

探索負載平衡器選項 NetApp Solutions

NetApp April 12, 2024

This PDF was generated from https://docs.netapp.com/zh-tw/netapp-solutions/containers/rh-os-n_LB_MetalLB.html on April 12, 2024. Always check docs.netapp.com for the latest.

目錄

深索負載平衡器選項:採用NetApp的Red Hat OpenShift	1
安裝MetalLB負載平衡器:Red Hat OpenShift with NetApp	1
安裝F5 BIG-IP負載平衡器	3

探索負載平衡器選項:採用NetApp的Red Hat OpenShift

在大多數情況下、Red Hat OpenShift會透過路由、讓外部使用者能夠使用應用程式。提供可從外部存取的主機 名稱、即可公開服務。OpenShift路由器可以使用定義的路由及其服務所識別的端點、以提供與外部用戶端的命 名連線。

不過在某些情況下、應用程式需要部署和設定自訂的負載平衡器、才能提供適當的服務。其中一個例子 是NetApp Astra Control Center。為了滿足這項需求、我們評估了許多自訂負載平衡器選項。本節將說明其安裝 與組態。

以下頁面提供有關Red Hat OpenShift with NetApp解決方案中驗證的負載平衡器選項的其他資訊:

- "MetalLB."
- "F5 BIG-IP"

安裝MetalLB負載平衡器:Red Hat OpenShift with NetApp

本頁列出MetalLB負載平衡器的安裝與組態指示。

MetalLB是安裝在OpenShift叢集上的自我代管網路負載平衡器、可在未在雲端供應商上執行的叢集中、建立類型負載平衡器的OpenShift服務。MetalLB的兩項主要功能是位址分配和外部宣告、這些功能可搭配運作以支援 負載平衡器服務。

MetalLB組態選項

根據MetalLB如何宣告指派給OpenShift叢集外部負載平衡器服務的IP位址、它以兩種模式運作:

- *第2層模式。*在此模式下、OpenShift叢集中的一個節點會取得服務的所有權、並回應該IP的ARP要求、以 便在OpenShift叢集外部存取。因為只有節點會通告IP、所以它會有頻寬瓶頸和緩慢的容錯移轉限制。如需 詳細資訊、請參閱文件 "請按這裡"。
- * BGP模式。*在此模式下、OpenShift叢集中的所有節點都會與路由器建立BGP對等工作階段、並通告路由 以將流量轉送到服務IP。這項作業的先決條件是將MetalLB與該網路中的路由器整合。由於BGP中的雜湊機 制、因此在變更服務的IP對節點對應時、會有一定的限制。如需詳細資訊、請參閱文件 "請按這裡"。

針對本文件、我們將在第2層模式中設定MetalLB。

安裝MetalLB負載平衡器

1. 下載MetalLB資源。

```
[netapp-user@rhel7 ~]$ wget
https://raw.githubusercontent.com/metallb/metallb/v0.10.2/manifests/name
space.yaml
[netapp-user@rhel7 ~]$ wget
https://raw.githubusercontent.com/metallb/metallb/v0.10.2/manifests/meta
llb.yaml
```

編輯檔案「metallb.yaml」、並從「控制器部署」和「示範演講者」中移除「pec.template.spec.securityContext`」。

要刪除的行數:

```
securityContext:
    runAsNonRoot: true
    runAsUser: 65534
```

3. 建立「metallb-system」命名空間。

```
[netapp-user@rhel7 ~]$ oc create -f namespace.yaml
namespace/metallb-system created
```

4. 建立MetalLB CR。

```
[netapp-user@rhel7 ~]$ oc create -f metallb.yaml
podsecuritypolicy.policy/controller created
podsecuritypolicy.policy/speaker created
serviceaccount/controller created
serviceaccount/speaker created
clusterrole.rbac.authorization.k8s.io/metallb-system:controller created
clusterrole.rbac.authorization.k8s.io/metallb-system:speaker created
role.rbac.authorization.k8s.io/config-watcher created
role.rbac.authorization.k8s.io/pod-lister created
role.rbac.authorization.k8s.io/controller created
clusterrolebinding.rbac.authorization.k8s.io/metallb-system:controller
created
clusterrolebinding.rbac.authorization.k8s.io/metallb-system:speaker
created
rolebinding.rbac.authorization.k8s.io/config-watcher created
rolebinding.rbac.authorization.k8s.io/pod-lister created
rolebinding.rbac.authorization.k8s.io/controller created
daemonset.apps/speaker created
deployment.apps/controller created
```

