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"hostname": "vcenter.company-demo.com",
"type": "vcenter",
"username": "misteradmin@vsphere.local",

"password": "mypassword"

BRIELERY
IERET

* (I EOERIRERPHIFIEEID
* TRt

2.:¥fHypervisorF 14
TE BRI HypervisorE 14 ~ LI{EONTAP Select SI1TE = ILETBARIE 4SS ©

Vil HTTPE):d) BRI
mE i< e
BE
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"hosts": [
{
"hypervisor type": "ESX",
"management server": "vcenter.company-demo.com",
"name": "esxl.company-demo.com"
}
]
}
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"name": "my cluster"
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"dns info": {
"domains": ["labl.company-demo.com"],
"dns ips": ["10.206.80.135", "10.206.80.136"]
b

"ontap image version": "9.5",
"gateway": "10.206.80.1",

"ip": "10.206.80.115",
"netmask": "255.255.255.192",
"ntp servers": {"10.206.80.183"}
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Json#i A (7 EF06)
RABEIRHONTAP Select #1TIEEREEAIIEHLID ©

"host": {

"id": "HOSTID"

by
"instance type": "small",
"ip": "10.206.80.101",

"passthrough disks": false
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curl -iX GET -u admin:<password> -k 'https://10.21.191.150/api/
clusters/CLUSTERID/nodes/NODEID/networks?fields=id, purpose’
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"name": "sDOT Network"
}
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curl -i1iX PATCH -H 'Content-Type: application/json' -u admin:<password> -k
-d @step09 'https://10.21.191.150/api/clusters/ CLUSTERID/nodes/NODEID'
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"pool array": |
{

"name": "sDOT-01",
"capacity": 2147483648000
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curl -iX POST -H 'Content-Type: application/json' -u admin:<password> -k
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"ontap credentials": {
"password": "mypassword"
}
}
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#!/usr/bin/env python

File: cluster.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import traceback

import argparse

import json

import logging

from deploy requests import DeployRequests

def add vcenter credentials(deploy, config):

[

[

""" Add credentials for the vcenter if present in the config """
log _debug trace ()

vcenter = config.get ('vcenter', None)
if vcenter and not deploy.resource exists('/security/credentials',
'hostname', vcenter

'hostname']) :

log info("Registering vcenter {} credentials".format (vcenter

'hostname']))

data = {k: vcenter[k] for k in ['hostname', 'username',

'password']}
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data['type'] = "vcenter"
deploy.post ('/security/credentials', data)

def add standalone_host credentials (deploy, config):
""" Add credentials for standalone hosts if present in the config.
Does nothing if the host credential already exists on the Deploy.

mwn

log debug trace ()

hosts = config.get ('hosts', [1])
for host in hosts:
# The presense of the 'password' will be used only for standalone
hosts.
# If this host is managed by a vcenter, it should not have a host
'password' in the json.
if 'password' in host and not deploy.resource exists
('/security/credentials',
'hostname',
host['name']) :
log info("Registering host {} credentials".format (host]|
'name']))
data = {'hostname': host['name'], 'type': 'host',
'username': host['username'], 'password': host
['password']}
deploy.post ('/security/credentials', data)

def register unkown hosts(deploy, config):

Registers all hosts with the deploy server.
The host details are read from the cluster config json file.

This method will skip any hosts that are already registered.
This method will exit the script if no hosts are found in the
config.

LI |

log _debug trace ()

data = {"hosts": []}
if 'hosts' not in config or not config['hosts']:
log and exit ("The cluster config requires at least 1 entry in the
'hosts' list got {}".format (config))

missing host cnt = 0
for host in config['hosts']:
if not deploy.resource exists('/hosts', 'name', host['name']):



missing host cnt += 1

host config = {"name": host['name'], "hypervisor type": host
["type'l}
if 'mgmt server' in host:
host config["management server"] = host['mgmt server']
log info(
"Registering from vcenter {mgmt server}".format (**
host))
if 'password' in host and 'user' in host:
host config['credential'] = {
"password": host['password'], "username": host]
'user']}

log info("Registering {type} host {name}".format (**host))
data["hosts"].append(host config)

# only post /hosts if some missing hosts were found
if missing host cnt:
deploy.post ('/hosts', data, wait for job=True)

def add cluster attributes(deploy, config):
''"'" POST a new cluster with all needed attribute wvalues.

