args.license,
args.ontap username, args.ontap password)
else:
print ("ERROR: The serial number for this license is in
use. Please provide ONTAP credentials.")
else:
License exists, but its not used
put_free license(deploy, serial number, args.license)
else:
No license exists, so register a new one as an available license
for later use
post new license (deploy, args.license)

def parseArgs():
parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to add or update a new or used NLF license file.')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of ONTAP Select Deploy')
parser.add argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')
parser.add argument('-1', '--license', required=True, type=str, help=
'"Filename of the NLF license data')
parser.add _argument('-u', '--ontap username', type=str,
help='ONTAP Select username with privelege to add
the license. Only provide if the license is used by a Node.')
parser.add_argument('-o', '--ontap password', type=str,
help='ONTAP Select password for the
ontap username. Required only if ontap username is given.')
return parser.parse_args ()

15

if name == ' main ':

args = parseArgs ()
main (args)

FEFHIPRONTAP SelectEEFHIHIZS
el LUMER LU T e <17 R EmM A BRI A ££8%,

#!/usr/bin/env python

File: delete cluster.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import argparse

import json

import logging

from deploy requests import DeployRequests

def find cluster(deploy, cluster name):

return deploy.find resource('/clusters', 'name', cluster name)

def offline cluster(deploy, cluster id):

Test that the cluster is online, otherwise do nothing
response = deploy.get('/clusters/{}?fields=state’'.format(cluster id))
cluster data = response.json() ['record']
if cluster data['state'] == 'powered on':
log_info ("Found the cluster to be online, modifying it to be

powered off.")

16

deploy.patch('/clusters/{}'.format (cluster id), {'availability':

'powered off'}, True)

def delete cluster (deploy, cluster id):
log_info ("Deleting the cluster({}).".format(cluster id))
deploy.delete('/clusters/{}'.format(cluster id), True)
pass

def log_info (msg) :
logging.getlLogger ('deploy') .info (msqg)

def configure logging() :
FORMAT = 'S (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool') .
setLevel (logging.WARNING)

def main(args):
configure logging ()
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

cluster id = find cluster(deploy, config['cluster']['name'])

log_info ("Found the cluster {} with id: {}.".format (config]|
'cluster'] ['name'], cluster id))

offline cluster (deploy, cluster id)

delete cluster (deploy, cluster id)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to delete a cluster')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of Deploy server')

parser.add argument('-p', '--password', required=True, type=str, help
='Admin password of Deploy server')

parser.add argument('-c', '--config file', required=True, type=str,
help='Filename of the cluster json config')

return parser.parse_args ()

17

if name == ' main Vg

args = parseArgs ()
main (args)

ONTAP Selectdy:@ B 3z #5Pythonf= R
A4 Python BIASER7E—MERAER—SER Python 2,

18

#!/usr/bin/env python

File: deploy requests.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import json

import logging

import requests

requests.packages.urllib3.disable warnings ()

class DeployRequests (object) :

Wrapper class for requests that simplifies the ONTAP Select Deploy
path creation and header manipulations for simpler code.

def init (self, ip, admin password) :

self.base url = 'https://{}/api'.format (ip)
self.auth = ('admin', admin password)
self.headers = {'Accept': 'application/Jjson'}

self.logger = logging.getLogger ('deploy"')

def post(self, path, data, files=None, wait for job=False):

if files:
self.logger.debug('POST FILES:"')
response = requests.post(self.base url + path,
auth=self.auth, verify=False,
files=files)
else:
self.logger.debug('POST DATA: $s', data)
response = requests.post(self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %$s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait_ for job (response.json())

return response

def patch(self, path, data, wait for job=False):

self.logger.debug ('PATCH DATA: %s', data)

response = requests.patch(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait_for job (response.json())

return response

def put(self, path, data, files=None, wait for job=False):

if files:
print ('PUT FILES: {}'.format (data))
response = requests.put(self.base url + path,
auth=self.auth, verify=False,
data=data,
files=files)
else:
self.logger.debug('PUT DATA:"')
response = requests.put(self.base url + path,

19

auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())
return response

def get(self, path):

""" Get a resource object from the specified path """

response = requests.get(self.base url + path, auth=self.auth,
verify=False)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on_errors (response)

return response

def delete(self, path, wait for job=False):
""" Delete's a resource from the specified path """
response = requests.delete(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: %$s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

def find resource(self, path, name, value):

