
管理和保护应用程序
Trident
NetApp
January 14, 2026

This PDF was generated from https://docs.netapp.com/zh-cn/trident-2502/trident-protect/trident-protect-
appvault-custom-resources.html on January 14, 2026. Always check docs.netapp.com for the latest.

目录
管理和保护应用程序 . 1

使用Trident Protect AppVault 对象来管理存储桶。 . 1

配置AppVault身份验证和密码 . 1

AppVault创建示例 . 5

查看AppVault信息 . 12

删除AppVault . 13

使用Trident Protect 定义管理应用程序. 14

创建AppVault CR . 14

定义应用程序 . 14

使用Trident Protect 保护应用程序 . 17

创建按需快照 . 17

创建按需备份 . 19

创建数据保护计划 . 21

删除快照. 23

删除备份. 24

检查备份操作的状态. 24

为azure-ANF-files (NetApp)操作启用备份和还原. 24

使用Trident Protect 恢复应用程序 . 25

还原和故障转移操作期间的命名空间标注和标签 . 25

从备份还原到其他命名空间 . 27

从备份还原到原始命名空间 . 30

从备份还原到其他集群 . 33

从快照还原到其他命名空间 . 36

从快照还原到原始命名空间 . 39

检查还原操作的状态. 41

使用NetApp SnapMirror和Trident Protect 复制应用程序 . 42

还原和故障转移操作期间的命名空间标注和标签 . 42

设置复制关系 . 43

反转应用程序复制方向 . 51

使用Trident Protect 迁移应用程序 . 54

备份和还原操作 . 54

将应用程序从一个存储类迁移到另一个存储类 . 55

管理Trident Protect 执行钩子 . 58

执行挂钩的类型 . 58

有关自定义执行挂钩的重要注意事项 . 59

执行钩筛选器 . 59

执行钩示例 . 59

创建执行挂钩 . 59

手动运行执行挂钩 . 62

管理和保护应用程序

使用Trident Protect AppVault 对象来管理存储桶。

Trident Protect 的存储桶自定义资源 (CR) 被称为 AppVault。AppVault 对象是存储桶的声
明性 Kubernetes 工作流表示。AppVault CR 包含存储桶在保护操作（例如备份、快照、恢
复操作和SnapMirror复制）中使用的必要配置。只有管理员才能创建应用保险库。

在对应用程序执行数据保护操作时，您需要手动或使用命令行创建 AppVault CR，并且 AppVault CR 需要位于
安装了Trident Protect 的集群上。 AppVault CR 是针对您的环境的；您可以参考此页面上的示例来创建
AppVault CR。

配置AppVault身份验证和密码

在创建AppVault CR之前、您需要确保所选的AppVault和数据移动工具可以向提供程序和任何相关资源进行身份
验证。

数据移动工具存储库密码

当您使用 CR 或Trident Protect CLI 插件创建 AppVault 对象时，您可以选择性地指示Trident Protect 使用包含
Restic 和 Kopia 存储库加密自定义密码的 Kubernetes secret。如果您不指定密钥， Trident Protect 将使用默认
密码。

• 手动创建 AppVault CR 时，使用 spec.dataMoverPasswordSecretRef 字段指定密钥。

• 使用Trident Protect CLI 创建 AppVault 对象时，请使用 `--data-mover-password-secret-ref`用于指定密钥的
参数。

创建数据移动工具存储库密码密钥

请参考以下示例创建密码密钥。创建 AppVault 对象时，您可以指示Trident Protect 使用此密钥向数据移动器存
储库进行身份验证。

根据所使用的数据移动工具、您只需包含该数据移动工具的相应密码即可。例如、如果您正在使
用Restic、并且将来不打算使用KONIA、则在创建密钥时只能包含Restic密码。

1

使用CR

apiVersion: v1

data:

 KOPIA_PASSWORD: <base64-encoded-password>

 RESTIC_PASSWORD: <base64-encoded-password>

kind: Secret

metadata:

 name: my-optional-data-mover-secret

 namespace: trident-protect

type: Opaque

使用CLI

kubectl create secret generic my-optional-data-mover-secret \

--from-literal=KOPIA_PASSWORD=<plain-text-password> \

--from-literal=RESTIC_PASSWORD=<plain-text-password> \

-n trident-protect

S3 兼容存储 IAM 权限

当您访问与 S3 兼容的存储（例如 Amazon S3、通用 S3）时， "StorageGRID S3" ， 或者 "ONTAP S3"使
用Trident Protect 时，您需要确保提供的用户凭据具有访问存储桶的必要权限。以下是授予使用Trident Protect

进行访问所需的最低权限的策略示例。您可以将此策略应用于管理 S3 兼容存储桶策略的用户。

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "s3:PutObject",

 "s3:GetObject",

 "s3:ListBucket",

 "s3:DeleteObject"

],

 "Resource": "*"

 }

]

}

有关 Amazon S3 策略的更多信息，请参阅 "Amazon S3 文档" 。

2

https://docs.netapp.com/us-en/storagegrid/s3/index.html
https://docs.netapp.com/us-en/ontap/s3-config/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-policies-s3.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-policies-s3.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-policies-s3.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-policies-s3.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-policies-s3.html

云提供商的AppVault密钥生成示例

定义AppVault CR时、您需要包含凭据才能访问由提供程序托管的资源。根据提供程序的不同、为凭据生成密钥
的方式也会有所不同。以下是多个提供程序的命令行密钥生成示例。您可以使用以下示例为每个云提供商的凭据
创建密钥。

3

Google Cloud

kubectl create secret generic <secret-name> \

--from-file=credentials=<mycreds-file.json> \

-n trident-protect

Amazon S3 (AWS)

kubectl create secret generic <secret-name> \

--from-literal=accessKeyID=<objectstorage-accesskey> \

--from-literal=secretAccessKey=<amazon-s3-trident-protect-src-bucket

-secret> \

-n trident-protect

Microsoft Azure

kubectl create secret generic <secret-name> \

--from-literal=accountKey=<secret-name> \

-n trident-protect

通用 S3

kubectl create secret generic <secret-name> \

--from-literal=accessKeyID=<objectstorage-accesskey> \

--from-literal=secretAccessKey=<generic-s3-trident-protect-src-bucket

-secret> \

-n trident-protect

ONTAP S3

kubectl create secret generic <secret-name> \

--from-literal=accessKeyID=<objectstorage-accesskey> \

--from-literal=secretAccessKey=<ontap-s3-trident-protect-src-bucket

-secret> \

-n trident-protect

StorageGRID S3

kubectl create secret generic <secret-name> \

--from-literal=accessKeyID=<objectstorage-accesskey> \

--from-literal=secretAccessKey=<storagegrid-s3-trident-protect-src

-bucket-secret> \

-n trident-protect

4

AppVault创建示例

以下是每个提供程序的AppVault定义示例。

AppVault CR示例

您可以使用以下CR示例为每个云提供程序创建AppVault对象。

• 您可以选择指定一个包含用于Restic和Koria存储库加密的自定义密码的Kubernetes密钥。有
关详细信息、请参见 [数据移动工具存储库密码] 。

• 对于Amazon S3 (AWS) AppVault对象、您可以选择指定sSession令牌、如果使用单点登
录(SSO)进行身份验证、则此令牌非常有用。此令牌是在中为提供程序生成密钥时创建的云提
供商的AppVault密钥生成示例。

• 对于S3 AppVault对象、您可以选择使用密钥为出站S3流量指定出口代理URL

spec.providerConfig.S3.proxyURL。

5

Google Cloud

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

 name: gcp-trident-protect-src-bucket

 namespace: trident-protect

spec:

 dataMoverPasswordSecretRef: my-optional-data-mover-secret

 providerType: GCP

 providerConfig:

 gcp:

 bucketName: trident-protect-src-bucket

 projectID: project-id

 providerCredentials:

 credentials:

 valueFromSecret:

 key: credentials

 name: gcp-trident-protect-src-bucket-secret

Amazon S3 (AWS)

6

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

 name: amazon-s3-trident-protect-src-bucket

 namespace: trident-protect

spec:

 dataMoverPasswordSecretRef: my-optional-data-mover-secret

 providerType: AWS

 providerConfig:

 s3:

 bucketName: trident-protect-src-bucket

 endpoint: s3.example.com

 proxyURL: http://10.1.1.1:3128

 providerCredentials:

 accessKeyID:

 valueFromSecret:

 key: accessKeyID

 name: s3-secret

 secretAccessKey:

 valueFromSecret:

 key: secretAccessKey

 name: s3-secret

 sessionToken:

 valueFromSecret:

 key: sessionToken

 name: s3-secret

Microsoft Azure

7

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

 name: azure-trident-protect-src-bucket

 namespace: trident-protect

spec:

 dataMoverPasswordSecretRef: my-optional-data-mover-secret

 providerType: Azure

 providerConfig:

 azure:

 accountName: account-name

 bucketName: trident-protect-src-bucket

 providerCredentials:

 accountKey:

 valueFromSecret:

 key: accountKey

 name: azure-trident-protect-src-bucket-secret

通用 S3

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

 name: generic-s3-trident-protect-src-bucket

 namespace: trident-protect

spec:

 dataMoverPasswordSecretRef: my-optional-data-mover-secret

 providerType: GenericS3

 providerConfig:

 s3:

 bucketName: trident-protect-src-bucket

 endpoint: s3.example.com

 proxyURL: http://10.1.1.1:3128

 providerCredentials:

 accessKeyID:

 valueFromSecret:

 key: accessKeyID

 name: s3-secret

 secretAccessKey:

 valueFromSecret:

 key: secretAccessKey

 name: s3-secret

ONTAP S3

8

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

 name: ontap-s3-trident-protect-src-bucket

 namespace: trident-protect

spec:

 dataMoverPasswordSecretRef: my-optional-data-mover-secret

 providerType: OntapS3

 providerConfig:

 s3:

 bucketName: trident-protect-src-bucket

 endpoint: s3.example.com

 proxyURL: http://10.1.1.1:3128

 providerCredentials:

 accessKeyID:

 valueFromSecret:

 key: accessKeyID

 name: s3-secret

 secretAccessKey:

 valueFromSecret:

 key: secretAccessKey

 name: s3-secret

StorageGRID S3

9

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

 name: storagegrid-s3-trident-protect-src-bucket

 namespace: trident-protect

spec:

 dataMoverPasswordSecretRef: my-optional-data-mover-secret

 providerType: StorageGridS3

 providerConfig:

 s3:

 bucketName: trident-protect-src-bucket

 endpoint: s3.example.com

 proxyURL: http://10.1.1.1:3128

 providerCredentials:

 accessKeyID:

 valueFromSecret:

 key: accessKeyID

 name: s3-secret

 secretAccessKey:

 valueFromSecret:

 key: secretAccessKey

 name: s3-secret

使用Trident Protect CLI 创建 AppVault 的示例

您可以使用以下命令行界面命令示例为每个提供程序创建AppVault CRS。

• 您可以选择指定一个包含用于Restic和Koria存储库加密的自定义密码的Kubernetes密钥。有
关详细信息、请参见 [数据移动工具存储库密码] 。

• 对于S3 AppVault对象、您可以选择使用参数为出站S3流量指定出口代理URL --proxy-url

<ip_address:port>。

10

Google Cloud

tridentctl-protect create vault GCP <vault-name> \

--bucket <mybucket> \

--project <my-gcp-project> \

--secret <secret-name>/credentials \

--data-mover-password-secret-ref <my-optional-data-mover-secret> \

-n trident-protect

Amazon S3 (AWS)

