eSS =4
ONTAP Select

NetApp
January 10, 2026

This PDF was generated from https://docs.netapp.com/zh-cn/ontap-select/concept_api_rest.html on
January 10, 2026. Always check docs.netapp.com for the latest.

H=x

FA=RNLRI B

=

HEBENEIEONTAP SelectfB¥25E TREST WebAR S5 £t

W{ATi/EIONTAP Select Deploy API

ONTAP Select Deploy APIFE A2 (E1S1E

ONTAP SelectfyiE KM APIZE 55

fEFIONTAP Selectiy{Ek 3t RiF#ITR L IR
BRI 23 151R)

XN 5 281/ 18]ONTAP Select Deploy APIZ #i

J518JONTAP Select Deploy X A4 TiE

T fEFHITONTAP Select Deploy APIiEF
TEmEtiE

7EfEFONTAP Select Deploy APITEF Z Al

TEF1: TEESXi_LEIZEONTAP SelectB ¥ =i EEES
£ Python i418]

fE{E A PythonifEJONTAP Select Deploy APIZ Bl

T f#BEF T ONTAP Select DeployRIPythonfiizs
Python A3

FAT6IZ2ONTAP Select&EEFRIRIZR

JSON. FTEIZEONTAP SelectEEE#HIHIZS

FBFFIMONTAP Select™ S i Al IERIRI 2

FATFMIBRONTAP Select&EERIRIZ

ONTAP SelectiVi@ 3z FPythonf&E ik

FATFAEEONTAP Select&E BT s A/ \BIRIZR

© 0 00 00 N N N O W NN =2 2 -

W W W NN 2 A a a Q
© AN O A NN O OO

A NLIME L
A

FEFEFIEIZONTAP SelectfE B+ EE 7 REST WebfrRSZ £l

RIAEIREEHE (Representational State Transfer, REST) 2—MBATFRIESHAR
Web W AEFIIE. Fi%iT Web fRSS API B, ESBI—AHABARMRESLR, ATFA
;:FEHZHE %EElJJ\/ # EE/E:\’{kILa\O ﬁﬁHEEUILTjJ‘TM*D*T/EjJﬁB§*D EE ONTAP Select
SERHEM T RIBRIER,

SRR PR

MESRABNE Roy Fielding t§1ER#ER "Dissertation” 2000 £7£ UC Irvine K& £, Bi@d—AREIFRENX
MRS, XLREIHFESH T ETF Web N BREFAERE NN XLERFISRIBEFERATIRSBEMNHNEF
i / IRSS2SZEMEEIL RESTul Web BRSS R T2

BIRNIASERTR
RREET Web WRARHIELRAM, IZE REST Web RSN AR, REIRIHESEE:

IRBRRARETRS B[RRI RRERNEIRZR, ZRAUEXH, FHES, AENEELE, &
RITET REST Web IRSHINAREFE, BRBETHNESZ—EIRAIHER,

* RIRASHKBOASIRERRNE X IBER THRERRIVRAEZ—o HIBFAE RS UKRBFEMREE
B GRES S E

EF' mAl RSS2 Z BIRTHOES, LIERIE®EA CRUD (812, XEY, EFAMER) R IHRMERZIRAVR

llb\ o

URI i

WATEFAE X BRFR S A R E XIS REST BiR. B RFIEMNIG S MRIEME S ER S —RRIRRR
(Unlform Resource Identifier , URI) o URI g7 —MEEESR, AFAMNEHINENZREZEE—2T,
HF—RRENI2S (Uniform Resource Locator , URL) @—M™HETF Web ARSSHY URI K8, BAFHriRFiGRE
B BRBEEURMTFXHEE RN BER QT

HTTP &2

BXAFHENY (HTTP) 2 Web IREEF intliRSS 28 BRI E XA RIVIERMMAH 209N Figit
Web RSN FEFR, HTTP &hid (5140 GET #1 POST) SRRSYEIE R U MAEN AR S EIRI27E,

HTTP AT, Eitt, BE—NES FRE—ABXBERMIEN, EBINEE KA STEIER / NN HIERMS
By HTTP A3k,

JSON 1L

BAERILEE ZMAE NEF A IHMRS S 2 EHTEA SR, EREANED (LUK Deploy REST
API HRfEFRYIED) 2 JavaScript WRFTRZE (JSON) o JSON B—ifTlATE, AFUAXAFRARTE
BHIREN, ARTERAEARFEIRSER.

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

90faTi/AIONTAP Select Deploy API

FTF REST Web fkSEBREBRIREMS, RALLALIET ZHMARRFG IR ONTAP
Select Deploy API .

@ ONTAP Select Deploy i #I REST API ESEE— 1 hidES. APIERZSS 5 Deploy R4S T
*o ONTAP Select 9.17.1 Deploy EIES-FHIEFE S REST API k7K 3,
Deploy XHREFEYS AR RE

JH18] API E’JIEHTELL ONTAP Select Deploy Web FiF R, X523 API HIRIERF AEAILITER
B EIRE. EE AT LLEE Deploy SRR S 1T REIFIAILL API o

ONTAP Select Deploy Bx#/1 X4 U@
fERAX 5288, ONTAP Select Deploy B TIEIRME T — M EBIAINR. BRTIREEZRITE AP FHE

By EZ 50, ILTEE BFE AP BIFAREER , SESMEARNBASHEMEMET. APIHEARDNZITR
[ERITHRE I B 25!,

BENXIERF
&R LUER Z MR EMN4RIZIE S 1 T Aifin Deploy APl . & ILIEINEIE Python , Java #1 CURL . f#F API

HIEFE, MIA TAEZY REST Web IREZEFin, BIIFERRIEES, ErIUEF T AP, HEHXB5E)
1T ONTAP Select ZfZ,

ONTAP Select Deploy APIFYE A (E4F1E

2SR REST 81 T —HBRMNHARNRESER, BE1 AP BEHE B ATREREI AR
o TEfEA ONTAP Select Deploy APl Z &, &N T ## API E’Jﬁfﬂﬁ.:.,%'ﬁ[l?sﬁfﬁﬁﬁo

MM EIEIZF NS ONTAP Select T
M EEIZRF host_ ZFEE ONTAP Select ERIMAIIZOREMF 8. TEREMYEEZFEN LEFZE ONTAP
Select M EE LT 7ERN ONTAP Select RZSHY, ZEMMIGHAA _vp T _o 7 Deploy REST API hR

A3 F, ENATRNRBMIA, XEMAURLI—MNZXRER, HR—1EZ1 ONTAP Select Ti R E] LATE[E]
— B EERERF ENLE1T.

I RIFRRF
SIS N RRLFAIMNRE, RASAESIE—ME—IRIRRT. XLEARMRTTTE ONTAP Select Deploy BI4E

Pl EB 2R/t RHSIBHWREGIN APIIERG, X ID ERHREZ] HTTP FERZEY location *T:‘-
FRERRER. E5IRFREGRY, ERLURRIMMRTHERSIFRAFERE.

@ FHRIMRARTHIRN B AZE T AR BN, NEHS|AXBEMNRE, A NIRIEEETEAM AP
AR L EBRIRR.

