■ NetApp

Use o Astra Trident

Astra Trident

NetApp December 03, 2024

This PDF was generated from https://docs.netapp.com/pt-br/trident-2210/trident-use/worker-node-prep.html on December 03, 2024. Always check docs.netapp.com for the latest.

Índice

J	se o Astra Trident	1
	Prepare o nó de trabalho	1
	Configurar backends	5
	Crie backends com kubectl	. 78
	Execute o gerenciamento de back-end com o kubectl	. 85
	Execute o gerenciamento de back-end com o tridentctl	. 86
	Alternar entre opções de gerenciamento de back-end	. 88
	Gerenciar classes de armazenamento	. 94
	Executar operações de volume	. 96
	Compartilhar um volume NFS entre namespaces	121
	Monitore o Astra Trident	125

Use o Astra Trident

Prepare o nó de trabalho

Todos os nós de trabalho no cluster do Kubernetes precisam ser capazes de montar os volumes provisionados para os pods. Se você estiver usando o ontap-nas driver, ontap-nas-economy ou ontap-nas-flexgroup para um dos seus backends, os nós de trabalho precisarão das ferramentas NFS. Caso contrário, eles exigem as ferramentas iSCSI.

Versões recentes do RedHat CoreOS têm NFS e iSCSI instalados por padrão.

Você deve sempre reinicializar seus nós de trabalho depois de instalar as ferramentas NFS ou iSCSI, ou então anexar volumes a contentores pode falhar.

Detecção de serviço de nós

A partir de 22,07, o Astra Trident tenta detetar automaticamente se o nó é capaz de executar serviços iSCSI ou NFS. O Astra Trident cria eventos para o nó a fim de identificar os serviços descobertos. Você pode revisar esses eventos usando o comando:

kubectl get event -A --field-selector involvedObject.name=<Kubernetes node
name>

O Trident também identifica os serviços ativados para cada nó no CR do nó Trident. Para exibir os serviços descobertos, use o comando:

tridentctl get node -o wide -n <Trident namespace>

A descoberta de serviço de nó identifica os serviços descobertos, mas não garante que os serviços estejam configurados corretamente. Por outro lado, a ausência de um serviço descoberto não garante que a montagem de volume falhe.

Volumes NFS

Protocolo	Sistema operacional	Comandos
NFS	RHEL/CentOS 7	sudo yum install -y nfs- utils
NFS	Ubuntu	<pre>sudo apt-get install -y nfs-common</pre>

Você deve garantir que o serviço NFS seja iniciado durante o tempo de inicialização.

Volumes iSCSI

Considere o seguinte ao usar volumes iSCSI:

- Cada nó no cluster do Kubernetes precisa ter uma IQN exclusiva. Este é um pré-requisito necessário.
- Se estiver usando RHCOS versão 4,5 ou posterior, ou outra distribuição Linux compatível com RHEL, com o solidfire-san driver e o Element OS 12,5 ou anterior, verifique se o algoritmo de autenticação CHAP está definido como MD5 em /etc/iscsi/iscsid.conf. algoritmos CHAP compatíveis com FIPS seguros SHA1, SHA-256 e SHA3-256 estão disponíveis com o elemento 12,7.

```
sudo sed -i 's/^\(node.session.auth.chap_algs\).*/\1 = MD5/'
/etc/iscsi/iscsid.conf
```

 Ao usar nós de trabalho que executam RHEL/RedHat CoreOS com iSCSI PVs, certifique-se de especificar a discard mountOption no StorageClass para executar a recuperação de espaço em linha.
 "Documentação da RedHat"Consulte.

RHEL/CentOS	1. Instale os sistema:	seguintes pacotes de
	lsscsi i utils so	n install -y scsi-initiator- g3_utils device- nultipath
	•	e a versão iscsi- tils é 6,2.0,874-2.el7 or:
	rpm -q i utils	scsi-initiator-
	3. Definir a d manual:	igitalização para
	\).*/\1	d -i ode.session.scan = manual/' csi/iscsid.conf
	4. Ativar mult	ipathing:
	with_m	athconfenable nultipathd y nultipaths n
	i	Certifique-se de etc/multipat h.conf que contém find_multipa ths no defaults em.
		se de que iscsid e thd estão a
		stemctl enable scsid multipathd
	6. Ativar e ini	ciar iscsi:
	sudo sys	stemctl enable scsi
		utils so mapper-m 2. Verifique siniciador-u ou posterio rpm -q i utils 3. Definir a d manual: sudo sed 's/^\(no\).*/\l /etc/iso 4. Ativar multi sudo mpawith_mfind_m 5. Certifique-multipat funcionar: sudo sysnow is 6. Ativar e ini sudo sys

Protocolo	Sistema operacional	Comandos
ISCSI	Sistema operacional Ubuntu	Comandos 1. Instale os seguintes pacotes de sistema: sudo apt-get install -y open-iscsi lsscsi sg3-utils multipath-tools scsitools 2. Verifique se a versão Openiscsi é 2,0.874-5ubuntu2.10 ou posterior (para bionic) ou 2,0.874-7.1ubuntu6.1 ou posterior (para focal): dpkg -l open-iscsi 3. Definir a digitalização para manual: sudo sed -i 's/^\(node.session.scan \).*/\l = manual/' /etc/iscsi/iscsid.conf 4. Ativar multipathing: sudo tee /etc/multipath.conf < ~'EOF' defaults { user_friendly_names yes find_multipaths no } EOF sudo systemctl enablenow multipath-tools.service sudo service multipath-tools restart Certifique-se de etc/multipat h.conf que contém find_multipat ths no defaults em . 5. Certifique-se de que openiscsi e multipath-tools estão ativados e em execução:
		sudo systemctl status

Para o Ubuntu 18,04, você deve descobrir portas de destino com iscsiadm antes de iniciar open-iscsi o daemon iSCSI para iniciar. Em alternativa, pode modificar o iscsid automaticamente.

--now openiscsi.service
sudo systemctl status
open-iscsi

Configurar backends

Um back-end define a relação entre o Astra Trident e um sistema de storage. Ele diz ao Astra Trident como se comunicar com esse sistema de storage e como o Astra Trident deve provisionar volumes a partir dele. O Astra Trident oferecerá automaticamente pools de storage de back-ends que atendem aos requisitos definidos por uma classe de storage. Saiba mais sobre como configurar o back-end com base no tipo de sistema de armazenamento que você tem.

- "Configurar um back-end do Azure NetApp Files"
- "Configure um back-end do Cloud Volumes Service para o Google Cloud Platform"
- "Configurar um back-end NetApp HCI ou SolidFire"
- "Configurar um back-end com drivers nas ONTAP ou Cloud Volumes ONTAP"
- "Configure um back-end com drivers SAN ONTAP ou Cloud Volumes ONTAP"
- "Use o Astra Trident com o Amazon FSX para NetApp ONTAP"

Configurar um back-end do Azure NetApp Files

Você pode configurar o Azure NetApp Files (ANF) como back-end do Astra Trident. É possível anexar volumes nas e SMB usando um back-end do ANF.

- "Preparação"
- "Opções de configuração e exemplos"

Considerações

- O serviço Azure NetApp Files não oferece suporte a volumes menores que 100 GB. O Astra Trident cria automaticamente volumes de 100 GB se um volume menor for solicitado.
- O Astra Trident é compatível com volumes SMB montados em pods executados apenas em nós do Windows.
- O Astra Trident não é compatível com a arquitetura WINDOWS ARM.

Prepare-se para configurar um back-end do Azure NetApp Files

Antes de configurar o back-end do ANF, você precisa garantir que os requisitos a seguir sejam atendidos.

Se você estiver usando o Azure NetApp Files pela primeira vez ou em um novo local, alguma configuração inicial será necessária.

- Para configurar o Azure NetApp Files e criar um volume NFS, "Azure: Configure o Azure NetApp Files e crie um volume NFS" consulte .
- Para configurar o Azure NetApp Files e adicionar um volume SMB, consulte: "Azure: Crie um volume SMB para o Azure NetApp Files".

