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为您的应用程序开发一个插件

概述

通过 SnapCenter 服务器，您可以将应用程序作为 SnapCenter 的插件进行部署和管理。
您选择的应用程序可以插入到 SnapCenter 服务器中，以实现数据保护和管理功能。

通过 SnapCenter ，您可以使用不同的编程语言开发自定义插件。您可以使用 Perl ， Java ，批处理或其他脚本
语言开发自定义插件。

要在 SnapCenter 中使用自定义插件，必须执行以下任务：

• 按照本指南中的说明为您的应用程序创建一个插件

• 创建问题描述文件

• 导出自定义插件以将其安装在 SnapCenter 主机上

• 将此插件 zip 文件上传到 SnapCenter 服务器

所有 API 调用中的通用插件处理

对于每个 API 调用，请使用以下信息：

• 插件参数

• 退出代码

• 记录错误消息

• 数据一致性

使用插件参数

在每次进行 API 调用时，都会向插件传递一组参数。下表列出了参数的特定信息。

参数 目的

Action 确定工作流名称。例如， discover ， backup ，
fileOrVolRestore 或 cloneVolAndLun

Resources 列出要保护的资源。资源由 UID 和类型标识。此列表
将按以下格式显示给此插件：

"<UID> ， <type> ； <UID> ， <type>" 。例如， " 实
例 1 ，实例；实例 2\\DB1 ，数据库 "

应用程序名称 确定正在使用的插件。例如 DB2 ， MySQL

。SnapCenter 服务器内置了对所列应用程序的支持。
此参数区分大小写。
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参数 目的

app_ignore_error （ Y 或 N ）如果遇到应用程序错误，则会导致
SnapCenter 退出或不退出。如果您要备份多个数据库
，而不希望单个故障停止备份操作，则此功能非常有
用。

<resource_name>_app_instance_username 已为资源设置 SnapCenter 凭据。

<resource_name>_app_instance_password 已为资源设置 SnapCenter 凭据。

<resource_name>_<custom_param> 每个资源级别自定义密钥值均可供插件使用，并以
"<resource_name>_ " 开头。例如，如果名为
MySQLDB 的资源的自定义密钥为 "master_slave" ，
则该密钥将作为 MySQLDB_master_slave 可用

使用退出代码

此插件通过退出代码将操作状态返回给主机。每个代码都有一个特定的含义，此插件使用正确的退出代码来指示
相同的含义。

下表介绍了错误代码及其含义。

退出代码 目的

0 操作成功。

99 不支持或不实施请求的操作。

100 操作失败，跳过静默并退出。默认情况下，取消静默
状态为。

101. 操作失败，请继续执行备份操作。

其他 操作失败，运行 unquiesce 并退出。

记录错误消息

错误消息将从插件传递到 SnapCenter 服务器。此消息包括消息，日志级别和时间戳。

下表列出了级别及其用途。

参数 目的

信息 信息性消息

警告 警告消息
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参数 目的

error 错误消息

调试 调试消息

跟踪 跟踪消息

保持数据一致性

自定义插件可在执行相同工作流的操作之间保留数据。例如，插件可以在暂停结束时存储数据，可在取消静默操
作期间使用。

要保留的数据将通过插件作为结果对象的一部分进行设置。它采用特定格式，并在每种插件开发模式下进行详细
介绍。

基于 Perl 的开发

在使用 Perl 开发插件时，必须遵循某些约定。

• 内容必须可读

• 必须实施强制操作 setenv ， quiesce 和 unquiesce

• 必须使用特定语法将结果传递回代理

• 这些内容应保存为 <plugin_name>.pm 文件

可用操作包括

• 设置

• version

• 暂停

• 取消静默

• clone_pre ， clone_post

• restore_pree ， restore

• 清理

常规插件处理

使用 Results 对象

每个自定义插件操作都必须定义结果对象。此对象会将消息，退出代码， stdout 和 stderr 发送回主机代理。

Results 对象：
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my $result = {

      exit_code => 0,

      stdout => "",

      stderr => "",

};

返回结果对象：

return $result;

保持数据一致性

在执行同一工作流期间，可以在操作之间保留数据（清理除外）。这可通过密钥值对来实现。关键值数据对作为
结果对象的一部分进行设置，并在同一工作流的后续操作中保留和使用。

