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Python程式碼範例

建立 ONTAP Select 叢集的指令碼

您可以使用下列指令碼、根據指令碼中定義的參數和Json輸入檔來建立叢集。

#!/usr/bin/env python

##--------------------------------------------------------------------

#

# File: cluster.py

#

# (C) Copyright 2019 NetApp, Inc.

#

# This sample code is provided AS IS, with no support or warranties of

# any kind, including but not limited for warranties of merchantability

# or fitness of any kind, expressed or implied. Permission to use,

# reproduce, modify and create derivatives of the sample code is granted

# solely for the purpose of researching, designing, developing and

# testing a software application product for use with NetApp products,

# provided that the above copyright notice appears in all copies and

# that the software application product is distributed pursuant to terms

# no less restrictive than those set forth herein.

#

##--------------------------------------------------------------------

import traceback

import argparse

import json

import logging

from deploy_requests import DeployRequests

def add_vcenter_credentials(deploy, config):

    """ Add credentials for the vcenter if present in the config """

    log_debug_trace()

    vcenter = config.get('vcenter', None)

    if vcenter and not deploy.resource_exists('/security/credentials',

                                              'hostname', vcenter[

'hostname']):

        log_info("Registering vcenter {} credentials".format(vcenter[

'hostname']))

        data = {k: vcenter[k] for k in ['hostname', 'username', 'password

']}
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        data['type'] = "vcenter"

        deploy.post('/security/credentials', data)

def add_standalone_host_credentials(deploy, config):

    """ Add credentials for standalone hosts if present in the config.

        Does nothing if the host credential already exists on the Deploy.

    """

    log_debug_trace()

    hosts = config.get('hosts', [])

    for host in hosts:

        # The presense of the 'password' will be used only for standalone

hosts.

        # If this host is managed by a vcenter, it should not have a host

'password' in the json.

        if 'password' in host and not deploy.resource_exists(

'/security/credentials',

                                                             'hostname',

host['name']):

            log_info("Registering host {} credentials".format(host['name

']))

            data = {'hostname': host['name'], 'type': 'host',

                    'username': host['username'], 'password': host[

'password']}

            deploy.post('/security/credentials', data)

def register_unkown_hosts(deploy, config):

    ''' Registers all hosts with the deploy server.

        The host details are read from the cluster config json file.

        This method will skip any hosts that are already registered.

        This method will exit the script if no hosts are found in the

config.

    '''

    log_debug_trace()

    data = {"hosts": []}

    if 'hosts' not in config or not config['hosts']:

        log_and_exit("The cluster config requires at least 1 entry in the

'hosts' list got {}".format(config))

    missing_host_cnt = 0

    for host in config['hosts']:

        if not deploy.resource_exists('/hosts', 'name', host['name']):
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            missing_host_cnt += 1

            host_config = {"name": host['name'], "hypervisor_type": host[

'type']}

            if 'mgmt_server' in host:

                host_config["management_server"] = host['mgmt_server']

                log_info(

                   "Registering from vcenter {mgmt_server}".format(**

host))

            if 'password' in host and 'user' in host:

                host_config['credential'] = {

                    "password": host['password'], "username": host['user

']}

            log_info("Registering {type} host {name}".format(**host))

            data["hosts"].append(host_config)

    # only post /hosts if some missing hosts were found

    if missing_host_cnt:

        deploy.post('/hosts', data, wait_for_job=True)

def add_cluster_attributes(deploy, config):

    ''' POST a new cluster with all needed attribute values.

