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配置和管理卷

配置卷

创建一个使用已配置的Kubernetes StorageClass来请求对PV的访问的永久性卷(PV)和永
久性卷克莱姆(PVC)。然后、您可以将PV挂载到POD。

概述

A "PersigentVolume" (PV)是由集群管理员在Kubbernetes集群上配置的物理存储资源。 "

PersigentVolumeClaim"(PVC)是指请求访问集群上的永久卷。

可以将PVC配置为请求特定大小的存储或访问模式。通过使用关联的StorageClass，集群管理员可以控制不限于
持续卷大小和访问模式(例如性能或服务级别)。

创建PV和PVC后、您可以将卷挂载到Pod中。

示例清单

PerfsentVolume示例清单

此示例清单文件显示了与StorageClass关联的10gi的基本PV basic-csi。

apiVersion: v1

kind: PersistentVolume

metadata:

  name: pv-storage

  labels:

    type: local

spec:

  storageClassName: basic-csi

  capacity:

    storage: 10Gi

  accessModes:

    - ReadWriteOnce

  hostPath:

    path: "/my/host/path"
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PersentVolumeClaim示例清单

这些示例显示了基本的PVC配置选项。

PVC、带读取器

此示例显示了一个具有读取权限的基本PVC，该PVC与名为的StorageClass关联 basic-csi。

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: pvc-storage

spec:

  accessModes:

    - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

  storageClassName: basic-csi

采用NVMe/TCP的PVC

此示例显示了与名为的StorageClass关联的具有读取权限的NVMe/TCP的基本PVC protection-gold。

---

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san-nvme

spec:

accessModes:

  - ReadWriteOnce

resources:

  requests:

    storage: 300Mi

storageClassName: protection-gold

2



POD清单示例

这些示例显示了将PVC连接到POD的基本配置。

基本配置

kind: Pod

apiVersion: v1

metadata:

  name: pv-pod

spec:

  volumes:

    - name: pv-storage

      persistentVolumeClaim:

       claimName: basic

  containers:

    - name: pv-container

      image: nginx

      ports:

        - containerPort: 80

          name: "http-server"

      volumeMounts:

        - mountPath: "/my/mount/path"

          name: pv-storage
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基本NVMe/TCP配置

---

apiVersion: v1

kind: Pod

metadata:

  creationTimestamp: null

  labels:

    run: nginx

  name: nginx

spec:

  containers:

    - image: nginx

      name: nginx

      resources: {}

      volumeMounts:

        - mountPath: "/usr/share/nginx/html"

          name: task-pv-storage

  dnsPolicy: ClusterFirst

  restartPolicy: Always

  volumes:

    - name: task-pv-storage

      persistentVolumeClaim:

      claimName: pvc-san-nvme

创建PV和PVC

步骤

1. 创建PV。

kubectl create -f pv.yaml

2. 验证PV状态。

kubectl get pv

NAME        CAPACITY  ACCESS MODES  RECLAIM POLICY  STATUS    CLAIM

STORAGECLASS  REASON  AGE

pv-storage  4Gi       RWO           Retain          Available

7s

3. 创建PVC。
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kubectl create -f pvc.yaml

4. 验证PVC状态。

kubectl get pvc

NAME        STATUS VOLUME     CAPACITY ACCESS MODES STORAGECLASS AGE

pvc-storage Bound  pv-name 2Gi      RWO                       5m

5. 将卷挂载到Pod中。

kubectl create -f pv-pod.yaml

您可以使用监控进度 kubectl get pod --watch。

6. 验证卷是否已挂载在上 /my/mount/path。

kubectl exec -it task-pv-pod -- df -h /my/mount/path

7. 现在、您可以删除Pod。Pod应用程序将不再存在、但卷将保留。

kubectl delete pod pv-pod

有关存储类如何与和参数交互以控制Trident如何配置卷的详细信息 PersistentVolumeClaim、请参
见"Kubernetes 和 Trident 对象"。

展开卷

Trident使Kubnetes用户能够在创建卷后对其进行扩展。查找有关扩展 iSCSI 和 NFS 卷所
需配置的信息。

展开 iSCSI 卷

您可以使用 CSI 配置程序扩展 iSCSI 永久性卷（ PV ）。

iSCSI卷扩展受、、 ontap-san-economy solidfire-san`驱动程序支持 `ontap-san，并
且需要Kubernetes 1.16及更高版本。

第 1 步：配置 StorageClass 以支持卷扩展

编辑StorageClass定义以将字段设置 allowVolumeExpansion`为 `true。
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cat storageclass-ontapsan.yaml

---

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontap-san

provisioner: csi.trident.netapp.io

parameters:

  backendType: "ontap-san"

allowVolumeExpansion: True

对于已有的StorageClass、请对其进行编辑以包含 `allowVolumeExpansion`参数。

第 2 步：使用您创建的 StorageClass 创建 PVC

编辑PVC定义并更新以反映新需要的 `spec.resources.requests.storage`大小、该大小必须大于原始大小。

cat pvc-ontapsan.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: san-pvc

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

  storageClassName: ontap-san

Trident会创建一个永久性卷(PV)并将其与此永久性卷请求(PVC)相关联。

kubectl get pvc

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS   AGE

san-pvc   Bound    pvc-8a814d62-bd58-4253-b0d1-82f2885db671   1Gi

RWO            ontap-san      8s

kubectl get pv

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM             STORAGECLASS   REASON   AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671   1Gi        RWO

Delete           Bound    default/san-pvc   ontap-san               10s
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第 3 步：定义连接 PVC 的 POD

将PV连接到POD以调整大小。调整 iSCSI PV 大小时，有两种情况：

• 如果PV连接到Pod、则Trident会扩展存储后端的卷、重新扫描设备并重新设置文件系统大小。

• 尝试调整未连接PV的大小时、Trident会扩展存储后端的卷。将 PVC 绑定到 Pod 后， Trident 会重新扫描设
备并调整文件系统大小。然后， Kubernetes 会在扩展操作成功完成后更新 PVC 大小。

在此示例中，创建了一个使用的POD san-pvc。

 kubectl get pod

NAME         READY   STATUS    RESTARTS   AGE

ubuntu-pod   1/1     Running   0          65s

 kubectl describe pvc san-pvc

Name:          san-pvc

Namespace:     default

StorageClass:  ontap-san

Status:        Bound

Volume:        pvc-8a814d62-bd58-4253-b0d1-82f2885db671

Labels:        <none>

Annotations:   pv.kubernetes.io/bind-completed: yes

               pv.kubernetes.io/bound-by-controller: yes

               volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers:    [kubernetes.io/pvc-protection]

Capacity:      1Gi

Access Modes:  RWO

VolumeMode:    Filesystem

Mounted By:    ubuntu-pod

第4步：展开PV

要将已创建的PV从1Gi调整为2Gi、请编辑PVC定义并将更新 `spec.resources.requests.storage`为2Gi。
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kubectl edit pvc san-pvc

# Please edit the object below. Lines beginning with a '#' will be

ignored,

# and an empty file will abort the edit. If an error occurs while saving

this file will be

# reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  annotations:

    pv.kubernetes.io/bind-completed: "yes"

    pv.kubernetes.io/bound-by-controller: "yes"

    volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

  creationTimestamp: "2019-10-10T17:32:29Z"

  finalizers:

  - kubernetes.io/pvc-protection

  name: san-pvc

  namespace: default

  resourceVersion: "16609"

  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/san-pvc

  uid: 8a814d62-bd58-4253-b0d1-82f2885db671

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 2Gi

 ...