以下代码示例将设置要保留的数据：

my $result = {

  exit_code => 0,

  stdout => "",

  stderr => "",

};

  $result->{env}->{‘key1’} = ‘value1’;

  $result->{env}->{‘key2’} = ‘value2’;

  ….

  return $result

上述代码设置了两个键值对，这些键值对可在后续操作中用作输入。可以使用以下代码访问这两个键值对：

sub setENV {

    my ($self, $config) = @_;

    my $first_value = $config->{‘key1’};

    my $second_value = $config->{‘key2’};

    …

}

 === Logging error messages

每个操作都可以将消息发送回主机代理，主机代理将显示和存储内容。消息包含消息级别，时间戳和
消息文本。支持多行消息。
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Load the SnapCreator::Event Class:

my $msgObj = new SnapCreator::Event();

my @message_a = ();

使用 msgObj 通过使用收集方法捕获消息。

$msgObj->collect(\@message_a, INFO, "My INFO Message");

$msgObj->collect(\@message_a, WARN, "My WARN Message");

$msgObj->collect(\@message_a, ERROR, "My ERROR Message");

$msgObj->collect(\@message_a, DEBUG, "My DEBUG Message");

$msgObj->collect(\@message_a, TRACE, "My TRACE Message");

将消息应用于结果对象：

$result->{message} = \@message_a;

使用插件存根

自定义插件必须公开插件存根。这些方法是 SnapCenter 服务器根据工作流调用的。

插件存根 可选 / 必需 目的

设置 Required 此存根用于设置环境和配置对象。

任何环境解析或处理都应在此处完
成。每次调用存根时，都会在之前
调用 setenv 存根。只有 Perl 模式
插件才需要此功能。

version 可选 此存根用于获取应用程序版本。

发现 可选 此存根用于发现代理或主机上托管
的实例或数据库等应用程序对象。

在响应过程中，此插件应以特定格
式返回发现的应用程序对象。只有
在应用程序与适用于 Unix 的
SnapDrive 集成时，才会使用此存
根。

支持 Linux 文件系统
（ Linux Flavors

）。不支持
AIX/Solaris （ Unix

模式）。
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插件存根 可选 / 必需 目的

discovery_complete 可选 此存根用于发现代理或主机上托管
的实例或数据库等应用程序对象。

在响应过程中，此插件应以特定格
式返回发现的应用程序对象。只有
在应用程序与适用于 Unix 的
SnapDrive 集成时，才会使用此存
根。

支持 Linux 文件系统
（ Linux Flavors

）。不支持 AIX 和
Solaris （ Unix 模式
）。

暂停 Required 此存根负责执行暂停，这意味着将
应用程序置于可以创建 Snapshot 副
本的状态。此操作在执行 Snapshot

副本操作之前调用。要保留的应用
程序元数据应设置为响应的一部分
，在对相应的存储 Snapshot 副本执
行后续克隆或还原操作期间，应以
配置参数的形式返回。

取消静默 Required 此存根负责执行静默，这意味着将
应用程序置于正常状态。创建
Snapshot 副本后会调用此命令。

clone_pre 可选 此存根负责执行克隆前任务。此操
作假定您使用的是内置的
SnapCenter 服务器克隆接口，并在
执行克隆操作时触发。

clone_post 可选 此存根负责执行克隆后任务。这假
定您使用的是内置的 SnapCenter

服务器克隆接口，并且只有在执行
克隆操作时才会触发。

restore_pre 可选 此存根负责执行预存储任务。此操
作假定您使用的是内置的
SnapCenter 服务器还原界面，并且
是在执行还原操作时触发的。

还原 可选 此存根负责执行应用程序还原任
务。这假定您使用的是内置的
SnapCenter 服务器还原界面，并且
只有在执行还原操作时才会触发。
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插件存根 可选 / 必需 目的

清理 可选 此存根负责在执行备份，还原或克
隆操作后执行清理。清理可以在正
常工作流执行期间进行，也可以在
工作流出现故障时进行。您可以通
过引用配置参数操作来推断调用清
理时使用的工作流名称，该操作可
以是 backup ， cloneVolAndLun 或
fileOrVolRestore 。配置参数
error_message 用于指示执行工作
流时是否存在任何错误。如果已定
义 error_message ，而不是 NULL

，则在执行工作流失败期间会调用
清理。

APP_VERSION 可选 SnapCenter 使用此存根来获取此插
件管理的应用程序版本详细信息。

插件软件包信息

每个插件都必须具有以下信息：

package MOCK;

our @ISA = qw(SnapCreator::Mod);

=head1 NAME

MOCK - class which represents a MOCK module.

