FFARESTEENE

ONTAP Select

NetApp
January 31, 2025

This PDF was generated from https://docs.netapp.com/zh-tw/ontap-select-9111/concept_api_rest.html on
January 31, 2025. Always check docs.netapp.com for the latest.



Sk

HEHARESTEHME
B
fEF 2B A7
TERERER
fEFAPython7ZEY
Pythonf2zUHE A

O 0O -~ -

17
19



{EFARESTEENL
B

REST WebfRFZE

KRMEAREEEE (REST) BEML DA WebERRRRNEAK - EERZIWebIRFSAPIFIES
i~ EEEIT—ERMNREEHRMUE - LUIEEARSBEER jtﬂiﬁﬁkaw?ﬁﬁﬁi
EETGEMNELE « BB EIEONTAP Select HHEIRETENER

208 BL{ELR R T
RESTHRoy Fielding7E i@ sRI2FIEXNFRIE "555C" HR2000FEFUCTERIT © bi_i_—fﬂﬁﬁ%u;ﬁm%mﬁﬂ

&~ Ubrfﬁﬁﬁu,itﬂaﬂzﬁﬂﬂﬁﬁiﬁ’émzﬁng RIBEIFE o SLRFSEREARRENRE « BB im/ER
27 R 72 T RES Tful WebfRFSFERTZR ©

BIFRMRERT
EREARE R RNEARTTH o BIREST Web RFEFEMTEINRF « RHANT TIFEIE ©

* R RFHFERSEEER
BERGHEEARMEEER - BRIUSESR « BERS « BFHEEER - IRIEREST WebfRF 5t E
RREANEEERHZ—  mEHsEIR

* BRAREMERIRRRFERNER
BRKEENERIREZ — - WABRBESRNKE  DURARZEIRELERIERIEE o

A RiRRRFRRS 2 FETAAE « UIRIE—ARCRUD (1L - BE  EfkMER) BEIRERREEERIRE

URIiiGES

S{ERESTE RER L AE AT ZEU TS FRERMRME - EIRFITE AR IR ERR—EIRHRITT
(URI) ° URHERHE—/RZRIE « AIBERPNSEEREIIM—%HE - f—BREMSE (URL) E—EEWebR
BIEECEABIURI » AIHEARFIRER - EREEGLUEEIVGEEAR - BLUERBER -

HTTP :H2

BXFEHEHGE (HTTP) EWebiRFEH P inflERE AR NGB RNERMEIERASHNEEHEIGE - &
HEtWebRFSFERIZRET - HTTPEh:E (FIMNIGETAIPOST) &Y EEE R L HERIKAE ESIREN(E o

HTTPAEEARRS Bt « BE=R—/AERNZERNOER—SXZ RIS « A AEBER/CIEEA—IER
HESHTTPAREEFANAZEINEF ©

JSON#ETE

ARG A EBZES T AP inEREE 2 EETEBCAEE « ERTECEREE (LUREERZEREST AP
BECERRYER) FJavaScripIFRESE (Uson) o Json@MUAIX FRTEEBRHEBIEZETE  BAiMEH
HAERAVAREE N o


https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

AN{AI7FEXERZEAPI

I REST WebfRFEEBRIEEERE « ONTAP Select FILLAIINBE B Z AR A RFE (
Z1E) APl
BEARERREERENT

FHAPIFIEE 5 7AEONTAP Select & [THEEARE S HRMFEHRAENE o BIEESZMIEIAP| ~ WIRBFEREN
ERRFTEHRRAECER - Bl LB RRE AR SHITEEIAPI ©

EPE4LF _E X EHEONTAP Select
ERBIEERRR « TSZIBINAE) R EXHEEARHERFEIE: - ONTAP Selectbf 7 iRt EIZH T TERIAPIIEAL Y

FEZS ~ ILEEESAPIBEFAEREA « EESEMIRIMAS B EMEE o AP SR ZERRIIHEE
& B AR

EHEESM
EAI U EAZERRMNIERN R85 M T AR FEDeploy API o AP35 E13EPython ~ JavafCurl o EFHAPIHY

2~ I5SIE TESMAREST WebiRFSHE IR o R TES o EEERABBAP| - WiRHEEE)
1EONTAP Select ZBEHRIELS o

ZREAPIIRASEIE

P&t RashdeployBIREST API ONTAP Select 2F5;KhRAARSE o APIRRZS4R 5K LS E R 7S
MRSRIRRE o (MEZ TR ERRAMEHIAIAPIERZE « U RESIARZAPIRIER °

HESELAARANEARASESZREST APIBESMR  ERRMEEAAREIE THIAPIRRE :

EpE2.8 R EHTHR A
BB REST APISE3hREVERTHRZS < ONTAP Select

ERE2.7.2% B R RS
B EREST APIZE2RRBIE#TRRZS < ONTAP Select

@ REST APIFSE2HRFNIE3ARAER o MR B S APIFE2HRAVERRFA R ZEZPE 2.8 E#rhi s Bl
WBEHEMEZEFERAPINIRERERE - URFERAHSHNNEHEMAIESH o

BAREERME

RESTEZII—E@BNEMINREEFHMIE - EEEAPIFGEHHE R rI st SRR HEIEM
R o (TERAAPIZA] ~ IRFEZAEARONTAP Select B TEHZFEAPI) HIzHAAERIFIRE
5 o

HypervisorE1#E1ONTAP Select JEETES

HypervisorEi# FIE&ONTAP Select — AR EE#IE IR OER TS © 87 HypervisorE i1 FEPERENREF
SR IR AV E L ESET « SRR AR A EEEIEE o ONTAP Select ONTAP SelectE 2B EREST APIFYE 3hR
s EEASEYG RO BRI c BRI —HZR% « ZE—3ZONTAP Select Bz IR EIR A E[E—



{EHypervisorE % _F#1T o

YL Al
BEERNTERSMHEEZ LSRR —EMHE YRS - BLHBIFSTEONTAP Select FENGIFHER

EME—RY o MBI HITIERSA API IF0UE ~ EiEAERARY ID EEEAPHIFIIE 1location HTTPEIFE
RYARER o EPILARREGBIES ~ WA RE RN TERER AN RESS -

@ YRR BRI N BN B EIBRI R E - BIC2RAARMNYIMHE « QAR R EEEARIAPIELY
L ERRERRIES -
E3 &gl

BEMINMAPIERE 5 R—EME—BYEFEE o S ZEEE request-1id 18R HTTP EIFERVIERE o f&HF]
%{ﬁﬂ%%ﬁﬁé%ﬁ%ﬂﬂﬁ% S AIBABESTEAPIEREIERRZHYEE o AIE0 ~ ST IR ERIDREEAZ Z B FA B 14

75

[EZFIEE LI
ARSI MITIER P IR HT TPERN T EH EAWAE :

Gk
FAIRSSE AN ITESKR ~ ML 200 ~ 201 = 204 HIARAERE[CIFE o
* JEEY

EIARESIER EK « WLGRREAUES 202 [EIfE - ERTARBEZEZARIREN « LRBAITERTIEUTRE
K o ERARRINEN R MUEETA LIRS ~ W REBERIMIAPIITOL 3eF i o

