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参考

Trident端口

详细了解Trident用于通信的端口。

Trident端口

Trident通过以下端口进行通信：

端口 目的

8443 后通道 HTTPS

8001 Prometheus 指标端点

8000 Trident REST 服务器

17546 Trident demonset Pod 使用的活动性 / 就绪性探测端口

可以在安装期间使用标志更改活动性/就绪探测端口 --probe-port。请务必确保此端口未被工
作节点上的其他进程使用。

Trident REST API

虽然"tridentctl 命令和选项"这是与Trident REST API交互的最简单方式、但您也可以根据
需要直接使用REST端点。

何时使用REST API

对于在非Kubnetes部署中使用Trident作为独立二进制文件的高级安装、REST API非常有用。

为了提高安全性、默认情况下、在Pod中运行时、Trident `REST API`仅限于本地主机。要更改此行为、您需要
在Pod配置中设置Trident的 `-address`参数。

使用REST API

有关如何调用这些API的示例，请传递debug (-d)标志。有关详细信息，请参阅 "使用trdentctrd管理Trident"。

API 的工作原理如下：

获取

GET <trident-address>/trident/v1/<object-type>

列出该类型的所有对象。

GET <trident-address>/trident/v1/<object-type>/<object-name>

获得命名对象的详细信息。
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发布

POST <trident-address>/trident/v1/<object-type>

创建指定类型的对象。

• 需要为要创建的对象配置 JSON 。有关每种对象类型的规范，请参见"使用trdentctrd管理Trident"。

• 如果对象已存在，则行为会有所不同：后端更新现有对象，而所有其他对象类型将使操作失败。

删除

DELETE <trident-address>/trident/v1/<object-type>/<object-name>

删除命名资源。

与后端或存储类关联的卷将继续存在；必须单独删除这些卷。有关详细信息，请参阅 "使
用trdentctrd管理Trident"。

命令行选项

Trident为Trident流程编排程序提供了多个命令行选项。您可以使用这些选项修改部署。

日志记录

-debug

启用调试输出。

-loglevel <level>

设置日志记录级别(调试、信息、警告、错误、致命)。默认为 INFO 。

Kubernetes

-k8s_pod

使用此选项或启用Kubornetes `-k8s_api_server`支持。如果设置此值，则 Trident 将使用其所属 POD 的
Kubernetes 服务帐户凭据来联系 API 服务器。只有当 Trident 在启用了服务帐户的 Kubernetes 集群中作为
POD 运行时，此功能才有效。

-k8s_api_server <insecure-address:insecure-port>

使用此选项或启用Kubornetes -k8s_pod`支持。指定后， Trident 将使用提供的不安全地址和端口连接
到 Kubernetes API 服务器。这样、Trident便可部署在POD之外；但是、它仅支持与API服务器的不安
全连接。要安全连接、请使用选项在POD中部署Trident `-k8s_pod。

Docker

-volume_driver <name>

注册Docker插件时使用的驱动程序名称。默认为 netapp。
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-driver_port <port-number>

侦听此端口、而不侦听UNIX域套接字。

-config <file>

必需；您必须指定后端配置文件的此路径。

REST

-address <ip-or-host>

指定要侦听的三端存储服务器的地址。默认为 localhost 。在本地主机上侦听并在 Kubernetes Pod 中运行时
，无法从 Pod 外部直接访问 REST 接口。 `-address ""`用于使REST接口可从POD IP地址访问。

可以将 Trident REST 接口配置为仅以 127.0.0.1 （对于 IPv4 ）或（：： 1 ）（对于 IPv6 ）
侦听和提供服务。

-port <port-number>

指定应侦听的三端存储服务器的端口。默认为8000。

-rest

启用REST接口。默认为 true 。

Kubernetes 和 Trident 对象

您可以通过读取和写入资源对象来使用 REST API 与 Kubernetes 和 Trident 进行交
互。Kubernetes 与 Trident ， Trident 与存储以及 Kubernetes 与存储之间的关系由多个资
源对象决定。其中一些对象通过 Kubernetes 进行管理，而另一些对象则通过 Trident 进行
管理。

对象如何相互交互？

了解对象，对象的用途以及对象交互方式的最简单方法可能是，遵循 Kubernetes 用户的单个存储请求：

1. 用户创建了 PersistentVolumeClaim、请求从管理员先前配置的KubureNet获取特定大小的
StorageClass`新 `PersistentVolume。