tridentctl-protect create vault AWS <vault-name> \

--bucket <bucket-name> \

--secret <secret-name> \

--endpoint <s3-endpoint> \

--data-mover-password-secret-ref <my-optional-data-mover-secret> \

-n trident-protect

Microsoft Azure

tridentctl-protect create vault Azure <vault-name> \

--account <account-name> \

--bucket <bucket-name> \

--secret <secret-name> \

--data-mover-password-secret-ref <my-optional-data-mover-secret> \

-n trident-protect

通用 S3

tridentctl-protect create vault GenericS3 <vault-name> \

--bucket <bucket-name> \

--secret <secret-name> \

--endpoint <s3-endpoint> \

--data-mover-password-secret-ref <my-optional-data-mover-secret> \

-n trident-protect

ONTAP S3

11

tridentctl-protect create vault OntapS3 <vault-name> \

--bucket <bucket-name> \

--secret <secret-name> \

--endpoint <s3-endpoint> \

--data-mover-password-secret-ref <my-optional-data-mover-secret> \

-n trident-protect

StorageGRID S3

tridentctl-protect create vault StorageGridS3 <vault-name> \

--bucket <bucket-name> \

--secret <secret-name> \

--endpoint <s3-endpoint> \

--data-mover-password-secret-ref <my-optional-data-mover-secret> \

-n trident-protect

查看AppVault信息

您可以使用Trident Protect CLI 插件查看有关您在集群上创建的 AppVault 对象的信息。

步骤

1. 查看AppVault对象的内容：

tridentctl-protect get appvaultcontent gcp-vault \

--show-resources all \

-n trident-protect

示例输出：

12

+-------------+-------+----------+-----------------------------

+---------------------------+

| CLUSTER | APP | TYPE | NAME |

TIMESTAMP |

+-------------+-------+----------+-----------------------------

+---------------------------+

| | mysql | snapshot | mysnap | 2024-

08-09 21:02:11 (UTC) |

| production1 | mysql | snapshot | hourly-e7db6-20240815180300 | 2024-

08-15 18:03:06 (UTC) |

| production1 | mysql | snapshot | hourly-e7db6-20240815190300 | 2024-

08-15 19:03:06 (UTC) |

| production1 | mysql | snapshot | hourly-e7db6-20240815200300 | 2024-

08-15 20:03:06 (UTC) |

| production1 | mysql | backup | hourly-e7db6-20240815180300 | 2024-

08-15 18:04:25 (UTC) |

| production1 | mysql | backup | hourly-e7db6-20240815190300 | 2024-

08-15 19:03:30 (UTC) |

| production1 | mysql | backup | hourly-e7db6-20240815200300 | 2024-

08-15 20:04:21 (UTC) |

| production1 | mysql | backup | mybackup5 | 2024-

08-09 22:25:13 (UTC) |

| | mysql | backup | mybackup | 2024-

08-09 21:02:52 (UTC) |

+-------------+-------+----------+-----------------------------

+---------------------------+

2. (可选)要查看每个资源的AppVaultPath，请使用标志 --show-paths。

只有在Trident Protect helm 安装中指定了集群名称时，表格第一列中的集群名称才可用。例如： --set

clusterName=production1 。

删除AppVault

您可以随时删除AppVault对象。

在删除AppVault对象之前、请勿 `finalizers`删除AppVault CR中的密钥。如果这样做、可能会导
致AppVault存储分段中有残留数据、集群中会出现孤立资源。

开始之前

确保已删除要删除的AppVault正在使用的所有快照和备份CRS。

13

使用Kubbernetes命令行界面删除AppVault

1. 删除AppVault对象、替换 `appvault-name`为要删除的AppVault对象的名称：

kubectl delete appvault <appvault-name> \

-n trident-protect

使用Trident Protect CLI 删除 AppVault

1. 删除AppVault对象、替换 `appvault-name`为要删除的AppVault对象的名称：

tridentctl-protect delete appvault <appvault-name> \

-n trident-protect

使用Trident Protect 定义管理应用程序

您可以通过创建应用程序 CR 和关联的 AppVault CR 来定义要使用Trident Protect 管理的
应用程序。

创建AppVault CR

您需要创建一个 AppVault CR，该 CR 将在对应用程序执行数据保护操作时使用，并且 AppVault CR 需要位于
安装了Trident Protect 的集群上。AppVault CR 是针对您的特定环境的；有关 AppVault CR 的示例，请参阅
："AppVault自定义资源。"

定义应用程序

您需要定义要使用Trident Protect 管理的每个应用程序。您可以通过手动创建应用程序 CR 或使用Trident

Protect CLI 来定义要管理的应用程序。

14

trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html

使用CR添加应用程序

步骤

1. 创建目标应用程序CR文件：

a. 创建自定义资源(CR)文件并将其命名(例如 maria-app.yaml)。

b. 配置以下属性：

▪ metadata.name:(required_)应用程序自定义资源的名称。请注意您选择的名称、因为保护操作
所需的其他CR文件会引用此值。

▪ 。spec.includedNamespaces:(required_)使用命名空间和标签选择器指定应用程序使用的命
名空间和资源。应用程序命名空间必须属于此列表。标签选择器是可选的、可用于筛选每个指
定命名空间中的资源。

▪ 。spec.includedClusterScopedResources:(可 选)使用此属性指定要包含在应用程序定义中
的集群范围资源。此属性允许您根据资源的组、版本、种类和标签来选择这些资源。

▪ groupVersionKind：(required)指定集群范围资源的API组、版本和类型。

▪ labelSelecter：(可 选)根据集群范围的资源的标签对其进行筛选。

▪ metadata.annotations.protect.trident.netapp.io/skip-vm-freeze: (可选) 此注解仅适用于从
虚拟机定义的应用程序，例如 KubeVirt 环境，其中文件系统冻结发生在快照之前。指定此应用
程序在快照期间是否可以写入文件系统。如果设置为 true，应用程序将忽略全局设置，并且可
以在快照期间写入文件系统。如果设置为 false，应用程序将忽略全局设置，并且在快照期间文
件系统将被冻结。如果指定了注解，但应用程序定义中没有虚拟机，则忽略该注解。如未特别
说明，则申请流程如下："全球Trident Protect 冷冻设置" 。

如果您需要在创建应用程序后应用此标注、可以使用以下命令：

kubectl annotate application -n <application CR namespace> <application CR

name> protect.trident.netapp.io/skip-vm-freeze="true"

15

trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms

+

YAML示例：

+

apiVersion: protect.trident.netapp.io/v1

kind: Application

metadata:

 annotations:

 protect.trident.netapp.io/skip-vm-freeze: "false"

 name: my-app-name

 namespace: my-app-namespace

spec:

 includedNamespaces:

 - namespace: namespace-1

 labelSelector:

 matchLabels:

 app: example-app

 - namespace: namespace-2

 labelSelector:

 matchLabels:

 app: another-example-app

 includedClusterScopedResources:

 - groupVersionKind:

 group: rbac.authorization.k8s.io

 kind: ClusterRole

 version: v1

 labelSelector:

 matchLabels:

 mylabel: test

1. 创建应用程序CR以匹配您的环境后、请应用CR。例如：

kubectl apply -f maria-app.yaml

步骤

1. 使用以下示例之一创建并应用应用程序定义、将括号中的值替换为您环境中的信息。您可以使用逗号分
隔列表和示例中显示的参数在应用程序定义中包括名称和资源。

创建应用时，您可以选择使用注解来指定应用在快照期间是否可以写入文件系统。这仅适用于从虚拟机
定义的应用程序，例如 KubeVirt 环境，其中文件系统冻结发生在快照之前。如果您将注释设置为 `true`

该应用程序忽略全局设置，可以在快照期间写入文件系统。如果你把它设置为 `false`该应用程序忽略全
局设置，导致文件系统在快照期间冻结。如果使用了注解，但应用程序定义中没有虚拟机，则该注解将
被忽略。如果您不使用注解，应用程序将遵循以下规则："全球Trident Protect 冷冻设置" 。

16

trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms

要在使用命令行界面创建应用程序时指定标注、可以使用标志。 --annotation

◦ 创建应用程序并使用文件系统冻结行为的全局设置：

tridentctl-protect create application <my_new_app_cr_name>

--namespaces <namespaces_to_include> --csr

<cluster_scoped_resources_to_include> --namespace <my-app-

namespace>

◦ 创建应用程序并为文件系统冻结行为配置本地应用程序设置：

tridentctl-protect create application <my_new_app_cr_name>

--namespaces <namespaces_to_include> --csr

<cluster_scoped_resources_to_include> --namespace <my-app-

namespace> --annotation protect.trident.netapp.io/skip-vm-freeze

=<"true"|"false">

使用Trident Protect 保护应用程序

您可以使用自动保护策略或临时保护策略，通过拍摄快照和备份来保护Trident Protect 管
理的所有应用程序。

您可以配置Trident Protect 在数据保护操作期间冻结和解冻文件系统。"了解更多关于使用Trident

Protect 配置文件系统冻结的信息"。

创建按需快照

您可以随时创建按需快照。

如果在应用程序定义中明确引用了集群范围的资源、或者这些资源引用了任何应用程序命名源、
则会将这些资源包括在备份、快照或克隆中。

17

trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms

使用CR创建快照

步骤

1. 创建自定义资源(CR)文件并将其命名为 trident-protect-snapshot-cr.yaml。

2. 在创建的文件中、配置以下属性：

◦ 。metadata.name:(required_)此自定义资源的名称；请为您的环境选择一个唯一且合理的名称。

◦ spec.applicationRef：要创建快照的应用程序的Kubernetes名称。

◦ spec.appVaultRef：(required)应存储快照内容(元数据)的AppVault的名称。

◦ spec.relaimPolicy：(可 选)定义删除快照CR时快照的AppArchive会发生什么情况。这意味着，即
使设置为，快照也 `Retain`将被删除。有效选项：

▪ Retain (默认)

▪ Delete

apiVersion: protect.trident.netapp.io/v1

kind: Snapshot

metadata:

 namespace: my-app-namespace

 name: my-cr-name

spec:

 applicationRef: my-application

 appVaultRef: appvault-name

 reclaimPolicy: Delete

3. 使用正确的值填充文件后 trident-protect-snapshot-cr.yaml 、应用CR：

kubectl apply -f trident-protect-snapshot-cr.yaml

使用命令行界面创建快照

步骤

1. 创建快照、将括号中的值替换为您环境中的信息。例如：

tridentctl-protect create snapshot <my_snapshot_name> --appvault

<my_appvault_name> --app <name_of_app_to_snapshot> -n

<application_namespace>

18

创建按需备份

您可以随时备份应用程序。

如果在应用程序定义中明确引用了集群范围的资源、或者这些资源引用了任何应用程序命名源、
则会将这些资源包括在备份、快照或克隆中。

开始之前

确保AWS会话令牌到期时间足以执行任何长时间运行的S3备份操作。如果令牌在备份操作期间过期、则操作可
能会失败。

• 有关检查当前会话令牌到期时间的详细信息、请参见 "AWS API文档"。

• 有关AWS资源凭据的详细信息、请参见 "AWS IAM文档"。

19

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

使用CR创建备份

步骤

1. 创建自定义资源(CR)文件并将其命名为 trident-protect-backup-cr.yaml。

2. 在创建的文件中、配置以下属性：

◦ 。metadata.name:(required_)此自定义资源的名称；请为您的环境选择一个唯一且合理的名称。

◦ spec.applicationRef：(required)要备份的应用程序的Kubernetes名称。

◦ spec.appVaultRef：(required)应存储备份内容的AppVault的名称。

◦ spec.dataMover：(可 选)一个字符串，指示用于备份操作的备份工具。可能值(区分大小写)：

▪ Restic

▪ Kopia (默认)

◦ spic.relaimPolicy：(可 选)定义了从备份申请中释放备份时会发生什么情况。可能值：

▪ Delete

▪ Retain (默认)

◦ Spec.snapshotRef：(可 选)：要用作备份源的快照的名称。如果不提供此参数、则会创建和备份
临时快照。

YAML示例：

apiVersion: protect.trident.netapp.io/v1

kind: Backup

metadata:

 namespace: my-app-namespace

 name: my-cr-name

spec:

 applicationRef: my-application

 appVaultRef: appvault-name

 dataMover: Kopia

3. 使用正确的值填充文件后 trident-protect-backup-cr.yaml 、应用CR：

kubectl apply -f trident-protect-backup-cr.yaml

使用命令行界面创建备份

步骤

1. 创建备份、将括号中的值替换为您环境中的信息。例如：

20

tridentctl-protect create backup <my_backup_name> --appvault <my-

vault-name> --app <name_of_app_to_back_up> --data-mover

<Kopia_or_Restic> -n <application_namespace>

创建数据保护计划

保护策略通过按定义的计划创建快照，备份或这两者来保护应用程序。您可以选择每小时，每天，每周和每月创
建快照和备份，并且可以指定要保留的副本数。

如果在应用程序定义中明确引用了集群范围的资源、或者这些资源引用了任何应用程序命名源、
则会将这些资源包括在备份、快照或克隆中。

开始之前

确保AWS会话令牌到期时间足以执行任何长时间运行的S3备份操作。如果令牌在备份操作期间过期、则操作可
能会失败。

• 有关检查当前会话令牌到期时间的详细信息、请参见 "AWS API文档"。

• 有关AWS资源凭据的详细信息、请参见 "AWS IAM文档"。

21

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

使用CR创建计划

步骤

1. 创建自定义资源(CR)文件并将其命名为 trident-protect-schedule-cr.yaml。

2. 在创建的文件中、配置以下属性：

◦ 。metadata.name:(required_)此自定义资源的名称；请为您的环境选择一个唯一且合理的名称。

◦ spec.dataMover：(可 选)一个字符串，指示用于备份操作的备份工具。可能值(区分大小写)：

▪ Restic

▪ Kopia (默认)