第5步：验证扩展

您可以通过检查PVC、PV和Trident卷的大小来验证扩展是否正常：
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kubectl get pvc san-pvc

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS   AGE

san-pvc   Bound    pvc-8a814d62-bd58-4253-b0d1-82f2885db671   2Gi

RWO            ontap-san      11m

kubectl get pv

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM             STORAGECLASS   REASON   AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671   2Gi        RWO

Delete           Bound    default/san-pvc   ontap-san               12m

tridentctl get volumes -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-8a814d62-bd58-4253-b0d1-82f2885db671 | 2.0 GiB | ontap-san     |

block    | a9b7bfff-0505-4e31-b6c5-59f492e02d33 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

展开 NFS 卷

Trident支持对、 ontap-nas-economy、 ontap-nas-flexgroup、 gcp-cvs`和 `azure-netapp-

files`后端配置的NFS PV进行卷扩展 `ontap-nas。

第 1 步：配置 StorageClass 以支持卷扩展

要调整NFS PV的大小，管理员首先需要通过将字段设置为来将存储类配置为 true`允许卷扩展

`allowVolumeExpansion：

cat storageclass-ontapnas.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: ontapnas

provisioner: csi.trident.netapp.io

parameters:

  backendType: ontap-nas

allowVolumeExpansion: true

如果您已在不使用此选项的情况下创建了存储类、则只需使用编辑现有存储类即可 `kubectl edit storageclass`允
许卷扩展。
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第 2 步：使用您创建的 StorageClass 创建 PVC

cat pvc-ontapnas.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: ontapnas20mb

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 20Mi

  storageClassName: ontapnas

Trident应为此PVC创建一个20MiB NFS PV：

kubectl get pvc

NAME           STATUS   VOLUME

CAPACITY     ACCESS MODES   STORAGECLASS    AGE

ontapnas20mb   Bound    pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   20Mi

RWO            ontapnas        9s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM                  STORAGECLASS    REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   20Mi       RWO

Delete           Bound    default/ontapnas20mb   ontapnas

2m42s

第3步：展开PV

要将新创建的20MiB PV调整为1GiB、请编辑PVC并设置 `spec.resources.requests.storage`为1GiB：
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kubectl edit pvc ontapnas20mb

# Please edit the object below. Lines beginning with a '#' will be

ignored,

# and an empty file will abort the edit. If an error occurs while saving

this file will be

# reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  annotations:

    pv.kubernetes.io/bind-completed: "yes"

    pv.kubernetes.io/bound-by-controller: "yes"

    volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

  creationTimestamp: 2018-08-21T18:26:44Z

  finalizers:

  - kubernetes.io/pvc-protection

  name: ontapnas20mb

  namespace: default

  resourceVersion: "1958015"

  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/ontapnas20mb

  uid: c1bd7fa5-a56f-11e8-b8d7-fa163e59eaab

spec:

  accessModes:

  - ReadWriteOnce

  resources:

    requests:

      storage: 1Gi

...

第4步：验证扩展

您可以通过检查PVC、PV和Trident卷的大小来验证调整大小是否正常：
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kubectl get pvc ontapnas20mb

NAME           STATUS   VOLUME

CAPACITY   ACCESS MODES   STORAGECLASS    AGE

ontapnas20mb   Bound    pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   1Gi

RWO            ontapnas        4m44s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME                                       CAPACITY   ACCESS MODES

RECLAIM POLICY   STATUS   CLAIM                  STORAGECLASS    REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7   1Gi        RWO

Delete           Bound    default/ontapnas20mb   ontapnas

5m35s

tridentctl get volume pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 | 1.0 GiB | ontapnas      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

导入卷

您可以使用将现有存储卷导入为Kubbernetes PV tridentctl import。

概述和注意事项

您可以将卷导入到Trident中、以便：

• 将应用程序容器化并重复使用其现有数据集

• 对一个应用程序使用数据集的克隆

• 重建发生故障的Kubrenetes集群

• 在灾难恢复期间迁移应用程序数据

注意事项

导入卷之前、请查看以下注意事项。

• Trident只能导入RW (读写)类型的ONTAP卷。DP (数据保护)类型的卷是SnapMirror目标卷。在将卷导
入Trident之前、应先中断镜像关系。
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• 我们建议导入没有活动连接的卷。要导入当前使用的卷、请克隆此卷、然后执行导入。

这对于块卷尤其重要、因为Kubnetes不会意识到先前的连接、并且可以轻松地将活动卷连接
到Pod。这可能会导致数据损坏。

• 虽然 `StorageClass`必须在PVC上指定、但Trident在导入期间不使用此参数。创建卷期间会使用存储类根据
存储特征从可用池中进行选择。由于卷已存在、因此导入期间不需要选择池。因此、即使卷位于与PVC中指
定的存储类不匹配的后端或池中、导入也不会失败。

• 现有卷大小在PVC中确定和设置。存储驱动程序导入卷后，系统将创建 PV ，并为其创建一个 Claims Ref 。

◦ 在PV中、回收策略最初设置为 retain。Kubernetes 成功绑定 PVC 和 PV 后，将更新回收策略以匹配
存储类的回收策略。

◦ 如果存储类的回收策略为 delete，则删除PV时将删除存储卷。

• 默认情况下、Trident管理PVC并在后端重命名FlexVol和LUN。您可以传递此 --no-manage`标志以导入非
受管卷。如果使用 `--no-manage，则在对象的生命周期内，Trident不会对PVC或PV执行任何附加操作。
删除PV后、不会删除存储卷、并且卷克隆和卷大小调整等其他操作也会被忽略。

如果要对容器化工作负载使用 Kubernetes ，但希望在 Kubernetes 外部管理存储卷的生命周
期，则此选项非常有用。

• PVC 和 PV 中会添加一个标注，用于指示卷已导入以及 PVC 和 PV 是否已管理。不应修改或删除此标注。

导入卷

您可以使用 `tridentctl import`导入卷。

步骤

1. 创建用于创建PVC的永久性卷请求(PVC)文件(例如 pvc.yaml)。PVC文件应包括 name、、 namespace

accessModes`和 `storageClassName。您也可以在PVC定义中指定 unixPermissions。

以下是最低规格示例：

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: my_claim

  namespace: my_namespace

spec:

  accessModes:

    - ReadWriteOnce

  storageClassName: my_storage_class

请勿包含PV名称或卷大小等其他参数。这可能发生原因会使导入命令失败。

2. 使用 `tridentctl import`命令指定包含卷的Trident后端的名称以及在存储上唯一标识卷的名称(例如：ONTAP

FlexVol、Element卷、Cloud Volumes Service路径)。 `-f`指定PVC文件的路径需要参数。
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tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-

file>

示例

查看以下卷导入示例、了解受支持的驱动程序。

ONTAP NAS和ONTAP NAS FlexGroup

Trident支持使用和 ontap-nas-flexgroup`驱动程序导入卷 `ontap-nas。

• `ontap-nas-economy`驱动程序无法导入和管理qtrees。

• `ontap-nas`和 `ontap-nas-flexgroup`驱动程序不允许卷名称重复。

使用驱动程序创建的每个卷 ontap-nas`都是ONTAP集群上的一个FlexVol。使用驱动程序导入FlexVol的

`ontap-nas`工作原理相同。可以将ONTAP集群上已存在的FlexVol导入为 `ontap-nas`PVC。同
样、FlexGroup vols也可以作为PVC导入 `ontap-nas-flexgroup。

ONTAP NAS示例

以下是受管卷和非受管卷导入的示例。
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受管卷

以下示例将在名为的后端导入名为的 ontap_nas`卷 `managed_volume：

tridentctl import volume ontap_nas managed_volume -f <path-to-pvc-file>

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

非受管卷

使用参数时 --no-manage、Trident不会重命名卷。

以下示例将在 ontap_nas`后端导入 `unmanaged_volume：

tridentctl import volume nas_blog unmanaged_volume -f <path-to-pvc-

file> --no-manage

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-df07d542-afbc-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard      |

file     | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | false   |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

ONTAP SAN

Trident支持使用和 ontap-san-economy`驱动程序导入卷 `ontap-san。

Trident可以导入包含单个LUN的ONTAP SAN FlexVol。这与驱动程序一致 ontap-san、该驱动程序会
为FlexVol中的每个PVC和LUN创建一个FlexVol。Trident导入FlexVol并将其与PVC定义关联。

ONTAP SAN示例
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以下是受管卷和非受管卷导入的示例。

受管卷

对于受管卷，Trident会将FlexVol重命名为格式，并将FlexVol中的LUN重命名 pvc-<uuid>`为 `lun0。

以下示例将导入 ontap-san-managed`后端上的FlexVol `ontap_san_default：

tridentctl import volume ontapsan_san_default ontap-san-managed -f pvc-

basic-import.yaml -n trident -d

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-d6ee4f54-4e40-4454-92fd-d00fc228d74a | 20 MiB | basic         |

block    | cd394786-ddd5-4470-adc3-10c5ce4ca757 | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

非受管卷

以下示例将在 ontap_san`后端导入 `unmanaged_example_volume：

tridentctl import volume -n trident san_blog unmanaged_example_volume

-f pvc-import.yaml --no-manage

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-1fc999c9-ce8c-459c-82e4-ed4380a4b228 | 1.0 GiB | san-blog      |

block    | e3275890-7d80-4af6-90cc-c7a0759f555a | online | false   |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

如果您将LUN映射到与Kubornetes节点IQN共享IQN的igroups (如以下示例所示)，则会收到错误消息： LUN

already mapped to initiator(s) in this group。您需要删除启动程序或取消映射LUN才能导入
卷。
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Element

Trident支持使用驱动程序导入NetApp Element软件和NetApp HCI卷 solidfire-san。

Element 驱动程序支持重复的卷名称。但是、如果存在重复的卷名称、Trident将返回错误。作为
临时解决策、克隆卷、提供唯一的卷名称并导入克隆的卷。

元素示例

以下示例将在后端导入 element-managed`卷 `element_default。

tridentctl import volume element_default element-managed -f pvc-basic-

import.yaml -n trident -d

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-970ce1ca-2096-4ecd-8545-ac7edc24a8fe | 10 GiB | basic-element |

block    | d3ba047a-ea0b-43f9-9c42-e38e58301c49 | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

Google Cloud Platform

Trident支持使用驱动程序导入卷 gcp-cvs。

要在Google云平台中导入NetApp Cloud Volumes Service支持的卷、请按卷路径确定该卷。卷路
径是卷的导出路径中在之后的部分 :/。例如，如果导出路径为 10.0.0.1:/adroit-jolly-

swift，则卷路径为 adroit-jolly-swift。

Google Cloud Platform示例

以下示例将在后端导入 gcp-cvs`卷路径为的 `adroit-jolly-swift`卷 `gcpcvs_YEppr。
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tridentctl import volume gcpcvs_YEppr adroit-jolly-swift -f <path-to-pvc-

file> -n trident

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE  | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-a46ccab7-44aa-4433-94b1-e47fc8c0fa55 | 93 GiB | gcp-storage   | file

| e1a6e65b-299e-4568-ad05-4f0a105c888f | online | true    |

+------------------------------------------+--------+---------------

+----------+--------------------------------------+--------+---------+

Azure NetApp Files

Trident支持使用驱动程序导入卷 azure-netapp-files。

要导入Azure NetApp Files卷、请按卷路径确定该卷。卷路径是卷的导出路径中在之后的部分
:/。例如，如果挂载路径为 10.0.0.2:/importvol1，则卷路径为 importvol1。

Azure NetApp Files示例

以下示例将在后端导入 azure-netapp-files`卷路径为的 `importvol1`卷
`azurenetappfiles_40517。

tridentctl import volume azurenetappfiles_40517 importvol1 -f <path-to-

pvc-file> -n trident

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

|                   NAME                   |  SIZE   | STORAGE CLASS |

PROTOCOL |             BACKEND UUID             | STATE  | MANAGED |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-0ee95d60-fd5c-448d-b505-b72901b3a4ab | 100 GiB | anf-storage   |

file     | 1c01274f-d94b-44a3-98a3-04c953c9a51e | online | true    |

+------------------------------------------+---------+---------------

+----------+--------------------------------------+--------+---------+

自定义卷名称和标签

使用Trident、您可以为创建的卷分配有意义的名称和标签。这有助于您识别卷并轻松地将
其映射到其各自的Kubnetes资源(PVC)。您还可以在后端级别定义用于创建自定义卷名称
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和自定义标签的模板；您创建、导入或克隆的任何卷都将遵循这些模板。

开始之前

可自定义的卷名称和标签支持：

1. 卷创建、导入和克隆操作。

2. 如果使用的是ONTA-NAS经济型驱动程序、则只有qtree卷的名称符合此名称模板。

3. 如果使用的是ONONTAP SAN经济版驱动程序、则只有LUN名称符合此名称模板。

限制

1. 可自定义的卷名称仅与ONTAP内部部署驱动程序兼容。

2. 可自定义的卷名称不适用于现有卷。

可自定义卷名称的关键行为

1. 如果因名称模板中的语法无效而导致失败、则后端创建将失败。但是、如果模板应用程序失败、则会根据现
有命名约定对卷进行命名。

2. 如果使用后端配置中的名称模板来命名卷、则存储前缀不适用。任何所需的前缀值都可以直接添加到模板
中。

具有名称模板和标签的后端配置示例

可以在根和/或池级别定义自定义名称模板。

根级别示例

{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "ontap-nfs-backend",

"managementLIF": "<ip address>",

"svm": "svm0",

"username": "<admin>",

"password": "<password>",

"defaults": {

    "nameTemplate":