Requisitos

Para configurar e usar um "Azure NetApp Files" back-end, você precisa do seguinte:

- subscriptionID A partir de uma subscrição do Azure com o Azure NetApp Files ativado.
- tenantID, clientID E clientSecret de um "Registo da aplicação" no Azure ative Directory com permissões suficientes para o serviço Azure NetApp Files. O Registro de aplicativos deve usar:
 - A função proprietário ou Colaborador "Pré-definido pelo Azure"
 - A "Função de Colaborador personalizada" no nível da subscrição (assignableScopes) com as seguintes permissões limitadas apenas ao que o Astra Trident requer. Depois de criar a função personalizada "Atribua a função usando o portal do Azure", .

```
{
    "id": "/subscriptions/<subscription-
id>/providers/Microsoft.Authorization/roleDefinitions/<role-
definition-id>",
    "properties": {
        "roleName": "custom-role-with-limited-perms",
        "description": "custom role providing limited permissions",
        "assignableScopes": [
            "/subscriptions/<subscription-id>"
        ],
        "permissions": [
                "actions": [
"Microsoft.NetApp/netAppAccounts/capacityPools/read",
"Microsoft.NetApp/netAppAccounts/capacityPools/write",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/read",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/write",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/delete",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/read
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/writ
e",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/snapshots/dele
te",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/rea
```

```
d",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/wri
te",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/del
ete",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/subvolumes/Get
Metadata/action",
"Microsoft.NetApp/netAppAccounts/capacityPools/volumes/MountTargets/r
ead",
                    "Microsoft.Network/virtualNetworks/read",
                    "Microsoft.Network/virtualNetworks/subnets/read",
"Microsoft.Features/featureProviders/subscriptionFeatureRegistrations
/read",
"Microsoft.Features/featureProviders/subscriptionFeatureRegistrations
/write",
"Microsoft.Features/featureProviders/subscriptionFeatureRegistrations
/delete",
                    "Microsoft.Features/features/read",
                    "Microsoft.Features/operations/read",
                    "Microsoft.Features/providers/features/read",
"Microsoft.Features/providers/features/register/action",
"Microsoft. Features/providers/features/unregister/action",
"Microsoft.Features/subscriptionFeatureRegistrations/read"
                "notActions": [],
                "dataActions": [],
                "notDataActions": []
            }
        1
    }
```

• O Azure location que contém pelo menos um "sub-rede delegada". A partir do Trident 22,01, o location parâmetro é um campo obrigatório no nível superior do arquivo de configuração de back-end. Os valores de localização especificados em pools virtuais são ignorados.

Requisitos adicionais para volumes SMB

- Um cluster do Kubernetes com um nó de controlador Linux e pelo menos um nó de trabalho do Windows que executa o Windows Server 2019. O Astra Trident é compatível com volumes SMB montados em pods executados apenas em nós do Windows.
- Pelo menos um segredo do Astra Trident que contém suas credenciais do active Directory para que o ANF possa se autenticar no active Directory. Para gerar segredo smbcreds:

```
kubectl create secret generic smbcreds --from-literal username=user
--from-literal password='pw'
```

• Um proxy CSI configurado como um serviço Windows. Para configurar um csi-proxy, "GitHub: CSI Proxy"consulte ou "GitHub: CSI Proxy para Windows" para nós do Kubernetes executados no Windows.

Exemplos e opções de configuração de back-end do Azure NetApp Files

Saiba mais sobre as opções de configuração de back-end NFS e SMB para ANF e revise exemplos de configuração.

O Astra Trident usa sua configuração de back-end (sub-rede, rede virtual, nível de serviço e local) para criar volumes de ANF em pools de capacidade disponíveis no local solicitado e que correspondam ao nível de serviço e à sub-rede solicitados.

O Astra Trident não é compatível com pools de capacidade de QoS manual.

Opções de configuração de back-end

Os backends do ANF oferecem essas opções de configuração.

Parâmetro	Descrição	Padrão
version		Sempre 1
storageDriverName	Nome do controlador de armazenamento	"ficheiros azure-NetApp"
backendName	Nome personalizado ou back-end de storage	Nome do condutor e carateres aleatórios
subscriptionID	O ID da assinatura da sua assinatura do Azure	
tenantID	O ID do locatário de um Registro de aplicativo	
clientID	A ID do cliente de um registo de aplicação	
clientSecret	O segredo do cliente de um Registro de aplicativo	
serviceLevel	Um de Standard, Premium, ou Ultra	"" (aleatório)

Parâmetro	Descrição	Padrão
location	Nome do local do Azure onde os novos volumes serão criados	
resourceGroups	Lista de grupos de recursos para filtragem de recursos descobertos	"[]" (sem filtro)
netappAccounts	Lista de contas do NetApp para filtragem de recursos descobertos	"[]" (sem filtro)
capacityPools	Lista de pools de capacidade para filtrar recursos descobertos	"[]" (sem filtro, aleatório)
virtualNetwork	Nome de uma rede virtual com uma sub-rede delegada	1111
subnet	Nome de uma sub-rede delegada Microsoft.Netapp/volumes	1111
networkFeatures	Conjunto de recursos VNet para um volume, pode ser Basic ou Standard. Os recursos de rede não estão disponíveis em todas as regiões e podem ter que ser ativados em uma assinatura. Especificar networkFeatures quando a funcionalidade não está ativada faz com que o provisionamento de volume falhe.	1111
nfsMountOptions	Controle refinado das opções de montagem NFS. Ignorado para volumes SMB. Para montar volumes usando o NFS versão 4,1, inclua `nfsvers=4` na lista de opções de montagem delimitadas por vírgulas para escolher NFS v4,1. As opções de montagem definidas em uma definição de classe de armazenamento substituem as opções de montagem definidas na configuração de back-end.	"3"
limitVolumeSize	Falha no provisionamento se o tamanho do volume solicitado estiver acima desse valor	"" (não aplicado por padrão)
debugTraceFlags	Debug flags para usar ao solucionar problemas. Exemplo, \{"api": false, "method": true, "discovery": true}. Não use isso a menos que você esteja solucionando problemas e exija um despejo de log detalhado.	nulo

Parâmetro	Descrição	Padrão
nasType	Configurar a criação de volumes NFS ou SMB. As opções são nfs, smb ou null. A configuração como null padrão para volumes NFS.	nfs

Para obter mais informações sobre recursos de rede, "Configurar recursos de rede para um volume Azure NetApp Files"consulte .

Permissões e recursos necessários

Se você receber um erro "sem pools de capacidade encontrados" ao criar um PVC, é provável que o Registro do aplicativo não tenha as permissões e recursos necessários (sub-rede, rede virtual, pool de capacidade) associados. Se a depuração estiver ativada, o Astra Trident registrará os recursos do Azure descobertos quando o back-end for criado. Verifique se uma função apropriada está sendo usada.

Os valores para resourceGroups, netappAccounts, capacityPools, , virtualNetwork e subnet podem ser especificados usando nomes curtos ou totalmente qualificados. Nomes totalmente qualificados são recomendados na maioria das situações, pois nomes curtos podem corresponder vários recursos com o mesmo nome.

Os resourceGroups valores, netappAccounts, e capacityPools são filtros que restringem o conjunto de recursos descobertos aos disponíveis para esse back-end de armazenamento e podem ser especificados em qualquer combinação. Nomes totalmente qualificados seguem este formato:

Tipo	Formato
Grupo de recursos	<resource group=""></resource>
Conta NetApp	<resource group="">/ cliente NetApp account></resource>
Pool de capacidade	<resource group="">/ cliente NetApp account>/<capacity pool=""></capacity></resource>
Rede virtual	<resource group="">/<virtual network=""></virtual></resource>
Sub-rede	<resource group="">/<virtual network="">/<subnet></subnet></virtual></resource>

Provisionamento de volume

Você pode controlar o provisionamento de volume padrão especificando as seguintes opções em uma seção especial do arquivo de configuração. Exemplos de configuraçõesConsulte para obter detalhes.

Parâmetro	Descrição	Padrão
exportRule	Regras de exportação para novos volumes. exportRule Deve ser uma lista separada por vírgulas de qualquer combinação de endereços IPv4 ou sub-redes IPv4 na notação CIDR. Ignorado para volumes SMB.	"0,0.0,0/0"

Parâmetro	Descrição	Padrão
snapshotDir	Controla a visibilidade do diretório snapshot	"falso"
size	O tamanho padrão dos novos volumes	"100G"
unixPermissions	As permissões unix de novos volumes (4 dígitos octal). Ignorado para volumes SMB.	"" (recurso de pré-visualização, requer lista branca na assinatura)

Para todos os volumes criados em um back-end do ANF, o Astra Trident copia as etiquetas presentes em um pool de storage para o volume de storage no momento em que ele é provisionado. Os administradores de storage podem definir rótulos por pool de storage e agrupar todos os volumes criados em um pool de storage. Esta é uma maneira conveniente de diferenciar volumes com base em um conjunto de rótulos personalizáveis que são fornecidos na configuração de back-end.