ERIRIRRT

ENRIIEY APl IEREBE DI — T ME—1RERT . HAMPRRTEIEXREL HTTP IINAY requis-id fRskHiR[E], &
A LUERIERINRAFT RAITEMIE AP IERIMN ESRVER. FI90, ERLIARIEIEK ID ﬁ?%‘ﬂ’]ﬁﬁﬁ%ﬁi

h 14
HEG

Cikzitt=r gl
RS BMITHE P IHIEIN HTTP IERMNEE AN E R

* BT RS SFFILAIHITIER, HERRSHES 200, 201 5 204 HITHIA.
* RYRSFEZBRAEARSMRED 202 #HITHN, XRTRSBEZER TP IHBERHBIEEESHKTHK
iERK, REMINERMASIIENHI, “FuEdEHth API ERRMEE,
HiA B TR KB LB TRIRL
BE, EAARERERKNEA TR SERS S LEREEESZRILIE, A Deploy RESTAPI
i, 8MEaESHSEI—MELXNKRHTHE, EVNRSRIRESHREIER, FIMNMETRKS. CIERE
afEsE, BEHTTP MEAREIFLNER, BEEE—RRAR,.

B EEEREI R LE XE AP EBRRIIEAK,. EXEMER , 15& N asynchronous processing
using the Job objection o

BRTERELNRZIN, EEA] OB MG ARAE T RAIBINTRNY, B

* EHERERILUERRIGMNREIRTIER ID ERSKE AP ERXENFIEEHHEE. FHEERREEs
RIHERARMET ST, ERRERE R BRER.

* BERESFIREZ N ERERE—MREHRSE, EoUEEIE EERE IF R R IR K.
ek
Deploy API R TR/ A:

* FREREMEIT ML Deploy IRZ&EMEFinZ B ZIXHFIEREDES TLS 1%, RNSZRHERMER
WE LR HTTP hille 35 TLS 1.2 Ao

* HTTP S RIEEARERIIERATEN APl EE, 8 MEREAIN—1 HTTP #53k, EFEE basebd F
IR AP ZFE,

ONTAP SelectfyiE kMM APIZESS

/X Deploy API ARES={EN HTTP 153KH1T45 Deploy B, tiBEREREFIRER
KEABIMEN,, BEIESK / MR #5400 APl 555, 7£1EF Deploy AP ZEi, ENAERI AT
FHIERRmALZ 2 U NREN EHARS.

1= APHIERAVINEE

A LRl @ HTTP RIS BRI SHIE AP A,
TARITA

B ATE HTTP IERPEE S MRk, 8!

* content-type SNRIERIEXEE JSON , MHFEIARKIEE A application/json o

* BRMRMNIEXEE JSON , MHAIEIEIRKIZE application/json o

* BNERFHEIEHISENRAFR EMELD, HLL base6d FRIEHITHID,
ERIEX
BEREXHABER K ERAMR. HTTP EREXEEUTREZ—:

* BARWATE (FIUNFERHETT) /Y JSON WR

H}

4TS

AHER GET 89 APIHARN, Ea]IRIEEAE MRS FEREIIINR, Fi0, EaJLUEE— N EBILERNE
ffE:

* <field>=< &iFE >

g%T*ﬁﬁﬁEEEZ%, EAEMEEA A A TRE—AETERNNSR. ONTAP Select <541 TFFARBYMEIZR
To

=B Description

- =F

< INF

> AF

& NFRET

>= AFREF
14

! RETF

N RERBECRT

TER UEEEHREA null RBFHESBE (! null) RBEEEIGE TRHEFERE—ANR,

RN RFER

BHNERT, /A GET &% APHARAN, (VREIM—IFA— I RS IMREEY, AR TR AESD
HEHZH, HEAMREEME, ERILUEIT U TARER fields query SEOERHMM REM

* BINFERIERE fields=* ERARMIRS SFEAFTLEHP R/ FARTEL IR AIH RN RFR.
* BREINFRIEE fields=* LMNEMENRFER, SEFEMIMRSSFLELEILRNFR.
FEOERER fields=FieldName IEEFMENHLIFR, BRENFRE, BAERESDIRE,

ENERIESREL, ENIGKHEFRZENEETR, & R’ﬁ‘é?‘ FENOR—AHARNABEINFTR. B
AR E B9 25H NetApp IRIBRBMEREDHTHAE. LAEFRREVD KA LMY EL,

PN RHITHF

FRWEFIIE RN REX NBINRFIRE], ERILUER order_by EISHUUNFEZMMAFHFREN
iR, $0RFAR: order by-=< FERM > asc_desc

fBan, el iRpERIT type FEHIF, AREARFX id HF: order by-type desc , id asc
MRBEZNEE, WHEREZSIREEITFE.
DI

M GET & AP EALURRIFE—XENNRESH, RIAMBERTREIMELENNR, WRFE, &AL
TEIEKPEA max_records ESHRFIREIRIZRE. FIUl: max records=20

MRFE, TIURKESHESHMETISHRESER, UWENEREMTEE, §iM, UTRERZIREEEEN
BlZEEMAY 10 MRHKEMH: time=2019-04-04T15 © 41 © 29.140265Zs&max_records=10

ERILEE AR ZIXZ MERKDNEERM (HEARRER) . RENES APHRARNRERE—
HERETNRMHEHERA— B EIE,

iR API MR
B AP IEREBSE MM E P IRHIMLN, ErEMN REERTMII, HFRIESEENEZHMEUE,
HTTP R&KEE

THENEAT Deploy REST API {ERRY HTTP K&,

e =\ Description

200 i RNARCEFN RAVFARI.

201 [SherlFes ERDIEIENR; IEMNATKE S RAIE—IRIRT,
202 BER ERMKEEIETHEEFLRAITIENR, BERIERARTH.
400 BEREIR EEERBANTEIRAIEAE S,

403 BELE RFHEIGER, HRHRIELS,

404 RILE BERP5|ANAFERFE.

405. AAVERLLSEZE BERRZFERPH HTTP 5hid.

409 R FHEIEXRRK, EALXNREFT,

500 REREIR AR5 28 & £ —ARNERIRIR.

501 ESN Itk URI A1, BIREHRITIIERK,

MRz ARk

Deploy ARS588ERAY HTTP NN B & Z M5k, HPEE:

* FPRIIRY API iEKEY request-id #39 BlE — MNME—BIERIRIRRT.
 UECIENREY, UEILEESHNRITE URL,, BIEM—WRITIZR,

MR IESC
5 AP ERKEXRIMMNATREN R, SEEELUIERIIBRIN KM MR MMIESOEE JSON REH,
* BONRAURIEERER—HFRROSETNR, FIa0, ERILUER GET ERM—IRRFTIQRERFATE
ERIE,

* ZPNKRAUM—NFREBEREIZ MR, AFFEBERT, HMIERA—HEEN, HF nun_records &
TEENREFIHARNICRMERIEE, FIN, EAIUOREESEFPEXNFAET R0

* R RINRZ D IE APLIER, WREFLXNSR, BTEERGES. F0, BTHESEN POST 5
ReFTREHERRBIEI R,

. Egrror MRIREEFHIR, WIRLIR[E] Error WK, g0, EZRHCIZBFEFERIEEE, ERIEIEIRHE

* FHEFELERT, FREEEHEE, MEEXAT. W0, £/H delete MIFFIMEBENGE, MHEXAT,

{EFEONTAP Selectt{EI IFRH#ITRED R IE

RLE Deploy APl R (LEHECIBHERENER) ATEELLEMIAREKMBYEIA
BESERl. ONTAP Select Deploy &= &% AMEX L KB EIE1TRYIE K,
EREN X RIERIZH EK

