
執行Volume作業
Astra Trident
NetApp
November 14, 2025

This PDF was generated from https://docs.netapp.com/zh-tw/trident-2301/trident-use/csi-topology.html on
November 14, 2025. Always check docs.netapp.com for the latest.

目錄

執行Volume作業 . 1

使用「csi拓撲」 . 1

步驟1：建立可感知拓撲的後端 . 2

步驟2：定義可感知拓撲的StorageClass . 4

步驟3：建立並使用PVC. 5

更新後端以納入 supportedTopologies . 8

如需詳細資訊、請參閱 . 8

使用快照 . 8

步驟1：建立 VolumeSnapshotClass . 8

步驟2：建立現有PVc的快照. 9

步驟3：從Volume Snapshot建立PVCS . 10

部署Volume Snapshot控制器 . 11

相關連結 . 11

展開Volume . 12

展開iSCSI Volume . 12

展開NFS Volume . 16

匯入磁碟區 . 19

支援Volume匯入的驅動程式. 19

為什麼要匯入磁碟區？ . 20

匯入如何運作？ . 20

ontap-nas 和 ontap-nas-flexgroup 匯入. 21

ontap-san 匯入 . 22

element 匯入 . 23

gcp-cvs 匯入 . 23

azure-netapp-files 匯入 . 24

執行Volume作業
深入瞭解Astra Trident提供的功能、協助您管理磁碟區。

• "使用「csi拓撲」"

• "使用快照"

• "展開Volume"

• "匯入磁碟區"

使用「csi拓撲」

Astra Trident可以利用、選擇性地建立磁碟區、並將磁碟區附加至Kubernetes叢集中的節點 "「csi拓撲」功能"。
使用「csi拓撲」功能、可根據區域和可用性區域、限制對磁碟區的存取、只能存取一部分節點。如今、雲端供
應商可讓Kubernetes管理員建立以區域為基礎的節點。節點可位於某個區域內的不同可用度區域、或位於不同
區域之間。為了協助在多區域架構中配置工作負載的磁碟區、Astra Trident使用了csi拓撲。

深入瞭解「csi拓撲」功能 "請按這裡"。

Kubernetes提供兩種獨特的Volume繫結模式：

• 與 VolumeBindingMode 設定為 Immediate`Astra Trident在沒有任何拓撲感知的情況下建立磁碟

區。建立永久虛擬磁碟時、即會處理磁碟區繫結和動態資源配置。這是預設值 `VolumeBindingMode 適
用於未強制拓撲限制的叢集。建立永續性磁碟區時、不會對要求的Pod排程需求有任何相依性。

• 與 VolumeBindingMode 設定為 WaitForFirstConsumer、永久磁碟區的建立與繫結會延遲、直到排程
並建立使用該永久磁碟的Pod為止。如此一來、就能建立磁碟區、以符合拓撲需求所強制執行的排程限制。

。 WaitForFirstConsumer 繫結模式不需要拓撲標籤。這可獨立於「csi拓撲」功能使用。

您需要的產品

若要使用「csi拓撲」、您需要下列項目：

• 執行的Kubernetes叢集 "支援的Kubernetes版本"

kubectl version

Client Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:50:19Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

Server Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:41:49Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

1

https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://docs.netapp.com/zh-tw/trident-2301/trident-get-started/requirements.html
https://docs.netapp.com/zh-tw/trident-2301/trident-get-started/requirements.html
https://docs.netapp.com/zh-tw/trident-2301/trident-get-started/requirements.html
https://docs.netapp.com/zh-tw/trident-2301/trident-get-started/requirements.html
https://docs.netapp.com/zh-tw/trident-2301/trident-get-started/requirements.html
https://docs.netapp.com/zh-tw/trident-2301/trident-get-started/requirements.html
https://docs.netapp.com/zh-tw/trident-2301/trident-get-started/requirements.html
https://docs.netapp.com/zh-tw/trident-2301/trident-get-started/requirements.html
https://docs.netapp.com/zh-tw/trident-2301/trident-get-started/requirements.html
https://docs.netapp.com/zh-tw/trident-2301/trident-get-started/requirements.html
https://docs.netapp.com/zh-tw/trident-2301/trident-get-started/requirements.html

• 叢集中的節點應該有標籤來介紹拓撲認知 (topology.kubernetes.io/region 和

topology.kubernetes.io/zone）。在安裝Astra Trident以識別拓撲之前、這些標籤*應該會出現在叢
集*的節點上。

kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{.metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"

