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执行卷操作

使用 CSI 拓扑

Astra Trident 可以通过使用有选择地创建卷并将其附加到 Kubernetes 集群中的节点 "CSI

拓扑功能"。

概述

使用 CSI 拓扑功能，可以根据区域和可用性区域将对卷的访问限制为一小部分节点。如今，借助云提供商，
Kubernetes 管理员可以生成基于分区的节点。节点可以位于一个区域内的不同可用性区域中，也可以位于不同
区域之间。为了便于在多区域架构中为工作负载配置卷， Astra Trident 使用了 CSI 拓扑。

了解有关 CSI 拓扑功能的更多信息 "此处"。

Kubernetes 提供了两种唯一的卷绑定模式：

• 使用 VolumeBindingMode 设置为 Immediate、Astra Trident将创建卷、而不会感知任何拓扑。创建

PVC 时会处理卷绑定和动态配置。这是默认值 VolumeBindingMode 和适用于不强制实施拓扑限制的集
群。创建永久性卷时，不会依赖于请求的 Pod 的计划要求。

• 使用 VolumeBindingMode 设置为 WaitForFirstConsumer、在计划和创建使用PVC的Pod之前、将延
迟为PVC创建和绑定永久性卷。这样，卷就会根据拓扑要求强制实施的计划限制来创建。

。 WaitForFirstConsumer 绑定模式不需要拓扑标签。此功能可独立于 CSI 拓扑功能使用。

您需要的内容

要使用 CSI 拓扑，您需要满足以下条件：

• 运行的Kubernetes集群 "支持的Kubernetes版本"

kubectl version

Client Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:50:19Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

Server Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:41:49Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

• 集群中的节点应具有可引入拓扑感知的标签 (topology.kubernetes.io/region 和

topology.kubernetes.io/zone）。在安装 Astra Trident 之前，集群中的节点上应存在这些标签 * ，以
使 Astra Trident 能够识别拓扑。
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kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{.metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"

[node1,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node1","kubernetes.io/

os":"linux","node-

role.kubernetes.io/master":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-a"}]

[node2,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node2","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-b"}]

[node3,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node3","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-c"}]

第 1 步：创建可感知拓扑的后端

可以设计 Astra Trident 存储后端，以便根据可用性区域有选择地配置卷。每个后端都可以具有一个可选的

supportedTopologies 表示必须支持的分区和区域列表的块。对于使用此后端的 StorageClasses ，只有在
受支持区域 / 区域中计划的应用程序请求时，才会创建卷。

下面是一个后端定义示例：
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YAML

---

version: 1

storageDriverName: ontap-san

backendName: san-backend-us-east1

managementLIF: 192.168.27.5

svm: iscsi_svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-east1

  topology.kubernetes.io/zone: us-east1-a

- topology.kubernetes.io/region: us-east1

  topology.kubernetes.io/zone: us-east1-b

JSON

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "san-backend-us-east1",

 "managementLIF": "192.168.27.5",

 "svm": "iscsi_svm",

 "username": "admin",

 "password": "password",

 "supportedTopologies": [

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-a"},

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-b"}

]

}

supportedTopologies 用于提供每个后端的区域和分区列表。这些区域和分区表示可在
StorageClass 中提供的允许值列表。对于包含后端提供的部分区域和分区的 StorageClasses ，
Astra Trident 将在后端创建卷。

您可以定义 supportedTopologies 也是每个存储池的一个。请参见以下示例：
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---

version: 1

storageDriverName: ontap-nas

backendName: nas-backend-us-central1

managementLIF: 172.16.238.5

svm: nfs_svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-central1

  topology.kubernetes.io/zone: us-central1-a

- topology.kubernetes.io/region: us-central1

  topology.kubernetes.io/zone: us-central1-b

storage:

- labels:

    workload: production

  region: Iowa-DC

  zone: Iowa-DC-A

  supportedTopologies:

  - topology.kubernetes.io/region: us-central1

    topology.kubernetes.io/zone: us-central1-a

- labels:

    workload: dev

  region: Iowa-DC

  zone: Iowa-DC-B

  supportedTopologies:

  - topology.kubernetes.io/region: us-central1

    topology.kubernetes.io/zone: us-central1-b

在此示例中、将显示 region 和 zone 标签表示存储池的位置。 topology.kubernetes.io/region 和

topology.kubernetes.io/zone 指定存储池的使用位置。

第 2 步：定义可识别拓扑的 StorageClasses

根据为集群中的节点提供的拓扑标签，可以将 StorageClasses 定义为包含拓扑信息。这将确定用作 PVC 请求
候选对象的存储池，以及可使用 Trident 配置的卷的节点子集。

请参见以下示例：

4



apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

name: netapp-san-us-east1

provisioner: csi.trident.netapp.io

volumeBindingMode: WaitForFirstConsumer

allowedTopologies:

- matchLabelExpressions:

- key: topology.kubernetes.io/zone

  values:

  - us-east1-a

  - us-east1-b

- key: topology.kubernetes.io/region

  values:

  - us-east1

parameters:

  fsType: "ext4"

在上述StorageClass定义中、 volumeBindingMode 设置为 WaitForFirstConsumer。在此存储类中请求的

PVC 在 Pod 中引用之前不会执行操作。和、 allowedTopologies 提供要使用的分区和区域。。 netapp-

san-us-east1 StorageClass将在上创建PVC san-backend-us-east1 上述定义的后端。

第 3 步：创建和使用 PVC

创建 StorageClass 并将其映射到后端后，您现在可以创建 PVC 。

请参见示例 spec 以下：

---

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san

spec:

accessModes:

  - ReadWriteOnce

resources:

  requests:

    storage: 300Mi

storageClassName: netapp-san-us-east1

使用此清单创建 PVC 将导致以下结果：
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kubectl create -f pvc.yaml

persistentvolumeclaim/pvc-san created

kubectl get pvc

NAME      STATUS    VOLUME   CAPACITY   ACCESS MODES   STORAGECLASS

AGE

pvc-san   Pending                                      netapp-san-us-east1

2s

kubectl describe pvc

Name:          pvc-san

Namespace:     default

StorageClass:  netapp-san-us-east1

Status:        Pending

Volume:

Labels:        <none>

Annotations:   <none>

Finalizers:    [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode:    Filesystem

Mounted By:    <none>

Events:

  Type    Reason                Age   From                         Message

  ----    ------                ----  ----                         -------

  Normal  WaitForFirstConsumer  6s    persistentvolume-controller  waiting

for first consumer to be created before binding

要使 Trident 创建卷并将其绑定到 PVC ，请在 Pod 中使用 PVC 。请参见以下示例：
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apiVersion: v1

kind: Pod

metadata:

  name: app-pod-1

spec:

  affinity:

    nodeAffinity:

      requiredDuringSchedulingIgnoredDuringExecution:

        nodeSelectorTerms:

        - matchExpressions:

          - key: topology.kubernetes.io/region

            operator: In

            values:

            - us-east1

      preferredDuringSchedulingIgnoredDuringExecution:

      - weight: 1

        preference:

          matchExpressions:

          - key: topology.kubernetes.io/zone

            operator: In

            values:

            - us-east1-a

            - us-east1-b

  securityContext:

    runAsUser: 1000

    runAsGroup: 3000

    fsGroup: 2000

  volumes:

  - name: vol1

    persistentVolumeClaim:

      claimName: pvc-san

  containers:

  - name: sec-ctx-demo

    image: busybox

    command: [ "sh", "-c", "sleep 1h" ]

    volumeMounts:

    - name: vol1

      mountPath: /data/demo

    securityContext:

      allowPrivilegeEscalation: false

此podSpec指示Kubernetes在中的节点上计划Pod us-east1 区域、然后从中的任何节点中进行选择 us-

east1-a 或 us-east1-b 分区。

请参见以下输出：

7



kubectl get pods -o wide

NAME        READY   STATUS    RESTARTS   AGE   IP               NODE

NOMINATED NODE   READINESS GATES

app-pod-1   1/1     Running   0          19s   192.168.25.131   node2

<none>           <none>

kubectl get pvc -o wide

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS          AGE   VOLUMEMODE

pvc-san   Bound    pvc-ecb1e1a0-840c-463b-8b65-b3d033e2e62b   300Mi

RWO            netapp-san-us-east1   48s   Filesystem

更新后端以包括 supportedTopologies

可以更新已有后端以包括列表 supportedTopologies 使用 tridentctl backend update。这不会影响
已配置的卷，并且仅用于后续的 PVC 。