DO SRR T T

—MRME ~ AR SEFEEZRREE A SETTARIER « S ERIERD RIE
ERSRNAE RIIE o EAEE REST API B « SEH R TIEHGLUEE
TRYIMF « BB TR IRME ~ FIMNBRIARRS o TIE¥MHF
FRUSRIEZE « HTTP B E O EME—HRIES -

TR EZER T W ~ UFIEMBRIREIAPINEIY T RS o
MFBHME « F2HE_ERAITIRMGETIERTSEE_ -

bR T SEAR TR 250 ~ BAEMTT AR UFERIRLINE R L
FAE5 ~ Bl4E

* ZHEAE

TR SO RIARIERNER ID ~ #AEEHFE API MENMERIMFAASH4AE - SHNEEE 2SI
KBBET ~ AR RS IEER IR PR fER o

BHEERGERF—(EREHAREE - EOIUAEHZE - URIEHIETE RN K ©

e
EEAPIER THIR R
- WEHEERM



BIBMBIR T ERRESM A B in 2 REXMNFA A REE L EB TLS INEF o FIBERIMBHEE LE
FEHTTP{EEIRE o SZBTLS 1.2k ©

* HTTP §R3%
T AP| XS MEEREAEE - SESRMEME—EHTTPIZE « HH G FERe4FHPHERERTE
MIZZHS

E3R K EIFEAPIZR 5

BEZREAPIFEIE S UHTTPE RN HIT Lx&%%ﬁ#&ﬂ%&%%%&%&iiﬁﬁﬁﬁ#ﬁm%aﬂ@@
f& o ﬁtg‘?&ﬁilﬁlﬁ%@ﬂﬁ%&ﬁ%wlﬁ% o IEERAZEFEAPIZ A ~ RFEZ AR R A EHRIE R
BB A S~ UKOIERHANAS o

PEHIAPIZE KAV A B8

EA LB BHTTPE KRR E 2 EERIEHIAPIE I F RIS = o

ERIZEE

SBTEHTTPERPE S ZEIEE « 81F

* NRFER
MREKRFFEE T JSON ~ BIABRIEIZEERR E 4 application/json ©

* B¥
NREIEARGEEE JSON ~ BIZERIIIRERER E 4% application/json ©
* iE

WAERLL base64 FHIRISHERERBN BB KK EEAREE
FRsEAX
A XHRA GRS EERZMAEFAARR  HTTPERAX B S THIHP—IE
* EARAS#BHIsonIfE (PIINFHEERNRLE)

=

BRI
SE (R MR GetBIAPIPF IR ~ R DURIR(E eI B 11 SRR RETERIBII ¢+ o HUS ~ WA BUEERF S HRYE

<field>=<query value>

BRTRENGRIER « EAHMEBE FAILER—RIMEN B o SR THIEFEIRIES - ONTAP Select

WES 98
: %R
< NS
> AR



EER 0B
&l;= INA S ER
>= KR HEFR
)%
! RER
* BENERFIT

THRIUEAnUIRARFHESE (! nul) MAEHRN—ED « REESREREMAIREL—BMHE

BEEI L

RIETAR ~ EAGet3 HAPIPEAYET « R EEOE—HFMHRELE - SER/IVRA RS EMHFIER ™
BEREMTEEMAFRATR o GrIUER TRUER) 280 UTHATVEREMYIFEEMNE

* EEBRIRAL
155 fields=* FEEVEAH RS SCISAEPAEZNYIHRN - SRF D ERIZRIAIFE

* BRERE
157 fields=** FRENFRIAYIMHRIL - EFF2RIMIIRS R BeFENBIRIL o

© BETHRIERE
M fields=FIELDNAME 15T SERIFETIRAL - EXRZERUE K AERAIERIERIIRE °

BERBULR  BURHCOENSEM - CRAERERNER—ERENS SO - ©
B B 5B 09 R ENetAppRIFRESAE DA * HEIMLE D BAIRER2E -

bZlded it Sesl: DEY/IES

BRESPHLEG UH ERNTERIERFEE] o EEILUER order_by BEFASHEEITE W ERAMAIRMEHM
HEF73m ~ SRR

order by=<field name> asc|desc

BN ~ SR ARIELE IR ~ DUERIER HEFERER (L ~ ARMKIDEE :

order by=type desc, id asc
BEZELEE  ERBELCERDFRREAL o

nE

EFAGetZE R — 82 IV E SRFZ AP « FER 2ECIFMAEMRMTNYIG - MBEE ~ G U
Fimain_Records &2 #IE A E KRR H IS AYECEREL © Flin -

max records=20

MAEFRE - CAILGRIE2HAAMENSHEH i VERESLE - AN ~ TIEERZEELIEERHEZE
EER 10 BRASME
time= 2019-04-04T15:41:29.140265zZ&max records=10

RIS HESG (SHEAYHER) ZHSEDEER - BREBEOAPIIIRERERBERETNRNTE
 ~ (ERARIREIE o



EAPICIFE

FEAPIZREGHAFIRELRIE o A UREEIFELFE
BEM ~ WRFERIEMER

HTTPAREECES

ZREREST APIFREARMIHTTPARAEACEE N Rt ©

12 TUHS & =EA

200 Yy RNAREBI I BIIERERS ©

201. B ERINEIMMY ; (I ERIEIRRE Y EFRIME—R RS o
202.02 BER PITERNBRTIFERIBIIT » BIFERRTK °
400 TEERER BRI EENEREA ©

403. Bk FR IR RESERR ~ FHVEE -

404.04 HAE] ERPRENERFEFE o

405 RAFHERT A BRARERPBIHTTPENF ©

409. (EIES BUMHNESARN - BRI EEEE -

500 RIEREEER EIARER L — AR EBEEER ©

S01. REF URIEAMBEAMITER ©

[OIfEARER

HERPRSBELENHTTPEIERE S BERE « 84F :

- & %l
SERINIEY APl ZREEI5IRME—BIZRHFES o
A=
BiuHE - (UERESESHYHRITE URL ~ SIS03RS o

A
HAPIZXRBENEIRATEEMH « RIEEE « URERBBRINHEKRMAFRRRE o B ELUIson2E

- Bt
B ETIREERME A o A0« SIS (Getr (U9  ERR—BABHREENEE
Py o
- SR
THERESWES BN o EEMERT  HAGB MO nun_records It O EMARITERNE
FATERTIAIERE - BN ~ (PTDURERTE RS R R B 0P R -