=cut

=head1 DESCRIPTION

MOCK implements methods which only log requests.

=cut

use strict;

use warnings;

use diagnostics;

use SnapCreator::Util::Generic qw ( trim isEmpty );

use SnapCreator::Util::OS qw ( isWindows isUnix getUid

createTmpFile );

use SnapCreator::Event qw ( INFO ERROR WARN DEBUG COMMENT ASUP

CMD DUMP );

my $msgObj = new SnapCreator::Event();

my %config_h = ();

操作

您可以对自定义插件支持的各种操作进行编码，例如 setenv ， Version ， Quiesce 和 Unquiesce 。
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setenv 操作

使用 Perl 创建的插件需要执行 setenv 操作。您可以设置 ENV 并轻松访问插件参数。

sub setENV {

    my ($self, $obj) = @_;

    %config_h = %{$obj};

    my $result = {

      exit_code => 0,

      stdout => "",

      stderr => "",

    };

    return $result;

}

版本操作

版本操作将返回应用程序版本信息。

sub version {

  my $version_result = {

    major => 1,

    minor => 2,

    patch => 1,

    build => 0

  };

  my @message_a = ();

  $msgObj->collect(\@message_a, INFO, "VOLUMES

$config_h{'VOLUMES'}");

  $msgObj->collect(\@message_a, INFO,

"$config_h{'APP_NAME'}::quiesce");

  $version_result->{message} = \@message_a;

  return $version_result;

}

暂停操作

暂停操作会对 Resources 参数中列出的资源执行应用程序暂停操作。
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sub quiesce {

  my $result = {

      exit_code => 0,

      stdout => "",

      stderr => "",

  };

  my @message_a = ();

  $msgObj->collect(\@message_a, INFO, "VOLUMES

$config_h{'VOLUMES'}");

  $msgObj->collect(\@message_a, INFO,

"$config_h{'APP_NAME'}::quiesce");

  $result->{message} = \@message_a;

  return $result;

}

取消暂停操作

要取消应用程序静默，需要执行 " 取消暂停 " 操作。资源列表位于 Resources 参数中。

sub unquiesce {

  my $result = {

      exit_code => 0,

      stdout => "",

      stderr => "",

  };

  my @message_a = ();

  $msgObj->collect(\@message_a, INFO, "VOLUMES

$config_h{'VOLUMES'}");

  $msgObj->collect(\@message_a, INFO,

"$config_h{'APP_NAME'}::unquiesce");

  $result->{message} = \@message_a;

  return $result;

}

原生模式

SnapCenter 支持使用非 Perl 编程或脚本语言来创建插件。这称为原生模式编程，可以是
脚本或批处理文件。

本机模式插件必须遵循以下特定约定：

此插件必须是可执行的

• 对于 Unix 系统，运行代理的用户必须对此插件具有执行权限
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• 对于 Windows 系统， PowerShell 插件的后缀必须为 .ps1 ，而其他 Windows 脚本的后缀必须为 .cmd 或
.bat ，并且必须可由用户执行

• 插件必须对命令行参数做出响应，例如 "-quiesce" ， "-unquiesce"

• 如果未实施某项操作或功能，插件必须返回退出代码 99

• 插件必须使用特定语法将结果传递回服务器

常规插件处理

记录错误消息

每个操作都可以将消息发送回服务器，服务器将显示和存储内容。消息包含消息级别，时间戳和消息文本。支持
多行消息。

格式。

SC_MSG#<level>#<timestamp>#<message>

SC_MESSAGE#<level>#<timestamp>#<message>

使用插件存根

SnapCenter 插件必须实施插件存根。这些方法是 SnapCenter 服务器根据特定工作流调用的。

插件存根 可选 / 必需 目的

暂停 Required 此存根负责执行暂停。它会将应用
程序置于一种可以创建 Snapshot 副
本的状态。此操作在执行存储
Snapshot 副本操作之前调用。