Returns the cluster id of the new config

LI B |

log debug trace ()

cluster config = config['cluster']
cluster id = deploy.find resource('/clusters', 'name', cluster config
["name'])

if not cluster id:
log info("Creating cluster config named {name}".format (
**cluster config))

# Filter to only the valid attributes, ignores anything else in
the Jjson
data = {k: cluster config[k] for k in [
'name', 'ip', 'gateway', 'netmask', 'ontap image version',
'dns_info', 'ntp servers']}
num nodes = len(config['nodes'])

log info("Cluster properties: {}".format (data))

resp = deploy.post('/v3/clusters?nodeicount:{}'.format(num_nodes),
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data)
cluster id = resp.headers.get ('Location') .split ('/") [-1]

return cluster id

def get node_ ids (deploy, cluster id):

''' Get the the ids of the nodes in a cluster. Returns a list of
node ids.'"''

log debug trace ()

response = deploy.get('/clusters/{}/nodes'.format(cluster_id))

node ids = [node['id'] for node in response.json() .get ('records')]
return node ids

def add node_ attributes(deploy, cluster id, node id, node):
''"'" Set all the needed properties on a node '''

log _debug trace ()
log info("Adding node '{}' properties".format (node id))

data = {k: nodelk] for k in ['ip', 'serial number', 'instance type',
'is storage efficiency enabled'] if k in
node}
# Optional: Set a serial number
if 'license' in node:

data['license'] = {'id': node['license']}

# Assign the host
host id = deploy.find_resource('/hosts', 'name', node['host name'])
if not host id:
log and exit ("Host names must match in the 'hosts' array, and the
nodes.host name property")

data['host'] = {'id': host id}

# Set the correct raid type
is hw raid = not node['storage'].get('disks"') # The presence of a
list of disks indicates sw raid

data['passthrough disks'] = not is hw raid
# Optionally set a custom node name
if 'name' in node:

data['name'] = node['name']

log info("Node properties: {}".format (data))



deploy.patch('/clusters/{}/nodes/{}'.format (cluster id, node id),
data)

def add_node networks (deploy, cluster id, node id, node):

Set the network information for a node '''
log debug trace ()

log info("Adding node '{}' network properties".format (node id))

num nodes = deploy.get_num_records('/clusterS/{}/nodes'.format
(cluster id))

for network in node['networks']:

# single node clusters do not use the 'internal' network
if num nodes == 1 and network['purpose'] == 'internal':
continue

# Deduce the network id given the purpose for each entry
network id = deploy.find resource (
'/clusters/{}/nodes/{}/networks'.format (cluster id, node id),
'purpose', network|['purpose'])
data = {"name": network['name']}
if 'vlian' in network and network['vlan']:
data['vlan id'] = network['vlan']

deploy.patch ('/clusters/{}/nodes/{}/networks/{}"'.format (
cluster id, node id, network id), data)

def add node_ storage (deploy, cluster id, node id, node):
'''" Set all the storage information on a node '''

log _debug trace ()

log info("Adding node '{}' storage properties".format (node id))

log info("Node storage: {}".format (node['storage']['pools']))
data = {'pool array': node['storage']['pools']} # use all the json
properties

deploy.post (
'/clusters/{}/nodes/{}/storage/pools'.format (cluster id, node id),
data)

if 'disks' in node['storage'] and node['storage']['disks']:
data = {'disks': node['storage'](['disks']}
deploy.post (
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'/clusters/{}/nodes/{}/storage/disks"'.format (cluster id,

node id), data)

def create cluster config(deploy, config):

