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管理Trident Protect

管理Trident Protect 授權和存取控制

Trident Protect 使用 Kubernetes 的角色為基礎的存取控制 (RBAC) 模型。預設情況下，
Trident Protect 提供一個系統命名空間及其關聯的預設服務帳戶。如果您的組織擁有眾多
使用者或特定的安全需求，則可以使用Trident Protect 的 RBAC 功能來更精細地控制對資
源和命名空間的存取。

叢集管理員始終擁有對預設資源的存取權限。 `trident-protect`命名空間，並且可以存取所有其他命名空間中的
資源。要控制對資源和應用程式的訪問，您需要建立額外的命名空間，並將資源和應用程式新增至這些命名空
間。

請注意，預設情況下，任何使用者都無法建立應用程式資料管理變更請求 (CR)。 `trident-protect`命名空間。您
需要在應用程式命名空間中建立應用程式資料管理 CR（最佳實踐是在與其關聯的應用程式相同的命名空間中建
立應用程式資料管理 CR）。

只有管理員才能存取具有特權的Trident Protect 自訂資源對象，其中包括：

• AppVault：需要儲存桶憑證數據

• AutoSupportBundle：收集指標、日誌和其他敏感的Trident Protect數據

• AutoSupportBundleSchedule：管理日誌收集計劃

最佳實踐是使用基於角色的存取控制 (RBAC) 將對特權物件的存取限制在管理員範圍內。

有關基於角色的存取控制 (RBAC) 如何管理對資源和命名空間的存取的更多信息，請參閱… "Kubernetes RBAC

文檔" 。

有關服務帳戶的信息，請參閱 "Kubernetes 服務帳戶文檔"。

範例：管理兩組使用者的存取權限

例如，一個組織有集群管理員、一組工程用戶和一組行銷用戶。叢集管理員將完成以下任務，以建立一個環境，
其中工程組和行銷組各自只能存取分配給其各自命名空間的資源。

步驟 1：建立命名空間以包含每個群組的資源

創建命名空間可以讓你從邏輯上分離資源，並更好地控制誰可以存取這些資源。

步驟

1. 為工程組建立一個命名空間：

kubectl create ns engineering-ns

2. 為行銷組創造命名空間：
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kubectl create ns marketing-ns

步驟 2：建立新的服務帳戶，以便與每個命名空間中的資源互動

您建立的每個新命名空間都附帶一個預設服務帳戶，但您應該為每個使用者群組建立一個服務帳戶，以便將來必
要時可以進一步在群組之間劃分權限。

步驟

1. 為工程團隊建立一個服務帳戶：

apiVersion: v1

kind: ServiceAccount

metadata:

  name: eng-user

  namespace: engineering-ns

2. 為行銷團隊建立一個服務帳戶：

apiVersion: v1

kind: ServiceAccount

metadata:

  name: mkt-user

  namespace: marketing-ns

步驟 3：為每個新服務帳戶建立一個金鑰

服務帳戶金鑰用於對服務帳戶進行身份驗證，如果遭到洩露，可以輕鬆刪除並重新建立。

步驟

1. 為工程服務帳戶建立一個金鑰：

apiVersion: v1

kind: Secret

metadata:

  annotations:

    kubernetes.io/service-account.name: eng-user

  name: eng-user-secret

  namespace: engineering-ns

type: kubernetes.io/service-account-token

2. 為行銷服務帳戶建立一個金鑰：
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apiVersion: v1

kind: Secret

metadata:

  annotations:

    kubernetes.io/service-account.name: mkt-user

  name: mkt-user-secret

  namespace: marketing-ns

type: kubernetes.io/service-account-token

步驟 4：建立 RoleBinding 對象，將 ClusterRole 物件綁定到每個新的服務帳戶。

安裝Trident Protect 時會建立一個預設的 ClusterRole 物件。您可以透過建立和套用 RoleBinding 物件將此
ClusterRole 綁定到服務帳戶。

步驟

1. 將叢集角色綁定到工程服務帳戶：

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: engineering-ns-tenant-rolebinding

  namespace: engineering-ns

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: trident-protect-tenant-cluster-role

subjects:

- kind: ServiceAccount

  name: eng-user

  namespace: engineering-ns

2. 將群集角色綁定到行銷服務帳戶：
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apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: marketing-ns-tenant-rolebinding

  namespace: marketing-ns

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: trident-protect-tenant-cluster-role

subjects:

- kind: ServiceAccount

  name: mkt-user

  namespace: marketing-ns

步驟 5：測試權限

測試權限是否正確。

步驟

1. 確認工程使用者可以存取工程資源：

kubectl auth can-i --as=system:serviceaccount:engineering-ns:eng-user

get applications.protect.trident.netapp.io -n engineering-ns

2. 確認工程用戶無法存取行銷資源：

kubectl auth can-i --as=system:serviceaccount:engineering-ns:eng-user

get applications.protect.trident.netapp.io -n marketing-ns

步驟 6：授予對 AppVault 物件的存取權限

若要執行備份和快照等資料管理任務，叢集管理員需要授予個別使用者對 AppVault 物件的存取權限。

步驟

1. 建立並套用 AppVault 和金鑰組合的 YAML 文件，以授予使用者對 AppVault 的存取權限。例如，以下 CR 授

予使用者對 AppVault 的存取權限 eng-user：
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apiVersion: v1

data:

  accessKeyID: <ID_value>

  secretAccessKey: <key_value>

kind: Secret

metadata:

  name: appvault-for-eng-user-only-secret

  namespace: trident-protect

type: Opaque

---

apiVersion: protect.trident.netapp.io/v1

kind: AppVault

metadata:

  name: appvault-for-eng-user-only

  namespace: trident-protect # Trident Protect system namespace

spec:

  providerConfig:

    azure:

      accountName: ""

      bucketName: ""

      endpoint: ""

    gcp:

      bucketName: ""

      projectID: ""

    s3:

      bucketName: testbucket

      endpoint: 192.168.0.1:30000

      secure: "false"

      skipCertValidation: "true"

  providerCredentials:

    accessKeyID:

      valueFromSecret:

        key: accessKeyID

        name: appvault-for-eng-user-only-secret

    secretAccessKey:

      valueFromSecret:

        key: secretAccessKey

        name: appvault-for-eng-user-only-secret

  providerType: GenericS3

2. 建立並套用角色 CR，使叢集管理員能夠授予對命名空間中特定資源的存取權限。例如：
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apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

  name: eng-user-appvault-reader

  namespace: trident-protect

rules:

- apiGroups:

  - protect.trident.netapp.io

  resourceNames:

  - appvault-for-enguser-only

  resources:

  - appvaults

  verbs:

  - get

3. 建立並套用角色綁定 CR，將權限綁定到使用者 eng-user。例如：

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: eng-user-read-appvault-binding

  namespace: trident-protect

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: Role

  name: eng-user-appvault-reader

subjects:

- kind: ServiceAccount

  name: eng-user

  namespace: engineering-ns

4. 請確認權限是否正確。

a. 嘗試檢索所有命名空間的 AppVault 物件資訊：

kubectl get appvaults -n trident-protect

--as=system:serviceaccount:engineering-ns:eng-user

您應該會看到類似以下內容的輸出：
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Error from server (Forbidden): appvaults.protect.trident.netapp.io is

forbidden: User "system:serviceaccount:engineering-ns:eng-user"

cannot list resource "appvaults" in API group

"protect.trident.netapp.io" in the namespace "trident-protect"

b. 測試用戶是否可以獲得他們現在有權訪問的 AppVault 資訊：

kubectl auth can-i --as=system:serviceaccount:engineering-ns:eng-user

get appvaults.protect.trident.netapp.io/appvault-for-eng-user-only -n

trident-protect

您應該會看到類似以下內容的輸出：

yes

結果

您授予 AppVault 權限的使用者應該能夠使用授權的 AppVault 物件進行應用程式資料管理操作，並且不應該能夠
存取指派的命名空間之外的任何資源，或建立他們無權存取的新資源。

監控Trident保護資源

您可以使用 kube-state-metrics、Prometheus 和 Alertmanager 開源工具來監控Trident

Protect 保護的資源的健康狀況。

kube-state-metrics 服務從 Kubernetes API 通訊產生指標。將其與Trident Protect 結合使用，可以顯示有關環境
中資源狀態的有用資訊。

Prometheus 是一個工具包，它可以接收 kube-state-metrics 產生的數據，並將其呈現為關於這些物件的易於閱
讀的資訊。kube-state-metrics 和 Prometheus 共同提供了一種方法，讓您可以監控使用Trident Protect 管理的
資源的健康狀況和狀態。

Alertmanager 是一項服務，它可以接收 Prometheus 等工具發送的警報，並將它們路由到您配置的目標位置。

這些步驟中包含的配置和指導僅供參考；您需要根據自己的環境進行自訂。請參閱以下官方文件
以取得具體說明和支援：

• "kube-state-metrics 文檔"

• "普羅米修斯文檔"

• "Alertmanager 文檔"

步驟 1：安裝監控工具

要在Trident Protect 中啟用資源監控，您需要安裝和設定 kube-state-metrics、Promethus 和 Alertmanager。
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安裝 kube-state-metrics

