

使用 CLI 建立集群和 SVM 对等关系 ONTAP 9

NetApp April 24, 2024

This PDF was generated from https://docs.netapp.com/zh-cn/ontap/peering/index.html on April 24, 2024. Always check docs.netapp.com for the latest.

目录

吏用 CLI 建立集群和 SVM 对等关系	l
使用命令行界面概述集群和 SVM 对等关系	l
准备集群和 SVM 对等 · · · · · · · · · · · · · · · · · ·	
配置集群间 LIF · · · · · · · · · · · · · · · · · · ·	ŀ
配置对等关系	,
对现有对等关系启用集群对等加密	;
从现有对等关系中删除集群对等加密	5

使用 CLI 建立集群和 SVM 对等关系

使用命令行界面概述集群和 SVM 对等关系

您可以在源集群和目标集群之间以及源和目标 Storage Virtual Machine (SVM)之间创 建对等关系。您必须先在这些实体之间创建对等关系,然后才能使用 SnapMirror 复制 Snapshot 副本。

ONTAP 9.3 提供了一些增强功能,可简化在集群和 SVM 之间配置对等关系的方式。集群和 SVM 对等过程适用 于所有 ONTAP 9 版本。您应使用适用于您的 ONTAP 版本的操作步骤。

您可以使用命令行界面(CLI)执行这些过程,而不是使用 System Manager 或自动化脚本编写工具。

准备集群和 SVM 对等

对等基础知识

您必须先在源集群和目标集群之间以及源 SVM 和目标 SVM 之间创建 peer relationships ,然后才能使用 SnapMirror 复制 Snapshot 副本。对等关系用于定义网络连接,使集群和 SVM 能够安全地交换数据。

对等关系中的集群和 SVM 使用集群间逻辑接口(LIF)通过集群间网络进行通信。 _ 集群间 LIF 是一种 LIF , 支持 " 集群间核心 " 网络接口服务,通常使用 " 默认集群间 " 网络接口服务策略来创建。您必须在要建立对等关 系的集群中的每个节点上创建集群间 LIF 。

集群间 LIF 使用属于其所分配到的系统 SVM 的路由。ONTAP 会自动创建一个系统 SVM ,以便在 IP 空间内进 行集群级别的通信。

扇出拓扑和级联拓扑均受支持。在级联拓扑中,您只需要在主集群和二级集群之间以及二级集群和三级集群之间 创建集群间网络。您无需在主集群和三级集群之间创建集群间网络。

管理员可以(但不建议)从默认集群间服务策略中删除集群间核心服务。如果发生这种情况,使 用 "default-intercluster" 创建的 LIF 实际上不会是集群间 LIF 。要确认 default-intercluster 服务策 略包含集群间核心服务,请使用以下命令:

network interface service-policy show -policy default-intercluster

集群对等的前提条件

在设置集群对等之前,您应确认连接,端口, IP 地址,子网,防火墙, 并满足集群命名 要求。

 (\mathbf{i})

从ONTAP 9.6开始、集群对等加密默认为数据复制提供TLS 1.2 AES-256 GCM加密支持。要使集 群对等正常工作、需要使用默认安全密码(PSK-AES256-GCM-SHA384)、即使已禁用加密也是如 此。

从ONTAP 9.11.1开始、默认情况下可以使用DHE-PSK安全加密。

连接要求

本地集群上的每个集群间 LIF 都必须能够与远程集群上的每个集群间 LIF 进行通信。

虽然不需要,但在同一子网中配置用于集群间 LIF 的 IP 地址通常会更简单。这些 IP 地址可以与数据 LIF 位于同一子网中,也可以位于不同子网中。每个集群中使用的子网必须满足以下要求:

- 子网必须属于包含用于集群间通信的端口的广播域。
- 子网必须具有足够的可用 IP 地址,以便为每个节点分配一个集群间 LIF 。

例如,在四节点集群中,用于集群间通信的子网必须具有四个可用 IP 地址。

每个节点都必须具有一个集群间 LIF ,并在集群间网络上具有一个 IP 地址。

集群间 LIF 可以具有 IPv4 地址或 IPv6 地址。

通过ONTAP、您可以选择允许在集群间上同时使用IPv4和IPv6协议、从而将对等网络从IPv4迁移 到IPv6。在早期版本中,整个集群的所有集群间关系均为 IPv4 或 IPv6 。这意味着更改协议可能 会造成中断。

端口要求

您可以使用专用端口进行集群间通信,也可以共享数据网络使用的端口。端口必须满足以下要求:

•用于与给定远程集群通信的所有端口必须位于同一 IP 空间中。

您可以使用多个 IP 空间与多个集群建立对等关系。只有在 IP 空间中才需要成对的全网状连接。

 用于集群间通信的广播域必须在每个节点上至少包含两个端口,以便集群间通信可以从一个端口故障转移到 另一个端口。

添加到广播域的端口可以是物理网络端口, VLAN 或接口组(ifgrp)。

- 必须为所有端口布线。
- 所有端口都必须处于运行状况良好的状态。
- •端口的 MTU 设置必须一致。

防火墙要求

从ONTAP 9.10.1开始、防火墙策略已弃用、并完全替换为LIF服务策略。有关详细信息,请参见 " 为 LIF 配置防火墙策略"。

防火墙和集群间防火墙策略必须支持以下协议:

