
执行卷操作
Astra Trident
NetApp
November 14, 2025

This PDF was generated from https://docs.netapp.com/zh-cn/trident-2304/trident-use/csi-topology.html on
November 14, 2025. Always check docs.netapp.com for the latest.

目录

执行卷操作 . 1

使用 CSI 拓扑 . 1

概述 . 1

第 1 步：创建可感知拓扑的后端 . 2

第 2 步：定义可识别拓扑的 StorageClasses . 4

第 3 步：创建和使用 PVC . 5

更新后端以包括 supportedTopologies . 8

了解更多信息 . 8

使用快照 . 8

第1步：创建 VolumeSnapshotClass . 8

第 2 步：创建现有 PVC 的快照 . 9

第 3 步：从 VolumeSnapshots 创建 PVC . 10

删除包含快照的PV . 11

部署卷快照控制器. 11

使用快照恢复卷数据. 12

相关链接. 12

展开卷. 12

展开 iSCSI 卷 . 12

展开 NFS 卷 . 16

导入卷. 19

概述和注意事项 . 19

导入卷 . 20

示例 . 21

执行卷操作

使用 CSI 拓扑

Astra Trident 可以通过使用有选择地创建卷并将其附加到 Kubernetes 集群中的节点 "CSI

拓扑功能"。

概述

使用 CSI 拓扑功能，可以根据区域和可用性区域将对卷的访问限制为一小部分节点。如今，借助云提供商，
Kubernetes 管理员可以生成基于分区的节点。节点可以位于一个区域内的不同可用性区域中，也可以位于不同
区域之间。为了便于在多区域架构中为工作负载配置卷， Astra Trident 使用了 CSI 拓扑。

了解有关 CSI 拓扑功能的更多信息 "此处"。

Kubernetes 提供了两种唯一的卷绑定模式：

• 使用 VolumeBindingMode 设置为 Immediate、Astra Trident将创建卷、而不会感知任何拓扑。创建

PVC 时会处理卷绑定和动态配置。这是默认值 VolumeBindingMode 和适用于不强制实施拓扑限制的集
群。创建永久性卷时，不会依赖于请求的 Pod 的计划要求。

• 使用 VolumeBindingMode 设置为 WaitForFirstConsumer、在计划和创建使用PVC的Pod之前、将延
迟为PVC创建和绑定永久性卷。这样，卷就会根据拓扑要求强制实施的计划限制来创建。

。 WaitForFirstConsumer 绑定模式不需要拓扑标签。此功能可独立于 CSI 拓扑功能使用。

您需要的内容

要使用 CSI 拓扑，您需要满足以下条件：

• 运行的Kubernetes集群 "支持的Kubernetes版本"

kubectl version

Client Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:50:19Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

Server Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:41:49Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

• 集群中的节点应具有可引入拓扑感知的标签 (topology.kubernetes.io/region 和

topology.kubernetes.io/zone）。在安装 Astra Trident 之前，集群中的节点上应存在这些标签 * ，以
使 Astra Trident 能够识别拓扑。

1

https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://docs.netapp.com/zh-cn/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/zh-cn/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/zh-cn/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/zh-cn/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/zh-cn/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/zh-cn/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/zh-cn/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/zh-cn/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/zh-cn/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/zh-cn/trident-2304/trident-get-started/requirements.html
https://docs.netapp.com/zh-cn/trident-2304/trident-get-started/requirements.html

kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{.metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"

[node1,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node1","kubernetes.io/

os":"linux","node-

role.kubernetes.io/master":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-a"}]

[node2,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node2","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-b"}]

[node3,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node3","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-c"}]

第 1 步：创建可感知拓扑的后端

可以设计 Astra Trident 存储后端，以便根据可用性区域有选择地配置卷。每个后端都可以具有一个可选的

supportedTopologies 表示必须支持的分区和区域列表的块。对于使用此后端的 StorageClasses ，只有在
受支持区域 / 区域中计划的应用程序请求时，才会创建卷。