2. Kubernetes `StorageClass`将Trident标识为其配置程序、并包含一些参数、用于告知Trident如何为请求的类
配置卷。

3. Trident使用相同的名称查找自己的 StorageClass`卷、该名称用于标识匹配项 `Backends、并
`StoragePools`可用于为类配置卷。

4. Trident会在匹配的后端配置存储并创建两个对象：一个 PersistentVolume`位于KubeNet中、用于告
知KubeNet如何查找、挂载和处理卷；另一个位于Trident中、用于保留与实际存储之间的关系
`PersistentVolume。

5. Kubnetes会将绑定 PersistentVolumeClaim`到新 `PersistentVolume。包含在运行此持久卷的任
何主机上挂载此持久卷的Pod PersistentVolumeClaim。

6. 用户使用指向Trident的创建 VolumeSnapshot`现有PVC的 `VolumeSnapshotClass。
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7. Trident 标识与 PVC 关联的卷，并在其后端创建卷的快照。此外、它还会创建一个、
`VolumeSnapshotContent`用于指示Kubbernetes如何识别快照。

8. 用户可以使用 `VolumeSnapshot`创建 `PersistentVolumeClaim`作为源。

9. Trident会确定所需的快照，并执行与创建和 Volume`相同的一组步骤 `PersistentVolume。

要进一步阅读有关Kubbernetes对象的信息、我们强烈建议您阅读 "永久性卷"Kubbernetes文档的
章节。

Kubbernetes `PersistentVolumeClaim`对象

Kubbernetes `PersistentVolumeClaim`对象是由Kubbernetes集群用户发出的存储请求。

除了标准规范之外，如果用户要覆盖在后端配置中设置的默认值， Trident 还允许用户指定以下特定于卷的标注
：

标注 卷选项 支持的驱动程序

trident.netapp.io/fileSystem 文件系统 ontap-san、solidfire-san、ontap-

san-economy.

trident.netapp.io/cloneFromPVC cloneSourceVolume ontap-nas ， ontap-san ， solidfire-

san ， azure-netapp-files ， gcp-

cvs ， ontap-san-economy.

trident.netapp.io/splitOnClone splitOnClone ontap-NAS ， ontap-san

trident.netapp.io/protocol 协议 任意

trident.netapp.io/exportPolicy 导出策略 ontap-nas ， ontap-nas-economy-

、 ontap-nas-flexgroup

trident.netapp.io/snapshotPolicy snapshotPolicy ontap-nas ， ontap-nas-economy.

ontap-nas-flexgroup ， ontap-san

trident.netapp.io/snapshotReserve SnapshotReserve ontap-nas ， ontap-nas-flexgroup

， ontap-san ， GCP-CVS

trident.netapp.io/snapshotDirectory snapshotDirectory ontap-nas ， ontap-nas-economy-

、 ontap-nas-flexgroup

trident.netapp.io/unixPermissions unixPermissions ontap-nas ， ontap-nas-economy-

、 ontap-nas-flexgroup

trident.netapp.io/blockSize 块大小 solidfire-san

如果创建的PV具有 Delete`回收策略、则在PV释放后(即用户删除PVC时)、Trident会同时删除PV和后备
卷。如果删除操作失败， Trident 会将 PV 标记为相应的 PV ，并定期重试此操作，直到操作成功或 PV 
手动删除为止。如果PV使用此 `Retain`策略、则Trident会忽略此策略、并假定管理员将从Kubbernetes
和后端对其进行清理、以便在删除卷之前对其进行备份或检查。请注意，删除 PV 不会通过发生原因
Trident 删除后备卷。您应使用REST API将其删除(`tridentctl)。

Trident 支持使用 CSI 规范创建卷快照：您可以创建卷快照并将其用作数据源来克隆现有 PVC 。这样， PV 的时
间点副本就可以以快照的形式公开给 Kubernetes 。然后，可以使用快照创建新的 PV 。查看 `On-Demand

Volume Snapshots`以了解其工作原理。
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Trident还提供了 `cloneFromPVC`和 `splitOnClone`标注以用于创建克隆。您可以使用这些标注克隆PVC、而
无需使用CSI实施。

以下是一个示例：如果用户已经有一个名为的 mysql`PVC，则用户可以使用标注创建一个名为的新PVC
`mysqlclone，例如 trident.netapp.io/cloneFromPVC: mysql。设置了此标注后， Trident 将克隆与
mysql PVC 对应的卷，而不是从头开始配置卷。

