Skip to main content
NetApp artificial intelligence solutions
La versione in lingua italiana fornita proviene da una traduzione automatica. Per eventuali incoerenze, fare riferimento alla versione in lingua inglese.

Milvus con Amazon FSx ONTAP per NetApp ONTAP : dualità file e oggetto

Questa sezione illustra la configurazione del cluster Milvus con Amazon FSx ONTAP per la soluzione di database vettoriale per NetApp.

Milvus con Amazon FSx ONTAP per NetApp ONTAP : dualità di file e oggetti

In questa sezione, spiegheremo perché è necessario distribuire un database vettoriale nel cloud e i passaggi per distribuire un database vettoriale (Milvus standalone) in Amazon FSx ONTAP per NetApp ONTAP all'interno di container Docker.

L'implementazione di un database vettoriale nel cloud offre diversi vantaggi significativi, in particolare per le applicazioni che richiedono la gestione di dati ad alta dimensionalità e l'esecuzione di ricerche di similarità. In primo luogo, l'implementazione basata su cloud offre scalabilità, consentendo di adattare facilmente le risorse in base ai crescenti volumi di dati e carichi di query. Ciò garantisce che il database possa gestire in modo efficiente l'aumento della domanda, mantenendo al contempo prestazioni elevate. In secondo luogo, l'implementazione del cloud garantisce elevata disponibilità e ripristino in caso di emergenza, poiché i dati possono essere replicati in diverse posizioni geografiche, riducendo al minimo il rischio di perdita di dati e garantendo un servizio continuo anche in caso di eventi imprevisti. In terzo luogo, garantisce un buon rapporto qualità-prezzo, poiché si paga solo per le risorse utilizzate e si può aumentare o diminuire la scala in base alla domanda, evitando così la necessità di ingenti investimenti iniziali in hardware. Infine, l'implementazione di un database vettoriale nel cloud può migliorare la collaborazione, poiché i dati possono essere consultati e condivisi da qualsiasi luogo, facilitando il lavoro di squadra e il processo decisionale basato sui dati. Verificare l'architettura di milvus standalone con Amazon FSx ONTAP per NetApp ONTAP utilizzato in questa convalida.

Figura che mostra il dialogo di input/output o che rappresenta il contenuto scritto

  1. Creare un'istanza Amazon FSx ONTAP per NetApp ONTAP e annotare i dettagli della VPC, dei gruppi di sicurezza VPC e della subnet. Queste informazioni saranno necessarie durante la creazione di un'istanza EC2. Puoi trovare maggiori dettagli qui - https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create

  2. Creare un'istanza EC2, assicurandosi che la VPC, i gruppi di sicurezza e la subnet corrispondano a quelli dell'istanza Amazon FSx ONTAP per NetApp ONTAP .

  3. Installare nfs-common utilizzando il comando 'apt-get install nfs-common' e aggiornare le informazioni sul pacchetto utilizzando 'sudo apt-get update'.

  4. Crea una cartella di montaggio e montaci Amazon FSx ONTAP per NetApp ONTAP .

    ubuntu@ip-172-31-29-98:~$ mkdir /home/ubuntu/milvusvectordb
    ubuntu@ip-172-31-29-98:~$ sudo mount 172.31.255.228:/vol1 /home/ubuntu/milvusvectordb
    ubuntu@ip-172-31-29-98:~$ df -h /home/ubuntu/milvusvectordb
    Filesystem            Size  Used Avail Use% Mounted on
    172.31.255.228:/vol1  973G  126G  848G  13% /home/ubuntu/milvusvectordb
    ubuntu@ip-172-31-29-98:~$
  5. Installa Docker e Docker Compose utilizzando 'apt-get install'.

  6. Configurare un cluster Milvus in base al file docker-compose.yaml, scaricabile dal sito web di Milvus.

    root@ip-172-31-22-245:~# wget https://github.com/milvus-io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml -O docker-compose.yml
    --2024-04-01 14:52:23--  https://github.com/milvus-io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml
    <removed some output to save page space>
  7. Nella sezione 'volumi' del file docker-compose.yml, mappa il punto di montaggio NetApp NFS al percorso del contenitore Milvus corrispondente, in particolare in etcd, minio e standalone. Controlla"Appendice D: docker-compose.yml" per i dettagli sulle modifiche in yml

  8. Verificare le cartelle e i file montati.

    ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh /home/ubuntu/milvusvectordb
    total 8.0K
    -rw-r--r-- 1 root root 1.8K Apr  2 16:35 s3_access.py
    drwxrwxrwx 2 root root 4.0K Apr  4 20:19 volumes
    ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh /home/ubuntu/milvusvectordb/volumes/
    total 0
    ubuntu@ip-172-31-29-98:~/milvusvectordb$ cd
    ubuntu@ip-172-31-29-98:~$ ls
    docker-compose.yml  docker-compose.yml~  milvus.yaml  milvusvectordb  vectordbvol1
    ubuntu@ip-172-31-29-98:~$
  9. Eseguire 'docker-compose up -d' dalla directory contenente il file docker-compose.yml.