- 双向ICMP流量
- •通过端口11104和11105双向启动到所有集群间Bifs的IP地址的TCP流量
- •集群间 LIF 之间的双向 HTTPS

尽管使用命令行界面设置集群对等时不需要 HTTPS ,但如果稍后使用 System Manager 配置数据保护,则需要 HTTPS 。

默认值 intercluster 防火墙策略允许通过HTTPS协议和所有IP地址(0.0.0.0/0)进行访问。如有必要,您可以 修改或替换此策略。

集群要求

集群必须满足以下要求:

•一个集群不能与超过 255 个集群建立对等关系。

使用共享端口或专用端口

您可以使用专用端口进行集群间通信,也可以共享数据网络使用的端口。在决定是否共享 端口时,您需要考虑网络带宽,复制间隔和端口可用性。

您可以在一个对等集群上共享端口,而在另一个对等集群上使用专用端口。

网络带宽

(i)

如果您使用的是 10 GbE 等高速网络,则可能有足够的本地 LAN 带宽来使用用于数据访问的相同 10 GbE 端口 执行复制。

即便如此,您也应将可用 WAN 带宽与 LAN 带宽进行比较。如果可用 WAN 带宽明显小于 10 GbE ,则可能需 要使用专用端口。

此规则的一个例外情况可能是,集群中的所有或多个节点复制数据时,带宽利用率通常分布在各 个节点上。

如果不使用专用端口,则复制网络的最大传输单元(MTU)大小通常应与数据网络的 MTU 大小相同。

复制间隔

如果复制在非高峰时段进行,则即使没有 10-GbE LAN 连接,您也应能够使用数据端口进行复制。

如果复制在正常工作时间进行,则需要考虑要复制的数据量,以及它是否需要如此多的带宽,从而可能导致发生 原因与数据协议发生争用。如果数据协议(SMB , NFS , iSCSI)的网络利用率高于 50% ,则应使用专用端 口进行集群间通信,以便在发生节点故障转移时不会降低性能。

端口可用性

如果您确定复制流量干扰数据流量,则可以将集群间 LIF 迁移到同一节点上任何其他支持集群间的共享端口。

您还可以使用专用 VLAN 端口进行复制。端口的带宽在所有 VLAN 和基础端口之间共享。

使用自定义 IP 空间隔离复制流量

您可以使用自定义 IP 空间来分隔集群与其对等方之间的交互。此配置称为 _ 指定的集群间

连接___,可使服务提供商在多租户环境中隔离复制流量。

例如,假设您希望将集群 A 和集群 B 之间的复制流量与集群 A 和集群 C 之间的复制流量分隔开为此,您可以在 集群 A 上创建两个 IP 空间

一个 IP 空间包含用于与集群 B 通信的集群间 LIF另一个包含用于与集群 C 通信的集群间 LIF ,如下图所示。

有关自定义 IP 空间配置,请参见 Network Management Guide。

配置集群间 LIF

在共享数据端口上配置集群间 LIF

您可以在与数据网络共享的端口上配置集群间 LIF 。这样可以减少集群间网络连接所需的 端口数量。

步骤

1. 列出集群中的端口:

network port show

有关完整的命令语法,请参见手册页。

以下示例显示了中的网络端口 cluster01:

cluster01::> network port show						
						Speed
(Mbps)						
Node	Port	IPspace	Broadcast Domain	Link	MTU	Admin/Oper
cluster	01-01					
	e0a	Cluster	Cluster	up	1500	auto/1000
	e0b	Cluster	Cluster	up	1500	auto/1000
	eOc	Default	Default	up	1500	auto/1000
	e0d	Default	Default	up	1500	auto/1000
cluster	c01-02					
	e0a	Cluster	Cluster	up	1500	auto/1000
	e0b	Cluster	Cluster	up	1500	auto/1000
	e0c	Default	Default	up	1500	auto/1000
	e0d	Default	Default	up	1500	auto/1000

2. 在管理SVM (默认IP空间)或系统SVM (自定义IP空间)上创建集群间SVM:

选项	Description
・在 ONTAP 9.6 及更高版本中: *	<pre>network interface create -vserver system_SVM -lif LIF_name -service -policy default-intercluster -home -node node -home-port port -address port_IP -netmask netmask</pre>
• 在 ONTAP 9.5 及更早版本中: *	<pre>network interface create -vserver system_SVM -lif LIF_name -role intercluster -home-node node -home -port port -address port_IP -netmask netmask</pre>

有关完整的命令语法,请参见手册页。

以下示例将创建集群间生命周期 cluster01_ic101 和 cluster01_ic102:

```
cluster01::> network interface create -vserver cluster01 -lif
cluster01_icl01 -service-
policy default-intercluster -home-node cluster01-01 -home-port e0c
-address 192.168.1.201
-netmask 255.255.255.0
cluster01::> network interface create -vserver cluster01 -lif
cluster01_icl02 -service-
policy default-intercluster -home-node cluster01-02 -home-port e0c
-address 192.168.1.202
-netmask 255.255.255.0
```

3. 验证是否已创建集群间 LIF:

选项	Description
• 在 ONTAP 9.6 及更高版本中: *	network interface show -service-policy default-intercluster
• 在 ONTAP 9.5 及更早版本中: *	network interface show -role intercluster

有关完整的命令语法,请参见手册页。

4. 验证集群间 LIF 是否冗余:

选项	Description
• 在 ONTAP 9.6 及更高版本中: *	network interface show -service-policy default-intercluster -failover
• 在 ONTAP 9.5 及更早版本中: *	network interface show -role intercluster -failover

有关完整的命令语法,请参见手册页。

以下示例显示了集群间的生命周期 cluster01_ic101 和 cluster01_ic102 在上 e0c 端口将故障转移 到 e0d 端口。

cluster0 -failove	1::> network int r	erface show -service-p	policy default-in	tercluster
	Logical	Home	Failover	Failover
Vserver	Interface	Node:Port	Policy	Group
cluster0	1			
	cluster01_icl01	cluster01-01:e0c lo	ocal-only	
192.168.	1.201/24			
		Failover Targets:	cluster01-01:e0c	,
			cluster01-01:e0d	
	cluster01_icl02	cluster01-02:e0c lo	ocal-only	
192.168.	1.201/24			
		Failover Targets:	cluster01-02:e0c	,
			cluster01-02:e0d	

在专用端口上配置集群间 LIF

您可以在专用端口上配置集群间 LIF 。这样做通常会增加复制流量的可用带宽。

步骤

1. 列出集群中的端口:

network port show

有关完整的命令语法,请参见手册页。

以下示例显示了中的网络端口 cluster01:

cluster01::> network port show						
						Speed
(Mbps)						
Node	Port	IPspace	Broadcast Domain	Link	MTU	Admin/Oper
cluste	r01-01					
	e0a	Cluster	Cluster	up	1500	auto/1000
	e0b	Cluster	Cluster	up	1500	auto/1000
	eOc	Default	Default	up	1500	auto/1000
	e0d	Default	Default	up	1500	auto/1000
	e0e	Default	Default	up	1500	auto/1000
	eOf	Default	Default	up	1500	auto/1000
cluster01-02						
	e0a	Cluster	Cluster	up	1500	auto/1000
	e0b	Cluster	Cluster	up	1500	auto/1000
	eOc	Default	Default	up	1500	auto/1000
	e0d	Default	Default	up	1500	auto/1000
	e0e	Default	Default	up	1500	auto/1000
	eOf	Default	Default	up	1500	auto/1000

2. 确定哪些端口可专用于集群间通信:

network interface show -fields home-port, curr-port

有关完整的命令语法,请参见手册页。

以下示例显示了这些端口 e0e 和 e0f 尚未分配的生命周期:

```
cluster01::> network interface show -fields home-port,curr-port
vserver lif
                      home-port curr-port
_____ ____
Cluster cluster01-01 clus1 e0a e0a
Cluster cluster01-01 clus2 e0b
                              e0b
Cluster cluster01-02 clus1 e0a
                              e0a
Cluster cluster01-02 clus2 e0b
                              e0b
cluster01
      cluster mgmt eOc eOc
cluster01
      cluster01-01 mgmt1 e0c
                              e0c
cluster01
      cluster01-02_mgmt1 e0c
                               e0c
```

3. 为专用端口创建故障转移组:

network interface failover-groups create -vserver system_SVM -failover-group
failover_group -targets physical _or_logical_ports

以下示例将分配端口 e0e 和 e0f 故障转移组 intercluster01 在系统SVM上 cluster01:

```
cluster01::> network interface failover-groups create -vserver cluster01
-failover-group
intercluster01 -targets
cluster01-01:e0e,cluster01-01:e0f,cluster01-02:e0e,cluster01-02:e0f
```

4. 验证是否已创建故障转移组:

network interface failover-groups show

有关完整的命令语法,请参见手册页。

cluster01::> net	work interface fa	ilover-groups show Failover Targets	
Cluster			
	Cluster		
		cluster01-01:e0a,	cluster01-01:e0b,
		cluster01-02:e0a,	cluster01-02:e0b
cluster01			
	Default		
		cluster01-01:e0c,	cluster01-01:e0d,
		cluster01-02:e0c,	cluster01-02:e0d,
		cluster01-01:e0e,	cluster01-01:e0f
		cluster01-02:e0e,	cluster01-02:e0f
	intercluster01		
		cluster01-01:e0e,	cluster01-01:e0f
		cluster01-02:e0e,	cluster01-02:e0f

5. 在系统 SVM 上创建集群间 LIF 并将其分配给故障转移组。

选项	Description
・在 ONTAP 9.6 及更高版本中: *	<pre>network interface create -vserver system_SVM -lif LIF_name -service -policy default-intercluster -home -node node -home- port port -address port_IP -netmask netmask -failover -group failover_group</pre>

选项	Description
• 在 ONTAP 9.5 及更早版本中: *	<pre>network interface create -vserver system_SVM -lif LIF_name -role intercluster -home-node node -home -port port -address port_IP -netmask netmask -failover-group failover_group</pre>