下面是一个后端定义示例：

2

YAML

version: 1

storageDriverName: ontap-san

backendName: san-backend-us-east1

managementLIF: 192.168.27.5

svm: iscsi_svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-east1

 topology.kubernetes.io/zone: us-east1-a

- topology.kubernetes.io/region: us-east1

 topology.kubernetes.io/zone: us-east1-b

JSON

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "san-backend-us-east1",

 "managementLIF": "192.168.27.5",

 "svm": "iscsi_svm",

 "username": "admin",

 "password": "password",

 "supportedTopologies": [

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-a"},

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-b"}

]

}

supportedTopologies 用于提供每个后端的区域和分区列表。这些区域和分区表示可在
StorageClass 中提供的允许值列表。对于包含后端提供的部分区域和分区的 StorageClasses ，
Astra Trident 将在后端创建卷。

您可以定义 supportedTopologies 也是每个存储池的一个。请参见以下示例：

3

version: 1

storageDriverName: ontap-nas

backendName: nas-backend-us-central1

managementLIF: 172.16.238.5

svm: nfs_svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-a

- topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-b

storage:

- labels:

 workload: production

 region: Iowa-DC

 zone: Iowa-DC-A

 supportedTopologies:

 - topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-a

- labels:

 workload: dev

 region: Iowa-DC

 zone: Iowa-DC-B

 supportedTopologies:

 - topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-b

在此示例中、将显示 region 和 zone 标签表示存储池的位置。 topology.kubernetes.io/region 和

topology.kubernetes.io/zone 指定存储池的使用位置。

第 2 步：定义可识别拓扑的 StorageClasses

根据为集群中的节点提供的拓扑标签，可以将 StorageClasses 定义为包含拓扑信息。这将确定用作 PVC 请求
候选对象的存储池，以及可使用 Trident 配置的卷的节点子集。

请参见以下示例：

4

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

name: netapp-san-us-east1

provisioner: csi.trident.netapp.io

volumeBindingMode: WaitForFirstConsumer

allowedTopologies:

- matchLabelExpressions:

- key: topology.kubernetes.io/zone

 values:

 - us-east1-a

 - us-east1-b

- key: topology.kubernetes.io/region

 values:

 - us-east1

parameters:

 fsType: "ext4"

在上述StorageClass定义中、 volumeBindingMode 设置为 WaitForFirstConsumer。在此存储类中请求的

PVC 在 Pod 中引用之前不会执行操作。和、 allowedTopologies 提供要使用的分区和区域。。 netapp-

san-us-east1 StorageClass将在上创建PVC san-backend-us-east1 上述定义的后端。

第 3 步：创建和使用 PVC

创建 StorageClass 并将其映射到后端后，您现在可以创建 PVC 。

请参见示例 spec 以下：

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san

spec:

accessModes:

 - ReadWriteOnce

resources:

 requests:

 storage: 300Mi

storageClassName: netapp-san-us-east1

使用此清单创建 PVC 将导致以下结果：

5

kubectl create -f pvc.yaml

persistentvolumeclaim/pvc-san created

kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

AGE

pvc-san Pending netapp-san-us-east1

2s

kubectl describe pvc

Name: pvc-san

Namespace: default

StorageClass: netapp-san-us-east1

Status: Pending

Volume:

Labels: <none>

Annotations: <none>

Finalizers: [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode: Filesystem

Mounted By: <none>

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Normal WaitForFirstConsumer 6s persistentvolume-controller waiting

for first consumer to be created before binding

要使 Trident 创建卷并将其绑定到 PVC ，请在 Pod 中使用 PVC 。请参见以下示例：

6

apiVersion: v1

kind: Pod

metadata:

 name: app-pod-1

spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: topology.kubernetes.io/region

 operator: In

 values:

 - us-east1

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 1

 preference:

 matchExpressions:

 - key: topology.kubernetes.io/zone

 operator: In

 values:

 - us-east1-a

 - us-east1-b

 securityContext:

 runAsUser: 1000

 runAsGroup: 3000

 fsGroup: 2000

 volumes:

 - name: vol1

 persistentVolumeClaim:

 claimName: pvc-san

 containers:

 - name: sec-ctx-demo

 image: busybox

 command: ["sh", "-c", "sleep 1h"]

 volumeMounts:

 - name: vol1

 mountPath: /data/demo

 securityContext:

 allowPrivilegeEscalation: false

此podSpec指示Kubernetes在中的节点上计划Pod us-east1 区域、然后从中的任何节点中进行选择 us-

east1-a 或 us-east1-b 分区。

请参见以下输出：

7

kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE

NOMINATED NODE READINESS GATES

app-pod-1 1/1 Running 0 19s 192.168.25.131 node2

<none> <none>

kubectl get pvc -o wide

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE VOLUMEMODE

pvc-san Bound pvc-ecb1e1a0-840c-463b-8b65-b3d033e2e62b 300Mi

RWO netapp-san-us-east1 48s Filesystem

更新后端以包括 supportedTopologies

可以更新已有后端以包括列表 supportedTopologies 使用 tridentctl backend update。这不会影响
已配置的卷，并且仅用于后续的 PVC 。

了解更多信息

• "管理容器的资源"

• "节点选择器"

• "关联性和反关联性"

• "损害和公差"

使用快照

您可以创建永久性卷(PV)的Kubernetes VolumeSnapshot (卷快照)、以维护Astra Trident卷
的时间点副本。此外、您还可以从现有卷快照创建一个新卷、也称为_clone_。支持卷快照

ontap-nas， ontap-nas-flexgroup， ontap-san， ontap-san-economy，

solidfire-san， gcp-cvs，和 azure-netapp-files 驱动程序。

开始之前

您必须具有外部快照控制器和自定义资源定义(CRD)。这是Kubernetes流程编排程序(例如：Kubeadm、GKE

、OpenShift)的职责。

如果您的Kubernetes分发版不包含快照控制器和CRD、请参见 [部署卷快照控制器]。

如果在GKE环境中创建按需卷快照、请勿创建快照控制器。GKE-使用内置的隐藏快照控制器。

第1步：创建 VolumeSnapshotClass

此示例将创建一个卷快照类。

8

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

cat snap-sc.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

 name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

。 driver 指向A作用 力三端CSI驱动程序。 deletionPolicy 可以是 Delete 或 Retain。设置为时

Retain、存储集群上的底层物理快照会保留、即使在使用时也是如此 VolumeSnapshot 对象已删除。

有关详细信息、请参见链接：./trident引用/objects.html#Kubernetes -volumesnapshotclass-

objects[VolumeSnapshotClass]。

第 2 步：创建现有 PVC 的快照

此示例将创建现有PVC的快照。

cat snap.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

 name: pvc1-snap

spec:

 volumeSnapshotClassName: csi-snapclass

 source:

 persistentVolumeClaimName: pvc1

在此示例中、为名为的PVC创建快照 pvc1 快照的名称设置为 pvc1-snap。

kubectl create -f snap.yaml

volumesnapshot.snapshot.storage.k8s.io/pvc1-snap created

kubectl get volumesnapshots

NAME AGE

pvc1-snap 50s

这就创建了 VolumeSnapshot 对象。VolumeSnapshot类似于PVC、并与关联 VolumeSnapshotContent 表
示实际快照的对象。

可以标识 VolumeSnapshotContent 的对象 pvc1-snap VolumeSnapshot的说明。

9

kubectl describe volumesnapshots pvc1-snap

Name: pvc1-snap

Namespace: default

.

.

.

Spec:

 Snapshot Class Name: pvc1-snap

 Snapshot Content Name: snapcontent-e8d8a0ca-9826-11e9-9807-525400f3f660

 Source:

 API Group:

 Kind: PersistentVolumeClaim

 Name: pvc1

Status:

 Creation Time: 2019-06-26T15:27:29Z

 Ready To Use: true

 Restore Size: 3Gi

.

.