请考虑以下几点：

• 建议克隆空闲卷。

• 一个 PVC 及其克隆应位于同一个 Kubernetes 命名空间中，并具有相同的存储类。

• 对于 ontap-nas`和 `ontap-san`驱动程序，可能需要将PVC标注
`trident.netapp.io/splitOnClone`与结合使用 `trident.netapp.io/cloneFromPVC。将设
置为 true`时 `trident.netapp.io/splitOnClone，Trident会将克隆的卷从父卷中分离出来，从而
使克隆卷的生命周期与其父卷完全分离，从而牺牲一些存储效率。如果不将其设置
trident.netapp.io/splitOnClone`或设置为 `false、则会减少后端的空间消耗、而这会影响在父
卷和克隆卷之间创建依赖关系、从而导致无法删除父卷、除非先删除克隆。拆分克隆是有意义的一种情形，
即克隆空数据库卷时，该卷及其克隆会发生很大的差异，无法从 ONTAP 提供的存储效率中受益。

该 `sample-input`目录包含用于Trident的PVC定义示例。有关与Trident卷关联的参数和设置的完整说明、请参
见。

Kubbernetes `PersistentVolume`对象

Kubbernetes对象表示可供Kubbernetes `PersistentVolume`集群使用的一段存储。它的生命周期与使用它的
POD 无关。

Trident会根据所配置的卷自动创建 `PersistentVolume`对象并将其注册到Kubbernetes集群中。您
不应自行管理它们。

创建引用基于Trident的PVC时 StorageClass，Trident会使用相应的存储类配置新卷，并为该卷注册新PV。在
配置已配置的卷和相应的 PV 时， Trident 会遵循以下规则：

• Trident 会为 Kubernetes 生成 PV 名称及其用于配置存储的内部名称。在这两种情况下，它都可以确保名称
在其范围内是唯一的。

• 卷的大小与 PVC 中请求的大小尽可能匹配，但可能会根据平台将其取整为最接近的可分配数量。

Kubbernetes `StorageClass`对象

Kubnetes StorageClass`对象在中按名称指定 `PersistentVolumeClaims、用于使用一组属性配置存
储。存储类本身可标识要使用的配置程序，并按配置程序所了解的术语定义该属性集。

它是需要由管理员创建和管理的两个基本对象之一。另一个是 Trident 后端对象。

使用Trident的Kubenetes `StorageClass`对象如下所示：
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apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: <Name>

provisioner: csi.trident.netapp.io

mountOptions: <Mount Options>

parameters:

  <Trident Parameters>

allowVolumeExpansion: true

volumeBindingMode: Immediate

这些参数是 Trident 专用的，可告诉 Trident 如何为类配置卷。

存储类参数包括：

属性 键入 必填 说明

属性 map[string]string 否 请参见下面的属性部分

存储池 map[string]StringList 否 后端名称映射到中的存储
池列表

附加 StoragePools map[string]StringList 否 后端名称映射到中的存储
池列表

排除 StoragePools map[string]StringList 否 后端名称映射到中的存储
池列表

存储属性及其可能值可以分类为存储池选择属性和 Kubernetes 属性。

存储池选择属性

这些参数决定了应使用哪些 Trident 管理的存储池来配置给定类型的卷。

属性 键入 值 优惠 请求 支持

介质1 string HDD ，混合，
SSD

Pool 包含此类型
的介质；混合表
示两者

指定的介质类型 ontap-nas ，
ontap-nas-

economy. ontap-

nas-flexgroup ，
ontap-san ，
solidfire-san

配置类型 string 精简，厚 Pool 支持此配置
方法

指定的配置方法 Thick：All

ONTAP ；Thin

：All ONTAP &

solidfire-san
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属性 键入 值 优惠 请求 支持

后端类型 string ontap-nas

、ontap-nas-

economy. ontap-

nas-flexgroup

、ontap-san

、solidfire-san

、GCP-CVS

、azure-netapp-

files、ontap-san-

economy.

