
ONTAP

NetApp Automation
NetApp
November 18, 2025

This PDF was generated from https://docs.netapp.com/zh-tw/netapp-automation/solutions/ontap-day01-
overview.html on November 18, 2025. Always check docs.netapp.com for the latest.

目錄
ONTAP . 1

第 0/1 天 . 1

ONTAP Day 0/1 解決方案總覽 . 1

準備使用 ONTAP Day 0/1 解決方案 . 3

使用解決方案部署 ONTAP 叢集 . 6

自訂 ONTAP Day 0/1 解決方案 . 25

ONTAP

第 0/1 天

ONTAP Day 0/1 解決方案總覽

您可以使用ONTAP day 0/1 自動化解決方案，透過 Ansible 部署和設定ONTAP叢集。解決
方案可從以下途徑取得： "NetApp Console自動化中心"。

靈活的 ONTAP 部署選項

視您的需求而定、您可以使用內部部署硬體或模擬 ONTAP 、使用 Ansible 來部署和設定 ONTAP 叢集。

內部部署硬體

您可以使用執行 ONTAP 的內部部署硬體來部署此解決方案、例如 FAS 或 AFF 系統。您必須使用 Linux VM 來
使用 Ansible 來部署和設定 ONTAP 叢集。

模擬 ONTAP

若要使用 ONTAP 模擬器部署此解決方案、您必須從 NetApp 支援網站下載最新版的模擬 ONTAP 。模擬
ONTAP 是 ONTAP 軟體的虛擬模擬器。模擬 ONTAP 在 Windows 、 Linux 或 Mac 系統上的 VMware

Hypervisor 中執行。對於 Windows 和 Linux 主機、您必須使用 VMware Workstation Hypervisor 來執行此解決
方案。如果您有 Mac OS 、請使用 VMware Fusion Hypervisor 。

分層設計

Ansible 架構可簡化自動化執行與邏輯工作的開發與重複使用。此架構可區分決策工作（邏輯層）和自動化的執
行步驟（執行層）。瞭解這些層的運作方式、可讓您自訂組態。

Ansible 「教戰手冊」從開始到結束都會執行一系列工作。 `site.yml`本教戰手冊包含了 `logic.yml`教戰手冊和
`execution.yml`教戰手冊。

執行要求時、教戰手冊會 `site.yml`先呼叫 `logic.yml`教戰手冊、然後呼叫 `execution.yml`教戰手冊以執行服務
要求。

您不需要使用架構的邏輯層。邏輯層提供選項、可將架構的功能擴充至硬式編碼的執行值以外的範圍。這可讓您
視需要自訂架構功能。

邏輯層

邏輯層由下列項目組成：

• 教 `logic.yml`戰手冊

• 目錄中的邏輯工作檔案 logic-tasks

邏輯層提供複雜決策的功能、無需大量自訂整合（例如連線至 ServiceNow ）。邏輯層是可設定的、可為微服務
提供輸入。

此外也提供繞過邏輯層的功能。如果您想略過邏輯層、請勿定義 `logic_operation`變數。直接呼叫 `logic.yml`教
戰手冊可讓您在不執行的情況下進行某種程度的偵錯。您可以使用「 DEBUG 」陳述式來驗證的值是否
`raw_service_request`正確。

1

https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub

重要考量：

• 教戰手冊會 logic.yml`搜尋 `logic_operation`變數。如果在要求中定義變數、它會從目錄載入工作

檔案 `logic-tasks。工作檔案必須是 .yml 檔案。如果沒有相符的工作檔案且已定義變數、則
`logic_operation`邏輯層會失敗。

• 變數的預設值 logic_operation`為 `no-op。如果未明確定義變數、則預設為 no-op、不會執行任何作
業。

• 如果 `raw_service_request`已定義變數、則執行會繼續執行至執行層。如果未定義變數、則邏輯層會失敗。

執行層

執行層由下列項目組成：

• 教 `execution.yml`戰手冊

執行層會呼叫 API 以設定 ONTAP 叢集。 `execution.yml`教戰手冊要求 `raw_service_request`在執行時定義變
數。

支援自訂

您可以根據自己的需求、以各種方式自訂此解決方案。

自訂選項包括：

• 修改 Ansible 教戰手冊

• 新增角色

自訂 Ansible 檔案

下表說明本解決方案所包含的可自訂 Ansible 檔案。

位置 說明

playbooks/inventory

/hosts

包含一個包含主機和群組清單的檔案。

playbooks/group_var

s/all/*

Ansible 提供一種便利的方法、可一次將變數套用至多個主機。您可以修改此文件

夾中的任何或所有文件，包括 cfg.yml、、 clusters.yml defaults.yml

services.yml standards.yml、和 vault.yml。

playbooks/logic-

tasks

支援 Ansible 內部的決策工作、並維持邏輯與執行的分離。您可以將檔案新增至此
資料夾、以對應至相關服務。

playbooks/vars/* Ansible 教戰手冊和角色中使用的動態值、可實現組態的自訂、靈活度及重新使
用。如有必要、您可以修改此資料夾中的任何或所有檔案。