        Returns the cluster_id of the new config

    '''

    log_debug_trace()

    cluster_config = config['cluster']

    cluster_id = deploy.find_resource('/clusters', 'name', cluster_config

['name'])

    if not cluster_id:

        log_info("Creating cluster config named {name}".format(

**cluster_config))

        # Filter to only the valid attributes, ignores anything else in

the json

        data = {k: cluster_config[k] for k in [

            'name', 'ip', 'gateway', 'netmask', 'ontap_image_version',

'dns_info', 'ntp_servers']}

        num_nodes = len(config['nodes'])

        log_info("Cluster properties: {}".format(data))

        resp = deploy.post('/v3/clusters?node_count={}'.format(num_nodes),
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data)

        cluster_id = resp.headers.get('Location').split('/')[-1]

    return cluster_id

def get_node_ids(deploy, cluster_id):

    ''' Get the the ids of the nodes in a cluster. Returns a list of

node_ids.'''

    log_debug_trace()

    response = deploy.get('/clusters/{}/nodes'.format(cluster_id))

    node_ids = [node['id'] for node in response.json().get('records')]

    return node_ids

def add_node_attributes(deploy, cluster_id, node_id, node):

    ''' Set all the needed properties on a node '''

    log_debug_trace()

    log_info("Adding node '{}' properties".format(node_id))

    data = {k: node[k] for k in ['ip', 'serial_number', 'instance_type',

                                 'is_storage_efficiency_enabled'] if k in

node}

    # Optional: Set a serial_number

    if 'license' in node:

        data['license'] = {'id': node['license']}

    # Assign the host

    host_id = deploy.find_resource('/hosts', 'name', node['host_name'])

    if not host_id:

        log_and_exit("Host names must match in the 'hosts' array, and the

nodes.host_name property")

    data['host'] = {'id': host_id}

    # Set the correct raid_type

    is_hw_raid = not node['storage'].get('disks')  # The presence of a

list of disks indicates sw_raid

    data['passthrough_disks'] = not is_hw_raid

    # Optionally set a custom node name

    if 'name' in node:

        data['name'] = node['name']

    log_info("Node properties: {}".format(data))
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    deploy.patch('/clusters/{}/nodes/{}'.format(cluster_id, node_id),

data)

def add_node_networks(deploy, cluster_id, node_id, node):

    ''' Set the network information for a node '''

    log_debug_trace()

    log_info("Adding node '{}' network properties".format(node_id))

    num_nodes = deploy.get_num_records('/clusters/{}/nodes'.format

(cluster_id))

    for network in node['networks']:

        # single node clusters do not use the 'internal' network

        if num_nodes == 1 and network['purpose'] == 'internal':

            continue

        # Deduce the network id given the purpose for each entry

        network_id = deploy.find_resource('/clusters/{}/nodes/{}/networks

'.format(cluster_id, node_id),

                                          'purpose', network['purpose'])

        data = {"name": network['name']}

        if 'vlan' in network and network['vlan']:

            data['vlan_id'] = network['vlan']

        deploy.patch('/clusters/{}/nodes/{}/networks/{}'.format(

cluster_id, node_id, network_id), data)

def add_node_storage(deploy, cluster_id, node_id, node):

    ''' Set all the storage information on a node '''

    log_debug_trace()

    log_info("Adding node '{}' storage properties".format(node_id))

    log_info("Node storage: {}".format(node['storage']['pools']))

    data = {'pool_array': node['storage']['pools']}  # use all the json

properties

    deploy.post(

        '/clusters/{}/nodes/{}/storage/pools'.format(cluster_id, node_id),

data)

    if 'disks' in node['storage'] and node['storage']['disks']:

        data = {'disks': node['storage']['disks']}

        deploy.post(
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            '/clusters/{}/nodes/{}/storage/disks'.format(cluster_id,

node_id), data)

def create_cluster_config(deploy, config):

    ''' Construct a cluster config in the deploy server using the input

json data '''

    log_debug_trace()

    cluster_id = add_cluster_attributes(deploy, config)

    node_ids = get_node_ids(deploy, cluster_id)

    node_configs = config['nodes']

    for node_id, node_config in zip(node_ids, node_configs):

        add_node_attributes(deploy, cluster_id, node_id, node_config)

        add_node_networks(deploy, cluster_id, node_id, node_config)

        add_node_storage(deploy, cluster_id, node_id, node_config)

    return cluster_id

def deploy_cluster(deploy, cluster_id, config):