池属于此类型的
后端

指定后端 所有驱动程序

snapshots 池 true false Pool 支持具有快
照的卷

启用了快照的卷 ontap-nas ，
ontap-san ，
solidfire-san ，
gcp-cvs

克隆 池 true false Pool 支持克隆卷 启用了克隆的卷 ontap-nas ，
ontap-san ，
solidfire-san ，
gcp-cvs

加密 池 true false 池支持加密卷 已启用加密的卷 ontap-nas ，
ontap-nas-

economy-、
ontap-nas-

flexgroups ，
ontap-san

IOPS 内部 正整数 Pool 能够保证此
范围内的 IOPS

卷保证这些 IOPS solidfire-san

1 ： ONTAP Select 系统不支持

在大多数情况下，请求的值直接影响配置；例如，请求厚配置会导致卷配置较厚。但是， Element 存储池会使
用其提供的 IOPS 最小值和最大值来设置 QoS 值，而不是请求的值。在这种情况下，请求的值仅用于选择存储
池。

理想情况下、您可以单独使用 attributes`来模拟满足特定类需求所需的存储质量。Trident会自动发现并选
择与您指定的_all_匹配的存储池 `attributes。

如果您发现自己无法使用 `attributes`自动为类选择合适的池、则可以使用和 `additionalStoragePools`参数进一
步细化池、甚至可以 `storagePools`选择一组特定的池。

您可以使用 storagePools`参数进一步限制与任何指定匹配的池集 `attributes。换言之、Trident使用和
`storagePools`参数标识的池的交叉点 `attributes`进行配置。您可以单独使用参数，也可以同时使用这两者。

您可以使用 additionalStoragePools`参数扩展Trident用于配置的池集、而不管和 `storagePools`
参数选择了哪些池 `attributes。

您可以使用 `excludeStoragePools`参数筛选Trident用于配置的池集。使用此参数将删除任何匹配的池。

在和 additionalStoragePools`参数中 `storagePools，每个条目的格式为
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<backend>:<storagePoolList>，其中 <storagePoolList>`是指定后端的存储池的逗号分隔列表。
例如，的值 `additionalStoragePools`可能类似于
`ontapnas_192.168.1.100:aggr1,aggr2;solidfire_192.168.1.101:bronze。这些列表接受后端
值和列表值的正则表达式值。您可以使用 `tridentctl get backend`获取后端及其池的列表。

Kubernetes 属性

这些属性不会影响 Trident 在动态配置期间选择的存储池 / 后端。相反，这些属性仅提供 Kubernetes 永久性卷
支持的参数。工作节点负责文件系统创建操作，并且可能需要文件系统实用程序，例如 xfsprogs 。

属性 键入 值 说明 相关驱动程序 Kubernetes
版本

FSType string ext4、ext3、xfs 块卷的文件系统
类型

solidfire-san

、ontap-nas

、ontap-nas-

economy. ontap-

nas-flexgroup

、ontap-san

、ontap-san-

economy.

全部

允许卷扩展 boolean true false 启用或禁用对增
加 PVC 大小的支
持

ontap-nas ，
ontap-nas-

economy. ontap-

nas-flexgroup ，
ontap-san ，
ontap-san-

economy.

solidfire-san ，
gcp-cvs ，
azure-netapp-

files

1.11多个

卷绑定模式 string 即时，
WaitForFirstCon

sumer"

选择何时进行卷
绑定和动态配置

全部 1.19 - 1.26

• fsType`参数用于控制所需的SAN LUN文件系统类型。此外、Kubnetes还会使用存储类中
存在的来指示文件系统存在 `fsType。只有在设置了后、才能使用POD的安全上下文
fsType`控制卷所有权 `fsGroup。有关使用上下文设置卷所有权的概述、 `fsGroup`请参
见"Kubernetes ：为 Pod 或容器配置安全上下文"。只有在以下情况下、Kubnetes才会应用此
`fsGroup`值：

◦ `fsType`在存储类中设置。

◦ PVC 访问模式为 RW 。

对于 NFS 存储驱动程序， NFS 导出中已存在文件系统。要使用 fsGroup`存储类，仍需要
指定 `fsType。您可以将其设置为或任何非空值。 nfs

• 有关卷扩展的详细信息、请参见"展开卷"。

• Trident安装程序包提供了几个示例存储类定义sample-input/storage-class-*.yaml，
用于中的Trident。删除 Kubernetes 存储类也会删除相应的 Trident 存储类。
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Kubbernetes `VolumeSnapshotClass`对象