LI |

json data '''

def

log debug trace ()
cluster id = add cluster attributes (deploy, config)

node ids = get node ids(deploy, cluster id)
node configs = config['nodes']

for node id, node config in zip(node ids, node configs):
add node attributes(deploy, cluster id, node id, node config)
add node networks (deploy, cluster id, node id, node configq)
add node storage (deploy, cluster id, node id, node config)

return cluster id

deploy cluster (deploy, cluster id, config):

'''" Deploy the cluster config to create the ONTAP Select VMs. '''
log _debug trace ()

log info("Deploying cluster: {}".format (cluster id))

data = {'ontap credential': {'password': config['cluster'

] ['ontap admin password']}}

deploy.post ('/clusters/{}/deploy?inhibit rollback=true'.format

(cluster id),

def

def

def

data, wait for job=True)

log_debug trace():

stack = traceback.extract stack()

parent function = stack[-2] [2]
logging.getLogger ('deploy') .debug('Calling %s()' % parent function)
log_info (msg) :

logging.getLogger ('deploy') .info (msqg)

log _and exit (msg) :

logging.getLogger ('deploy') .error (msqg)
exit (1)

Construct a cluster config in the deploy server using the input



def configure logging (verbose) :
FORMAT = 'S (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
if verbose:

logging.basicConfig(level=1logging.DEBUG, format=FORMAT)
else:

logging.basicConfig(level=1logging.INFO, format=FORMAT)

logging.getlLogger ('requests.packages.urllib3.connectionpool’
) .setLevel (

logging.WARNING)

def main (args):
configure logging(args.verbose)
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as json data:
config = json.load(json data)

add vcenter credentials (deploy, config)

add standalone host credentials(deploy, config)
register unkown hosts(deploy, config)

cluster id = create cluster config(deploy, config)
deploy cluster(deploy, cluster id, config)

def parseArgs() :

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to construct and deploy a cluster.')

parser.add argument('-d', '--deploy', help='Hostname or IP address of
Deploy server')

parser.add argument('-p', '--password', help='Admin password of Deploy
server')
parser.add argument ('-c', '--config file', help='Filename of the

cluster config')
parser.add argument ('-v', '--verbose', help='Display extra debugging
messages for seeing exact API calls and responses',

action='store true', default=False)
return parser.parse_args ()

if name == ' main g

args = parseArgs ()



main (args)

RAREiIREZiE<HERIJson

fEFAONTAP Select Pythont2 U hEE651I72 7 S i PR — B PR R & FF ~ IS EIRH—{EJson
BEREARTHENEA o R UIRIEIE5 ERE R RMESCEE N IsonEifl o

ESXi ERVEREESE

"hosts": [
{
"password": "mypasswordl",
"name": "host-1234",
"type": "ESX",
"username": "admin"
}
I

"cluster": {
"dns_info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",
"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",

"gateway": "10.206.80.1",

"ip": "10.206.80.115",

"name": "mycluster",

"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",

"netmask": "255.255.254.0"

by

"nodes": [
{
"serial number": "3200000nn",
"ip": "10.206.80.114",
"name": "node-1",
"networks": [
{
"name": "ontap-external",

"purpose": "mgmt",
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"vlan": 1234

"name": "ontap-external",
"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlian": null

1,

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {

"disk": [],

"pools": [

{
"name": "storage-pool-1",

"capacity": 4802666790125

{EFvCenter{TESXi - {F B ELELE

"hosts": [
{
"name" :"host-1234",
"type":"ESX",

"mgmt server":"vcenter-1234"

1,

"cluster": {
"dns info": {"domains": ["labl.company-demo.com", "labZ.company-
demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,