    ''' Deploy the cluster config to create the ONTAP Select VMs. '''

    log_debug_trace()

    log_info("Deploying cluster: {}".format(cluster_id))

    data = {'ontap_credential': {'password': config['cluster'][

'ontap_admin_password']}}

    deploy.post('/clusters/{}/deploy?inhibit_rollback=true'.format

(cluster_id),

                data, wait_for_job=True)

def log_debug_trace():

    stack = traceback.extract_stack()

    parent_function = stack[-2][2]

    logging.getLogger('deploy').debug('Calling %s()' % parent_function)

def log_info(msg):

    logging.getLogger('deploy').info(msg)

def log_and_exit(msg):

    logging.getLogger('deploy').error(msg)

    exit(1)
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def configure_logging(verbose):

    FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

    if verbose:

        logging.basicConfig(level=logging.DEBUG, format=FORMAT)

    else:

        logging.basicConfig(level=logging.INFO, format=FORMAT)

        logging.getLogger('requests.packages.urllib3.connectionpool'

).setLevel(

            logging.WARNING)

def main(args):

    configure_logging(args.verbose)

    deploy = DeployRequests(args.deploy, args.password)

    with open(args.config_file) as json_data:

        config = json.load(json_data)

        add_vcenter_credentials(deploy, config)

        add_standalone_host_credentials(deploy, config)

        register_unkown_hosts(deploy, config)

        cluster_id = create_cluster_config(deploy, config)

        deploy_cluster(deploy, cluster_id, config)

def parseArgs():

    parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to construct and deploy a cluster.')

    parser.add_argument('-d', '--deploy', help='Hostname or IP address of

Deploy server')

    parser.add_argument('-p', '--password', help='Admin password of Deploy

server')

    parser.add_argument('-c', '--config_file', help='Filename of the

cluster config')

    parser.add_argument('-v', '--verbose', help='Display extra debugging

messages for seeing exact API calls and responses',

                        action='store_true', default=False)

    return parser.parse_args()

if __name__ == '__main__':

    args = parseArgs()
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    main(args)

JSON ，用於建立 ONTAP Select 叢集的指令碼

使用ONTAP Select Python程式碼範例建立或刪除一個故障叢集時、您必須提供一個Json

檔案作為指令碼的輸入。您可以根據部署計畫來複製及修改適當的Json範例。

ESXi上的單節點叢集

{

  "hosts": [

    {

      "password": "mypassword1",

      "name": "host-1234",

      "type": "ESX",

      "username": "admin"

    }

  ],

  "cluster": {

    "dns_info": {

      "domains": ["lab1.company-demo.com", "lab2.company-demo.com",

        "lab3.company-demo.com", "lab4.company-demo.com"

        ],

      "dns_ips": ["10.206.80.135", "10.206.80.136"]

      },

      "ontap_image_version": "9.7",

      "gateway": "10.206.80.1",

      "ip": "10.206.80.115",

      "name": "mycluster",

      "ntp_servers": ["10.206.80.183", "10.206.80.142"],

      "ontap_admin_password": "mypassword2",

      "netmask": "255.255.254.0"

  },

  "nodes": [

    {

      "serial_number": "3200000nn",

      "ip": "10.206.80.114",

      "name": "node-1",

      "networks": [

        {

          "name": "ontap-external",
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          "purpose": "mgmt",

          "vlan": 1234

        },

        {

          "name": "ontap-external",

          "purpose": "data",

          "vlan": null

        },

        {

          "name": "ontap-internal",

          "purpose": "internal",

          "vlan": null

        }

      ],

      "host_name": "host-1234",

      "is_storage_efficiency_enabled": false,

      "instance_type": "small",

      "storage": {

        "disk": [],

        "pools": [

          {

            "name": "storage-pool-1",

            "capacity": 4802666790125

          }

        ]

      }

    }

  ]

}

使用vCenter在ESXi上使用單節點叢集

{

  "hosts": [

    {

      "name":"host-1234",

      "type":"ESX",

      "mgmt_server":"vcenter-1234"

    }

  ],

  "cluster": {

    "dns_info": {"domains": ["lab1.company-demo.com", "lab2.company-

demo.com",

      "lab3.company-demo.com", "lab4.company-demo.com"
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      ],