。 Snapshot Content Name 标识提供此快照的VolumeSnapshotContent对象。。 Ready To Use 参数表示
可使用Snapshot创建新的PVC。

第 3 步：从 VolumeSnapshots 创建 PVC

此示例使用快照创建PVC。

cat pvc-from-snap.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: pvc-from-snap

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: golden

 resources:

 requests:

 storage: 3Gi

 dataSource:

 name: pvc1-snap

 kind: VolumeSnapshot

 apiGroup: snapshot.storage.k8s.io

10

dataSource 显示必须使用名为的VolumeSnapshot创建PVC pvc1-snap 作为数据源。此操作将指示 Astra

Trident 从快照创建 PVC 。创建 PVC 后，可以将其附加到 Pod 上，并像使用任何其他 PVC 一样使用。

必须在与其相同的命名空间中创建PVC dataSource。

删除包含快照的PV

删除具有关联快照的永久性卷时，相应的 Trident 卷将更新为 " 正在删除 " 状态。删除卷快照以删除Asta Trdent
卷。

部署卷快照控制器

如果您的Kubernetes分发版不包含快照控制器和CRD、则可以按如下所示进行部署。

步骤

1. 创建卷快照CRD。

cat snapshot-setup.sh

#!/bin/bash

Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents.yam

l

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml

2. 创建快照控制器。

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

如有必要、打开 deploy/kubernetes/snapshot-controller/rbac-snapshot-

controller.yaml 并更新 namespace 命名空间。

11

使用快照恢复卷数据

默认情况下、快照目录处于隐藏状态、以便最大程度地提高使用配置的卷的兼容性 ontap-nas 和 ontap-

nas-economy 驱动程序。启用 .snapshot 目录以直接从快照恢复数据。

使用volume Snapshot restore ONTAP命令行界面将卷还原到先前快照中记录的状态。

cluster1::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3_snap_archive

还原Snapshot副本时、现有卷配置将被覆盖。创建Snapshot副本后对卷数据所做的更改将丢失。

相关链接

• "卷快照"

• "VolumeSnapshotClass"

展开卷

通过 Astra Trident ， Kubernetes 用户可以在创建卷后对其进行扩展。查找有关扩展
iSCSI 和 NFS 卷所需配置的信息。

展开 iSCSI 卷

您可以使用 CSI 配置程序扩展 iSCSI 永久性卷（ PV ）。

支持iSCSI卷扩展 ontap-san， ontap-san-economy， solidfire-san 驱动程序并需
要Kubernetes 1.16及更高版本。

概述

扩展 iSCSI PV 包括以下步骤：

• 编辑StorageClass定义以设置 allowVolumeExpansion 字段设置为 true。

• 编辑PVC定义并更新 spec.resources.requests.storage 以反映新需要的大小、该大小必须大于原始
大小。

• 要调整 PV 大小，必须将 PV 连接到 Pod 。调整 iSCSI PV 大小时，有两种情况：

◦ 如果 PV 连接到 Pod ，则 Astra Trident 会扩展存储后端的卷，重新扫描设备并调整文件系统大小。

◦ 尝试调整未连接 PV 的大小时， Astra Trident 会扩展存储后端的卷。将 PVC 绑定到 Pod 后， Trident

会重新扫描设备并调整文件系统大小。然后， Kubernetes 会在扩展操作成功完成后更新 PVC 大小。

以下示例显示了扩展 iSCSI PV 的工作原理。

12

https://docs.netapp.com/zh-cn/trident-2304/trident-concepts/snapshots.html
https://docs.netapp.com/zh-cn/trident-2304/trident-concepts/snapshots.html
https://docs.netapp.com/zh-cn/trident-2304/trident-concepts/snapshots.html
https://docs.netapp.com/zh-cn/trident-2304/trident-concepts/snapshots.html
https://docs.netapp.com/zh-cn/trident-2304/trident-concepts/snapshots.html
https://docs.netapp.com/zh-cn/trident-2304/trident-concepts/snapshots.html
https://docs.netapp.com/zh-cn/trident-2304/trident-concepts/snapshots.html
https://docs.netapp.com/zh-cn/trident-2304/trident-reference/objects.html

第 1 步：配置 StorageClass 以支持卷扩展

cat storageclass-ontapsan.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-san