有关完整的命令语法,请参见手册页。

以下示例将创建集群间生命周期 cluster01_ic101 和 cluster01_ic102 在故障转移组中 intercluster01:

```
cluster01::> network interface create -vserver cluster01 -lif
cluster01_icl01 -service-
policy default-intercluster -home-node cluster01-01 -home-port e0e
-address 192.168.1.201
-netmask 255.255.255.0 -failover-group intercluster01
cluster01::> network interface create -vserver cluster01 -lif
cluster01_icl02 -service-
policy default-intercluster -home-node cluster01-02 -home-port e0e
-address 192.168.1.202
-netmask 255.255.255.0 -failover-group intercluster01
```

选项	Description
• 在 ONTAP 9.6 及更高版本中: *	network interface show -service-policy default-intercluster
• 在 ONTAP 9.5 及更早版本中: *	network interface show -role intercluster

6. 验证是否已创建集群间 LIF:

有关完整的命令语法,请参见手册页。

7. 验证集群间 LIF 是否冗余:

选项	Description
• 在 ONTAP 9.6 及更高版本中: *	network interface show -service-policy default-intercluster -failover
• 在 ONTAP 9.5 及更早版本中: *	network interface show -role intercluster -failover

有关完整的命令语法,请参见手册页。

以下示例显示了集群间的生命周期 cluster01_ic101 和 cluster01_ic102 在SVM上e0e 端口将故障转移到 e0f 端口。

<pre>cluster01::> network interface show -service-policy default-intercluster -failover</pre>					
	Logical	Home	Failover	Failover	
Vserver	Interface	Node:Port	Policy	Group	
cluster0	1				
	cluster01 icl01	cluster01-01:e0e lo	cal-only		
intercluster01					
		Failover Targets:	cluster01-01:e0	e,	
			cluster01-01:e0	f	
	cluster01_icl02	cluster01-02:e0e lo	cal-only		
intercluster01					
		Failover Targets:	cluster01-02:e0	e,	
			cluster01-02:e0	f	

在自定义 IP 空间中配置集群间 LIF

您可以在自定义 IP 空间中配置集群间 LIF 。这样可以在多租户环境中隔离复制流量。

创建自定义 IP 空间时,系统会创建一个系统 Storage Virtual Machine (SVM),用作该 IP 空间中系统对象的 容器。您可以使用新的 SVM 作为新 IP 空间中任何集群间 LIF 的容器。新的 SVM 与自定义 IP 空间同名。

步骤

1. 列出集群中的端口:

network port show

有关完整的命令语法,请参见手册页。

以下示例显示了中的网络端口 cluster01:

cluste	cluster01::> network port show					
	Speed					
(Mbps)						
Node	Port	IPspace	Broadcast Domain	Link	MTU	Admin/Oper
cluste	r01-01					
	e0a	Cluster	Cluster	up	1500	auto/1000
	e0b	Cluster	Cluster	up	1500	auto/1000
	eOc	Default	Default	up	1500	auto/1000
	e0d	Default	Default	up	1500	auto/1000
	e0e	Default	Default	up	1500	auto/1000
	eOf	Default	Default	up	1500	auto/1000
cluste	r01-02					
	e0a	Cluster	Cluster	up	1500	auto/1000
	e0b	Cluster	Cluster	up	1500	auto/1000
	eOc	Default	Default	up	1500	auto/1000
	e0d	Default	Default	up	1500	auto/1000
	e0e	Default	Default	up	1500	auto/1000
	eOf	Default	Default	up	1500	auto/1000

2. 在集群上创建自定义 IP 空间:

network ipspace create -ipspace ipspace

以下示例将创建自定义IP空间 ipspace-IC1:

cluster01::> network ipspace create -ipspace ipspace-IC1

3. 确定哪些端口可专用于集群间通信:

network interface show -fields home-port, curr-port

有关完整的命令语法,请参见手册页。

以下示例显示了这些端口 e0e 和 e0f 尚未分配的生命周期:

```
cluster01::> network interface show -fields home-port, curr-port
vserver lif
                       home-port curr-port
----- ------
Cluster cluster01 clus1 e0a
                             e0a
                            e0b
Cluster cluster01 clus2 e0b
Cluster cluster02 clus1 e0a
                            e0a
Cluster cluster02 clus2 e0b
                            e0b
cluster01
      cluster mgmt eOc eOc
cluster01
      cluster01-01 mgmt1 e0c e0c
cluster01
      cluster01-02 mgmt1 eOc
                               e0c
```

4. 从默认广播域中删除可用端口:

network port broadcast-domain remove-ports -broadcast-domain Default -ports
ports

一个端口一次不能位于多个广播域中。有关完整的命令语法,请参见手册页。

以下示例将删除端口 e0e 和 e0f 从默认广播域:

```
cluster01::> network port broadcast-domain remove-ports -broadcast
-domain Default -ports
cluster01-01:e0e,cluster01-01:e0f,cluster01-02:e0e,cluster01-02:e0f
```