[node1,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node1","kubernetes.io/

os":"linux","node-

role.kubernetes.io/master":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-a"}]

[node2,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node2","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-b"}]

[node3,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node3","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-c"}]

步驟1：建立可感知拓撲的後端

Astra Trident儲存後端可根據可用性區域、選擇性地配置磁碟區。每個後端都可隨附選用功能

supportedTopologies 代表必須支援之區域和區域清單的區塊。對於使用此類後端的StorageClass、只有在
受支援地區/區域中排程的應用程式要求時、才會建立Volume。

以下是後端定義範例：

2

YAML

version: 1

storageDriverName: ontap-san

backendName: san-backend-us-east1

managementLIF: 192.168.27.5

svm: iscsi_svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-east1

 topology.kubernetes.io/zone: us-east1-a

- topology.kubernetes.io/region: us-east1

 topology.kubernetes.io/zone: us-east1-b

JSON

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "san-backend-us-east1",

 "managementLIF": "192.168.27.5",

 "svm": "iscsi_svm",

 "username": "admin",

 "password": "password",

 "supportedTopologies": [

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-a"},

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-b"}

]

}

supportedTopologies 用於提供每個後端的區域和區域清單。這些區域和區域代
表StorageClass中可提供的允許值清單。對於包含後端所提供之區域和區域子集的
StorageClass、Astra Trident會在後端建立磁碟區。

您可以定義 supportedTopologies 也可依儲存資源池。請參閱下列範例：

3

version: 1

storageDriverName: ontap-nas

backendName: nas-backend-us-central1

managementLIF: 172.16.238.5

svm: nfs_svm

username: admin

password: password

supportedTopologies:

- topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-a

- topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-b

storage:

- labels:

 workload: production

 region: Iowa-DC

 zone: Iowa-DC-A

 supportedTopologies:

 - topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-a

- labels:

 workload: dev

 region: Iowa-DC

 zone: Iowa-DC-B

 supportedTopologies:

 - topology.kubernetes.io/region: us-central1

 topology.kubernetes.io/zone: us-central1-b

在此範例中 region 和 zone 標籤代表儲存資源池的位置。 topology.kubernetes.io/region 和

topology.kubernetes.io/zone 指定儲存資源池的使用來源。

步驟2：定義可感知拓撲的StorageClass

根據提供給叢集中節點的拓撲標籤、可以定義StorageClass以包含拓撲資訊。這將決定做為所提出之永久虛擬磁
碟要求候選的儲存資源池、以及可以使用Trident所提供之磁碟區的節點子集。

請參閱下列範例：

4

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

name: netapp-san-us-east1

provisioner: csi.trident.netapp.io

volumeBindingMode: WaitForFirstConsumer

allowedTopologies:

- matchLabelExpressions:

- key: topology.kubernetes.io/zone

 values:

 - us-east1-a

 - us-east1-b

- key: topology.kubernetes.io/region

 values:

 - us-east1

parameters:

 fsType: "ext4"

在上述StorageClass定義中、 volumeBindingMode 設為 WaitForFirstConsumer。在Pod中引用

此StorageClass所要求的PVCS之前、系統不會對其採取行動。而且、 allowedTopologies 提供要使用的區

域和區域。。 netapp-san-us-east1 StorageClass會在上建立PVCS san-backend-us-east1 上述定義
的後端。

步驟3：建立並使用PVC

建立StorageClass並對應至後端後端後端之後、您現在就可以建立PVCS。

請參閱範例 spec 以下：

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san

spec:

accessModes:

 - ReadWriteOnce

resources:

 requests:

 storage: 300Mi

storageClassName: netapp-san-us-east1

使用此資訊清單建立永久虛擬環境可能會產生下列結果：

5

kubectl create -f pvc.yaml

persistentvolumeclaim/pvc-san created

kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

AGE

pvc-san Pending netapp-san-us-east1

2s

kubectl describe pvc

Name: pvc-san

Namespace: default

StorageClass: netapp-san-us-east1

Status: Pending

Volume:

Labels: <none>

Annotations: <none>

Finalizers: [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode: Filesystem

Mounted By: <none>

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Normal WaitForFirstConsumer 6s persistentvolume-controller waiting

for first consumer to be created before binding

若要Trident建立磁碟區並將其連結至PVc、請在Pod中使用PVc。請參閱下列範例：

6

apiVersion: v1

kind: Pod

metadata:

 name: app-pod-1

spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: topology.kubernetes.io/region

 operator: In

 values:

 - us-east1

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 1

 preference:

 matchExpressions:

 - key: topology.kubernetes.io/zone

 operator: In

 values:

 - us-east1-a

 - us-east1-b

 securityContext:

 runAsUser: 1000

 runAsGroup: 3000

 fsGroup: 2000

 volumes:

 - name: vol1

 persistentVolumeClaim:

 claimName: pvc-san

 containers:

 - name: sec-ctx-demo

 image: busybox

 command: ["sh", "-c", "sleep 1h"]

 volumeMounts:

 - name: vol1

 mountPath: /data/demo

 securityContext:

 allowPrivilegeEscalation: false

此podSpec會指示Kubernetes在中的節點上排程pod us-east1 區域、並從中的任何節點中進行選擇 us-

east1-a 或 us-east1-b 區域。

請參閱下列輸出：

7

kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE

NOMINATED NODE READINESS GATES

app-pod-1 1/1 Running 0 19s 192.168.25.131 node2

<none> <none>

kubectl get pvc -o wide

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE VOLUMEMODE

pvc-san Bound pvc-ecb1e1a0-840c-463b-8b65-b3d033e2e62b 300Mi

RWO netapp-san-us-east1 48s Filesystem

更新後端以納入 supportedTopologies

您可以更新現有的後端、以納入清單 supportedTopologies 使用 tridentctl backend update。這不
會影響已配置的磁碟區、而且只會用於後續的PVCS。

如需詳細資訊、請參閱

• "管理容器的資源"

• "節點選取器"

• "關聯性與反關聯性"

• "污染與容許"

使用快照

您可以建立持續磁碟區（PV）的Kubernetes Volume Snapshot（Volume Snapshot）、以
維護Astra Trident磁碟區的時間點複本。此外、您也可以從現有的Volume Snapshot建立新

的Volume、也稱為_clon__。支援Volume Snapshot ontap-nas、 ontap-nas-

flexgroup、 ontap-san、 ontap-san-economy、 solidfire-san、 gcp-cvs`

和 `azure-netapp-files 驅動程式：

開始之前

您必須擁有外部快照控制器和自訂資源定義（CRD）。這是Kubernetes Orchestrator的責任（例如：
Kubeadm、GKE、OpenShift）。

如果您的Kubernetes發佈版本未包含快照控制器和CRD、請參閱 部署Volume Snapshot控制器。

如果在GKE環境中建立隨需磁碟區快照、請勿建立快照控制器。GKE使用內建的隱藏式快照控制
器。

步驟1：建立 VolumeSnapshotClass

此範例會建立Volume Snapshot類別。

8

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

cat snap-sc.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

 name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

。 driver 指向Astra Trident的SCSI驅動程式。 deletionPolicy 可以 Delete 或 Retain。設定為時

Retain、儲存叢集上的基礎實體快照、即使在 VolumeSnapshot 物件已刪除。

如需詳細資訊、請參閱連結：../ Trident參考/ objects.html#Kubernetes-volumesnapshotclass-

objects[VolumeSnapshotClass]。

步驟2：建立現有PVc的快照

此範例會建立現有PVc的快照。

cat snap.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

 name: pvc1-snap

spec:

 volumeSnapshotClassName: csi-snapclass

 source:

 persistentVolumeClaimName: pvc1

在此範例中、快照是針對名為的PVc建立 pvc1 快照名稱設為 pvc1-snap。

kubectl create -f snap.yaml

volumesnapshot.snapshot.storage.k8s.io/pvc1-snap created

kubectl get volumesnapshots

NAME AGE

pvc1-snap 50s

這會建立一個 VolumeSnapshot 物件：Volume Snapshot類似於PVC、並與相關聯

VolumeSnapshotContent 代表實際快照的物件。

您可以識別 VolumeSnapshotContent 的物件 pvc1-snap 描述Volume Snapshot。

9

kubectl describe volumesnapshots pvc1-snap

Name: pvc1-snap

Namespace: default

.

.

.

Spec:

 Snapshot Class Name: pvc1-snap

 Snapshot Content Name: snapcontent-e8d8a0ca-9826-11e9-9807-525400f3f660

 Source:

 API Group:

 Kind: PersistentVolumeClaim

 Name: pvc1

Status:

 Creation Time: 2019-06-26T15:27:29Z

 Ready To Use: true

 Restore Size: 3Gi

.