      "dns_ips": ["10.206.80.135","10.206.80.136"]

  },

  "ontap_image_version":"9.7",

  "gateway":"10.206.80.1",

  "ip":"10.206.80.115",

  "name":"mycluster",

  "ntp_servers": ["10.206.80.183","10.206.80.142"],

  "ontap_admin_password":"mypassword2",

  "netmask":"255.255.254.0"

  },

  "vcenter": {

    "password":"mypassword2",

    "hostname":"vcenter-1234",

    "username":"selectadmin"

  },

  "nodes": [

    {

      "serial_number": "3200000nn",

      "ip":"10.206.80.114",

      "name":"node-1",

      "networks": [

        {

          "name":"ONTAP-Management",

          "purpose":"mgmt",

          "vlan":null

        },

        {

          "name": "ONTAP-External",

          "purpose":"data",

          "vlan":null

        },

        {

          "name": "ONTAP-Internal",

          "purpose":"internal",

          "vlan":null

        }

      ],

      "host_name": "host-1234",

      "is_storage_efficiency_enabled": false,

      "instance_type": "small",

      "storage": {
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        "disk":[],

        "pools": [

          {

            "name": "storage-pool-1",

            "capacity":5685190380748

          }

        ]

      }

    }

  ]

}

KVM上的單節點叢集

{

  "hosts": [

    {

      "password": "mypassword1",

      "name":"host-1234",

      "type":"KVM",

      "username":"root"

    }

  ],

  "cluster": {

    "dns_info": {

      "domains": ["lab1.company-demo.com", "lab2.company-demo.com",

        "lab3.company-demo.com", "lab4.company-demo.com"

      ],

      "dns_ips": ["10.206.80.135", "10.206.80.136"]

    },

    "ontap_image_version": "9.7",

    "gateway":"10.206.80.1",

    "ip":"10.206.80.115",

    "name":"CBF4ED97",

    "ntp_servers": ["10.206.80.183", "10.206.80.142"],

    "ontap_admin_password": "mypassword2",

    "netmask":"255.255.254.0"

  },

  "nodes": [

    {

      "serial_number":"3200000nn",

      "ip":"10.206.80.115",
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      "name": "node-1",

      "networks": [

        {

          "name": "ontap-external",

          "purpose": "mgmt",

          "vlan":1234

        },

        {

          "name": "ontap-external",

          "purpose": "data",

          "vlan": null

        },

        {

          "name": "ontap-internal",

          "purpose": "internal",

          "vlan": null

        }

      ],

      "host_name": "host-1234",

      "is_storage_efficiency_enabled": false,

      "instance_type": "small",

      "storage": {

        "disk": [],

        "pools": [

          {

            "name": "storage-pool-1",

            "capacity": 4802666790125

          }

        ]

      }

    }

  ]

}

新增 ONTAP Select 節點授權的指令碼

您可以使用下列指令碼來新增ONTAP Select 適用於某個節點的授權。

#!/usr/bin/env python

##--------------------------------------------------------------------

#

# File: add_license.py

#

# (C) Copyright 2019 NetApp, Inc.
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#

# This sample code is provided AS IS, with no support or warranties of

# any kind, including but not limited for warranties of merchantability

# or fitness of any kind, expressed or implied. Permission to use,

# reproduce, modify and create derivatives of the sample code is granted

# solely for the purpose of researching, designing, developing and

# testing a software application product for use with NetApp products,

# provided that the above copyright notice appears in all copies and

# that the software application product is distributed pursuant to terms

# no less restrictive than those set forth herein.

#

##--------------------------------------------------------------------

import argparse

import logging

import json

from deploy_requests import DeployRequests

def post_new_license(deploy, license_filename):

    log_info('Posting a new license: {}'.format(license_filename))

    # Stream the file as multipart/form-data

    deploy.post('/licensing/licenses', data={},

                files={'license_file': open(license_filename, 'rb')})