"dns ips": ["10.206.80.135","10.206.80.136"]
by

"ontap image version":"9.7",
"gateway":"10.206.80.1",

"ip":"10.206.80.115",

"name" :"mycluster",

"ntp servers": ["10.206.80.183","10.206.80.142"],
"ontap admin password":"mypassword2",
"netmask":"255.255.254.0"

by

"vcenter": {
"password":"mypassword2",
"hostname" :"vcenter-1234",

"username":"selectadmin"

by

"nodes": [

{

"serial number": "3200000nn",
"ip":"10.206.80.114",

"name" :"node-1",

"networks": [

{

"name" : "ONTAP-Management",
"purpose" :"mgmt",
"vlian" :null

"name": "ONTAP-External",
"purpose":"data",
"vlian" :null

"name": "ONTAP-Internal",
"purpose":"internal",
"vlan" :null
}
I

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk":[1,

28



"pools": [
{
"name": "storage-pool-1",
"capacity":5685190380748

KVM_ERYEBEIRE RS

* WINAEENEINEENEINFEEH - S EIEBTEKVM Hypervisor EEBZHZHEONTAP

Select °
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BAHMKVMEEM EONTAP Select ©

"hosts": [
{
"password": "mypasswordl",
"name" :"host-1234",
"type":"KVM",

"username" :"root"
}
]I
"cluster": {
"dns info": {
"domains": ["labl.company-demo.com", "lab2.company-demo.com",

"lab3.company-demo.com", "lab4.company-demo.com"

1,

"dns ips": ["10.206.80.135", "10.206.80.136"]
by

"ontap image version": "9.7",
"gateway":"10.206.80.1",

"ip":"10.206.80.115",

"name" : "CBF4ED97",

"ntp servers": ["10.206.80.183", "10.206.80.142"],
"ontap admin password": "mypassword2",
"netmask":"255.255.254.0"

by
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"nodes": [

{

"serial number":"3200000nn",
"ip":"10.206.80.115",
"name": "node-1",
"networks": |
{
"name": "ontap-external",
"purpose": "mgmt",
"vlan":1234
by
{
"name": "ontap-external",

"purpose": "data",
"vlan": null

"name": "ontap-internal",
"purpose": "internal",
"vlian": null
}
]I

"host name": "host-1234",
"is storage efficiency enabled": false,
"instance type": "small",
"storage": {
"disk": [],
"pools": [
{
"name": "storage-pool-1",
"capacity": 4802666790125

L BRI RIS 1S
eI LAEF A1 < BEIRFTIEONTAP Select R B EIRARVIERE o

#!/usr/bin/env python
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File: add license.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import argparse

import logging

import Jjson

from deploy requests import DeployRequests

def post new_ license (deploy, license filename) :

log info('Posting a new license: {}'.format(license filename))
# Stream the file as multipart/form-data
deploy.post('/licensing/licenses', data={},

files={"'license file': open(license filename, 'rb')})

# Alternative if the NLF license data is converted to a string.

# with open(license filename, 'rb') as f:

# nlf data = f.read()

# r = deploy.post('/licensing/licenses', data={},

id files={'"'license file': (license filename,
nlf data)})

def put license(deploy, serial number, data, files):

log info('Adding license for serial number: {}'.format (serial number))

deploy.put ('/licensing/licenses/{}'.format (serial number), data=data,

files=files)

def put used license (deploy, serial number, license filename,
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ontap username, ontap password) :
""" If the license is used by an 'online' cluster, a username/password

must be given. '''

data = {'ontap username': ontap username, 'ontap password':
ontap password}
files = {'license file': open(license filename, 'rb')}

put license(deploy, serial number, data, files)

def put free license (deploy, serial number, license filename) :
data = {}
files = {'license file': open(license filename, 'rb')}

put license (deploy, serial number, data, files)

def get serial number from license(license filename) :
''' Read the NLF file to extract the serial number '''
with open(license filename) as f:
data = json.load(f)

statusResp = data.get ('statusResp', {})
serialNumber = statusResp.get ('serialNumber')
if not serialNumber:
log and exit ("The license file seems to be missing the
serialNumber")

return serialNumber

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def log_and exit (msg):
logging.getLogger ('deploy') .error (msqg)
exit (1)

def configure logging() :
FORMAT = '$ (asctime)-15s:% (levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getLogger ('requests.packages.urllib3.connectionpool').
setLevel (logging.WARNING)
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def main(args):
configure logging()
serial number = get serial number from license(args.license)

deploy = DeployRequests (args.deploy, args.password)