AHFTIETHAPIIERRG, HTTP MM 202 RRIIERERINIVIEH IR, BREARTTM. LFIREE
NEEESHTARE, ENEFmEITHN HTTP MaNfS, WESKRLSEET. MY EEFINRBMEEK,
BEEE—TRRT,

() M3 ONTAP Select Deploy A TEIUHEMILL API IHRRSET,

B SAPHERREXBIFIL TR

HTTP Iz iR EIRRL R BEZ N E M. ERILIER state BIEUAEIBEREEMINTTM. (FlXKRETLAE
FUTREZ—:
* 2HA
* I[ETEIBTT
* success
* KW
ERIIEL N R AL MMESRIR RS, A UAERAMMAE: ISR M:
* AERIEIERE 1 BLRE HFTFIRES
* REEREUTERZ—H, F2REKEEEREIRE:
° RZSBYERL B EALLAC IR IR (AT B HART (Bl (B EE iR
° EBREEIHE (13120 7))

RN KIINERBER APLHERARERFLNR. B, BRKNLIHEREERIEWSI
poll timeout fl last modifiedo,

ERIALERKICIRALD Deploy BEMHL LY TESI 2,

BFEEZFERNEIIRES B
ERILUER U TERIRESBRERES AP A/
1. EERE L APl M.
2. BWERTERIIHERZIER HTTP MR 202 .
3. MR IE X AR EXE L I R BIPRIR R o
4. EIFERF, TS NEBRPRITUTRE:
a. RENE A KB ITERIELH LFPRS

b. NRIEU A FIELIRE (BHBA, EEETT) , BEMRITIFE,

5. HEIARILEIRES (BRTh, KK) ARl

(EdZEpURART VT
TEfE AN 528347 ONTAP Select Deploy APIZ i
7E1E A Deploy B TIE Z A, ERCFEUTLA.

BE %!

ﬁD%ET‘#LﬁﬁE PEEIRESITREAREER AP, MNZEEIZIHET. XL AT ELAIEIE
EXR, BREESENERNEERAN APIER. BXIFAES, 152 0fERA Deploy REST API I LB

*EO

JSON REIFSEHEX

S AP ERESEXENE LER - INHITIRE, HPEELERE, ERSHM HTTP REHRE,.
tesh, EERTLUER AP IERAPARZFrEMABY JSON BUFAES, W RFR:

* RHEWIRTE API AR LR example value , W= E2RZIFABYEE JSON £, EA]LRIEFEREUL
TEFRE B EIERAYEEN.

* Model SR B & Model , MEET—15EEB JSON S#HFIER, HPSISHEE—NalEER o

& API RSBV EEEIN
%ﬁﬁ Deploy XHETIEHITHIFAE API R{EXNSKESIRME, BER, FEBEIRMEIE, EMMSMPREICE S X

J518]JONTAP Select Deploy X4 T

f&wAZih 1] ONTAP Select Deploy BXHI A TIEA BEE R APl XA, HFohxt APl AR
WATIR)EER

a2 Al

SRR F T M
* ONTAP Select Deploy FEEIMAHY IP thilk skl
- BERNEAFZINRG

pZ
1. 7ENIE 2SN URL Hi% * I\ * ¢

* https://<ip_address>/api/ui’
2. FHEEGAFRENEEER,
&

IEETIF 2R Deploy SXHMITI, TNERERFIZIEAARERA.

T fEFHITONTAP Select Deploy APIEH

FiE API ARBIFAE SR BBEBRINIERH ERTE ONTAP Select Deploy BXH1 AW
k. @I THRENAPIAR, ELUARIMERRE AP ARRIFHAE S

ez el

&S R E| ONTAP Select Deploy BN T, EATE R BIFEEEEERT /9 ONTAP Select SEE8E 3 ECRIME—
FRIARTo

KXTFULES

1ERTLAfER ONTAP Select ERFHME— AT TR ZERNELERE R, EIRAIF, RKiREYIEN " KL
"HIFTE TR, BR, FARIESE, BNIUERFAFBIREFR,

T
1. EEDL, RPEIKRES, AERE *£8
2. BB * 3REY [clusters/ {cluster_id} * Al E/RATFiR[E] ONTAP Select 85 S APl ABRFAEE,

TEmiEHtzE
7EfEFHONTAP Select Deploy APIT{EiZ 1
EROEFTEENFERIERMRE

TRRIERPERRIAPHER

ONTAP Select XWX TIE B & & REST AP ARRNFAREE. TIERARGIPERINEDN AP ERENXES
EXHENEEERIERMENGER, MARELLAEEXLEFMER, HWEE APIBERG, ERIUEEZ
ARNTBFAES, BERASH, WA, HTTP RSHBMIERGERE,

TERFEIED AP ERESEEUTER, UBHEEXENE EEXIIER:

* K51 AP AR SEX I TTE _EIRIhEER X X E 5 #1THLS ., BEFSFEN AP AR, BRIEITHEK
=, REEBTHHENAY API 35,

https://<ip_address>/api/ui`

* HTTP hiF] HTTP shif A FARRAKM ZFERITHRIF. &1 AP ERERES— HTTP ZhARATT.
* BRILBREATHEERTRARNRFERT R FIERNKERR. BEFHHIMMEZC URL F, 1L
A THRRZRRAIEEE URL -

ME—PURLUERIHIGREST API
F2T ONTAP Select XH4TIEI Z 5, EiRAI L ERE @D Python H4RIZIE S 1410) Deploy REST APl , 1EX#iE

T, il URL SiFRBAAETIENERN URL HERE. BiZAR API B, 27008 /AP MEANEBZEA®RO
FRIH. BIg0: - http:/deploy.mycompany.com/api’

T1E1: 1EESXi_L6IZEONTAP Select® 15 21 R

& LUTE vCenter BIERY VMware ESXi 4 EZPE LTI ONTAP Select &8, IEETRE
R F(ERRIFRIIE IR EE B,
EE0ETIEREUTE R TERARE:

* ESXi EMNAZ vCenter (HRIZEH) HIE

* EEPFERSITREEN

© REHEAEMERIFRNEEREE LR

* EANEKVMEPWIEERER. MAZEVMware ESXi

1. ;3## vCenter Server £iE

7EEREEIH vCenter Server BI2AY ESXi MBS, ERATIEEMENZAIRINEIE. SA/S, Deploy EI2S:FHIE
el LUE R EER vCenter 1T &5 195031,

el HTTP ©hid BRZ
= Lol /security/credentials
i

curl -1X POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step0l 'https://10.21.191.150/api/security/credentials’

JSON i@\ (FE01)

{

"hostname": "vcenter.company-demo.com",
"type": "vcenter",

"username": "misteradmin@vsphere.local",
"password": "mypassword"