Exemplos de configurações

Exemplo 1: Configuração mínima

Esta é a configuração mínima absoluta de back-end. Com essa configuração, o Astra Trident descobre todas as suas contas NetApp, pools de capacidade e sub-redes delegadas no ANF no local configurado e coloca novos volumes aleatoriamente em um desses pools e sub-redes. Como nasType é omitido, o nfs padrão se aplica e o back-end provisionará para volumes NFS.

Essa configuração é ideal quando você está apenas começando o ANF e experimentando as coisas, mas na prática você vai querer fornecer um escopo adicional para os volumes provisionados.

```
"version": 1,
   "storageDriverName": "azure-netapp-files",
   "subscriptionID": "9f87c765-4774-fake-ae98-a721add45451",
   "tenantID": "68e4f836-edc1-fake-bff9-b2d865ee56cf",
   "clientID": "dd043f63-bf8e-fake-8076-8de91e5713aa",
   "clientSecret": "SECRET",
   "location": "eastus"
}
```

Exemplo 2: Configuração específica de nível de serviço com filtros de pool de capacidade

Essa configuração de back-end coloca volumes no local do Azure eastus em um Ultra pool de capacidade. O Astra Trident descobre automaticamente todas as sub-redes delegadas no ANF nesse local e coloca um novo volume em uma delas aleatoriamente.

Exemplo 3: Configuração avançada

Essa configuração de back-end reduz ainda mais o escopo do posicionamento de volume para uma única sub-rede e também modifica alguns padrões de provisionamento de volume.

```
{
        "version": 1,
        "storageDriverName": "azure-netapp-files",
        "subscriptionID": "9f87c765-4774-fake-ae98-a721add45451",
        "tenantID": "68e4f836-edc1-fake-bff9-b2d865ee56cf",
        "clientID": "dd043f63-bf8e-fake-8076-8de91e5713aa",
        "clientSecret": "SECRET",
        "location": "eastus",
        "serviceLevel": "Ultra",
        "capacityPools": [
            "application-group-1/account-1/ultra-1",
            "application-group-1/account-1/ultra-2"
],
        "virtualNetwork": "my-virtual-network",
        "subnet": "my-subnet",
        "networkFeatures": "Standard",
        "nfsMountOptions": "vers=3,proto=tcp,timeo=600",
        "limitVolumeSize": "500Gi",
        "defaults": {
            "exportRule": "10.0.0.0/24,10.0.1.0/24,10.0.2.100",
            "snapshotDir": "true",
            "size": "200Gi",
            "unixPermissions": "0777"
        }
    }
```

Exemplo 4: Configuração do pool de armazenamento virtual Essa configuração de back-end define vários pools de storage em um único arquivo. Isso é útil quando você tem vários pools de capacidade com suporte a diferentes níveis de serviço e deseja criar classes de storage no Kubernetes que os representem.

```
"version": 1,
    "storageDriverName": "azure-netapp-files",
    "subscriptionID": "9f87c765-4774-fake-ae98-a721add45451",
    "tenantID": "68e4f836-edc1-fake-bff9-b2d865ee56cf",
    "clientID": "dd043f63-bf8e-fake-8076-8de91e5713aa",
    "clientSecret": "SECRET",
    "location": "eastus",
    "resourceGroups": ["application-group-1"],
    "networkFeatures": "Basic",
    "nfsMountOptions": "vers=3,proto=tcp,timeo=600",
    "labels": {
        "cloud": "azure"
    "location": "eastus",
    "storage": [
        {
            "labels": {
                "performance": "gold"
            },
            "serviceLevel": "Ultra",
            "capacityPools": ["ultra-1", "ultra-2"],
            "networkFeatures": "Standard"
        },
            "labels": {
                "performance": "silver"
            "serviceLevel": "Premium",
            "capacityPools": ["premium-1"]
        },
            "labels": {
                "performance": "bronze"
            } ,
            "serviceLevel": "Standard",
            "capacityPools": ["standard-1", "standard-2"]
        }
   1
}
```

Definições da classe de armazenamento

As definições a seguir StorageClass referem-se aos pools de armazenamento acima.

Exemplos de definições usando parameter.selector campo

Usando parameter.selector você pode especificar para cada StorageClass pool virtual que é usado para hospedar um volume. O volume terá os aspetos definidos no pool escolhido.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: gold
provisioner: csi.trident.netapp.io
parameters:
  selector: "performance=gold"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: silver
provisioner: csi.trident.netapp.io
parameters:
  selector: "performance=silver"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: bronze
provisioner: csi.trident.netapp.io
parameters:
  selector: "performance=bronze"
allowVolumeExpansion: true
```

Definições de exemplo para volumes SMB

Usando nasType, node-stage-secret-name e node-stage-secret-namespace, você pode especificar um volume SMB e fornecer as credenciais necessárias do ative Directory.

Exemplo 1: Configuração básica no namespace padrão

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
    name: anf-sc-smb
provisioner: csi.trident.netapp.io
parameters:
    backendType: "azure-netapp-files"
    trident.netapp.io/nasType: "smb"
    csi.storage.k8s.io/node-stage-secret-name: "smbcreds"
    csi.storage.k8s.io/node-stage-secret-namespace: "default"
```

Exemplo 2: Usando diferentes segredos por namespace

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
    name: anf-sc-smb
provisioner: csi.trident.netapp.io
parameters:
    backendType: "azure-netapp-files"
    trident.netapp.io/nasType: "smb"
    csi.storage.k8s.io/node-stage-secret-name: "smbcreds"
    csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}
```

Exemplo 3: Usando segredos diferentes por volume

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: anf-sc-smb
provisioner: csi.trident.netapp.io
parameters:
   backendType: "azure-netapp-files"
   trident.netapp.io/nasType: "smb"
   csi.storage.k8s.io/node-stage-secret-name: ${pvc.name}
   csi.storage.k8s.io/node-stage-secret-namespace: ${pvc.namespace}
```


nasType: "smb" Filtros para pools compatíveis com volumes SMB. nasType: "nfs"`Ou nasType: "null" filtros para NFS Pools.

Crie o backend

Depois de criar o arquivo de configuração de back-end, execute o seguinte comando:

```
tridentctl create backend -f <backend-file>
```

Se a criação do backend falhar, algo está errado com a configuração do backend. Você pode exibir os logs para determinar a causa executando o seguinte comando:

```
tridentctl logs
```

Depois de identificar e corrigir o problema com o arquivo de configuração, você pode executar o comando create novamente.

Configurar um back-end do CVS para GCP

Saiba como configurar o NetApp Cloud Volumes Service (CVS) para o Google Cloud Platform (GCP) como back-end para a instalação do Astra Trident usando as configurações de exemplo fornecidas.

Saiba mais sobre o suporte ao Astra Trident para CVS para GCP

O Astra Trident dá suporte a volumes com o tipo de serviço CVS padrão "GCP" no . O Astra Trident não dá suporte a volumes CVS inferiores a 100 GiB, independentemente do mínimo permitido pelo tipo de serviço CVS. Portanto, o Trident cria automaticamente um volume de 100 GiB se o volume solicitado for menor do que o tamanho mínimo.