# First check if there is already a license resource for this serial-
number

if deploy.find resource('/licensing/licenses', 'id', serial number):

# If the license already exists in the Deploy server, determine if
its used

if deploy.find resource('/clusters', 'nodes.serial number',
serial number) :

# In this case, requires ONTAP creds to push the license to
the node
if args.ontap username and args.ontap password:
put used license(deploy, serial number, args.license,
args.ontap username, args.ontap password)
else:
print ("ERROR: The serial number for this license is in
use. Please provide ONTAP credentials.")
else:
# License exists, but its not used
put free license(deploy, serial number, args.license)
else:
# No license exists, so register a new one as an available license
for later use

post new license(deploy, args.license)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to add or update a new or used NLF license file.')

parser.add argument ('-d', '--deploy', required=True, type=str, help
='Hostname or IP address of ONTAP Select Deploy')

parser.add argument ('-p', '--password', required=True, type=str, help
='Admin password of Deploy server')

parser.add argument('-1', '--license', required=True, type=str, help
='Filename of the NLF license data')

parser.add argument('-u', '--ontap username',6 type=str,

help="'ONTAP Select username with privelege to add

the license. Only provide if the license is used by a Node.')

parser.add argument('-o', '--ontap password',6 type=str,
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help='ONTAP Select password for the

ontap username. Required only if ontap username is given.')

return parser.parse_args ()

if name == ' main ':

args = parseArgs ()
main (args)

MR ERFE<HS
TAIAGER TYICLES S BB RMIFFIRB RIEE ©

#!/usr/bin/env python

File: delete cluster.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

import argparse

import json

import logging

from deploy requests import DeployRequests

def find cluster(deploy, cluster name):

return deploy.find resource('/clusters', 'name', cluster name)

def offline cluster(deploy, cluster id):

34

# Test that the cluster is online, otherwise do nothing
response = deploy.get('/clusters/{}?fields=state'.format(cluster_id))
cluster data = response.json() ['record']



if cluster data['state'] == 'powered on':
log info ("Found the cluster to be online, modifying it to be
powered off.")

deploy.patch('/clusters/{}'.format (cluster id), {'availability':
'powered off'}, True)

def delete_cluster (deploy, cluster id):

log info("Deleting the cluster({}).".format (cluster id))
deploy.delete('/clusters/{}'.format (cluster id), True)
pass

def log_info (msg) :
logging.getLogger ('deploy') .info (msqg)

def configure logging() :
FORMAT = '% (asctime)-15s:%(levelname)s:% (name)s: % (message)s'
logging.basicConfig(level=1logging.INFO, format=FORMAT)
logging.getLogger ('requests.packages.urllib3.connectionpool"') .
setLevel (logging.WARNING)

def main(args):
configure logging /()
deploy = DeployRequests (args.deploy, args.password)

with open(args.config file) as Json data:
config = json.load(json data)

cluster id = find cluster (deploy, config['cluster']['name'])

log info("Found the cluster {} with id: {}.".format (config
['cluster'] ['name'], cluster id))

offline cluster (deploy, cluster id)

delete cluster(deploy, cluster id)

def parseArgs():

parser = argparse.ArgumentParser (description='Uses the ONTAP Select
Deploy API to delete a cluster')

parser.add argument ('-d', '--deploy', required=True, type=str, help
='Hostname or IP address of Deploy server')
parser.add argument ('-p', '--password', required=True, type=str, help
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='Admin password of Deploy server')

parser.add argument ('-c', '--config file', required=True, type=str,
help='Filename of the cluster json config')

return parser.parse_ args ()

if name == ' main U g

args = parseArgs ()

main (args)

AT IR R
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#!/usr/bin/env python

B

File: deploy requests.py
(C) Copyright 2019 NetApp, Inc.

This sample code 1is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms

no less restrictive than those set forth herein.

H= S S S S S S SR S S SR Sk S o o

import Jjson
import logging
import requests

requests.packages.urllib3.disable warnings ()
class DeployRequests (object) :

LI |

Wrapper class for requests that simplifies the ONTAP Select Deploy
path creation and header manipulations for simpler code.