RhIBHA
=

fait
* (UEMNARAPRIEE ID
* R R

2. GEM B EERIZF

BRI — T EMNEERZF N, HPEE ONTAP Select T1 R BIEIM G EEPIZTT,

51 HTTP 5h3d 2
=ic3 bzl /hosts
il

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step02 'https://10.21.191.150/api/hosts'

JSON fIN (55 02 %)

{

"hosts": [
{
"hypervisor type": "ESX",
"management server": "vcenter.company-demo.com",
"name": "esxl.company-demo.com"
}
]
}
Rb3BAAY
=7
el
* (UEMBNARKPRIEA ID
* R R
3. BUEBSEEE

€172 ONTAP Select &£8#8Y, RASIMEREEACE, HH Deploy ZBIERT =B

]l HTTP Ehid BR1Z
=% yZil [clusters

10

e

WFETRERE, TiHSE node _count FIEEN 1,

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k

-d @step03

'https://10.21.191.150/api/clusters? node count=1'

JSON AN (5 03 %)

"name" :

LS EE it
ik

fath

"my cluster"

* (UEMANARAPRIESS ID

4. FCESE

FECESEN, KIURESITEM.

e

HTTP zf3d B’z

patch [clusters/ { cluster_id }

AR EREE ID -

curl -i1iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k

-d @step04

'https://10.21.191.150/api/clusters/CLUSTERID'

JSON i\ (5 04 &)

11

"dns info": {
"domains": ["labl.company-demo.com"],
"dns ips": ["10.206.80.135", "10.206.80.136"]
b
"ontap image version": "9.5",
"gateway": "10.206.80.1",
"ip": "10.206.80.115",
"netmask": "255.255.255.192",
"ntp servers": {"10.206.80.183"}

Rh IR
m%

fath
7

5. 0RTI R A
Deploy BIESLAREF SR ZERN BEMT RIMRTTMER, FEETRZA, BIREDERI D

el HTTP Ehid BRiZ
=5 c FREX [clusters/ {cluster_ id} /Ts&
&l

AR ERES ID o

curl -iX GET -u admin:<password> -k
'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=1id, name'

Rh IR
m%

fath
* BIMEHEHIIER TR, ZTRERE—L ID AR

6. RETS
ERTHTRRERARE, XEATRETSN= AP EAHNE—,

%3 HTTP ©5id iz
iz R [clusters/ { cluster_id} /nodes/ {node_id }

12

e
T URMER IDMTR D,

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

JSON i\ (£ 06 &)
RN TURHEETIT ONTAP Select T EBIEMN ID

"host": {

"id": "HOSTID"

by
"instance type": "small",
"ip": "10.206.80.101",

"passthrough disks": false

LS EE it
ik

fait
7

7. RERTI LS

BRIHRE BT RPN RERNIIENEENS. NHNEFATETREE.

2551 HTTP &hid BRIZ
£ FREX [clusters/ {cluster id} /nodes/ {node id} /4
EHf

TR MER D MR D,

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/
clusters/CLUSTERID/nodes/NODEID/networks?fields=id, purpose’

LS EE it
ik

fait
* BRMEREARNEAE, SMERDIEART REVENWE, SiEE— D AR

13

8. BELE T mML%
BB ESIENEENS, NENETATETRER,

() XLUTAPHEBRTASER FR, SRE—R

]l HTTP 5hid B1F
=S5t patch [clusters/ {cluster id} /nodes/ {node id} /networks/ {network_ id}
&l

AT ER D, TS IDAMLID,

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step08 'https://10.21.191.150/api/clusters/
CLUSTERID/nodes/NODEID/networks/NETWORKID'

JSON i@\ (5 08 &)

BHRBERHEMEET.
{
"name": "sDOT Network"
}
PSSt
EiEZ
i
7

9. LB RIFfEt

REETRNRE—T 2EEFEL, &rILLUBY vSphere Web Client 3§ Deploy REST APl (RIiE) HER BTE
fifitt,

el HTTP 533 iz Yes
=5t patch Iclusters/ {cluster_id} /nodes/ {node_id} /networks/ { network id}
il

TR RS ID, T = ID MM ID

curl -i1iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

14

JSON fN (5 09 &)
MBEEHN2TB,

"pool array": |
{
"name": "sDOT-01",
"capacity": 2147483648000

SIS LE it
ik

b
x

EREEE
EESHNTRE, ERIUBEEE.

%51 HTTP zhiF BRIZ
£ bl [clusters/ {cluster_id} /Deploy
S

B e (ERE% ID o

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @stepl0 'https://10.21.191.150/api/clusters/CLUSTERID/deploy’

JSON fIN (5510 %)
iRt ONTAP BEIE R BIZRT,

"ontap credentials": {

"password": "mypassword"

Rh A
S5

fath
* PR R

HXEER
"ERZE ONTAP Select&EE¥RI90R 1T (L S

£ Python 17(7]

7E{EFAPythonif[AJONTAP Select Deploy APIZ Hij
EIE17 I Python IR Z B, S TUERIFIFR,
1517 Python IR Z B, MAHARIMEECE EH:

* BB ERAEARAR Python2 o, XERAIESE SR Python2 #1717 Mid. ENTENAIZIEE!
Python3 , {BiEREIFRAIENH.

© WAIMEEEIERHN urllib3 FE, Er] IRIEIFIEE EER pip S EM Python BT A,

* IBITHIABE P in TG BE A58 45118 ONTAP Select Deploy BE3#Lo
tesh, EEBTAEBUTER:

* Deploy FEEHMWLEY IP ik

* Deploy BIE A, AR ZFEE

T #2iE 3 TONTAP Select DeployfJPythonfilZs

ERILAEAR Python BIZSATT 20 A RIEIESS. 1£3LBY Deploy LA ERIXEMIZ 2
A, NS T ARXAERIAS,

EAIRIHHE

RIS BOIR A LT 8 A :

* NEPIRITEAB S LITRERITER UNEREREERNZ A iHITENIET Python flds, BXIFMAESR
, BB _FHEZAET o
* R CLI mASRE MHIAESETMANSEIE CLI R#EITHEH.

* RERAAX SRS S REEASIREGAN o QZEMIFRERRY, HOURM JSON ECEX . M
TIRVFANER, AIUREEBIFRNEX o

* EREAZIHERERIFER deploy_requests.py B1E—1 3, ESS|NABRSMHIZER,
elfER-S e

@A LAGER cluster.py BIZSBIE2 ONTAP Select &2, 1R#E CLI S#A JSON MAXHRIAR, &R LURIN TR
TR SR B BRBIF R -

* BB ERFE] LUEFERESXiZIKVM (BURTFDeployhii), 2BEZE| ESXi i, IV EIRIERF R LR

16

https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html
https://docs.netapp.com/zh-cn/ontap-select/deploy-evaluation-ontap-select-ovf-template.html

vCenter H{TEIE, o] IR FEN.
s EBARNEAUERT A HE T RER,
* R hRE A P AR VF BT E & BT LUSE R ik Al B W SR B9 4 P ARV el ISP B &L B

LERIZSEY CLI B NS EEIE:

* Deploy BRSS 238 FEHN R EK 1P thilk

* EERBAPKFPIERS

* JSON ECEXHHER

* SHERHAFTRE
AT R RIIE

NRIEFIHBLESER, WALREERMZ add_license.py AN T RAIN—MFRIE, &R ATEERERRFZ A
B2 R AN AT,

LERIZSHY CLI B NS EIE:

* Deploy fRZZ2589EN R T IP ot

* BEGAFKPNZEE

* YFENES R B TR

* BERERMFRIEFRR ONTAP AR &
* ONTAP FFHVED

fhpREREE
EAI LAERRIZA delete_cluster.py MIBRILE ONTAP Select 5%,
LERIZAREY CLI SNBSS EEIE:

* Deploy ARSZ 230 FEN R 3K IP thilk
* EERBAPKFPIERS
* JSON B X 4RI Z R

Python i3/l
BT 6IZ2ONTAP Select&EEF RIS
ST LUE A TFRIZSRIERIZ<F0 JSON AN G EX NSO EER,

#!/usr/bin/env python

File: cluster.py

17

18

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

S o S S S S S SR S S S S o ok

import traceback
import argparse
import json
import logging

from deploy requests import DeployRequests

def add vcenter credentials(deploy, config):
""" Add credentials for the vcenter if present in the config """
log _debug trace ()

vcenter = config.get('vcenter', None)
if vcenter and not deploy.resource exists('/security/credentials',
'hostname', vcenter|
'hostname']) :
log _info ("Registering vcenter {} credentials".format (vcenter]|

'hostname']))

data = {k: vcenter[k] for k in ['hostname', 'username', 'password
"1}

data['type'] = "vcenter"

deploy.post('/security/credentials', data)

def add standalone host credentials (deploy, config):
""" Add credentials for standalone hosts if present in the config.

Does nothing if the host credential already exists on the Deploy.

mman

log_debug_ trace ()

hosts = config.get('hosts', [])

for host in hosts:

The presense of the 'password' will be used only for standalone
hosts.

If this host is managed by a vcenter, it should not have a host
'password' in the json.

if 'password' in host and not deploy.resource exists (
'/security/credentials’,

'hostname',
host['name']) :

log_info ("Registering host {} credentials".format (host['name
"1))
data = {'hostname': host['name'], 'type': 'host',
'username': host['username'], 'password': host]|
'password’']}

deploy.post('/security/credentials', data)

def register unkown hosts (deploy, config):
''' Registers all hosts with the deploy server.
The host details are read from the cluster config json file.

This method will skip any hosts that are already registered.

This method will exit the script if no hosts are found in the
config.

log _debug trace ()

data = {"hosts": []}
if 'hosts' not in config or not config['hosts']:

log_and exit("The cluster config requires at least 1 entry in the
'hosts' list got {}".format (config))

missing host cnt = 0
for host in config['hosts']:
if not deploy.resource_exists('/hosts', 'name', host['name']):
missing host cnt += 1

host config = {"name": host['name'], "hypervisor type": host]
"type'l}
if 'mgmt server' in host:
host config["management server"] = host['mgmt server']
log _info(
"Registering from vcenter {mgmt server}".format (**
host))

if 'password' in host and 'user' in host:
host config['credential'] = {

19

"password": host['password'], "username": host['user

log_info("Registering {type} host {name}".format (**host))
data["hosts"].append (host config)

only post /hosts if some missing hosts were found
if missing host cnt:
deploy.post('/hosts', data, wait for job=True)

def add cluster attributes(deploy, config):
""" POST a new cluster with all needed attribute values.
Returns the cluster id of the new config

log debug trace ()

cluster config = config['cluster']
cluster id = deploy.find resource('/clusters', 'name', cluster config

["name'])

if not cluster id:
log_info ("Creating cluster config named {name}".format (

**cluster config))

Filter to only the valid attributes, ignores anything else in
the json
data = {k: cluster config[k] for k in [
'name', 'ip', 'gateway', 'netmask', 'ontap image version',

'dns_info', 'ntp servers']}
num nodes = len(config['nodes'])
log_info ("Cluster properties: {}".format (data))
resp = deploy.post('/v3/clusters?node_count={}'.format(num_nodes),
data)
cluster id = resp.headers.get('Location').split('/"') [-1]
return cluster id
def get node ids(deploy, cluster id):
''"" Get the the ids of the nodes in a cluster. Returns a list of

node ids.'''
log _debug trace ()

20

response deploy.get('/clusters/{}/nodes'.format (cluster id))

node ids [node['id'] for node in response.json () .get('records')]

return node ids

def add node_ attributes(deploy, cluster id, node id, node):
''"'" Set all the needed properties on a node '''

log_debug trace ()
log_info ("Adding node '{}' properties".format (node id))

data = {k: node[k] for k in ['ip', 'serial number', 'instance type',
'is storage efficiency enabled'] if k in
node}
Optional: Set a serial number
if 'license' in node:
data['license'] = {'id': node['license']}

Assign the host
host id = deploy.find_resource('/hosts', 'name', node['host name'])
if not host id:
log_and exit("Host names must match in the 'hosts' array, and the
nodes.host name property")

data['host'] = {'id': host id}

Set the correct raid type
is hw raid = not node['storage'].get('disks') # The presence of a
list of disks indicates sw_raid

data['passthrough disks'] = not is hw raid

Optionally set a custom node name
if 'name' in node:

data['name'] = node['name']
log_info ("Node properties: {}".format(data))

deploy.patch('/clusters/{}/nodes/{}"'.format(cluster id, node id),
data)

def add node networks (deploy, cluster id, node id, node):
''"'" Set the network information for a node '''
log_debug_ trace ()

log_info ("Adding node '{}' network properties".format (node id))

num nodes = deploy.get num records('/clusters/{}/nodes'.format

21

22

(cluster id))
for network in node['networks']:

single node clusters do not use the 'internal' network
if num nodes == 1 and network['purpose'] == 'internal':
continue

Deduce the network id given the purpose for each entry
network id = deploy.find resource('/clusters/{}/nodes/{}/networks
'.format (cluster id, node id),
'purpose', network|['purpose'])
data = {"name": network['name']}
if 'vlian' in network and network['vlan']:
data['vlan id'] = network['vlan']

deploy.patch('/clusters/{}/nodes/{}/networks/{}'.format (
cluster id, node id, network id), data)

def add _node_storage (deploy, cluster_ id, node_id, node):

Set all the storage information on a node '''
log _debug trace ()

log_info ("Adding node '{}' storage properties".format (node id))

log _info ("Node storage: {}".format (node['storage']['pools']))
data = {'pool array': node['storage']['pools']} # use all the Jjson
properties

deploy.post(
'/clusters/{}/nodes/{}/storage/pools'.format (cluster id, node id),
data)

if 'disks' in node['storage'] and node['storage']['disks']:
data = {'disks': node['storage']['disks']}
deploy.post (
'/clusters/{}/nodes/{}/storage/disks"'.format (cluster id,
node id), data)

def create_ cluster_ config(deploy, config):
""" Construct a cluster config in the deploy server using the input
json data '''

log_debug trace ()

cluster id = add_cluster_attributes (deploy, config)

def

node ids = get node ids (deploy, cluster id)
node configs = config['nodes']

for node id, node config in zip(node ids, node configs):
add node_attributes (deploy, cluster id, node id, node config)
add node networks (deploy, cluster id, node id, node config)
add node_ storage (deploy, cluster id, node id, node config)

return cluster id

deploy cluster (deploy, cluster id, configq):