◦ spec.applicationRef：要备份的应用程序的Kubernetes名称。

◦ spec.appVaultRef：(required)应存储备份内容的AppVault的名称。

◦ *spec.backupretention *：要保留的备份数。零表示不应创建任何备份。

◦ *spec.snapshotretention *：要保留的快照数。零表示不应创建任何快照。

◦ 。spec.granularity:计划的运行频率。可能值以及必需的关联字段：

▪ Hourly（要求您指定 spec.minute)

▪ Daily（要求您指定 spec.minute`和 `spec.hour)

▪ Weekly（要求您指定 spec.minute, spec.hour， 和 spec.dayOfWeek)

▪ Monthly（要求您指定 spec.minute, spec.hour， 和 spec.dayOfMonth)

▪ Custom

◦ spec.dayOfMonth：（可选）计划应运行的月份日期（1 - 31）。如果粒度设置为 Monthly。

◦ spec.dayOfWeek：（可选）计划应运行的星期几（0 - 7）。值 0 或 7 表示星期日。如果粒度设置
为 Weekly。

◦ spec.hour：（可选）计划应运行的小时数（0 - 23）。如果粒度设置为 Daily， Weekly ， 或者
Monthly。

◦ spec.minute：（可选）计划应运行的小时中的分钟数（0 - 59）。如果粒度设置为 Hourly，
Daily ， Weekly ， 或者 Monthly。

22

apiVersion: protect.trident.netapp.io/v1

kind: Schedule

metadata:

 namespace: my-app-namespace

 name: my-cr-name

spec:

 dataMover: Kopia

 applicationRef: my-application

 appVaultRef: appvault-name

 backupRetention: "15"

 snapshotRetention: "15"

 granularity: Monthly

 dayOfMonth: "1"

 dayOfWeek: "0"

 hour: "0"

 minute: "0"

3. 使用正确的值填充文件后 trident-protect-schedule-cr.yaml 、应用CR：

kubectl apply -f trident-protect-schedule-cr.yaml

使用命令行界面创建计划

步骤

1. 创建保护计划、将括号中的值替换为您环境中的信息。例如：

您可以使用 `tridentctl-protect create schedule --help`查看此命令的详细帮助信息。

tridentctl-protect create schedule <my_schedule_name> --appvault

<my_appvault_name> --app <name_of_app_to_snapshot> --backup

-retention <how_many_backups_to_retain> --data-mover

<Kopia_or_Restic> --day-of-month <day_of_month_to_run_schedule>

--day-of-week <day_of_month_to_run_schedule> --granularity

<frequency_to_run> --hour <hour_of_day_to_run> --minute

<minute_of_hour_to_run> --recurrence-rule <recurrence> --snapshot

-retention <how_many_snapshots_to_retain> -n <application_namespace>

删除快照

删除不再需要的计划快照或按需快照。

23

步骤

1. 删除与快照关联的快照CR：

kubectl delete snapshot <snapshot_name> -n my-app-namespace

删除备份

删除不再需要的计划备份或按需备份。

步骤

1. 删除与备份关联的备份CR：

kubectl delete backup <backup_name> -n my-app-namespace

检查备份操作的状态

您可以使用命令行检查正在进行、已完成或失败的备份操作的状态。

步骤

1. 使用以下命令检索备份操作的状态、将括号中的值替换为环境中的信息：

kubectl get backup -n <namespace_name> <my_backup_cr_name> -o jsonpath

='{.status}'

为azure-ANF-files (NetApp)操作启用备份和还原

如果您已安装Trident Protect，则可以为使用 azure-netapp-files 存储类且在Trident 24.06 之前创建的存储后端
启用节省空间的备份和还原功能。此功能适用于 NFSv4 卷，并且不会占用容量池中的额外空间。

开始之前

确保满足以下要求：

• 您已安装Trident Protect。

• 您已在Trident Protect中定义了一个应用程序。在您完成此步骤之前，此应用程序的保护功能将受到限制。

• 您已 azure-netapp-files 选择作为存储后端的默认存储类。

24

展开以了解配置步骤

1. 如果ANF卷是在升级到Trident 24.10之前创建的、请在Trident中执行以下操作：

a. 为每个基于azure-pv-files且与应用程序关联的NetApp启用Snapshot目录：

tridentctl update volume <pv name> --snapshot-dir=true -n trident

b. 确认已为每个关联PV启用Snapshot目录：

tridentctl get volume <pv name> -n trident -o yaml | grep

snapshotDir

响应：

snapshotDirectory: "true"

+

如果未启用快照目录， Trident Protect 将选择常规备份功能，该功能会在备份过程中暂时占用容量池中
的空间。在这种情况下，请确保容量池中有足够的空间来创建与被备份卷大小相同的临时卷。

结果

该应用程序已准备好使用Trident Protect 进行备份和恢复。每个 PVC 也可供其他应用程序用于备份和恢
复。

使用Trident Protect 恢复应用程序

您可以使用Trident Protect 从快照或备份中恢复您的应用程序。将应用程序恢复到同一集
群时，从现有快照恢复速度会更快。

还原应用程序时、为该应用程序配置的所有执行挂钩都会随该应用程序还原。如果存在还原后执
行挂钩、则它会在还原操作中自动运行。

还原和故障转移操作期间的命名空间标注和标签

在还原和故障转移操作期间、目标命名空间中的标签和标注会与源命名空间中的标签和标注相匹配。此时将添加
源命名空间中目标命名空间中不存在的标签或标注、并覆盖已存在的任何标签或标注、以便与源命名空间中的值
匹配。仅存在于目标命名空间上的标签或标注保持不变。

如果您使用Red Hat OpenShift、请务必注意命名空间标注在OpenShift环境中的关键作用。命名
空间标注可确保还原的Pod遵循OpenShift安全上下文约束(SCC)定义的适当权限和安全配置、并
可在没有权限问题的情况下访问卷。有关详细信息，请参阅 "OpenShift安全上下文约束文档"。

25

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies

在执行还原或故障转移操作之前、您可以通过设置Kubornetes环境变量来防止目标命名空间中的特定标注被覆
盖 RESTORE_SKIP_NAMESPACE_ANNOTATIONS。例如：

kubectl set env -n trident-protect deploy/trident-protect-controller-

manager

RESTORE_SKIP_NAMESPACE_ANNOTATIONS=<annotation_key_to_skip_1>,<annotation_

key_to_skip_2>

如果您使用 Helm 安装了源应用程序， `--create-namespace`国旗，给予特殊待遇 `name`标签键。在恢复或故
障转移过程中， Trident Protect 会将此标签复制到目标命名空间，但如果源命名空间的值与源命名空间的值匹配
，则会将值更新为目标命名空间的值。如果此值与源命名空间不匹配，则会将其复制到目标命名空间，而不做任
何更改。

示例

以下示例显示了一个源和目标命名空间、每个命名空间都具有不同的标注和标签。您可以查看目标命名空间在操
作前后的状态、以及标注和标签在目标命名空间中的组合或覆盖方式。

在执行还原或故障转移操作之前

下表说明了执行还原或故障转移操作之前示例源和目标名称卷的状态：

命名空间 标注 标签

命名空间ns-1 (源) • 标注.One/键："updatedvalue"

• 标注。双/键："TRUE"

• 环境=生产

• 合规性=HIPAA

• name=nS-1

命名空间ns-2 (目标) • 标注.One/键："TRUE"

• 标注三个/项："false"

• Role=database

还原操作之后

下表显示了还原或故障转移操作后示例目标命名空间的状态。已添加某些密钥、某些密钥已被覆盖、并且
`name`标签已更新以与目标命名空间匹配：

命名空间 标注 标签

命名空间ns-2 (目标) • 标注.One/键："updatedvalue"

• 标注。双/键："TRUE"

• 标注三个/项："false"

• name=nS-2

• 合规性=HIPAA

• 环境=生产

• Role=database

26

从备份还原到其他命名空间

当您使用 BackupRestore CR 将备份还原到不同的命名空间时， Trident Protect 会在新的命名空间中还原应用
程序，并为还原的应用程序创建一个应用程序 CR。为了保护已恢复的应用程序，可以创建按需备份或快照，或
者制定保护计划。

将备份还原到具有现有资源的其他命名空间不会更改与备份中的资源共享名称的任何资源。要还
原备份中的所有资源、请删除并重新创建目标命名空间、或者将备份还原到新命名空间。

开始之前

确保AWS会话令牌到期时间足以执行任何长时间运行的S3还原操作。如果令牌在还原操作期间过期、则操作可
能会失败。

• 有关检查当前会话令牌到期时间的详细信息、请参见 "AWS API文档"。

• 有关AWS资源凭据的详细信息、请参见 "AWS IAM文档"。

当您使用 Kopia 作为数据移动器恢复备份时，您可以选择在 CR 中或使用 CLI 指定注释来控制
Kopia 使用的临时存储的行为。请参阅 "文档"有关您可以配置的选项的更多信息。使用 `tridentctl-

protect create --help`有关使用Trident Protect CLI 指定注释的更多信息，请参阅命令。

27

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://kopia.io/docs/getting-started/
https://kopia.io/docs/getting-started/
https://kopia.io/docs/getting-started/
https://kopia.io/docs/getting-started/
https://kopia.io/docs/getting-started/

使用CR

步骤

1. 创建自定义资源(CR)文件并将其命名为 trident-protect-backup-restore-cr.yaml。

2. 在创建的文件中、配置以下属性：

◦ 。metadata.name:(required_)此自定义资源的名称；请为您的环境选择一个唯一且合理的名称。

◦ spec.appArchivePath：AppVault中存储备份内容的路径。您可以使用以下命令查找此路径：

kubectl get backups <BACKUP_NAME> -n my-app-namespace -o

jsonpath='{.status.appArchivePath}'

◦ spec.appVaultRef：(required)存储备份内容的AppVault的名称。

◦ 。spec.namespaceMapping:还原操作的源命名空间到目标命名空间的映射。将和 `my-

destination-namespace`替换 `my-source-namespace`为您环境中的信息。

◦ spec.storageClassMapping：还原操作的源存储类到目标存储类的映射。将和
`sourceStorageClass`替换 `destinationStorageClass`为您环境中的信息。

apiVersion: protect.trident.netapp.io/v1

kind: BackupRestore

metadata:

 name: my-cr-name

 namespace: my-destination-namespace

 annotations: # Optional annotations for Kopia data mover

 protect.trident.netapp.io/kopia-content-cache-size-limit-mb:

"1000"

spec:

 appArchivePath: my-backup-path

 appVaultRef: appvault-name

 namespaceMapping: [{"source": "my-source-namespace",

"destination": "my-destination-namespace"}]

 storageClassMapping:

 destination: "${destinationStorageClass}"

 source: "${sourceStorageClass}"

3. (可 选)如果只需要选择要还原的应用程序的某些资源、请添加包含或排除带有特定标签的资源的筛选：

Trident Protect 会自动选择一些资源，因为它们与您选择的资源存在关联。例如，如果
您选择持久卷声明资源并且它有一个关联的 pod， Trident Protect 还会恢复关联的
pod。

◦ resourceFilter.resourceSourcedionCritera：(筛选时需要)使用 `Include`或包含或 `Exclude`排除
资源匹配备程序中定义的资源。添加以下resourceMatchers参数以定义要包括或排除的资源：

28

▪ resourceFilter.resourceMatcher：resourceMatcher对象数组。如果在此数组中定义多个元素
，它们将作为OR操作进行匹配，每个元素(组、种类、版本)中的字段将作为AND操作进行匹
配。

▪ resourceMatcher[].group：(可 选)要筛选的资源的组。

▪ resourceMatcher[].KIND：(可 选)要筛选的资源种类。

▪ resourceMatcher[].version：(可 选)要筛选的资源版本。

▪ resourceMatcher[].names：(可 选)要筛选的资源的Kubernetes metadata.name字段中的
名称。

▪ resourceMatcher[].namespies：(可 选)要筛选的资源的Kubernetes metadata.name字段
中的命名空间。

▪ *resourceMatcher[].labelSelectors *：(可 选)资源的Kubernetes metadata.name字段中的标
签选择器字符串，如中所定义 "Kubernetes 文档"。例如：
"trident.netapp.io/os=linux"。