 在設定MetalLB揚聲器之前、請先授予揚聲器示範設定提高權限、以便執行所需的網路組態、使負載平衡器 正常運作。

```
[netapp-user@rhel7 ~]$ oc adm policy add-scc-to-user privileged -n
metallb-system -z speaker
clusterrole.rbac.authorization.k8s.io/system:openshift:scc:privileged
added: "speaker"
```

6. 在「metallb-system」命名空間中建立「ConfigMap」來設定MetalLB。

```
[netapp-user@rhel7 ~]$ vim metallb-config.yaml
apiVersion: v1
kind: ConfigMap
metadata:
    namespace: metallb-system
    name: config
data:
    config: |
    address-pools:
    - name: default
    protocol: layer2
    addresses:
        - 10.63.17.10-10.63.17.200
[netapp-user@rhel7 ~]$ oc create -f metallb-config.yaml
configmap/config created
```

7. 現在、當建立負載平衡器服務時、MetalLB會指派外部IP給服務、並回應ARP要求來通告IP位址。

如果您想要在BGP模式中設定MetalLB、請跳過上述步驟6、然後依照MetalLB文件中的程序 進行 "請按這裡"。

安裝F5 BIG-IP負載平衡器

F5 BIG-IP是應用程式交付控制器(ADC)、提供一系列進階的正式作業級流量管理與安全服務、例如L4-L7負載平衡、SSL/TLS卸載、DNS、防火牆等。這些服務可大幅提升應用程式的可用度、安全性和效能。

您可以在專屬硬體、雲端或內部部署的虛擬應用裝置上、以各種方式部署和使用F5 BIG-IP。請參閱此處的文件、依照需求探索及部署F5 BIG-IP。

為有效整合使用Red Hat OpenShift的F5 BIG-IP服務、F5提供Big IP Container Ingress Service(CI)。CI是以 控制器Pod的形式安裝、可針對特定的自訂資源定義(CRD)來觀看OpenShift API、並管理F5 BIG-IP系統組 態。您可以在OpenShift中設定F5 BIG-IP CI、以控制服務類型負載平衡器和路由。 此外、若要自動分配IP位址以服務負載平衡器類型、您可以使用F5 IPAM控制器。將F5 IPAM控制器安裝為控制器Pod、會使用ipamLabel附註來監視負載平衡器服務的OpenShift API、以便從預先設定的集區分配IP位址。

本頁列出適用於F5 BIG-IP CI和IPAM控制器的安裝與組態指示。您必須部署並授權使用F5 BIG-IP系統、才能做為先決條件。也必須授權使用SDN服務、此服務預設隨附於Big IP VE基礎授權中。

可以在獨立或叢集模式中部署F5 BIG-IP。為了進行此驗證、在獨立模式下部署了F5 BIG-IP、但為了正式作業目的、最好使用一個BIG-IP叢集、以避免單點故障。

您可以在專屬硬體、雲端或內部部署的虛擬應用裝置上部署一個F5 BIG-IP系統、其版本超過 12.x、以便與F5 CI整合。就本文件而言、以虛擬應用裝置(例如使用BIG-IP VE版本)的形式驗 證的F5 BIG-IP系統。

已驗證的版本

技術	軟體版本
Red Hat OpenShift	4.6 EUS \ 4.7
F5 BIG-IP VE版本	16.1.0
F5 Container Ingress服務	2.5.1
F5 IPAM控制器	0.1.4
F5 AS3	3.30.0

安裝

- 1. 安裝F5 Application Services 3擴充功能、讓BIG-IP系統接受Json中的組態、而非命令命令。前往 "F5 AS3 GitHub儲存庫"下載最新的RPM檔案。
- 2. 登入F5 BIG-IP系統、瀏覽至iApps >「套件管理Lx」、然後按一下「匯入」。
- 3. 按一下"選擇檔案"並選取下載的AS3 RPM檔案、按一下"確定"、然後按一下"上傳"。

f5-appsvcs-3.30.0-5.noarch.rpm
e

4. 確認已成功安裝AS3擴充功能。

KApps Package Management LX					
				F5 iApps and	d Resources
filter packages				Import	
Name	Version	Build	Package	Tag	25
5-appsvcs	3 30 0	5	15-appsvcs-3 30.0-5 noarch	PLI	UGIN