'''" Deploy the cluster config to create the ONTAP Select VMs. '''
log _debug trace ()

log_info ("Deploying cluster: {}".format (cluster id))

data = {'ontap credential': {'password': config['cluster']|

'ontap admin password']}}

deploy.post('/clusters/{}/deploy?inhibit rollback=true'.format

(cluster id),

data, wait for job=True)

def log _debug_ trace():
stack = traceback.extract stack()
parent function = stack[-2] [2]
logging.getLogger ('deploy') .debug('Calling %s()' % parent function)
def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)
def log_and exit (msg):
logging.getLogger ('deploy') .error (msqg)
exit (1)
def configure logging (verbose) :
FORMAT = 'S (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
if verbose:
logging.basicConfig(level=1logging.DEBUG, format=FORMAT)
else:
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’
) .setLevel (

logging.WARNING)

23

def main (args):
configure logging (args.verbose)
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as Json data:
config = json.load(json data)

add vcenter credentials(deploy, config)

add standalone host credentials (deploy, config)
register unkown hosts (deploy, config)

cluster id = create_cluster config(deploy, config)
deploy cluster (deploy, cluster id, config)

def parseArgs() :

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to construct and deploy a cluster.')

parser.add argument('-d', '--deploy', help='Hostname or IP address of
Deploy server')

parser.add argument('-p', '--password', help='Admin password of Deploy
server')
parser.add argument('-c', '--config file', help='Filename of the

cluster config')
parser.add argument('-v', '--verbose', help='Display extra debugging
messages for seeing exact API calls and responses',
action='store true', default=False)
return parser.parse_args ()

if name == ' main Vg

args = parseArgs ()
main (args)

JSON. FITFBIZONTAP Select&EEZEHIRZx

TE1ERA Python ISR GICIZESMIPR ONTAP Select 2848, WAZiRH— JSON XH41E
FRABYEI N &R URIESRZ T R EFIAMECABNAY JSON R,

ESXi FRVBETI mEE:

24

"hosts": [
{
"password": "mypasswordl",
"name": "host-1234",
"type": "ESX",

"username": "admin"

1,

"cluster": {
"dns info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",
"gateway": "10.206.80.1",

"ip": "10.206.80.115",

"name": "mycluster",

"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",

"netmask": "255.255.254.0"
by

"nodes": [
{

"serial number": "3200000nn",

"ip": "10.206.80.114",

"name": "node-1",

"networks": [

{

"name": "ontap-external",
"purpose": "mgmt",
"vlan": 1234

"name": "ontap-external",
"purpose": "data",
"vlian": null

"name": "ontap-internal",

"purpose": "internal",

"vlan": null

}
1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {

"disk": [1,

"pools": [

{
"name": "storage-pool-1",

"capacity": 4802666790125

fEF vCenter B9 ESXi EREE T o &EEF

"hosts": [
{
"name" :"host-1234",
"type":"ESX",
"mgmt server":"vcenter-1234"
}
1y

"cluster": {
"dns info": {"domains": ["labl.company-demo.com", "labZ2.company-
demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"

1,
"dns ips": ["10.206.80.135","10.206.80.136"]

by

"ontap image version":"9.7",
"gateway":"10.206.80.1",

"ip":"10.206.80.115",

"name":"mycluster",

"ntp servers": ["10.206.80.183","10.206.80.142"],
"ontap admin password":"mypassword2",
"netmask":"255.255.254.0"

26

by

"vcenter": {
"password" :"mypassword2",
"hostname" :"vcenter-1234",

"username" :"selectadmin"

by

"nodes": [
{
"serial number": "3200000nn",
"ip":"10.206.80.114",

"name" :"node-1",
"networks": |
{
"name" : "ONTAP-Management",

"purpose":"mgmt",
"vlan" :null

"name": "ONTAP-External",
"purpose":"data",
"vlan" :null

"name": "ONTAP-Internal",
"purpose":"internal",
"vlan" :null

1,

"host name": "host-1234",

"is storage efficiency enabled": false,

"instance type": "small",
"storage": {
"disk":[],
"pools": [
{
"name": "storage-pool-1",
"capacity":5685190380748

27

KVM LR T g

"hosts": [
{
"password": "mypasswordl",
"name" :"host-1234",
"type'":"KVM",
"username" :"root"
}
I

"cluster": {

"dns_info": {

"domains": ["labl.company-demo.com", "lab2.company-demo.

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",
"gateway":"10.206.80.1",
"ip":"10.206.80.115",
"name" :"CBF4ED97",
"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",
"netmask":"255.255.254.0"

by

"nodes": [

{

"serial number":"3200000nn",
"ip":"10.206.80.115",
"name": "node-1",
"networks": [
{
"name": "ontap-external",
"purpose": "mgmt",
"vlan":1234
by
{
"name": "ontap-external",

"purpose": "data",
"vlan": null

by

{

28

com",

"name": "ontap-internal",
"purpose": "internal",
"vlan": null

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {

"disk": [],

"pools": [

{
"name": "storage-pool-1",

"capacity": 4802666790125

FAF 7 INONTAP Select™ = i A] IEAYRHIZS
&) LUER LU R 4S9 ONTAP Select T3 /2NN BT 3iE,

#!/usr/bin/env python

H H= FH H H= FH H H H H H H H FH H

File: add license.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

29

30

import argparse
import logging
import json

from deploy requests import DeployRequests

def post new_license (deploy, license filename) :
log _info('Posting a new license: {}'.format(license filename))
Stream the file as multipart/form-data
deploy.post('/licensing/licenses', data={},

files={'"'license file': open (license filename, 'rb')})

Alternative if the NLF license data is converted to a string.

with open(license filename, 'rb') as f:

nlf data = f.read()

r = deploy.post('/licensing/licenses', data={},

id files={'license file': (license filename,
nlf data)})

def put license(deploy, serial number, data, files):
log_info('Adding license for serial number: {}'.format(serial number))

deploy.put('/licensing/licenses/{}'.format(serial number), data=data,
files=files)

def put used license (deploy, serial number, license filename,
ontap username, ontap password) :
""" If the license is used by an 'online' cluster, a username/password

must be given. '''

data = {'ontap username': ontap username, 'ontap password':
ontap password}
files = {'license file': open(license filename, 'rb')}
put_license (deploy, serial number, data, files)
def put free license (deploy, serial number, license filename) :
data = {}

files = {'license file': open(license filename, 'rb')}

put license (deploy, serial number, data, files)

def get serial number from license(license filename) :

''"" Read the NLF file to extract the serial number '''
with open(license filename) as f:
data = json.load(f)

statusResp = data.get('statusResp', {})
serialNumber = statusResp.get('serialNumber')
if not serialNumber:

log and exit("The license file seems to be missing the

serialNumber")

def

def

def

return serialNumber

1og_info(msg):
logging.getlLogger ('deploy') .info (msqg)

log _and exit (msqg):
logging.getLogger ('deploy') .error (msg)
exit (1)

configure logging() :

FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getlLogger ('requests.packages.urllib3.connectionpool’') .

setLevel (logging.WARNING)

def main(args):

configure logging ()
serial number = get serial number from license (args.license)

deploy = DeployRequests (args.deploy, args.password)