"{{.volume.Name}}_{{.labels.cluster}}_{{.volume.Namespace}}_{{.volume.Requ

estName}}"

},

"labels": {"cluster": "ClusterA", "PVC":

"{{.volume.Namespace}}_{{.volume.RequestName}}"}

}
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池级别示例

{

  "version": 1,

  "storageDriverName": "ontap-nas",

  "backendName": "ontap-nfs-backend",

  "managementLIF": "<ip address>",

  "svm": "svm0",

 "username": "<admin>",

  "password": "<password>",

  "useREST": true,

  "storage": [

  {

      "labels":{"labelname":"label1", "name": "{{ .volume.Name }}"},

      "defaults":

      {

          "nameTemplate": "pool01_{{ .volume.Name }}_{{ .labels.cluster

}}_{{ .volume.Namespace }}_{{ .volume.RequestName }}"

      }

   },

  {

      "labels":{"cluster":"label2", "name": "{{ .volume.Name }}"},

      "defaults":

      {

          "nameTemplate": "pool02_{{ .volume.Name }}_{{ .labels.cluster

}}_{{ .volume.Namespace }}_{{ .volume.RequestName }}"

      }

}

  ]

}

命名模板示例

示例1：

"nameTemplate": "{{ .config.StoragePrefix }}_{{ .volume.Name }}_{{

.config.BackendName }}"

示例2：

"nameTemplate": "pool_{{ .config.StoragePrefix }}_{{ .volume.Name }}_{{

slice .volume.RequestName 1 5 }}""
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需要考虑的要点

1. 对于卷导入、只有当现有卷具有特定格式的标签时、才会更新标签。例如：
{"provisioning":{"Cluster":"ClusterA", "PVC": "pvcname"}}。

2. 对于受管卷导入、卷名称遵循后端定义中根级别定义的名称模板。

3. Trident不支持使用带有存储前缀的分区操作符。

4. 如果这些模板不会生成唯一的卷名称、则Trident将附加一些随机字符来创建唯一的卷名称。

5. 如果NAS经济型卷的自定义名称长度超过64个字符、则Trident将根据现有命名约定为卷命名。对于所有其
他ONTAP驱动程序、如果卷名称超过名称限制、则卷创建过程将失败。

在命名空间之间共享NFS卷

使用Trident、您可以在主命名空间中创建卷、并在一个或多个二级命名空间中共享该卷。

功能

通过TridentvolumeReference CR、您可以在一个或多个Kubernetes名空间之间安全地共享ReadwriteMany

(rwx) NFS卷。此Kubernetes本机解决方案 具有以下优势：

• 可通过多个级别的访问控制来确保安全性

• 适用于所有Trident NFS卷驱动程序

• 不依赖于tridentctl或任何其他非本机Kubernetes功能

此图显示了两个Kubernetes命名空间之间的NFS卷共享。
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快速入门

只需几个步骤即可设置NFS卷共享。

配置源PVC以共享卷

源命名空间所有者授予访问源PVC中数据的权限。

授予在目标命名空间中创建CR的权限

集群管理员向目标命名空间的所有者授予创建TridentVolumeReference CR的权限。

在目标命名空间中创建Trident卷 引用

目标命名空间的所有者将创建TridentVolumeReference CR以引用源PVC。

在目标命名空间中创建从属PVC

目标命名空间的所有者创建从属PVC以使用源PVC中的数据源。

配置源和目标命名空间

为了确保安全性、跨命名空间共享需要源命名空间所有者、集群管理员和目标命名空间所有者的协作和操作。每
个步骤都会指定用户角色。
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步骤

1. Source命名空间owner:(pvc1`在源命名空间中创建PVC，该PVC用于授予与目标命名空间共享的权
限(`namespace2)。 shareToNamespace

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: pvc1

  namespace: namespace1

  annotations:

    trident.netapp.io/shareToNamespace: namespace2

spec:

  accessModes:

    - ReadWriteMany

  storageClassName: trident-csi

  resources:

    requests:

      storage: 100Gi

Trident将创建PV及其后端NFS存储卷。

◦ 您可以使用逗号分隔列表将PVC共享给多个命名空间。例如，
trident.netapp.io/shareToNamespace:

namespace2,namespace3,namespace4。

◦ 您可以使用共享到所有 *`的文件。例如、

`trident.netapp.io/shareToNamespace: *

◦ 您可以随时更新PVC以包含 `shareToNamespace`标注。

2. *集群管理员：*创建自定义角色并执行kubeconfig、以授予目标命名空间所有者在目标命名空间中创
建TridentVolumeReference CR的权限。

3. *目标命名空间所有者:*在目标命名空间中创建引用源命名空间的trident卷 引用CR pvc1。

apiVersion: trident.netapp.io/v1

kind: TridentVolumeReference

metadata:

  name: my-first-tvr

  namespace: namespace2

spec:

  pvcName: pvc1

  pvcNamespace: namespace1

4. Destination命名空间owner:(pvc2`在目标命名空间中创建PVC(`namespace2)使用 `shareFromPVC`标注
指定源PVC。
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kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  annotations:

    trident.netapp.io/shareFromPVC: namespace1/pvc1

  name: pvc2

  namespace: namespace2

spec:

  accessModes:

    - ReadWriteMany

  storageClassName: trident-csi

  resources:

    requests:

      storage: 100Gi

目标PVC的大小必须小于或等于源PVC。

结果

Trident会读取 `shareFromPVC`目标PVC上的标注、并将目标PV创建为其自身没有指向源PV的存储资源的子
卷、同时共享源PV存储资源。目标PVC和PV显示为正常绑定。

删除共享卷

您可以删除跨多个命名空间共享的卷。Trident将删除对源命名空间上的卷的访问权限、并保留共享该卷的其他命
名空间的访问权限。删除引用卷的所有名称空间后、Trident将删除该卷。

`tridentctl get`用于查询子卷

您可以使用[tridentctl`实用程序运行 `get`命令以获取子卷。有关详细信息、请参阅链接：Trident
tridentctl.html[`tridentctl commands and options ]。

Usage:

  tridentctl get [option]

flags

• `-h, --help：卷帮助。

• --parentOfSubordinate string：将查询限制为从属源卷。

• --subordinateOf string：将查询限制为卷的子卷。

限制

• Trident无法阻止目标名称空间写入共享卷。您应使用文件锁定或其他进程来防止覆盖共享卷数据。
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• 您不能通过删除或 shareFromNamespace`标注或删除CR来撤消对源PVC的
`TridentVolumeReference`访问 `shareToNamespace。要撤消访问、必须删除从属PVC。