例如：

spec:

 resourceFilter:

 resourceSelectionCriteria: "Include"

 resourceMatchers:

 - group: my-resource-group-1

 kind: my-resource-kind-1

 version: my-resource-version-1

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

 - group: my-resource-group-2

 kind: my-resource-kind-2

 version: my-resource-version-2

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

4. 使用正确的值填充文件后 trident-protect-backup-restore-cr.yaml 、应用CR：

kubectl apply -f trident-protect-backup-restore-cr.yaml

使用CLI

步骤

1. 将备份还原到其他命名空间、将括号中的值替换为环境中的信息。此 `namespace-mapping`参数使用
冒号分隔的卷来将源卷的源卷映射到格式为的正确目标卷的 `source1:dest1,source2:dest2`卷。例如：

29

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

tridentctl-protect create backuprestore <my_restore_name> \

--backup <backup_namespace>/<backup_to_restore> \

--namespace-mapping <source_to_destination_namespace_mapping> \

-n <application_namespace>

从备份还原到原始命名空间

您可以随时将备份还原到原始命名空间。

开始之前

确保AWS会话令牌到期时间足以执行任何长时间运行的S3还原操作。如果令牌在还原操作期间过期、则操作可
能会失败。

• 有关检查当前会话令牌到期时间的详细信息、请参见 "AWS API文档"。

• 有关AWS资源凭据的详细信息、请参见 "AWS IAM文档"。

当您使用 Kopia 作为数据移动器恢复备份时，您可以选择在 CR 中或使用 CLI 指定注释来控制
Kopia 使用的临时存储的行为。请参阅 "文档"有关您可以配置的选项的更多信息。使用 `tridentctl-

protect create --help`有关使用Trident Protect CLI 指定注释的更多信息，请参阅命令。

30

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://kopia.io/docs/getting-started/
https://kopia.io/docs/getting-started/
https://kopia.io/docs/getting-started/
https://kopia.io/docs/getting-started/
https://kopia.io/docs/getting-started/

使用CR

步骤

1. 创建自定义资源(CR)文件并将其命名为 trident-protect-backup-ipr-cr.yaml。

2. 在创建的文件中、配置以下属性：

◦ 。metadata.name:(required_)此自定义资源的名称；请为您的环境选择一个唯一且合理的名称。

◦ spec.appArchivePath：AppVault中存储备份内容的路径。您可以使用以下命令查找此路径：

kubectl get backups <BACKUP_NAME> -n my-app-namespace -o

jsonpath='{.status.appArchivePath}'

◦ spec.appVaultRef：(required)存储备份内容的AppVault的名称。

例如：

apiVersion: protect.trident.netapp.io/v1

kind: BackupInplaceRestore

metadata:

 name: my-cr-name

 namespace: my-app-namespace

 annotations: # Optional annotations for Kopia data mover

 protect.trident.netapp.io/kopia-content-cache-size-limit-mb:

"1000"

spec:

 appArchivePath: my-backup-path

 appVaultRef: appvault-name

3. (可 选)如果只需要选择要还原的应用程序的某些资源、请添加包含或排除带有特定标签的资源的筛选：

Trident Protect 会自动选择一些资源，因为它们与您选择的资源存在关联。例如，如果
您选择持久卷声明资源并且它有一个关联的 pod， Trident Protect 还会恢复关联的
pod。

◦ resourceFilter.resourceSourcedionCritera：(筛选时需要)使用 `Include`或包含或 `Exclude`排除
资源匹配备程序中定义的资源。添加以下resourceMatchers参数以定义要包括或排除的资源：

▪ resourceFilter.resourceMatcher：resourceMatcher对象数组。如果在此数组中定义多个元素
，它们将作为OR操作进行匹配，每个元素(组、种类、版本)中的字段将作为AND操作进行匹
配。

▪ resourceMatcher[].group：(可 选)要筛选的资源的组。

▪ resourceMatcher[].KIND：(可 选)要筛选的资源种类。

▪ resourceMatcher[].version：(可 选)要筛选的资源版本。

31

▪ resourceMatcher[].names：(可 选)要筛选的资源的Kubernetes metadata.name字段中的
名称。

▪ resourceMatcher[].namespies：(可 选)要筛选的资源的Kubernetes metadata.name字段
中的命名空间。

▪ *resourceMatcher[].labelSelectors *：(可 选)资源的Kubernetes metadata.name字段中的标
签选择器字符串，如中所定义 "Kubernetes 文档"。例如：
"trident.netapp.io/os=linux"。

例如：

spec:

 resourceFilter:

 resourceSelectionCriteria: "Include"

 resourceMatchers:

 - group: my-resource-group-1

 kind: my-resource-kind-1

 version: my-resource-version-1

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

 - group: my-resource-group-2

 kind: my-resource-kind-2

 version: my-resource-version-2

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

4. 使用正确的值填充文件后 trident-protect-backup-ipr-cr.yaml 、应用CR：

kubectl apply -f trident-protect-backup-ipr-cr.yaml

使用CLI

步骤

1. 将备份还原到原始命名空间、将括号中的值替换为环境中的信息。 backup`参数使用格式为的命名空
间和备份名称 `<namespace>/<name>。例如：

tridentctl-protect create backupinplacerestore <my_restore_name> \

--backup <namespace/backup_to_restore> \

-n <application_namespace>

32

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

从备份还原到其他集群

如果原始集群出现问题、您可以将备份还原到其他集群。

当您使用 Kopia 作为数据移动器恢复备份时，您可以选择在 CR 中或使用 CLI 指定注释来控制
Kopia 使用的临时存储的行为。请参阅 "文档"有关您可以配置的选项的更多信息。使用 `tridentctl-

protect create --help`有关使用Trident Protect CLI 指定注释的更多信息，请参阅命令。

开始之前

确保满足以下前提条件：

• 目标集群已安装Trident Protect。

• 目标集群可以访问与存储备份的源集群相同的AppVault的分段路径。

• 确保AWS会话令牌到期时间足以执行任何长时间运行的还原操作。如果令牌在还原操作期间过期、则操作可
能会失败。

◦ 有关检查当前会话令牌到期时间的详细信息、请参见 "AWS API文档"。

◦ 有关AWS资源凭据的详细信息、请参见 "AWS 文档"。

步骤

1. 使用Trident Protect CLI 插件检查目标集群上 AppVault CR 的可用性：

tridentctl-protect get appvault --context <destination_cluster_name>

确保目标集群上存在用于应用程序还原的命名空间。

2. 从目标集群查看可用AppVault的备份内容：

tridentctl-protect get appvaultcontent <appvault_name> \

--show-resources backup \

--show-paths \

--context <destination_cluster_name>

运行此命令可显示AppVault中的可用备份、包括其原始集群、相应的应用程序名称、时间戳和归档路径。

示例输出：

33

https://kopia.io/docs/getting-started/
https://kopia.io/docs/getting-started/
https://kopia.io/docs/getting-started/
https://kopia.io/docs/getting-started/
https://kopia.io/docs/getting-started/
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

+-------------+-----------+--------+-----------------

+--------------------------+-------------+

| CLUSTER | APP | TYPE | NAME | TIMESTAMP

| PATH |

+-------------+-----------+--------+-----------------

+--------------------------+-------------+

| production1 | wordpress | backup | wordpress-bkup-1| 2024-10-30

08:37:40 (UTC)| backuppath1 |

| production1 | wordpress | backup | wordpress-bkup-2| 2024-10-30

08:37:40 (UTC)| backuppath2 |

+-------------+-----------+--------+-----------------

+--------------------------+-------------+

3. 使用AppVault名称和归档路径将应用程序还原到目标集群：

34

使用CR

1. 创建自定义资源(CR)文件并将其命名为 trident-protect-backup-restore-cr.yaml。

2. 在创建的文件中、配置以下属性：

◦ 。metadata.name:(required_)此自定义资源的名称；请为您的环境选择一个唯一且合理的名称。

◦ spec.appVaultRef：(required)存储备份内容的AppVault的名称。

◦ spec.appArchivePath：AppVault中存储备份内容的路径。您可以使用以下命令查找此路径：

kubectl get backups <BACKUP_NAME> -n my-app-namespace -o

jsonpath='{.status.appArchivePath}'

如果BackupRestore CR不可用、您可以使用步骤2中提到的命令查看备份内容。

◦ 。spec.namespaceMapping:还原操作的源命名空间到目标命名空间的映射。将和 `my-

destination-namespace`替换 `my-source-namespace`为您环境中的信息。

例如：

apiVersion: protect.trident.netapp.io/v1

kind: BackupRestore

metadata:

 name: my-cr-name

 namespace: my-destination-namespace

 annotations: # Optional annotations for Kopia data mover

 protect.trident.netapp.io/kopia-content-cache-size-limit-mb:

"1000"

spec:

 appVaultRef: appvault-name

 appArchivePath: my-backup-path

 namespaceMapping: [{"source": "my-source-namespace", "

destination": "my-destination-namespace"}]

3. 使用正确的值填充文件后 trident-protect-backup-restore-cr.yaml 、应用CR：

kubectl apply -f trident-protect-backup-restore-cr.yaml

使用CLI

1. 使用以下命令还原应用程序、将括号中的值替换为环境中的信息。命名空间映射参数使用冒号分隔的命
名空间将源命名空间映射到正确的目标命名空间、格式为SOURCE1：dest1、Source2：dest2。例如
：

35

tridentctl-protect create backuprestore <restore_name> \

--namespace-mapping <source_to_destination_namespace_mapping> \

--appvault <appvault_name> \

--path <backup_path> \

--context <destination_cluster_name> \

-n <application_namespace>

从快照还原到其他命名空间

您可以使用自定义资源 (CR) 文件从快照恢复数据，恢复到不同的命名空间或原始源命名空间。当您使用
SnapshotRestore CR 将快照还原到不同的命名空间时， Trident Protect 会在新的命名空间中还原应用程序，并
为还原的应用程序创建一个应用程序 CR。为了保护已恢复的应用程序，可以创建按需备份或快照，或者制定保
护计划。

开始之前

确保AWS会话令牌到期时间足以执行任何长时间运行的S3还原操作。如果令牌在还原操作期间过期、则操作可
能会失败。

• 有关检查当前会话令牌到期时间的详细信息、请参见 "AWS API文档"。

• 有关AWS资源凭据的详细信息、请参见 "AWS IAM文档"。

36

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

使用CR

步骤

1. 创建自定义资源(CR)文件并将其命名为 trident-protect-snapshot-restore-cr.yaml。

2. 在创建的文件中、配置以下属性：

◦ 。metadata.name:(required_)此自定义资源的名称；请为您的环境选择一个唯一且合理的名称。

◦ spec.appVaultRef：(required)存储快照内容的AppVault的名称。

◦ spec.appArchivePath：AppVault中存储快照内容的路径。您可以使用以下命令查找此路径：

kubectl get snapshots <SNAPHOT_NAME> -n my-app-namespace -o

jsonpath='{.status.appArchivePath}'

◦ 。spec.namespaceMapping:还原操作的源命名空间到目标命名空间的映射。将和 `my-

destination-namespace`替换 `my-source-namespace`为您环境中的信息。

◦ spec.storageClassMapping：还原操作的源存储类到目标存储类的映射。将和
`sourceStorageClass`替换 `destinationStorageClass`为您环境中的信息。

这 `storageClassMapping`属性仅在原始属性和新属性都有效时 `StorageClass`使用
相同的存储后端。如果您尝试恢复到 `StorageClass`如果使用不同的存储后端，则
恢复操作将失败。

apiVersion: protect.trident.netapp.io/v1

kind: SnapshotRestore

metadata:

 name: my-cr-name

 namespace: my-app-namespace

spec:

 appVaultRef: appvault-name

 appArchivePath: my-snapshot-path

 namespaceMapping: [{"source": "my-source-namespace", "

destination": "my-destination-namespace"}]

 storageClassMapping:

 destination: "${destinationStorageClass}"

 source: "${sourceStorageClass}"

3. (可 选)如果只需要选择要还原的应用程序的某些资源、请添加包含或排除带有特定标签的资源的筛选：

Trident Protect 会自动选择一些资源，因为它们与您选择的资源存在关联。例如，如果
您选择持久卷声明资源并且它有一个关联的 pod， Trident Protect 还会恢复关联的
pod。

