
管理 Trident Protect

Trident
NetApp
September 26, 2025

This PDF was generated from https://docs.netapp.com/zh-tw/trident-2502/trident-protect/manage-
authorization-access-control.html on September 26, 2025. Always check docs.netapp.com for the latest.

目錄

管理 Trident Protect . 1

管理 Trident 保護授權與存取控制. 1

範例：管理兩組使用者的存取權. 1

監控 Trident Protect 資源 . 7

步驟 1 ：安裝監控工具. 7

步驟 2 ：設定監控工具以共同作業. 10

步驟 3 ：設定警示和警示目的地. 11

產生 Trident Protect 支援服務組合 . 12

升級 Trident Protect . 14

管理 Trident Protect

管理 Trident 保護授權與存取控制

Trident Protect 採用 Kubernetes 角色型存取控制（ RBAC ）模式。根據預設， Trident

Protect 提供單一系統命名空間及其相關的預設服務帳戶。如果組織有許多使用者或特定的
安全需求，您可以使用 Trident Protect 的 RBAC 功能，更精細地控制對資源和命名空間的
存取。

叢集管理員一律可以存取預設命名空間中的資源 trident-protect，也可以存取所有其他命名空間中的資
源。若要控制對資源和應用程式的存取，您需要建立額外的命名空間，並將資源和應用程式新增至這些命名空
間。

請注意，沒有使用者可以在預設命名空間中建立應用程式資料管理 CRS trident-protect 。您需要在應用程
式命名空間中建立應用程式資料管理 CRS （最佳做法是在與其相關應用程式相同的命名空間中建立應用程式資
料管理 CRS ）。

只有系統管理員才能存取授權的 Trident 保護自訂資源物件，包括：

• * AppVault* ：需要儲存庫認證資料

• * AutoSupportBundle * ：收集指標，記錄及其他敏感的 Trident Protect 資料

• * AutoSupportBundleSchedule* ：管理記錄收集排程

最佳做法是使用 RBAC 來限制系統管理員存取權限物件。

如需 RBAC 如何規範資源和命名空間存取的詳細資訊，請參閱 "Kubernetes RBAC 文件"。

如需服務帳戶的相關資訊，請參閱 "Kubernetes 服務帳戶文件"。

範例：管理兩組使用者的存取權

例如，組織有叢集管理員，一組工程設計使用者，以及一組行銷使用者。叢集管理員將完成下列工作，以建立一
個環境，其中工程群組和行銷群組各自只能存取指派給各自命名空間的資源。

步驟 1 ：建立命名空間以包含每個群組的資源

建立命名空間可讓您以邏輯方式分隔資源，並更有效地控制誰有權存取這些資源。

步驟

1. 為工程群組建立命名空間：

kubectl create ns engineering-ns

2. 為行銷群組建立命名空間：

1

https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/

kubectl create ns marketing-ns

步驟 2 ：建立新的服務帳戶，與每個命名空間中的資源互動

您所建立的每個新命名空間都有預設服務帳戶，但您應該為每個使用者群組建立服務帳戶，以便日後在必要時在
群組之間進一步分割 Privileges 。

步驟

1. 為工程群組建立服務帳戶：

apiVersion: v1

kind: ServiceAccount

metadata:

 name: eng-user

 namespace: engineering-ns

2. 為行銷群組建立服務帳戶：

apiVersion: v1

kind: ServiceAccount

metadata:

 name: mkt-user

 namespace: marketing-ns

步驟 3 ：為每個新的服務帳戶建立秘密

服務帳戶密碼是用來驗證服務帳戶，如果受到入侵，也可以輕鬆刪除和重新建立。

步驟

1. 為工程服務帳戶建立秘密：

apiVersion: v1

kind: Secret

metadata:

 annotations:

 kubernetes.io/service-account.name: eng-user

 name: eng-user-secret

 namespace: engineering-ns

type: kubernetes.io/service-account-token

2. 為行銷服務帳戶建立秘密：

2

apiVersion: v1

kind: Secret

metadata:

 annotations:

 kubernetes.io/service-account.name: mkt-user

 name: mkt-user-secret

 namespace: marketing-ns

type: kubernetes.io/service-account-token

步驟 4 ：建立 RoleBinding 物件，將 ClusterRole 物件繫結至每個新的服務帳戶

安裝 Trident Protect 時會建立預設的 ClusterRole 物件。您可以建立並套用角色繫結物件，將此 ClusterRole 繫
結至服務帳戶。

步驟

1. 將 ClusterRole 繫結至工程服務帳戶：

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: engineering-ns-tenant-rolebinding

 namespace: engineering-ns

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: trident-protect-tenant-cluster-role

subjects:

- kind: ServiceAccount

 name: eng-user

 namespace: engineering-ns

2. 將 ClusterRole 連結至行銷服務帳戶：

3

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: marketing-ns-tenant-rolebinding

 namespace: marketing-ns

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: trident-protect-tenant-cluster-role

subjects:

- kind: ServiceAccount

 name: mkt-user

 namespace: marketing-ns

步驟 5 ：測試權限

測試權限是否正確。

步驟

1. 確認工程使用者可以存取工程資源：

kubectl auth can-i --as=system:serviceaccount:engineering-ns:eng-user

get applications.protect.trident.netapp.io -n engineering-ns

2. 確認工程使用者無法存取行銷資源：

kubectl auth can-i --as=system:serviceaccount:engineering-ns:eng-user

get applications.protect.trident.netapp.io -n marketing-ns

步驟 6 ：授予對 AppVault 物件的存取權

若要執行資料管理工作，例如備份和快照，叢集管理員必須將 AppVault 物件的存取權授予個別使用者。

步驟

1. 建立並套用 AppVault 和加密組合 YAML 檔案，以授予使用者存取 AppVault 的權限。例如，下列 CR 將

AppVault 的存取權授予使用者 eng-user：

4

apiVersion: v1

data:

 accessKeyID: <ID_value>

 secretAccessKey: <key_value>

kind: Secret

metadata:

 name: appvault-for-eng-user-only-secret

 namespace: trident-protect

type: Opaque

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

 name: appvault-for-eng-user-only

 namespace: trident-protect # Trident protect system namespace

spec:

 providerConfig:

 azure:

 accountName: ""

 bucketName: ""

 endpoint: ""

 gcp:

 bucketName: ""

 projectID: ""

 s3:

 bucketName: testbucket

 endpoint: 192.168.0.1:30000

 secure: "false"

 skipCertValidation: "true"

 providerCredentials:

 accessKeyID:

 valueFromSecret:

 key: accessKeyID

 name: appvault-for-eng-user-only-secret

 secretAccessKey:

 valueFromSecret:

 key: secretAccessKey

 name: appvault-for-eng-user-only-secret

 providerType: GenericS3

2. 建立並套用角色 CR ，讓叢集管理員能夠授與對命名空間中特定資源的存取權。例如：

5

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: eng-user-appvault-reader

 namespace: trident-protect

rules:

- apiGroups:

 - protect.trident.netapp.io

 resourceNames:

 - appvault-for-enguser-only

 resources:

 - appvaults

 verbs:

 - get

3. 建立並套用 RoleBinding CR ，將權限繫結至使用者 eng-user 。例如：

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: eng-user-read-appvault-binding

 namespace: trident-protect

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: eng-user-appvault-reader

subjects:

- kind: ServiceAccount

 name: eng-user

 namespace: engineering-ns

4. 確認權限正確。

a. 嘗試擷取所有命名空間的 AppVault 物件資訊：

kubectl get appvaults -n trident-protect

--as=system:serviceaccount:engineering-ns:eng-user

您應該會看到類似下列的輸出：

6

Error from server (Forbidden): appvaults.protect.trident.netapp.io is

forbidden: User "system:serviceaccount:engineering-ns:eng-user"

cannot list resource "appvaults" in API group

"protect.trident.netapp.io" in the namespace "trident-protect"

b. 測試以查看使用者是否能取得他們現在有權存取的 AppVault 資訊：

kubectl auth can-i --as=system:serviceaccount:engineering-ns:eng-user

get appvaults.protect.trident.netapp.io/appvault-for-eng-user-only -n

trident-protect

您應該會看到類似下列的輸出：

yes

結果

您已授予 AppVault 權限的使用者應該能夠使用授權的 AppVault 物件來執行應用程式資料管理作業，而且不應能
夠存取指派命名空間以外的任何資源，或建立他們無法存取的新資源。

監控 Trident Protect 資源

您可以使用 kube-state 度量， Prometheus 和 Alertmanager 開放原始碼工具來監控受
Trident Protect 保護的資源健全狀況。

kube-state 度量服務會從 Kubernetes API 通訊產生度量。搭配 Trident Protect 使用可提供環境中資源狀態的實
用資訊。

Prometheus 是一個工具組，可擷取由 kube 狀態度量所產生的資料，並將其呈現為這些物件的易讀資訊。kube

狀態指標和 Prometheus 共同提供一種方法，讓您使用 Trident Protect 監控所管理資源的健全狀況和狀態。

AlertManager 是一項服務，可擷取 Prometheus 等工具所傳送的警示，並將其路由至您設定的目的地。

這些步驟所包含的組態和指南僅為範例，您需要自訂以符合您的環境。請參閱下列正式文件，以
取得特定指示與支援：

• "Kube-state指標文件"