5. 接下來、設定OpenShift與BIG-IP系統之間通訊所需的資源。首先在OpenShift和Big IP伺服器之間建立通

道、方法是在適用於OpenShift SDN的Big IP系統上建立VXLAN通道介面。瀏覽至「Network(網路)」> 「Tunnels(通道)」>「Profiles(設定檔)」、按一下「Create(建立)」、然後將「Parent Profile(父 設定檔)」設定為VXLAN、「輸入設定檔的名稱、然後按一下「完成」。

Network » Tunnels : Pro	ofiles : VXLAN >> New VXLAN Profile	
General Properties		
Name	vxlan-multipoint	
Parent Profile	vxtan 🗸	
Description		
Settings		Custom 🗆
Port	4789	0
Flooding Type	Multicast V	2

 瀏覽至「網路」>「通道」>「通道清單」、按一下「建立」、然後輸入通道的名稱和本機IP位址。選取在上 一個步驟中建立的通道設定檔、然後按一下「完成」。

onfiguration	
Name	openshift_vxlan
Description	
Key	0
Profile	vxlan-multipoint V
Local Address	10.63.172.239
Secondary Address	Any ~
Remote Address	Any 🗸
Mode	Bidirectional ~
мти	0
Use PMTU	C Enabled
TOS	Preserve V
Auto-Last Hop	Default 🗸
Traffic Group	None

- 7. 以叢集管理權限登入Red Hat OpenShift叢集。
- 8. 在OpenShift上為F5 BIG-IP伺服器建立主機子網路、將子網路從OpenShift叢集延伸至F5 BIG-IP伺服器。下載主機子網路Yaml定義。

```
wget https://github.com/F5Networks/k8s-bigip-
ctlr/blob/master/docs/config_examples/openshift/f5-kctlr-openshift-
hostsubnet.yaml
```

9. 編輯主機子網路檔案、並為OpenShift SDN新增BIG-IP VTEP(VXLAN通道)IP。

```
apiVersion: v1
kind: HostSubnet
metadata:
  name: f5-server
  annotations:
    pod.network.openshift.io/fixed-vnid-host: "0"
    pod.network.openshift.io/assign-subnet: "true"
# provide a name for the node that will serve as BIG-IP's entry into the
cluster
host: f5-server
# The hostIP address will be the BIG-IP interface address routable to
the
# OpenShift Origin nodes.
# This address is the BIG-IP VTEP in the SDN's VXLAN.
hostIP: 10.63.172.239
```


變更適用於您環境的主機IP和其他詳細資料。

10. 建立主機子網路資源。

[admin@rhel-7 ~]\$ oc create -f f5-kctlr-openshift-hostsubnet.yaml

hostsubnet.network.openshift.io/f5-server created

11. 取得為F5 BIG-IP伺服器所建立之主機子網路的叢集IP子網路範圍。

[admin@rhel-7 ~]\$ oc get hostsubnet

NAME	HOST	HOST IP
SUBNET EGRESS CIDRS	EGRESS IPS	
f5-server	f5-server	10.63.172.239
10.131.0.0/23		
ocp-vmw-nszws-master-0	ocp-vmw-nszws-master-0	10.63.172.44
10.128.0.0/23		
ocp-vmw-nszws-master-1	ocp-vmw-nszws-master-1	10.63.172.47
10.130.0.0/23		
ocp-vmw-nszws-master-2	ocp-vmw-nszws-master-2	10.63.172.48
10.129.0.0/23		
ocp-vmw-nszws-worker-r8fh4	ocp-vmw-nszws-worker-r8fh4	10.63.172.7
10.130.2.0/23		
ocp-vmw-nszws-worker-tvr46	ocp-vmw-nszws-worker-tvr46	10.63.172.11
10.129.2.0/23		
ocp-vmw-nszws-worker-wdxhg	ocp-vmw-nszws-worker-wdxhg	10.63.172.24
10.128.2.0/23		
ocp-vmw-nszws-worker-wg8r4	ocp-vmw-nszws-worker-wg8r4	10.63.172.15
10.131.2.0/23		
ocp-vmw-nszws-worker-wtgfw	ocp-vmw-nszws-worker-wtgfw	10.63.172.17
10.128.4.0/23		