* TRt
MRAPIFILFERES AR « BIg@ER TEYH « MEE SR IIE G0 ~ AREERENPOSTERE
DIERS AR ~ MER R4 -

* SRV
MR ESR - —FEELERYM - flI0 « ECERRUCHFERBHRER « TWEIEEZRASR -



* ZEH
FRELEBERT - FEEEERER - BIEAXZEZER © FIU0 « EADELETERIFRRA T2 « BIEANXS

EH-e
ERAITFIHEITIERD RE

BLEEZEAPIEL (LEHEZISERERNIFEL) AIfEEELLHE thiFYE RAVEFE A SE5T
B o UIEET FREEELREEHMITHIERK - ONTAP Select

ERTIFHRENIER T EX
TEIEETZ]AT API IR Z 18 ~ HTTP [BIFEALES 202 RRZEREMINERELIER « BREKTHR © LEREUE

RIEAZRE « WER AR IRNE HTTP BEZ REERT - IR SERBEERNIIEYMG « BEHEKE
— A B o

@ %EE%EE%ESONTAP Select MIFETERE) R EXMHEE ~ UFIEMBLAPINFIYZLIEES B UE
B API ZXABREBN TR

HTTPRIEFREEN TEMHEIBEARSR  LAIUEHRERR  UAEBERESHINTTH - TR LUE
T E R

=l

* BT

* AIh

* W=
EwaA LR LUER TIRRVAR IRt AR AR RS « (SRIUERMAERIS | lIhER -

* REERAER

BRI TIRRRE S 1L EEE]

© ERWER
RETERE TP —EERE « A EEETIERE

© RASEBHERIL MO ER LR B R mE S
| BREEBE (11208

RERAN RiRAEAERAPITIZREA TIEYMH - T8 - RIBHAEREESMEEHSH | poll_timeout
# last modified e

© mEzxEERERIOR BEERLE N TIFEHE o
SRS BRI — AR
(R F RS AR F AT RIE RS AP AL -

1. SHIEED APIIEDY o



2. Z HTTP [EIFE 202 ~ RRERIMEZEK o
3. K EIFEASCHEER TR a9 BIAS o
4. {EEEMN ~ EEEERRHRIT ISR
a. LURFMmAE RIS TIER B AitkAS
b. MR TIERMIFARIHIEAREE ((FFIH ~ BITH) ~ BEBERPITER o
5. BTIEETIARIHIARAS (ARTh ~ KB BFELE o

e R a7
PR3 B 8 7P RAPIZ A1
FEEM THE) S EXHEEZA  CRZRRAESE -

HETE

MRCHEEITHEBBHEETFRFZLAPITN ~ BIEZFETAETSE - BESFEIURENTIFER
B~ BEESTHNERMNECRRAPIIEL - MFBFHAEN - F2REREEREST AP LIERIZER °

JsonFE AN S EER

SEAPIFIEE U —BIRAEX G EETREA - AR BEEFHE - ERSHBRHTTPARREAS o It5 « &
AT AR RAPIZ KM EIFEFRE M B9 sonsHARE AL ~ N FPAR

* gHE

YNRITTE API I _E¥2—TF example. value ~ RIERETEEERVEE JSON 4515 o IERTIMRBEIEREE A
MR ELAEAS FRER RIBAA ©

* RE
WNRIEHE—T Model ~ BRI JSON 2EEE « WiRHESESEAIRA -

S HAPIF IR E R SRR

TfER T8E) XHFEEATHFBAPIEREZEREER  GR/NOREZHZRMET « FHHRMIFRERRSEM

FREEXHER

N BTZENONTAP Select TE#hRAS) 48 EXXHEEE ~ AREBETAPING ~ LUKk FE)EH
HAPIFEDY o

ez Al
WA AEBETINES

* W ERE E R AR BV IPI UL B A R AEONTAP Select
* REESNERERENEE



1. ERIEIBRFEAURL « A% Enter * ©
https://<ip_ address>/api/ui
2. FREESFERAERBNEBREA o
MR
T XHHEEERET - EEKIEERKEERBE5REEE o
B AR 1T API B0

FﬁﬁAPlﬂ?m—IE’\J BRI LB AR TN EC i R EERTEONTAP Select TEH7) 42 EXH4EE
o RERERE—APINNY « BIA]ZEN A R ZFT B APINENY pYEEAHE i o

SR Z Al
1T J8% AONTAP Select | 'Webdeploy#R EXX 1 #E o IR « S EidE—R RS RAEONTAP
Select fEAYEREE o
RAFEIETE
1EA] LLONTAP Select fiE FAE45 0955 BB REBE I (B E ERVERR BN o 7EULEHIS - SECIFRERES B
B B - 7B ~ RIEBHMOER  MREERFABAVRERIIL °
B
1. ZXHEL - BRERD - REH—T TEE -

2. #—T T Get/cluster/ {cluster id} *1 WMEETRAPIMEIUAYEFARER] « SZAPIMELLY FAFEEIONTAP Select B
R EREMNEN -

TERIZIERE

ERAPIL{ERIZZ A
e 2 BT IR R fE F TETRAZAERS ©

B T VERAZRR (80 API 10Y

(Z#E) 8 EXHEEESERREST APIMEIUAYEFAME K - ONTAP Select TER#2 £85I E A S {EAPIFEAY
%rs 1B SR EXHEE LRI ENET « MIEFEILEEELEFMAER o HENFTEAPINEI 2% RIS
EERREHAER - BEEAZE  HHEERI - HTTPARAERBREREIEFER -

TEREFHNSEAPILIEE S FIIEN « AIHBSEXHEE L EIPEY
bl

AP E7E XA EmE _EAAS IR BRAN &I T EER - EESIHFEMAPINEL  BHEHEE@EESD « A%
B—TERMAPIER] o

* HTTPE)Ed
HTTPEIA Al A E B IR EBITRENE - B{EAPINIERZ BB E —HTTPEIRHIT ©
. %1‘«

BEERESFENTEZRERZNEEERR - BEFHREMMEZOURL ~ DABRGHRIEIREYEE



URL °

#£1#% URL L E1%77H REST API

BT TZEREM XHEA - S UBEESARIZEES (flfPython) 7ZEX MEBZEREST APl1 ONTAP Select
o TEUEERT ~ OURLETZEAR X4 BEEBSFIERMNURLERE RE - EiZFEAPIE « S4B/ APIKIINZE
M A EIFIEF &R o g ¢

http://deploy.mycompany.com/api

TYERIE1 | 72 ESXi LBV BRI ERE

IR L TEONTAP Select HvCenterZIEfIVMware ESXiF 1% _ZF2 85 Ei2LA9VMware ESXi
=5 o R LML IRHERRERIL ©

=EEBUTERETE FBERTAFRTR :

* ESXiEi&rIEvCenter (HIiL M) HIE
* RERNFRS AR

* EENEN ERERENERFRIRRET
* {FFKVM HypervisoriIEVMware ESXi

° WEINREE M EINAE BT EINAEEHT » LG HEBTEKVM Hypervisor L EiZ 28 ONTAP

Select °
@ ° RINBEZIBBIRRAHE ~ BT TEE4R) A0 THIBRL IHREZIM ~ FREMEIRIHAEE A BEAR
IHENKVMEEF EHONTAP Select ©

1.5 #kvCenter(Al AR 2805

EREZEHvCenter(Al RS IBAIESXiEERF « IAZBEILTIILERE ~ TREB R T - A% « BESHELBRERMA
LU A28 R ER 5 vCenter ©

55! HTTPE): BRE
2pE A3 1= EE/ERE
BE

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step0l 'https://10.21.191.150/api/security/credentials’

Json#i A ((FE%01)

10



"hostname": "vcenter.company-demo.com",
"type": "vcenter",
"username": "misteradmin@vsphere.local",