• "Prometheus 文件"

• "AlertManager 文件"

步驟 1 ：安裝監控工具

若要在 Trident Protect 中啟用資源監控，您必須安裝及設定 kube-st狀態 度量， Promethus 和 Alertmanager 。

7

https://github.com/kubernetes/kube-state-metrics/tree/main
https://github.com/kubernetes/kube-state-metrics/tree/main
https://github.com/kubernetes/kube-state-metrics/tree/main
https://github.com/kubernetes/kube-state-metrics/tree/main
https://github.com/kubernetes/kube-state-metrics/tree/main
https://github.com/kubernetes/kube-state-metrics/tree/main
https://github.com/kubernetes/kube-state-metrics/tree/main
https://github.com/kubernetes/kube-state-metrics/tree/main
https://github.com/kubernetes/kube-state-metrics/tree/main
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://github.com/prometheus/alertmanager
https://github.com/prometheus/alertmanager
https://github.com/prometheus/alertmanager
https://github.com/prometheus/alertmanager
https://github.com/prometheus/alertmanager

安裝 kube 狀態度量

您可以使用 Helm 來安裝 kube 狀態度量。

步驟

1. 新增 kube 狀態指標 Helm 圖表。例如：

helm repo add prometheus-community https://prometheus-

community.github.io/helm-charts

helm repo update

2. 為 Helm 圖表建立組態檔（例如 metrics-config.yaml）。您可以自訂下列範例組態，以符合您的環境
：

8

測量數據 -config.yaml ： Kube-state 度量 Helm 圖表組態

extraArgs:

 # Collect only custom metrics

 - --custom-resource-state-only=true

customResourceState:

 enabled: true

 config:

 kind: CustomResourceStateMetrics

 spec:

 resources:

 - groupVersionKind:

 group: protect.trident.netapp.io

 kind: "Backup"

 version: "v1"

 labelsFromPath:

 backup_uid: [metadata, uid]

 backup_name: [metadata, name]

 creation_time: [metadata, creationTimestamp]

 metrics:

 - name: backup_info

 help: "Exposes details about the Backup state"

 each:

 type: Info

 info:

 labelsFromPath:

 appVaultReference: ["spec", "appVaultRef"]

 appReference: ["spec", "applicationRef"]

rbac:

 extraRules:

 - apiGroups: ["protect.trident.netapp.io"]

 resources: ["backups"]

 verbs: ["list", "watch"]

Collect metrics from all namespaces

namespaces: ""

Ensure that the metrics are collected by Prometheus

prometheus:

 monitor:

 enabled: true

3. 部署 Helm 圖表以安裝 kube 狀態度量。例如：

9

helm install custom-resource -f metrics-config.yaml prometheus-

community/kube-state-metrics --version 5.21.0

4. 依照中的指示，設定 kube 狀態度量，以產生 Trident Protect 所使用之自訂資源的度量 "Kube-state 度量自
訂資源文件"。

安裝Prometheus

您可以依照中的指示來安裝 Prometheus "Prometheus 文件" 。

安裝 AlertManager

您可以依照中的指示安裝 AlertManager "AlertManager 文件" 。

步驟 2 ：設定監控工具以共同作業

安裝監控工具之後，您需要將它們設定為一起運作。

步驟

1. 將 kube 狀態指標與 Prometheus 整合。編輯 Prometheus 配置文件(prometheus.yaml）並添加 kube 狀
態指標服務信息。例如：

prometheus.yaml：kube-state-metrics 服務與 Prometheus 的集成

apiVersion: v1

kind: ConfigMap

metadata:

 name: prometheus-config

 namespace: trident-protect

data:

 prometheus.yaml: |

 global:

 scrape_interval: 15s

 scrape_configs:

 - job_name: 'kube-state-metrics'

 static_configs:

 - targets: ['kube-state-metrics.trident-protect.svc:8080']

2. 設定 Prometheus 將警示路由至 AlertManager 。編輯 Prometheus 配置文件(prometheus.yaml）並添加
以下部分：