5. 验证端口是否已从默认广播域中删除:

network port show

有关完整的命令语法,请参见手册页。

以下示例显示了这些端口 e0e 和 e0f 已从默认广播域中删除:

cluster01::> network port show Speed (Mbps) Node IPspace Broadcast Domain Link MTU Admin/Oper Port -----_____ _ cluster01-01 e0a Cluster Cluster up 9000 auto/1000 e0b Cluster Cluster up 9000 auto/1000 e0c Default Default up 1500 auto/1000 e0d Default Default 1500 auto/1000 up e0e Default _ 1500 auto/1000 up eOf Default _ 1500 auto/1000 up Default 1500 auto/1000 e0q Default up cluster01-02 e0a Cluster Cluster 9000 auto/1000 up eOb Cluster Cluster 9000 auto/1000 up 1500 auto/1000 e0c Default Default up e0d Default Default 1500 auto/1000 up e0e Default 1500 auto/1000 _ up eOf Default auto/1000 _ up 1500 Default auto/1000 e0q Default 1500 up

6. 在自定义 IP 空间中创建广播域:

network port broadcast-domain create -ipspace ipspace -broadcast-domain broadcast domain -mtu MTU -ports ports

以下示例将创建广播域 ipspace-IC1-bd 在IP空间中 ipspace-IC1:

cluster01::> network port broadcast-domain create -ipspace ipspace-IC1
-broadcast-domain
ipspace-IC1-bd -mtu 1500 -ports cluster01-01:e0e,cluster01-01:e0f,
cluster01-02:e0e,cluster01-02:e0f

7. 验证是否已创建广播域:

network port broadcast-domain show

有关完整的命令语法,请参见手册页。

cluster01::> network port broadcast-domain show				
IPspace	Broadcast			Update
Name	Domain Name	MTU	Port List	Status Details
Cluster		9000		
			cluster01-01:e0a	complete
			cluster01-01:e0b	complete
			cluster01-02:e0a	complete
			cluster01-02:e0b	complete
Default	Default	1500		
			cluster01-01:e0c	complete
			cluster01-01:e0d	complete
			cluster01-01:e0f	complete
			cluster01-01:e0g	complete
			cluster01-02:e0c	complete
			cluster01-02:e0d	complete
			cluster01-02:e0f	complete
			cluster01-02:e0g	complete
ipspace	-IC1			
	ipspace-IC1-b	d		
		1500		
			cluster01-01:e0e	complete
			cluster01-01:e0f	complete
			cluster01-02:e0e	complete
			cluster01-02:e0f	complete

8. 在系统 SVM 上创建集群间 LIF 并将其分配给广播域:

选项	Description
・在 ONTAP 9.6 及更高版本中: *	<pre>network interface create -vserver system_SVM -lif LIF_name -service -policy default-intercluster -home -node node -home-port port -address port_IP -netmask netmask</pre>
・在 ONTAP 9.5 及更早版本中: *	<pre>network interface create -vserver system_SVM -lif LIF_name -role intercluster -home-node node -home -port port -address port_IP -netmask netmask</pre>

此时将在分配主端口的广播域中创建 LIF 。此广播域具有一个默认故障转移组,其名称与此广播域相同。有 关完整的命令语法,请参见手册页。

以下示例将创建集群间生命周期 cluster01_icl01 和 cluster01_icl02 在广播域中 ipspace-IC1-

```
cluster01::> network interface create -vserver ipspace-IC1 -lif
cluster01_icl01 -service-
policy default-intercluster -home-node cluster01-01 -home-port e0e
-address 192.168.1.201
-netmask 255.255.255.0
cluster01::> network interface create -vserver ipspace-IC1 -lif
cluster01_icl02 -service-
policy default-intercluster -home-node cluster01-02 -home-port e0e
-address 192.168.1.202
-netmask 255.255.255.0
```

9. 验证是否已创建集群间 LIF:

选项	Description
• 在 ONTAP 9.6 及更高版本中: *	network interface show -service-policy default-intercluster
• 在 ONTAP 9.5 及更早版本中: *	network interface show -role intercluster

有关完整的命令语法,请参见手册页。

cluster01::	> network i	nterface sh	ow -service-policy	default-interc	luster
	Logical	Status	Network	Current	
Current Is					
Vserver	Interface	Admin/Oper	Address/Mask	Node	Port
Home					
	_				
ipspace-IC1					
	cluster01_	icl01			
		up/up	192.168.1.201/24	cluster01-01	e0e
true					
	cluster01_	icl02			
		up/up	192.168.1.202/24	cluster01-02	eOf
true					

10. 验证集群间 LIF 是否冗余:

bd:

选项	Description
• 在 ONTAP 9.6 及更高版本中: *	network interface show -service-policy default-intercluster -failover
• 在 ONTAP 9.5 及更早版本中: *	network interface show -role intercluster -failover

有关完整的命令语法,请参见手册页。

以下示例显示了集群间的生命周期 cluster01_ic101 和 cluster01_ic102 在SVM上 e0e 端口故障转 移到`e0f`端口:

<pre>cluster01::> network interface show -service-policy default-intercluster -failover</pre>					
	Logical	Home	Failover	Failover	
Vserver	Interface	Node:Port	Policy	Group	
ipspace-	IC1				
	cluster01_icl01	cluster01-01:e0e lo	cal-only		
interclu	ster01				
		Failover Targets:	cluster01-01:e0 cluster01-01:e0	e, f	
cluster01_icl02 cluster01-02:e0e local-only intercluster01					
		Failover Targets:	cluster01-02:e0 cluster01-02:e0	e, f	