.

。 Snapshot Content Name 識別提供此快照的Volume SnapshotContent物件。。 Ready To Use 參數表
示Snapshot可用於建立新的PVc。

步驟3：從Volume Snapshot建立PVCS

此範例使用快照建立一個PVC..

cat pvc-from-snap.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: pvc-from-snap

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: golden

 resources:

 requests:

 storage: 3Gi

 dataSource:

 name: pvc1-snap

 kind: VolumeSnapshot

 apiGroup: snapshot.storage.k8s.io

10

dataSource 顯示必須使用名為的Volume Snapshot建立PVc pvc1-snap 做為資料來源。這會指示Astra

Trident從快照建立一個永久虛擬資料。建立好永久虛擬基礎架構之後、就能將它附加到Pod上、就像使用任何其
他永久虛擬基礎架構一樣使用。

刪除具有相關快照的持續Volume時、對應的Trident Volume會更新為「刪除狀態」。若要刪
除Astra Trident磁碟區、則應移除該磁碟區的快照。

部署Volume Snapshot控制器

如果您的Kubernetes發佈版本未包含快照控制器和客戶需求日、您可以依照下列方式進行部署。

步驟

1. 建立Volume Snapshot客戶需求日。

cat snapshot-setup.sh

#!/bin/bash

Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents.yam

l

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml

2. 在所需的命名空間中建立Snapshot控制器。編輯下方的Yaml清單以修改命名空間。

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

相關連結

• "Volume快照"

• "Volume SnapshotClass"

11

https://docs.netapp.com/zh-tw/trident-2301/trident-concepts/snapshots.html
https://docs.netapp.com/zh-tw/trident-2301/trident-concepts/snapshots.html
https://docs.netapp.com/zh-tw/trident-2301/trident-concepts/snapshots.html
https://docs.netapp.com/zh-tw/trident-2301/trident-concepts/snapshots.html
https://docs.netapp.com/zh-tw/trident-2301/trident-concepts/snapshots.html
https://docs.netapp.com/zh-tw/trident-2301/trident-reference/objects.html

展開Volume

Astra Trident可讓Kubernetes使用者在建立磁碟區之後擴充磁碟區。尋找擴充iSCSI和NFS磁碟區所需組態的相
關資訊。

展開iSCSI Volume

您可以使用「SCSI資源配置程式」來擴充iSCSI持續磁碟區（PV）。

支援iSCSI Volume擴充 ontap-san、 ontap-san-economy、 solidfire-san 並需
要Kubernetes 1.16及更新版本。

總覽

擴充iSCSI PV包括下列步驟：

• 編輯StorageClass定義以設定 allowVolumeExpansion 欄位至 true。

• 編輯PVc定義並更新 spec.resources.requests.storage 以反映新的所需大小、此大小必須大於原始
大小。

• 必須將PV附加至Pod、才能調整其大小。調整iSCSI PV的大小有兩種情況：

◦ 如果PV附加至Pod、Astra Trident會在儲存後端擴充磁碟區、重新掃描裝置、並重新調整檔案系統的大
小。

◦ 嘗試調整未附加PV的大小時、Astra Trident會在儲存後端上擴充磁碟區。在將永久虛擬磁碟綁定至Pod

之後、Trident會重新掃描裝置並重新調整檔案系統的大小。然後、Kubernetes會在擴充作業成功完成
後、更新PVc大小。

以下範例顯示擴充iSCSI PV的運作方式。

步驟1：設定StorageClass以支援Volume擴充

cat storageclass-ontapsan.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-san

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-san"

allowVolumeExpansion: True

對於已存在的StorageClass、請編輯此類以納入 allowVolumeExpansion 參數。

步驟2：使用您建立的StorageClass建立一個永久虛擬儲存設備

12

cat pvc-ontapsan.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: san-pvc

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: ontap-san

Astra Trident會建立持續磁碟區（PV）、並將其與此持續磁碟區宣告（PVc）建立關聯。

kubectl get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi

RWO ontap-san 8s

kubectl get pv

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi RWO

Delete Bound default/san-pvc ontap-san 10s

步驟3：定義一個連接至PVc的Pod

在此範例中、會建立使用的Pod san-pvc。

13

 kubectl get pod

NAME READY STATUS RESTARTS AGE

ubuntu-pod 1/1 Running 0 65s

 kubectl describe pvc san-pvc

Name: san-pvc

Namespace: default

StorageClass: ontap-san

Status: Bound

Volume: pvc-8a814d62-bd58-4253-b0d1-82f2885db671

Labels: <none>

Annotations: pv.kubernetes.io/bind-completed: yes

 pv.kubernetes.io/bound-by-controller: yes

 volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers: [kubernetes.io/pvc-protection]