37

◦ resourceFilter.resourceSourcedionCritera：(筛选时需要)使用 `Include`或包含或 `Exclude`排除
资源匹配备程序中定义的资源。添加以下resourceMatchers参数以定义要包括或排除的资源：

▪ resourceFilter.resourceMatcher：resourceMatcher对象数组。如果在此数组中定义多个元素
，它们将作为OR操作进行匹配，每个元素(组、种类、版本)中的字段将作为AND操作进行匹
配。

▪ resourceMatcher[].group：(可 选)要筛选的资源的组。

▪ resourceMatcher[].KIND：(可 选)要筛选的资源种类。

▪ resourceMatcher[].version：(可 选)要筛选的资源版本。

▪ resourceMatcher[].names：(可 选)要筛选的资源的Kubernetes metadata.name字段中的
名称。

▪ resourceMatcher[].namespies：(可 选)要筛选的资源的Kubernetes metadata.name字段
中的命名空间。

▪ *resourceMatcher[].labelSelectors *：(可 选)资源的Kubernetes metadata.name字段中的标
签选择器字符串，如中所定义 "Kubernetes 文档"。例如：
"trident.netapp.io/os=linux"。

例如：

spec:

 resourceFilter:

 resourceSelectionCriteria: "Include"

 resourceMatchers:

 - group: my-resource-group-1

 kind: my-resource-kind-1

 version: my-resource-version-1

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

 - group: my-resource-group-2

 kind: my-resource-kind-2

 version: my-resource-version-2

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

4. 使用正确的值填充文件后 trident-protect-snapshot-restore-cr.yaml 、应用CR：

kubectl apply -f trident-protect-snapshot-restore-cr.yaml

使用CLI

步骤

1. 将快照还原到其他命名空间、将括号中的值替换为环境中的信息。

38

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

◦ snapshot`参数使用格式为的命名空间和快照名称 `<namespace>/<name>。

◦ 此 `namespace-mapping`参数使用冒号分隔的卷来将源卷的源卷映射到格式为的正确目标卷的
`source1:dest1,source2:dest2`卷。

例如：

tridentctl-protect create snapshotrestore <my_restore_name> \

--snapshot <namespace/snapshot_to_restore> \

--namespace-mapping <source_to_destination_namespace_mapping> \

-n <application_namespace>

从快照还原到原始命名空间

您可以随时将快照还原到原始命名空间。

开始之前

确保AWS会话令牌到期时间足以执行任何长时间运行的S3还原操作。如果令牌在还原操作期间过期、则操作可
能会失败。

• 有关检查当前会话令牌到期时间的详细信息、请参见 "AWS API文档"。

• 有关AWS资源凭据的详细信息、请参见 "AWS IAM文档"。

39

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

使用CR

步骤

1. 创建自定义资源(CR)文件并将其命名为 trident-protect-snapshot-ipr-cr.yaml。

2. 在创建的文件中、配置以下属性：

◦ 。metadata.name:(required_)此自定义资源的名称；请为您的环境选择一个唯一且合理的名称。

◦ spec.appVaultRef：(required)存储快照内容的AppVault的名称。

◦ spec.appArchivePath：AppVault中存储快照内容的路径。您可以使用以下命令查找此路径：

kubectl get snapshots <SNAPSHOT_NAME> -n my-app-namespace -o

jsonpath='{.status.appArchivePath}'

apiVersion: protect.trident.netapp.io/v1

kind: SnapshotInplaceRestore

metadata:

 name: my-cr-name

 namespace: my-app-namespace

spec:

 appVaultRef: appvault-name

 appArchivePath: my-snapshot-path

3. (可 选)如果只需要选择要还原的应用程序的某些资源、请添加包含或排除带有特定标签的资源的筛选：

Trident Protect 会自动选择一些资源，因为它们与您选择的资源存在关联。例如，如果
您选择持久卷声明资源并且它有一个关联的 pod， Trident Protect 还会恢复关联的
pod。

◦ resourceFilter.resourceSourcedionCritera：(筛选时需要)使用 `Include`或包含或 `Exclude`排除
资源匹配备程序中定义的资源。添加以下resourceMatchers参数以定义要包括或排除的资源：

▪ resourceFilter.resourceMatcher：resourceMatcher对象数组。如果在此数组中定义多个元素
，它们将作为OR操作进行匹配，每个元素(组、种类、版本)中的字段将作为AND操作进行匹
配。

▪ resourceMatcher[].group：(可 选)要筛选的资源的组。

▪ resourceMatcher[].KIND：(可 选)要筛选的资源种类。

▪ resourceMatcher[].version：(可 选)要筛选的资源版本。

▪ resourceMatcher[].names：(可 选)要筛选的资源的Kubernetes metadata.name字段中的
名称。

▪ resourceMatcher[].namespies：(可 选)要筛选的资源的Kubernetes metadata.name字段
中的命名空间。

▪ *resourceMatcher[].labelSelectors *：(可 选)资源的Kubernetes metadata.name字段中的标

40

签选择器字符串，如中所定义 "Kubernetes 文档"。例如：
"trident.netapp.io/os=linux"。

例如：

spec:

 resourceFilter:

 resourceSelectionCriteria: "Include"

 resourceMatchers:

 - group: my-resource-group-1

 kind: my-resource-kind-1

 version: my-resource-version-1

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

 - group: my-resource-group-2

 kind: my-resource-kind-2

 version: my-resource-version-2

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

4. 使用正确的值填充文件后 trident-protect-snapshot-ipr-cr.yaml 、应用CR：

kubectl apply -f trident-protect-snapshot-ipr-cr.yaml

使用CLI

步骤

1. 将快照还原到原始命名空间、将括号中的值替换为环境中的信息。例如：

tridentctl-protect create snapshotinplacerestore <my_restore_name> \

--snapshot <snapshot_to_restore> \

-n <application_namespace>

检查还原操作的状态

您可以使用命令行检查正在进行、已完成或失败的还原操作的状态。

步骤

1. 使用以下命令检索还原操作的状态、将括号中的值替换为环境中的信息：

41

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

kubectl get backuprestore -n <namespace_name> <my_restore_cr_name> -o

jsonpath='{.status}'

使用NetApp SnapMirror和Trident Protect 复制应用程序

使用Trident Protect，您可以利用NetApp SnapMirror技术的异步复制功能，将数据和应用
程序更改从一个存储后端复制到另一个存储后端，无论是在同一集群内还是在不同集群之
间。

还原和故障转移操作期间的命名空间标注和标签

在还原和故障转移操作期间、目标命名空间中的标签和标注会与源命名空间中的标签和标注相匹配。此时将添加
源命名空间中目标命名空间中不存在的标签或标注、并覆盖已存在的任何标签或标注、以便与源命名空间中的值
匹配。仅存在于目标命名空间上的标签或标注保持不变。

如果您使用Red Hat OpenShift、请务必注意命名空间标注在OpenShift环境中的关键作用。命名
空间标注可确保还原的Pod遵循OpenShift安全上下文约束(SCC)定义的适当权限和安全配置、并
可在没有权限问题的情况下访问卷。有关详细信息，请参阅 "OpenShift安全上下文约束文档"。

在执行还原或故障转移操作之前、您可以通过设置Kubornetes环境变量来防止目标命名空间中的特定标注被覆
盖 RESTORE_SKIP_NAMESPACE_ANNOTATIONS。例如：

kubectl set env -n trident-protect deploy/trident-protect-controller-

manager

RESTORE_SKIP_NAMESPACE_ANNOTATIONS=<annotation_key_to_skip_1>,<annotation_

key_to_skip_2>

如果您使用 Helm 安装了源应用程序， `--create-namespace`国旗，给予特殊待遇 `name`标签键。在恢复或故
障转移过程中， Trident Protect 会将此标签复制到目标命名空间，但如果源命名空间的值与源命名空间的值匹配
，则会将值更新为目标命名空间的值。如果此值与源命名空间不匹配，则会将其复制到目标命名空间，而不做任
何更改。

示例

以下示例显示了一个源和目标命名空间、每个命名空间都具有不同的标注和标签。您可以查看目标命名空间在操
作前后的状态、以及标注和标签在目标命名空间中的组合或覆盖方式。

在执行还原或故障转移操作之前

下表说明了执行还原或故障转移操作之前示例源和目标名称卷的状态：

42

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html/authentication_and_authorization/managing-pod-security-policies

命名空间 标注 标签

命名空间ns-1 (源) • 标注.One/键："updatedvalue"

• 标注。双/键："TRUE"

• 环境=生产

• 合规性=HIPAA

• name=nS-1

命名空间ns-2 (目标) • 标注.One/键："TRUE"

• 标注三个/项："false"

• Role=database

还原操作之后

下表显示了还原或故障转移操作后示例目标命名空间的状态。已添加某些密钥、某些密钥已被覆盖、并且
`name`标签已更新以与目标命名空间匹配：

命名空间 标注 标签

命名空间ns-2 (目标) • 标注.One/键："updatedvalue"

• 标注。双/键："TRUE"

• 标注三个/项："false"

• name=nS-2

• 合规性=HIPAA

• 环境=生产

• Role=database

您可以配置Trident Protect 在数据保护操作期间冻结和解冻文件系统。"了解更多关于使用Trident

Protect 配置文件系统冻结的信息"。

设置复制关系

设置复制关系涉及以下方面：

• 选择Trident Protect 拍摄应用程序快照的频率（包括应用程序的 Kubernetes 资源以及应用程序每个卷的卷
快照）。

• 选择复制计划(包括Kubbernetes资源以及永久性卷数据)

• 设置创建快照的时间

步骤

1. 在源集群上、为源应用程序创建AppVault。根据您的存储提供程序、修改中的示例"AppVault自定义资源"以
适合您的环境：

43

trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html

使用CR创建AppVault

a. 创建自定义资源(CR)文件并将其命名(例如 trident-protect-appvault-primary-

source.yaml)。

b. 配置以下属性：

▪ * metadata.name*:(required_) AppVault自定义资源的名称。请记下您选择的名称、因为复制关
系所需的其他CR文件会引用此值。

▪ 。spec.providerConfig:(required_)存储使用指定提供程序访问AppVault所需的配置。为您的
提供商选择一个BucketName和任何其他必要的详细信息。请记下所选的值、因为复制关系所
需的其他CR文件会引用这些值。有关其他提供商的AppVault CRS示例、请参见"AppVault自定
义资源"。

▪ 。spec.providerCredentials:(required_)存储对使用指定提供程序访问AppVault所需的任何凭
据的引用。

▪ 。spec.providerCredentials.valueFromSecret:(required_)表示凭据值应来自密钥。

▪ key:(required)要从中选择的密钥的有效密钥。

▪ name:(required)包含此字段值的机密的名称。必须位于同一命名空间中。

▪ * spec.providerCredentials.secretAccessKey*:(required_)用于访问提供程序的访问密钥。
名称*应与*。spec.providerCredentials.valueFromSecret.name*。

▪ 。spec.providerType:(required_)用于确定提供备份的内容；例如、NetApp ONTAP S3、通
用S3、Google Cloud或Microsoft Azure。可能值：

▪ aws

▪ azure

▪ GCP

▪ 常规S3

▪ ONTAP S3

▪ StorageGRID S3

c. 使用正确的值填充文件后 trident-protect-appvault-primary-source.yaml 、应用CR
：

kubectl apply -f trident-protect-appvault-primary-source.yaml -n

trident-protect

使用命令行界面创建AppVault

a. 创建AppVault、将括号中的值替换为您环境中的信息：

tridentctl-protect create vault Azure <vault-name> --account

<account-name> --bucket <bucket-name> --secret <secret-name>

2. 在源集群上、创建源应用程序CR：

44

trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html

使用CR创建源应用程序

a. 创建自定义资源(CR)文件并将其命名(例如 trident-protect-app-source.yaml)。

b. 配置以下属性：

▪ metadata.name:(required_)应用程序自定义资源的名称。请记下您选择的名称、因为复制关系
所需的其他CR文件会引用此值。

▪ 。spec.includedNamespaces:(required_)一个由命名区域和关联标签组成的数组。使用命名
空间名称、并可选择通过标签缩小命名空间的范围、以指定此处列出的命名空间中存在的资
源。应用程序命名空间必须属于此数组。

示例YAML：

apiVersion: protect.trident.netapp.io/v1

kind: Application

metadata:

 name: my-app-name

 namespace: my-app-namespace

spec:

 includedNamespaces:

 - namespace: my-app-namespace

 labelSelector: {}

c. 使用正确的值填充文件后 trident-protect-app-source.yaml 、应用CR：

kubectl apply -f trident-protect-app-source.yaml -n my-app-

namespace

使用命令行界面创建源应用程序

a. 创建源应用程序。例如：

tridentctl-protect create app <my-app-name> --namespaces

<namespaces-to-be-included> -n <my-app-namespace>

3. (可选)在源集群上、为源应用程序创建关闭快照。此快照将用作目标集群上应用程序的基础。如果跳过此步
骤、则需要等待运行下一个计划快照、以便获得最新快照。

45

使用CR创建关闭快照

a. 为源应用程序创建复制计划：

i. 创建自定义资源(CR)文件并将其命名(例如 trident-protect-schedule.yaml)。

ii. 配置以下属性：

▪ * metadata.name*:(required_)计划自定义资源的名称。

▪ spec.appVaultRef：(required)此值必须与源应用程序的AppVault的metadata.name字段匹
配。

▪ spec.ApplicationRef：(required)此值必须与源应用程序CR的metadata.name字段匹配。

▪ spec.backup놣 쇴：(required)此字段为必填字段、且值必须设置为0。

▪ *spec.enabled *：必须设置为true。

▪ 。spec.granularity:必须设置为 Custom。

▪ spec.rec发 规则：定义UTC时间的开始日期和重复间隔。

▪ spec.snapshot놣 쇴：必须设置为2。

YAML示例：

apiVersion: protect.trident.netapp.io/v1

kind: Schedule

metadata:

 name: appmirror-schedule-0e1f88ab-f013-4bce-8ae9-6afed9df59a1

 namespace: my-app-namespace

spec:

 appVaultRef: generic-s3-trident-protect-src-bucket-04b6b4ec-

46a3-420a-b351-45795e1b5e34

 applicationRef: my-app-name

 backupRetention: "0"

 enabled: true

 granularity: custom

 recurrenceRule: |-

 DTSTART:20220101T000200Z

 RRULE:FREQ=MINUTELY;INTERVAL=5

 snapshotRetention: "2"

i. 使用正确的值填充文件后 trident-protect-schedule.yaml 、应用CR：

kubectl apply -f trident-protect-schedule.yaml -n my-app-

namespace

46

使用命令行界面创建关闭快照

a. 创建快照、将括号中的值替换为您环境中的信息。例如：

tridentctl-protect create snapshot <my_snapshot_name> --appvault

<my_appvault_name> --app <name_of_app_to_snapshot> -n

<application_namespace>

4. 在目标集群上，创建一个与您在源集群上应用的AppVault CR完全相同的源应用程序AppVault CR，并将其
命名为(例如 trident-protect-appvault-primary-destination.yaml)。

5. 应用CR：

kubectl apply -f trident-protect-appvault-primary-destination.yaml -n

my-app-namespace

6. 在目标集群上为目标应用程序创建目标AppVault CR。根据您的存储提供程序、修改中的示例"AppVault自定
义资源"以适合您的环境：

a. 创建自定义资源(CR)文件并将其命名(例如 trident-protect-appvault-secondary-

destination.yaml)。

b. 配置以下属性：

▪ * metadata.name*:(required_) AppVault自定义资源的名称。请记下您选择的名称、因为复制关系所
需的其他CR文件会引用此值。

▪ 。spec.providerConfig:(required_)存储使用指定提供程序访问AppVault所需的配置。为您的提供商
选择 `bucketName`以及任何其他必要的详细信息。请记下所选的值、因为复制关系所需的其他CR

文件会引用这些值。有关其他提供商的AppVault CRS示例、请参见"AppVault自定义资源"。

▪ 。spec.providerCredentials:(required_)存储对使用指定提供程序访问AppVault所需的任何凭据的
引用。

▪ 。spec.providerCredentials.valueFromSecret:(required_)表示凭据值应来自密钥。

▪ key:(required)要从中选择的密钥的有效密钥。

▪ name:(required)包含此字段值的机密的名称。必须位于同一命名空间中。

▪ * spec.providerCredentials.secretAccessKey*:(required_)用于访问提供程序的访问密钥。名称*

应与*。spec.providerCredentials.valueFromSecret.name*。

▪ 。spec.providerType:(required_)用于确定提供备份的内容；例如、NetApp ONTAP S3、通用S3

、Google Cloud或Microsoft Azure。可能值：

▪ aws

▪ azure

▪ GCP

▪ 常规S3

▪ ONTAP S3

▪ StorageGRID S3

47

trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html
trident-protect-appvault-custom-resources.html

c. 使用正确的值填充文件后 trident-protect-appvault-secondary-destination.yaml 、应
用CR：

kubectl apply -f trident-protect-appvault-secondary-destination.yaml

-n my-app-namespace

7. 在目标集群上、创建App镜像 关系CR文件：

48

使用CR创建App镜像 关系

a. 创建自定义资源(CR)文件并将其命名(例如 trident-protect-relationship.yaml)。

b. 配置以下属性：

▪ * metadata.name:*(必需) App镜像 关系自定义资源的名称。

▪ 。spec.destinationAppVaultRef:(required_)此值必须与目标集群上目标应用程序的AppVault

名称匹配。

▪ 。spec.namespaceMapping:(required_)目标和源命名空间必须与相应应用程序CR中定义的
应用程序命名空间匹配。

▪ spec.sourceAppVaultRef：(required)此值必须与源应用程序的AppVault名称匹配。

▪ spec.sourceApplicationName:(required)此值必须与您在源应用程序CR中定义的源应用程序
的名称匹配。

▪ spec.storageClassName：(required)选择集群上有效存储类的名称。存储类必须链接到与源
环境建立对等关系的ONTAP Storage VM。

▪ spec.rec发 规则：定义UTC时间的开始日期和重复间隔。

YAML示例：

apiVersion: protect.trident.netapp.io/v1

kind: AppMirrorRelationship

metadata:

 name: amr-16061e80-1b05-4e80-9d26-d326dc1953d8

 namespace: my-app-namespace

spec:

 desiredState: Established

 destinationAppVaultRef: generic-s3-trident-protect-dst-bucket-

8fe0b902-f369-4317-93d1-ad7f2edc02b5

 namespaceMapping:

 - destination: my-app-namespace

 source: my-app-namespace

 recurrenceRule: |-

 DTSTART:20220101T000200Z

 RRULE:FREQ=MINUTELY;INTERVAL=5

 sourceAppVaultRef: generic-s3-trident-protect-src-bucket-

b643cc50-0429-4ad5-971f-ac4a83621922

 sourceApplicationName: my-app-name

 sourceApplicationUID: 7498d32c-328e-4ddd-9029-122540866aeb

 storageClassName: sc-vsim-2

c. 使用正确的值填充文件后 trident-protect-relationship.yaml 、应用CR：

49

kubectl apply -f trident-protect-relationship.yaml -n my-app-

namespace

使用命令行界面创建App镜像 关系

a. 创建并应用App镜像 关系对象、将括号中的值替换为环境中的信息。例如：

tridentctl-protect create appmirrorrelationship

<name_of_appmirorrelationship> --destination-app-vault

<my_vault_name> --recurrence-rule <rule> --source-app

<my_source_app> --source-app-vault <my_source_app_vault> -n

<application_namespace>

8. (可 选)在目标集群上、检查复制关系的状态：

kubectl get amr -n my-app-namespace <relationship name> -o=jsonpath

='{.status}' | jq

故障转移到目标集群

使用Trident Protect，您可以将复制的应用程序故障转移到目标集群。此过程会停止复制关系，并将应用程序在
目标集群上联机。如果源集群上的应用程序正在运行， Trident Protect 不会停止该应用程序。

步骤

1. 在目标集群上，编辑AppMirorRelationship CR文件(例如 trident-protect-relationship.yaml)，并
将*spec.desiredState*的值更改为 Promoted。

2. 保存 CR 文件。

3. 应用CR：

kubectl apply -f trident-protect-relationship.yaml -n my-app-namespace

4. (可 选)在故障转移应用程序上创建所需的任何保护计划。

5. (可 选)检查复制关系的状态：

kubectl get amr -n my-app-namespace <relationship name> -o=jsonpath

='{.status}' | jq

50

重新同步故障转移复制关系

重新同步操作将重新建立复制关系。执行重新同步操作后、原始源应用程序将成为正在运行的应用程序、对目标
集群上正在运行的应用程序所做的任何更改将被丢弃。

此过程会先停止目标集群上的应用程序、然后再重新建立复制。

故障转移期间写入目标应用程序的所有数据都将丢失。

步骤

1. 可选：在源集群上、创建源应用程序的快照。这样可确保捕获源集群的最新更改。

2. 在目标集群上，编辑AppMirorRelationship CR文件(例如 trident-protect-relationship.yaml)，并
将spec.desiredState的值更改为 Established。

3. 保存 CR 文件。

4. 应用CR：

kubectl apply -f trident-protect-relationship.yaml -n my-app-namespace

5. 如果您在目标集群上创建了任何保护计划来保护故障转移应用程序、请将其删除。任何保留的计划都会导致
卷快照失败。

反向重新同步故障转移复制关系

反向重新同步故障转移复制关系时、目标应用程序将成为源应用程序、而源将成为目标。在故障转移期间对目标
应用程序所做的更改将保留下来。

步骤

1. 在初始目标集群上、删除App镜像 关系CR。这会使目标成为源。如果新目标集群上仍有任何保护计划、请
将其删除。

2. 通过将最初用于设置复制关系的CR文件应用于对等集群来设置复制关系。

3. 确保为新目标(初始源集群)配置了两个AppVault CRS。

4. 在另一个集群上设置复制关系、并配置反向值。

反转应用程序复制方向

当您反转复制方向时， Trident Protect 会将应用程序移动到目标存储后端，同时继续复制回原始源存储后
端。Trident Protect 会停止源应用程序并将数据复制到目标位置，然后再故障转移到目标应用程序。

在这种情况下、您将交换源和目标。

步骤

1. 在源集群上、创建一个关闭快照：

51

使用CR创建关闭快照

a. 禁用源应用程序的保护策略计划。

b. 创建Sh关机Snapshot CR文件：

i. 创建自定义资源(CR)文件并将其命名(例如 trident-protect-shutdownsnapshot.yaml

)。

ii. 配置以下属性：

▪ * metadata.name*:(required_)自定义资源的名称。

▪ spec.appVaultRef：(required)此值必须与源应用程序的AppVault的metadata.name字段匹
配。

▪ spec.ApplicationRef：(required)此值必须与源应用程序CR文件的metadata.name字段匹
配。

YAML示例：

apiVersion: protect.trident.netapp.io/v1

kind: ShutdownSnapshot

metadata:

 name: replication-shutdown-snapshot-afc4c564-e700-4b72-86c3-

c08a5dbe844e

 namespace: my-app-namespace

spec:

 appVaultRef: generic-s3-trident-protect-src-bucket-04b6b4ec-

46a3-420a-b351-45795e1b5e34

 applicationRef: my-app-name

c. 使用正确的值填充文件后 trident-protect-shutdownsnapshot.yaml 、应用CR：

kubectl apply -f trident-protect-shutdownsnapshot.yaml -n my-app-

namespace

使用命令行界面创建关闭快照

a. 创建关闭快照、将括号中的值替换为环境中的信息。例如：

tridentctl-protect create shutdownsnapshot <my_shutdown_snapshot>

--appvault <my_vault> --app <app_to_snapshot> -n

<application_namespace>

2. 在源集群上、关闭快照完成后、获取关闭快照的状态：

52

kubectl get shutdownsnapshot -n my-app-namespace

<shutdown_snapshot_name> -o yaml

3. 在源集群上，使用以下命令查找*shutdownfapp.statues.appArchivePath*的值，并记录文件路径的最后一部
分(也称为基本名称；这将是最后一个斜杠之后的所有内容)：

k get shutdownsnapshot -n my-app-namespace <shutdown_snapshot_name> -o

jsonpath='{.status.appArchivePath}'

4. 执行从新目标集群到新源集群的故障转移、并进行以下更改：

在故障转移过程的第2步中、将字段包含 `spec.promotedSnapshot`在App镜像 关系CR文件
中、并将其值设置为您在上述第3步中记录的基本名称。