12. 在OpenShift VXLAN上建立一個自有IP、並在OpenShift的主機子網路範圍中建立對應於F5 BIG-IP伺服器的IP。登入F5 BIG-IP系統、瀏覽至「網路」>「自助IP」、然後按一下「建立」。從為F5 BIG-IP主機子網路建立的叢集IP子網路輸入IP、選取VXLAN通道、然後輸入其他詳細資料。然後按一下「完成」。

onfiguration	
Name	10.131.0.60
IP Address	10.131.0.60
Netmask	255.252.0.0
VLAN / Tunnel	openshift_vxla 🗸
Port Lockdown	Allow All
Traffic Group	Inherit traffic group from current partition / path traffic-group-local-only (non-floating)
Service Policy	None V

13. 在要設定並搭配CI使用的F5 BIG-IP系統中建立分割區。瀏覽至「系統」>「使用者」>「分割清單」、按一

System » Users : Partition List	t » New Partition
Properties	
Partition Name	ocp-vmw
Partition Default Route Domain	0 ~
Description	Extend Text Area Wrap Text
Redundant Device Configuration	n
Device Group	✓ Inherit device group from root folder None ✓
Traffic Group	✓ Inherit traffic group from root folder traffic-group-1 (floating) ✓
Cancel Repeat Finished	

(i)

F5建議您不要在由CI管理的分割區上進行手動設定。

14. 使用來自作業系統集線器的操作員來安裝F5 BIG-IP CI。以叢集管理權限登入Red Hat OpenShift叢集、並使用F5 BIG-IP系統登入認證建立密碼、這是操作員的必要條件。

[admin@rhel-7 ~]\$ oc create secret generic bigip-login -n kube-system --from-literal=username=admin --from-literal=password=admin secret/bigip-login created

```
[admin@rhel-7 ~]$ oc apply -f
https://raw.githubusercontent.com/F5Networks/k8s-bigip-
ctlr/master/docs/config_examples/crd/Install/customresourcedefinitions.y
ml
customresourcedefinition.apiextensions.k8s.io/virtualservers.cis.f5.com
created
customresourcedefinition.apiextensions.k8s.io/tlsprofiles.cis.f5.com
created
customresourcedefinition.apiextensions.k8s.io/transportservers.cis.f5.com
m created
customresourcedefinition.apiextensions.k8s.io/externaldnss.cis.f5.com
created
customresourcedefinition.apiextensions.k8s.io/externaldnss.cis.f5.com
created
customresourcedefinition.apiextensions.k8s.io/ingresslinks.cis.f5.com
created
```

16. 瀏覽至「運算子」>「作業系統集線器」、搜尋關鍵字F5、然後按一下「F5 Container Ingress Service」方 塊。

OperatorHub

Discover Operators from the Kubernetes community and Red Hat partners, curated by Red Hat. You can purchase commercial software through Red Hat Marketplace 2. You can install Operators on your clusters to provide optional add-ons and shared services to your developers. After installation, the Operator capabilities will appear in the Developer Catalog providing a self-service experience.

All Items	All Items	
Al/Machine Learning	F5	1 items
Big Data		
Cloud Provider	(E)	
Database		
Developer Tools	F5 Container Ingress Services	
Development Tools	provided by F5 Networks Inc.	
Drivers And Plugins	Operator to install F5 Container	
Integration & Delivery	Ingress Services (CIS) for BIG-IP.	
Logging & Tracing		
Modernization & Migration		
Monitoring		

17. 閱讀操作員資訊、然後按一下「Install(安裝)」。

F5 Container Ingress Services

1.8.0 provided by F5 Networks Inc.

Install

Latest version

1.8.0

Introduction

Capability level

Basic Install

Seamless Upgrades
 Full Lifecycle
 Deep Insights
 Auto Pilot

Provider type Certified

Provider

F5 Networks Inc.

Repository

https://github.com/F5Net works/k8s-bigip-ctlr

Container image

registry.connect.redhat.co m/f5networks/k8s-bigipThis Operator installs F5 Container Ingress Services (CIS) for BIG-IP in your Cluster. This enables to configure and deploy CIS using Helm Charts.