    # Alternative if the NLF license data is converted to a string.

    # with open(license_filename, 'rb') as f:

    #    nlf_data = f.read()

    #    r = deploy.post('/licensing/licenses', data={},

    #                    files={'license_file': (license_filename,

nlf_data)})

def put_license(deploy, serial_number, data, files):

    log_info('Adding license for serial number: {}'.format(serial_number))

    deploy.put('/licensing/licenses/{}'.format(serial_number), data=data,

files=files)

def put_used_license(deploy, serial_number, license_filename,

ontap_username, ontap_password):

    ''' If the license is used by an 'online' cluster, a username/password

must be given. '''
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    data = {'ontap_username': ontap_username, 'ontap_password':

ontap_password}

    files = {'license_file': open(license_filename, 'rb')}

    put_license(deploy, serial_number, data, files)

def put_free_license(deploy, serial_number, license_filename):

    data = {}

    files = {'license_file': open(license_filename, 'rb')}

    put_license(deploy, serial_number, data, files)

def get_serial_number_from_license(license_filename):

    ''' Read the NLF file to extract the serial number '''

    with open(license_filename) as f:

        data = json.load(f)

        statusResp = data.get('statusResp', {})

        serialNumber = statusResp.get('serialNumber')

        if not serialNumber:

            log_and_exit("The license file seems to be missing the

serialNumber")

        return serialNumber

def log_info(msg):

    logging.getLogger('deploy').info(msg)

def log_and_exit(msg):

    logging.getLogger('deploy').error(msg)

    exit(1)

def configure_logging():

    FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

    logging.basicConfig(level=logging.INFO, format=FORMAT)

    logging.getLogger('requests.packages.urllib3.connectionpool').

setLevel(logging.WARNING)

def main(args):

    configure_logging()

    serial_number = get_serial_number_from_license(args.license)
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    deploy = DeployRequests(args.deploy, args.password)

    # First check if there is already a license resource for this serial-

number

    if deploy.find_resource('/licensing/licenses', 'id', serial_number):

        # If the license already exists in the Deploy server, determine if

its used

        if deploy.find_resource('/clusters', 'nodes.serial_number',

serial_number):

            # In this case, requires ONTAP creds to push the license to

the node

            if args.ontap_username and args.ontap_password:

                put_used_license(deploy, serial_number, args.license,

                                 args.ontap_username, args.ontap_password)

            else:

                print("ERROR: The serial number for this license is in

use. Please provide ONTAP credentials.")

        else:

            # License exists, but its not used

            put_free_license(deploy, serial_number, args.license)

    else:

        # No license exists, so register a new one as an available license

for later use

        post_new_license(deploy, args.license)

def parseArgs():

    parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to add or update a new or used NLF license file.')

    parser.add_argument('-d', '--deploy', required=True, type=str, help=

'Hostname or IP address of ONTAP Select Deploy')

    parser.add_argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')

    parser.add_argument('-l', '--license', required=True, type=str, help=

'Filename of the NLF license data')

    parser.add_argument('-u', '--ontap_username', type=str,

                        help='ONTAP Select username with privelege to add

the license. Only provide if the license is used by a Node.')

    parser.add_argument('-o', '--ontap_password', type=str,

                        help='ONTAP Select password for the

ontap_username. Required only if ontap_username is given.')

    return parser.parse_args()
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if __name__ == '__main__':

    args = parseArgs()

    main(args)

用於刪除 ONTAP Select 叢集的指令碼

您可以使用下列CLI指令碼來刪除現有的叢集。

#!/usr/bin/env python

##--------------------------------------------------------------------

#

# File: delete_cluster.py

#

# (C) Copyright 2019 NetApp, Inc.

#

# This sample code is provided AS IS, with no support or warranties of

# any kind, including but not limited for warranties of merchantability

# or fitness of any kind, expressed or implied. Permission to use,

# reproduce, modify and create derivatives of the sample code is granted

# solely for the purpose of researching, designing, developing and

# testing a software application product for use with NetApp products,

# provided that the above copyright notice appears in all copies and

# that the software application product is distributed pursuant to terms

# no less restrictive than those set forth herein.

#

##--------------------------------------------------------------------

import argparse

import json

import logging

from deploy_requests import DeployRequests

def find_cluster(deploy, cluster_name):

    return deploy.find_resource('/clusters', 'name', cluster_name)

def offline_cluster(deploy, cluster_id):