10

https://github.com/kubernetes/kube-state-metrics/blob/main/docs/metrics/extend/customresourcestate-metrics.md#custom-resource-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/metrics/extend/customresourcestate-metrics.md#custom-resource-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/metrics/extend/customresourcestate-metrics.md#custom-resource-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/metrics/extend/customresourcestate-metrics.md#custom-resource-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/metrics/extend/customresourcestate-metrics.md#custom-resource-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/metrics/extend/customresourcestate-metrics.md#custom-resource-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/metrics/extend/customresourcestate-metrics.md#custom-resource-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/metrics/extend/customresourcestate-metrics.md#custom-resource-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/metrics/extend/customresourcestate-metrics.md#custom-resource-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/metrics/extend/customresourcestate-metrics.md#custom-resource-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/metrics/extend/customresourcestate-metrics.md#custom-resource-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/metrics/extend/customresourcestate-metrics.md#custom-resource-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/metrics/extend/customresourcestate-metrics.md#custom-resource-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/metrics/extend/customresourcestate-metrics.md#custom-resource-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/metrics/extend/customresourcestate-metrics.md#custom-resource-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/metrics/extend/customresourcestate-metrics.md#custom-resource-state-metrics
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/metrics/extend/customresourcestate-metrics.md#custom-resource-state-metrics
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/installation/
https://github.com/prometheus/alertmanager?tab=readme-ov-file#install
https://github.com/prometheus/alertmanager?tab=readme-ov-file#install
https://github.com/prometheus/alertmanager?tab=readme-ov-file#install
https://github.com/prometheus/alertmanager?tab=readme-ov-file#install
https://github.com/prometheus/alertmanager?tab=readme-ov-file#install

prometheus.yaml：向 Alertmanager 發送警報

alerting:

 alertmanagers:

 - static_configs:

 - targets:

 - alertmanager.trident-protect.svc:9093

結果

現在， Prometheus 可以從 kube-state 度量收集度量，並可傳送警示給 Alertmanager 。您現在已準備好設定觸
發警示的條件，以及應傳送警示的位置。

步驟 3 ：設定警示和警示目的地

設定工具以共同作業之後，您需要設定觸發警示的資訊類型，以及應傳送警示的位置。

警示範例：備份失敗

以下範例定義當備份自訂資源的狀態設定為 5 秒或更長時間時觸發的關鍵警示 Error。您可以自訂此範例以符

合您的環境，並將此 YAML 片段包含在組態檔案中 prometheus.yaml：

rules.yaml：定義失敗備份的 Prometheus 警報

rules.yaml: |

 groups:

 - name: fail-backup

 rules:

 - alert: BackupFailed

 expr: kube_customresource_backup_info{status="Error"}

 for: 5s

 labels:

 severity: critical

 annotations:

 summary: "Backup failed"

 description: "A backup has failed."

設定 AlertManager 以傳送警示至其他頻道

您可以將 AlertManager 設定為傳送通知給其他通道，例如電子郵件， PagerDuty ， Microsoft 團隊或其他通知

服務，方法是在檔案中指定個別的組態 alertmanager.yaml。

以下範例將警示管理員設定為傳送通知至 Slack 頻道。若要根據您的環境自訂此範例，請將金鑰的值取代為
`api_url`您環境中使用的 Slack Webhook URL ：

11

alertmanager.yaml：向 Slack 頻道發送警報

data:

 alertmanager.yaml: |

 global:

 resolve_timeout: 5m

 route:

 receiver: 'slack-notifications'

 receivers:

 - name: 'slack-notifications'

 slack_configs:

 - api_url: '<your-slack-webhook-url>'

 channel: '#failed-backups-channel'

 send_resolved: false

產生 Trident Protect 支援服務組合

Trident Protect 可讓系統管理員產生套件組合，其中包含 NetApp 支援所需的資訊，包括
所管理叢集和應用程式的記錄，度量和拓撲資訊。如果您已連線至網際網路，則可以使用
自訂資源（ CR ）檔案，將支援套件上傳至 NetApp 支援網站（ NSS ）。

12

使用 CR 建立支援服務組合

步驟

1. 建立自訂資源（ CR ）檔案並命名（例如 trident-protect-support-bundle.yaml）。

2. 設定下列屬性：

◦ * metadata.name*: （ _required ）此自訂資源的名稱；為您的環境選擇唯一且合理的名稱。

◦ spec.triggerType ：（ _required _ ）決定是立即產生支援套件，還是排程產生。排定的套件產生
時間為上午 12 點， UTC 。可能值：

▪ 已排程

▪ 手冊

◦ SPEC.uploadEnabled ：（ Optional ）控制是否應在支援服務組合產生後，將其上傳至 NetApp

支援網站。如果未指定，則默認爲 false。可能值：

▪ 是的

▪ 否（預設）

◦ spec.daWindowStart ：（ Optional ） RFC 3339 格式的日期字串，指定支援套件中所包含資料
的視窗應開始的日期與時間。如果未指定，則預設為 24 小時前。您可以指定的最早時間是 7 天
前。