配置对等关系

创建集群对等关系

您可以使用 cluster peer create 命令在本地集群和远程集群之间创建对等关系。创 建对等关系后、您可以运行 cluster peer create 在远程集群上进行身份验证、以便 向本地集群进行身份验证。

开始之前

- •您必须已在要建立对等关系的集群中的每个节点上创建集群间 LIF。
- •集群必须运行 ONTAP 9.3 或更高版本。(如果集群运行的是 ONTAP 9.2 或更早版本,请参阅中的过程 "此 归档文档")

步骤

使用ONTAP 系统管理器或ONTAP 命令行界面执行此任务。

System Manager

- 1. 在本地集群中、单击*集群>设置*。
- 2. 在*集群间设置*部分中,单击*添加网络接口*并为集群添加集群间网络接口。

在远程集群上重复此步骤。

- 3. 在远程集群中、单击*集群>设置*。
- 4. 单击 : 在*集群对等方*部分中、选择*生成Pas则 文*。
- 5. 选择远程ONTAP集群版本。
- 6. 复制生成的密码短语。
- 7. 在本地集群的*集群对等方*下、单击:并选择*对等集群*。
- 8. 在*对等集群*窗口中,粘贴密码短语并单击*启动集群对等*。

命令行界面

1. 在目标集群上,创建与源集群的对等关系:

cluster peer create -generate-passphrase -offer-expiration
<MM/DD/YYYY HH:MM:SS>|1...7days|1...168hours -peer-addrs
<peer_LIF_IPs > -initial-allowed-vserver-peers <svm_name>|* -ipspace
<ipspace>

如果同时指定这两者 -generate-passphrase 和 -peer-addrs、仅限在中指定了集群间的集群间的集群 -peer-addrs 可以使用生成的密码。

您可以忽略 – ipspace 选项。有关完整的命令语法,请参见手册页。

如果要在ONTAP 9.6或更高版本中创建对等关系、并且不希望对跨集群对等通信进行加密、则必须使用 -encryption-protocol-proposed none 选项以禁用加密。

以下示例将创建与未指定的远程集群的集群对等关系、并预先授权与SVM的对等关系 vs1 和 vs2 在本 地集群上:

cluster02::> cluster peer create -generate-passphrase -offer -expiration 2days -initial-allowed-vserver-peers vs1,vs2

Passphrase: UCa+61RVICXeL/gq1WrK7ShR Expiration Time: 6/7/2017 08:16:10 EST Initial Allowed Vserver Peers: vs1,vs2 Intercluster LIF IP: 192.140.112.101 Peer Cluster Name: Clus_7ShR (temporary generated)

Warning: make a note of the passphrase - it cannot be displayed again.

以下示例将与集群间 LIF IP 地址为 192.140.112.103 和 192.140.112.104 的远程集群创建集群对等关系,并预先授权与本地集群上的任何 SVM 的对等关系:

cluster02::> cluster peer create -generate-passphrase -peer-addrs
192.140.112.103,192.140.112.104 -offer-expiration 2days -initial
-allowed-vserver-peers *

Passphrase: UCa+61RVICXeL/gq1WrK7ShR Expiration Time: 6/7/2017 08:16:10 EST Initial Allowed Vserver Peers: vs1,vs2 Intercluster LIF IP: 192.140.112.101,192.140.112.102 Peer Cluster Name: Clus_7ShR (temporary generated)

Warning: make a note of the passphrase - it cannot be displayed again.

以下示例将创建与未指定的远程集群的集群对等关系、并预先授权与SVM的对等关系vs1和 vs2 在本 地集群上:

cluster02::> cluster peer create -generate-passphrase -offer -expiration 2days -initial-allowed-vserver-peers vs1,vs2

Passphrase: UCa+61RVICXeL/gq1WrK7ShR Expiration Time: 6/7/2017 08:16:10 EST Initial Allowed Vserver Peers: vs1,vs2 Intercluster LIF IP: 192.140.112.101 Peer Cluster Name: Clus_7ShR (temporary generated)

Warning: make a note of the passphrase - it cannot be displayed again.

2. 在源集群上,将源集群身份验证到目标集群:

cluster peer create -peer-addrs <peer LIF IPs> -ipspace <ipspace>

有关完整的命令语法,请参见手册页。

以下示例将本地集群通过集群间 LIF IP 地址 192.140.112.101 和 192.140.112.102 向远程集群进行身份验证:

```
cluster01::> cluster peer create -peer-addrs
192.140.112.101,192.140.112.102
Notice: Use a generated passphrase or choose a passphrase of 8 or
more characters.
        To ensure the authenticity of the peering relationship, use
a phrase or sequence of characters that would be hard to guess.
Enter the passphrase:
Confirm the passphrase:
```

Clusters cluster02 and cluster01 are peered.