    # Test that the cluster is online, otherwise do nothing

    response = deploy.get('/clusters/{}?fields=state'.format(cluster_id))

    cluster_data = response.json()['record']

    if cluster_data['state'] == 'powered_on':

        log_info("Found the cluster to be online, modifying it to be

powered_off.")

        deploy.patch('/clusters/{}'.format(cluster_id), {'availability':
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'powered_off'}, True)

def delete_cluster(deploy, cluster_id):

    log_info("Deleting the cluster({}).".format(cluster_id))

    deploy.delete('/clusters/{}'.format(cluster_id), True)

    pass

def log_info(msg):

    logging.getLogger('deploy').info(msg)

def configure_logging():

    FORMAT = '%(asctime)-15s:%(levelname)s:%(name)s: %(message)s'

    logging.basicConfig(level=logging.INFO, format=FORMAT)

    logging.getLogger('requests.packages.urllib3.connectionpool').

setLevel(logging.WARNING)

def main(args):

    configure_logging()

    deploy = DeployRequests(args.deploy, args.password)

    with open(args.config_file) as json_data:

        config = json.load(json_data)

        cluster_id = find_cluster(deploy, config['cluster']['name'])

        log_info("Found the cluster {} with id: {}.".format(config[

'cluster']['name'], cluster_id))

        offline_cluster(deploy, cluster_id)

        delete_cluster(deploy, cluster_id)

def parseArgs():

    parser = argparse.ArgumentParser(description='Uses the ONTAP Select

Deploy API to delete a cluster')

    parser.add_argument('-d', '--deploy', required=True, type=str, help=

'Hostname or IP address of Deploy server')

    parser.add_argument('-p', '--password', required=True, type=str, help

='Admin password of Deploy server')

    parser.add_argument('-c', '--config_file', required=True, type=str,

help='Filename of the cluster json config')

    return parser.parse_args()
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if __name__ == '__main__':

    args = parseArgs()

    main(args)

ONTAP Select 常用支援 Python 模組

所有Python指令碼都會在單一模組中使用通用的Python類別。

#!/usr/bin/env python

##--------------------------------------------------------------------

#

# File: deploy_requests.py

#

# (C) Copyright 2019 NetApp, Inc.

#

# This sample code is provided AS IS, with no support or warranties of

# any kind, including but not limited for warranties of merchantability

# or fitness of any kind, expressed or implied. Permission to use,

# reproduce, modify and create derivatives of the sample code is granted

# solely for the purpose of researching, designing, developing and

# testing a software application product for use with NetApp products,

# provided that the above copyright notice appears in all copies and

# that the software application product is distributed pursuant to terms

# no less restrictive than those set forth herein.

#

##--------------------------------------------------------------------

import json

import logging

import requests

requests.packages.urllib3.disable_warnings()

class DeployRequests(object):

    '''

    Wrapper class for requests that simplifies the ONTAP Select Deploy

    path creation and header manipulations for simpler code.

    '''

    def __init__(self, ip, admin_password):

        self.base_url = 'https://{}/api'.format(ip)

        self.auth = ('admin', admin_password)

        self.headers = {'Accept': 'application/json'}

        self.logger = logging.getLogger('deploy')
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    def post(self, path, data, files=None, wait_for_job=False):

        if files:

            self.logger.debug('POST FILES:')

            response = requests.post(self.base_url + path,

                                     auth=self.auth, verify=False,

                                     files=files)

        else:

            self.logger.debug('POST DATA: %s', data)

            response = requests.post(self.base_url + path,

                                     auth=self.auth, verify=False,

                                     json=data,

                                     headers=self.headers)

        self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

        self.exit_on_errors(response)

        if wait_for_job and response.status_code == 202:

            self.wait_for_job(response.json())

        return response

    def patch(self, path, data, wait_for_job=False):