YAML 範例：

apiVersion: protect.trident.netapp.io/v1

kind: AutoSupportBundle

metadata:

 name: trident-protect-support-bundle

spec:

 triggerType: Manual

 uploadEnabled: true

 dataWindowStart: 2024-05-05T12:30:00Z

3. 在您以正確的值填入檔案之後 astra-support-bundle.yaml 、請套用 CR ：

kubectl apply -f trident-protect-support-bundle.yaml

使用 CLI 建立支援服務包

步驟

1. 建立支援服務組合，以環境資訊取代括號中的值。 trigger-type`決定套件是立即建立，還是建立時

間取決於排程，可以是 `Manual`或 `Scheduled。預設設定為 Manual。

例如：

13

tridentctl-protect create autosupportbundle <my-bundle-name>

--trigger-type <trigger-type>

升級 Trident Protect

您可以將 Trident Protect 升級至最新版本，以利用新功能或錯誤修正。

若要升級 Trident Protect ，請執行下列步驟。

步驟

1. 更新 Trident Helm 儲存庫：

helm repo update

2. 升級 Trident Protect 客戶需求日：

helm upgrade trident-protect-crds netapp-trident-protect/trident-

protect-crds --version 100.2502.0 --namespace trident-protect

3. 升級 Trident Protect ：

helm upgrade trident-protect netapp-trident-protect/trident-protect

--version 100.2502.0 --namespace trident-protect

14

版權資訊

Copyright © 2025 NetApp, Inc. 版權所有。台灣印製。非經版權所有人事先書面同意，不得將本受版權保護文件
的任何部分以任何形式或任何方法（圖形、電子或機械）重製，包括影印、錄影、錄音或儲存至電子檢索系統
中。

由 NetApp 版權資料衍伸之軟體必須遵守下列授權和免責聲明：

此軟體以 NETAPP「原樣」提供，不含任何明示或暗示的擔保，包括但不限於有關適售性或特定目的適用性之
擔保，特此聲明。於任何情況下，就任何已造成或基於任何理論上責任之直接性、間接性、附隨性、特殊性、懲
罰性或衍生性損害（包括但不限於替代商品或服務之採購；使用、資料或利潤上的損失；或企業營運中斷），無
論是在使用此軟體時以任何方式所產生的契約、嚴格責任或侵權行為（包括疏忽或其他）等方面，NetApp 概不
負責，即使已被告知有前述損害存在之可能性亦然。

NetApp 保留隨時變更本文所述之任何產品的權利，恕不另行通知。NetApp 不承擔因使用本文所述之產品而產
生的責任或義務，除非明確經過 NetApp 書面同意。使用或購買此產品並不會在依據任何專利權、商標權或任何
其他 NetApp 智慧財產權的情況下轉讓授權。

本手冊所述之產品受到一項（含）以上的美國專利、國外專利或申請中專利所保障。

有限權利說明：政府機關的使用、複製或公開揭露須受 DFARS 252.227-7013（2014 年 2 月）和 FAR 52.227-

19（2007 年 12 月）中的「技術資料權利 - 非商業項目」條款 (b)(3) 小段所述之限制。

此處所含屬於商業產品和 / 或商業服務（如 FAR 2.101 所定義）的資料均為 NetApp, Inc. 所有。根據本協議提
供的所有 NetApp 技術資料和電腦軟體皆屬於商業性質，並且完全由私人出資開發。 美國政府對於該資料具有
非專屬、非轉讓、非轉授權、全球性、有限且不可撤銷的使用權限，僅限於美國政府為傳輸此資料所訂合約所允
許之範圍，並基於履行該合約之目的方可使用。除非本文另有規定，否則未經 NetApp Inc. 事前書面許可，不得
逕行使用、揭露、重製、修改、履行或展示該資料。美國政府授予國防部之許可權利，僅適用於 DFARS 條款
252.227-7015(b)（2014 年 2 月）所述權利。

商標資訊

NETAPP、NETAPP 標誌及 http://www.netapp.com/TM 所列之標章均為 NetApp, Inc. 的商標。文中所涉及的所
有其他公司或產品名稱，均為其各自所有者的商標，不得侵犯。

15

http://www.netapp.com/TM

	管理 Trident Protect : Trident
	目錄
	管理 Trident Protect
	管理 Trident 保護授權與存取控制
	範例：管理兩組使用者的存取權

	監控 Trident Protect 資源
	步驟 1 ：安裝監控工具
	步驟 2 ：設定監控工具以共同作業
	步驟 3 ：設定警示和警示目的地

	產生 Trident Protect 支援服務組合
	升級 Trident Protect