F5 Container Ingress Services for BIG-IP

F5 Container Ingress Services (CIS) integrates with container orchestration environments to dynamically create L4/L7 services on F5 BIG-IP systems, and load balance network traffic across the services. Monitoring the orchestration API server, CIS is able to modify the BIG-IP system configuration based on changes made to containerized applications.

Documentation

Refer to F5 documentation

 CIS on OpenShift (https://clouddocs.f5.com/containers/latest/userguide/openshift/) - OpenShift Routes (https://clouddocs.f5.com/containers/latest/userguide/routes.html)

Prerequisites

Create BIG-IP login credentials for use with Operator Helm charts. A basic way be,

oc create secret generic <SECRET-NAME> -n kube-system --from-literal=username=<USERN
AME> --from-literal=password=<PASSWORD>

18. 在「Install(安裝)」操作員畫面上、保留所有預設參數、然後按一下「Install(安裝)」。

Install Operator

Install your Operator by subscribing to one of the update channels to keep the Operator up to date. The strategy determines either manual or automatic updates.

- 20. 安裝操作員之後、會顯示安裝成功訊息。
- 21. 瀏覽至「運算子」>「安裝的運算子」、按一下「F5 Container Ingress Service」、然後按一下「 F5BigIprcr」方塊下方的「Create Instance(建立執行個體)」。

Provided APIs

22. 按一下「Yaml View(Yaml檢視)」、然後在更新必要的參數後貼上下列內容。

請更新下列參數「bigip_partition'、「openshift_SDN_name'、「bigip_URL」和「bigip_login_secret」、以反映設定值、然後再複製內容。

```
apiVersion: cis.f5.com/v1
kind: F5BigIpCtlr
metadata:
  name: f5-server
  namespace: openshift-operators
spec:
  args:
    log_as3_response: true
   agent: as3
    log level: DEBUG
    bigip partition: ocp-vmw
    openshift sdn name: /Common/openshift vxlan
    bigip url: 10.61.181.19
    insecure: true
    pool-member-type: cluster
    custom resource mode: true
    as3 validation: true
    ipam: true
    manage configmaps: true
  bigip login secret: bigip-login
  image:
   pullPolicy: Always
   repo: f5networks/cntr-ingress-svcs
   user: registry.connect.redhat.com
  namespace: kube-system
  rbac:
   create: true
  resources: {}
  serviceAccount:
    create: true
  version: latest
```

23. 貼上此內容之後、按一下「建立」。這會在K資料庫 系統命名空間中安裝CI Pod。

Pods						Crea	te Pod
▼ Filter 🔹	Name 👻 Sear	ch by name					
Name 1	Status I	Ready	I Restarts I	Owner I	Memory 1	CPU I	
f5-server-f5- bigip-ctlr- 5d7578667d- qxdgj	C Running	1/1	0	f5-server- f5-bigip- ctlr- 5d7578667d	611 MiB	0.003 cores	I

Red Hat OpenShift依預設提供一種方法、可透過L7負載平衡的路由來公開服務。內建 的OpenShift路由器負責廣告和處理這些路由的流量。不過、您也可以設定F5 CI來支援透過外 部的F5 BIG-IP系統的路由、以便作為輔助路由器執行、或取代自行代管的OpenShift路由 器。CI會在Big IP系統中建立虛擬伺服器、做為OpenShift路由的路由器、而Big IP則負責通告 和流量路由。如需啟用此功能的參數資訊、請參閱此處的文件。請注意、這些參數是針 對APS/v1 API中的OpenShift部署資源所定義。因此、將這些項目搭配F5BigIprvtrr資 源cis.f5.com/v1 API使用時、請將參數名稱的連字號(-)取代為底線(_)。

24. 傳遞給CI資源建立的引數包括「ipam: true」和「custom_resource_mode: true」。這些參數是啟用與IPAM 控制器的CI整合所需的參數。建立F5 IPAM資源、確認CI已啟用IPAM整合。

[admin@rhel-7 ~]\$ oc get f5ipam -n kube-system
NAMESPACE NAME AGE
kube-system ipam.10.61.181.19.ocp-vmw 43s