Kubbernetes VolumeSnapshotClass`对象类似于 `StorageClasses。它们有助于定义多个存储类，并由
卷快照引用以将快照与所需的快照类关联。每个卷快照都与一个卷快照类相关联。

`VolumeSnapshotClass`要创建快照、管理员应定义。此时将使用以下定义创建卷快照类：

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

  name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

`driver`用于向Kub联网 指定由Trident处理对类的卷快照的请求 `csi-snapclass`。

`deletionPolicy`指定在必须删除快照时要执行的操作。如果 `deletionPolicy`将设置为

`Delete`，则在删除快照后，系统将删除卷快照对象以及存储集群上的底层快照。或者、将其设置为

`Retain`表示将 `VolumeSnapshotContent`保留和物理快照。

Kubbernetes `VolumeSnapshot`对象

Kubnetes `VolumeSnapshot`对象是指创建卷快照的请求。就像 PVC 代表用户对卷发出的请求一样，卷快照也
是用户为现有 PVC 创建快照的请求。

收到卷快照请求后、Trident会自动管理在后端为卷创建快照的操作、并通过创建唯一对象来公开快照
VolumeSnapshotContent。您可以从现有 PVC 创建快照，并在创建新 PVC 时将这些快照用作 DataSource
。

VolumeSnapshot 的生命周期与源 PVC 无关：即使删除了源 PVC ，快照也会持续存在。删除具
有关联快照的 PVC 时， Trident 会将此 PVC 的后备卷标记为 " 正在删除 " 状态，但不会将其完
全删除。删除所有关联快照后，卷将被删除。

Kubbernetes `VolumeSnapshotContent`对象

Kubbernetes VolumeSnapshotContent`对象表示从已配置的卷创建的快照。它类似于
`PersistentVolume、表示存储集群上已配置的快照。与和 PersistentVolume`对象类似
`PersistentVolumeClaim、创建快照时、 VolumeSnapshotContent`对象会与请求创建快照的对象保持
一对一映射 `VolumeSnapshot。

`VolumeSnapshotContent`对象包含唯一标识快照的详细信息，例如 `snapshotHandle`。这

`snapshotHandle`是PV名称和对象名称的唯一组合 `VolumeSnapshotContent`。

收到快照请求后， Trident 会在后端创建快照。创建快照后、Trident会配置一个 `VolumeSnapshotContent`对
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象、从而将快照公开给Kubnetes API。

通常、您不需要管理 `VolumeSnapshotContent`对象。但是、如果要在Trident外部创建、则会出
现一个例外情况"导入卷快照"。

Kubbernetes `CustomResourceDefinition`对象

Kubernetes 自定义资源是 Kubernetes API 中的端点，由管理员定义并用于对类似对象进行分组。Kubernetes

支持创建自定义资源以存储对象集合。您可以通过运行来获取这些资源定义 kubectl get crds。

自定义资源定义（ CRD ）及其关联的对象元数据由 Kubernetes 存储在其元数据存储中。这样就无需为 Trident

创建单独的存储。

Trident使用 `CustomResourceDefinition`对象保留Trident对象的身份、例如Trident后端、Trident存储类
和Trident卷。这些对象由 Trident 管理。此外， CSI 卷快照框架还引入了一些定义卷快照所需的 CRD 。

CRD 是一种 Kubernetes 构造。上述资源的对象由 Trident 创建。简单地说，使用创建后端时 tridentctl，会
创建一个相应的 `tridentbackends`CRD对象供Kubbernetes使用。

有关 Trident 的 CRD ，请注意以下几点：

• 安装 Trident 时，系统会创建一组 CRD ，并可像使用任何其他资源类型一样使用。

• 使用命令卸载Trident时 tridentctl uninstall、Trident Pod将被删除、但创建的CRD不会被清理。请
参见"卸载 Trident"、了解如何从头开始完全删除和重新配置Trident。

Trident `StorageClass`对象

Trident会为在其配置程序字段中指定的Kubbernetes对象 csi.trident.netapp.io`创建匹配的存储类
`StorageClass。存储类名称与它所代表的Kubbernetes对象的名称匹配 StorageClass。

使用Kubnetes时、将在注册使用Trident作为配置程序的Kubnetes时自动创建这些对象
StorageClass。

存储类包含一组卷要求。Trident 会将这些要求与每个存储池中的属性进行匹配；如果匹配，则该存储池是使用
该存储类配置卷的有效目标。

您可以使用 REST API 创建存储类配置以直接定义存储类。但是、对于KubeNet部署、我们希望在注册新
的KubeNet对象时创建这些 `StorageClass`对象。