O que você vai precisar

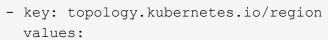
Para configurar e usar o "Cloud Volumes Service para Google Cloud" back-end, você precisa do seguinte:

- Uma conta do Google Cloud configurada com o NetApp CVS
- · Número do projeto da sua conta do Google Cloud
- Conta de serviço do Google Cloud com a netappcloudvolumes.admin função
- · Arquivo de chave de API para sua conta de serviço CVS

Opções de configuração de back-end

Consulte a tabela a seguir para obter as opções de configuração de back-end:

Parâmetro	Descrição	Padrão
version		Sempre 1
storageDriverName	Nome do controlador de armazenamento	"gcp-cvs"


Parâmetro	Descrição	Padrão
backendName	Nome personalizado ou back-end de storage	Nome do driver e parte da chave da API
storageClass	Tipo de armazenamento. Escolha entre hardware (otimizado para performance) ou software (tipo de serviço CVS)	
projectNumber	Número do projeto da conta Google Cloud. O valor é encontrado na página inicial do portal do Google Cloud.	
apiRegion	Região da conta CVS. É a região onde o backend provisionará os volumes.	
apiKey	Chave de API para a conta de serviço do Google Cloud com a netappcloudvolumes.admin função. Ele inclui o conteúdo formatado em JSON do arquivo de chave privada de uma conta de serviço do Google Cloud (copiado literalmente no arquivo de configuração de back-end).	
proxyURL	URL do proxy se o servidor proxy for necessário para se conetar à conta CVS. O servidor proxy pode ser um proxy HTTP ou um proxy HTTPS. Para um proxy HTTPS, a validação do certificado é ignorada para permitir o uso de certificados autoassinados no servidor proxy. Os servidores proxy com autenticação ativada não são suportados.	
nfsMountOptions	Controle refinado das opções de montagem NFS.	"3"
limitVolumeSize	Falha no provisionamento se o tamanho do volume solicitado estiver acima desse valor	"" (não aplicado por padrão)
serviceLevel	O nível de serviço CVS para novos volumes. Os valores são "padrão", "premium" e "extremo".	"standard" (padrão)
network	Rede GCP usada para volumes CVS	"padrão"

Parâmetro	Descrição	Padrão
debugTraceFlags	Debug flags para usar ao solucionar problemas. Exemplo, \{"api":false, "method":true}. Não use isso a menos que você esteja solucionando problemas e exija um despejo de log detalhado.	nulo

Se estiver usando uma rede VPC compartilhada, ambos projectNumber e hostProjectNumber devem ser especificados. Nesse caso, projectNumber é o projeto de serviço, e hostProjectNumber é o projeto host.

O apiRegion representa a região do GCP em que o Astra Trident cria volumes CVS. Ao criar clusters de Kubernetes entre regiões, os volumes CVS criados em um apiRegion podem ser usados em workloads programados em nós em várias regiões do GCP. Esteja ciente de que o tráfego entre regiões incorre em um custo adicional.

 Para habilitar o acesso entre regiões, a definição do StorageClass para allowedTopologies deve incluir todas as regiões. Por exemplo:

- us-east1
- europe-west1

• storageClass é um parâmetro opcional que você pode usar para selecionar o desejado "Tipo de serviço CVS". Você pode escolher entre o tipo de serviço CVS básico (storageClass=software) ou o tipo de serviço CVS-Performance (storageClass=hardware), que o Trident usa por padrão. Certifique-se de especificar um apiRegion que forneça o CVS respetivo storageClass na definição de back-end.

A integração do Astra Trident com o tipo de serviço CVS básico no Google Cloud é um recurso **beta**, não destinado a cargas de trabalho de produção. O Trident é **totalmente suportado** com o tipo de serviço CVS-Performance e o usa por padrão.

Cada back-end provisiona volumes em uma única região do Google Cloud. Para criar volumes em outras regiões, você pode definir backends adicionais.

Você pode controlar como cada volume é provisionado por padrão, especificando as seguintes opções em uma seção especial do arquivo de configuração. Veja os exemplos de configuração abaixo.

Parâmetro	Descrição	Padrão
exportRule	As regras de exportação para novos volumes	"0,0.0,0/0"
snapshotDir	Acesso ao .snapshot diretório	"falso"

Parâmetro	Descrição	Padrão
snapshotReserve	Porcentagem de volume reservado para snapshots	"" (aceitar o padrão CVS de 0)
size	O tamanho dos novos volumes	"100Gi"

O exportRule valor deve ser uma lista separada por vírgulas de qualquer combinação de endereços IPv4 ou sub-redes IPv4 na notação CIDR.

Para todos os volumes criados em um back-end do Google Cloud do CVS, o Trident copia todas as etiquetas presentes em um pool de storage para o volume de storage no momento em que ele é provisionado. Os administradores de storage podem definir rótulos por pool de storage e agrupar todos os volumes criados em um pool de storage. Isso fornece uma maneira conveniente de diferenciar volumes com base em um conjunto de rótulos personalizáveis que são fornecidos na configuração de back-end.

Exemplo 1: Configuração mínima

Esta é a configuração mínima absoluta de back-end.

```
{
    "version": 1,
    "storageDriverName": "gcp-cvs",
    "projectNumber": "012345678901",
    "apiRegion": "us-west2",
    "apiKey": {
        "type": "service account",
        "project id": "my-gcp-project",
        "private key id": "<id value>",
        "private key": "
        ----BEGIN PRIVATE KEY----
        <key value>
        ----END PRIVATE KEY----\n",
        "client_email": "cloudvolumes-admin-sa@my-gcp-
project.iam.gserviceaccount.com",
        "client id": "123456789012345678901",
        "auth uri": "https://accounts.google.com/o/oauth2/auth",
        "token uri": "https://oauth2.googleapis.com/token",
        "auth provider x509 cert url":
"https://www.googleapis.com/oauth2/v1/certs",
        "client x509 cert url":
"https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-
sa%40my-gcp-project.iam.gserviceaccount.com"
}
```

Exemplo 2: Configuração do tipo de serviço CVS básico

Este exemplo mostra uma definição de back-end que usa o tipo de serviço CVS básico, destinado a cargas de trabalho de uso geral e fornece desempenho leve/moderado, juntamente com alta disponibilidade por zona.

```
{
    "version": 1,
    "storageDriverName": "gcp-cvs",
    "projectNumber": "012345678901",
    "storageClass": "software",
    "apiRegion": "us-east4",
    "apiKey": {
        "type": "service account",
        "project id": "my-gcp-project",
        "private key id": "<id value>",
        "private key": "
        ----BEGIN PRIVATE KEY----
        <key value>
        ----END PRIVATE KEY----\n",
        "client email": "cloudvolumes-admin-sa@my-gcp-
project.iam.gserviceaccount.com",
        "client id": "123456789012345678901",
        "auth uri": "https://accounts.google.com/o/oauth2/auth",
        "token uri": "https://oauth2.googleapis.com/token",
        "auth provider x509 cert url":
"https://www.googleapis.com/oauth2/v1/certs",
        "client x509 cert url":
"https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-
sa%40my-gcp-project.iam.gserviceaccount.com"
}
```

Exemplo 3: Configuração de nível de serviço único

Este exemplo mostra um arquivo de back-end que aplica os mesmos aspectos a todo o storage criado pelo Astra Trident na região Google Cloud US-west2. Este exemplo também mostra o uso do proxyURL no arquivo de configuração de back-end.

```
{
    "version": 1,
    "storageDriverName": "gcp-cvs",
    "projectNumber": "012345678901",
    "apiRegion": "us-west2",
    "apiKey": {
        "type": "service account",
        "project id": "my-gcp-project",
        "private key id": "<id value>",
        "private key": "
        ----BEGIN PRIVATE KEY----
        <key value>
        ----END PRIVATE KEY----\n",
        "client email": "cloudvolumes-admin-sa@my-gcp-
project.iam.gserviceaccount.com",
        "client id": "123456789012345678901",
        "auth uri": "https://accounts.google.com/o/oauth2/auth",
        "token uri": "https://oauth2.googleapis.com/token",
        "auth provider x509 cert url":
"https://www.googleapis.com/oauth2/v1/certs",
        "client x509 cert url":
"https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-
sa%40my-gcp-project.iam.gserviceaccount.com"
    },
    "proxyURL": "http://proxy-server-hostname/",
    "nfsMountOptions": "vers=3, proto=tcp, timeo=600",
    "limitVolumeSize": "10Ti",
    "serviceLevel": "premium",
    "defaults": {
        "snapshotDir": "true",
        "snapshotReserve": "5",
        "exportRule": "10.0.0.0/24,10.0.1.0/24,10.0.2.100",
        "size": "5Ti"
    }
}
```

Exemplo 4: Configuração do pool de armazenamento virtual

Este exemplo mostra o arquivo de definição de back-end configurado com pools de armazenamento virtual juntamente com StorageClasses isso se referem a eles.