了解更多信息

• "管理容器的资源"

• "节点选择器"

• "关联性和反关联性"

• "损害和公差"

使用快照

您可以创建永久性卷(PV)的Kubernetes VolumeSnapshot (卷快照)、以维护Astra Trident卷
的时间点副本。此外、您还可以从现有卷快照创建一个新卷、也称为_clone_。支持卷快照

ontap-nas， ontap-nas-flexgroup， ontap-san， ontap-san-economy，

solidfire-san， gcp-cvs，和 azure-netapp-files 驱动程序。

开始之前

您必须具有外部快照控制器和自定义资源定义(CRD)。这是Kubernetes流程编排程序(例如：Kubeadm、GKE

、OpenShift)的职责。

如果您的Kubernetes分发版不包含快照控制器和CRD、请参见 [部署卷快照控制器]。

如果在GKE环境中创建按需卷快照、请勿创建快照控制器。GKE-使用内置的隐藏快照控制器。

第1步：创建 VolumeSnapshotClass

此示例将创建一个卷快照类。

8

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/


cat snap-sc.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

  name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

。 driver 指向A作用 力三端CSI驱动程序。 deletionPolicy 可以是 Delete 或 Retain。设置为时

Retain、存储集群上的底层物理快照会保留、即使在使用时也是如此 VolumeSnapshot 对象已删除。

有关详细信息、请参见链接：./trident引用/objects.html#Kubernetes -volumesnapshotclass-

objects[VolumeSnapshotClass]。

第 2 步：创建现有 PVC 的快照

此示例将创建现有PVC的快照。

cat snap.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

  name: pvc1-snap

spec:

  volumeSnapshotClassName: csi-snapclass

  source:

    persistentVolumeClaimName: pvc1

在此示例中、为名为的PVC创建快照 pvc1 快照的名称设置为 pvc1-snap。

kubectl create -f snap.yaml

volumesnapshot.snapshot.storage.k8s.io/pvc1-snap created

kubectl get volumesnapshots

NAME                   AGE

pvc1-snap              50s

这就创建了 VolumeSnapshot 对象。VolumeSnapshot类似于PVC、并与关联 VolumeSnapshotContent 表
示实际快照的对象。

可以标识 VolumeSnapshotContent 的对象 pvc1-snap VolumeSnapshot的说明。
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kubectl describe volumesnapshots pvc1-snap

Name:         pvc1-snap

Namespace:    default

.

.

.

Spec:

  Snapshot Class Name:    pvc1-snap

  Snapshot Content Name:  snapcontent-e8d8a0ca-9826-11e9-9807-525400f3f660

  Source:

    API Group:

    Kind:       PersistentVolumeClaim

    Name:       pvc1

Status:

  Creation Time:  2019-06-26T15:27:29Z

  Ready To Use:   true

  Restore Size:   3Gi

.

.

。 Snapshot Content Name 标识提供此快照的VolumeSnapshotContent对象。。 Ready To Use 参数表示
可使用Snapshot创建新的PVC。

第 3 步：从 VolumeSnapshots 创建 PVC

此示例使用快照创建PVC。

cat pvc-from-snap.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  name: pvc-from-snap

spec:

  accessModes:

    - ReadWriteOnce

  storageClassName: golden

  resources:

    requests:

      storage: 3Gi

  dataSource:

    name: pvc1-snap

    kind: VolumeSnapshot

    apiGroup: snapshot.storage.k8s.io
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dataSource 显示必须使用名为的VolumeSnapshot创建PVC pvc1-snap 作为数据源。此操作将指示 Astra

Trident 从快照创建 PVC 。创建 PVC 后，可以将其附加到 Pod 上，并像使用任何其他 PVC 一样使用。

必须在与其相同的命名空间中创建PVC dataSource。

删除包含快照的PV

删除具有关联快照的永久性卷时，相应的 Trident 卷将更新为 " 正在删除 " 状态。删除卷快照以删除Asta Trdent
卷。

部署卷快照控制器

如果您的Kubernetes分发版不包含快照控制器和CRD、则可以按如下所示进行部署。

步骤

1. 创建卷快照CRD。

cat snapshot-setup.sh

#!/bin/bash

# Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents.yam

l

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml

2. 创建快照控制器。

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

如有必要、打开 deploy/kubernetes/snapshot-controller/rbac-snapshot-

controller.yaml 并更新 namespace 命名空间。
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使用快照恢复卷数据