"password": "mypassword"

BRIELERY
IERET

* (I EOERIRERPHIFIEEID
* TRt

2.:¥fHypervisorF 14
TE BRI HypervisorE 14 ~ LI{EONTAP Select SI1TE = ILETBARIE 4SS ©

Vil HTTPE):d) BRI
mE i< e
BE

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step02 'https://10.21.191.150/api/hosts’

Json#i A (5EF02)

"hosts": [
{
"hypervisor type": "ESX",
"management server": "vcenter.company-demo.com",
"name": "esxl.company-demo.com"
}
]
}
BRIELARY
IERL

* (UEEIRREPIEHID

11



© TIRfF

.EURE
E1TEILONTAP Select —EZRER « R E T REANEEMAR  WEBMEOSELHRIRM

£85 HTTPE):A g
=E 374 I
BE
B —EEENEHZHnode_countfE& A1 ©

curl -i1iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @step03 'https://10.21.191.150/api/clusters? node count=1"

Json#i A ((0EF03)

"name": "my cluster"

FRIEAERY
kg

ot
* (U EEEIREPHEEID

£7 HTTPEIE  BA(E
=5 ERHIE #&/ {cluster}
B

WA BRRMEREID o

curl -i1iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step04 'https://10.21.191.150/api/clusters/CLUSTERID'

Json#i A (:5E%04)

12



"dns info": {
"domains": ["labl.company-demo.com"],
"dns ips": ["10.206.80.135", "10.206.80.136"]
b

"ontap image version": "9.5",
"gateway": "10.206.80.1",

"ip": "10.206.80.115",
"netmask": "255.255.255.192",
"ntp servers": {"10.206.80.183"}

FRIELARY
Eikg

wih

P
it
7

5. FRENENRE A
ERURER - NEEELARENG BHELHRHRIEENATE o SRS RBEGEIRID « A HERE

=)l HTTPEh:A BRAK
=5 S #Z&/ {cluster} /EHEL
B

WA BIRMHEEID o

curl -iX GET -u admin:<password> -k
'https://10.21.191.150/api/clusters/CLUSTERID/nodes?fields=1id, name'

IR
m%

wih
* [E%EE RS E L M — DM BRI B —ER A Bk

6.5% E BiEh
T RR A E R EAABRE « EEARKREMRB =EAPIFEIRRYE—(E o

$85 HTTPE:E BRI
=5 BRIE #E/ {cluster} /E1%4/ {node_id}

B2 o

13



oz
LRI R EEIDMERREID o

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step06 'https://10.21.191.150/api/clusters/CLUSTERID/nodes/NODEID'

Json#i A (7 EF06)
RABEIRHONTAP Select #1TIEEREEAIIEHLID ©

"host": {

"id": "HOSTID"

by
"instance type": "small",
"ip": "10.206.80.101",

"passthrough disks": false

FRIEEERY
ik

7. HRENENRLAEES
A 7R ) B ENRL s S TP BN PR E RV B RN SRR - REMERAERNE—REE -

£85 HTTPE:E BRI
=& g &/ {cluster} /E%4/ {node_id} /ABE&
BE

s R RS IDMERREID o

curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/
clusters/CLUSTERID/nodes/NODEID/networks?fields=id, purpose’

FRIELERY
ik

* MECERAET « BFCED BIRPARRAE—E - SiEE—IDMAZR

14



8.3% T BNALAEER
TRAREERNEERMEE - NEMERAERNE MRS

() mHTHAPIURR « SEAERE—X

gl HTTPE): BBIE
=5 EmE #E/ {cluster} /EiBY/ {node_ id} /48%&/ {network_id}
BE

R EIREEEID « SiZ5IDFIAEERID ©

curl -iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step08 'https://10.21.191.150/api/clusters/
CLUSTERID/nodes/NODEID/networks/NETWORKID'

Json#iil A (5 E308)
CEEIRHERETE o

"name": "sDOT Network"
}
ERIEAEE
EiEZ
Loifas
9.5 E BNRA 7 R A

REMBNRE—TEZMNEFERM o RIS BvSphere Web A R iR SUEBEREREST APl (GEF) ZRHIER
AT ANEEEIRM -

g3l HTTPE):R iz
=5 EREIER #E/ {cluster} /E124/ {node_id} /4BE&/ {network id}
?%5%

TR EEID - ERESIDFIAEEEID o

curl -i1iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'

15



Json#ii A (EZ09)
EEF=A2TB

"pool array": |
{

"name": "sDOT-01",
"capacity": 2147483648000

BRIELARY
ik
it

Erird

7y

10.BEE
REEEMEMI 2% - I EHEE o

E3=h] HTTPEh:A BRI
=5 AbX 225/ {cluster} /ZE
it o4

T RIRHEEID o

curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
-d @stepl0 'https://10.21.191.150/api/clusters/CLUSTERID/deploy’

Json#i A (5E$10)
IRABIRHONTAP R BIEE RS IR o

"ontap credentials": {
"password": "mypassword"
}
}
BRIELERY
IEEL

16



wih
© TIRfF

{EFAPython{ZEY

fEFAPython7ZEXAPIZ Hi
FEWITEFIPythontE T Z Al ~ GRS EEHFIRIR
ERITPythonIE REZ Al ~ N EREEIRIE G EIER
© WERRRMERRABPython2 o
BAREEEEAPython2&TRIE o EFfithRETT#EPython3 ~ (B KRBT MR o

* MBLEERMurllib3FETLE ©
R LURIBIR I Apip EthtPythonBIE2 T A o

* PUTIE LB A P iR TR /RAE 5B B AEER 7 EXONTAP Select Z|ZH) &1 E EHKES
ItESh ~ S BRETIIERN

* EPEEHHERRYIPAAL
* BERMEESIRPERERENER

BEfZ Python 15T

Python{5 S IS SR FIRIEHAITZS IBARN ITAE o [SEZTEARIS S « BIERIRFEEIT
EREPER ©

WA
ELBIRFTRA TIERSHE ¢
* AR IRESRNES LTI NTEAIT
fEa] URERILEFE R E R FE P imt 231 T Python 1515 © :A2680_RMMRAT_UBUSEZEH -

* % CLIBAZY
BEIE<BEAREBBASHIE CLI izl -

* SEEEALE
BEIE B G REERGREIREALNR o B liFEER « SORRMIsonHREE o FTEERRER - &
WRRMAMBIRTERESE

© FREAXZEES
—R&ZIE1R4E deploy _request.py B R E—4E7 - SEISTISEZEAMLFALLISSH

Bi=E

IEAJ LAONTAP Select fERIELHBEE py REZL —ERRERSE © RIFJsonBAEHCLIZHEMAR - ERILIF
IR HEAMEIRE « ITFAR -

17



* WINAEENEINEENEINEEH - S EIEZBTEKVM Hypervisor EEBZEHZEONTAP

Select °
@ * WINREZIBAVRRASEE ~ BT THEARL A THIBRL IhEEZIM ~ FREMNEIRREEHABEENIR
BHKVMZBEFEHONTAP Select ©

* Hypervisor
BRI ABREBE ESXi T KVM  (fREPBARAME) o BB ZEESXiFF * Hypervisora] A vCenterBIE ~ H AL
BRI E -

* BEAN
TR ASPEE — GRS S AR R o

* FHMEEIETVI R IR E
RIS EAREIRNEEE EVFRIRENRSE -

ELBHCLIEmAS MBS !