Trident 后端对象

后端表示存储提供程序，其中 Trident 配置卷；单个 Trident 实例可以管理任意数量的后端。

这是您自己创建和管理的两种对象类型之一。另一个是Kubbernetes `StorageClass`对象。

有关如何构建这些对象的详细信息，请参见"正在配置后端"。
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Trident `StoragePool`对象

存储池表示可在每个后端配置的不同位置。对于 ONTAP ，这些聚合对应于 SVM 中的聚合。对于 NetApp

HCI/SolidFire ，这些 QoS 分段对应于管理员指定的 QoS 分段。对于 Cloud Volumes Service ，这些区域对应
于云提供商区域。每个存储池都有一组不同的存储属性，用于定义其性能特征和数据保护特征。

与此处的其他对象不同，存储池候选对象始终会自动发现和管理。

Trident `Volume`对象

卷是基本配置单元，由后端端点组成，例如 NFS 共享和 iSCSI LUN 。在Kubnetes中，这些直接对应于
PersistentVolumes。创建卷时，请确保其具有存储类，此类可确定可配置该卷的位置以及大小。

• 在 Kubernetes 中，这些对象会自动进行管理。您可以查看它们以查看 Trident 配置的内容。

• 删除具有关联快照的 PV 时，相应的 Trident 卷将更新为 * 正在删除 * 状态。要删除 Trident

卷，您应删除该卷的快照。

卷配置定义了配置的卷应具有的属性。

属性 键入 必填 说明

version string 否 Trident API 版本（ "1" ）

name string 是 要创建的卷的名称

存储类 string 是 配置卷时要使用的存储类

大小 string 是 要配置的卷大小（以字节
为单位）

协议 string 否 要使用的协议类型； "file"

或 "block"

内部名称 string 否 存储系统上的对象名称；
由 Trident 生成

cloneSourceVolume string 否 ONTAP （ NAS ， SAN

）和 SolidFire — * ：要从
中克隆的卷的名称

splitOnClone string 否 ONTAP （ NAS ， SAN

）：将克隆从其父级拆分

snapshotPolicy string 否 Snapshot-* ：要使用的
ONTAP 策略

SnapshotReserve string 否 Snapshot-* ：为快照预留
的卷百分比 ONTAP

导出策略 string 否 ontap-nas* ：要使用的导
出策略

snapshotDirectory 池 否 ontap-nas* ：是否显示快
照目录

unixPermissions string 否 ontap-nas* ：初始 UNIX

权限
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属性 键入 必填 说明

块大小 string 否 SolidFire — * ：块 / 扇区
大小

文件系统 string 否 文件系统类型

Trident会在创建卷时生成 internalName。这包括两个步骤。首先，它会在卷名称前面附加存储前缀(默认
trident`前缀或后端配置中的前缀)，从而生成格式为的名称 `<prefix>-<volume-name>。然后，它将继
续清理名称，替换后端不允许使用的字符。对于ONTAP后端，它会将连字符替换为下划线(因此，内部名称将变
为 <prefix>_<volume-name>)。对于 Element 后端，它会将下划线替换为连字符。

您可以使用卷配置直接使用REST API配置卷、但在Kubbernetes部署中、我们希望大多数用户使用标
准Kubbernetes `PersistentVolumeClaim`方法。Trident 会在配置过程中自动创建此卷对象。

Trident `Snapshot`对象

快照是卷的时间点副本，可用于配置新卷或还原状态。在Kubnetes中、这些直接对应于
`VolumeSnapshotContent`对象。每个快照都与一个卷相关联，该卷是快照的数据源。

每个 `Snapshot`对象都包括下列属性：

属性 键入 必填 说明

version 字符串 是 Trident API 版本（ "1" ）

name 字符串 是 Trident Snapshot 对象的
名称

内部名称 字符串 是 存储系统上 Trident

Snapshot 对象的名称

volumeName 字符串 是 为其创建快照的永久性卷
的名称

volumeInternalName 字符串 是 存储系统上关联的 Trident

卷对象的名称

在 Kubernetes 中，这些对象会自动进行管理。您可以查看它们以查看 Trident 配置的内容。

创建Kubnetes VolumeSnapshot`对象请求后、Trident会通过在后备存储系统上创建Snapshot对象来工
作。此快照对象的是通过将前缀与 `UID`该对象的 `VolumeSnapshot`组合来生成 `snapshot-`的
`internalName(例如 snapshot-e8d8a0ca-9826-11e9-9807-525400f3f660)。 `volumeName`和
`volumeInternalName`将通过获取后备卷的详细信息来填充。