Capacity: 1Gi

Access Modes: RWO

VolumeMode: Filesystem

Mounted By: ubuntu-pod

步驟4：展開PV

若要調整從1Gi建立至2Gi的PV大小、請編輯PVc定義並更新 spec.resources.requests.storage 至2Gi。

14

kubectl edit pvc san-pvc

Please edit the object below. Lines beginning with a '#' will be

ignored,

and an empty file will abort the edit. If an error occurs while saving

this file will be

reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 annotations:

 pv.kubernetes.io/bind-completed: "yes"

 pv.kubernetes.io/bound-by-controller: "yes"

 volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

 creationTimestamp: "2019-10-10T17:32:29Z"

 finalizers:

 - kubernetes.io/pvc-protection

 name: san-pvc

 namespace: default

 resourceVersion: "16609"

 selfLink: /api/v1/namespaces/default/persistentvolumeclaims/san-pvc

 uid: 8a814d62-bd58-4253-b0d1-82f2885db671

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 2Gi

 ...

步驟5：驗證擴充

您可以檢查PVc、PV和Astra Trident Volume的大小、以正確驗證擴充作業：

15

kubectl get pvc san-pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82f2885db671 2Gi

RWO ontap-san 11m

kubectl get pv

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 2Gi RWO

Delete Bound default/san-pvc ontap-san 12m

tridentctl get volumes -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-8a814d62-bd58-4253-b0d1-82f2885db671 | 2.0 GiB | ontap-san |

block | a9b7bfff-0505-4e31-b6c5-59f492e02d33 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

展開NFS Volume

Astra Trident支援在上配置NFS PV的Volume擴充 ontap-nas、 ontap-nas-economy、 ontap-nas-

flexgroup、 gcp-cvs`和 `azure-netapp-files 後端：

步驟1：設定StorageClass以支援Volume擴充

若要調整NFS PV的大小、管理員必須先設定儲存類別、以允許透過設定來擴充磁碟區

allowVolumeExpansion 欄位至 true：

cat storageclass-ontapnas.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontapnas

provisioner: csi.trident.netapp.io

parameters:

 backendType: ontap-nas

allowVolumeExpansion: true

如果您已建立不含此選項的儲存類別、則只要使用編輯現有的儲存類別即可 kubectl edit storageclass

以允許磁碟區擴充。

16

步驟2：使用您建立的StorageClass建立一個永久虛擬儲存設備

cat pvc-ontapnas.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: ontapnas20mb

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 20Mi

 storageClassName: ontapnas

Astra Trident應為此PVC建立20MiB NFS PV：

kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi

RWO ontapnas 9s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi RWO

Delete Bound default/ontapnas20mb ontapnas

2m42s

步驟3：展開PV

若要將新建立的20MiB PV調整至1GiB、請編輯該PVC並設定組合 spec.resources.requests.storage

至1GB：

17

kubectl edit pvc ontapnas20mb

Please edit the object below. Lines beginning with a '#' will be

ignored,

and an empty file will abort the edit. If an error occurs while saving

this file will be

reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 annotations:

 pv.kubernetes.io/bind-completed: "yes"

 pv.kubernetes.io/bound-by-controller: "yes"

 volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

 creationTimestamp: 2018-08-21T18:26:44Z

 finalizers:

 - kubernetes.io/pvc-protection

 name: ontapnas20mb

 namespace: default

 resourceVersion: "1958015"

 selfLink: /api/v1/namespaces/default/persistentvolumeclaims/ontapnas20mb

 uid: c1bd7fa5-a56f-11e8-b8d7-fa163e59eaab

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

...