        self.logger.debug('PATCH DATA: %s', data)

        response = requests.patch(self.base_url + path,

                                  auth=self.auth, verify=False,

                                  json=data,

                                  headers=self.headers)

        self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

        self.exit_on_errors(response)

        if wait_for_job and response.status_code == 202:

            self.wait_for_job(response.json())

        return response

    def put(self, path, data, files=None, wait_for_job=False):

        if files:

            print('PUT FILES: {}'.format(data))

            response = requests.put(self.base_url + path,

                                    auth=self.auth, verify=False,

                                    data=data,

                                    files=files)

        else:

            self.logger.debug('PUT DATA:')

            response = requests.put(self.base_url + path,
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                                    auth=self.auth, verify=False,

                                    json=data,

                                    headers=self.headers)

        self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

        self.exit_on_errors(response)

        if wait_for_job and response.status_code == 202:

            self.wait_for_job(response.json())

        return response

    def get(self, path):

        """ Get a resource object from the specified path """

        response = requests.get(self.base_url + path, auth=self.auth,

verify=False)

        self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

        self.exit_on_errors(response)

        return response

    def delete(self, path, wait_for_job=False):

        """ Delete's a resource from the specified path """

        response = requests.delete(self.base_url + path, auth=self.auth,

verify=False)

        self.logger.debug('HEADERS: %s\nBODY: %s', self.filter_headers

(response), response.text)

        self.exit_on_errors(response)

        if wait_for_job and response.status_code == 202:

            self.wait_for_job(response.json())

        return response

    def find_resource(self, path, name, value):

        ''' Returns the 'id' of the resource if it exists, otherwise None

'''

        resource = None

        response = self.get('{path}?{field}={value}'.format(

                            path=path, field=name, value=value))

        if response.status_code == 200 and response.json().get(

'num_records') >= 1:

            resource = response.json().get('records')[0].get('id')

        return resource

    def get_num_records(self, path, query=None):

        ''' Returns the number of records found in a container, or None on
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error '''

        resource = None

        query_opt = '?{}'.format(query) if query else ''

        response = self.get('{path}{query}'.format(path=path, query

=query_opt))

        if response.status_code == 200 :

            return response.json().get('num_records')

        return None

    def resource_exists(self, path, name, value):

        return self.find_resource(path, name, value) is not None

    def wait_for_job(self, response, poll_timeout=120):

        last_modified = response['job']['last_modified']

        job_id = response['job']['id']

        self.logger.info('Event: ' + response['job']['message'])

        while True:

            response = self.get('/jobs/{}?fields=state,message&'

                                'poll_timeout={}&last_modified=>={}'

.format(

                                    job_id, poll_timeout, last_modified))

            job_body = response.json().get('record', {})

            # Show interesting message updates

            message = job_body.get('message', '')

            self.logger.info('Event: ' + message)

            # Refresh the last modified time for the poll loop

            last_modified = job_body.get('last_modified')

            # Look for the final states

            state = job_body.get('state', 'unknown')

            if state in ['success', 'failure']:

                if state == 'failure':

                    self.logger.error('FAILED background job.\nJOB: %s',

job_body)

                    exit(1)   # End the script if a failure occurs

                break

    def exit_on_errors(self, response):

        if response.status_code >= 400:

            self.logger.error('FAILED request to URL: %s\nHEADERS: %s

\nRESPONSE BODY: %s',
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                              response.request.url,

                              self.filter_headers(response),

                              response.text)

        response.raise_for_status()   # Displays the response error, and

exits the script

    @staticmethod

    def filter_headers(response):

        ''' Returns a filtered set of the response headers '''

        return {key: response.headers[key] for key in ['Location',

'request-id'] if key in response.headers}

調整 ONTAP Select 叢集節點大小的指令碼

您可以使用下列指令碼來調整ONTAP Select 叢集中節點的大小。

#!/usr/bin/env python

##--------------------------------------------------------------------

#

# File: resize_nodes.py

#

# (C) Copyright 2019 NetApp, Inc.

#

# This sample code is provided AS IS, with no support or warranties of

# any kind, including but not limited for warranties of merchantability

# or fitness of any kind, expressed or implied. Permission to use,

# reproduce, modify and create derivatives of the sample code is granted

# solely for the purpose of researching, designing, developing and

# testing a software application product for use with NetApp products,

# provided that the above copyright notice appears in all copies and

# that the software application product is distributed pursuant to terms

# no less restrictive than those set forth herein.

#

##--------------------------------------------------------------------

import argparse

import logging

import sys

from deploy_requests import DeployRequests

def _parse_args():