Trident `ResourceQuota`对象

Trident守护进程使用优先级类(KubeNet中可用的最高优先级类)、以确保Trident可以在正常节点关闭期间识别和
清理卷、并允许Trident守护进程 `system-node-critical`Pod抢占资源压力较高的集群中优先级较低的工作负载。

为此、Trident会使用一个 `ResourceQuota`对象来确保满足Trident守护程序集上的"system-node critical"优先级
类。在部署和创建守护进程之前、Trident会查找对象、如果未发现、则会应用该 `ResourceQuota`对象。
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如果您需要对默认资源配额和优先级类别进行更多控制、可以使用Helm图表生成 `custom.yaml`或配置
`ResourceQuota`对象。

以下是一个`ResourceQuota`对象的示例、该对象会优先处理Trident子集。

apiVersion: <version>

kind: ResourceQuota

metadata:

  name: trident-csi

  labels:

    app: node.csi.trident.netapp.io

spec:

  scopeSelector:

     matchExpressions:

       - operator : In

         scopeName: PriorityClass

         values: ["system-node-critical"]

有关资源配额的详细信息，请参见"Kubernetes：资源配额"。

如果安装失败、请进行清理 ResourceQuota

在创建对象后安装失败的极少数情况下 ResourceQuota、请先尝试、"正在卸载"然后再重新安装。

如果不起作用、请手动删除该 `ResourceQuota`对象。

删除 ResourceQuota

如果您希望控制自己的资源分配、可以使用以下命令删除Trident `ResourceQuota`对象：

kubectl delete quota trident-csi -n trident

POD安全标准(PSS)和安全上下文限制(SCC)

Kubernetes Pod安全标准(PSS)和Pod安全策略(PSP)定义权限级别并限制Pod的行
为。OpenShift安全上下文约束(SCC)同样定义了特定于OpenShift Kubernetes引擎的POD

限制。为了提供此自定义功能、Trident会在安装期间启用某些权限。以下各节详细介绍
了Trident设置的权限。

PSS将取代Pod安全策略(PSP)。PSP已在Kubernetes v1.21中弃用、并将在v1.25中删除。有关
详细信息，请参阅"Kubernetes：安全性"。
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所需的Kubernetes安全上下文和相关字段

权限 说明

特权 CSI要求挂载点为双向挂载点、这意味着Trident节
点POD必须运行特权容器。有关详细信息，请参阅
"Kubernetes：挂载传播"。

主机网络连接 对于iSCSI守护进程为必需项。 `iscsiadm`管理iSCSI挂
载并使用主机网络与iSCSI守护进程进行通信。

主机IPC NFS使用进程间通信(Interprocess Communication

、IPC)与NFSD进行通信。

主机PID 启动NFS时需要此参数 rpc-statd。Trident会在挂
载NFS卷之前查询主机进程以确定是否 `rpc-statd`正在
运行。

功能 此 SYS_ADMIN`功能是作为有权限的容器的默认功能
的一部分提供的。例如、Docker可为有权限的容器设
置以下功能：
`CapPrm: 0000003fffffffff

CapEff: 0000003fffffffff

Seccomp Seccomp配置文件始终处于"非受限"状态、因此无法
在Trident中启用。

SELinux 在OpenShift上、有权限的容器在("超级特权容器")域中
运行 spc_t、无权限的容器在域中运行
container_t。在上 containerd，安装后
container-selinux，所有容器都在域中运行
spc_t，从而有效地禁用SELinux。因此、Trident不会
添加 `seLinuxOptions`到容器中。

DAC 有权限的容器必须以root用户身份运行。非特权容器
以root用户身份运行、以访问CSI所需的UNIX套接字。

POD安全标准(PSS)

标签 说明 默认

pod-

security.kubernetes.io/enf

orce pod-

security.kubernetes.io/enf

orce-version

允许将Trident控制器和节点收入安
装命名空间。请勿更改命名空间标
签。

enforce: privileged

enforce-version: <version

of the current cluster or

highest version of PSS

tested.>

更改命名空间标签可能会导致Pod未计划、出现"创建时出错：…"或"警告：Trident CSI -…"。如
果发生这种情况、请检查的命名空间标签是否 `privileged`已更改。如果是、请重新安装Trident。