自訂角色

您也可以透過新增或變更 Ansible 角色（也稱為微服務）來自訂解決方案。如需詳細資訊"自訂"、請參閱。

2

ontap-day01-customize.html
ontap-day01-customize.html
ontap-day01-customize.html
ontap-day01-customize.html
ontap-day01-customize.html

準備使用 ONTAP Day 0/1 解決方案

部署自動化解決方案之前、您必須先準備好 ONTAP 環境、並安裝及設定 Ansible 。

初始規劃考量

在使用此解決方案部署 ONTAP 叢集之前、您應該先檢閱下列需求和考量事項。

基本需求

若要使用此解決方案、您必須符合下列基本要求：

• 您必須能夠在內部部署或透過 ONTAP 模擬器存取 ONTAP 軟體。

• 您必須知道如何使用 ONTAP 軟體。

• 您必須知道如何使用 Ansible 自動化軟體工具。

規劃考量

部署此自動化解決方案之前、您必須先決定：

• 執行 Ansible 控制節點的位置。

• ONTAP 系統、內部部署硬體或 ONTAP 模擬器。

• 您是否需要自訂。

準備 ONTAP 系統

無論您是使用內部部署 ONTAP 系統或模擬 ONTAP 、都必須先準備好環境、才能部署自動化解決方案。

您也可以選擇安裝及設定模擬 ONTAP

如果您想要透過 ONTAP 模擬器部署此解決方案、則必須下載並執行模擬 ONTAP 。

開始之前

• 您必須下載並安裝要用來執行模擬 ONTAP 的 VMware Hypervisor 。

◦ 如果您有 Windows 或 Linux 作業系統、請使用 VMware Workstation 。

◦ 如果您有 Mac OS 、請使用 VMware Fusion 。

如果您使用的是 Mac OS 、則必須使用 Intel 處理器。

步驟

請使用下列程序在您的本機環境中安裝兩個 ONTAP 模擬器：

1. 從下載模擬 ONTAP "NetApp 支援網站"。

雖然您安裝了兩個 ONTAP 模擬器、但只需下載一份軟體複本。

2. 如果尚未執行、請啟動 VMware 應用程式。

3

https://mysupport.netapp.com/site/tools/tool-eula/ontap-simulate
https://mysupport.netapp.com/site/tools/tool-eula/ontap-simulate
https://mysupport.netapp.com/site/tools/tool-eula/ontap-simulate
https://mysupport.netapp.com/site/tools/tool-eula/ontap-simulate
https://mysupport.netapp.com/site/tools/tool-eula/ontap-simulate
https://mysupport.netapp.com/site/tools/tool-eula/ontap-simulate
https://mysupport.netapp.com/site/tools/tool-eula/ontap-simulate
https://mysupport.netapp.com/site/tools/tool-eula/ontap-simulate
https://mysupport.netapp.com/site/tools/tool-eula/ontap-simulate

3. 找到下載的模擬器檔案、然後按一下滑鼠右鍵、以 VMware 應用程式開啟該檔案。

4. 設定第一個 ONTAP 執行個體的名稱。

5. 等待模擬器開機、並依照指示建立單一節點叢集。

針對第二個 ONTAP 執行個體重複步驟。

6. 或者、您也可以新增完整的磁碟補充。

從每個叢集執行下列命令：

security unlock -username <user_01>

security login password -username <user_01>

set -priv advanced

systemshell local

disk assign -all -node <Cluster-01>-01

ONTAP 系統狀態

您必須驗證 ONTAP 系統的初始狀態、無論是內部部署或透過 ONTAP 模擬器執行。

確認符合下列 ONTAP 系統需求：

• ONTAP 已安裝並在尚未定義叢集的情況下執行。

• ONTAP 已開機並顯示存取叢集的 IP 位址。

• 可連線至網路。

• 您擁有管理認證。

• 當日訊息（ MOTD ）橫幅會顯示管理位址。

安裝所需的自動化軟體

本節提供如何安裝 Ansible 及準備部署自動化解決方案的資訊。

安裝 Ansible

Ansible 可以安裝在 Linux 或 Windows 系統上。

Ansible 用於與 ONTAP 叢集通訊的預設通訊方法是 SSH 。

請參閱"NetApp與Ansible快速入門：安裝Ansible"以安裝 Ansible 。

Ansible 必須安裝在系統的控制節點上。

下載並準備自動化解決方案

您可以使用下列步驟下載並準備部署的自動化解決方案。

4

https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/
https://netapp.io/2018/10/08/getting-started-with-netapp-and-ansible-install-ansible/

1. 下載 "ONTAP - Day 0/1 ；健全狀況檢查" 透過控制台 Web 使用者介面實現自動化解決方案。此解決方案打

包如下： ONTAP_DAY0_DAY1.zip。

2. 解壓縮 zip 資料夾、並將檔案複製到 Ansible 環境中控制節點上的所需位置。

初始 Ansible 架構組態

執行 Ansible 架構的初始組態：

1. 瀏覽至 playbooks/inventory/group_vars/all。

2. 解密 `vault.yml`檔案：

ansible-vault decrypt playbooks/inventory/group_vars/all/vault.yml

當系統提示您輸入資料保險箱密碼時、請輸入下列暫時密碼：

NetApp123!