  10. Controllare lo stato del contenitore Milvus.

    ubuntu@ip-172-31-29-98:~$ sudo docker-compose ps
          Name                     Command                  State                                               Ports
    ----------------------------------------------------------------------------------------------------------------------------------------------------------
    milvus-etcd         etcd -advertise-client-url ...   Up (healthy)   2379/tcp, 2380/tcp
    milvus-minio        /usr/bin/docker-entrypoint ...   Up (healthy)   0.0.0.0:9000->9000/tcp,:::9000->9000/tcp, 0.0.0.0:9001->9001/tcp,:::9001->9001/tcp
    milvus-standalone   /tini -- milvus run standalone   Up (healthy)   0.0.0.0:19530->19530/tcp,:::19530->19530/tcp, 0.0.0.0:9091->9091/tcp,:::9091->9091/tcp
    ubuntu@ip-172-31-29-98:~$
    ubuntu@ip-172-31-29-98:~$ ls -ltrh /home/ubuntu/milvusvectordb/volumes/
    total 12K
    drwxr-xr-x 3 root root 4.0K Apr  4 20:21 etcd
    drwxr-xr-x 4 root root 4.0K Apr  4 20:21 minio
    drwxr-xr-x 5 root root 4.0K Apr  4 20:21 milvus
    ubuntu@ip-172-31-29-98:~$
  11. Per convalidare la funzionalità di lettura e scrittura del database vettoriale e dei suoi dati in Amazon FSx ONTAP per NetApp ONTAP, abbiamo utilizzato Python Milvus SDK e un programma di esempio di PyMilvus. Installa i pacchetti necessari usando 'apt-get install python3-numpy python3-pip' e installa PyMilvus usando 'pip3 install pymilvus'.

  12. Convalida le operazioni di scrittura e lettura dei dati da Amazon FSx ONTAP per NetApp ONTAP nel database vettoriale.

    root@ip-172-31-29-98:~/pymilvus/examples# python3 prepare_data_netapp_new.py
    === start connecting to Milvus     ===
    === Milvus host: localhost         ===
    Does collection hello_milvus_ntapnew_sc exist in Milvus: True
    === Drop collection - hello_milvus_ntapnew_sc ===
    === Drop collection - hello_milvus_ntapnew_sc2 ===
    === Create collection `hello_milvus_ntapnew_sc` ===
    === Start inserting entities       ===
    Number of entities in hello_milvus_ntapnew_sc: 9000
    root@ip-172-31-29-98:~/pymilvus/examples# find /home/ubuntu/milvusvectordb/
    …
    <removed content to save page space >
    …
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-c117-4fba-8256-96cb7557cd6c
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-c117-4fba-8256-96cb7557cd6c/part.1
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/xl.meta
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/0
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/0/448789845791411924
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/0/448789845791411924/xl.meta
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/1
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/1/448789845791411925
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/1/448789845791411925/xl.meta
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/100
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/100/448789845791411920
    /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/100/448789845791411920/xl.meta
  13. Controllare l'operazione di lettura utilizzando lo script verify_data_netapp.py.

    root@ip-172-31-29-98:~/pymilvus/examples# python3 verify_data_netapp.py
    === start connecting to Milvus     ===
    
    === Milvus host: localhost         ===
    
    Does collection hello_milvus_ntapnew_sc exist in Milvus: True
    {'auto_id': False, 'description': 'hello_milvus_ntapnew_sc', 'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>, 'is_primary': True, 'auto_id': False}, {'name': 'random', 'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '', 'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False}
    Number of entities in Milvus: hello_milvus_ntapnew_sc : 9000
    
    === Start Creating index IVF_FLAT  ===
    
    
    === Start loading                  ===
    
    
    === Start searching based on vector similarity ===
    
    hit: id: 2248, distance: 0.0, entity: {'random': 0.2777646777746381}, random field: 0.2777646777746381
    hit: id: 4837, distance: 0.07805602252483368, entity: {'random': 0.6451650959930306}, random field: 0.6451650959930306
    hit: id: 7172, distance: 0.07954417169094086, entity: {'random': 0.6141351712303128}, random field: 0.6141351712303128
    hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817}, random field: 0.7434908973629817
    hit: id: 830, distance: 0.05628090724349022, entity: {'random': 0.8544487225667627}, random field: 0.8544487225667627
    hit: id: 8562, distance: 0.07971227169036865, entity: {'random': 0.4464554280115878}, random field: 0.4464554280115878
    search latency = 0.1266s
    