POD安全策略(PSP)

字段 说明 默认

allowPrivilegeEscalation 有权限的容器必须允许权限升级。 true

14

https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation
https://kubernetes.io/docs/concepts/storage/volumes/#mount-propagation


字段 说明 默认

allowedCSIDrivers Trident不使用实时CSI临时卷。 空

allowedCapabilities 非特权Trident容器所需的功能不会
超过默认设置、而特权容器会获得
所有可能的功能。

空

allowedFlexVolumes Trident不使用"FlexVolume驱动程
序"，因此它们不包括在允许的卷列
表中。

空

allowedHostPaths Trident节点POD挂载节点的根文件
系统、因此设置此列表没有好处。

空

allowedProcMountTypes Trident不使用任何
ProcMountTypes。

空

allowedUnsafeSysctls Trident不需要任何不安全的
sysctls。

空

defaultAddCapabilities 无需向有权限的容器添加任何功
能。

空

defaultAllowPrivilegeEscal

ation

允许权限升级在每个Trident POD中
进行处理。

false

forbiddenSysctls `sysctls`不允许。 空

fsGroup Trident容器以root身份运行。 RunAsAny

hostIPC 挂载NFS卷需要与主机IPC进行通信
nfsd

true

hostNetwork iscsiadm要求主机网络与iSCSI守护
进程进行通信。

true

hostPID 需要主机PID来检查节点上是否
`rpc-statd`正在运行。

true

hostPorts Trident不使用任何主机端口。 空

privileged Trident节点Pod必须运行特权容器才
能挂载卷。

true

readOnlyRootFilesystem Trident节点Pod必须写入节点文件系
统。

false

requiredDropCapabilities Trident节点Pod运行有权限的容器、
无法删除功能。

none

runAsGroup Trident容器以root身份运行。 RunAsAny

runAsUser Trident容器以root身份运行。 runAsAny

runtimeClass Trident不使用 RuntimeClasses。 空

seLinux 未设置Trident seLinuxOptions、
因为容器运行时和Kubnetes分发版
处理SELinux的方式目前存在差异。

空

supplementalGroups Trident容器以root身份运行。 RunAsAny
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字段 说明 默认

volumes Trident Pod需要这些卷插件。 hostPath, projected,

emptyDir

安全上下文限制(SCC)

标签 说明 默认

allowHostDirVolumePlugin Trident节点Pod挂载节点的根文件系
统。

true

allowHostIPC 挂载NFS卷需要主机IPC与进行通信
nfsd。

true

allowHostNetwork iscsiadm要求主机网络与iSCSI守护
进程进行通信。

true

allowHostPID 需要主机PID来检查节点上是否
`rpc-statd`正在运行。

true

allowHostPorts Trident不使用任何主机端口。 false

allowPrivilegeEscalation 有权限的容器必须允许权限升级。 true

allowPrivilegedContainer Trident节点Pod必须运行特权容器才
能挂载卷。

true

allowedUnsafeSysctls Trident不需要任何不安全的
sysctls。

none

allowedCapabilities 非特权Trident容器所需的功能不会
超过默认设置、而特权容器会获得
所有可能的功能。

空

defaultAddCapabilities 无需向有权限的容器添加任何功
能。

空

fsGroup Trident容器以root身份运行。 RunAsAny

groups 此SCC专用于Trident并绑定到其用
户。

空

readOnlyRootFilesystem Trident节点Pod必须写入节点文件系
统。

false

requiredDropCapabilities Trident节点Pod运行有权限的容器、
无法删除功能。

none

runAsUser Trident容器以root身份运行。 RunAsAny

seLinuxContext 未设置Trident seLinuxOptions、
因为容器运行时和Kubnetes分发版
处理SELinux的方式目前存在差异。

空

seccompProfiles 有权限的容器始终运行"无限制"。 空

supplementalGroups Trident容器以root身份运行。 RunAsAny
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标签 说明 默认

users 提供了一个条目、用于将此SCC绑
定到Trident命名空间中的Trident用
户。

不适用

volumes Trident Pod需要这些卷插件。 hostPath, downwardAPI,

projected, emptyDir
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