"NetApp123!" 是一種用來解密檔案和對應資料保險箱密碼的暫 `vault.yml`存密碼。第一次使
用後、您 * 必須 * 使用自己的密碼來加密檔案。

3. 修改下列 Ansible 檔案：

◦ clusters.yml- 修改此檔案中的值以符合您的環境。

◦ vault.yml- 解密檔案後、請修改 ONTAP 叢集、使用者名稱和密碼值、以符合您的環境。

◦ cfg.yml- 設定的檔案路徑 log2file，並在 [設定] 底下 cfg`設定 `show_request`為 `True [顯

示 raw_service_request] 。

此 `raw_service_request`變數會在記錄檔和執行期間顯示。

列出的每個檔案都包含註解、並說明如何根據您的需求進行修改。

4. 重新加密 `vault.yml`檔案：

ansible-vault encrypt playbooks/inventory/group_vars/all/vault.yml

系統會提示您在加密時為資料保險箱選擇新密碼。

5. 瀏覽 `playbooks/inventory/hosts`並設定有效的 Python 解譯器。

6. 部署 `framework_test`服務：

下列命令會以值為的 cluster_identity_info`方式執行 `na_ontap_info`模組

`gather_subset。這會驗證基本組態是否正確、並確認您可以與叢集通訊。

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<CLUSTER_NAME>

-e logic_operation=framework-test

5

https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub
https://console.netapp.com/automationHub

為每個叢集執行命令。

如果成功、您應該會看到類似下列範例的輸出：

PLAY RECAP

**

localhost : ok=12 changed=1 unreachable=0 failed=0 skipped=6

The key is ‘rescued=0’ and ‘failed=0’..

使用解決方案部署 ONTAP 叢集

完成準備和規劃之後、您就可以使用 ONTAP Day 0/1 解決方案、使用 Ansible 快速設定
ONTAP 叢集。

在本節步驟中的任何時間、您都可以選擇測試要求、而非實際執行要求。若要測試要求、請將命令列上的教戰手

冊變更 site.yml`為 `logic.yml。

`docs/tutorial-requests.txt`此位置包含此程序中所使用之所有服務要求的最終版本。如果執行服務
要求時遇到困難、您可以將相關要求從檔案複製 `tutorial-requests.txt`到該
`playbooks/inventory/group_vars/all/tutorial-requests.yml`位置、並視需要修改硬編碼值（ IP 位
址、集合名稱等）。接著您應該能夠成功執行要求。

開始之前

• 您必須安裝 Ansible 。

• 您必須已下載 ONTAP Day 0/1 解決方案、並將資料夾解壓縮至 Ansible 控制節點上所需的位置。

• ONTAP 系統狀態必須符合要求、而且您必須擁有必要的認證。

• 您必須已完成本節所述的所有必要工作"準備"。

本解決方案中的範例使用「 Cluster_01 」和「 Cluster_02 」作為兩個叢集的名稱。您必須使用
環境中叢集的名稱來取代這些值。

步驟 1 ：初始叢集組態

在此階段、您必須執行一些初始叢集組態步驟。

步驟

1. 瀏覽至該 `playbooks/inventory/group_vars/all/tutorial-requests.yml`位置、並檢閱 `cluster_initial`檔案中的要
求。為您的環境進行任何必要的變更。

2. 在資料夾中建立服務要求的檔案 logic-tasks。例如，建立名為的檔案 cluster_initial.yml。

將下列各行複製到新檔案：

6

ontap-day01-prepare.html
ontap-day01-prepare.html
ontap-day01-prepare.html
ontap-day01-prepare.html
ontap-day01-prepare.html

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial cluster configuration

 set_fact:

 raw_service_request:

3. 定義 `raw_service_request`變數。

您可以使用下列其中一個選項、在您在資料夾中建立的檔案 logic-tasks`中定義

`raw_service_request`變數 `cluster_initial.yml：

◦ * 選項 1* ：手動定義 `raw_service_request`變數。

使用編輯器開啟 tutorial-requests.yml`檔案、並將內容從第 11 行複製到第 165 行。將內容

貼到新檔案中的變數 `cluster_initial.yml`下方 `raw service request、如下列範例所示
：

7

顯示範例

範例 `cluster_initial.yml`檔案：

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial cluster configuration

 set_fact:

 raw_service_request:

 service: cluster_initial

 operation: create

 std_name: none

 req_details:

 ontap_aggr:

 - hostname: "{{ cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ cluster_name }}-01"

 raid_type: raid4

 - hostname: "{{ peer_cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ peer_cluster_name }}-01"

 raid_type: raid4

 ontap_license:

 - hostname: "{{ cluster_name }}"

 license_codes:

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

8

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - hostname: "{{ peer_cluster_name }}"

 license_codes:

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

9

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 - XXXXXXXXXXXXXXAAAAAAAAAAAAAA

 ontap_motd:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 message: "New MOTD"

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 message: "New MOTD"

 ontap_interface:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

10

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: 10.0.0.101

 netmask: 255.255.255.0

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 ontap_cluster_peer:

 - hostname: "{{ cluster_name }}"

 dest_cluster_name: "{{ peer_cluster_name }}"

 dest_intercluster_lifs: "{{ peer_lifs }}"

 source_cluster_name: "{{ cluster_name }}"

 source_intercluster_lifs: "{{ cluster_lifs }}"

 peer_options:

 hostname: "{{ peer_cluster_name }}"

◦ * 選項 2* ：使用忍者範本定義要求：

您也可以使用下列 Jinja 範本格式來取得 `raw_service_request`值。

raw_service_request: "{{ cluster_initial }}"

4. 為第一個叢集執行初始叢集組態：

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_01>

11

繼續之前、請確認沒有錯誤。

5. 對第二個叢集重複執行命令：

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_02>

確認第二個叢集沒有錯誤。

往上捲動至 Ansible 輸出的開頭時、您應該會看到傳送至架構的要求、如下列範例所示：

12

顯示範例

TASK [Show the raw_service_request]

**

**

ok: [localhost] => {

 "raw_service_request": {

 "operation": "create",

 "req_details": {

 "ontap_aggr": [

 {

 "disk_count": 24,

 "hostname": "Cluster_01",

 "name": "n01_aggr1",

 "nodes": "Cluster_01-01",

 "raid_type": "raid4"

 }

],

 "ontap_license": [

 {

 "hostname": "Cluster_01",

 "license_codes": [

 "XXXXXXXXXXXXXXXAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

13

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA",

 "XXXXXXXXXXXXXXAAAAAAAAAAAAA"

]

 }

],

 "ontap_motd": [

 {

 "hostname": "Cluster_01",

 "message": "New MOTD",

 "vserver": "Cluster_01"

 }

]

 },

 "service": "cluster_initial",

 "std_name": "none"

 }

}

6. 登入每個 ONTAP 執行個體、並驗證要求是否成功。

步驟 2 ：設定叢集間的生命週期

您現在可以將 LIF 定義新增至要求並定義微服務、 `ontap_interface`以設定叢集間的生命 `cluster_initial`體。

服務定義和要求會共同運作、以決定行動：

• 如果您提供的微服務服務請求不在服務定義中、則不會執行該要求。

• 如果您在服務定義中定義了一或多個微服務、但在要求中省略、則不會執行該要求。

教戰手冊會 `execution.yml`依所列順序掃描微服務清單、以評估服務定義：

• 如果要求中有一個項目的字典金鑰與微服務定義中包含的項目相符 args、則會執行該要求。

• 如果服務要求中沒有相符的項目、則會跳過該要求、而不會發生錯誤。

步驟

1. 瀏覽至 `cluster_initial.yml`您先前建立的檔案、並在要求定義中新增下列行以修改要求：

14

 ontap_interface:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ cluster_name }}"

 vserver: "{{ cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic01

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_cluster_name }}"

 interface_name: ic02

 role: intercluster

 address: <ip_address>

 netmask: <netmask_address>

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

15

2. 執行命令：

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_01> -e peer_cluster_name=<Cluster_02>

3. 登入每個執行個體、檢查是否已將生命期新增至叢集：

顯示範例

Cluster_01::> net int show

 (network interface show)

 Logical Status Network Current

Current Is

Vserver Interface Admin/Oper Address/Mask Node

Port Home

----------- ---------- ---------- ------------------ -------------

------- ----

Cluster_01

 Cluster_01-01_mgmt up/up 10.0.0.101/24 Cluster_01-01

e0c true

 Cluster_01-01_mgmt_auto up/up 10.101.101.101/24

Cluster_01-01 e0c true

 cluster_mgmt up/up 10.0.0.110/24 Cluster_01-01

e0c true

5 entries were displayed.