步驟4：驗證擴充

您可以檢查PVc、PV和Astra Trident Volume的大小、以正確驗證調整大小：

18

kubectl get pvc ontapnas20mb

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 1Gi

RWO ontapnas 4m44s

kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 1Gi RWO

Delete Bound default/ontapnas20mb ontapnas

5m35s

tridentctl get volume pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 | 1.0 GiB | ontapnas |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

匯入磁碟區

您可以使用將現有的儲存磁碟區匯入為Kubernetes PV tridentctl import。

支援Volume匯入的驅動程式

下表說明支援匯入磁碟區的驅動程式、以及這些磁碟區所引進的版本。

驅動程式 版本

ontap-nas 19.04

ontap-nas-flexgroup 19.04

solidfire-san 19.04

azure-netapp-files 19.04

19

驅動程式 版本

gcp-cvs 19.04

ontap-san 19.04

為什麼要匯入磁碟區？

將Volume匯入Trident的使用案例有多種：

• 容器化應用程式、並重新使用現有的資料集

• 將資料集的複本用於暫時性應用程式

• 重建故障的Kubernetes叢集

• 在災難恢復期間移轉應用程式資料

匯入如何運作？

Volume匯入程序會使用持續磁碟區宣告（PVc）檔案來建立PVc。至少、PVc檔案應包含名稱、命名空間、存取
模式及storageClassName欄位、如下例所示。

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: my_claim

 namespace: my_namespace

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: my_storage_class

。 tridentctl 用戶端用於匯入現有的儲存磁碟區。Trident會持續儲存Volume中繼資料並建立PVc和PV、以
匯入Volume。

tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-file>

若要匯入儲存磁碟區、請指定包含該磁碟區的Astra Trident後端名稱、以及唯一識別儲存區上該磁碟區的名稱（
例如ONTAP FlexVol ：Wsel, Element Volume、CVS Volume path）。儲存磁碟區必須允許讀取/寫入存取、且

可由指定的Astra Trident後端存取。。 -f 字串引數為必填、並指定Yaml或Json PVc檔案的路徑。

當Astra Trident收到匯入磁碟區要求時、現有的磁碟區大小會在PVc中決定及設定。儲存驅動程式匯入磁碟區之

後、PV會以PVc的ClaimRef建立。回收原則一開始設定為 retain 在PV中。Kubernetes成功繫結了PVc和PV之

後、系統會更新回收原則以符合儲存類別的回收原則。如果儲存類別的回收原則為 delete、儲存磁碟區會
在PV刪除時刪除。

使用匯入Volume時 --no-manage 引數：Trident不會在物件生命週期的PVc或PV上執行任何其他作業。因

20

為Trident會忽略的PV和PVc事件 --no-manage 物件、儲存磁碟區不會在PV刪除時刪除。此外、也會忽略其
他作業、例如Volume Clone和Volume resize。如果您想要將Kubernetes用於容器化工作負載、但想要管
理Kubernetes以外儲存磁碟區的生命週期、則此選項非常實用。

將註釋新增至PVc和PV、這有兩種用途、表示已匯入磁碟區、以及是否管理了PVc和PV。不應修改或移除此附
註。

Trident 19.07及更新版本可處理PV的附加元件、並在匯入磁碟區時掛載磁碟區。對於使用舊版Astra Trident的匯
入、資料路徑不會有任何作業、而且磁碟區匯入不會驗證是否可以掛載磁碟區。如果在匯入磁碟區時發生錯誤（

例如、StorageClass不正確）、您可以將PV上的回收原則變更為來恢復 retain、刪除PVC和PV、然後重新嘗
試Volume匯入命令。

ontap-nas 和 ontap-nas-flexgroup 匯入

使用建立的每個Volume ontap-nas 驅動程式FlexVol 是ONTAP 指在整個叢集上執行的功能。使用匯

入FlexVols ontap-nas 驅動程式的運作方式相同。可將已存在於某個叢集上的一個功能、匯入為FlexVol

ONTAP ontap-nas PVC.同樣地FlexGroup 、也可以將此資訊匯入為 ontap-nas-flexgroup PVCs：

若要由Trident匯入某個類型的Rw。ONTAP如果磁碟區是DP類型、則它是SnapMirror目的地磁碟
區；在將磁碟區匯入Trident之前、您應該先中斷鏡射關係。

。 ontap-nas 驅動程式無法匯入及管理qtree。。 ontap-nas 和 ontap-nas-flexgroup 驅
動程式不允許重複的磁碟區名稱。

例如、匯入名為的磁碟區 managed_volume 在名為的後端上 ontap_nas，請使用下列命令：

tridentctl import volume ontap_nas managed_volume -f <path-to-pvc-file>

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

匯入名為的磁碟區 unmanaged_volume （在上 ontap_nas backend）（Trident無法管理）、請使用下列命
令：

21

tridentctl import volume nas_blog unmanaged_volume -f <path-to-pvc-file>

--no-manage

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-df07d542-afbc-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | false |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