* BERARINEE L IERIPALILE
- BIEFEREIRANEN

* JsonfHREAERI BB

* S RS ARREAR

HTIE ENRL IR

MRCEZNBIF R EE « BN BFERAISSHE_add_license .py A S EEELITIZIZHE o FAIUGEHEBEE Y
HIS Z BRI IRE o

IELERCLImASHELE !

* ERERARES I RTBEIP{E

- BEIEEREIRP VT

 RIEERRTE

© BEEIRIEERAERAERBONTAP
* ZHSONTAP

fipREEE
&R LLONTAP Select fEBIESHE_delete_cluster .py_MRIREHIFELE o
FESHEMCLIAZHEIE :

* EPE(EPRESAI 1B FBER Pkt
- BIEFRERENEE
* JsonfHRERERV LB

18



PythonfZ UG

B EENEHE
TAIUER TIEH « IRIBFIEHTERNS BN Jsons AEREL =E -

#!/usr/bin/env python

File: cluster.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import traceback

import argparse

import json

import logging

from deploy requests import DeployRequests

def add vcenter credentials(deploy, config):

[

[

""" Add credentials for the vcenter if present in the config """
log _debug trace ()

vcenter = config.get ('vcenter', None)
if vcenter and not deploy.resource exists('/security/credentials',
'hostname', vcenter

'hostname']) :

log info("Registering vcenter {} credentials".format (vcenter

'hostname']))

data = {k: vcenter[k] for k in ['hostname', 'username',

'password']}

19



data['type'] = "vcenter"
deploy.post ('/security/credentials', data)

def add standalone_host credentials (deploy, config):
""" Add credentials for standalone hosts if present in the config.
Does nothing if the host credential already exists on the Deploy.

mwn

log debug trace ()

hosts = config.get ('hosts', [1])
for host in hosts:
# The presense of the 'password' will be used only for standalone
hosts.
# If this host is managed by a vcenter, it should not have a host
'password' in the json.
if 'password' in host and not deploy.resource exists
('/security/credentials',
'hostname',
host['name']) :
log info("Registering host {} credentials".format (host]|
'name']))
data = {'hostname': host['name'], 'type': 'host',
'username': host['username'], 'password': host
['password']}
deploy.post ('/security/credentials', data)

def register unkown hosts(deploy, config):

Registers all hosts with the deploy server.
The host details are read from the cluster config json file.

This method will skip any hosts that are already registered.
This method will exit the script if no hosts are found in the
config.

LI |

log _debug trace ()

data = {"hosts": []}
if 'hosts' not in config or not config['hosts']:
log and exit ("The cluster config requires at least 1 entry in the
'hosts' list got {}".format (config))

missing host cnt = 0
for host in config['hosts']:
if not deploy.resource exists('/hosts', 'name', host['name']):



missing host cnt += 1

host config = {"name": host['name'], "hypervisor type": host
["type'l}
if 'mgmt server' in host:
host config["management server"] = host['mgmt server']
log info(
"Registering from vcenter {mgmt server}".format (**
host))
if 'password' in host and 'user' in host:
host config['credential'] = {
"password": host['password'], "username": host]
'user']}

log info("Registering {type} host {name}".format (**host))
data["hosts"].append(host config)

# only post /hosts if some missing hosts were found
if missing host cnt:
deploy.post ('/hosts', data, wait for job=True)

def add cluster attributes(deploy, config):
''"'" POST a new cluster with all needed attribute wvalues.

Returns the cluster id of the new config

LI B |

log debug trace ()

cluster config = config['cluster']
cluster id = deploy.find resource('/clusters', 'name', cluster config
["name'])

if not cluster id:
log info("Creating cluster config named {name}".format (
**cluster config))

# Filter to only the valid attributes, ignores anything else in
the Jjson
data = {k: cluster config[k] for k in [
'name', 'ip', 'gateway', 'netmask', 'ontap image version',
'dns_info', 'ntp servers']}
num nodes = len(config['nodes'])

log info("Cluster properties: {}".format (data))

resp = deploy.post('/v3/clusters?nodeicount:{}'.format(num_nodes),

21



22

data)
cluster id = resp.headers.get ('Location') .split ('/") [-1]

return cluster id

def get node_ ids (deploy, cluster id):

''' Get the the ids of the nodes in a cluster. Returns a list of
node ids.'"''

log debug trace ()

response = deploy.get('/clusters/{}/nodes'.format(cluster_id))

node ids = [node['id'] for node in response.json() .get ('records')]
return node ids

def add node_ attributes(deploy, cluster id, node id, node):
''"'" Set all the needed properties on a node '''

log _debug trace ()
log info("Adding node '{}' properties".format (node id))

data = {k: nodelk] for k in ['ip', 'serial number', 'instance type',
'is storage efficiency enabled'] if k in
node}
# Optional: Set a serial number
if 'license' in node:

data['license'] = {'id': node['license']}

# Assign the host
host id = deploy.find_resource('/hosts', 'name', node['host name'])
if not host id:
log and exit ("Host names must match in the 'hosts' array, and the
nodes.host name property")

data['host'] = {'id': host id}

# Set the correct raid type
is hw raid = not node['storage'].get('disks"') # The presence of a
list of disks indicates sw raid

data['passthrough disks'] = not is hw raid
# Optionally set a custom node name
if 'name' in node:

data['name'] = node['name']

log info("Node properties: {}".format (data))



deploy.patch('/clusters/{}/nodes/{}'.format (cluster id, node id),
data)

def add_node networks (deploy, cluster id, node id, node):

Set the network information for a node '''
log debug trace ()

log info("Adding node '{}' network properties".format (node id))

num nodes = deploy.get_num_records('/clusterS/{}/nodes'.format
(cluster id))

for network in node['networks']:

# single node clusters do not use the 'internal' network
if num nodes == 1 and network['purpose'] == 'internal':
continue

# Deduce the network id given the purpose for each entry
network id = deploy.find resource (
'/clusters/{}/nodes/{}/networks'.format (cluster id, node id),
'purpose', network|['purpose'])
data = {"name": network['name']}
if 'vlian' in network and network['vlan']:
data['vlan id'] = network['vlan']

deploy.patch ('/clusters/{}/nodes/{}/networks/{}"'.format (
cluster id, node id, network id), data)

def add node_ storage (deploy, cluster id, node id, node):
'''" Set all the storage information on a node '''

log _debug trace ()

log info("Adding node '{}' storage properties".format (node id))

log info("Node storage: {}".format (node['storage']['pools']))
data = {'pool array': node['storage']['pools']} # use all the json
properties

deploy.post (
'/clusters/{}/nodes/{}/storage/pools'.format (cluster id, node id),
data)

if 'disks' in node['storage'] and node['storage']['disks']:
data = {'disks': node['storage'](['disks']}
deploy.post (