輸出顯示已添加 * 非 * 的生命。這是因為 ontap_interface`仍需要在檔案中定義微服務

`services.yml。

4. 確認已將生命項新增至 `raw_service_request`變數。

16

顯示範例

以下範例顯示已將生命提升新增至要求：

 "ontap_interface": [

 {

 "address": "10.0.0.101",

 "home_node": "Cluster_01-01",

 "home_port": "e0c",

 "hostname": "Cluster_01",

 "interface_name": "ic01",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_01"

 },

 {

 "address": "10.0.0.101",

 "home_node": "Cluster_01-01",

 "home_port": "e0c",

 "hostname": "Cluster_01",

 "interface_name": "ic02",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_01"

 },

 {

 "address": "10.0.0.101",

 "home_node": "Cluster_02-01",

 "home_port": "e0c",

 "hostname": "Cluster_02",

 "interface_name": "ic01",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_02"

 },

 {

 "address": "10.0.0.126",

 "home_node": "Cluster_02-01",

 "home_port": "e0c",

 "hostname": "Cluster_02",

17

 "interface_name": "ic02",

 "ipspace": "Default",

 "netmask": "255.255.255.0",

 "role": "intercluster",

 "use_rest": "never",

 "vserver": "Cluster_02"

 }

],

5. 在檔案中 services.yml`的下定義 `ontap_interface`微服務 `cluster_initial。

將下列各行複製到檔案中以定義微服務：

 - name: ontap_interface

 args: ontap_interface

 role: na/ontap_interface

6. 現在已 ontap_interface`在要求和檔案中定義微服務 `services.yml、請再次執行要求：

ansible-playbook -i inventory/hosts site.yml -e

cluster_name=<Cluster_01> -e peer_cluster_name=<Cluster_02>

7. 登入每個 ONTAP 執行個體、並確認已新增生命。

步驟 3 ：選擇性地設定多個叢集

如果需要、您可以在同一個要求中設定多個叢集。定義要求時、您必須為每個叢集提供變數名稱。

步驟

1. 在檔案中新增第二個叢集的項目 cluster_initial.yml、以便在同一個要求中設定兩個叢集。

下列範例顯示 `ontap_aggr`新增第二個項目之後的欄位。

18

 ontap_aggr:

 - hostname: "{{ cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ cluster_name }}-01"

 raid_type: raid4

 - hostname: "{{ peer_cluster_name }}"

 disk_count: 24

 name: n01_aggr1

 nodes: "{{ peer_cluster_name }}-01"

 raid_type: raid4

2. 對下的所有其他項目套用變更 cluster_initial。

3. 將下列各行複製到檔案中、將叢集對等關係新增到要求：

 ontap_cluster_peer:

 - hostname: "{{ cluster_name }}"

 dest_cluster_name: "{{ cluster_peer }}"

 dest_intercluster_lifs: "{{ peer_lifs }}"

 source_cluster_name: "{{ cluster_name }}"

 source_intercluster_lifs: "{{ cluster_lifs }}"

 peer_options:

 hostname: "{{ cluster_peer }}"

4. 執行 Ansible 要求：

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01>

site.yml -e peer_cluster_name=<Cluster_02> -e

cluster_lifs=<cluster_lif_1_IP_address,cluster_lif_2_IP_address>

-e peer_lifs=<peer_lif_1_IP_address,peer_lif_2_IP_address>

步驟 4 ：初始 SVM 組態

在本程序的這個階段、您可以在叢集中設定 SVM 。

步驟

1. 更新 svm_initial`檔案中的要求 `tutorial-requests.yml、以設定 SVM 和 SVM 對等關係。

您必須設定下列項目：

◦ SVM

19

◦ SVM 對等關係

◦ 每個 SVM 的 SVM 介面

2. 更新要求定義中的變數定義 svm_initial。您必須修改下列變數定義：

◦ cluster_name

◦ vserver_name

◦ peer_cluster_name

◦ peer_vserver

若要更新定義、請在 `svm_initial`定義之後移除 * 「 ｛ ｝ 」 * 、然後 `req_details`新增正確的定義。

3. 在資料夾中建立服務要求的檔案 logic-tasks。例如，建立名為的檔案 svm_initial.yml。

將下列各行複製到檔案：

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial SVM configuration

 set_fact:

 raw_service_request:

4. 定義 `raw_service_request`變數。

您可以使用下列其中一個選項、在資料夾中 logic-tasks`定義 `raw_service_request`的變數

`svm_initial：

◦ * 選項 1* ：手動定義 `raw_service_request`變數。

使用編輯器開啟 tutorial-requests.yml`檔案、並將內容從第 179 行複製到第 222 行。將內容

貼到新檔案中的變數 `svm_initial.yml`下方 `raw service request、如下列範例所示：

20

21

顯示範例

範例 `svm_initial.yml`檔案：

- name: Validate required inputs

 ansible.builtin.assert:

 that:

 - service is defined

- name: Include data files

 ansible.builtin.include_vars:

 file: "{{ data_file_name }}.yml"

 loop:

 - common-site-stds

 - user-inputs

 - cluster-platform-stds

 - vserver-common-stds

 loop_control:

 loop_var: data_file_name

- name: Initial SVM configuration

 set_fact:

 raw_service_request:

 service: svm_initial

 operation: create

 std_name: none

 req_details:

 ontap_vserver:

 - hostname: "{{ cluster_name }}"

 name: "{{ vserver_name }}"

 root_volume_aggregate: n01_aggr1

 - hostname: "{{ peer_cluster_name }}"

 name: "{{ peer_vserver }}"

 root_volume_aggregate: n01_aggr1

 ontap_vserver_peer:

 - hostname: "{{ cluster_name }}"

 vserver: "{{ vserver_name }}"

 peer_vserver: "{{ peer_vserver }}"

 applications: snapmirror

 peer_options:

 hostname: "{{ peer_cluster_name }}"

 ontap_interface:

22

 - hostname: "{{ cluster_name }}"

 vserver: "{{ vserver_name }}"

 interface_name: data01

 role: data

 address: 10.0.0.200

 netmask: 255.255.255.0

 home_node: "{{ cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

 - hostname: "{{ peer_cluster_name }}"

 vserver: "{{ peer_vserver }}"

 interface_name: data01

 role: data

 address: 10.0.0.201

 netmask: 255.255.255.0

 home_node: "{{ peer_cluster_name }}-01"

 home_port: e0c

 ipspace: Default

 use_rest: never

◦ * 選項 2* ：使用忍者範本定義要求：

您也可以使用下列 Jinja 範本格式來取得 `raw_service_request`值。

raw_service_request: "{{ svm_initial }}"

5. 執行要求：

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01> -e

peer_cluster_name=<Cluster_02> -e peer_vserver=<SVM_02> -e

vserver_name=<SVM_01> site.yml

6. 登入每個 ONTAP 執行個體並驗證組態。

7. 新增 SVM 介面。

在檔案中的 services.yml`下定義 `ontap_interface`服務 `svm_initial、然後再次執行要求：

ansible-playbook -i inventory/hosts -e cluster_name=<Cluster_01> -e

peer_cluster_name=<Cluster_02> -e peer_vserver=<SVM_02> -e

vserver_name=<SVM_01> site.yml

23

8. 登入每個 ONTAP 執行個體、並確認 SVM 介面已設定完成。

步驟 5 ：選擇性地動態定義服務要求

在先前的步驟中、 `raw_service_request`變數是硬式編碼的。這對學習、開發和測試都很有用。您也可以動態
產生服務要求。

如果您不想將其與較高層級的系統整合、則下節提供動態產生所需的選項 raw_service_request。

• 如果未在命令中定義變數、 logic.yml`則 `logic_operation`檔案不會從資料夾匯入

任何檔案 `logic-tasks。這表示 `raw_service_request`必須在 Ansible 之外定義、並提供
給執行架構。

• 資料夾中的工作檔案名稱必須符合不含 .yml 副檔名 logic-tasks`的變數值

`logic_operation。

• 資料夾中的工作檔案 logic-tasks`會動態定義 `raw_service_request。唯一的需求
是將有效 `raw_service_request`定義為相關檔案中的最後一項工作。

如何動態定義服務要求

有多種方法可以套用邏輯工作來動態定義服務要求。以下列出其中一些選項：

• 使用資料夾中的 Ansible 工作檔案 logic-tasks

• 啟動可傳回適合轉換為 varaible 之資料的自訂角色 raw_service_request。

• 在 Ansible 環境以外調用其他工具以提供所需的資料。例如、 REST API 呼叫 Active IQ Unified Manager 。

下列命令範例會使用檔案動態定義每個叢集的服務要求 tutorial-requests.yml：

ansible-playbook -i inventory/hosts -e cluster2provision=Cluster_01

-e logic_operation=tutorial-requests site.yml

ansible-playbook -i inventory/hosts -e cluster2provision=Cluster_02

-e logic_operation=tutorial-requests site.yml

步驟 6 ：部署 ONTAP Day 0/1 解決方案

在此階段、您應該已經完成下列工作：

• 根據您的需求檢閱及修改中的所有檔案 playbooks/inventory/group_vars/all。每個檔案中都有詳
細的註解、可協助您進行變更。

• 已將任何必要的工作檔案新增至 `logic-tasks`目錄。

• 已將任何必要的資料檔案新增至 `playbook/vars`目錄。

使用下列命令部署 ONTAP Day 0/1 解決方案、並驗證部署的健全狀況：

在此階段、您應該已經解密並修改 `vault.yml`檔案、而且必須使用新密碼來加密。

24

• 執行 ONTAP Day 0 服務：

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_day_0 -e service=cluster_day_0 -vvvv --ask-vault

-pass <your_vault_password>

• 執行 ONTAP Day 1 服務：

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_day_1 -e service=cluster_day_0 -vvvv --ask-vault

-pass <your_vault_password>

• 套用叢集整體設定：

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=cluster_wide_settings -e service=cluster_wide_settings

