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管理Trident Protect

管理Trident Protect 授权和访问控制

Trident Protect 使用 Kubernetes 的基于角色的访问控制 (RBAC) 模型。默认情况下，
Trident Protect 提供一个系统命名空间及其关联的默认服务帐户。如果您的组织拥有众多
用户或特定的安全需求，则可以使用Trident Protect 的 RBAC 功能来更精细地控制对资源
和命名空间的访问。

集群管理员始终可以访问默认命名空间中的资源 trident-protect、也可以访问所有其他命名空间中的资
源。要控制对资源和应用程序的访问、您需要创建更多的名分并将资源和应用程序添加到这些名分。

请注意、任何用户都不能在默认命名空间中创建应用程序数据管理CRS trident-protect。您需要在应用程
序命名空间中创建应用程序数据管理CRS (最佳做法是、在与其关联的应用程序相同的命名空间中创建应用程序
数据管理CRS)。

只有管理员才能访问具有特权的Trident Protect 自定义资源对象，其中包括：

• AppVault：需要存储分段凭据数据

• AutoSupportBundle：收集指标、日志和其他敏感的Trident Protect数据

• *AutoSupportBundleSchedule：管理日志收集计划

作为最佳实践、请使用RBAC限制管理员对有权限的对象的访问。

有关RBAC如何控制对资源和称表的访问的详细信息，请参阅 "Kubbernetes RBAC文档"。

有关服务帐户的信息，请参见 "Kubbernetes服务帐户文档"。

示例：管理两组用户的访问权限

例如、一个组织有一个集群管理员、一组工程用户和一组营销用户。集群管理员应完成以下任务、以创建一个环
境、在此环境中、工程组和营销组各自只能访问分配给各自命名区域的资源。

第1步：创建一个命名空间以包含每个组的资源

通过创建命名空间、您可以从逻辑上分离资源、并更好地控制谁有权访问这些资源。

步骤

1. 为工程组创建命名空间：

kubectl create ns engineering-ns

2. 为营销组创建命名空间：
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kubectl create ns marketing-ns

第2步：创建新的服务帐户、以便与每个命名空间中的资源进行交互

您创建的每个新命名空间都会附带一个默认服务帐户、但您应为每组用户创建一个服务帐户、以便将来根据需要
在各个组之间进一步划分Privileges。

步骤

1. 为工程组创建服务帐户：

apiVersion: v1

kind: ServiceAccount

metadata:

  name: eng-user

  namespace: engineering-ns

2. 为营销组创建服务帐户：

apiVersion: v1

kind: ServiceAccount

metadata:

  name: mkt-user

  namespace: marketing-ns

第3步：为每个新服务帐户创建一个密钥

服务帐户密钥用于向服务帐户进行身份验证、如果泄露、可以轻松删除和重新创建。

步骤

1. 为工程服务帐户创建一个密钥：

apiVersion: v1

kind: Secret

metadata:

  annotations:

    kubernetes.io/service-account.name: eng-user

  name: eng-user-secret

  namespace: engineering-ns

type: kubernetes.io/service-account-token

2. 为营销服务帐户创建密钥：
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apiVersion: v1

kind: Secret

metadata:

  annotations:

    kubernetes.io/service-account.name: mkt-user

  name: mkt-user-secret

  namespace: marketing-ns

type: kubernetes.io/service-account-token

第4步：创建RoleBinding对象以将ClusterRole对象绑定到每个新服务帐户

安装Trident Protect 时会创建一个默认的 ClusterRole 对象。您可以通过创建和应用 RoleBinding 对象将此
ClusterRole 绑定到服务帐户。

步骤

1. 将ClusterRole绑定到工程服务帐户：

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: engineering-ns-tenant-rolebinding

  namespace: engineering-ns

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: trident-protect-tenant-cluster-role

subjects:

- kind: ServiceAccount

  name: eng-user

  namespace: engineering-ns

2. 将ClusterRole绑定到营销服务帐户：
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apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: marketing-ns-tenant-rolebinding

  namespace: marketing-ns

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: trident-protect-tenant-cluster-role

subjects:

- kind: ServiceAccount

  name: mkt-user

  namespace: marketing-ns

第5步：测试权限

测试权限是否正确。

步骤

1. 确认工程用户可以访问工程资源：

kubectl auth can-i --as=system:serviceaccount:engineering-ns:eng-user

get applications.protect.trident.netapp.io -n engineering-ns

2. 确认工程用户无法访问营销资源：

kubectl auth can-i --as=system:serviceaccount:engineering-ns:eng-user

get applications.protect.trident.netapp.io -n marketing-ns

第6步：授予对AppVault对象的访问权限

要执行备份和快照等数据管理任务、集群管理员需要向各个用户授予对AppVault对象的访问权限。

步骤

1. 创建并应用AppVault和机密组合YAML文件、以授予用户对AppVault的访问权限。例如、以下CR将授予用户

对AppVault的访问权限 eng-user：
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apiVersion: v1

data:

  accessKeyID: <ID_value>

  secretAccessKey: <key_value>

kind: Secret

metadata:

  name: appvault-for-eng-user-only-secret

  namespace: trident-protect

type: Opaque

---

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

  name: appvault-for-eng-user-only

  namespace: trident-protect # Trident Protect system namespace

spec:

  providerConfig:

    azure:

      accountName: ""

      bucketName: ""

      endpoint: ""

    gcp:

      bucketName: ""

      projectID: ""

    s3:

      bucketName: testbucket

      endpoint: 192.168.0.1:30000

      secure: "false"

      skipCertValidation: "true"

  providerCredentials:

    accessKeyID:

      valueFromSecret:

        key: accessKeyID

        name: appvault-for-eng-user-only-secret

    secretAccessKey:

      valueFromSecret:

        key: secretAccessKey

        name: appvault-for-eng-user-only-secret

  providerType: GenericS3

2. 创建并应用角色CR、使集群管理员能够授予对命名空间中特定资源的访问权限。例如：
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apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

  name: eng-user-appvault-reader

  namespace: trident-protect

rules:

- apiGroups:

  - protect.trident.netapp.io

  resourceNames:

  - appvault-for-enguser-only

  resources:

  - appvaults

  verbs:

  - get

3. 创建并应用RoleBinding CR以将权限绑定到用户eng-user。例如：

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: eng-user-read-appvault-binding

  namespace: trident-protect

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: Role

  name: eng-user-appvault-reader

subjects:

- kind: ServiceAccount

  name: eng-user

  namespace: engineering-ns

4. 验证权限是否正确。

a. 尝试检索所有名称库的AppVault对象信息：

kubectl get appvaults -n trident-protect

--as=system:serviceaccount:engineering-ns:eng-user

您应看到类似于以下内容的输出：
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Error from server (Forbidden): appvaults.protect.trident.netapp.io is

forbidden: User "system:serviceaccount:engineering-ns:eng-user"

cannot list resource "appvaults" in API group

"protect.trident.netapp.io" in the namespace "trident-protect"

b. 测试用户是否可以获取他们现在有权访问的AppVault信息：

kubectl auth can-i --as=system:serviceaccount:engineering-ns:eng-user

get appvaults.protect.trident.netapp.io/appvault-for-eng-user-only -n

trident-protect

您应看到类似于以下内容的输出：

yes

结果

您为其授予了AppVault权限的用户应该能够使用授权的AppVault对象执行应用程序数据管理操作、并且不能访问
分配的命名区之外的任何资源、也不能创建他们无权访问的新资源。

监控Trident保护资源

您可以使用 kube-state-metrics、Prometheus 和 Alertmanager 开源工具来监控Trident

Protect 保护的资源的健康状况。

kube-state-metrics 服务从 Kubernetes API 通信生成指标。将其与Trident Protect 结合使用，可以显示有关环境
中资源状态的有用信息。