取消静默 Required 此存根负责执行静默。它会将应用
程序置于正常状态。此操作在执行
存储 Snapshot 副本操作后调用。

clone_pre 可选 此存根负责执行克隆前任务。此操
作假定您使用的是内置的
SnapCenter 克隆接口，并且只有在
执行操作 "clone_vol 或 clone_LUN"

时才会触发此接口。

clone_post 可选 此存根负责执行克隆后任务。这假
定您使用的是内置的 SnapCenter

克隆接口，并且只有在执行
"clone_vol 或 clone_lun" 操作时才
会触发此接口。
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插件存根 可选 / 必需 目的

restore_pre 可选 此存根负责执行还原前任务。这假
定您使用的是内置的 SnapCenter

还原界面，并且仅在执行还原操作
时触发。

还原 可选 此存根负责执行所有还原操作。此
操作假定您未使用内置还原界面。
它会在执行还原操作时触发。

示例

Windows PowerShell

检查是否可以在您的系统上执行此脚本。如果无法执行此脚本，请为此脚本设置 Set-ExecutionPolicy bypass ，
然后重试此操作。
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if ($args.length -ne 1) {

  write-warning "You must specify a method";

  break;

}

function log ($level, $message) {

  $d = get-date

  echo "SC_MSG#$level#$d#$message"

}

function quiesce {

  $app_name = (get-item env:APP_NAME).value

  log "INFO" "Quiescing application using script $app_name";

  log "INFO" "Quiescing application finished successfully"

}

function unquiesce {

  $app_name = (get-item env:APP_NAME).value

  log "INFO" "Unquiescing application using script $app_name";

  log "INFO" "Unquiescing application finished successfully"

}

  switch ($args[0]) {

    "-quiesce" {

    quiesce;

}

"-unquiesce" {

    unquiesce;

}

default {

    write-error "Function $args[0] is not implemented";

    exit 99;

  }

}

exit 0;

Java 模式

Java 自定义插件直接与数据库，实例等应用程序交互。

限制

在使用 Java 编程语言开发插件时，您应注意一些限制。

插件特征 Java 插件

复杂性 从低到中
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插件特征 Java 插件

内存占用空间 最多 10-20 MB

其他库的依赖关系 用于应用程序通信的库

线程数 1.

线程运行时 不到一小时

Java 限制的原因

SnapCenter 代理的目标是确保持续，安全且稳定可靠的应用程序集成。通过支持 Java 插件，插件可能会导致
内存泄漏和其他不需要的问题。这些问题很难解决，尤其是在目标是让事情简单易用的情况下。如果插件的复杂
性不是太复杂，开发人员可能会出现错误的可能性就会小得多。Java 插件的风险在于，它们与 SnapCenter 代
理本身在同一 JVM 中运行。当插件崩溃或内存泄漏时，它也可能对代理产生负面影响。

支持的方法

方法 Required Description 何时被调用？由谁调用？

version 是的。 需要返回插件的版本。 由 SnapCenter 服务器或
代理请求插件的版本。

暂停 是的。 需要对应用程序执行暂
停。在大多数情况下，这
意味着将应用程序置于
SnapCenter 服务器可以创
建备份的状态（例如
Snapshot 副本）。

在 SnapCenter 服务器创
建 Snapshot 副本或执行
常规备份之前。

取消静默 是的。 需要对应用程序执行静默
操作。在大多数情况下，
这意味着将应用程序重新
置于正常运行状态。

在 SnapCenter 服务器创
建 Snapshot 副本或执行
常规备份之后。

清理 否 负责清理插件需要清理的
任何内容。

SnapCenter 服务器上的工
作流完成后（成功或出现
故障）。

clonePre 否 应在执行克隆操作之前执
行需要执行的操作。

当用户触发 "cloneVol" 或
"cloneLun" 操作并使用内
置克隆向导（ GUI/CLI ）
时。
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方法 Required Description 何时被调用？由谁调用？

clonePost 否 应在执行克隆操作后执行
需要执行的操作。

当用户触发 "cloneVol" 或
"cloneLun" 操作并使用内
置克隆向导（ GUI/CLI ）
时。

还原前 否 应在调用还原操作之前执
行需要执行的操作。

用户触发还原操作时。

还原 否 负责执行应用程序的还原 /

恢复。
用户触发还原操作时。

应用程序版本 否 以检索插件管理的应用程
序版本。

作为备份 / 还原 / 克隆等每
个工作流中 ASUP 数据收
集的一部分。

教程

本节介绍如何使用 Java 编程语言创建自定义插件。

设置 Eclipse

1. 在 Eclipse 中创建一个新的 Java 项目 "TuttorialPlug"