-vvvv --ask-vault-pass <your_vault_password>

• 執行健全狀況檢查：

ansible-playbook -i playbooks/inventory/hosts playbooks/site.yml -e

logic_operation=health_checks -e service=health_checks -e

enable_health_reports=true -vvvv --ask-vault-pass <your_vault_password>

自訂 ONTAP Day 0/1 解決方案

若要根據您的需求自訂 ONTAP Day 0/1 解決方案、您可以新增或變更 Ansible 角色。

角色代表 Ansible 架構內的微服務。每項微服務都會執行一項作業。例如、 ONTAP Day 0 是包含多個微服務的
服務。

新增 Ansible 角色

您可以新增 Ansible 角色、針對您的環境自訂解決方案。必要角色是由 Ansible 架構內的服務定義所定義。

角色必須符合下列需求、才能用作微服務：

• 接受變數中的引數清單 args。

• 使用 Ansible 「區塊、救援、永遠」結構、並針對每個區塊提供特定需求。

• 使用單一 Ansible 模組、在區塊內定義單一工作。

• 根據本節所詳述的要求實作每個可用的模組參數。

25

必要的微服務架構

每個角色都必須支援下列變數：

• mode：如果模式設置爲角色，則 `test`會嘗試導入，以顯示角色在未實際執行的情況下執行的 `test.yml`操
作。

由於某些相依性、因此不一定能實作此項目。

• status：教戰手冊執行的整體狀態。如果值未設定為角色、則 `success`不會執行。

• args：具有與角色參數名稱匹配的關鍵字的角色特定字典列表。

• global_log_messages：在執行教戰手冊期間收集記錄訊息。每次執行角色時都會產生一個項目。

• log_name：用於引用條目的角色的名稱 global_log_messages。

• task_descr：職務內容的簡短說明。

• service_start_time：用於追蹤每個角色執行時間的時間戳記。

• playbook_status： Ansible 教戰手冊的狀態。

• role_result：包含角色輸出的變數、會包含在項目中的每則訊息 `global_log_messages`中。

角色結構範例

以下範例提供實作微服務之角色的基本結構。您必須針對組態變更本範例中的變數。

26

顯示範例

基本角色結構：

- name: Set some role attributes

 set_fact:

 log_name: "<LOG_NAME>"

 task_descr: "<TASK_DESCRIPTION>"

- name: "{{ log_name }}"

 block:

 - set_fact:

 service_start_time: "{{ lookup('pipe', 'date

+%Y%m%d%H%M%S') }}"

 - name: "Provision the new user"

 <MODULE_NAME>:

#---

 # COMMON ATTRIBUTES

#---

 hostname: "{{

clusters[loop_arg['hostname']]['mgmt_ip'] }}"

 username: "{{

clusters[loop_arg['hostname']]['username'] }}"

 password: "{{

clusters[loop_arg['hostname']]['password'] }}"

 cert_filepath: "{{ loop_arg['cert_filepath']

| default(omit) }}"

 feature_flags: "{{ loop_arg['feature_flags']

| default(omit) }}"

 http_port: "{{ loop_arg['http_port']

| default(omit) }}"

 https: "{{ loop_arg['https']

| default('true') }}"

 ontapi: "{{ loop_arg['ontapi']

| default(omit) }}"

 key_filepath: "{{ loop_arg['key_filepath']

| default(omit) }}"

 use_rest: "{{ loop_arg['use_rest']

| default(omit) }}"

 validate_certs: "{{ loop_arg['validate_certs']

| default('false') }}"

27

 <MODULE_SPECIFIC_PARAMETERS>

#---

 # REQUIRED ATTRIBUTES

#---

 required_parameter: "{{ loop_arg['required_parameter']

}}"

#---

 # ATTRIBUTES w/ DEFAULTS

#---

 defaulted_parameter: "{{ loop_arg['defaulted_parameter']

| default('default_value') }}"

#---

 # OPTIONAL ATTRIBUTES

#---

 optional_parameter: "{{ loop_arg['optional_parameter']

| default(omit) }}"

 loop: "{{ args }}"

 loop_control:

 loop_var: loop_arg

 register: role_result

 rescue:

 - name: Set role status to FAIL

 set_fact:

 playbook_status: "failed"

 always:

 - name: add log msg

 vars:

 role_log:

 role: "{{ log_name }}"

 timestamp:

 start_time: "{{service_start_time}}"

 end_time: "{{ lookup('pipe', 'date +%Y-%m-

%d@%H:%M:%S') }}"

 service_status: "{{ playbook_status }}"

 result: "{{role_result}}"

 set_fact:

 global_log_msgs: "{{ global_log_msgs + [role_log] }}"

28

範例角色中使用的變數：

• <NAME>：必須為每個微服務提供可更換的值。

• <LOG_NAME>：用於記錄的角色的簡短名稱。例如 ONTAP_VOLUME：。

• <TASK_DESCRIPTION>：微服務的功能簡介。

• <MODULE_NAME>：任務的 Ansible 模塊名稱。

最上層的 `execute.yml`教戰手冊會指定 `netapp.ontap`集合。如果模組是集合的一部分、則
`netapp.ontap`不需要完整指定模組名稱。