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-san"

allowVolumeExpansion: True

对于已存在的StorageClass、请对其进行编辑以包括 allowVolumeExpansion 参数。

第 2 步：使用您创建的 StorageClass 创建 PVC

cat pvc-ontapsan.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: san-pvc

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: ontap-san

Astra Trident 会创建一个永久性卷（ PV ）并将其与此永久性卷声明（ PVC ）关联。

kubectl get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi

RWO ontap-san 8s

kubectl get pv

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi RWO

Delete Bound default/san-pvc ontap-san 10s

13

第 3 步：定义连接 PVC 的 POD

在此示例中、创建了一个使用的POD san-pvc。

 kubectl get pod

NAME READY STATUS RESTARTS AGE

ubuntu-pod 1/1 Running 0 65s

 kubectl describe pvc san-pvc

Name: san-pvc

Namespace: default

StorageClass: ontap-san

Status: Bound

Volume: pvc-8a814d62-bd58-4253-b0d1-82f2885db671

Labels: <none>

Annotations: pv.kubernetes.io/bind-completed: yes

 pv.kubernetes.io/bound-by-controller: yes

 volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers: [kubernetes.io/pvc-protection]

Capacity: 1Gi

Access Modes: RWO

VolumeMode: Filesystem

Mounted By: ubuntu-pod

第 4 步：展开 PV

要将已创建的PV从1Gi调整为2Gi、请编辑PVC定义并更新 spec.resources.requests.storage 至2Gi。

14

kubectl edit pvc san-pvc

Please edit the object below. Lines beginning with a '#' will be

ignored,

and an empty file will abort the edit. If an error occurs while saving

this file will be

reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 annotations:

 pv.kubernetes.io/bind-completed: "yes"

 pv.kubernetes.io/bound-by-controller: "yes"

 volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

 creationTimestamp: "2019-10-10T17:32:29Z"

 finalizers:

 - kubernetes.io/pvc-protection

 name: san-pvc

 namespace: default

 resourceVersion: "16609"

 selfLink: /api/v1/namespaces/default/persistentvolumeclaims/san-pvc

 uid: 8a814d62-bd58-4253-b0d1-82f2885db671

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 2Gi

 ...

第 5 步：验证扩展

您可以通过检查 PVC ， PV 和 Astra Trident 卷的大小来验证扩展是否正常运行：

15

kubectl get pvc san-pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82f2885db671 2Gi

RWO ontap-san 11m

kubectl get pv

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 2Gi RWO

Delete Bound default/san-pvc ontap-san 12m

tridentctl get volumes -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-8a814d62-bd58-4253-b0d1-82f2885db671 | 2.0 GiB | ontap-san |

block | a9b7bfff-0505-4e31-b6c5-59f492e02d33 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

展开 NFS 卷

Astra Trident支持对上配置的NFS PV进行卷扩展 ontap-nas， ontap-nas-economy， ontap-nas-

flexgroup， gcp-cvs，和 azure-netapp-files 后端。

第 1 步：配置 StorageClass 以支持卷扩展

要调整NFS PV的大小、管理员首先需要通过设置来配置存储类以允许卷扩展 allowVolumeExpansion 字段

设置为 true：

cat storageclass-ontapnas.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontapnas

provisioner: csi.trident.netapp.io

parameters:

 backendType: ontap-nas

allowVolumeExpansion: true

如果您已创建没有此选项的存储类、则只需使用编辑现有存储类即可 kubectl edit storageclass 以允许
卷扩展。

16

第 2 步：使用您创建的 StorageClass 创建 PVC

cat pvc-ontapnas.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: ontapnas20mb

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 20Mi

 storageClassName: ontapnas

Astra Trident 应为此 PVC 创建一个 20 MiB NFS PV ：

kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi

RWO ontapnas 9s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi RWO

Delete Bound default/ontapnas20mb ontapnas

2m42s

第3步：展开PV

要将新创建的20MiB PV调整为1GiB、请编辑PVC并进行设置 spec.resources.requests.storage 到1

GB：

17

kubectl edit pvc ontapnas20mb

Please edit the object below. Lines beginning with a '#' will be

ignored,

and an empty file will abort the edit. If an error occurs while saving

this file will be

reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 annotations:

 pv.kubernetes.io/bind-completed: "yes"

 pv.kubernetes.io/bound-by-controller: "yes"

 volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

 creationTimestamp: 2018-08-21T18:26:44Z

 finalizers:

 - kubernetes.io/pvc-protection

 name: ontapnas20mb

 namespace: default

 resourceVersion: "1958015"

 selfLink: /api/v1/namespaces/default/persistentvolumeclaims/ontapnas20mb

 uid: c1bd7fa5-a56f-11e8-b8d7-fa163e59eaab

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

...