默认情况下、快照目录处于隐藏状态、以便最大程度地提高使用配置的卷的兼容性 ontap-nas 和 ontap-

nas-economy 驱动程序。启用 .snapshot 目录以直接从快照恢复数据。

使用volume Snapshot restore ONTAP命令行界面将卷还原到先前快照中记录的状态。

cluster1::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3_snap_archive

还原Snapshot副本时、现有卷配置将被覆盖。创建Snapshot副本后对卷数据所做的更改将丢失。

相关链接

• "卷快照"

• "VolumeSnapshotClass"

展开卷

通过 Astra Trident ， Kubernetes 用户可以在创建卷后对其进行扩展。查找有关扩展
iSCSI 和 NFS 卷所需配置的信息。

展开 iSCSI 卷

您可以使用 CSI 配置程序扩展 iSCSI 永久性卷（ PV ）。

支持iSCSI卷扩展 ontap-san， ontap-san-economy， solidfire-san 驱动程序并需
要Kubernetes 1.16及更高版本。

概述

扩展 iSCSI PV 包括以下步骤：

• 编辑StorageClass定义以设置 allowVolumeExpansion 字段设置为 true。

• 编辑PVC定义并更新 spec.resources.requests.storage 以反映新需要的大小、该大小必须大于原始
大小。

• 要调整 PV 大小，必须将 PV 连接到 Pod 。调整 iSCSI PV 大小时，有两种情况：

◦ 如果 PV 连接到 Pod ，则 Astra Trident 会扩展存储后端的卷，重新扫描设备并调整文件系统大小。

◦ 尝试调整未连接 PV 的大小时， Astra Trident 会扩展存储后端的卷。将 PVC 绑定到 Pod 后， Trident

会重新扫描设备并调整文件系统大小。然后， Kubernetes 会在扩展操作成功完成后更新 PVC 大小。

以下示例显示了扩展 iSCSI PV 的工作原理。
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第 1 步：配置 StorageClass 以支持卷扩展

cat storageclass-ontapsan.yaml

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontap-san

provisioner: csi.trident.netapp.io

parameters:

  backendType: "ontap-san"

allowVolumeExpansion: True

对于已存在的StorageClass、请对其进行编辑以包括 allowVolumeExpansion 参数。

第 2 步：使用您创建的 StorageClass 创建 PVC

cat pvc-ontapsan.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: san-pvc

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

  storageClassName: ontap-san

Astra Trident 会创建一个永久性卷（ PV ）并将其与此永久性卷声明（ PVC ）关联。

kubectl get pvc

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS   AGE

san-pvc   Bound    pvc-8a814d62-bd58-4253-b0d1-82f2885db671   1Gi

RWO            ontap-san      8s

kubectl get pv

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM             STORAGECLASS   REASON   AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671   1Gi        RWO

Delete           Bound    default/san-pvc   ontap-san               10s
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第 3 步：定义连接 PVC 的 POD

在此示例中、创建了一个使用的POD san-pvc。

 kubectl get pod

NAME         READY   STATUS    RESTARTS   AGE

ubuntu-pod   1/1     Running   0          65s

 kubectl describe pvc san-pvc

Name:          san-pvc

Namespace:     default

StorageClass:  ontap-san

Status:        Bound

Volume:        pvc-8a814d62-bd58-4253-b0d1-82f2885db671

Labels:        <none>

Annotations:   pv.kubernetes.io/bind-completed: yes

               pv.kubernetes.io/bound-by-controller: yes

               volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers:    [kubernetes.io/pvc-protection]

Capacity:      1Gi

Access Modes:  RWO

VolumeMode:    Filesystem

Mounted By:    ubuntu-pod

第 4 步：展开 PV

要将已创建的PV从1Gi调整为2Gi、请编辑PVC定义并更新 spec.resources.requests.storage 至2Gi。
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kubectl edit pvc san-pvc

# Please edit the object below. Lines beginning with a '#' will be

ignored,

# and an empty file will abort the edit. If an error occurs while saving

this file will be

# reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  annotations:

    pv.kubernetes.io/bind-completed: "yes"

    pv.kubernetes.io/bound-by-controller: "yes"

    volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

  creationTimestamp: "2019-10-10T17:32:29Z"

  finalizers:

  - kubernetes.io/pvc-protection

  name: san-pvc

  namespace: default

  resourceVersion: "16609"

  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/san-pvc

  uid: 8a814d62-bd58-4253-b0d1-82f2885db671

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 2Gi

 ...