LI |

def init_ (self, ip, admin password) :
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self.base url = 'https://{}/api'.format (ip)
self.auth = ('admin', admin password)
self.headers = {'Accept': 'application/Jjson'}
self.logger = logging.getLogger ('deploy')

def post(self, path, data, files=None, wait for job=False):

if files:
self.logger.debug ('POST FILES:'")
response = requests.post(self.base url + path,
auth=self.auth, verify=False,
files=files)
else:
self.logger.debug ('POST DATA: %s', data)
response = requests.post(self.base url + path,

auth=self.auth, verify=False,
json=data,

headers=self.headers)

self.logger.debug ('HEADERS: $%$s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on errors(response)

if wait for job and response.status code == 202:
self.wait for job(response.json())
return response

def patch(self, path, data, wait for job=False):

self.logger.debug ('PATCH DATA: $s', data)

response = requests.patch(self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: $%$s\nBODY: %s', self.filter headers

(response), response.text)

self.exit on errors(response)
if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

def put(self, path, data, files=None, wait for job=False):

if files:
print ('PUT FILES: {}'.format (data))
response = requests.put (self.base url + path,

auth=self.auth, verify=False,
data=data,
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files=files)
else:
self.logger.debug ('PUT DATA:"')
response = requests.put (self.base url + path,
auth=self.auth, verify=False,
json=data,
headers=self.headers)

self.logger.debug ('HEADERS: %s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on errors (response)

if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

def get(self, path):
""" Get a resource object from the specified path """
response = requests.get(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: %$s\nBODY: %s', self.filter headers
(response), response.text)
self.exit on errors (response)

return response

def delete(self, path, wait for job=False):
""" Delete's a resource from the specified path """
response = requests.delete(self.base url + path, auth=self.auth,
verify=False)
self.logger.debug ('HEADERS: $%$s\nBODY: %s', self.filter headers
(response), response.text)

self.exit on errors(response)
if wait for job and response.status code == 202:
self.wait for job (response.json())

return response

def find resource (self, path, name, value):

""" Returns the 'id' of the resource if it exists, otherwise None

resource = None

response = self.get('{path}?{field}={value}'.format (
path=path, field=name, value=value))

if response.status code == 200 and response.json() .get
('num records') >= 1:
resource = response.json().get('records') [0].get('id")
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return resource

def get num records(self, path, query=None):

''"'" Returns the number of records found in a container, or None on

error '''
resource = None
query opt = '?{}'.format (query) if query else "'
response = self.get('{path}{gquery}'.format (path=path, query
=query_opt))
if response.status code == 200
return response.json() .get ('num records')

return None

def resource_ exists(self, path, name, value):
return self.find resource(path, name, value) is not None

def wait_for job(self, response, poll timeout=120):

last modified = response['job']['last modified']
job id = response['job']['id"]
self.logger.info ('Event: ' + response['job']['message'])

while True:
response = self.get('/jobs/{}?fields=state,messageé&"’
'poll timeout={}&last modified=>={}"
.format (
job id, poll timeout, last modified))

job body = response.json().get('record', {})

# Show interesting message updates
message = job body.get ('message', '")
self.logger.info ('Event: ' + message)

# Refresh the last modified time for the poll loop
last modified = job body.get('last modified')

# Look for the final states
state = job body.get ('state', 'unknown')
if state in ['success', 'failure']:
if state == 'failure':
self.logger.error ('FAILED background Jjob.\nJOB:

o©°
[0)]
-

job body)
exit (1) # End the script if a failure occurs

break

def exit on errors(self, response):



if response.status code >= 400:
self.logger.error ('FAILED request to URL: %$s\nHEADERS: %s
\nRESPONSE BODY: %s',
response.request.url,
self.filter headers (response),
response.text)
response.raise for status() # Displays the response error, and

exits the script

@staticmethod
def filter headers (response):
''' Returns a filtered set of the response headers '''
return {key: response.headers[key] for key in ['Location',
'request-id'] if key in response.headers}

RSN/ NSNS
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40

#!/usr/bin/env python

File: resize nodes.py

(C) Copyright 2019 NetApp, Inc.