第4步：验证扩展

您可以通过检查 PVC ， PV 和 Astra Trident 卷的大小来验证调整大小是否正常工作：

18

kubectl get pvc ontapnas20mb

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 1Gi

RWO ontapnas 4m44s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 1Gi RWO

Delete Bound default/ontapnas20mb ontapnas

5m35s

tridentctl get volume pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 | 1.0 GiB | ontapnas |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

导入卷

您可以使用将现有存储卷作为Kubernetes PV导入 tridentctl import。

概述和注意事项

您可以将卷导入到Astra三端到以下位置：

• 将应用程序容器化并重复使用其现有数据集

• 对一个应用程序使用数据集的克隆

• 重建发生故障的Kubrenetes集群

• 在灾难恢复期间迁移应用程序数据

注意事项

导入卷之前、请查看以下注意事项。

• Asta三端磁盘只能导入RW (读写)类型的ONTAP卷。DP (数据保护)类型的卷是SnapMirror目标卷。在将卷导
入Astra三端存储之前、您应先中断镜像关系。

19

• 我们建议导入没有活动连接的卷。要导入当前使用的卷、请克隆此卷、然后执行导入。

这对于块卷尤其重要、因为Kubnetes不会意识到先前的连接、并且可以轻松地将活动卷连接
到Pod。这可能会导致数据损坏。

• 不过 StorageClass 必须在PVC上指定、A作用 是在导入期间不使用此参数。创建卷期间会使用存储类根
据存储特征从可用池中进行选择。由于卷已存在、因此导入期间不需要选择池。因此、即使卷位于与PVC中
指定的存储类不匹配的后端或池中、导入也不会失败。

• 现有卷大小在PVC中确定和设置。存储驱动程序导入卷后，系统将创建 PV ，并为其创建一个 Claims Ref 。

◦ 回收策略最初设置为 retain 在PV中。Kubernetes 成功绑定 PVC 和 PV 后，将更新回收策略以匹配存
储类的回收策略。

◦ 存储类的回收策略为时 delete、删除PV时、存储卷将被删除。

• 默认情况下、Asta三端存储管理PVC、并在后端重命名FlexVol和LUN。您可以通过 --no-manage 用于导
入非受管卷的标志。如果您使用 `--no-manage`中，A作用 是在对象的生命周期内不对PVC或PV执行任何其
他操作。删除PV后、不会删除存储卷、并且卷克隆和卷大小调整等其他操作也会被忽略。