第 5 步：验证扩展

您可以通过检查 PVC ， PV 和 Astra Trident 卷的大小来验证扩展是否正常运行：
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kubectl get pvc san-pvc

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS   AGE

san-pvc   Bound    pvc-8a814d62-bd58-4253-b0d1-82f2885db671   2Gi

RWO            ontap-san      11m

kubectl get pv

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM             STORAGECLASS   REASON   AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671   2Gi        RWO

Delete           Bound    default/san-pvc   ontap-san               12m

tridentctl get volumes -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-8a814d62-bd58-4253-b0d1-82f2885db671 | 2.0 GiB | ontap-san     |

block    | a9b7bfff-0505-4e31-b6c5-59f492e02d33 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

展开 NFS 卷

Astra Trident支持对上配置的NFS PV进行卷扩展 ontap-nas， ontap-nas-economy， ontap-nas-

flexgroup， gcp-cvs，和 azure-netapp-files 后端。

第 1 步：配置 StorageClass 以支持卷扩展

要调整NFS PV的大小、管理员首先需要通过设置来配置存储类以允许卷扩展 allowVolumeExpansion 字段

设置为 true：

cat storageclass-ontapnas.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontapnas

provisioner: csi.trident.netapp.io

parameters:

  backendType: ontap-nas

allowVolumeExpansion: true

如果您已创建没有此选项的存储类、则只需使用编辑现有存储类即可 kubectl edit storageclass 以允许
卷扩展。
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第 2 步：使用您创建的 StorageClass 创建 PVC

cat pvc-ontapnas.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: ontapnas20mb

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 20Mi

  storageClassName: ontapnas

Astra Trident 应为此 PVC 创建一个 20 MiB NFS PV ：

kubectl get pvc

NAME           STATUS   VOLUME

CAPACITY     ACCESS MODES   STORAGECLASS    AGE

ontapnas20mb   Bound    pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   20Mi

RWO            ontapnas        9s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM                  STORAGECLASS    REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   20Mi       RWO

Delete           Bound    default/ontapnas20mb   ontapnas

2m42s

第3步：展开PV

要将新创建的20MiB PV调整为1GiB、请编辑PVC并进行设置 spec.resources.requests.storage 到1

GB：
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kubectl edit pvc ontapnas20mb

# Please edit the object below. Lines beginning with a '#' will be

ignored,

# and an empty file will abort the edit. If an error occurs while saving

this file will be

# reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  annotations:

    pv.kubernetes.io/bind-completed: "yes"

    pv.kubernetes.io/bound-by-controller: "yes"

    volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

  creationTimestamp: 2018-08-21T18:26:44Z

  finalizers:

  - kubernetes.io/pvc-protection

  name: ontapnas20mb

  namespace: default

  resourceVersion: "1958015"

  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/ontapnas20mb

  uid: c1bd7fa5-a56f-11e8-b8d7-fa163e59eaab

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

...

第4步：验证扩展

您可以通过检查 PVC ， PV 和 Astra Trident 卷的大小来验证调整大小是否正常工作：
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kubectl get pvc ontapnas20mb

NAME           STATUS   VOLUME

CAPACITY   ACCESS MODES   STORAGECLASS    AGE

ontapnas20mb   Bound    pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   1Gi

RWO            ontapnas        4m44s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM                  STORAGECLASS    REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   1Gi        RWO

Delete           Bound    default/ontapnas20mb   ontapnas

5m35s

tridentctl get volume pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 | 1.0 GiB | ontapnas      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