使用時 --no-manage 引數：Trident不會重新命名磁碟區、也不會驗證磁碟區是否已掛載。如果未手動掛載磁
碟區、則磁碟區匯入作業會失敗。

已修正先前使用自訂Unix權限 匯入磁碟區的錯誤。您可以在您的PVc定義或後端組態中指
定unixPermissions、並指示Astra Trident依此匯入磁碟區。

ontap-san 匯入

Astra Trident也能匯入ONTAP 包含單一LUN的SAN FlexVols。這與一致 ontap-san 驅動程式、為FlexVol 每個

實體磁碟和FlexVol 一個LUN建立一個實體。您可以使用 tridentctl import 命令的方式與其他情況相同：

• 包括的名稱 ontap-san 後端：

• 請提供FlexVol 需要匯入的名稱。請記住FlexVol 、這個功能只包含一個必須匯入的LUN。

• 提供必須搭配使用的PVc定義路徑 -f 旗標。

• 您可以選擇管理或不受管理的永久虛擬網路。根據預設、Trident會管理PVc、並在FlexVol 後端重新命名

該LUN。若要匯入為未受管理的Volume、請傳遞 --no-manage 旗標。

匯入未受管理的時 ontap-san Volume中的LUN FlexVol 名稱 lun0 並對應至具有所需啟動器
的igroup。Astra Trident會自動處理這項作業、以便進行託管匯入。

然後Astra Trident會匯入FlexVol 該等物件、並將其與PVc定義建立關聯。Astra Trident也將FlexVol 該等功能重

新命名為 pvc-<uuid> 格式化及FlexVol LUN在功能區內 lun0。

建議匯入沒有現有作用中連線的磁碟區。如果您要匯入使用中的Volume、請先複製該Volume、
然後再執行匯入。

範例

以匯入 ontap-san-managed 上的顯示FlexVol ontap_san_default 後端、執行 tridentctl import 命
令形式：

22

tridentctl import volume ontapsan_san_default ontap-san-managed -f pvc-

basic-import.yaml -n trident -d

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-d6ee4f54-4e40-4454-92fd-d00fc228d74a | 20 MiB | basic |

block | cd394786-ddd5-4470-adc3-10c5ce4ca757 | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

若要由Astra Trident匯入某個類型的RW磁碟區。ONTAP如果磁碟區為DP類型、則為SnapMirror

目的地磁碟區；您應該先中斷鏡射關係、再將磁碟區匯入Astra Trident。

element 匯入

您可以使用NetApp Element Trident將支援功能的軟體/NetApp HCI磁碟區匯入Kubernetes叢集。您需要Astra

Trident後端的名稱、以及磁碟區的唯一名稱和PVc檔案做為的引數 tridentctl import 命令。

tridentctl import volume element_default element-managed -f pvc-basic-

import.yaml -n trident -d

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-970ce1ca-2096-4ecd-8545-ac7edc24a8fe | 10 GiB | basic-element |

block | d3ba047a-ea0b-43f9-9c42-e38e58301c49 | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

Element驅動程式支援重複的Volume名稱。如果有重複的Volume名稱、Trident的Volume匯入程
序會傳回錯誤。因應措施是複製磁碟區、並提供唯一的磁碟區名稱。然後匯入複製的Volume。

gcp-cvs 匯入

若要匯入以NetApp Cloud Volumes Service 支援的GCP磁碟區、請使用磁碟區路徑來識別該磁碟
區、而非其名稱。

23

若要匯入 gcp-cvs 後端上的Volume稱為 gcpcvs_YEppr 的磁碟區路徑 adroit-jolly-swift，請使用下列
命令：

tridentctl import volume gcpcvs_YEppr adroit-jolly-swift -f <path-to-pvc-

file> -n trident

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-a46ccab7-44aa-4433-94b1-e47fc8c0fa55 | 93 GiB | gcp-storage | file

| e1a6e65b-299e-4568-ad05-4f0a105c888f | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