''"" Returns the 'id' of the resource if it exists, otherwise None

None

resource
response = self.get('{path}?{field}={value}'.format (
path=path, field=name, value=value))

if response.status code == 200 and response.json() .get (
'num records') >= 1:
resource = response.json().get('records') [0].get('id")

return resource

def get num records(self, path, query=None):

'''" Returns the number of records found in a container, or None on

error '''

resource = None

query opt = '?{}'.format (query) if query else ''

response = self.get('{path}{query}'.format (path=path, query
=query opt))

if response.status_code == 200

return response.json() .get('num records')
return None

def resource exists(self, path, name, value):
return self.find resource (path, name, value) is not None

def wait for job(self, response, poll timeout=120):

last modified = response['job']['last modified']
job id = response['job']['id"]
self.logger.info ('Event: ' + response['job']['message'])

while True:
response = self.get('/jobs/{}?fields=state,messages’
'poll timeout={}&last modified=>={}"

.format (
job id, poll timeout, last modified))

job body = response.json().get('record', {})

Show interesting message updates
message = job body.get('message', ''")
self.logger.info ('Event: ' + message)

Refresh the last modified time for the poll loop
last modified = job body.get('last modified')

Look for the final states
state = job body.get('state', 'unknown')
if state in ['success', 'failure']:
if state == 'failure':
self.logger.error ('FAILED background job.\nJOB: %s',
job body)
exit (1) # End the script if a failure occurs

break

def exit_pn_errors(self, response) :
if response.status_code >= 400:
self.logger.error ('FAILED request to URL: $s\nHEADERS: %s
\nRESPONSE BODY: %s',

21

response.request.url,
self.filter headers (response),
response.text)

response.raise for status() # Displays the response error, and

exits the script

@staticmethod
def filter headers (response):
''' Returns a filtered set of the response headers '''
return {key: response.headers|[key] for key in ['Location',
'request-id'] if key in response.headers}

FAFEAZEONTAP Select&EEET &5 A/ BRI Zs
el LUE A LU TRZS A28 ONTAP Select EEEFF T =YK/

22

#!/usr/bin/env python

File: resize nodes.py
(C) Copyright 2019 NetApp, Inc.

This sample code 1is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability

or fitness of any kind, expressed or implied. Permission to use,

solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

#
#
#
#
#
#
#
reproduce, modify and create derivatives of the sample code is granted
#
#
#
#
no less restrictive than those set forth herein.

#

#

import argparse
import logging
import sys

from deploy requests import DeployRequests
def parse args():

""" Parses the arguments provided on the command line when executing
this

script and returns the resulting namespace. If all required
arguments

are not provided, an error message indicating the mismatch is
printed and

the script will exit.

mwn

parser = argparse.ArgumentParser (description=(
'Uses the ONTAP Select Deploy API to resize the nodes in the

cluster.'
' For example, you might have a small (4 CPU, 16GB RAM per node) 2
node'’
' cluster and wish to resize the cluster to medium (8 CPU, 64GB
RAM per'
' node). This script will take in the cluster details and then
perform'
' the operation and wait for it to complete.'
))
parser.add argument ('--deploy', required=True, help=(
'Hostname or IP of the ONTAP Select Deploy VM.'
))
parser.add argument ('--deploy-password', required=True, help=(
'The password for the ONTAP Select Deploy admin user.'
))
parser.add argument ('--cluster', required=True, help=(
'"Hostname or IP of the cluster management interface.'’
))
parser.add argqument ('--instance-type', required=True, help=(
'The desired instance size of the nodes after the operation is
complete.'
))
parser.add_argument ('--ontap-password', required=True, help=(
'The password for the ONTAP administrative user account.'
))
parser.add argument ('--ontap-username', default='admin', help=(
'The username for the ONTAP administrative user account. Default:
admin.'
))
parser.add argument('--nodes', nargs='+', metavar='NODE NAME', help=(
'A space separated list of node names for which the resize
operation'’
' should be performed. The default is to apply the resize to all
nodes in'
' the cluster. If a list of nodes is provided, it must be provided
in HA'

' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)

must be'
' resized in the same operation.'