导入卷

您可以使用将现有存储卷作为Kubernetes PV导入 tridentctl import。

概述和注意事项

您可以将卷导入到Astra三端到以下位置：

• 将应用程序容器化并重复使用其现有数据集

• 对一个应用程序使用数据集的克隆

• 重建发生故障的Kubrenetes集群

• 在灾难恢复期间迁移应用程序数据

注意事项

导入卷之前、请查看以下注意事项。

• Asta三端磁盘只能导入RW (读写)类型的ONTAP卷。DP (数据保护)类型的卷是SnapMirror目标卷。在将卷导
入Astra三端存储之前、您应先中断镜像关系。
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• 我们建议导入没有活动连接的卷。要导入当前使用的卷、请克隆此卷、然后执行导入。

这对于块卷尤其重要、因为Kubnetes不会意识到先前的连接、并且可以轻松地将活动卷连接
到Pod。这可能会导致数据损坏。

• 不过 StorageClass 必须在PVC上指定、A作用 是在导入期间不使用此参数。创建卷期间会使用存储类根
据存储特征从可用池中进行选择。由于卷已存在、因此导入期间不需要选择池。因此、即使卷位于与PVC中
指定的存储类不匹配的后端或池中、导入也不会失败。

• 现有卷大小在PVC中确定和设置。存储驱动程序导入卷后，系统将创建 PV ，并为其创建一个 Claims Ref 。

◦ 回收策略最初设置为 retain 在PV中。Kubernetes 成功绑定 PVC 和 PV 后，将更新回收策略以匹配存
储类的回收策略。

◦ 存储类的回收策略为时 delete、删除PV时、存储卷将被删除。

• 默认情况下、Asta三端存储管理PVC、并在后端重命名FlexVol和LUN。您可以通过 --no-manage 用于导
入非受管卷的标志。如果您使用 `--no-manage`中，A作用 是在对象的生命周期内不对PVC或PV执行任何其
他操作。删除PV后、不会删除存储卷、并且卷克隆和卷大小调整等其他操作也会被忽略。

如果要对容器化工作负载使用 Kubernetes ，但希望在 Kubernetes 外部管理存储卷的生命周
期，则此选项非常有用。

• PVC 和 PV 中会添加一个标注，用于指示卷已导入以及 PVC 和 PV 是否已管理。不应修改或删除此标注。

导入卷

您可以使用 tridentctl import 以导入卷。

步骤

1. 创建永久性卷请求(PVC)文件(例如、 pvc.yaml)。PVC文件应包括 name， namespace， accessModes

，和 storageClassName。您也可以指定 unixPermissions 在PVC定义中。

以下是最低规格示例：

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: my_claim

  namespace: my_namespace

spec:

  accessModes:

    - ReadWriteOnce

  storageClassName: my_storage_class

请勿包含PV名称或卷大小等其他参数。这可能发生原因会使导入命令失败。

2. 使用 tridentctl import 命令以指定包含卷的Asta三元数据后端的名称以及在存储上唯一标识卷的名称(

例如：ONTAP FlexVol、Element卷、Cloud Volumes Service路径)。。 -f 指定PVC文件的路径需要参数。
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tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-

file>

示例

查看以下卷导入示例、了解受支持的驱动程序。

ONTAP NAS和ONTAP NAS FlexGroup

Astra三项功能支持使用导入卷 ontap-nas 和 ontap-nas-flexgroup 驱动程序。

• 。 ontap-nas-economy 驱动程序无法导入和管理qtree。

• 。 ontap-nas 和 ontap-nas-flexgroup 驱动程序不允许使用重复的卷名称。

使用创建的每个卷 ontap-nas 驱动程序是ONTAP 集群上的FlexVol。使用导入FlexVol ontap-nas 驱动程序

的工作原理相同。ONTAP 集群上已存在的FlexVol 可以作为导入 ontap-nas PVC。同样、FlexGroup vols也可

以作为导入 ontap-nas-flexgroup PVC。

ONTAP NAS示例

以下是受管卷和非受管卷导入的示例。
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受管卷

以下示例将导入名为的卷 managed_volume 位于名为的后端 ontap_nas：

tridentctl import volume ontap_nas managed_volume -f <path-to-pvc-file>

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

非受管卷

使用时 --no-manage 参数、A作用 是不对卷进行重命名。

以下示例导入 unmanaged_volume 在上 ontap_nas 后端：

tridentctl import volume nas_blog unmanaged_volume -f <path-to-pvc-

file> --no-manage

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-df07d542-afbc-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | false   |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