25. 建立F5 IPAM控制器所需的服務帳戶、角色和角色繫結。建立Yaml檔案並貼上下列內容。

```
[admin@rhel-7 ~]$ vi f5-ipam-rbac.yaml
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: ipam-ctlr-clusterrole
rules:
  - apiGroups: ["fic.f5.com"]
    resources: ["ipams", "ipams/status"]
    verbs: ["get", "list", "watch", "update", "patch"]
___
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: ipam-ctlr-clusterrole-binding
  namespace: kube-system
roleRef:
  apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
  name: ipam-ctlr-clusterrole
subjects:
  - apiGroup: ""
   kind: ServiceAccount
   name: ipam-ctlr
    namespace: kube-system
apiVersion: v1
kind: ServiceAccount
metadata:
 name: ipam-ctlr
  namespace: kube-system
```

26. 建立資源。

```
[admin@rhel-7 ~]$ oc create -f f5-ipam-rbac.yaml
clusterrole.rbac.authorization.k8s.io/ipam-ctlr-clusterrole created
clusterrolebinding.rbac.authorization.k8s.io/ipam-ctlr-clusterrole-
binding created
serviceaccount/ipam-ctlr created
```

27. 建立Yaml檔案、然後貼上以下提供的F5 IPAM部署定義。

請更新下方spec.template.spec.contains[0].args中的IP範圍參數、以反映與您設定相對應的ipamLabel和IP位址範圍。

IPAM控制器的負載平衡器類型服務需要註釋ipamLabels ['range1'和'range2'、才能從定義的 範圍偵測和指派IP位址。

```
[admin@rhel-7 ~]$ vi f5-ipam-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    name: f5-ipam-controller
  name: f5-ipam-controller
  namespace: kube-system
spec:
 replicas: 1
  selector:
    matchLabels:
      app: f5-ipam-controller
  template:
    metadata:
      creationTimestamp: null
      labels:
        app: f5-ipam-controller
    spec:
      containers:
      - args:
        - -- or chestration=openshift
        - --ip-range='{"range1":"10.63.172.242-10.63.172.249",
"range2":"10.63.170.111-10.63.170.129"}'
        - --log-level=DEBUG
        command:
        - /app/bin/f5-ipam-controller
        image: registry.connect.redhat.com/f5networks/f5-ipam-
controller:latest
        imagePullPolicy: IfNotPresent
        name: f5-ipam-controller
      dnsPolicy: ClusterFirst
      restartPolicy: Always
      schedulerName: default-scheduler
      securityContext: { }
      serviceAccount: ipam-ctlr
      serviceAccountName: ipam-ctlr
```

28. 建立F5 IPAM控制器部署。

[admin@rhel-7 ~]\$ oc create -f f5-ipam-deployment.yaml

```
deployment/f5-ipam-controller created
```

29. 確認F5 IPAM控制器Pod正在執行。

```
[admin@rhel-7 ~]$ oc get pods -n kube-system
NAME
                                            READY
                                                    STATUS
                                                              RESTARTS
AGE
f5-ipam-controller-5986cff5bd-2bvn6
                                            1/1
                                                    Running
                                                              0
30s
f5-server-f5-bigip-ctlr-5d7578667d-qxdgj
                                            1/1
                                                    Running
                                                              0
14m
```

30. 建立F5 IPAM架構。

```
[admin@rhel-7 ~]$ oc create -f
https://raw.githubusercontent.com/F5Networks/f5-ipam-
controller/main/docs/_static/schemas/ipam_schema.yaml
```

customresourcedefinition.apiextensions.k8s.io/ipams.fic.f5.com

驗證

1. 建立負載平衡器類型的服務

```
[admin@rhel-7 ~]$ vi example svc.yaml
apiVersion: v1
kind: Service
metadata:
  annotations:
    cis.f5.com/ipamLabel: range1
  labels:
    app: f5-demo-test
 name: f5-demo-test
 namespace: default
spec:
  ports:
  - name: f5-demo-test
   port: 80
  protocol: TCP
   targetPort: 80
  selector:
   app: f5-demo-test
  sessionAffinity: None
  type: LoadBalancer
```

[admin@rhel-7 ~]\$ oc create -f example svc.yaml

```
service/f5-demo-test created
```

2. 檢查IPAM控制器是否指派外部IP給它。

```
Iadmin@rhel-7 ~]$ oc get svcNAMETYPECLUSTER-IPEXTERNAL-IPPORT(S)AGET72.30.210.10810.63.172.24260:32605/TCP27sEXTERNAL-IP
```