• <MODULE_SPECIFIC_PARAMETERS>：特定於用於實施微服務的模塊的可接受模塊參數。下列清單說明參
數類型及其分組方式。

◦ 必要參數：指定所有必要參數時不使用預設值。

◦ 具有微服務特定預設值的參數（與模組文件所指定的預設值不同）。

◦ 所有剩餘參數都會用 `default(omit)`作預設值。

使用多層字典做為模組參數

某些 NetApp 提供的 Ansible 模組會使用多層級字典來處理模組參數（例如、固定和調適性 QoS 原則群組）。

使用這些字典時、單獨使用 `default(omit)`並不適用、尤其是當有多個字典且彼此互斥時。

如果您需要使用多層字典做為模組參數、則應將功能分割成多個微服務（角色）、以保證每個字典都能為相關字
典提供至少一個二層字典值。

下列範例顯示固定和自適應 QoS 原則群組、可在兩個微服務之間分割。

第一個微服務包含固定的 QoS 原則群組值：

fixed_qos_options:

 capacity_shared: "{{

loop_arg['fixed_qos_options']['capacity_shared'] | default(omit)

}}"

 max_throughput_iops: "{{

loop_arg['fixed_qos_options']['max_throughput_iops'] | default(omit)

}}"

 min_throughput_iops: "{{

loop_arg['fixed_qos_options']['min_throughput_iops'] | default(omit)

}}"

 max_throughput_mbps: "{{

loop_arg['fixed_qos_options']['max_throughput_mbps'] | default(omit)

}}"

 min_throughput_mbps: "{{

loop_arg['fixed_qos_options']['min_throughput_mbps'] | default(omit)

}}"

29

第二個微服務包含調適性 QoS 原則群組值：

adaptive_qos_options:

 absolute_min_iops: "{{

loop_arg['adaptive_qos_options']['absolute_min_iops'] | default(omit) }}"

 expected_iops: "{{

loop_arg['adaptive_qos_options']['expected_iops'] | default(omit) }}"

 peak_iops: "{{

loop_arg['adaptive_qos_options']['peak_iops'] | default(omit) }}"

30

版權資訊

Copyright © 2025 NetApp, Inc. 版權所有。台灣印製。非經版權所有人事先書面同意，不得將本受版權保護文件
的任何部分以任何形式或任何方法（圖形、電子或機械）重製，包括影印、錄影、錄音或儲存至電子檢索系統
中。

由 NetApp 版權資料衍伸之軟體必須遵守下列授權和免責聲明：

此軟體以 NETAPP「原樣」提供，不含任何明示或暗示的擔保，包括但不限於有關適售性或特定目的適用性之
擔保，特此聲明。於任何情況下，就任何已造成或基於任何理論上責任之直接性、間接性、附隨性、特殊性、懲
罰性或衍生性損害（包括但不限於替代商品或服務之採購；使用、資料或利潤上的損失；或企業營運中斷），無
論是在使用此軟體時以任何方式所產生的契約、嚴格責任或侵權行為（包括疏忽或其他）等方面，NetApp 概不
負責，即使已被告知有前述損害存在之可能性亦然。

NetApp 保留隨時變更本文所述之任何產品的權利，恕不另行通知。NetApp 不承擔因使用本文所述之產品而產
生的責任或義務，除非明確經過 NetApp 書面同意。使用或購買此產品並不會在依據任何專利權、商標權或任何
其他 NetApp 智慧財產權的情況下轉讓授權。

本手冊所述之產品受到一項（含）以上的美國專利、國外專利或申請中專利所保障。

有限權利說明：政府機關的使用、複製或公開揭露須受 DFARS 252.227-7013（2014 年 2 月）和 FAR 52.227-

19（2007 年 12 月）中的「技術資料權利 - 非商業項目」條款 (b)(3) 小段所述之限制。

此處所含屬於商業產品和 / 或商業服務（如 FAR 2.101 所定義）的資料均為 NetApp, Inc. 所有。根據本協議提
供的所有 NetApp 技術資料和電腦軟體皆屬於商業性質，並且完全由私人出資開發。 美國政府對於該資料具有
非專屬、非轉讓、非轉授權、全球性、有限且不可撤銷的使用權限，僅限於美國政府為傳輸此資料所訂合約所允
許之範圍，並基於履行該合約之目的方可使用。除非本文另有規定，否則未經 NetApp Inc. 事前書面許可，不得
逕行使用、揭露、重製、修改、履行或展示該資料。美國政府授予國防部之許可權利，僅適用於 DFARS 條款
252.227-7015(b)（2014 年 2 月）所述權利。

商標資訊

NETAPP、NETAPP 標誌及 http://www.netapp.com/TM 所列之標章均為 NetApp, Inc. 的商標。文中所涉及的所
有其他公司或產品名稱，均為其各自所有者的商標，不得侵犯。

31

http://www.netapp.com/TM

	ONTAP : NetApp Automation
	目錄
	ONTAP
	第 0/1 天
	ONTAP Day 0/1 解決方案總覽
	準備使用 ONTAP Day 0/1 解決方案
	使用解決方案部署 ONTAP 叢集
	自訂 ONTAP Day 0/1 解決方案