Prometheus 是一个工具包，它可以接收 kube-state-metrics 生成的数据，并将其呈现为关于这些对象的易于阅
读的信息。kube-state-metrics 和 Prometheus 共同提供了一种方法，让您可以监控使用Trident Protect 管理的
资源的健康状况和状态。

警报管理器是一项服务、可接收Prometheus等工具发送的警报、并将其路由到您配置的目标。

这些步骤中包含的配置和指导仅为示例；您需要对其进行自定义以符合您的环境。有关具体说明
和支持、请参见以下官方文档：

• "Kube-state-metrics 文档"

• "Prometheus文档"

• "记录"

第1步：安装监控工具

要在Trident Protect 中启用资源监控，您需要安装和配置 kube-state-metrics、Promethus 和 Alertmanager。
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安装Kube-state-metrics

您可以使用Helm安装Kube-state-metrics。

步骤

1. 添加Kube-state-metrics Helm图表。例如：

helm repo add prometheus-community https://prometheus-

community.github.io/helm-charts

helm repo update

2. 为Helm图表创建配置文件(例如 metrics-config.yaml)。您可以根据您的环境自定义以下示例配置：
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metrics-config.yaml：Kube-state-metrics Helm图表配置

---

extraArgs:

  # Collect only custom metrics

  - --custom-resource-state-only=true

customResourceState:

  enabled: true

  config:

    kind: CustomResourceStateMetrics

    spec:

      resources:

      - groupVersionKind:

          group: protect.trident.netapp.io

          kind: "Backup"

          version: "v1"

        labelsFromPath:

          backup_uid: [metadata, uid]

          backup_name: [metadata, name]

          creation_time: [metadata, creationTimestamp]

        metrics:

        - name: backup_info

          help: "Exposes details about the Backup state"

          each:

            type: Info

            info:

              labelsFromPath:

                appVaultReference: ["spec", "appVaultRef"]

                appReference: ["spec", "applicationRef"]

rbac:

  extraRules:

  - apiGroups: ["protect.trident.netapp.io"]

    resources: ["backups"]

    verbs: ["list", "watch"]

# Collect metrics from all namespaces

namespaces: ""

# Ensure that the metrics are collected by Prometheus

prometheus:

  monitor:

    enabled: true

3. 通过部署Helm图表来安装Kube-state-metrics。例如：
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helm install custom-resource -f metrics-config.yaml prometheus-

community/kube-state-metrics --version 5.21.0

4. 按照以下说明配置 kube-state-metrics，以生成Trident Protect 使用的自定义资源的指标： "Kube-state-

metrics自定义资源文档" 。

安装 Prometheus

您可以按照中的说明安装Prometheus "Prometheus文档"。

安装活动管理器

您可以按照中的说明安装提示管理器 "记录"。

第2步：配置监控工具以协同工作

安装监控工具后、您需要将其配置为协同工作。

步骤

1. 将Kube-state-metrics与Prometheus集成。编辑Prometheus配置文件(prometheus.yaml)并添加Kube-

state-metrics服务信息。例如：

prometheus.yaml：kube-state-metrics 服务与 Prometheus 的集成

---

apiVersion: v1

kind: ConfigMap

metadata:

  name: prometheus-config

  namespace: trident-protect

data:

  prometheus.yaml: |

    global:

      scrape_interval: 15s

    scrape_configs:

      - job_name: 'kube-state-metrics'

        static_configs:

          - targets: ['kube-state-metrics.trident-protect.svc:8080']

2. 配置Prometheus以将警报路由到警报管理器。编辑Prometheus配置文件(prometheus.yaml)并添加以下
部分：
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prometheus.yaml：向 Alertmanager 发送警报

alerting:

  alertmanagers:

    - static_configs:

        - targets:

            - alertmanager.trident-protect.svc:9093

结果

Prometheus现在可以从Kube-state-metrics收集指标、并可向警报管理器发送警报。现在、您可以配置触发警报
的条件以及警报的发送位置。

第3步：配置警报和警报目标

将这些工具配置为协同工作后、您需要配置触发警报的信息类型以及警报的发送位置。

警报示例：备份失败

以下示例定义了备份自定义资源的状态设置为5秒或更长时间时触发的严重警报 Error。您可以自定义此示例以

匹配您的环境、并将此YAML段包含在您的配置文件中 prometheus.yaml：

rules.yaml：定义失败备份的 Prometheus 警报

rules.yaml: |

  groups:

    - name: fail-backup

        rules:

          - alert: BackupFailed

            expr: kube_customresource_backup_info{status="Error"}

            for: 5s

            labels:

              severity: critical

            annotations:

              summary: "Backup failed"

              description: "A backup has failed."