    """ Parses the arguments provided on the command line when executing

this
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        script and returns the resulting namespace. If all required

arguments

        are not provided, an error message indicating the mismatch is

printed and

        the script will exit.

    """

    parser = argparse.ArgumentParser(description=(

        'Uses the ONTAP Select Deploy API to resize the nodes in the

cluster.'

        ' For example, you might have a small (4 CPU, 16GB RAM per node) 2

node'

        ' cluster and wish to resize the cluster to medium (8 CPU, 64GB

RAM per'

        ' node). This script will take in the cluster details and then

perform'

        ' the operation and wait for it to complete.'

    ))

    parser.add_argument('--deploy', required=True, help=(

        'Hostname or IP of the ONTAP Select Deploy VM.'

    ))

    parser.add_argument('--deploy-password', required=True, help=(

        'The password for the ONTAP Select Deploy admin user.'

    ))

    parser.add_argument('--cluster', required=True, help=(

        'Hostname or IP of the cluster management interface.'

    ))

    parser.add_argument('--instance-type', required=True, help=(

        'The desired instance size of the nodes after the operation is

complete.'

    ))

    parser.add_argument('--ontap-password', required=True, help=(

        'The password for the ONTAP administrative user account.'

    ))

    parser.add_argument('--ontap-username', default='admin', help=(

        'The username for the ONTAP administrative user account. Default:

admin.'

    ))

    parser.add_argument('--nodes', nargs='+', metavar='NODE_NAME', help=(

        'A space separated list of node names for which the resize

operation'

        ' should be performed. The default is to apply the resize to all

nodes in'

        ' the cluster. If a list of nodes is provided, it must be provided

in HA'

        ' pairs. That is, in a 4 node cluster, nodes 1 and 2 (partners)
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must be'

        ' resized in the same operation.'

    ))

    return parser.parse_args()

def _get_cluster(deploy, parsed_args):

    """ Locate the cluster using the arguments provided """

    cluster_id = deploy.find_resource('/clusters', 'ip', parsed_args

.cluster)

    if not cluster_id:

        return None

    return deploy.get('/clusters/%s?fields=nodes' % cluster_id).json()[

'record']

def _get_request_body(parsed_args, cluster):

    """ Build the request body """

    changes = {'admin_password': parsed_args.ontap_password}

    # if provided, use the list of nodes given, else use all the nodes in

the cluster

    nodes = [node for node in cluster['nodes']]

    if parsed_args.nodes:

        nodes = [node for node in nodes if node['name'] in parsed_args

.nodes]

    changes['nodes'] = [

        {'instance_type': parsed_args.instance_type, 'id': node['id']} for

node in nodes]

    return changes

def main():

    """ Set up the resize operation by gathering the necessary data and

then send

        the request to the ONTAP Select Deploy server.

    """

    logging.basicConfig(

        format='[%(asctime)s] [%(levelname)5s] %(message)s', level=

logging.INFO,)

    logging.getLogger('requests.packages.urllib3').setLevel(logging
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.WARNING)

    parsed_args = _parse_args()

    deploy = DeployRequests(parsed_args.deploy, parsed_args

.deploy_password)

    cluster = _get_cluster(deploy, parsed_args)

    if not cluster:

        deploy.logger.error(

            'Unable to find a cluster with a management IP of %s' %

parsed_args.cluster)

        return 1

    changes = _get_request_body(parsed_args, cluster)

    deploy.patch('/clusters/%s' % cluster['id'], changes, wait_for_job

=True)

if __name__ == '__main__':

    sys.exit(main())
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