2. 单击 * 完成 * 。

3. 右键单击 * 新项目 * → * 属性 * → * Java 构建路径 * → * 库 * → * 添加外部 JAR *

4. 导航到主机代理的 ./lib/ 文件夹，然后选择 JAR scAgent-5.0-core.jar 和 common-5.0.jar

5. 选择项目并右键单击 * 源文件夹 * → * 新增 * → * 软件包 * ，然后创建一个名为
com.netapp.snapcreator.agent.plugin.TutorialPlugin 的新软件包

6. 右键单击新软件包并选择新建 → Java 类。

a. 输入名称作为 TuttorialPlugin 。

b. 单击超类浏览按钮并搜索 "* 抽象插件 " 。只应显示一个结果：

 "AbstractPlugin - com.netapp.snapcreator.agent.nextgen.plugin".

.. 单击 * 完成 * 。

.. Java 类：

14



package com.netapp.snapcreator.agent.plugin.TutorialPlugin;

import

com.netapp.snapcreator.agent.nextgen.common.result.Describe

Result;

import

com.netapp.snapcreator.agent.nextgen.common.result.Result;

import

com.netapp.snapcreator.agent.nextgen.common.result.VersionR

esult;

import

com.netapp.snapcreator.agent.nextgen.context.Context;

import

com.netapp.snapcreator.agent.nextgen.plugin.AbstractPlugin;

public class TutorialPlugin extends AbstractPlugin {

  @Override

  public DescribeResult describe(Context context) {

    // TODO Auto-generated method stub

    return null;

  }

  @Override

  public Result quiesce(Context context) {

    // TODO Auto-generated method stub

    return null;

  }

  @Override

  public Result unquiesce(Context context) {

    // TODO Auto-generated method stub

    return null;

  }

  @Override

  public VersionResult version() {

    // TODO Auto-generated method stub

    return null;

  }

}

实施所需的方法

暂停，取消静默和版本是每个自定义 Java 插件必须实施的强制方法。

以下是返回插件版本的版本方法。
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@Override

public VersionResult version() {

    VersionResult versionResult = VersionResult.builder()

                                            .withMajor(1)

                                            .withMinor(0)

                                            .withPatch(0)

                                            .withBuild(0)

                                            .build();

    return versionResult;

}

Below is the implementation of quiesce and unquiesce method. These will be

interacting with   the application, which is being protected by SnapCenter

Server. As this is just a tutorial, the

application part is not explained, and the focus is more on the

functionality that SnapCenter   Agent provides the following to the plug-

in developers:

@Override

  public Result quiesce(Context context) {

    final Logger logger = context.getLogger();

    /*

      * TODO: Add application interaction here

    */

logger.error("Something bad happened.");

logger.info("Successfully handled application");

    Result result = Result.builder()

                    .withExitCode(0)

                    .withMessages(logger.getMessages())

                    .build();

    return result;

}

方法在上下文对象中传递。其中包含多个帮助程序，例如 Logger 和上下文存储，以及有关当前操作的信息（工
作流 ID ，作业 ID ）。我们可以通过调用 final Logger logger = context.getLogger （）来获取此日志程
序。logger 对象提供了其他日志记录框架中已知的类似方法，例如，登录回。在 result 对象中，您还可以指定退
出代码。在此示例中，返回零，因为没有问题描述。其他退出代码可以映射到不同的故障情形。
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正在使用结果对象

result 对象包含以下参数：

参数 Default Description

配置 空配置 此参数可用于将配置参数发送回服
务器。它可以是插件要更新的参
数。此更改是否实际反映在
SnapCenter 服务器的配置中取决于
配置中的
APP_CONF_persistency=Y 或 N

参数。

ExitCode 0 指示操作的状态。"0" 表示操作已成
功执行。其他值表示错误或警告。

标准输出 空列表 这可用于将 stdout 消息传输回
SnapCenter 服务器。

标准 空列表 这可用于将 stderr 消息传输回
SnapCenter 服务器。

消息 空列表 此列表包含插件要返回到服务器的
所有消息。SnapCenter 服务器会在
命令行界面或图形用户界面中显示
这些消息。

SnapCenter 代理可提供构建程序 ("构建程序模式"）。这使得使用它们变得非常简单：

Result result = Result.builder()