• 无法在从属卷上执行快照、克隆和镜像。

了解更多信息

要了解有关跨命名空间卷访问的详细信息、请执行以下操作：

• 请访问。"在命名空间之间共享卷：对跨命名空间卷访问说Hello"

• 观看上的演示 "NetAppTV"。

使用SnapMirror复制卷

Trident支持在一个集群上的源卷与对等集群上的目标卷之间建立镜像关系、以便为灾难恢
复复制数据。您可以使用具有名称流的自定义资源定义(CRD)执行以下操作：

• 在卷之间创建镜像关系(PVC)

• 删除卷之间的镜像关系

• 中断镜像关系

• 在灾难情况下提升二级卷(故障转移)

• 在集群之间执行应用程序无中断过渡(在计划内故障转移或迁移期间)

复制前提条件

开始之前、请确保满足以下前提条件：

ONTAP 集群

• Kubernet：使用ONTAP作为后端的源和目标Trident集群上必须存在Trident版本22.10或更高版本。

• 许可证：必须在源和目标ONTAP集群上启用使用数据保护包的ONTAP SnapMirror异步许可证。有关详细信
息、请参见 "ONTAP 中的SnapMirror许可概述" 。

对等

• 集群和SVM：ONTAP存储后端必须建立对等状态。有关详细信息、请参见 "集群和 SVM 对等概述" 。

确保两个ONTAP集群之间的复制关系中使用的SVM名称是唯一的。

• * Trident和SVM*：对等远程SVM必须可供目标集群上的Trident使用。

支持的驱动程序

• ONTAP -NAS和ONTAP SAN驱动程序支持卷复制。

创建镜像PVC

按照以下步骤并使用CRD示例在主卷和二级卷之间创建镜像关系。
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步骤

1. 在主Kubbernetes集群上执行以下步骤：

a. 使用参数创建StorageClass对象 trident.netapp.io/replication: true 。

示例

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: csi-nas

provisioner: csi.trident.netapp.io

parameters:

  backendType: "ontap-nas"

  fsType: "nfs"

  trident.netapp.io/replication: "true"

b. 使用先前创建的StorageClass创建PVC。

示例

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: csi-nas

spec:

  accessModes:

  - ReadWriteMany

  resources:

    requests:

      storage: 1Gi

  storageClassName: csi-nas

c. 使用本地信息创建镜像关系CR。

示例

kind: TridentMirrorRelationship

apiVersion: trident.netapp.io/v1

metadata:

  name: csi-nas

spec:

  state: promoted

  volumeMappings:

  - localPVCName: csi-nas
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Trident会提取卷的内部信息以及卷的当前数据保护(DP)状态、然后填充镜像关系的状态字段。

d. 获取TridentMirorRelationship CR以获取PVC的内部名称和SVM。

kubectl get tmr csi-nas

kind: TridentMirrorRelationship

apiVersion: trident.netapp.io/v1

metadata:

  name: csi-nas

  generation: 1

spec:

  state: promoted

  volumeMappings:

  - localPVCName: csi-nas

status:

  conditions:

  - state: promoted

    localVolumeHandle:

"datavserver:trident_pvc_3bedd23c_46a8_4384_b12b_3c38b313c1e1"

    localPVCName: csi-nas

    observedGeneration: 1

2. 在二级Kubbernetes集群上执行以下步骤：

a. 使用trident.netapp.io/replication: true参数创建StorageClass。

示例

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

  name: csi-nas

provisioner: csi.trident.netapp.io

parameters:

  trident.netapp.io/replication: true

b. 使用目标和源信息创建镜像关系CR。
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示例

kind: TridentMirrorRelationship

apiVersion: trident.netapp.io/v1

metadata:

  name: csi-nas

spec:

  state: established

  volumeMappings:

  - localPVCName: csi-nas

    remoteVolumeHandle:

"datavserver:trident_pvc_3bedd23c_46a8_4384_b12b_3c38b313c1e1"

Trident将使用配置的关系策略名称(或ONTAP的默认策略)创建SnapMirror关系并对其进行初始化。

c. 使用先前创建的StorageClass创建一个PVC以用作二级(SnapMirror目标)。

示例

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

  name: csi-nas

  annotations:

    trident.netapp.io/mirrorRelationship: csi-nas

spec:

  accessModes:

  - ReadWriteMany

resources:

  requests:

    storage: 1Gi

storageClassName: csi-nas

Trident将检查是否存在TridentMirorRelationship CRD、如果此关系不存在、则无法创建卷。如果存在此
关系、Trident将确保将新FlexVol volume放置到与镜像关系中定义的远程SVM建立对等关系的SVM上。

卷复制状态

三级镜像关系(TCR)是一种CRD、表示PVC之间复制关系的一端。目标T关系 管理器具有一个状态、此状态会告
知Trident所需的状态。目标T关系 管理器具有以下状态：

• 已建立：本地PVC是镜像关系的目标卷、这是一个新关系。

• 提升：本地PVC可读写并可挂载、当前未建立任何有效的镜像关系。

• 重新建立：本地PVC是镜像关系的目标卷、以前也位于该镜像关系中。

◦ 如果目标卷曾经与源卷建立关系、因为它会覆盖目标卷的内容、则必须使用重新建立的状态。
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◦ 如果卷之前未与源建立关系、则重新建立的状态将失败。

在计划外故障转移期间提升辅助PVC

在二级Kubbernetes集群上执行以下步骤：

• 将TridentMirorRelationship的_spec.state_字 段更新到 promoted。

在计划内故障转移期间提升辅助PVC

在计划内故障转移(迁移)期间、执行以下步骤以提升二级PVC：

步骤

1. 在主Kubbernetes集群上、创建PVC的快照、并等待创建快照。

2. 在主Kubnetes集群上、创建SnapshotInfo CR以获取内部详细信息。

示例

kind: SnapshotInfo

apiVersion: trident.netapp.io/v1

metadata:

  name: csi-nas

spec:

  snapshot-name: csi-nas-snapshot

3. 在二级Kubernetes集群上、将_TridentMirorRelationship_ CR的_spec.state_字 段更新为_promoted_

和_spec.promotedSnapshotHandle_、以成为快照的内部名称。

4. 在二级Kubernetes集群上、确认Trident镜像 关系的状态(stats.state字段)为已提升。

在故障转移后还原镜像关系

在还原镜像关系之前、请选择要用作新主卷的那一端。

步骤

1. 在二级Kubernetes集群上、确保已更新TundentMirorRelationship上的_spic.netVolumeHandle_字段的值。

2. 在二级Kubernetes集群上，将Trident镜像 关系的_spec.mirector_字段更新到 reestablished。

其他操作

Trident支持对主卷和二级卷执行以下操作：

将主PVC复制到新的二级PVC

确保您已有一个主PVC和一个次要PVC。

步骤
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1. 从已建立的二级(目标)集群中删除PerbestentVolumeClaim和TridentMirorRelationship CRD。