出现提示时,输入对等关系的密码短语。

3. 验证是否已创建集群对等关系:

cluster peer show -instance

```
cluster01::> cluster peer show -instance

Peer Cluster Name: cluster02

Remote Intercluster Addresses: 192.140.112.101,

192.140.112.102

Availability of the Remote Cluster: Available

Remote Cluster Name: cluster2

Active IP Addresses: 192.140.112.101,

192.140.112.102

Cluster Serial Number: 1-80-123456

Address Family of Relationship: ipv4

Authentication Status Administrative: no-authentication

Authentication Status Operational: absent

Last Update Time: 02/05 21:05:41

IPspace for the Relationship: Default
```

4. 检查对等关系中节点的连接和状态:

cluster peer health show

cluster01::> cluster peer health show Node cluster-Name Node-Name Ping-Status RDB-Health Cluster-Health Avail... _____ _____ _____ cluster01-01 cluster02-01 cluster02 Data: interface reachable ICMP: interface reachable true true true cluster02-02 Data: interface reachable ICMP: interface_reachable true true true cluster01-02 cluster02-01 cluster02 Data: interface reachable ICMP: interface reachable true true true cluster02-02 Data: interface reachable ICMP: interface reachable true true true

在 ONTAP 中执行此操作的其他方法

要执行以下任务,请执行以下操作	查看此内容
重新设计的 System Manager (适用于 ONTAP 9.7 及 更高版本)	"准备镜像和存储"
System Manager 经典版(适用于 ONTAP 9.7 及更早 版本)	"卷灾难恢复准备概述"

创建集群间 SVM 对等关系

您可以使用 vserver peer create 命令在本地集群和远程集群上的SVM之间创建对等 关系。

开始之前

- 源集群和目标集群必须建立对等关系。
- •集群必须运行 ONTAP 9.3 。(如果集群运行的是 ONTAP 9.2 或更早版本,请参阅中的过程 "此归档文档")
- •您必须为远程集群上的 SVM 建立 "预先授权 "对等关系。

有关详细信息,请参见 "创建集群对等关系"。

关于此任务

在ONTAP 9.2及更早版本中、一次只能为一个SVM授权对等关系。这意味着您需要运行 vserver peer accept 命令。

从ONTAP 9.3开始、您可以通过在中列出SVM来对多个SVM的对等关系进行"预先授权" - initial-allowed -vserver 选项。有关详细信息,请参见 "创建集群对等关系"。

步骤

1. 在数据保护目标集群上,显示已预先授权建立对等关系的 SVM:

vserver peer permission show

cluster02::> vserver Peer Cluster	peer permission show Vserver	Applications
cluster02	vs1,vs2	snapmirror

2. 在数据保护源集群上,创建与数据保护目标集群上预先授权的 SVM 的对等关系:

vserver peer create -vserver local SVM -peer-vserver remote SVM

有关完整的命令语法,请参见手册页。

以下示例将在本地SVM之间创建对等关系 pvs1 和预先授权的远程SVM vs1:

cluster01::> vserver peer create -vserver pvs1 -peer-vserver vs1

3. 验证 SVM 对等关系:

vserver peer show

cluster01::> vserver peer show				
	Peer	Peer		Peering
Remote				
Vserver	Vserver	State	Peer Cluster	Applications
Vserver				
pvsl	vs1	peered	cluster02	snapmirror
vs1				

添加集群间 SVM 对等关系

如果在配置集群对等关系后创建 SVM ,则需要手动为此 SVM 添加对等关系。您可以使用 vserver peer create 命令在SVM之间创建对等关系。创建对等关系后、您可以运行 vserver peer accept 以授权对等关系。

开始之前

源集群和目标集群必须建立对等关系。

关于此任务

您可以在同一集群中的 SVM 之间创建对等关系,以便进行本地数据备份。有关详细信息,请参见 vserver peer create 手册页。

管理员偶尔会使用 vserver peer reject 命令以拒绝建议的SVM对等关系。如果SVM之间的关系位于中 rejected 状态、则必须先删除此关系、然后才能创建新关系。有关详细信息,请参见 vserver peer delete 手册页。

步骤

1. 在数据保护源集群上,与数据保护目标集群上的 SVM 创建对等关系:

vserver peer create -vserver local_SVM -peer-vserver remote_SVM -applications
snapmirror|file-copy|lun-copy -peer-cluster remote_cluster

以下示例将在本地SVM之间创建对等关系pvs1 和远程SVMvs1

cluster01::> vserver peer create -vserver pvs1 -peer-vserver vs1
-applications snapmirror -peer-cluster cluster02

如果本地和远程 SVM 具有相同的名称,则必须使用 local name 创建 SVM 对等关系:

cluster01::> vserver peer create -vserver vs1 -peer-vserver vs1 -applications snapmirror -peer-cluster cluster01 -local-name cluster1vs1LocallyUniqueName

2. 在数据保护源集群上,验证是否已启动对等关系:

vserver peer show-all

有关完整的命令语法,请参见手册页。

以下示例显示了SVM之间的对等关系pvs1和SVMvs1已启动:

3. 在数据保护目标集群上,显示待定 SVM 对等关系:

vserver peer show

有关完整的命令语法,请参见手册页。

以下示例列出了的待定对等关系 cluster02:

cluster02::> vserver peer show				
	Peer	Peer		
Vserver	Vserver	State		
vs1	pvsl	pending		