24

'/clusters/{}/nodes/{}/storage/disks"'.format (cluster id,

node id), data)

def create cluster config(deploy, config):

LI |

json data '''

def

log debug trace ()
cluster id = add cluster attributes (deploy, config)

node ids = get node ids(deploy, cluster id)
node configs = config['nodes']

for node id, node config in zip(node ids, node configs):
add node attributes(deploy, cluster id, node id, node config)
add node networks (deploy, cluster id, node id, node configq)
add node storage (deploy, cluster id, node id, node config)

return cluster id

deploy cluster (deploy, cluster id, config):

'''" Deploy the cluster config to create the ONTAP Select VMs. '''
log _debug trace ()

log info("Deploying cluster: {}".format (cluster id))

data = {'ontap credential': {'password': config['cluster'

] ['ontap admin password']}}

deploy.post ('/clusters/{}/deploy?inhibit rollback=true'.format

(cluster id),

def

def

def

data, wait for job=True)

log_debug trace():

stack = traceback.extract stack()

parent function = stack[-2] [2]
logging.getLogger ('deploy') .debug('Calling %s()' % parent function)
log_info (msg) :

logging.getLogger ('deploy') .info (msqg)

log _and exit (msg) :

logging.getLogger ('deploy') .error (msqg)
exit (1)

Construct a cluster config in the deploy server using the input



def configure logging (verbose) :
FORMAT = 'S (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
if verbose:

logging.basicConfig(level=1logging.DEBUG, format=FORMAT)
else:

logging.basicConfig(level=1logging.INFO, format=FORMAT)

logging.getlLogger ('requests.packages.urllib3.connectionpool’
) .setLevel (

logging.WARNING)

def main (args):
configure logging(args.verbose)
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

add vcenter credentials (deploy, config)

add standalone host credentials(deploy, config)
register unkown hosts(deploy, config)

cluster id = create cluster config(deploy, config)
deploy cluster(deploy, cluster id, config)

def parseArgs() :

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to construct and deploy a cluster.')

parser.add argument('-d', '--deploy', help='Hostname or IP address of
Deploy server')

parser.add argument('-p', '--password', help='Admin password of Deploy
server')
parser.add argument ('-c', '--config file', help='Filename of the

cluster config')
parser.add argument ('-v', '--verbose', help='Display extra debugging
messages for seeing exact API calls and responses',

action='store true', default=False)
return parser.parse_args ()

if name == ' main g

args = parseArgs ()



main (args)

RAREiIREZiE<HERIJson

fEFAONTAP Select Pythont2 U hEE651I72 7 S i PR — B PR R & FF ~ IS EIRH—{EJson
BEREARTHENEA o R UIRIEIE5 ERE R RMESCEE N IsonEifl o

ESXi ERVEREESE

"hosts": [
{
"password": "mypasswordl",
"name": "host-1234",
"type": "ESX",
"username": "admin"
}
I

"cluster": {
"dns_info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",

"gateway": "10.206.80.1",

"ip": "10.206.80.115",

"name": "mycluster",

"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",

"netmask": "255.255.254.0"

by

"nodes": [
{
"serial number": "3200000nn",
"ip": "10.206.80.114",
"name": "node-1",
"networks": [
{
"name": "ontap-external",

"purpose": "mgmt",

26



"vlan": 1234

"name": "ontap-external",
"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlian": null

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {

"disk": [],

"pools": [

{
"name": "storage-pool-1",

"capacity": 4802666790125

{EFvCenter{TESXi - {F B ELELE

"hosts": [
{
"name" :"host-1234",
"type":"ESX",

"mgmt server":"vcenter-1234"

1,

"cluster": {
"dns info": {"domains": ["labl.company-demo.com", "labZ.company-
demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,



"dns ips": ["10.206.80.135","10.206.80.136"]
by

"ontap image version":"9.7",
"gateway":"10.206.80.1",

"ip":"10.206.80.115",

"name" :"mycluster",

"ntp servers": ["10.206.80.183","10.206.80.142"],
"ontap admin password":"mypassword2",
"netmask":"255.255.254.0"

by

"vcenter": {
"password":"mypassword2",
"hostname" :"vcenter-1234",

"username":"selectadmin"

by

"nodes": [

{

"serial number": "3200000nn",
"ip":"10.206.80.114",

"name" :"node-1",

"networks": [

{

"name" : "ONTAP-Management",
"purpose" :"mgmt",
"vlian" :null

"name": "ONTAP-External",
"purpose":"data",
"vlian" :null

"name": "ONTAP-Internal",
"purpose":"internal",
"vlan" :null
}
I

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk":[1,

28



"pools": [
{
"name": "storage-pool-1",
"capacity":5685190380748

KVM_ERYEBEIRE RS

* WINAEENEINEENEINFEEH - S EIEBTEKVM Hypervisor EEBZHZHEONTAP

Select °
@ * WINFEZIEMIRRASEE ~ BT TEE4R) A0 THIBR) THEEZSM ~ FRENEIRTIAEEABERRIR
BAHMKVMEEM EONTAP Select ©

"hosts": [
{
"password": "mypasswordl",
"name" :"host-1234",
"type":"KVM",

"username" :"root"
}
]I
"cluster": {
"dns info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",
"gateway":"10.206.80.1",

"ip":"10.206.80.115",

"name" : "CBF4ED97",

"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",
"netmask":"255.255.254.0"

by

29



"nodes": [

{

"serial number":"3200000nn",
"ip":"10.206.80.115",
"name": "node-1",
"networks": |
{
"name": "ontap-external",
"purpose": "mgmt",
"vlan":1234
by
{
"name": "ontap-external",

"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlian": null
}
]I

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk": [],
"pools": [
{
"name": "storage-pool-1",
"capacity": 4802666790125

L BRI RIS 1S
eI LAEF A1 < BEIRFTIEONTAP Select R B EIRARVIERE o

#!/usr/bin/env python

30



R e T

File: add license.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import argparse

import logging

import Jjson

from deploy requests import DeployRequests

def post new_ license (deploy, license filename) :

log info('Posting a new license: {}'.format(license filename))
# Stream the file as multipart/form-data
deploy.post('/licensing/licenses', data={},

files={"'license file': open(license filename, 'rb')})

# Alternative if the NLF license data is converted to a string.

# with open(license filename, 'rb') as f:

# nlf data = f.read()

# r = deploy.post('/licensing/licenses', data={},

id files={'"'license file': (license filename,
nlf data)})

def put license(deploy, serial number, data, files):

log info('Adding license for serial number: {}'.format (serial number))

deploy.put ('/licensing/licenses/{}'.format (serial number), data=data,

files=files)

def put used license (deploy, serial number, license filename,

31



ontap username, ontap password) :
""" If the license is used by an 'online' cluster, a username/password

must be given. '''

data = {'ontap username': ontap username, 'ontap password':
ontap password}
files = {'license file': open(license filename, 'rb')}

put license(deploy, serial number, data, files)

def put free license (deploy, serial number, license filename) :
data = {}
files = {'license file': open(license filename, 'rb')}

put license (deploy, serial number, data, files)

def get serial number from license(license filename) :
''' Read the NLF file to extract the serial number '''
with open(license filename) as f:
data = json.load(f)

statusResp = data.get ('statusResp', {})
serialNumber = statusResp.get ('serialNumber')
if not serialNumber:
log and exit ("The license file seems to be missing the
serialNumber")

return serialNumber

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def log_and exit (msg):
logging.getLogger ('deploy') .error (msqg)
exit (1)

def configure logging() :
FORMAT = '$ (asctime)-15s:% (levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getLogger ('requests.packages.urllib3.connectionpool').
setLevel (logging.WARNING)