2. 从主(源)集群中删除TridentMirorRelationship CRD。

3. 在主(源)集群上为要建立的新二级(目标) PVC创建新的TridentMirorRelationship CRD。

调整镜像、主PVC或二级PVC的大小

可以正常调整PVC的大小、如果数据量超过当前大小、ONTAP将自动扩展任何目标flevxvol。

从PVC中删除复制

要删除复制、请对当前二级卷执行以下操作之一：

• 删除次要PVC上的镜像关系。此操作将中断复制关系。

• 或者、将spec.state字段更新为_promoted_。

删除PVC (之前已镜像)

Trident会检查是否存在复制的PVC、并在尝试删除卷之前释放复制关系。

删除TTr

删除镜像关系一端的T磁 还原会导致剩余的T磁 还原在Trident完成删除之前过渡到_promoted 状态。如果选择删
除的TMirror已处于_Promved"状态、则不存在现有镜像关系、此时TMirror将被删除、Trident会将本地PVC提升
为_ReadWrite。此删除操作将释放ONTAP中本地卷的SnapMirror元数据。如果此卷将来要在镜像关系中使用、
则在创建新镜像关系时、它必须使用具有_re设立_卷复制状态的新TMirror。

在ONTAP联机时更新镜像关系

建立镜像关系后、可以随时更新这些关系。您可以使用 state: promoted 或 state: reestablished 字
段更新关系。将目标卷提升为常规ReadWrite卷时、可以使用_promotedSnapshotHandle_指定要将当前卷还原
到的特定快照。

在ONTAP脱机时更新镜像关系

您可以使用CRD执行SnapMirror更新、而无需Trident直接连接到ONTAP集群。请参阅以下TridentAction镜像 更
新的示例格式：

示例

apiVersion: trident.netapp.io/v1

kind: TridentActionMirrorUpdate

metadata:

  name: update-mirror-b

spec:

  snapshotHandle: "pvc-1234/snapshot-1234"

  tridentMirrorRelationshipName: mirror-b

status.state 反映TridentAction镜像 更新CRD的状态。它可以从_suced_、_in Progress _或_failed中获取
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值。

使用 CSI 拓扑

Trident可以通过使用有选择地创建卷并将其连接到Kubbernetes集群中的节点 "CSI 拓扑功
能"。

概述

使用 CSI 拓扑功能，可以根据区域和可用性区域将对卷的访问限制为一小部分节点。如今，借助云提供商，
Kubernetes 管理员可以生成基于分区的节点。节点可以位于一个区域内的不同可用性区域中，也可以位于不同
区域之间。为了便于在多区域架构中为工作负载配置卷、Trident使用CSI拓扑。

了解有关CSI拓扑功能的更多信息 "此处"。

Kubernetes 提供了两种唯一的卷绑定模式：

• 将设置为 Immediate`时，Trident创建卷时 `VolumeBindingMode`不具有任何拓扑感知功能。创建
PVC 时会处理卷绑定和动态配置。这是默认设置 `VolumeBindingMode、适合不强制实施拓扑限制的集
群。创建永久性卷时、不会依赖于发出请求的POD的计划要求。

• 将设置为 `WaitForFirstConsumer`时，为PVC创建和绑定永久性卷的操作将延迟到计划和创建使用PVC

的Pod时 `VolumeBindingMode`才进行。这样，卷就会根据拓扑要求强制实施的计划限制来创建。

`WaitForFirstConsumer`绑定模式不需要拓扑标签。此功能可独立于 CSI 拓扑功能使用。

您需要的内容

要使用 CSI 拓扑，您需要满足以下条件：

• 运行的Kub并 网集群"支持的Kubernetes版本"

kubectl version

Client Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:50:19Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

Server Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:41:49Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

• 集群中的节点应具有可引入拓扑感知的标签(topology.kubernetes.io/region`和

`topology.kubernetes.io/zone)。在安装Trident之前，这些标签*应出现在群集中的节点上*，以
便Trident能够识别拓扑。
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kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{.metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"

[node1,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node1","kubernetes.io/

os":"linux","node-

role.kubernetes.io/master":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-a"}]

[node2,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node2","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-b"}]

[node3,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node3","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-c"}]

第 1 步：创建可感知拓扑的后端

Trident存储后端可以设计为根据可用性区域选择性地配置卷。每个后端都可以包含一个可选
supportedTopologies 块、该块代表受支持的分区和区域列表。对于使用此后端的 StorageClasses ，只有
在受支持区域 / 区域中计划的应用程序请求时，才会创建卷。

下面是一个后端定义示例：
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YAML

---

version: 1

storageDriverName: ontap-san

backendName: san-backend-us-east1

managementLIF: 192.168.27.5

svm: iscsi_svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-east1

  topology.kubernetes.io/zone: us-east1-a

- topology.kubernetes.io/region: us-east1

  topology.kubernetes.io/zone: us-east1-b

JSON

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "san-backend-us-east1",

 "managementLIF": "192.168.27.5",

 "svm": "iscsi_svm",

 "username": "admin",

 "password": "password",

 "supportedTopologies": [

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-a"},

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-b"}

]

}

`supportedTopologies`用于提供每个后端的区域和分区列表。这些区域和分区表示可在
StorageClass 中提供的允许值列表。对于包含后端提供的部分区域和分区的StorageClasses

、Trident会在后端创建一个卷。

您也可以定义 `supportedTopologies`每个存储池。请参见以下示例：
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---

version: 1

storageDriverName: ontap-nas

backendName: nas-backend-us-central1

managementLIF: 172.16.238.5

svm: nfs_svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-central1

  topology.kubernetes.io/zone: us-central1-a

- topology.kubernetes.io/region: us-central1

  topology.kubernetes.io/zone: us-central1-b

storage:

- labels:

    workload: production

  supportedTopologies:

  - topology.kubernetes.io/region: us-central1

    topology.kubernetes.io/zone: us-central1-a

- labels:

    workload: dev

  supportedTopologies:

  - topology.kubernetes.io/region: us-central1

    topology.kubernetes.io/zone: us-central1-b

在此示例中 region、和 `zone`标签表示存储池的位置。 `topology.kubernetes.io/region`并
`topology.kubernetes.io/zone`指定存储池的使用来源。

第 2 步：定义可识别拓扑的 StorageClasses

根据为集群中的节点提供的拓扑标签，可以将 StorageClasses 定义为包含拓扑信息。这将确定用作 PVC 请求
候选对象的存储池，以及可使用 Trident 配置的卷的节点子集。

请参见以下示例：
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apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

name: netapp-san-us-east1

provisioner: csi.trident.netapp.io

volumeBindingMode: WaitForFirstConsumer

allowedTopologies:

- matchLabelExpressions:

- key: topology.kubernetes.io/zone

  values:

  - us-east1-a

  - us-east1-b

- key: topology.kubernetes.io/region

  values:

  - us-east1

parameters:

  fsType: "ext4"

在上述StorageClass定义中， volumeBindingMode`将设置为 `WaitForFirstConsumer。在此存储类中

请求的 PVC 在 Pod 中引用之前不会执行操作。和 allowedTopologies`提供了要使用的分区和区
域。StorageClass会 `netapp-san-us-east1`在上述定义的后端创建PVC `san-backend-us-

east1。

第 3 步：创建和使用 PVC

创建 StorageClass 并将其映射到后端后，您现在可以创建 PVC 。

请参见以下示例 spec：

---

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san

spec:

accessModes:

  - ReadWriteOnce

resources:

  requests:

    storage: 300Mi

storageClassName: netapp-san-us-east1

使用此清单创建 PVC 将导致以下结果：

35



kubectl create -f pvc.yaml

persistentvolumeclaim/pvc-san created

kubectl get pvc

NAME      STATUS    VOLUME   CAPACITY   ACCESS MODES   STORAGECLASS

AGE

pvc-san   Pending                                      netapp-san-us-east1

2s

kubectl describe pvc

Name:          pvc-san

Namespace:     default

StorageClass:  netapp-san-us-east1

Status:        Pending

Volume:

Labels:        <none>

Annotations:   <none>

Finalizers:    [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode:    Filesystem

Mounted By:    <none>

Events:

  Type    Reason                Age   From                         Message

  ----    ------                ----  ----                         -------

  Normal  WaitForFirstConsumer  6s    persistentvolume-controller  waiting

for first consumer to be created before binding

要使 Trident 创建卷并将其绑定到 PVC ，请在 Pod 中使用 PVC 。请参见以下示例：
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apiVersion: v1

kind: Pod

metadata:

  name: app-pod-1

spec:

  affinity:

    nodeAffinity:

      requiredDuringSchedulingIgnoredDuringExecution:

        nodeSelectorTerms:

        - matchExpressions:

          - key: topology.kubernetes.io/region

            operator: In

            values:

            - us-east1

      preferredDuringSchedulingIgnoredDuringExecution:

      - weight: 1

        preference:

          matchExpressions:

          - key: topology.kubernetes.io/zone

            operator: In

            values:

            - us-east1-a

            - us-east1-b

  securityContext:

    runAsUser: 1000

    runAsGroup: 3000

    fsGroup: 2000

  volumes:

  - name: vol1

    persistentVolumeClaim:

      claimName: pvc-san

  containers:

  - name: sec-ctx-demo

    image: busybox

    command: [ "sh", "-c", "sleep 1h" ]

    volumeMounts:

    - name: vol1

      mountPath: /data/demo

    securityContext:

      allowPrivilegeEscalation: false

此podSpec指示Kubornetes在区域中的节点上计划POD us-east1、并从或 us-east1-b`区域中的任何节点
中进行选择 `us-east1-a。

请参见以下输出：
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kubectl get pods -o wide

NAME        READY   STATUS    RESTARTS   AGE   IP               NODE

NOMINATED NODE   READINESS GATES

app-pod-1   1/1     Running   0          19s   192.168.25.131   node2

<none>           <none>

kubectl get pvc -o wide

NAME      STATUS   VOLUME                                     CAPACITY

ACCESS MODES   STORAGECLASS          AGE   VOLUMEMODE

pvc-san   Bound    pvc-ecb1e1a0-840c-463b-8b65-b3d033e2e62b   300Mi

RWO            netapp-san-us-east1   48s   Filesystem

更新后端以包含 supportedTopologies

可以更新已有的后端以包括使用 tridentctl backend update`列表 `supportedTopologies。这不会
影响已配置的卷，并且仅用于后续的 PVC 。

了解更多信息

• "管理容器的资源"

• "节点选择器"

• "关联性和反关联性"

• "损害和公差"

使用快照

持久卷(PVs)的Kubbernetes卷快照支持卷的时间点副本。您可以为使用Trident创建的卷创
建快照、导入在Trident外部创建的快照、从现有快照创建新卷以及从快照恢复卷数据。

概述

、 ontap-nas-flexgroup、 ontap-san、、 ontap-san-economy`支持卷快照 `ontap-nas
solidfire-san `gcp-cvs`和 `azure-netapp-files`驱动程序。

开始之前

要使用快照、您必须具有外部快照控制器和自定义资源定义(CRD)。这是Kubernetes流程编排程序(例如
：Kubeadm、GKE、OpenShift)的职责。

如果您的Kubnetes分发不包括快照控制器和CRD，请参阅[部署卷快照控制器]。

如果在GKE环境中创建按需卷快照、请勿创建快照控制器。GKE-使用内置的隐藏快照控制器。

创建卷快照

步骤
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1. 创建 VolumeSnapshotClass。有关详细信息，请参阅。"VolumeSnapshotClass"

◦ `driver`指向Trident CSI驱动程序。

◦ deletionPolicy`可以是 `Delete`或 `Retain。如果设置为 Retain，则即使删除对象，存储集

群上的底层物理快照也会保留 VolumeSnapshot。

示例

cat snap-sc.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

  name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

2. 创建现有PVC的快照。

示例

◦ 此示例将创建现有PVC的快照。

cat snap.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

  name: pvc1-snap

spec:

  volumeSnapshotClassName: csi-snapclass

  source:

    persistentVolumeClaimName: pvc1

◦ 以下示例将为名为的PVC创建卷快照对象，并且快照 pvc1`的名称设置为 `pvc1-snap。卷快照类似
于PVC、并与表示实际快照的对象相关联 VolumeSnapshotContent。

kubectl create -f snap.yaml

volumesnapshot.snapshot.storage.k8s.io/pvc1-snap created

kubectl get volumesnapshots

NAME                   AGE

pvc1-snap              50s

◦ 您可以通过对卷快照对象进行描述来确定 VolumeSnapshotContent`该对象 `pvc1-snap。
`Snapshot Content Name`标识提供此快照的卷SnapshotContent对象。 `Ready To Use`参数表示快照可
用于创建新PVC。
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kubectl describe volumesnapshots pvc1-snap

Name:         pvc1-snap

Namespace:    default

.

.

.

Spec:

  Snapshot Class Name:    pvc1-snap

  Snapshot Content Name:  snapcontent-e8d8a0ca-9826-11e9-9807-

525400f3f660

  Source:

    API Group:

    Kind:       PersistentVolumeClaim

    Name:       pvc1

Status:

  Creation Time:  2019-06-26T15:27:29Z

  Ready To Use:   true

  Restore Size:   3Gi

.

.