将警报管理器配置为向其他通道发送警报

通过在文件中指定相应的配置、您可以将警报管理器配置为向其他通道发送通知、例如电子邮件、PagerDty

、Microsoft团队或其他通知服务 alertmanager.yaml。

以下示例将配置警报管理器、以便向Sl延 时信道发送通知。要根据您的环境自定义此示例、请将此密钥的值替
换 `api_url`为您的环境中使用的Slackwebhook URL：
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alertmanager.yaml：向 Slack 频道发送警报

data:

  alertmanager.yaml: |

    global:

      resolve_timeout: 5m

    route:

      receiver: 'slack-notifications'

    receivers:

      - name: 'slack-notifications'

        slack_configs:

          - api_url: '<your-slack-webhook-url>'

            channel: '#failed-backups-channel'

            send_resolved: false

生成Trident Protect 支持包

Trident Protect 使管理员能够生成包含对NetApp支持有用的信息的捆绑包，包括有关受管
理集群和应用程序的日志、指标和拓扑信息。如果您已连接到互联网，则可以使用自定义
资源 (CR) 文件将支持包上传到NetApp支持站点 (NSS)。
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使用CR创建支持包

步骤

1. 创建自定义资源(CR)文件并将其命名(例如 trident-protect-support-bundle.yaml)。

2. 配置以下属性：

◦ 。metadata.name:(required_)此自定义资源的名称；请为您的环境选择一个唯一且合理的名称。

◦ spec.t触发 器Type：(required)用于确定是立即生成支持包、还是按计划生成支持包。计划在UTC

时间中午12点生成捆绑包。可能值：

▪ 已计划

▪ 手动

◦ spec.u倍 加载已启用：(可 选)控制是否应在生成支持包后将其上传到NetApp支持站点。如果未指
定，则默认为 false。可能值：

▪ true

▪ false (默认)

◦ spec.dataWindowStart：(可 选) RFC 3339格式的日期字符串，指定支持包中包含的数据窗口应
开始的日期和时间。如果未指定、则默认为24小时前。您可以指定的最早窗口日期是7天前。

YAML示例：

---

apiVersion: protect.trident.netapp.io/v1

kind: AutoSupportBundle

metadata:

  name: trident-protect-support-bundle

spec:

  triggerType: Manual

  uploadEnabled: true

  dataWindowStart: 2024-05-05T12:30:00Z

3. 使用正确的值填充文件后 astra-support-bundle.yaml 、应用CR：

kubectl apply -f trident-protect-support-bundle.yaml

使用命令行界面创建支持包

步骤

1. 创建支持包、将括号中的值替换为您环境中的信息。 trigger-type`确定是否立即创建分发包，或者
是否由计划决定了创建时间，可以是 `Manual`或 `Scheduled。默认设置为 Manual。

例如：
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tridentctl-protect create autosupportbundle <my-bundle-name>

--trigger-type <trigger-type>

升级Trident保护

您可以将Trident Protect 升级到最新版本，以享受新功能或修复错误。

要升级Trident Protect，请执行以下步骤。

步骤

1. 更新Trident Helm存储库：

helm repo update

2. 升级Trident Protect CRD：

helm upgrade trident-protect-crds netapp-trident-protect/trident-

protect-crds --version 100.2502.0  --namespace trident-protect

3. 升级Trident保护：

helm upgrade trident-protect netapp-trident-protect/trident-protect

--version 100.2502.0 --namespace trident-protect
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