No arquivo de definição de back-end de exemplo mostrado abaixo, padrões específicos são definidos para todos os pools de armazenamento, que definem o snapshotReserve em 5% e o exportRule para 0,0.0,0/0. Os pools de armazenamento virtual são definidos na storage seção. Neste exemplo, cada pool de armazenamento individual define seu próprio serviceLevel, e alguns pools substituem os valores padrão.

```
"version": 1,
    "storageDriverName": "gcp-cvs",
    "projectNumber": "012345678901",
    "apiRegion": "us-west2",
    "apiKey": {
        "type": "service account",
        "project id": "my-gcp-project",
        "private key id": "<id value>",
        "private key": "
        ----BEGIN PRIVATE KEY----
        <key value>
        ----END PRIVATE KEY----\n",
        "client email": "cloudvolumes-admin-sa@my-gcp-
project.iam.gserviceaccount.com",
        "client id": "123456789012345678901",
        "auth uri": "https://accounts.google.com/o/oauth2/auth",
        "token uri": "https://oauth2.googleapis.com/token",
        "auth provider x509 cert url":
"https://www.googleapis.com/oauth2/v1/certs",
        "client x509 cert url":
"https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-
sa%40my-gcp-project.iam.gserviceaccount.com"
    "nfsMountOptions": "vers=3,proto=tcp,timeo=600",
    "defaults": {
        "snapshotReserve": "5",
        "exportRule": "0.0.0.0/0"
    },
    "labels": {
        "cloud": "gcp"
    "region": "us-west2",
    "storage": [
            "labels": {
                "performance": "extreme",
                "protection": "extra"
            "serviceLevel": "extreme",
            "defaults": {
                "snapshotDir": "true",
                "snapshotReserve": "10",
```

```
"exportRule": "10.0.0.0/24"
            }
        },
        {
            "labels": {
                 "performance": "extreme",
                 "protection": "standard"
            },
            "serviceLevel": "extreme"
        },
            "labels": {
                 "performance": "premium",
                 "protection": "extra"
            },
            "serviceLevel": "premium",
            "defaults": {
                 "snapshotDir": "true",
                 "snapshotReserve": "10"
            }
        },
        {
            "labels": {
                 "performance": "premium",
                 "protection": "standard"
            "serviceLevel": "premium"
        },
        {
            "labels": {
                 "performance": "standard"
            "serviceLevel": "standard"
        }
    ]
}
```

As seguintes definições do StorageClass referem-se aos pools de armazenamento acima. Usando o parameters.selector campo, você pode especificar para cada StorageClass o pool virtual usado para hospedar um volume. O volume terá os aspetos definidos no pool escolhido.

O primeiro StorageClass) (`cvs-extreme-extra-protection`mapeia para o primeiro pool de armazenamento virtual. Esse é o único pool que oferece desempenho extremo com uma reserva de snapshot de 10%. O último StorageClass) (`cvs-extra-protection`chama qualquer pool de armazenamento que forneça uma reserva de snapshot de 10%. O Astra Trident decide qual pool de storage virtual está selecionado e garante

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: cvs-extreme-extra-protection
provisioner: netapp.io/trident
parameters:
  selector: "performance=extreme; protection=extra"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: cvs-extreme-standard-protection
provisioner: netapp.io/trident
parameters:
  selector: "performance=premium; protection=standard"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: cvs-premium-extra-protection
provisioner: netapp.io/trident
parameters:
  selector: "performance=premium; protection=extra"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: cvs-premium
provisioner: netapp.io/trident
parameters:
  selector: "performance=premium; protection=standard"
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: cvs-standard
provisioner: netapp.io/trident
parameters:
  selector: "performance=standard"
allowVolumeExpansion: true
```

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: cvs-extra-protection
provisioner: netapp.io/trident
parameters:
  selector: "protection=extra"
allowVolumeExpansion: true
```

O que se segue?

Depois de criar o arquivo de configuração de back-end, execute o seguinte comando:

```
tridentctl create backend -f <backend-file>
```

Se a criação do backend falhar, algo está errado com a configuração do backend. Você pode exibir os logs para determinar a causa executando o seguinte comando:

```
tridentctl logs
```

Depois de identificar e corrigir o problema com o arquivo de configuração, você pode executar o comando create novamente.

Configurar um back-end NetApp HCI ou SolidFire

Saiba mais sobre como criar e usar um back-end Element com sua instalação do Astra Trident.

O que você vai precisar

- Um sistema de storage compatível que executa o software Element.
- Credenciais para um usuário de administrador ou locatário de cluster do NetApp HCI/SolidFire que possa gerenciar volumes.
- Todos os seus nós de trabalho do Kubernetes devem ter as ferramentas iSCSI apropriadas instaladas. "informações sobre a preparação do nó de trabalho"Consulte .

O que você precisa saber

O solidfire-san driver de armazenamento suporta ambos os modos de volume: Arquivo e bloco. Para o Filesystem volumeMode, o Astra Trident cria um volume e cria um sistema de arquivos. O tipo de sistema de arquivos é especificado pelo StorageClass.

Condutor	Protocolo	Modo de volume	Modos de acesso suportados	Sistemas de arquivos suportados
solidfire-san	ISCSI	Bloco	RWO, ROX, RWX	Sem sistema de ficheiros. Dispositivo de bloco bruto.
solidfire-san	ISCSI	Bloco	RWO, ROX, RWX	Sem sistema de ficheiros. Dispositivo de bloco bruto.
solidfire-san	ISCSI	Sistema de ficheiros	RWO, ROX	xfs ext3,, ext4
solidfire-san	ISCSI	Sistema de ficheiros	RWO, ROX	xfs ext3,, ext4

O Astra Trident usa o CHAP quando funciona como um supervisor de CSI aprimorado. Se você estiver usando CHAP (que é o padrão para CSI), nenhuma preparação adicional é necessária. Recomenda-se definir explicitamente a USECHAP opção para usar CHAP com Trident não-CSI. Caso contrário, "aqui"consulte .

Os grupos de acesso a volume só são compatíveis com a estrutura convencional não CSI para Astra Trident. Quando configurado para funcionar no modo CSI, o Astra Trident usa CHAP.

Se nenhuma AccessGroups ou UseCHAP for definida, uma das seguintes regras será aplicada:

- Se o grupo de acesso padrão trident for detetado, os grupos de acesso serão usados.
- Se nenhum grupo de acesso for detetado e a versão do Kubernetes for 1,7 ou posterior, o CHAP será usado.

Opções de configuração de back-end

Consulte a tabela a seguir para obter as opções de configuração de back-end:

Parâmetro	Descrição	Padrão
version		Sempre 1
storageDriverName	Nome do controlador de armazenamento	Sempre "SolidFire-san"
backendName	Nome personalizado ou back-end de storage	Endereço IP "SolidFire_" e armazenamento (iSCSI)
Endpoint	MVIP para o cluster SolidFire com credenciais de locatário	
SVIP	Porta e endereço IP de armazenamento (iSCSI)	

Parâmetro	Descrição	Padrão
labels	Conjunto de rótulos arbitrários formatados em JSON para aplicar em volumes.	""
TenantName	Nome do locatário a utilizar (criado se não for encontrado)	
InitiatorIFace	Restringir o tráfego iSCSI a uma interface de host específica	"padrão"
UseCHAP	Use CHAP para autenticar iSCSI	verdadeiro
AccessGroups	Lista de IDs de Grupo de Acesso a utilizar	Encontra a ID de um grupo de acesso chamado "Trident"
Types	Especificações de QoS	
limitVolumeSize	Falha no provisionamento se o tamanho do volume solicitado estiver acima desse valor	"" (não aplicado por padrão)
debugTraceFlags	Debug flags para usar ao solucionar problemas. Por exemplo, "api":false, "método":true"	nulo

Não use debugTraceFlags a menos que você esteja solucionando problemas e exija um despejo de log detalhado.

Para todos os volumes criados, o Astra Trident copiará todas as etiquetas presentes em um pool de storage para a LUN de storage de backup no momento em que ela for provisionada. Os administradores de storage podem definir rótulos por pool de storage e agrupar todos os volumes criados em um pool de storage. Isso fornece uma maneira conveniente de diferenciar volumes com base em um conjunto de rótulos personalizáveis que são fornecidos na configuração de back-end.

Exemplo 1: Configuração de back-end para solidfire-san driver com três tipos de volume

Este exemplo mostra um arquivo de back-end usando autenticação CHAP e modelagem de três tipos de volume com garantias de QoS específicas. Provavelmente você definiria classes de armazenamento para consumir cada uma delas usando o IOPS parâmetro de classe de armazenamento.

Exemplo 2: Configuração de classe de back-end e armazenamento para solidfire-san driver com pools de armazenamento virtual

Este exemplo mostra o arquivo de definição de back-end configurado com pools de armazenamento virtual junto com o StorageClasses que se referem a eles.