3. 建立部署並使用所建立的負載平衡器服務。

```
[admin@rhel-7 ~]$ vi example deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: f5-demo-test
  name: f5-demo-test
spec:
  replicas: 2
  selector:
    matchLabels:
      app: f5-demo-test
  template:
    metadata:
      labels:
        app: f5-demo-test
    spec:
      containers:
      - env:
        - name: service name
          value: f5-demo-test
        image: nginx
        imagePullPolicy: Always
        name: f5-demo-test
        ports:
        - containerPort: 80
          protocol: TCP
```

[admin@rhel-7 ~]\$ oc create -f example_deployment.yaml

deployment/f5-demo-test created

4. 檢查Pod是否正在執行。

READY	STATUS	RESTARTS	AGE
1/1	Running	0	27s
1/1	Running	0	27s
	READY 1/1 1/1	READY STATUS 1/1 Running 1/1 Running	READY STATUS RESTARTS 1/1 Running 0 1/1 Running 0

5. 檢查OpenShift中是否針對負載平衡器類型的服務、在Big IP系統中建立對應的虛擬伺服器。瀏覽至本機流量>虛擬伺服器>虛擬伺服器清單。

Local Traffic » Virtual Servers : Virtual Server List							
o - Virtual Server List Virtual Address List Statistics -							
* Search							Create
Status + Name	Description	* Application	© Destination	# Service Port	© Type	Resources	Partition / Path
vs_b_svc_default_f5-demo.test_10.63.172.242_80	Shared		10.63.172.242	80 (HTTP)	Standard	Edt.	ocp-vmw/Shared
Enable Disable Delete							

版權資訊

Copyright © 2024 NetApp, Inc. 版權所有。台灣印製。非經版權所有人事先書面同意,不得將本受版權保護文件的任何部分以任何形式或任何方法(圖形、電子或機械)重製,包括影印、錄影、錄音或儲存至電子檢索系統中。

由 NetApp 版權資料衍伸之軟體必須遵守下列授權和免責聲明:

此軟體以 NETAPP「原樣」提供,不含任何明示或暗示的擔保,包括但不限於有關適售性或特定目的適用性之 擔保,特此聲明。於任何情況下,就任何已造成或基於任何理論上責任之直接性、間接性、附隨性、特殊性、懲 罰性或衍生性損害(包括但不限於替代商品或服務之採購;使用、資料或利潤上的損失;或企業營運中斷),無 論是在使用此軟體時以任何方式所產生的契約、嚴格責任或侵權行為(包括疏忽或其他)等方面,NetApp 概不 負責,即使已被告知有前述損害存在之可能性亦然。

NetApp 保留隨時變更本文所述之任何產品的權利,恕不另行通知。NetApp 不承擔因使用本文所述之產品而產 生的責任或義務,除非明確經過 NetApp 書面同意。使用或購買此產品並不會在依據任何專利權、商標權或任何 其他 NetApp 智慧財產權的情況下轉讓授權。

本手冊所述之產品受到一項(含)以上的美國專利、國外專利或申請中專利所保障。

有限權利說明:政府機關的使用、複製或公開揭露須受 DFARS 252.227-7013(2014 年 2 月)和 FAR 52.227-19(2007 年 12 月)中的「技術資料權利 - 非商業項目」條款 (b)(3)小段所述之限制。

此處所含屬於商業產品和 / 或商業服務(如 FAR 2.101 所定義)的資料均為 NetApp, Inc. 所有。根據本協議提供的所有 NetApp 技術資料和電腦軟體皆屬於商業性質,並且完全由私人出資開發。美國政府對於該資料具有非專屬、非轉讓、非轉授權、全球性、有限且不可撤銷的使用權限,僅限於美國政府為傳輸此資料所訂合約所允許之範圍,並基於履行該合約之目的方可使用。除非本文另有規定,否則未經 NetApp Inc. 事前書面許可,不得 逕行使用、揭露、重製、修改、履行或展示該資料。美國政府授予國防部之許可權利,僅適用於 DFARS 條款 252.227-7015(b)(2014 年 2 月)所述權利。

商標資訊

NETAPP、NETAPP 標誌及 http://www.netapp.com/TM 所列之標章均為 NetApp, Inc. 的商標。文中所涉及的所 有其他公司或產品名稱,均為其各自所有者的商標,不得侵犯。