                    .withExitCode(0)

                    .withStdout(stdout)

                    .withStderr(stderr)

                    .withConfig(config)

                    .withMessages(logger.getMessages())

                    .build()

例如，将退出代码设置为 0 ，为 stdout 和 stderr 设置列表，设置配置参数，并附加要发送回服务器的日志消
息。如果您不需要所有参数，请仅发送所需的参数。由于每个参数都有一个默认值，因此，如果从以下代码中删
除 .withExitCode （ 0 ），则结果不会受到影响：

Result result = Result.builder()

                      .withExitCode(0)

                      .withMessages(logger.getMessages())

                      .build();
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版本结果

VersionResult 会向 SnapCenter 服务器通知插件版本。由于它还会从结果继承，因此它包含 config ， exitCode

， stdout ， stderr 和 messages 参数。

参数 Default Description

major 0 插件的主要版本字段。

次要 0 插件的次要版本字段。

patch 0 插件的修补程序版本字段。

build 0 此插件的 Build version 字段。

例如：

VersionResult result = VersionResult.builder()

                                  .withMajor(1)

                                  .withMinor(0)

                                  .withPatch(0)

                                  .withBuild(0)

                                  .build();

使用上下文对象

上下文对象提供了以下方法：

上下文方法 目的

字符串 getWorkflowId（ ）； 返回 SnapCenter 服务器在当前工作流中使用的工作流
ID 。

config getconfig（ ）； 返回正在从 SnapCenter 服务器发送到代理的配置。

工作流 ID

工作流 ID 是 SnapCenter 服务器用于引用特定正在运行的工作流的 ID 。

配置

此对象包含（大多数）用户可在 SnapCenter 服务器的配置中设置的参数。但是，由于安全原因，其中某些参数
可能会在服务器端进行筛选。以下是有关如何访问 Config 并检索参数的示例：
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final Config config = context.getConfig();

String myParameter =

config.getParameter("PLUGIN_MANDATORY_PARAMETER");

现在， "/" myParameter " 包含从 SnapCenter 服务器上的配置中读取的参数如果配置参数密钥不存在，则它将
返回空字符串（ "" ）。

导出插件

要在 SnapCenter 主机上安装此插件，必须导出此插件。

在 Eclipse 中，执行以下任务：

1. 右键单击插件的基础软件包（在我们的示例 com.netapp.snapcreator.agent.plugin.TutorialPlugin 中）。

2. 选择 * 导出 * → * Java * → * JAR 文件 *

3. 单击 * 下一步 * 。

4. 在以下窗口中，指定目标 JAR 文件路径： tutorial_plugin.jar 插件的基础类名为 TuttorialPlugin 。 class ，必
须将此插件添加到同名文件夹中。

如果插件依赖于其他库，则可以创建以下文件夹： lib/

您可以添加与插件相关的 JAR 文件（例如数据库驱动程序）。当 SnapCenter 加载此插件时，它会自动将此文
件夹中的所有 JAR 文件与其关联，并将其添加到类路径中。

SnapCenter 中的自定义插件

SnapCenter 中的自定义插件

可以使用 SnapCenter 服务器将使用 Java ， Perl 或原生模式创建的自定义插件安装在主机上，以便为应用程序
启用数据保护。您必须已导出此插件，才能使用本教程中提供的操作步骤将其安装到 SnapCenter 主机上。

创建插件问题描述文件

对于创建的每个插件，您都必须具有一个问题描述文件。问题描述文件介绍了此插件的详细信息。文件名必须为
Plugin_Descriptioner.xml 。

使用插件描述符文件属性及其重要性

属性 Description

Name 插件的名称。允许使用字母数字字符。例如， DB2 ，
MySQL ， MongoDB

对于以原生模式创建的插件，请确保不提供文件扩展
名。例如，如果此插件的名称是 MongoDB.sh ，请将
此名称指定为 MongoDB 。
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属性 Description

version 插件版本。可以包括主要版本和次要版本。例如， 1.0

， 1.1 ， 2.0 ， 2.1

displayName 要在 SnapCenter 服务器中显示的插件名称。如果写入
了同一插件的多个版本，请确保所有版本的显示名称
相同。

插件类型 用于创建插件的语言。支持的值包括 Perl ， Java 和
原生。原生插件类型包括 Unix/Linux Shell 脚本，
Windows 脚本， Python 或任何其他脚本语言。