如果要对容器化工作负载使用 Kubernetes ，但希望在 Kubernetes 外部管理存储卷的生命周
期，则此选项非常有用。

• PVC 和 PV 中会添加一个标注，用于指示卷已导入以及 PVC 和 PV 是否已管理。不应修改或删除此标注。

导入卷

您可以使用 tridentctl import 以导入卷。

步骤

1. 创建永久性卷请求(PVC)文件(例如、 pvc.yaml)。PVC文件应包括 name， namespace， accessModes

，和 storageClassName。您也可以指定 unixPermissions 在PVC定义中。

以下是最低规格示例：

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: my_claim

 namespace: my_namespace

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: my_storage_class

请勿包含PV名称或卷大小等其他参数。这可能发生原因会使导入命令失败。

2. 使用 tridentctl import 命令以指定包含卷的Asta三元数据后端的名称以及在存储上唯一标识卷的名称(

例如：ONTAP FlexVol、Element卷、Cloud Volumes Service路径)。。 -f 指定PVC文件的路径需要参数。

20

tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-

file>

示例

查看以下卷导入示例、了解受支持的驱动程序。

ONTAP NAS和ONTAP NAS FlexGroup

Astra三项功能支持使用导入卷 ontap-nas 和 ontap-nas-flexgroup 驱动程序。

• 。 ontap-nas-economy 驱动程序无法导入和管理qtree。

• 。 ontap-nas 和 ontap-nas-flexgroup 驱动程序不允许使用重复的卷名称。

使用创建的每个卷 ontap-nas 驱动程序是ONTAP 集群上的FlexVol。使用导入FlexVol ontap-nas 驱动程序

的工作原理相同。ONTAP 集群上已存在的FlexVol 可以作为导入 ontap-nas PVC。同样、FlexGroup vols也可

以作为导入 ontap-nas-flexgroup PVC。

ONTAP NAS示例

以下是受管卷和非受管卷导入的示例。

21

受管卷

以下示例将导入名为的卷 managed_volume 位于名为的后端 ontap_nas：

tridentctl import volume ontap_nas managed_volume -f <path-to-pvc-file>

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

非受管卷

使用时 --no-manage 参数、A作用 是不对卷进行重命名。

以下示例导入 unmanaged_volume 在上 ontap_nas 后端：

tridentctl import volume nas_blog unmanaged_volume -f <path-to-pvc-

file> --no-manage

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-df07d542-afbc-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | false |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

ONTAP SAN

Astra三项功能支持使用导入卷 ontap-san 驱动程序。

Astra三端存储可以导入包含单个LUN的ONTAP SAN FlexVol。这与一致 ontap-san 驱动程序、用于为FlexVol

中的每个PVC和LUN创建FlexVol。Asta三进位导入FlexVol并将其与PVC定义关联起来。

ONTAP SAN示例

22

以下是受管卷和非受管卷导入的示例。

受管卷

对于受管卷、Asta三端存储将FlexVol重命名为 pvc-<uuid> 将FlexVol 中的LUN格式化为 lun0。

以下示例将导入 ontap-san-managed 上存在的FlexVol ontap_san_default 后端：

tridentctl import volume ontapsan_san_default ontap-san-managed -f pvc-

basic-import.yaml -n trident -d

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-d6ee4f54-4e40-4454-92fd-d00fc228d74a | 20 MiB | basic |

block | cd394786-ddd5-4470-adc3-10c5ce4ca757 | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

非受管卷

以下示例导入 unmanaged_example_volume 在上 ontap_san 后端：

tridentctl import volume -n trident san_blog unmanaged_example_volume

-f pvc-import.yaml --no-manage

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-1fc999c9-ce8c-459c-82e4-ed4380a4b228 | 1.0 GiB | san-blog |

block | e3275890-7d80-4af6-90cc-c7a0759f555a | online | false |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

如果您将LUN映射到与Kubornetes节点IQN共享IQN的igroux、如以下示例所示、您将收到错误： LUN

already mapped to initiator(s) in this group。您需要删除启动程序或取消映射LUN才能导入
卷。

23

Element

Astra三端存储支持使用NetApp Element软件和NetApp HCI卷导入 solidfire-san 驱动程序。

Element 驱动程序支持重复的卷名称。但是、如果存在重复的卷名称、Asta Dent将返回错误。作
为临时解决策、克隆卷、提供唯一的卷名称并导入克隆的卷。

元素示例

以下示例将导入 element-managed 后端上的卷 element_default。

tridentctl import volume element_default element-managed -f pvc-basic-

import.yaml -n trident -d

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-970ce1ca-2096-4ecd-8545-ac7edc24a8fe | 10 GiB | basic-element |

block | d3ba047a-ea0b-43f9-9c42-e38e58301c49 | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

Google 云平台

Astra三项功能支持使用导入卷 gcp-cvs 驱动程序。

要在Google云平台中导入NetApp Cloud Volumes Service支持的卷、请按卷路径确定该卷。卷路

径是卷的导出路径的一部分、位于之后 :/。例如、如果导出路径为 10.0.0.1:/adroit-

jolly-swift、卷路径为 adroit-jolly-swift。

Google Cloud Platform示例

以下示例将导入 gcp-cvs 后端上的卷 gcpcvs_YEppr 卷路径 adroit-jolly-swift。

24

tridentctl import volume gcpcvs_YEppr adroit-jolly-swift -f <path-to-pvc-

file> -n trident

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-a46ccab7-44aa-4433-94b1-e47fc8c0fa55 | 93 GiB | gcp-storage | file

| e1a6e65b-299e-4568-ad05-4f0a105c888f | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