ONTAP SAN

Astra三项功能支持使用导入卷 ontap-san 驱动程序。

Astra三端存储可以导入包含单个LUN的ONTAP SAN FlexVol。这与一致 ontap-san 驱动程序、用于为FlexVol

中的每个PVC和LUN创建FlexVol。Asta三进位导入FlexVol并将其与PVC定义关联起来。

ONTAP SAN示例
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以下是受管卷和非受管卷导入的示例。

受管卷

对于受管卷、Asta三端存储将FlexVol重命名为 pvc-<uuid> 将FlexVol 中的LUN格式化为 lun0。

以下示例将导入 ontap-san-managed 上存在的FlexVol ontap_san_default 后端：

tridentctl import volume ontapsan_san_default ontap-san-managed -f pvc-

basic-import.yaml -n trident -d

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-d6ee4f54-4e40-4454-92fd-d00fc228d74a | 20 MiB | basic         |

block    | cd394786-ddd5-4470-adc3-10c5ce4ca757 | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

非受管卷

以下示例导入 unmanaged_example_volume 在上 ontap_san 后端：

tridentctl import volume -n trident san_blog unmanaged_example_volume

-f pvc-import.yaml --no-manage

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-1fc999c9-ce8c-459c-82e4-ed4380a4b228 | 1.0 GiB | san-blog      |

block    | e3275890-7d80-4af6-90cc-c7a0759f555a | online | false   |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

如果您将LUN映射到与Kubornetes节点IQN共享IQN的igroux、如以下示例所示、您将收到错误： LUN

already mapped to initiator(s) in this group。您需要删除启动程序或取消映射LUN才能导入
卷。
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Element

Astra三端存储支持使用NetApp Element软件和NetApp HCI卷导入 solidfire-san 驱动程序。

Element 驱动程序支持重复的卷名称。但是、如果存在重复的卷名称、Asta Dent将返回错误。作
为临时解决策、克隆卷、提供唯一的卷名称并导入克隆的卷。

元素示例

以下示例将导入 element-managed 后端上的卷 element_default。

tridentctl import volume element_default element-managed -f pvc-basic-

import.yaml -n trident -d

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-970ce1ca-2096-4ecd-8545-ac7edc24a8fe | 10 GiB | basic-element |

block    | d3ba047a-ea0b-43f9-9c42-e38e58301c49 | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

Google 云平台

Astra三项功能支持使用导入卷 gcp-cvs 驱动程序。

要在Google云平台中导入NetApp Cloud Volumes Service支持的卷、请按卷路径确定该卷。卷路

径是卷的导出路径的一部分、位于之后 :/。例如、如果导出路径为 10.0.0.1:/adroit-

jolly-swift、卷路径为 adroit-jolly-swift。

Google Cloud Platform示例

以下示例将导入 gcp-cvs 后端上的卷 gcpcvs_YEppr 卷路径 adroit-jolly-swift。
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tridentctl import volume gcpcvs_YEppr adroit-jolly-swift -f <path-to-pvc-

file> -n trident

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-a46ccab7-44aa-4433-94b1-e47fc8c0fa55 | 93 GiB | gcp-storage   | file

| e1a6e65b-299e-4568-ad05-4f0a105c888f | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

Azure NetApp Files

Astra三项功能支持使用导入卷 azure-netapp-files 和 azure-netapp-files-subvolume 驱动程序。

要导入Azure NetApp Files卷、请按卷路径确定该卷。卷路径是卷的导出路径的一部分、位于之后

:/。例如、如果挂载路径为 10.0.0.2:/importvol1、卷路径为 importvol1。

Azure NetApp Files示例

以下示例将导入 azure-netapp-files 后端上的卷 azurenetappfiles_40517 卷路径 importvol1。

tridentctl import volume azurenetappfiles_40517 importvol1 -f <path-to-

pvc-file> -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-0ee95d60-fd5c-448d-b505-b72901b3a4ab | 100 GiB | anf-storage   |

file     | 1c01274f-d94b-44a3-98a3-04c953c9a51e | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+
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