您可以使用 Helm 安裝 kube-state-metrics。

步驟

1. 新增 kube-state-metrics Helm chart。例如：

helm repo add prometheus-community https://prometheus-

community.github.io/helm-charts

helm repo update

2. 將 Prometheus ServiceMonitor CRD 應用到叢集：

kubectl apply -f https://raw.githubusercontent.com/prometheus-

operator/prometheus-operator/main/example/prometheus-operator-

crd/monitoring.coreos.com_servicemonitors.yaml

3. 為 Helm chart 建立一個設定檔（例如， metrics-config.yaml ）。您可以根據自身環境自訂以下範例配
置：
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metrics-config.yaml：kube-state-metrics Helm chart 配置

---

extraArgs:

  # Collect only custom metrics

  - --custom-resource-state-only=true

customResourceState:

  enabled: true

  config:

    kind: CustomResourceStateMetrics

    spec:

      resources:

      - groupVersionKind:

          group: protect.trident.netapp.io

          kind: "Backup"

          version: "v1"

        labelsFromPath:

          backup_uid: [metadata, uid]

          backup_name: [metadata, name]

          creation_time: [metadata, creationTimestamp]

        metrics:

        - name: backup_info

          help: "Exposes details about the Backup state"

          each:

            type: Info

            info:

              labelsFromPath:

                appVaultReference: ["spec", "appVaultRef"]

                appReference: ["spec", "applicationRef"]

rbac:

  extraRules:

  - apiGroups: ["protect.trident.netapp.io"]

    resources: ["backups"]

    verbs: ["list", "watch"]

# Collect metrics from all namespaces

namespaces: ""

# Ensure that the metrics are collected by Prometheus

prometheus:

  monitor:

    enabled: true

4. 透過部署 Helm chart 來安裝 kube-state-metrics。例如：

9



helm install custom-resource -f metrics-config.yaml prometheus-

community/kube-state-metrics --version 5.21.0

5. 請依照下列說明配置 kube-state-metrics，以產生Trident Protect 使用的自訂資源的指標： "kube-state-

metrics 自訂資源文檔" 。

安裝 Prometheus

您可以按照以下說明安裝 Prometheus： "普羅米修斯文檔" 。

安裝 Alertmanager

您可以按照以下說明安裝 Alertmanager： "Alertmanager 文檔" 。

步驟 2：配置監控工具以協同工作

安裝監控工具後，需要設定它們以使其協同工作。

步驟

1. 將 kube-state-metrics 與 Prometheus 整合。編輯 Prometheus 配置文件(prometheus.yaml）並新增
kube-state-metrics 服務資訊。例如：

prometheus.yaml：kube-state-metrics 服務與 Prometheus 的集成

---

apiVersion: v1

kind: ConfigMap

metadata:

  name: prometheus-config

  namespace: trident-protect

data:

  prometheus.yaml: |

    global:

      scrape_interval: 15s

    scrape_configs:

      - job_name: 'kube-state-metrics'

        static_configs:

          - targets: ['kube-state-metrics.trident-protect.svc:8080']

2. 配置 Prometheus 將警報路由到 Alertmanager。編輯 Prometheus 配置文件(prometheus.yaml）並添加
以下部分：
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prometheus.yaml：向 Alertmanager 發送警報

alerting:

  alertmanagers:

    - static_configs:

        - targets:

            - alertmanager.trident-protect.svc:9093

結果

Prometheus 現在可以從 kube-state-metrics 收集指標，並且可以向 Alertmanager 發送警報。現在您可以設定觸
發警報的條件以及警報的發送位置。

步驟 3：設定警報和警報目標

配置好工具協同工作後，還需要配置哪些類型的信息會觸發警報，以及警報應該發送到哪裡。

警報範例：備份失敗

以下範例定義了一個關鍵警報，當備份自訂資源的狀態設定為「是」時，警報將會被觸發。 `Error`持續5秒或更
長時間。您可以自訂此範例以符合您的環境，並將此 YAML 程式碼片段包含在您的專案中。 `prometheus.yaml`

設定檔：

rules.yaml：定義備份失敗的 Prometheus 警報

rules.yaml: |

  groups:

    - name: fail-backup

        rules:

          - alert: BackupFailed

            expr: kube_customresource_backup_info{status="Error"}

            for: 5s

            labels:

              severity: critical

            annotations:

              summary: "Backup failed"

              description: "A backup has failed."