First check if there is already a license resource for this serial-

number

its

if deploy.find resource('/licensing/licenses', 'id', serial number) :

If the license already exists in the Deploy server, determine if
used

if deploy.find resource('/clusters', 'nodes.serial number',

serial number) :

In this case, requires ONTAP creds to push the license to

31

the node
if args.ontap username and args.ontap password:
put_used license(deploy, serial number, args.license,
args.ontap username, args.ontap password)
else:
print ("ERROR: The serial number for this license is in
use. Please provide ONTAP credentials.")
else:
License exists, but its not used
put _free license(deploy, serial number, args.license)
else:
No license exists, so register a new one as an available license
for later use
post new license (deploy, args.license)

def parseArgs():
parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to add or update a new or used NLF license file.')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'"Hostname or IP address of ONTAP Select Deploy')
parser.add _argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')
parser.add argument('-1', '--license', required=True, type=str, help=
'"Filename of the NLF license data')
parser.add argument('-u', '--ontap username', type=str,
help='ONTAP Select username with privelege to add
the license. Only provide if the license is used by a Node.')
parser.add argument('-o', '--ontap password', type=str,
help="'ONTAP Select password for the
ontap username. Required only if ontap username is given.')
return parser.parse_args ()
if name == ' main ':
args = parseArgs ()
main (args)

FEFIFRONTAP Select&EE#HIfIZx
e UE AU T o217 mE AR A £,

32

#!/usr/bin/env python

File: delete cluster.py

(C) Copyright 2019 NetApp, Inc.

This sample code 1is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

S o S S S S S SR S S SR S S oE

import argparse
import json
import logging

from deploy requests import DeployRequests

def find cluster(deploy, cluster name):
return deploy.find resource('/clusters', 'name', cluster name)

def offline cluster(deploy, cluster id):
Test that the cluster is online, otherwise do nothing
response = deploy.get('/clusters/{}?fields=state'.format(cluster_id))
cluster data = response.json() ['record']
if cluster data['state'] == 'powered on':
log_info ("Found the cluster to be online, modifying it to be
powered off.")
deploy.patch ('/clusters/{}'.format (cluster id), {'availability':
'powered off'}, True)

def delete_ cluster (deploy, cluster id):
log _info("Deleting the cluster({}).".format(cluster id))
deploy.delete('/clusters/{}'.format (cluster id), True)
pass

def log_info (msg) :
logging.getLogger ('deploy') .info (msg)

def configure logging() :

33

FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)

logging.getlLogger ('requests.packages.urllib3.connectionpool’') .
setLevel (logging.WARNING)

def main (args):
configure logging ()
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

cluster id = find cluster(deploy, config['cluster']['name'])

log_info ("Found the cluster {} with id: {}.".format (config]|
'cluster'] ['name'], cluster id))

offline cluster(deploy, cluster id)

delete cluster (deploy, cluster id)

def parseArgs() :

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to delete a cluster')

parser.add argument('-d', '--deploy', required=True, type=str, help=
'Hostname or IP address of Deploy server')

parser.add argument('-p', '--password', required=True, type=str, help
='Admin password of Deploy server')

parser.add argument('-c', '--config file', required=True, type=str,
help='Filename of the cluster json config')

return parser.parse_args ()
if name == ' main ':

args = parseArgs ()

main (args)

ONTAP SelecttV:& 2 #5PythontZiR
Fig Python BIZSERE— MEIRA{ER— 8 Python %,

#!/usr/bin/env python

34

R T TR

File: deploy requests.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import json

import logging

import requests

requests.packages.urllib3.disable warnings ()

class DeployRequests (object) :

Wrapper class for requests that simplifies the ONTAP Select Deploy
path creation and header manipulations for simpler code.

def init (self, ip, admin password) :

self.base url = 'https://{}/api'.format (ip)
self.auth = ('admin', admin password)
self.headers = {'Accept': 'application/Jjson'}

self.logger = logging.getLogger ('deploy"')

def post(self, path, data, files=None, wait for job=False):

if files:
self.logger.debug('POST FILES:"')
response = requests.post(self.base url + path,
auth=self.auth, verify=False,
files=files)
else:
self.logger.debug ('POST DATA: %s', data)
response = requests.post(self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

35

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)

def

self.exit on errors (response)

if wait for job and response.status code == 202:
self.wait_for job (response.json())
return response

patch (self, path, data, wait for job=False):

self.logger.debug('PATCH DATA: %s', data)

response = requests.patch(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)

def

self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait_for job (response.json())
return response

put (self, path, data, files=None, wait for job=False):
if files:
print ('PUT FILES: {}'.format (data))

response = requests.put(self.base url + path,
auth=self.auth, verify=False,
data=data,
files=files)
else:
self.logger.debug('PUT DATA:"')
response = requests.put(self.base url + path,

auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers

(response), response.text)

self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

def get(self, path):

36

""" Get a resource object from the specified path """

response = requests.get(self.base url + path, auth=self.auth,
verify=False)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on_errors (response)

return response

def delete(self, path, wait for job=False):
""" Delete's a resource from the specified path """
response = requests.delete(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on_errors (response)

if wait for job and response.status code == 202:
self.wait for job(response.json())
return response

def find resource(self, path, name, value):
''"'" Returns the 'id' of the resource if it exists, otherwise None

None
self.get('{path}?{field}={value}'.format (
path=path, field=name, value=value))

resource

response

if response.status_code == 200 and response.json() .get (
'num_records') >= 1:
resource = response.json().get('records') [0].get('id")

return resource

def get num records(self, path, query=None):
'''" Returns the number of records found in a container, or None on

LI |

error
resource = None
query opt = '?{}'.format (query) if query else ''
response = self.get('{path}{query}'.format (path=path, query
=query opt))
if response.status_code == 200
return response.json().get('num records')

return None

def resource exists(self, path, name, value):
return self.find resource (path, name, value) is not None

def wait for job(self, response, poll timeout=120):
last modified = response['job']['last modified']

38

job id = response['job']['id"]
self.logger.info ('Event: ' + response['job']['message'])

while True:

response = self.get('/jobs/{}?fields=state,messages’
'poll timeout={}&last modified=>={}"
.format (
job id, poll timeout, last modified))
job body = response.json().get('record', {})
Show interesting message updates
message = job body.get('message', ''")
self.logger.info ('Event: ' + message)
Refresh the last modified time for the poll loop
last modified = job_body.get('last modified')
Look for the final states
state = job body.get('state', 'unknown')
if state in ['success', 'failure']:
if state == 'failure':
self.logger.error ('FAILED background job.\nJOB: %s',
job body)
exit (1) # End the script if a failure occurs
break

def exit on errors(self, response):
if response.status code >= 400:
self.logger.error ('FAILED request to URL: %$s\nHEADERS: %s
\nRESPONSE BODY: %s',
response.request.url,
self.filter headers (response),
response. text)
response.raise for status() # Displays the response error, and
exits the script

@staticmethod
def filter headers (response):

'''" Returns a filtered set of the response headers '''
return {key: response.headers|[key] for key in ['Location',