Volume路徑是Volume匯出路徑的一部分、位於：/之後。例如、如果匯出路徑為

10.0.0.1:/adroit-jolly-swift、磁碟區路徑為 adroit-jolly-swift。

azure-netapp-files 匯入

若要匯入 azure-netapp-files 後端上的Volume稱為 azurenetappfiles_40517 磁碟區路徑

importvol1，執行下列命令：

tridentctl import volume azurenetappfiles_40517 importvol1 -f <path-to-

pvc-file> -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-0ee95d60-fd5c-448d-b505-b72901b3a4ab | 100 GiB | anf-storage |

file | 1c01274f-d94b-44a3-98a3-04c953c9a51e | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

anf磁碟區的磁碟區路徑會出現在裝載路徑中的：/之後。例如、如果掛載路徑為

10.0.0.2:/importvol1、磁碟區路徑為 importvol1。

24

版權資訊

Copyright © 2025 NetApp, Inc. 版權所有。台灣印製。非經版權所有人事先書面同意，不得將本受版權保護文件
的任何部分以任何形式或任何方法（圖形、電子或機械）重製，包括影印、錄影、錄音或儲存至電子檢索系統
中。

由 NetApp 版權資料衍伸之軟體必須遵守下列授權和免責聲明：

此軟體以 NETAPP「原樣」提供，不含任何明示或暗示的擔保，包括但不限於有關適售性或特定目的適用性之
擔保，特此聲明。於任何情況下，就任何已造成或基於任何理論上責任之直接性、間接性、附隨性、特殊性、懲
罰性或衍生性損害（包括但不限於替代商品或服務之採購；使用、資料或利潤上的損失；或企業營運中斷），無
論是在使用此軟體時以任何方式所產生的契約、嚴格責任或侵權行為（包括疏忽或其他）等方面，NetApp 概不
負責，即使已被告知有前述損害存在之可能性亦然。

NetApp 保留隨時變更本文所述之任何產品的權利，恕不另行通知。NetApp 不承擔因使用本文所述之產品而產
生的責任或義務，除非明確經過 NetApp 書面同意。使用或購買此產品並不會在依據任何專利權、商標權或任何
其他 NetApp 智慧財產權的情況下轉讓授權。

本手冊所述之產品受到一項（含）以上的美國專利、國外專利或申請中專利所保障。

有限權利說明：政府機關的使用、複製或公開揭露須受 DFARS 252.227-7013（2014 年 2 月）和 FAR 52.227-

19（2007 年 12 月）中的「技術資料權利 - 非商業項目」條款 (b)(3) 小段所述之限制。

此處所含屬於商業產品和 / 或商業服務（如 FAR 2.101 所定義）的資料均為 NetApp, Inc. 所有。根據本協議提
供的所有 NetApp 技術資料和電腦軟體皆屬於商業性質，並且完全由私人出資開發。 美國政府對於該資料具有
非專屬、非轉讓、非轉授權、全球性、有限且不可撤銷的使用權限，僅限於美國政府為傳輸此資料所訂合約所允
許之範圍，並基於履行該合約之目的方可使用。除非本文另有規定，否則未經 NetApp Inc. 事前書面許可，不得
逕行使用、揭露、重製、修改、履行或展示該資料。美國政府授予國防部之許可權利，僅適用於 DFARS 條款
252.227-7015(b)（2014 年 2 月）所述權利。

商標資訊

NETAPP、NETAPP 標誌及 http://www.netapp.com/TM 所列之標章均為 NetApp, Inc. 的商標。文中所涉及的所
有其他公司或產品名稱，均為其各自所有者的商標，不得侵犯。

25

http://www.netapp.com/TM

	執行Volume作業 : Astra Trident
	目錄
	執行Volume作業
	使用「csi拓撲」
	步驟1：建立可感知拓撲的後端
	步驟2：定義可感知拓撲的StorageClass
	步驟3：建立並使用PVC
	更新後端以納入 supportedTopologies
	如需詳細資訊、請參閱

	使用快照
	步驟1：建立 VolumeSnapshotClass
	步驟2：建立現有PVc的快照
	步驟3：從Volume Snapshot建立PVCS
	部署Volume Snapshot控制器
	相關連結

	展開Volume
	展開iSCSI Volume
	展開NFS Volume

	匯入磁碟區
	支援Volume匯入的驅動程式
	為什麼要匯入磁碟區？
	匯入如何運作？
	ontap-nas 和 ontap-nas-flexgroup 匯入
	ontap-san 匯入
	element 匯入
	gcp-cvs 匯入
	azure-netapp-files 匯入