))

return parser.parse_args ()

def get cluster(deploy, parsed args):
""" Tocate the cluster using the arguments provided """

cluster id = deploy.find resource('/clusters', 'ip', parsed args
.cluster)
if not cluster id:
return None

return deploy.get('/clusters/%s?fields=nodes' % cluster id).json() [

'record']

def get request body(parsed args, cluster):
""" Build the request body """

changes = {'admin password': parsed args.ontap password}

1if provided, use the list of nodes given, else use all the nodes in
the cluster
nodes = [node for node in cluster['nodes']]
if parsed args.nodes:
nodes = [node for node in nodes if node['name'] in parsed args
.nodes]

changes['nodes'] = [
{'instance type': parsed args.instance type, 'id': node['id']} for
node in nodes]

return changes

def main () :
""" Set up the resize operation by gathering the necessary data and
then send
the request to the ONTAP Select Deploy server.

mwn

logging.basicConfig (
format='[% (asctime)s] [%(levelname)5s] % (message)s', level=
logging.INFO,)

logging.getlLogger ('requests.packages.urllib3'") .setLevel (logging

24

.WARNING)

parsed args = _parse_args()
deploy = DeployRequests (parsed args.deploy, parsed args
.deploy password)

cluster = _get cluster (deploy, parsed args)
if not cluster:
deploy.logger.error (
'Unable to find a cluster with a management IP of %s' %

parsed args.cluster)

return 1
changes = _get request body (parsed args, cluster)
deploy.patch('/clusters/%s' % cluster['id'], changes, wait for job
=True)
if name == "' main ':

sys.exit (main())

25

RS B

HRINFRE © 2026 NetApp, Inc.o (REFFENRF, REEIR, REMRFABESLBEITFA, INAEPZIMARIR
PRERSOARUEATRSEIERFER (B BFIHMAN, SERH. 5. REAFHEERFL
RAGHR) HITEH

MEZRRARIFEY NetApp FHELKEREAR LU T PR R R AERRRILIR

AR NetApp 12 RIF 1R, FEEMPAREIETER, SFERRTERE UL IEERZBIERMEN
FRREIER, BILEARREERSIE. EEABERT, NTFRERARAMmUERSIVERIEAERE. BiZ
M BN, 1B, ETMSERERL (BEEFRTHIEABMERS; £H. HEFES ERHRL
; EWSHE) , BEREMAUREFEHFRERL, BEHTEE. mRIERENTH (BERZHE
fth179) , NetApp HARFAIETE, BMEERENEFE LRRRBIATIEEM,.

NetApp (REEARFITEMBIE S FHERS M A S PR R EAI = it T ECRBIAF). FRIE NetApp AP EAZTVER
HER, SN NetApp AA&ABREAASHEFR = i~ ERERRESRNX S, ERNMER~mARTIREG
NetApp BYERIZFIMN. BN EREMRIRFRIFA,

AFMRPRANTMmAIEER IS ZHEE T, SNEZTFHIEFERBRIZ BRI,

BRANFIHEE: B ER. E5IsATFANISS DFARS 252.227-7013 (2014 4£ 2 B) #1 FAR 52.227-19
(2007 £ 12 B) FEARBIENF] — IEFWA"EFE (b)(3) FMEBIRBIFZHIILIR,

PSS EHIES B =R/ B RS (EXI FAR 2.101) #8%, BT NetApp, Inc. HEEES. RIE
AR HBIFRE NetApp FARBIBFMITEVRGEEELER, HE2HMAREFL, EEBRE XL
ENERNAEIEHME. 23k, SRERAEENGTE, ZFrBERaEL, WAREHEFE, BMRESR
FHIRFARIBINEE BT S RAE X EZEaRZFRNER T ER. BRASHEMENBRIN, FE NetApp, Inc. B
PEALE, FEER. FHE. Efl. B BEHETXLELHIE, ZEBRXEIPIENYIETF DFARS H%
252.227-7015(b) (2014 £ 2 B) &R EAHAIF].

BIHER

NetApp. NetApp #RiRF1 hitp://www.netapp.com/TM _EFRFIBIETRE NetApp, Inc. BIETR. EM AT HRA
il ge = HE BB & BIET.

26

http://www.netapp.com/TM

	Python 代码示例 : ONTAP Select
	目录
	Python 代码示例
	用于创建ONTAP Select集群的脚本
	JSON、用于创建ONTAP Select集群的脚本
	ESXi 上的单节点集群
	使用 vCenter 的 ESXi 上的单节点集群
	KVM 上的单节点集群

	用于添加ONTAP Select节点许可证的脚本
	用于删除ONTAP Select集群的脚本
	ONTAP Select的通用支持Python模块
	用于调整ONTAP Select集群节点大小的脚本