    === Start querying with `random > 0.5` ===
    
    query result:
    -{'random': 0.6378742006852851, 'embeddings': [0.3017092, 0.74452263, 0.8009826, 0.4927033, 0.12762444, 0.29869467, 0.52859956, 0.23734547], 'pk': 0}
    search latency = 0.3294s
    
    === Start hybrid searching with `random > 0.5` ===
    
    hit: id: 4837, distance: 0.07805602252483368, entity: {'random': 0.6451650959930306}, random field: 0.6451650959930306
    hit: id: 7172, distance: 0.07954417169094086, entity: {'random': 0.6141351712303128}, random field: 0.6141351712303128
    hit: id: 515, distance: 0.09590047597885132, entity: {'random': 0.8013175797590888}, random field: 0.8013175797590888
    hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817}, random field: 0.7434908973629817
    hit: id: 830, distance: 0.05628090724349022, entity: {'random': 0.8544487225667627}, random field: 0.8544487225667627
    hit: id: 1627, distance: 0.08096684515476227, entity: {'random': 0.9302397069516164}, random field: 0.9302397069516164
    search latency = 0.2674s
    Does collection hello_milvus_ntapnew_sc2 exist in Milvus: True
    {'auto_id': True, 'description': 'hello_milvus_ntapnew_sc2', 'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>, 'is_primary': True, 'auto_id': True}, {'name': 'random', 'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '', 'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False}
  14. Se il cliente desidera accedere (leggere) i dati NFS testati nel database vettoriale tramite il protocollo S3 per i carichi di lavoro di intelligenza artificiale, può convalidarli utilizzando un semplice programma Python. Un esempio potrebbe essere una ricerca di similarità di immagini provenienti da un'altra applicazione, come indicato nell'immagine all'inizio di questa sezione.

    root@ip-172-31-29-98:~/pymilvus/examples# sudo python3 /home/ubuntu/milvusvectordb/s3_access.py -i 172.31.255.228 --bucket milvusnasvol --access-key PY6UF318996I86NBYNDD --secret-key hoPctr9aD88c1j0SkIYZ2uPa03vlbqKA0c5feK6F
    OBJECTS in the bucket milvusnasvol are :
    ***************************************
    …
    <output content removed to save page space>
    …
    bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/0/448789845791411917/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/1/448789845791411918/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/100/448789845791411913/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/101/448789845791411914/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/102/448789845791411915/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/103/448789845791411916/1c48ab6e-1546-4503-9084-28c629216c33/part.1
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/103/448789845791411916/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/0/448789845791411924/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/1/448789845791411925/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/100/448789845791411920/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/101/448789845791411921/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/102/448789845791411922/xl.meta
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-c117-4fba-8256-96cb7557cd6c/part.1
    volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/xl.meta
    volumes/minio/a-bucket/files/stats_log/448789845791211880/448789845791211881/448789845791411889/100/1/xl.meta
    volumes/minio/a-bucket/files/stats_log/448789845791211880/448789845791211881/448789845791411889/100/448789845791411912/xl.meta
    volumes/minio/a-bucket/files/stats_log/448789845791611912/448789845791611913/448789845791611920/100/1/xl.meta
    volumes/minio/a-bucket/files/stats_log/448789845791611912/448789845791611913/448789845791611920/100/448789845791411919/xl.meta
    volumes/minio/a-bucket/files/stats_log/448789845791611912/448789845791611913/448789845791611939/100/1/xl.meta
    volumes/minio/a-bucket/files/stats_log/448789845791611912/448789845791611913/448789845791611939/100/448789845791411926/xl.meta
    ***************************************
    root@ip-172-31-29-98:~/pymilvus/examples#

    Questa sezione illustra in modo efficace come i clienti possono distribuire e gestire una configurazione Milvus autonoma all'interno di container Docker, utilizzando NetApp FSx ONTAP di Amazon per l'archiviazione dei dati NetApp ONTAP . Questa configurazione consente ai clienti di sfruttare la potenza dei database vettoriali per gestire dati ad alta dimensionalità ed eseguire query complesse, il tutto all'interno dell'ambiente scalabile ed efficiente dei container Docker. Creando un'istanza Amazon FSx ONTAP per NetApp ONTAP e un'istanza EC2 corrispondente, i clienti possono garantire un utilizzo ottimale delle risorse e una gestione dei dati. La validazione riuscita delle operazioni di scrittura e lettura dei dati da FSx ONTAP nel database vettoriale offre ai clienti la garanzia di operazioni sui dati affidabili e coerenti. Inoltre, la possibilità di elencare (leggere) i dati dai carichi di lavoro di intelligenza artificiale tramite il protocollo S3 offre una migliore accessibilità ai dati. Questo processo completo, pertanto, fornisce ai clienti una soluzione solida ed efficiente per la gestione delle loro operazioni sui dati su larga scala, sfruttando le capacità di FSx ONTAP di Amazon per NetApp ONTAP.