从卷快照创建PVC

您可以使用 dataSource`创建使用名为作为数据源的卷快照的PVC `<pvc-name>。创建 PVC 后，可以将其
附加到 Pod 上，并像使用任何其他 PVC 一样使用。

PVC将与源卷在同一后端创建。请参阅 "知识库文章：无法在备用后端创建从三端PVC Snapshot

创建PVC"。

以下示例将使用作为数据源创建PVC pvc1-snap。
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cat pvc-from-snap.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  name: pvc-from-snap

spec:

  accessModes:

    - ReadWriteOnce

  storageClassName: golden

  resources:

    requests:

      storage: 3Gi

  dataSource:

    name: pvc1-snap

    kind: VolumeSnapshot

    apiGroup: snapshot.storage.k8s.io

导入卷快照

Trident支持通过"Kubbernetes预配置快照过程"、集群管理员可以创建 `VolumeSnapshotContent`对象并导入
在Trident外部创建的快照。

开始之前

Trident必须已创建或导入快照的父卷。

步骤

1. *集群管理员：*创建 `VolumeSnapshotContent`引用后端快照的对象。这将在Trident中启动快照工作流。

◦ 在中将后端快照的名称指定 annotations`为 `trident.netapp.io/internalSnapshotName:

<"backend-snapshot-name">。

◦ 在中指定 <name-of-parent-volume-in-trident>/<volume-snapshot-content-name>。这

是调用中 snapshotHandle`外部快照程序向Trident提供的唯一信息。 `ListSnapshots

`<volumeSnapshotContentName>`由于CR命名限制、不能始终与后端快照名称匹配。

示例

以下示例将创建一个 VolumeSnapshotContent`引用后端Snapshot的对象 `snap-01。
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apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotContent

metadata:

  name: import-snap-content

  annotations:

    trident.netapp.io/internalSnapshotName: "snap-01"  # This is the

name of the snapshot on the backend

spec:

  deletionPolicy: Retain

  driver: csi.trident.netapp.io

  source:

    snapshotHandle: pvc-f71223b5-23b9-4235-bbfe-e269ac7b84b0/import-

snap-content # <import PV name or source PV name>/<volume-snapshot-

content-name>

  volumeSnapshotRef:

    name: import-snap

    namespace: default

2. *Cluster admin:*创建引用对象的 VolumeSnapshot`CR `VolumeSnapshotContent。此操作将请求访

问以在给定命名空间中使用 VolumeSnapshot。

示例

以下示例将创建一个 VolumeSnapshot`名为的CR，该CR引用名为 `import-snap`的
`VolumeSnapshotContent import-snap-content。

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

  name: import-snap

spec:

  # volumeSnapshotClassName: csi-snapclass (not required for pre-

provisioned or imported snapshots)

  source:

    volumeSnapshotContentName: import-snap-content

3. *内部处理(无需执行任何操作)：*外部快照程序识别新创建的 VolumeSnapshotContent`并运行
`ListSnapshots`调用。Trident将创建 `TridentSnapshot。

◦ 外部快照程序将设置为，将 VolumeSnapshot`设置 `VolumeSnapshotContent`为

`readyToUse true。

◦ Trident返回 readyToUse=true。

4. *any user:*创建 PersistentVolumeClaim`引用新的的 `VolumeSnapshot，其中
spec.dataSource(或 spec.dataSourceRef)名是 `VolumeSnapshot`名称。
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示例

以下示例将创建一个引用名为 import-snap`的的PVC `VolumeSnapshot。

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

  name: pvc-from-snap

spec:

  accessModes:

    - ReadWriteOnce

  storageClassName: simple-sc

  resources:

    requests:

      storage: 1Gi

  dataSource:

    name: import-snap

    kind: VolumeSnapshot

    apiGroup: snapshot.storage.k8s.io

使用快照恢复卷数据

默认情况下、快照目录处于隐藏状态、以便最大程度地兼容使用和 ontap-nas-economy`驱动程序配置的卷

`ontap-nas。启用 `.snapshot`目录以直接从快照恢复数据。

使用volume Snapshot restore ONTAP命令行界面将卷还原到先前快照中记录的状态。

cluster1::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3_snap_archive

还原Snapshot副本时、现有卷配置将被覆盖。创建Snapshot副本后对卷数据所做的更改将丢失。

从快照原位还原卷

Trident可使用(TSR) CR从快照快速原位还原卷 TridentActionSnapshotRestore。此CR用作要
务Kubbernetes操作、在操作完成后不会持久保留。

Trident支持在 ontap-san、、 ontap-san-economy ontap-nas、 ontap-nas-flexgroup azure-

netapp-files、、 gcp-cvs `google-cloud-netapp-volumes`和 `solidfire-san`驱动程序。

开始之前

您必须具有绑定的PVC和可用的卷快照。

• 验证PVC状态是否已绑定。
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kubectl get pvc

• 确认卷快照已准备就绪、可以使用。

kubectl get vs

步骤

1. 创建TSR CR。此示例将为PVC和卷快照创建CR pvc1 pvc1-snapshot。

TSR CR必须位于PVC和VS所在的命名空间中。

cat tasr-pvc1-snapshot.yaml

apiVersion: trident.netapp.io/v1

kind: TridentActionSnapshotRestore

metadata:

  name: trident-snap

  namespace: trident

spec:

  pvcName: pvc1

  volumeSnapshotName: pvc1-snapshot

1. 应用CR以从快照还原。此示例将从Snapshot恢复 pvc1。

kubectl create -f tasr-pvc1-snapshot.yaml

tridentactionsnapshotrestore.trident.netapp.io/trident-snap created

结果

Trident将从快照还原数据。您可以验证快照还原状态。
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kubectl get tasr -o yaml

apiVersion: trident.netapp.io/v1

items:

- apiVersion: trident.netapp.io/v1

  kind: TridentActionSnapshotRestore

  metadata:

    creationTimestamp: "2023-04-14T00:20:33Z"

    generation: 3

    name: trident-snap

    namespace: trident

    resourceVersion: "3453847"

    uid: <uid>

  spec:

    pvcName: pvc1

    volumeSnapshotName: pvc1-snapshot

  status:

    startTime: "2023-04-14T00:20:34Z"

    completionTime: "2023-04-14T00:20:37Z"

    state: Succeeded

kind: List

metadata:

  resourceVersion: ""

• 在大多数情况下、如果出现故障、Trident不会自动重试此操作。您需要再次执行此操作。

• 没有管理员访问权限的Kubbernetes用户可能必须获得管理员授予的权限、才能在其应用程序
命名空间中创建TSR CR。

删除具有关联快照的PV

删除具有关联快照的永久性卷时，相应的 Trident 卷将更新为 " 正在删除 " 状态。删除卷快照以删除Trident卷。

部署卷快照控制器

如果您的Kubernetes分发版不包含快照控制器和CRD、则可以按如下所示进行部署。

步骤

1. 创建卷快照CRD。
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cat snapshot-setup.sh

#!/bin/bash

# Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents.yam

l

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml

2. 创建快照控制器。

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

如有必要、打开 `deploy/kubernetes/snapshot-controller/rbac-snapshot-controller.yaml`并更
新 `namespace`命名空间。

相关链接

• "卷快照"

• "VolumeSnapshotClass"
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