4. 在数据保护目标集群上,授权待定对等关系:

vserver peer accept -vserver local SVM -peer-vserver remote SVM

有关完整的命令语法,请参见手册页。

以下示例将授权本地SVM之间的对等关系 vs1 和远程SVM pvs1:

cluster02::> vserver peer accept -vserver vs1 -peer-vserver pvs1

5. 验证 SVM 对等关系:

vserver peer show

cluster01::> vserver peer show				
	Peer	Peer		Peering
Remote				
Vserver	Vserver	State	Peer Cluster	Applications
Vserver				
pvsl	vsl	peered	cluster02	snapmirror
vsl				

对现有对等关系启用集群对等加密

从 ONTAP 9.6 开始,默认情况下,所有新创建的集群对等关系都会启用集群对等加密。集 群对等加密使用预共享密钥(PSk)和传输安全层(TLS)来保护跨集群对等通信的安 全。这样可以在对等集群之间增加一个额外的安全层。

关于此任务

如果要将对等集群升级到 ONTAP 9.6 或更高版本,并且在 ONTAP 9.5 或更早版本中创建了对等关系,则必须 在升级后手动启用集群对等加密。要启用集群对等加密,对等关系中的两个集群都必须运行 ONTAP 9.6 或更高 版本。

步骤

1. 在目标集群上,为与源集群的通信启用加密:

cluster peer modify source_cluster -auth-status-admin use-authentication
-encryption-protocol-proposed tls-psk

- 2. 出现提示时,输入密码短语。
- 3. 在数据保护源集群上,为与数据保护目标集群的通信启用加密:

cluster peer modify data_protection_destination_cluster -auth-status-admin
use-authentication -encryption-protocol-proposed tls-psk

4. 出现提示时,输入在目标集群上输入的同一密码短语。

从现有对等关系中删除集群对等加密

默认情况下,在 ONTAP 9.6 或更高版本中创建的所有对等关系都启用集群对等加密。如果 您不想对跨集群对等通信使用加密,可以将其禁用。

步骤

1. 在目标集群上,修改与源集群的通信,以停止使用集群对等加密:

。要删除加密、但保持身份验证、请输入:

```
cluster peer modify _source_cluster_ -auth-status-admin use-
authentication -encryption-protocol-proposed none
```

[。]要删除加密和身份验证、请输入:

cluster peer modify source cluster -auth-status no-authentication

- 2. 出现提示时,输入密码短语。
- 3. 在源集群上,禁用与目标集群通信的加密:
 - [。]要删除加密、但保持身份验证、请输入:

cluster peer modify _destination_cluster_ -auth-status-admin useauthentication -encryption-protocol-proposed none

。要删除加密和身份验证、请输入:

```
cluster peer modify _destination_cluster_ -auth-status no-authentication
```

4. 出现提示时,输入在目标集群上输入的同一密码短语。

版权信息

版权所有 © 2024 NetApp, Inc.。保留所有权利。中国印刷。未经版权所有者事先书面许可,本文档中受版权保 护的任何部分不得以任何形式或通过任何手段(图片、电子或机械方式,包括影印、录音、录像或存储在电子检 索系统中)进行复制。

从受版权保护的 NetApp 资料派生的软件受以下许可和免责声明的约束:

本软件由 NetApp 按"原样"提供,不含任何明示或暗示担保,包括但不限于适销性以及针对特定用途的适用性的 隐含担保,特此声明不承担任何责任。在任何情况下,对于因使用本软件而以任何方式造成的任何直接性、间接 性、偶然性、特殊性、惩罚性或后果性损失(包括但不限于购买替代商品或服务;使用、数据或利润方面的损失 ;或者业务中断),无论原因如何以及基于何种责任理论,无论出于合同、严格责任或侵权行为(包括疏忽或其 他行为),NetApp 均不承担责任,即使已被告知存在上述损失的可能性。

NetApp 保留在不另行通知的情况下随时对本文档所述的任何产品进行更改的权利。除非 NetApp 以书面形式明确同意,否则 NetApp 不承担因使用本文档所述产品而产生的任何责任或义务。使用或购买本产品不表示获得 NetApp 的任何专利权、商标权或任何其他知识产权许可。

本手册中描述的产品可能受一项或多项美国专利、外国专利或正在申请的专利的保护。

有限权利说明:政府使用、复制或公开本文档受 DFARS 252.227-7013(2014 年 2 月)和 FAR 52.227-19 (2007 年 12 月)中"技术数据权利 — 非商用"条款第 (b)(3) 条规定的限制条件的约束。

本文档中所含数据与商业产品和/或商业服务(定义见 FAR 2.101)相关,属于 NetApp, Inc. 的专有信息。根据 本协议提供的所有 NetApp 技术数据和计算机软件具有商业性质,并完全由私人出资开发。 美国政府对这些数 据的使用权具有非排他性、全球性、受限且不可撤销的许可,该许可既不可转让,也不可再许可,但仅限在与交 付数据所依据的美国政府合同有关且受合同支持的情况下使用。除本文档规定的情形外,未经 NetApp, Inc. 事先 书面批准,不得使用、披露、复制、修改、操作或显示这些数据。美国政府对国防部的授权仅限于 DFARS 的第 252.227-7015(b)(2014 年 2 月)条款中明确的权利。

商标信息

NetApp、NetApp 标识和 http://www.netapp.com/TM 上所列的商标是 NetApp, Inc. 的商标。其他公司和产品名称可能是其各自所有者的商标。