'request-id'] if key in response.headers}

AT AEEONTAP Select&E BT = A/ BRI Zx
1@e] LUER LU RIS 8% ONTAP Select 28 T YA/

#!/usr/bin/env python

File: resize nodes.py
(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

S oS S S S S SR S S SR S S S o o

import argparse
import logging
import sys

from deploy requests import DeployRequests

def parse args():
""" Parses the arguments provided on the command line when executing

this

script and returns the resulting namespace. If all required
arguments

are not provided, an error message indicating the mismatch is
printed and

the script will exit.

mwn

parser = argparse.ArgumentParser (description=(
'Uses the ONTAP Select Deploy API to resize the nodes in the
cluster.'
' For example, you might have a small (4 CPU, 16GB RAM per node) 2
node'’
' cluster and wish to resize the cluster to medium (8 CPU, 64GB

39

RAM per'

' node). This script will take in the cluster details and then
perform'
' the operation and wait for it to complete.'
))
parser.add argument ('--deploy', required=True, help=(
'Hostname or IP of the ONTAP Select Deploy VM.'
))
parser.add argument ('--deploy-password', required=True, help=(
'The password for the ONTAP Select Deploy admin user.'
))
parser.add argument('--cluster', required=True, help=(
'"Hostname or IP of the cluster management interface.'’
))
parser.add argument ('--instance-type', required=True, help=(
'The desired instance size of the nodes after the operation is
complete.'
))
parser.add argument ('--ontap-password', required=True, help=(
'The password for the ONTAP administrative user account.'
))
parser.add argument ('--ontap-username', default='admin', help=(
'The username for the ONTAP administrative user account. Default:
admin. '
))
parser.add argument('--nodes', nargs='+', metavar='NODE NAME', help=(
'A space separated list of node names for which the resize
operation'

' should be performed. The default is to apply the resize to all

nodes in'
' the cluster. If a list of nodes is provided, it must be provided

in HA'
' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)

must be'
' resized in the same operation.'

))

return parser.parse_args ()

def get cluster(deploy, parsed args):
""" Tocate the cluster using the arguments provided """

cluster id = deploy.find resource('/clusters', 'ip', parsed args
.cluster)
if not cluster id:
return None

40

¢

return deploy.get('/clusters/%s?fields=nodes' % cluster id).json() [

'record']

def get request body(parsed args, cluster):
""" Build the request body """

changes = {'admin password': parsed args.ontap password}

1if provided, use the list of nodes given, else use all the nodes in
the cluster
nodes = [node for node in cluster['nodes']]
if parsed args.nodes:
nodes = [node for node in nodes if node['name'] in parsed args
.nodes]

changes|['nodes'] = [
{'instance type': parsed args.instance type, 'id': node['id']} for
node in nodes]

return changes

def main() :
""" Set up the resize operation by gathering the necessary data and
then send
the request to the ONTAP Select Deploy server.

mwn

logging.basicConfig (
format='[% (asctime)s] [%(levelname)5s] % (message)s', level=
logging.INFO,)

logging.getlLogger ('requests.packages.urllib3'") .setLevel (logging
.WARNING)

parsed args = _parse_args()
deploy = DeployRequests (parsed args.deploy, parsed args
.deploy password)

cluster = _get cluster (deploy, parsed args)
if not cluster:
deploy.logger.error (
'Unable to find a cluster with a management IP of %s' %
parsed args.cluster)
return 1

changes = _get request body (parsed args, cluster)
deploy.patch('/clusters/%s' % cluster['id'], changes, wait for job
=True)
if name == ' main ':
sys.exit(main())

RS B

HRINFRE © 2026 NetApp, Inc.o (REFFENRF, REEIR, REMRFABESLBEITFA, ANAEPZIMRIR
PRERSOARUEATRSEIERFER (B BFIMAN, SERH. 5. REAFHEERFL
RAGH) HITEH,

MEZRRARIFEY NetApp FHELKERI AR U TP MR R AERRRILIR

AR NetApp 12 RIF 1R, FEEMPAREIETER, SFERNRTERSE UL ERZBIERMEN
FRREER, BIEARREBERSIE. EEABERT, NTRERSRAMUERSIVERNEAERE. BiZ
M BAM. 1B, ETMSERERL (BEEFRTHIEABMERS; £H. HEFES EHRL
; EWSHE) , BEREMNAUREFEHFRERL, BEHTEE. mRIEIENTH (BEHRZHE
fth179) , NetApp HARFAIETE, BIEERSNEFE LRRRAIATEEM,.

NetApp (REEARFITEMBIE S FHERS M A S PR R E A~ it 1T ECRBIAF) o FRIE NetApp LAFBEATVER
HER, SN NetApp AABREAASHEFR i~ EERRESRX S, ERNMER~mARTIREG
NetApp BYERIZFIMN. BIRNEEREMAIRFRIFA,

AFMRPRANTMAIEER I ZHEE T, SNEZTFHIEFERIBRIZ BRI,

BRNFIHEE: BFER. E5IsiATFANESS DFARS 252.227-7013 (2014 4£ 2 B) #1 FAR 52.227-19
(2007 £ 12 B) P FEARIENF] — IEFWA"EFE (b)(3) FMEBRBIFZHIILIR,

AXAEFFES RSB =R/ B RS (EXI FAR 2.101) #8%, BT NetApp, Inc. HEEEE. RIE
ISR HBIFRE NetApp HARBIBFMITEVRGEEELER, HE2HMAREFL, EEBRE XL
ENERNAEI RS, 23Kk, SRERAEENGTE, ZFIBERaELE, WAREHEFLE, BMRESR
FHIRFARIBIN EE BT ERAE X EZEaRZFRNER TER. BRASHEMENBRIN, FE NetApp, Inc. B
PEALE, FEER. HE. Efl. B BEHETXLELRIE, EEBRXEIFIENYIET DFARS H%E
252.227-7015(b) (2014 £ 2 B) &R EAHAIIF].

BIHER

NetApp. NetApp #RiRF1 hitp:/www.netapp.com/TM _EFRFIBIETRE NetApp, Inc. BIETR. EMATM~HRA
il ge = HE BB & BIET.

43

http://www.netapp.com/TM

	利用空闲实现自动化 : ONTAP Select
	目录
	利用空闲实现自动化
	概念
	为部署和管理ONTAP Select集群奠定了REST Web服务基础
	如何访问ONTAP Select Deploy API
	ONTAP Select Deploy API的基本操作特征
	ONTAP Select的请求和响应API事务
	使用ONTAP Select的作业对象进行异步处理

	使用浏览器访问
	在使用浏览器访问ONTAP Select Deploy API之前
	访问ONTAP Select Deploy文档页面
	了解并执行ONTAP Select Deploy API调用

	工作流进程
	在使用ONTAP Select Deploy API工作流之前
	工作流1：在ESXi上创建ONTAP Select单节点评估集群

	使用 Python 访问
	在使用Python访问ONTAP Select Deploy API之前
	了解适用于ONTAP Select Deploy的Python脚本

	Python 代码示例
	用于创建ONTAP Select集群的脚本
	JSON、用于创建ONTAP Select集群的脚本
	用于添加ONTAP Select节点许可证的脚本
	用于删除ONTAP Select集群的脚本
	ONTAP Select的通用支持Python模块
	用于调整ONTAP Select集群节点大小的脚本