Azure NetApp Files

Astra三项功能支持使用导入卷 azure-netapp-files 和 azure-netapp-files-subvolume 驱动程序。

要导入Azure NetApp Files卷、请按卷路径确定该卷。卷路径是卷的导出路径的一部分、位于之后

:/。例如、如果挂载路径为 10.0.0.2:/importvol1、卷路径为 importvol1。

Azure NetApp Files示例

以下示例将导入 azure-netapp-files 后端上的卷 azurenetappfiles_40517 卷路径 importvol1。

tridentctl import volume azurenetappfiles_40517 importvol1 -f <path-to-

pvc-file> -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-0ee95d60-fd5c-448d-b505-b72901b3a4ab | 100 GiB | anf-storage |

file | 1c01274f-d94b-44a3-98a3-04c953c9a51e | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

25

版权信息

版权所有 © 2025 NetApp, Inc.。保留所有权利。中国印刷。未经版权所有者事先书面许可，本文档中受版权保
护的任何部分不得以任何形式或通过任何手段（图片、电子或机械方式，包括影印、录音、录像或存储在电子检
索系统中）进行复制。

从受版权保护的 NetApp 资料派生的软件受以下许可和免责声明的约束：

本软件由 NetApp 按“原样”提供，不含任何明示或暗示担保，包括但不限于适销性以及针对特定用途的适用性的
隐含担保，特此声明不承担任何责任。在任何情况下，对于因使用本软件而以任何方式造成的任何直接性、间接
性、偶然性、特殊性、惩罚性或后果性损失（包括但不限于购买替代商品或服务；使用、数据或利润方面的损失
；或者业务中断），无论原因如何以及基于何种责任理论，无论出于合同、严格责任或侵权行为（包括疏忽或其
他行为），NetApp 均不承担责任，即使已被告知存在上述损失的可能性。

NetApp 保留在不另行通知的情况下随时对本文档所述的任何产品进行更改的权利。除非 NetApp 以书面形式明
确同意，否则 NetApp 不承担因使用本文档所述产品而产生的任何责任或义务。使用或购买本产品不表示获得
NetApp 的任何专利权、商标权或任何其他知识产权许可。

本手册中描述的产品可能受一项或多项美国专利、外国专利或正在申请的专利的保护。

有限权利说明：政府使用、复制或公开本文档受 DFARS 252.227-7013（2014 年 2 月）和 FAR 52.227-19

（2007 年 12 月）中“技术数据权利 — 非商用”条款第 (b)(3) 条规定的限制条件的约束。

本文档中所含数据与商业产品和/或商业服务（定义见 FAR 2.101）相关，属于 NetApp, Inc. 的专有信息。根据
本协议提供的所有 NetApp 技术数据和计算机软件具有商业性质，并完全由私人出资开发。 美国政府对这些数
据的使用权具有非排他性、全球性、受限且不可撤销的许可，该许可既不可转让，也不可再许可，但仅限在与交
付数据所依据的美国政府合同有关且受合同支持的情况下使用。除本文档规定的情形外，未经 NetApp, Inc. 事先
书面批准，不得使用、披露、复制、修改、操作或显示这些数据。美国政府对国防部的授权仅限于 DFARS 的第
252.227-7015(b)（2014 年 2 月）条款中明确的权利。

商标信息

NetApp、NetApp 标识和 http://www.netapp.com/TM 上所列的商标是 NetApp, Inc. 的商标。其他公司和产品名
称可能是其各自所有者的商标。

26

http://www.netapp.com/TM

	执行卷操作 : Astra Trident
	目录
	执行卷操作
	使用 CSI 拓扑
	概述
	第 1 步：创建可感知拓扑的后端
	第 2 步：定义可识别拓扑的 StorageClasses
	第 3 步：创建和使用 PVC
	更新后端以包括 supportedTopologies
	了解更多信息

	使用快照
	第1步：创建 VolumeSnapshotClass
	第 2 步：创建现有 PVC 的快照
	第 3 步：从 VolumeSnapshots 创建 PVC
	删除包含快照的PV
	部署卷快照控制器
	使用快照恢复卷数据
	相关链接

	展开卷
	展开 iSCSI 卷
	展开 NFS 卷

	导入卷
	概述和注意事项
	导入卷
	示例