No arquivo de definição de back-end de exemplo mostrado abaixo, padrões específicos são definidos para todos os pools de armazenamento, que definem o type em Prata. Os pools de armazenamento virtual são definidos na storage seção. Neste exemplo, alguns conjuntos de armazenamento definem seu próprio tipo e alguns conjuntos substituem os valores padrão definidos acima.

```
{
    "version": 1,
    "storageDriverName": "solidfire-san",
    "Endpoint": "https://<user>:<password>@<mvip>/json-rpc/8.0",
    "SVIP": "<svip>:3260",
    "TenantName": "<tenant>",
    "UseCHAP": true,
    "Types": [{"Type": "Bronze", "Qos": {"minIOPS": 1000, "maxIOPS": 2000,
"burstIOPS": 4000}},
              {"Type": "Silver", "Qos": {"minIOPS": 4000, "maxIOPS": 6000,
"burstIOPS": 8000}},
              {"Type": "Gold", "Oos": {"minIOPS": 6000, "maxIOPS": 8000,
"burstIOPS": 10000}}],
    "type": "Silver",
    "labels":{"store":"solidfire", "k8scluster": "dev-1-cluster"},
    "region": "us-east-1",
    "storage": [
        {
            "labels": { "performance": "gold", "cost": "4" },
            "zone": "us-east-la",
            "type": "Gold"
        },
        {
            "labels":{"performance":"silver", "cost":"3"},
            "zone": "us-east-1b",
            "type": "Silver"
        },
        {
            "labels": { "performance": "bronze", "cost": "2" },
            "zone": "us-east-1c",
            "type": "Bronze"
        },
        {
            "labels":{"performance":"silver", "cost":"1"},
            "zone": "us-east-1d"
        }
    ]
}
```

As seguintes definições do StorageClass referem-se aos pools de armazenamento virtual acima. Usando o parameters.selector campo, cada StorageClass chama qual(s) pool(s) virtual(s) pode(m) ser(ão) usado(s) para hospedar um volume. O volume terá os aspetos definidos no pool virtual escolhido.

O primeiro StorageClass) (solidfire-gold-four`será mapeado para o primeiro pool de

armazenamento virtual. Este é o único pool que oferece desempenho de ouro com um `Volume Type QoS de ouro. O último StorageClass) (`solidfire-silver`chama qualquer pool de armazenamento que ofereça um desempenho prateado. O Astra Trident decidirá qual pool de storage virtual está selecionado e garantirá que o requisito de storage seja atendido.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: solidfire-gold-four
provisioner: csi.trident.netapp.io
parameters:
  selector: "performance=gold; cost=4"
  fsType: "ext4"
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: solidfire-silver-three
provisioner: csi.trident.netapp.io
parameters:
  selector: "performance=silver; cost=3"
  fsType: "ext4"
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: solidfire-bronze-two
provisioner: csi.trident.netapp.io
parameters:
  selector: "performance=bronze; cost=2"
  fsType: "ext4"
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: solidfire-silver-one
provisioner: csi.trident.netapp.io
parameters:
  selector: "performance=silver; cost=1"
 fsType: "ext4"
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: solidfire-silver
provisioner: csi.trident.netapp.io
parameters:
  selector: "performance=silver"
  fsType: "ext4"
```

Encontre mais informações

• "Grupos de acesso de volume"

Configure um back-end com drivers SAN ONTAP

Saiba mais sobre como configurar um back-end ONTAP com drivers SAN ONTAP e Cloud Volumes ONTAP.

- "Preparação"
- "Configuração e exemplos"

Permissões do usuário

O Astra Trident espera ser executado como administrador da ONTAP ou SVM, normalmente usando o admin usuário do cluster ou um vsadmin usuário SVM, ou um usuário com um nome diferente que tenha a mesma função. Para implantações do Amazon FSX for NetApp ONTAP, o Astra Trident espera ser executado como administrador do ONTAP ou SVM, usando o usuário do cluster fsxadmin ou um vsadmin usuário SVM, ou um usuário com um nome diferente que tenha a mesma função. O fsxadmin usuário é um substituto limitado para o usuário administrador do cluster.

Se você usar o limitAggregateUsage parâmetro, as permissões de administrador do cluster serão necessárias. Ao usar o Amazon FSX for NetApp ONTAP com Astra Trident, o limitAggregateUsage parâmetro não funcionará com as vsadmin contas de usuário e fsxadmin. A operação de configuração falhará se você especificar este parâmetro.

Embora seja possível criar uma função mais restritiva no ONTAP que um driver Trident pode usar, não recomendamos. A maioria das novas versões do Trident chamarão APIs adicionais que teriam que ser contabilizadas, tornando as atualizações difíceis e suscetíveis a erros.

Prepare-se para configurar o back-end com drivers SAN ONTAP

Saiba mais sobre como se preparar para configurar um back-end ONTAP com drivers SAN ONTAP. Para todos os back-ends ONTAP, o Astra Trident requer pelo menos um agregado atribuído ao SVM.

Lembre-se de que você também pode executar mais de um driver e criar classes de armazenamento que apontam para um ou outro. Por exemplo, você pode configurar uma san-dev classe que usa o ontap-san driver e uma san-default classe que usa a ontap-san-economy mesma.

Todos os seus nós de trabalho do Kubernetes devem ter as ferramentas iSCSI apropriadas instaladas. "aqui"Consulte para obter mais detalhes.

Autenticação

O Astra Trident oferece dois modos de autenticação no back-end do ONTAP.

- Baseado em credenciais: O nome de usuário e senha para um usuário do ONTAP com as permissões necessárias. Recomenda-se a utilização de uma função de início de sessão de segurança predefinida, como admin ou vsadmin para garantir a máxima compatibilidade com as versões do ONTAP.
- Baseado em certificado: O Astra Trident também pode se comunicar com um cluster ONTAP usando um certificado instalado no back-end. Aqui, a definição de back-end deve conter valores codificados em Base64 do certificado de cliente, chave e certificado de CA confiável, se usado (recomendado).

Você pode atualizar os backends existentes para mover entre métodos baseados em credenciais e baseados

em certificado. No entanto, apenas um método de autenticação é suportado por vez. Para alternar para um método de autenticação diferente, você deve remover o método existente da configuração de back-end.

Se você tentar fornecer **credenciais e certificados**, a criação de back-end falhará com um erro que mais de um método de autenticação foi fornecido no arquivo de configuração.

Ative a autenticação baseada em credenciais

O Astra Trident requer as credenciais para um administrador com escopo SVM/cluster para se comunicar com o back-end do ONTAP. Recomenda-se a utilização de funções padrão predefinidas, como admin ou vsadmin. Isso garante compatibilidade direta com futuras versões do ONTAP que podem expor APIs de recursos a serem usadas por futuras versões do Astra Trident. Uma função de login de segurança personalizada pode ser criada e usada com o Astra Trident, mas não é recomendada.

Uma definição de backend de exemplo será assim:

```
"version": 1,
"backendName": "ExampleBackend",
"storageDriverName": "ontap-san",
"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.2",
"svm": "svm_nfs",
"username": "vsadmin",
"password": "secret",
}
```

Tenha em mente que a definição de back-end é o único lugar onde as credenciais são armazenadas em texto simples. Depois que o back-end é criado, os nomes de usuário/senhas são codificados com Base64 e armazenados como segredos do Kubernetes. A criação/updation de um backend é a única etapa que requer conhecimento das credenciais. Como tal, é uma operação somente de administrador, a ser realizada pelo administrador do Kubernetes/storage.

Ativar autenticação baseada em certificado

Backends novos e existentes podem usar um certificado e se comunicar com o back-end do ONTAP. Três parâmetros são necessários na definição de backend.

- ClientCertificate: Valor codificado base64 do certificado do cliente.
- ClientPrivateKey: Valor codificado em base64 da chave privada associada.
- TrustedCACertificate: Valor codificado base64 do certificado CA confiável. Se estiver usando uma CA confiável, esse parâmetro deve ser fornecido. Isso pode ser ignorado se nenhuma CA confiável for usada.

Um fluxo de trabalho típico envolve as etapas a seguir.

Passos

1. Gerar um certificado e chave de cliente. Ao gerar, defina Nome Comum (CN) para o usuário ONTAP para autenticar como.

```
openssl req -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key -out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=admin"
```

2. Adicionar certificado de CA confiável ao cluster do ONTAP. Isso pode já ser Tratado pelo administrador do armazenamento. Ignore se nenhuma CA confiável for usada.

```
security certificate install -type server -cert-name <trusted-ca-cert-
name> -vserver <vserver-name>
ssl modify -vserver <vserver-name> -server-enabled true -client-enabled
true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca
<cert-authority>
```

3. Instale o certificado e a chave do cliente (a partir do passo 1) no cluster do ONTAP.