32



def main(args):
configure logging()
serial number = get serial number from license(args.license)

deploy = DeployRequests (args.deploy, args.password)

# First check if there is already a license resource for this serial-
number

if deploy.find resource('/licensing/licenses', 'id', serial number):

# If the license already exists in the Deploy server, determine if
its used

if deploy.find resource('/clusters', 'nodes.serial number',
serial number) :

# In this case, requires ONTAP creds to push the license to
the node
if args.ontap username and args.ontap password:
put used license(deploy, serial number, args.license,
args.ontap username, args.ontap password)
else:
print ("ERROR: The serial number for this license is in
use. Please provide ONTAP credentials.")
else:
# License exists, but its not used
put free license(deploy, serial number, args.license)
else:
# No license exists, so register a new one as an available license
for later use

post new license(deploy, args.license)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to add or update a new or used NLF license file.')

parser.add argument ('-d', '--deploy', required=True, type=str, help
='Hostname or IP address of ONTAP Select Deploy')

parser.add argument ('-p', '--password', required=True, type=str, help
='Admin password of Deploy server')

parser.add argument('-1', '--license', required=True, type=str, help
='Filename of the NLF license data')

parser.add argument('-u', '--ontap username',6 type=str,

help="'ONTAP Select username with privelege to add

the license. Only provide if the license is used by a Node.')

parser.add argument('-o', '--ontap password',6 type=str,

33



help='ONTAP Select password for the

ontap username. Required only if ontap username is given.')

return parser.parse_args ()

if name == ' main ':

args = parseArgs ()
main (args)

MR ERFE<HS
TAIAGER TYICLES S BB RMIFFIRB RIEE ©

#!/usr/bin/env python

File: delete cluster.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import argparse

import json

import logging

from deploy requests import DeployRequests

def find cluster(deploy, cluster name):

return deploy.find resource('/clusters', 'name', cluster name)

def offline cluster(deploy, cluster id):

34

# Test that the cluster is online, otherwise do nothing
response = deploy.get('/clusters/{}?fields=state'.format(cluster_id))
cluster data = response.json() ['record']



if cluster data['state'] == 'powered on':
log info ("Found the cluster to be online, modifying it to be
powered off.")

deploy.patch('/clusters/{}'.format (cluster id), {'availability':
'powered off'}, True)

def delete_cluster (deploy, cluster id):

log info("Deleting the cluster({}).".format (cluster id))
deploy.delete('/clusters/{}'.format (cluster id), True)
pass

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def configure logging() :
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getLogger ('requests.packages.urllib3.connectionpool"') .
setLevel (logging.WARNING)

def main(args):
configure logging /()
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as Json data:
config = json.load(json data)

cluster id = find cluster (deploy, config['cluster']['name'])

log info("Found the cluster {} with id: {}.".format (config
['cluster'] ['name'], cluster id))

offline cluster (deploy, cluster id)

delete cluster(deploy, cluster id)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to delete a cluster')

parser.add argument ('-d', '--deploy', required=True, type=str, help
='Hostname or IP address of Deploy server')
parser.add argument ('-p', '--password', required=True, type=str, help

35



='Admin password of Deploy server')

parser.add argument ('-c', '--config file', required=True, type=str,
help='Filename of the cluster json config')

return parser.parse_ args ()

if name == ' main U g

args = parseArgs ()

main (args)

AT IR R
FREPythonta L HEER S £ B — 1R 4E R ABARIPython£RH! °

#!/usr/bin/env python

B

File: deploy requests.py
(C) Copyright 2019 NetApp, Inc.

This sample code 1is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

H= S S S S S S SR S S SR Sk S o o

import Jjson
import logging
import requests

requests.packages.urllib3.disable warnings ()
class DeployRequests (object) :

LI |

Wrapper class for requests that simplifies the ONTAP Select Deploy
path creation and header manipulations for simpler code.

LI |

def init_ (self, ip, admin password) :

36



self.base url = 'https://{}/api'.format (ip)
self.auth = ('admin', admin password)
self.headers = {'Accept': 'application/Jjson'}
self.logger = logging.getLogger ('deploy')

def post(self, path, data, files=None, wait for job=False):

if files:
self.logger.debug ('POST FILES:'")
response = requests.post(self.base url + path,
auth=self.auth, verify=False,
files=files)
else:
self.logger.debug ('POST DATA: %s', data)
response = requests.post(self.base url + path,

auth=self.auth, verify=False,
json=data,

headers=self.headers)

self.logger.debug ('HEADERS: $%$s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on errors(response)

if wait for job and response.status code == 202:
self.wait for job(response.json())
return response

def patch(self, path, data, wait for job=False):

self.logger.debug ('PATCH DATA: $s', data)

response = requests.patch(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: $%$s\nBODY: %s', self.filter headers

(response), response.text)

self.exit on errors(response)
if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

def put(self, path, data, files=None, wait for job=False):

if files:
print ('PUT FILES: {}'.format (data))
response = requests.put (self.base url + path,

auth=self.auth, verify=False,
data=data,

37



files=files)
else:
self.logger.debug ('PUT DATA:"')
response = requests.put (self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

def get(self, path):
""" Get a resource object from the specified path """
response = requests.get(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: %$s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on errors (response)

return response

def delete(self, path, wait for job=False):
""" Delete's a resource from the specified path """
response = requests.delete(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: $%$s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on errors(response)
if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

def find resource (self, path, name, value):

""" Returns the 'id' of the resource if it exists, otherwise None

resource = None

response = self.get('{path}?{field}={value}'.format (
path=path, field=name, value=value))

if response.status code == 200 and response.json() .get
('num records') >= 1:
resource = response.json().get('records') [0].get('id")

38



return resource

def get num records(self, path, query=None):

''"'" Returns the number of records found in a container, or None on

error '''
resource = None
query opt = '?{}'.format (query) if query else "'
response = self.get('{path}{gquery}'.format (path=path, query
=query_opt))
if response.status code == 200
return response.json() .get ('num records')

return None

def resource_ exists(self, path, name, value):
return self.find resource(path, name, value) is not None

def wait_for job(self, response, poll timeout=120):

last modified = response['job']['last modified']
job id = response['job']['id"]
self.logger.info ('Event: ' + response['job']['message'])

while True:
response = self.get('/jobs/{}?fields=state,messageé&"’
'poll timeout={}&last modified=>={}"
.format (
job id, poll timeout, last modified))

job body = response.json().get('record', {})

# Show interesting message updates
message = job body.get ('message', '")
self.logger.info ('Event: ' + message)

# Refresh the last modified time for the poll loop
last modified = job body.get('last modified')

# Look for the final states
state = job body.get ('state', 'unknown')
if state in ['success', 'failure']:
if state == 'failure':
self.logger.error ('FAILED background Jjob.\nJOB:

o©°
[0)]
-

job body)
exit (1) # End the script if a failure occurs

break

def exit on errors(self, response):



if response.status code >= 400:
self.logger.error ('FAILED request to URL: %$s\nHEADERS: %s
\nRESPONSE BODY: %s',
response.request.url,
self.filter headers (response),
response.text)
response.raise for status() # Displays the response error, and

exits the script

@staticmethod
def filter headers (response):
''' Returns a filtered set of the response headers '''
return {key: response.headers[key] for key in ['Location',
'request-id'] if key in response.headers}

RSN/ NSNS
eI LUE A T A1 < BEIREAEEONTAP Select & EIRLAIA /N ©

40

#!/usr/bin/env python

File: resize nodes.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms
no less restrictive than those set forth herein.