5. 执行中的反向重新同步步骤[反向重新同步故障转移复制关系]。

6. 在新的源集群上启用保护计划。

结果

反向复制会导致以下操作：

• 系统会为原始源应用程序的Kubbernetes资源创建一个快照。

• 通过删除原始源应用程序的Kubernetes资源(保留PVC和PV)、可以正常停止原始源应用程序的Pod。

• 关闭Pod后、将为应用程序的卷创建快照并进行复制。

• SnapMirror关系将中断、从而使目标卷做好读/写准备。

• 此应用程序的Kubornetes资源将使用在初始源应用程序关闭后复制的卷数据从关闭前的快照中还原。

• 反向重新建立复制。

将应用程序故障恢复到原始源集群

使用Trident Protect，您可以通过以下步骤序列在故障转移操作后实现“故障恢复”。在此恢复原始复制方向的工
作流程中， Trident Protect 会将任何应用程序更改复制（重新同步）回原始源应用程序，然后再反转复制方向。

此过程从已完成故障转移到目标的关系开始、涉及以下步骤：

• 从故障转移状态开始。

• 反向重新同步复制关系。

请勿执行正常的重新同步操作、因为这会丢弃在故障转移过程中写入目标集群的数据。

• 反转复制方向。

步骤

53

1. 执行[反向重新同步故障转移复制关系]步骤。

2. 执行[反转应用程序复制方向]步骤。

删除复制关系

您可以随时删除复制关系。删除应用程序复制关系后、会导致两个单独的应用程序之间没有关系。

步骤

1. 在当前目标集群上、删除App镜像 关系CR：

kubectl delete -f trident-protect-relationship.yaml -n my-app-namespace

使用Trident Protect 迁移应用程序

您可以通过将备份或快照数据还原到其他集群或存储类来在集群或存储类之间迁移应用程
序。

迁移应用程序时、为该应用程序配置的所有执行挂钩都会随该应用程序一起迁移。如果存在还原
后执行挂钩、则它会在还原操作中自动运行。

备份和还原操作

要在以下情况下执行备份和还原操作、您可以自动执行特定的备份和还原任务。

克隆到同一集群

要将应用程序克隆到同一集群、请创建快照或备份并将数据还原到同一集群。

步骤

1. 执行以下操作之一：

a. "创建快照"(英文)

b. "创建备份"(英文)

2. 在同一集群上、根据您是创建了快照还是备份、执行以下操作之一：

a. "从快照还原数据"(英文)

b. "从备份还原数据"(英文)

克隆到其他集群

要将应用程序克隆到不同的集群（执行跨集群克隆），请在源集群上创建备份，然后将备份还原到不同的集群。
请确保目标集群上已安装Trident Protect。

您可以使用在不同集群之间复制应用程序"SnapMirror 复制"。

步骤

54

trident-protect-use-snapmirror-replication.html
trident-protect-use-snapmirror-replication.html
trident-protect-use-snapmirror-replication.html
trident-protect-use-snapmirror-replication.html
trident-protect-use-snapmirror-replication.html

1. "创建备份"(英文)

2. 确保已在目标集群上为包含备份的对象存储分段配置AppVault CR。

3. 在目标集群上，"从备份还原数据"。

将应用程序从一个存储类迁移到另一个存储类

您可以通过将快照还原到不同的目标存储类来将应用程序从一个存储类迁移到另一个存储类。

例如(从还原CR中排除密钥)：

apiVersion: protect.trident.netapp.io/v1

kind: SnapshotRestore

metadata:

 name: "${snapshotRestoreCRName}"

spec:

 appArchivePath: "${snapshotArchivePath}"

 appVaultRef: "${appVaultCRName}"

 namespaceMapping:

 destination: "${destinationNamespace}"

 source: "${sourceNamespace}"

 storageClassMapping:

 destination: "${destinationStorageClass}"

 source: "${sourceStorageClass}"

 resourceFilter:

 resourceMatchers:

 kind: Secret

 version: v1

 resourceSelectionCriteria: exclude

55

trident-protect-restore-apps.html#restore-from-a-backup-to-a-different-namespace
trident-protect-restore-apps.html#restore-from-a-backup-to-a-different-namespace
trident-protect-restore-apps.html#restore-from-a-backup-to-a-different-namespace
trident-protect-restore-apps.html#restore-from-a-backup-to-a-different-namespace
trident-protect-restore-apps.html#restore-from-a-backup-to-a-different-namespace
trident-protect-restore-apps.html#restore-from-a-backup-to-a-different-namespace
trident-protect-restore-apps.html#restore-from-a-backup-to-a-different-namespace
trident-protect-restore-apps.html#restore-from-a-backup-to-a-different-namespace
trident-protect-restore-apps.html#restore-from-a-backup-to-a-different-namespace
trident-protect-restore-apps.html#restore-from-a-backup-to-a-different-namespace
trident-protect-restore-apps.html#restore-from-a-backup-to-a-different-namespace
trident-protect-restore-apps.html#restore-from-a-backup-to-a-different-namespace
trident-protect-restore-apps.html#restore-from-a-backup-to-a-different-namespace
trident-protect-restore-apps.html#restore-from-a-backup-to-a-different-namespace
trident-protect-restore-apps.html#restore-from-a-backup-to-a-different-namespace

使用CR还原快照

步骤

1. 创建自定义资源(CR)文件并将其命名为 trident-protect-snapshot-restore-cr.yaml。

2. 在创建的文件中、配置以下属性：

◦ 。metadata.name:(required_)此自定义资源的名称；请为您的环境选择一个唯一且合理的名称。

◦ spec.appArchivePath：AppVault中存储快照内容的路径。您可以使用以下命令查找此路径：

kubectl get snapshots <my-snapshot-name> -n trident-protect -o

jsonpath='{.status.appArchivePath}'

◦ spec.appVaultRef：(required)存储快照内容的AppVault的名称。

◦ 。spec.namespaceMapping:还原操作的源命名空间到目标命名空间的映射。将和 `my-

destination-namespace`替换 `my-source-namespace`为您环境中的信息。

apiVersion: protect.trident.netapp.io/v1

kind: SnapshotRestore

metadata:

 name: my-cr-name

 namespace: trident-protect

spec:

 appArchivePath: my-snapshot-path

 appVaultRef: appvault-name

 namespaceMapping: [{"source": "my-source-namespace",

"destination": "my-destination-namespace"}]

3. (可选)如果您只需要选择要还原的应用程序的某些资源、请添加包含或排除带有特定标签的资源的筛选
：

◦ resourceFilter.resourceSourcesionCriteri：(筛选时需要) `include or exclude`用于包含或排除
在resourceMatchers中定义的资源。添加以下resourceMatchers参数以定义要包括或排除的资源：

▪ resourceFilter.resourceMatcher：resourceMatcher对象数组。如果在此数组中定义多个元素
，它们将作为OR操作进行匹配，每个元素(组、种类、版本)中的字段将作为AND操作进行匹
配。

▪ resourceMatcher[].group：(可 选)要筛选的资源的组。

▪ resourceMatcher[].KIND：(可 选)要筛选的资源种类。

▪ resourceMatcher[].version：(可 选)要筛选的资源版本。

▪ resourceMatcher[].names：(可 选)要筛选的资源的Kubernetes metadata.name字段中的
名称。

▪ resourceMatcher[].namespies：(可 选)要筛选的资源的Kubernetes metadata.name字段
中的命名空间。

56

▪ *resourceMatcher[].labelSelectors *：(可 选)资源的Kubernetes metadata.name字段中的标
签选择器字符串，如中所定义 "Kubernetes 文档"。例如：
"trident.netapp.io/os=linux"。

例如：

spec:

 resourceFilter:

 resourceSelectionCriteria: "include"

 resourceMatchers:

 - group: my-resource-group-1

 kind: my-resource-kind-1

 version: my-resource-version-1

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

 - group: my-resource-group-2

 kind: my-resource-kind-2

 version: my-resource-version-2

 names: ["my-resource-names"]

 namespaces: ["my-resource-namespaces"]

 labelSelectors: ["trident.netapp.io/os=linux"]

4. 使用正确的值填充文件后 trident-protect-snapshot-restore-cr.yaml 、应用CR：

kubectl apply -f trident-protect-snapshot-restore-cr.yaml

使用命令行界面还原快照

步骤

1. 将快照还原到其他命名空间、将括号中的值替换为环境中的信息。

◦ snapshot`参数使用格式为的命名空间和快照名称 `<namespace>/<name>。

◦ 此 `namespace-mapping`参数使用冒号分隔的卷来将源卷的源卷映射到格式为的正确目标卷的
`source1:dest1,source2:dest2`卷。

例如：

tridentctl-protect create snapshotrestore <my_restore_name>

--snapshot <namespace/snapshot_to_restore> --namespace-mapping

<source_to_destination_namespace_mapping>

57

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

管理Trident Protect 执行钩子

执行挂钩是一种自定义操作、您可以将其配置为与受管应用程序的数据保护操作结合运
行。例如、如果您有一个数据库应用程序、则可以使用执行挂钩在快照之前暂停所有数据
库事务、并在快照完成后恢复事务。这样可以确保应用程序一致的快照。

执行挂钩的类型

Trident Protect 支持以下几种执行钩子类型，具体取决于它们的运行时机：

• 预快照

• 快照后

• 预备份

• 备份后

• 还原后

• 故障转移后

执行顺序

运行数据保护操作时、执行钩事件按以下顺序发生：

1. 任何适用的自定义操作前执行挂钩都会在相应的容器上运行。您可以根据需要创建和运行任意数量的自定义
操作前挂钩、但操作前这些挂钩的执行顺序既不能保证也不可配置。

2. 如果适用，则会发生文件系统冻结。"了解更多关于使用Trident Protect 配置文件系统冻结的信息"。

3. 执行数据保护操作。

4. 如果适用、冻结的文件系统将被解除冻结。

5. 任何适用的自定义操作后执行挂钩都会在相应的容器上运行。您可以根据需要创建和运行任意数量的自定义
操作后挂机、但这些挂机在操作后的执行顺序既不能保证也不可配置。

如果创建多个相同类型的执行挂钩(例如、预快照)、则无法保证这些挂钩的执行顺序。但是、可以保证不同类型
的挂钩的执行顺序。例如、以下是具有所有不同类型挂钩的配置的执行顺序：

1. 已执行预快照挂钩

2. 已执行后快照挂钩

3. 已执行备份前的挂钩

4. 已执行备份后挂钩

只有在运行不使用现有快照的备份时、上述顺序示例才适用。

在生产环境中启用执行钩脚本之前，应始终对其进行测试。您可以使用 "kubectl exec" 命令方便
地测试脚本。在生产环境中启用执行挂钩后、请测试生成的快照和备份、以确保它们一致。为
此、您可以将应用程序克隆到临时命名空间、还原快照或备份、然后测试应用程序。

58

trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms
trident-protect-requirements.html#protecting-data-with-kubevirt-vms

如果快照前执行挂钩添加、更改或删除了Kubornetes资源、则这些更改将包括在快照或备份以及
任何后续还原操作中。

有关自定义执行挂钩的重要注意事项

在为应用程序规划执行挂钩时，请考虑以下几点。

• 执行挂钩必须使用脚本执行操作。许多执行挂钩可以引用同一个脚本。

• Trident Protect 要求执行钩子使用的脚本以可执行 shell 脚本的格式编写。

• 脚本大小限制为96 KB。

• Trident Protect 使用执行钩子设置和任何匹配条件来确定哪些钩子适用于快照、备份或恢复操作。

由于执行挂钩通常会减少或完全禁用其运行的应用程序的功能，因此您应始终尽量缩短自定义执
行挂钩运行所需的时间。如果使用关联的执行挂钩启动备份或快照操作、但随后将其取消、则在
备份或快照操作已开始时、仍允许运行这些挂钩。这意味着、备份后执行挂钩中使用的逻辑不能
假定备份已完成。

执行钩筛选器

在为应用程序添加或编辑执行挂钩时、可以向执行挂钩添加筛选器、以管理挂钩将匹配的容器。对于在所有容器
上使用相同容器映像的应用程序、筛选器非常有用、但可能会将每个映像用于不同的用途(例如Elasticsearch)。
通过筛选器、您可以创建执行挂钩在某些容器上运行的方案、但不一定是所有相同的容器上运行的方案。如果为
单个执行钩创建多个筛选器、则这些筛选器将与逻辑运算符和运算符结合使用。每个执行连接最多可以有10个
活动筛选器。

添加到执行挂钩的每个过滤器都使用正则表达式来匹配集群中的容器。当钩子与容器匹配时，钩子将在该容器上
运行其关联的脚本。过滤器的正则表达式使用正则表达式 2 (RE2) 语法，该语法不支持创建从匹配列表中排除容
器的过滤器。有关Trident Protect 在执行钩子过滤器中支持的正则表达式语法的详细信息，请参阅 "正则表达式2