```
security certificate install -type client-ca -cert-name <certificate-
name> -vserver <vserver-name>
security ssl modify -vserver <vserver-name> -client-enabled true
```

4. Confirme se a função de login de segurança do ONTAP suporta cert o método de autenticação.

```
security login create -user-or-group-name admin -application ontapi -authentication-method cert security login create -user-or-group-name admin -application http -authentication-method cert
```

5. Teste a autenticação usando certificado gerado. Substitua o ONTAP Management LIF> e o <vserver name> por IP de LIF de gerenciamento e nome da SVM.

```
curl -X POST -Lk https://<ONTAP-Management-
LIF>/servlets/netapp.servlets.admin.XMLrequest_filer --key k8senv.key
--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp
xmlns="http://www.netapp.com/filer/admin" version="1.21"
vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>'
```

Codificar certificado, chave e certificado CA confiável com Base64.

```
base64 -w 0 k8senv.pem >> cert_base64
base64 -w 0 k8senv.key >> key_base64
base64 -w 0 trustedca.pem >> trustedca_base64
```

7. Crie backend usando os valores obtidos na etapa anterior.

```
cat cert-backend.json
"version": 1,
"storageDriverName": "ontap-san",
"backendName": "SanBackend",
"managementLIF": "1.2.3.4",
"dataLIF": "1.2.3.8",
"svm": "vserver test",
"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",
"clientPrivateKey": "LSOtFaKE...OVaLuESOtLSOK",
"trustedCACertificate": "QNFinfO...SiqOyN",
"storagePrefix": "myPrefix "
tridentctl create backend -f cert-backend.json -n trident
+----+
+----+
| NAME | STORAGE DRIVER |
                             UUID
STATE | VOLUMES |
+----
+----+
online | 0 |
+----
+----+
```

Atualizar métodos de autenticação ou girar credenciais

Você pode atualizar um back-end existente para usar um método de autenticação diferente ou para girar suas credenciais. Isso funciona de ambas as maneiras: Backends que fazem uso de nome de usuário / senha podem ser atualizados para usar certificados; backends que utilizam certificados podem ser atualizados para nome de usuário / senha com base. Para fazer isso, você deve remover o método de autenticação existente e adicionar o novo método de autenticação. Em seguida, use o arquivo backend.json atualizado contendo os parâmetros necessários para executar tridentctl backend update.

```
cat cert-backend-updated.json
{
"version": 1,
"storageDriverName": "ontap-san",
"backendName": "SanBackend",
"managementLIF": "1.2.3.4",
"dataLIF": "1.2.3.8",
"svm": "vserver test",
"username": "vsadmin",
"password": "secret",
"storagePrefix": "myPrefix "
#Update backend with tridentctl
tridentctl update backend SanBackend -f cert-backend-updated.json -n
trident
+----
+----+
  NAME | STORAGE DRIVER |
                                 UUID
STATE | VOLUMES |
+----
+----+
| SanBackend | ontap-san | 586b1cd5-8cf8-428d-a76c-2872713612c1 |
+----
+----+
```


Ao girar senhas, o administrador de armazenamento deve primeiro atualizar a senha do usuário no ONTAP. Isso é seguido por uma atualização de back-end. Ao girar certificados, vários certificados podem ser adicionados ao usuário. O back-end é então atualizado para usar o novo certificado, seguindo o qual o certificado antigo pode ser excluído do cluster do ONTAP.

A atualização de um back-end não interrompe o acesso a volumes que já foram criados, nem afeta as conexões de volume feitas depois. Uma atualização de back-end bem-sucedida indica que o Astra Trident pode se comunicar com o back-end do ONTAP e lidar com operações de volume futuras.

Especifique grupos

O Astra Trident usa os grupos para controlar o acesso aos volumes (LUNs) provisionados. Os administradores têm duas opções quando se trata de especificar grupos para backends:

- O Astra Trident pode criar e gerenciar automaticamente um grupo por back-end. Se igroupName não estiver incluído na definição de back-end, o Astra Trident criará um grupo nomeado trident-
backend-UUID> no SVM. Isso garantirá que cada back-end tenha um iggroup dedicado e tratará da adição/exclusão automatizada de IQNs do nó Kubernetes.
- Alternativamente, os grupos pré-criados também podem ser fornecidos em uma definição de back-end. Isso pode ser feito usando o igroupName parâmetro config. O Astra Trident adicionará/excluirá IQNs de

nós do Kubernetes ao grupo pré-existente.

Para backends que igroupName tenham definido, o igroupName pode ser excluído com um tridentctl backend update para ter os grupos de auto-manipulação Astra Trident. Isso não interromperá o acesso a volumes que já estão anexados a cargas de trabalho. Conexões futuras serão tratadas usando o igroup Astra Trident criado.

Dedicar um grupo para cada instância única do Astra Trident é uma prática recomendada que é benéfica para o administrador do Kubernetes, bem como para o administrador de storage. O CSI Trident automatiza a adição e remoção de IQNs de nó de cluster ao igrupo, simplificando muito seu gerenciamento. Ao usar o mesmo SVM em ambientes Kubernetes (e instalações Astra Trident), o uso de um grupo dedicado garante que as alterações feitas em um cluster do Kubernetes não influenciem os grupos associados a outro. Além disso, também é importante garantir que cada nó no cluster do Kubernetes tenha uma IQN exclusiva. Como mencionado acima, o Astra Trident lida automaticamente com a adição e remoção de IQNs. A reutilização de IQNs entre hosts pode levar a cenários indesejáveis nos quais os hosts se confundem uns com os outros e o acesso a LUNs é negado.

Se o Astra Trident estiver configurado para funcionar como um supervisor do CSI, os IQNs do nó do Kubernetes serão automaticamente adicionados/removidos do grupo. Quando os nós são adicionados a um cluster Kubernetes, trident-csi o DaemonSet implanta um pod (trident-csi-xxxxx) nos nós recémadicionados e Registra os novos nós aos quais pode anexar volumes. Os IQNs de nó também são adicionados ao igroup do back-end. Um conjunto semelhante de etapas manipula a remoção de IQNs quando os nós são cordonados, drenados e excluídos do Kubernetes.

Se o Astra Trident não for executado como um supervisor de CSI, o grupo deve ser atualizado manualmente para conter os IQNs iSCSI de cada nó de trabalho no cluster do Kubernetes. As IQNs de nós que ingressam no cluster do Kubernetes precisarão ser adicionadas ao grupo. Da mesma forma, as IQNs de nós removidos do cluster do Kubernetes devem ser removidas do grupo.

Autentique conexões com CHAP bidirecional

O Astra Trident pode autenticar sessões iSCSI com CHAP bidirecional para os ontap-san drivers e ontap-san-economy. Isso requer a ativação da useCHAP opção na definição de backend. Quando definido como true, o Astra Trident configura a segurança do iniciador padrão do SVM para CHAP bidirecional e define o nome de usuário e os segredos do arquivo de back-end. O NetApp recomenda o uso de CHAP bidirecional para autenticar conexões. Veja a seguinte configuração de exemplo:

```
"version": 1,
    "storageDriverName": "ontap-san",
    "backendName": "ontap_san_chap",
    "managementLIF": "192.168.0.135",
    "svm": "ontap_iscsi_svm",
    "useCHAP": true,
    "username": "vsadmin",
    "password": "FaKePaSsWoRd",
    "igroupName": "trident",
    "chapInitiatorSecret": "cl9qxIm36DKyawxy",
    "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",
    "chapTargetUsername": "iJF4heBRTOTCwxyz",
    "chapUsername": "uh2aNCLSd6cNwxyz",
}
```


O useCHAP parâmetro é uma opção booleana que pode ser configurada apenas uma vez. Ele é definido como false por padrão. Depois de configurá-lo como verdadeiro, você não pode configurá-lo como falso.

Além useCHAP=true do, os chapInitiatorSecret campos, chapTargetInitiatorSecret, chapTargetUsername, e chapUsername devem ser incluídos na definição de back-end. Os segredos podem ser alterados depois que um backend é criado executando tridentctl update.

Como funciona

Ao definir useCHAP como verdadeiro, o administrador de storage instrui o Astra Trident a configurar o CHAP no back-end de storage. Isso inclui o seguinte:

- Configuração do CHAP no SVM:
 - Se o tipo de segurança do iniciador padrão da SVM for nenhum (definido por padrão) e não houver
 LUNs pré-existentes no volume, o Astra Trident definirá o tipo de segurança padrão CHAP e continuará
 configurando o iniciador CHAP e o nome de usuário e os segredos de destino.
 - Se o SVM contiver LUNs, o Astra Trident não ativará o CHAP no SVM. Isso garante que o acesso a LUNs que já estão presentes no SVM não seja restrito.
- Configurando o iniciador CHAP e o nome de usuário e os segredos de destino; essas opções devem ser especificadas na configuração de back-end (como mostrado acima).
- Gerenciando a adição de iniciadores ao igroupName dado no back-end. Se não for especificado, o padrão é trident.

Depois que o back-end é criado, o Astra Trident cria um CRD correspondente tridentbackend e armazena os segredos e nomes de usuário do CHAP como segredos do Kubernetes. Todos os PVS criados pelo Astra Trident neste back-end serão montados e anexados através do CHAP.

Gire credenciais e atualize os backends

Você pode atualizar as credenciais CHAP atualizando os parâmetros CHAP no backend. json arquivo. Isso

exigirá a atualização dos segredos CHAP e o uso do tridentctl update comando para refletir essas alterações.

Ao atualizar os segredos CHAP para um backend, você deve usar tridentetl para atualizar o backend. Não atualize as credenciais no cluster de storage por meio da IU da CLI/ONTAP, pois o Astra Trident não conseguirá aceitar essas alterações.