OSNAME 安装此插件的主机操作系统名称。有效值为 Windows

和 Linux 。可以在多种操作系统类型上部署一个插件，
例如 Perl 类型的插件。

操作系统配置 安装了插件的主机操作系统版本。

资源名称 插件可以支持的资源类型的名称。例如，数据库，实
例，集合。

父级 在这种情况下， ResourceName 在层次结构上依赖于
另一种资源类型，然后 Parent 确定父 ResourceType
。

例如，在 DB2 插件中， ResourceName " 数据库 " 具
有父 " 实例 " 。

RequireFileSystemPlugin 是或否确定恢复选项卡是否显示在还原向导中。

ResourceRequireAuthentication 是或否确定自动发现或尚未自动发现的资源在发现存
储后是否需要凭据来执行数据保护操作。

RequireFileSystemClone 是或否确定此插件是否需要为克隆工作流集成文件系
统插件。

以下是自定义插件 DB2 的 Plugin_descriptor.xml 文件示例：
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<Plugin>

<SMSServer></SMSServer>

<Name>DB2</Name>

<Version>1.0</Version>

<PluginType>Perl</PluginType>

<DisplayName>Custom DB2 Plugin</DisplayName>

<SupportedOS>

<OS>

<OSName>windows</OSName>

<OSVersion>2012</OSVersion>

</OS>

<OS>

<OSName>Linux</OSName>

<OSVersion>7</OSVersion>

</OS>

</SupportedOS>

<ResourceTypes>

<ResourceType>

<ResourceName>Database</ResourceName>

<Parent>Instance</Parent>

</ResourceType>

<ResourceType>

<ResourceName>Instance</ResourceName>

</ResourceType>

</ResourceTypes>

<RequireFileSystemPlugin>no</RequireFileSystemPlugin>

<ResourceRequiresAuthentication>yes</ResourceRequiresAuthentication>

<SupportsApplicationRecovery>yes</SupportsApplicationRecovery>

</Plugin>

创建 ZIP 文件

开发插件并创建描述符文件后，必须将插件文件和 Plugin_descriptor.xml 文件添加到文件夹中并将其压缩。

在创建 ZIP 文件之前，您必须考虑以下事项：

• 脚本名称必须与插件名称相同。

• 对于 Perl 插件， ZIP 文件夹必须包含一个包含脚本文件的文件夹，并且描述符文件必须位于此文件夹之
外。文件夹名称必须与插件名称相同。

• 对于 Perl 插件以外的插件， ZIP 文件夹必须包含描述符和脚本文件。

• 操作系统版本必须为数字。

示例

• DB2 插件：将 db2.pm 和 Plugin_descriptor.xml 文件添加到 "db2.zip " 中。
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• 使用 Java 开发的插件：将 JAR 文件，相关的 JAR 文件和 Plugin_descriptor.xml 文件添加到文件夹中并将
其压缩。

上传插件 ZIP 文件

您必须将此插件 ZIP 文件上传到 SnapCenter 服务器，才能在所需主机上部署此插件。

您可以使用 UI 或 cmdlet 上传此插件。

• 用户界面： *

• 在 * 添加 * 或 * 修改主机 * 工作流向导中上传插件 ZIP 文件

• 单击 * " 选择以上传自定义插件 "*

• PowerShell ： *

• upload-SmPluginPackage cmdlet

例如， PS> Upload — SmPluginPackage — AbsolutePath c ： \DB2_1.zip

有关 PowerShell cmdlet 的详细信息，请使用 SnapCenter cmdlet 帮助或参阅 cmdlet 参考信息。

"《 SnapCenter 软件 cmdlet 参考指南》"。

部署自定义插件

现在，在 * 添加 * 和 * 修改主机 * 工作流中，可以在所需主机上部署上传的自定义插件。您可以将多个版本的插
件上传到 SnapCenter 服务器，并且可以选择要在特定主机上部署的所需版本。

有关如何上传此插件的详细信息，请参见： "添加主机并在远程主机上安装插件软件包"
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