(RE2)语法支持"。

如果将命名空间筛选器添加到在还原或克隆操作之后运行的执行挂钩、并且还原或克隆源和目标
位于不同的命名空间中、则命名空间筛选器仅会应用于目标命名空间。

执行钩示例

请访问 "NetApp Verda GitHub项目" 、下载适用于Apache cassandr和Elascearch等常见应用程序的真实执行挂
钩。您还可以查看示例并了解如何构建自己的自定义执行挂钩。

创建执行挂钩

您可以使用Trident Protect 为应用程序创建自定义执行钩子。您需要拥有所有者、管理员或成员权限才能创建执
行钩子。

59

https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/google/re2/wiki/Syntax
https://github.com/NetApp/Verda
https://github.com/NetApp/Verda
https://github.com/NetApp/Verda
https://github.com/NetApp/Verda
https://github.com/NetApp/Verda

使用CR

步骤

1. 创建自定义资源(CR)文件并将其命名为 trident-protect-hook.yaml。

2. 配置以下属性以匹配您的Trident Protect 环境和集群配置：

◦ 。metadata.name:(required_)此自定义资源的名称；请为您的环境选择一个唯一且合理的名称。

◦ spec.applicationRef：(required)要运行执行挂钩的应用程序的Kubernetes名称。

◦ *spec.stage *：(required)一个字符串，指示执行挂钩应在操作期间的哪个阶段运行。可能值：

▪ 预

▪ 发布

◦ spec.action：(required)一个字符串，指示执行挂钩将执行的操作，假设指定的任何执行挂钩过滤
器都匹配。可能值：

▪ Snapshot

▪ 备份

▪ 还原

▪ 故障转移

◦ *spec.enabled *：(可 选)指示此执行挂钩是启用还是禁用。如果未指定、则默认值为true。

◦ spec.hookSource：(required)包含base64编码的挂钩脚本的字符串。

◦ *spec.timeout *：(可 选)一个数字，用于定义允许执行挂钩运行多长时间(以分钟为单位)。最小值
为1分钟、如果未指定、则默认值为25分钟。

◦ spic.arge件：(可 选)可为执行挂钩指定的YAML参数列表。

◦ *spec.匹 配Criteria：(可 选)标准键值对的可选列表，每个对构成执行挂钩筛选器。每个执行挂钩最
多可以添加10个筛选器。

◦ spec.匹 配Cricera.type：(可 选)标识执行挂钩筛选器类型的字符串。可能值：

▪ 内容管理器映像

▪ 内容名

▪ 播客名称

▪ PodLabel

▪ NamespaceName

◦ spec.匹 配Cricery.value：(可 选)用于标识执行挂钩筛选器值的字符串或正则表达式。

YAML示例：

60

apiVersion: protect.trident.netapp.io/v1

kind: ExecHook

metadata:

 name: example-hook-cr

 namespace: my-app-namespace

 annotations:

 astra.netapp.io/astra-control-hook-source-id:

/account/test/hookSource/id

spec:

 applicationRef: my-app-name

 stage: Pre

 action: Snapshot

 enabled: true

 hookSource: IyEvYmluL2Jhc2gKZWNobyAiZXhhbXBsZSBzY3JpcHQiCg==

 timeout: 10

 arguments:

 - FirstExampleArg

 - SecondExampleArg

 matchingCriteria:

 - type: containerName

 value: mysql

 - type: containerImage

 value: bitnami/mysql

 - type: podName

 value: mysql

 - type: namespaceName

 value: mysql-a

 - type: podLabel

 value: app.kubernetes.io/component=primary

 - type: podLabel

 value: helm.sh/chart=mysql-10.1.0

 - type: podLabel

 value: deployment-type=production

3. 使用正确的值填充CR文件后、应用CR：

kubectl apply -f trident-protect-hook.yaml

使用CLI

步骤

1. 创建执行挂钩、将括号中的值替换为环境中的信息。例如：

61

tridentctl-protect create exechook <my_exec_hook_name> --action

<action_type> --app <app_to_use_hook> --stage <pre_or_post_stage>

--source-file <script-file> -n <application_namespace>

手动运行执行挂钩

您可以手动运行执行挂钩以进行测试、或者在发生故障后需要手动重新运行挂钩。要手动运行执行挂钩、您需要
具有所有者、管理员或成员权限。

手动运行执行挂钩包含两个基本步骤：

1. 创建资源备份、此备份用于收集资源并为其创建备份、从而确定挂钩的运行位置

2. 对备份运行执行挂钩

62

第1步：创建资源备份

63

使用CR

步骤

1. 创建自定义资源(CR)文件并将其命名为 trident-protect-resource-backup.yaml。

2. 配置以下属性以匹配您的Trident Protect 环境和集群配置：

◦ 。metadata.name:(required_)此自定义资源的名称；请为您的环境选择一个唯一且合理的名
称。

◦ spec.applicationRef：(required)要为其创建备份资源的应用程序的Kubernetes名称。

◦ spec.appVaultRef：(required)存储备份内容的AppVault的名称。

◦ spec.appArchivePath：AppVault中存储备份内容的路径。您可以使用以下命令查找此路径
：

kubectl get backups <BACKUP_NAME> -n my-app-namespace -o

jsonpath='{.status.appArchivePath}'

YAML示例：

apiVersion: protect.trident.netapp.io/v1

kind: ResourceBackup

metadata:

 name: example-resource-backup

spec:

 applicationRef: my-app-name

 appVaultRef: my-appvault-name

 appArchivePath: example-resource-backup

3. 使用正确的值填充CR文件后、应用CR：

kubectl apply -f trident-protect-resource-backup.yaml

使用CLI

步骤

1. 创建备份、将括号中的值替换为您环境中的信息。例如：

tridentctl protect create resourcebackup <my_backup_name> --app

<my_app_name> --appvault <my_appvault_name> -n

<my_app_namespace> --app-archive-path <app_archive_path>

2. 查看备份状态。您可以重复使用以下示例命令、直到操作完成：

64

tridentctl protect get resourcebackup -n <my_app_namespace>

<my_backup_name>

3. 验证备份是否成功：

kubectl describe resourcebackup <my_backup_name>

65

第2步：运行执行挂钩

66

使用CR

步骤

1. 创建自定义资源(CR)文件并将其命名为 trident-protect-hook-run.yaml。

2. 配置以下属性以匹配您的Trident Protect 环境和集群配置：

◦ 。metadata.name:(required_)此自定义资源的名称；请为您的环境选择一个唯一且合理的名
称。

◦ spec.applicationRef：(required)确保此值与您在步骤1中创建的ResourceBackup CR中的应
用程序名称匹配。

◦ spec.appVaultRef：(required)确保此值与您在步骤1中创建的ResourceBackup CR中
的appVaultRef匹配。

◦ spec.appArchivePath：确保此值与您在步骤1中创建的ResourceBackup CR中
的appArchivePath匹配。

kubectl get backups <BACKUP_NAME> -n my-app-namespace -o

jsonpath='{.status.appArchivePath}'

◦ spec.action：(required)一个字符串，指示执行挂钩将执行的操作，假设指定的任何执行挂钩
过滤器都匹配。可能值：

▪ Snapshot

▪ 备份

▪ 还原

▪ 故障转移

◦ *spec.stage *：(required)一个字符串，指示执行挂钩应在操作期间的哪个阶段运行。此挂钩
运行不会在任何其他阶段运行挂钩。可能值：

▪ 预

▪ 发布

YAML示例：

67

apiVersion: protect.trident.netapp.io/v1

kind: ExecHooksRun

metadata:

 name: example-hook-run

spec:

 applicationRef: my-app-name

 appVaultRef: my-appvault-name

 appArchivePath: example-resource-backup

 stage: Post

 action: Failover

3. 使用正确的值填充CR文件后、应用CR：

kubectl apply -f trident-protect-hook-run.yaml

使用CLI

步骤

1. 创建手动执行挂钩运行请求：

tridentctl protect create exechooksrun <my_exec_hook_run_name>

-n <my_app_namespace> --action snapshot --stage <pre_or_post>

--app <my_app_name> --appvault <my_appvault_name> --path

<my_backup_name>

2. 检查执行挂钩运行的状态。您可以重复运行此命令、直到操作完成：

tridentctl protect get exechooksrun -n <my_app_namespace>

<my_exec_hook_run_name>

3. 描述exech本 运行对象以查看最终详细信息和状态：

kubectl -n <my_app_namespace> describe exechooksrun

<my_exec_hook_run_name>

68

版权信息

版权所有 © 2026 NetApp, Inc.。保留所有权利。中国印刷。未经版权所有者事先书面许可，本文档中受版权保
护的任何部分不得以任何形式或通过任何手段（图片、电子或机械方式，包括影印、录音、录像或存储在电子检
索系统中）进行复制。

从受版权保护的 NetApp 资料派生的软件受以下许可和免责声明的约束：

本软件由 NetApp 按“原样”提供，不含任何明示或暗示担保，包括但不限于适销性以及针对特定用途的适用性的
隐含担保，特此声明不承担任何责任。在任何情况下，对于因使用本软件而以任何方式造成的任何直接性、间接
性、偶然性、特殊性、惩罚性或后果性损失（包括但不限于购买替代商品或服务；使用、数据或利润方面的损失
；或者业务中断），无论原因如何以及基于何种责任理论，无论出于合同、严格责任或侵权行为（包括疏忽或其
他行为），NetApp 均不承担责任，即使已被告知存在上述损失的可能性。

NetApp 保留在不另行通知的情况下随时对本文档所述的任何产品进行更改的权利。除非 NetApp 以书面形式明
确同意，否则 NetApp 不承担因使用本文档所述产品而产生的任何责任或义务。使用或购买本产品不表示获得
NetApp 的任何专利权、商标权或任何其他知识产权许可。

本手册中描述的产品可能受一项或多项美国专利、外国专利或正在申请的专利的保护。

有限权利说明：政府使用、复制或公开本文档受 DFARS 252.227-7013（2014 年 2 月）和 FAR 52.227-19

（2007 年 12 月）中“技术数据权利 — 非商用”条款第 (b)(3) 条规定的限制条件的约束。

本文档中所含数据与商业产品和/或商业服务（定义见 FAR 2.101）相关，属于 NetApp, Inc. 的专有信息。根据
本协议提供的所有 NetApp 技术数据和计算机软件具有商业性质，并完全由私人出资开发。 美国政府对这些数
据的使用权具有非排他性、全球性、受限且不可撤销的许可，该许可既不可转让，也不可再许可，但仅限在与交
付数据所依据的美国政府合同有关且受合同支持的情况下使用。除本文档规定的情形外，未经 NetApp, Inc. 事先
书面批准，不得使用、披露、复制、修改、操作或显示这些数据。美国政府对国防部的授权仅限于 DFARS 的第
252.227-7015(b)（2014 年 2 月）条款中明确的权利。

商标信息

NetApp、NetApp 标识和 http://www.netapp.com/TM 上所列的商标是 NetApp, Inc. 的商标。其他公司和产品名
称可能是其各自所有者的商标。

69

http://www.netapp.com/TM

	管理和保护应用程序 : Trident
	目录
	管理和保护应用程序
	使用Trident Protect AppVault 对象来管理存储桶。
	配置AppVault身份验证和密码
	AppVault创建示例
	查看AppVault信息
	删除AppVault

	使用Trident Protect 定义管理应用程序
	创建AppVault CR
	定义应用程序

	使用Trident Protect 保护应用程序
	创建按需快照
	创建按需备份
	创建数据保护计划
	删除快照
	删除备份
	检查备份操作的状态
	为azure-ANF-files (NetApp)操作启用备份和还原

	使用Trident Protect 恢复应用程序
	还原和故障转移操作期间的命名空间标注和标签
	从备份还原到其他命名空间
	从备份还原到原始命名空间
	从备份还原到其他集群
	从快照还原到其他命名空间
	从快照还原到原始命名空间
	检查还原操作的状态

	使用NetApp SnapMirror和Trident Protect 复制应用程序
	还原和故障转移操作期间的命名空间标注和标签
	设置复制关系
	反转应用程序复制方向

	使用Trident Protect 迁移应用程序
	备份和还原操作
	将应用程序从一个存储类迁移到另一个存储类

	管理Trident Protect 执行钩子
	执行挂钩的类型
	有关自定义执行挂钩的重要注意事项
	执行钩筛选器
	执行钩示例
	创建执行挂钩
	手动运行执行挂钩