This sample code is provided AS IS, with no support or warranties of
any kind, including but not limited for warranties of merchantability
or fitness of any kind, expressed or implied. Permission to use,
reproduce, modify and create derivatives of the sample code is granted
solely for the purpose of researching, designing, developing and
testing a software application product for use with NetApp products,
provided that the above copyright notice appears in all copies and
that the software application product is distributed pursuant to terms
no less restrictive than those set forth herein.

S S S S S S S S S e SR S S S =

import argparse
import logging
import sys

from deploy requests import DeployRequests



def parse args():
""" Parses the arguments provided on the command line when executing
this
script and returns the resulting namespace. If all required
arguments
are not provided, an error message indicating the mismatch is
printed and

the script will exit.

mwn

parser = argparse.ArgumentParser (description=(
'Uses the ONTAP Select Deploy API to resize the nodes in the

cluster.'
' For example, you might have a small (4 CPU, 16GB RAM per node)
node'
' cluster and wish to resize the cluster to medium (8 CPU, 64GB
RAM per'
' node). This script will take in the cluster details and then
perform'
' the operation and wait for it to complete.'’
))
parser.add argument ('--deploy', required=True, help=(
'Hostname or IP of the ONTAP Select Deploy VM.'
))
parser.add argument ('--deploy-password', required=True, help=(
'The password for the ONTAP Select Deploy admin user.'
))
parser.add argument ('--cluster', required=True, help=(
'"Hostname or IP of the cluster management interface.'
))
parser.add argument ('--instance-type', required=True, help=(
'The desired instance size of the nodes after the operation is
complete.'
))
parser.add argument ('--ontap-password', required=True, help=(
'The password for the ONTAP administrative user account.'
))
parser.add argument ('--ontap-username', default='admin', help=(
'The username for the ONTAP administrative user account. Default:
admin. '
))
parser.add argument ('--nodes', nargs='+', metavar='NODE NAME', help=/(
'A space separated list of node names for which the resize
operation'’

' should be performed. The default is to apply the resize to all
nodes in'
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' the cluster. If a list of nodes is provided, it must be provided
in HA'

' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)
must be'

' resized in the same operation.'

))

return parser.parse_ args ()

def get cluster(deploy, parsed args):

mwiwmn

Locate the cluster using the arguments provided """

cluster id = deploy.find resource('/clusters', 'ip', parsed args
.cluster)
if not cluster id:
return None

return deploy.get ('/clusters/%s?fields=nodes' % cluster id).json
() ['record']

def get request body(parsed args, cluster):
""" Build the request body """

changes = {'admin password': parsed args.ontap password}

# 1if provided, use the list of nodes given, else use all the nodes in
the cluster
nodes = [node for node in cluster['nodes']]
if parsed args.nodes:
nodes = [node for node in nodes if node['name'] in parsed args
.nodes]

changes|['nodes'] = [
{'instance type': parsed args.instance type, 'id': node['id']} for
node in nodes]

return changes

def main () :
""" Set up the resize operation by gathering the necessary data and
then send

the request to the ONTAP Select Deploy server.

mwwn

logging.basicConfig(

format='[%(asctime)s] [%$(levelname)5s] % (message)s', level=



logging.INFO, )

logging.getLogger ('requests.packages.urllib3"') .setLevel (logging
.WARNING)

parsed args = parse args|()
deploy = DeployRequests (parsed args.deploy, parsed args
.deploy password)

cluster = get cluster (deploy, parsed args)
if not cluster:
deploy.logger.error (
'Unable to find a cluster with a management IP of %s' %
parsed args.cluster)

return 1

changes = get request body(parsed args, cluster)

(o

deploy.patch('/clusters/%s' % cluster['id'], changes, wait for job

=True)

if name == ' main Jg

sys.exit (main())
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