S S S S S S S S S e SR S S S =

import argparse
import logging
import sys

from deploy requests import DeployRequests



def parse args():
""" Parses the arguments provided on the command line when executing
this
script and returns the resulting namespace. If all required
arguments
are not provided, an error message indicating the mismatch is
printed and

the script will exit.

mwn

parser = argparse.ArgumentParser (description=(
'Uses the ONTAP Select Deploy API to resize the nodes in the

cluster.'
' For example, you might have a small (4 CPU, 16GB RAM per node)
node'
' cluster and wish to resize the cluster to medium (8 CPU, 64GB
RAM per'
' node). This script will take in the cluster details and then
perform'
' the operation and wait for it to complete.'’
))
parser.add argument ('--deploy', required=True, help=(
'Hostname or IP of the ONTAP Select Deploy VM.'
))
parser.add argument ('--deploy-password', required=True, help=(
'The password for the ONTAP Select Deploy admin user.'
))
parser.add argument ('--cluster', required=True, help=(
'"Hostname or IP of the cluster management interface.'
))
parser.add argument ('--instance-type', required=True, help=(
'The desired instance size of the nodes after the operation is
complete.'
))
parser.add argument ('--ontap-password', required=True, help=(
'The password for the ONTAP administrative user account.'
))
parser.add argument ('--ontap-username', default='admin', help=(
'The username for the ONTAP administrative user account. Default:
admin. '
))
parser.add argument ('--nodes', nargs='+', metavar='NODE NAME', help=/(
'A space separated list of node names for which the resize
operation'’

' should be performed. The default is to apply the resize to all
nodes in'

41



42

' the cluster. If a list of nodes is provided, it must be provided
in HA'

' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)
must be'

' resized in the same operation.'

))

return parser.parse_ args ()

def get cluster(deploy, parsed args):

mwiwmn

Locate the cluster using the arguments provided """

cluster id = deploy.find resource('/clusters', 'ip', parsed args
.cluster)
if not cluster id:
return None

return deploy.get ('/clusters/%s?fields=nodes' % cluster id).json
() ['record']

def get request body(parsed args, cluster):
""" Build the request body """

changes = {'admin password': parsed args.ontap password}

# 1if provided, use the list of nodes given, else use all the nodes in
the cluster
nodes = [node for node in cluster['nodes']]
if parsed args.nodes:
nodes = [node for node in nodes if node['name'] in parsed args
.nodes]

changes|['nodes'] = [
{'instance type': parsed args.instance type, 'id': node['id']} for
node in nodes]

return changes

def main () :
""" Set up the resize operation by gathering the necessary data and
then send

the request to the ONTAP Select Deploy server.

mwwn

logging.basicConfig(

format='[%(asctime)s] [%$(levelname)5s] % (message)s', level=



logging.INFO, )

logging.getLogger ('requests.packages.urllib3"') .setLevel (logging
.WARNING)

parsed args = parse args|()
deploy = DeployRequests (parsed args.deploy, parsed args
.deploy password)

cluster = get cluster (deploy, parsed args)
if not cluster:
deploy.logger.error (
'Unable to find a cluster with a management IP of %s' %
parsed args.cluster)

return 1

changes = get request body(parsed args, cluster)

(o

deploy.patch('/clusters/%s' % cluster['id'], changes, wait for job

=True)

if name == ' main Jg

sys.exit (main())

43



RRIEE

Copyright © 2025 NetApp, Inc. FRTEFRE o GEEIR ° IHEREFMB ARASERET » MERARERE T
Eg&ﬁ%ﬁﬁu&ﬁﬂ?ﬁﬁ&ﬁﬁ % (B ~ EFTEm) B8 aiEFH - 8% - REREEEEFRERSR

9 NetApp hRIEERHTHRZ SRS RET FIIIREN REEHHH !

LEEREELA NETAPP TRER) 21 » AREAAREETRAVER » SEEFRNAERESEERREENEREZ
R > LB - RMEAIBERT > EREENRSENEMER EEEZEZIE « BN - MBI « 155k « &
SEFHTEMIRE (BEEFRRENBEMmIBRTE 25K ; £/ - BRSFIE LRRX | NEEEEDE) - &
it £ AL BE R LUE RS TUFREE A ~ BEESRIETS (BB EM) F75HE > NetApp AR
88 IMEERSNAERNIEZEFEZAREMSETRA o

NetApp 7 & FER £ B APt 2 (R R E BRI > -OARS1TEA o NetApp FEERERERAX PRtz EmimE
EREEET » FRIFEFIELEE NetApp EEHFEE - EANBEILLERT A EEREEMEFE « HIEESER
Hth NetApp & =M ERERIIET FERIRME

AFEMAFz EmZE—IE (8) ULRNEEFF - BSNEFISEREFREFFRE

BIRHERIEREE © BUTHRAIRIER « BRI AREEES DFARS 252.227-7013 (2014 £ 2 A) #1 FAR 52.227-
19 (2007 &£ 12 B) mfy TEMTERER) - JEmEIBERL & (b)(3) /N&RFFk Z PR ©

IEEFrE BN EEERN / WEERY (W FAR 2.101 FAER) HERISA NetApp, Inc. FiF © iRIBEA GRS
HBIFRE NetApp FMTERMERSREEBREENE » TEXZHMALERE - ZEBREFHRZERAS
JEERE ~ JFEGE « JFEIRE « 21K - BRARAMIENERER » ERNERBFASHIEERAISAFRAR
2 #E > WEREBITZENZENATER © IRIEAXSBERE » BRIEKRL NetApp Inc. EFIEEFTH » ~F
E1TER ~ 185 ~ ER B~ BITRETZER - ERIBNTE FREIFE 25T ol #F > ZE A DFARS R
252.227-7015(b) (2014 & 2 B) FritER] o

AR E

NETAPP ~ NETAPP 125§ http://www.netapp.com/TM Fr5l| Z {25192 NetApp, Inc. BIFEIE o SXHFRH R RFR
BHMARANERLE  MAHSEMEENERE > REEIE -

44


http://www.netapp.com/TM

	使用REST自動化 : ONTAP Select
	目錄
	使用REST自動化
	概念
	使用瀏覽器存取
	工作流程程序
	使用Python存取
	Python程式碼範例