配置 Alertmanager 向其他管道發送警報

您可以設定 Alertmanager，使其將通知傳送到其他管道，例如電子郵件、PagerDuty、Microsoft Teams 或其他
通知服務，只需在設定檔中指定相應的配置即可。 `alertmanager.yaml`文件。

以下範例配置 Alertmanager 向 Slack 頻道發送通知。若要根據您的環境自訂此範例，請取代以下值： `api_url`

金鑰包含您環境中使用的 Slack webhook URL：
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alertmanager.yaml：向 Slack 頻道發送警報

data:

  alertmanager.yaml: |

    global:

      resolve_timeout: 5m

    route:

      receiver: 'slack-notifications'

    receivers:

      - name: 'slack-notifications'

        slack_configs:

          - api_url: '<your-slack-webhook-url>'

            channel: '#failed-backups-channel'

            send_resolved: false

產生Trident Protect 支援包

Trident Protect 使管理員能夠產生包含對NetApp支援有用的信息的捆綁包，包括有關受管
理叢集和應用程式的日誌、指標和拓撲資訊。如果您已連接到互聯網，則可以使用自訂資
源 (CR) 檔案將支援包上傳至NetApp支援網站 (NSS)。
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使用 CR 建立支援包

步驟

1. 建立自訂資源 (CR) 檔案並將其命名為（例如， trident-protect-support-bundle.yaml ）。

2. 配置以下屬性：

◦ metadata.name: (必填) 此自訂資源的名稱；請為您的環境選擇一個唯一且有意義的名稱。

◦ spec.triggerType: (Required) 確定支援包是立即產生還是按計劃產生。計劃的資料包產生時間為
世界協調時凌晨 12 點。可能的值：

▪ 已安排

▪ 手動的

◦ spec.uploadEnabled: (可選) 控制產生支援包後是否應將其上傳至NetApp支援網站。如果未指定

，則預設為 false。可能的值：

▪ 真的

▪ false（預設值）

◦ spec.dataWindowStart: (可選) RFC 3339 格式的日期字串，指定支援包中包含的資料視窗應開始
的日期和時間。如果未指定，則預設為 24 小時前。您最早可以指定的日期範圍是 7 天前。

YAML 範例：

---

apiVersion: protect.trident.netapp.io/v1

kind: AutoSupportBundle

metadata:

  name: trident-protect-support-bundle

spec:

  triggerType: Manual

  uploadEnabled: true

  dataWindowStart: 2024-05-05T12:30:00Z

3. 填寫完後 `trident-protect-support-bundle.yaml`將檔案的值正確後，套用 CR：

kubectl apply -f trident-protect-support-bundle.yaml -n trident-

protect

使用 CLI 建立支援包

步驟

1. 建立支援包，將括號中的值替換為您環境中的資訊。這 trigger-type`決定捆綁包是立即建立還是由

計劃安排決定創建時間，並且可以是 `Manual`或者 `Scheduled。預設是 Manual。

例如：
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tridentctl-protect create autosupportbundle <my-bundle-name>

--trigger-type <trigger-type> -n trident-protect

監視和檢索支援包

使用任一方法建立支援包後，您可以監視其產生進度並將其檢索到本機系統。

步驟

1. 等待 `status.generationState`到達 `Completed`狀態。您可以使用以下命令監控產生進度：

kubectl get autosupportbundle trident-protect-support-bundle -n trident-

protect

2. 將支援包檢索到您的本機系統。從已完成的AutoSupport套件中取得複製指令：

kubectl describe autosupportbundle trident-protect-support-bundle -n

trident-protect

找到 `kubectl cp`從輸出中讀取命令並運行它，將目標參數替換為您首選的本機目錄。

升級Trident保護

您可以將Trident Protect 升級到最新版本，以享受新功能或修復錯誤。

從 24.10 版本升級時，升級期間執行的快照可能會失敗。此故障不會阻止將來建立快照，無論是
手動建立還是計劃建立。如果在升級過程中快照失敗，您可以手動建立新的快照，以確保您的應
用程式受到保護。

為避免潛在的故障，您可以在升級前停用所有快照計劃，並在升級後重新啟用它們。但是，這會
導致在升級期間錯過任何計劃的快照。

若要升級Trident Protect，請執行下列步驟。

步驟

1. 更新Trident Helm 倉庫：

helm repo update

2. 升級Trident Protect CRD：
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如果您是從 25.06 之前的版本升級，則需要執行此步驟，因為 CRD 現在已包含在Trident

Protect Helm 圖表中。

a. 執行此命令以將 CRD 的管理權從 trident-protect-crds`到 `trident-protect：

kubectl get crd | grep protect.trident.netapp.io | awk '{print $1}' |

xargs -I {} kubectl patch crd {} --type merge -p '{"metadata":

{"annotations":{"meta.helm.sh/release-name": "trident-protect"}}}'

b. 執行此命令以刪除 Helm 金鑰 `trident-protect-crds`圖表：

不要卸載 `trident-protect-crds`使用 Helm 建立圖表可能會刪除您的 CRD 和任何相關資
料。

kubectl delete secret -n trident-protect -l name=trident-protect-

crds,owner=helm

3. 升級Trident保護：

helm upgrade trident-protect netapp-trident-protect/trident-protect

--version 100.2506.0 --namespace trident-protect
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