```
cat backend-san.json
{
  "version": 1,
  "storageDriverName": "ontap-san",
  "backendName": "ontap san chap",
  "managementLIF": "192.168.0.135",
  "svm": "ontap iscsi svm",
  "useCHAP": true,
  "username": "vsadmin",
  "password": "FaKePaSsWoRd",
  "igroupName": "trident",
  "chapInitiatorSecret": "cl9qxUpDaTeD",
  "chapTargetInitiatorSecret": "rqxiqXgkeUpDaTeD",
  "chapTargetUsername": "iJF4heBRT0TCwxyz",
  "chapUsername": "uh2aNCLSd6cNwxyz",
}
./tridentctl update backend ontap san chap -f backend-san.json -n trident
+----
+----+
NAME | STORAGE DRIVER |
                                 UUID
STATE | VOLUMES |
+----
+----+
+----
+----+
```

As conexões existentes não serão afetadas. Elas continuarão ativas se as credenciais forem atualizadas pelo Astra Trident no SVM. As novas conexões usarão as credenciais atualizadas e as conexões existentes continuam ativas. Desconetar e reconetar PVS antigos resultará em eles usando as credenciais atualizadas.

Exemplos e opções de configuração de SAN ONTAP

Saiba mais sobre como criar e usar drivers SAN ONTAP com sua instalação do Astra Trident. Esta seção fornece exemplos de configuração de back-end e detalhes sobre como mapear backends para StorageClasses.

Opções de configuração de back-end

Consulte a tabela a seguir para obter as opções de configuração de back-end:

Parâmetro	Descrição	Padrão	
version		Sempre 1	
storageDriverName	Nome do controlador de armazenamento	"ONTAP-nas", "ONTAP-nas- economy", "ONTAP-nas- FlexGroup", "ONTAP-san", "ONTAP-san-economy"	
backendName	Nome personalizado ou back-end de storage	Nome do driver	
managementLIF	Endereço IP de um cluster ou LIF de gerenciamento de SVM para switchover MetroCluster otimizado, você precisa especificar um LIF de gerenciamento de SVM.	"10,0.0,1", "[2001:1234:abcd::fefe]"	
dataLIF	Endereço IP do protocolo LIF. Use suportes quadrados para IPv6. Não pode ser atualizado depois de configurá-lo	Derivado do SVM, a menos que especificado	
useCHAP	Usar CHAP para autenticar iSCSI para drivers SAN ONTAP [Boolean]	falso	
chapInitiatorSecret	Segredo do iniciador CHAP. Necessário se useCHAP=true	1111	
labels	Conjunto de rótulos arbitrários formatados em JSON para aplicar em volumes	н	
chapTargetInitiatorSecret	Segredo do iniciador de destino CHAP. Necessário se useCHAP=true	****	
chapUsername	Nome de utilizador de entrada. Necessário se useCHAP=true	****	
chapTargetUsername	Nome de utilizador alvo. Necessário se useCHAP=true	""	
clientCertificate	Valor codificado em base64 do certificado do cliente. Usado para autenticação baseada em certificado	****	
clientPrivateKey	Valor codificado em base64 da chave privada do cliente. Usado para autenticação baseada em certificado	1111	

Parâmetro	Descrição	Padrão
trustedCACertificate	Valor codificado em base64 do certificado CA confiável. Opcional. Usado para autenticação baseada em certificado	****
username	Nome de usuário para se conetar ao cluster/SVM. Usado para autenticação baseada em credenciais	1111
password	Senha para se conectar ao cluster/SVM. Usado para autenticação baseada em credenciais	1111
svm	Máquina virtual de armazenamento para usar	Derivado se uma SVM managementLIF for especificada
igroupName	Nome do grupo para volumes SAN a serem usados	"Trident- <backend-uuid>"</backend-uuid>
storagePrefix	Prefixo usado ao provisionar novos volumes na SVM. Não pode ser atualizado depois de configurá-lo	"Trident"
limitAggregateUsage	Falha no provisionamento se o uso estiver acima dessa porcentagem. Não se aplica ao Amazon FSX for ONTAP	"" (não aplicado por padrão)
limitVolumeSize	Falha no provisionamento se o tamanho do volume solicitado estiver acima desse valor.	"" (não aplicado por padrão)
lunsPerFlexvol	Máximo de LUNs por FlexVol, tem de estar no intervalo [50, 200]	"100"
debugTraceFlags	Debug flags para usar ao solucionar problemas. Por exemplo, "api":false, "método":true"	nulo
useREST	Parâmetro booleano para usar APIs REST do ONTAP. Pré- visualização técnica não suportada com o MetroCluster.	falso

Considerações sobre o <code>useREST</code>

- useREST é fornecido como uma **prévia técnica** recomendada para ambientes de teste e não para cargas de trabalho de produção. Quando definido como true, o Astra Trident usará as APIS REST do ONTAP para se comunicar com o back-end. Esse recurso requer o ONTAP 9.10 e posterior. Além disso, a função de login do ONTAP usada deve ter acesso ao ontap aplicativo. Isso é satisfeito com as funções e cluster-admin predefinidas vsadmin.
- userest Não é suportado com MetroCluster.

Para se comunicar com o cluster ONTAP, você deve fornecer os parâmetros de autenticação. Esse pode ser o nome de usuário/senha para um login de segurança ou um certificado instalado.

Se você estiver usando um back-end do Amazon FSX for NetApp ONTAP, não especifique o limitAggregateUsage parâmetro. fsxadmin`As funções e `vsadmin fornecidas pelo Amazon FSX para NetApp ONTAP não contêm as permissões de acesso necessárias para recuperar o uso agregado e limitá-lo por meio do Astra Trident.

Não use debugTraceFlags a menos que você esteja solucionando problemas e exija um despejo de log detalhado.

Para os ontap-san drivers, o padrão é usar todos os IPs de LIF de dados da SVM e usar multipath iSCSI. Especificar um endereço IP para o dataLIF para os ontap-san drivers obriga-os a desabilitar o multipath e usar apenas o endereço especificado.

Ao criar um backend, lembre-se disso dataLIF e storagePrefix não pode ser modificado após a criação. Para atualizar esses parâmetros, você precisará criar um novo backend.

igroupName Pode ser definido como um grupo que já está criado no cluster ONTAP. Se não for especificado, o Astra Trident cria automaticamente um grupo chamado Trident-
backend-UUID>. Se estiver fornecendo um nome de grupo predefinido, o NetApp recomenda o uso de um grupo por cluster do Kubernetes, se o SVM for compartilhado entre ambientes. Isso é necessário para que o Astra Trident mantenha automaticamente adições/exclusões ao IQN.

Os backends também podem ter grupos atualizados após a criação:

- O igroup Name pode ser atualizado para apontar para um novo igroup que é criado e gerenciado no SVM fora do Astra Trident.

Em ambos os casos, os anexos de volume continuarão a ser acessíveis. Futuros anexos de volume usarão o igroup atualizado. Esta atualização não interrompe o acesso aos volumes presentes no back-end.

Um nome de domínio totalmente qualificado (FQDN) pode ser especificado para a managementLIF opção.

`managementLIF` Para todos os drivers ONTAP também pode ser definido como endereços IPv6. Certifique-se de que instala o Trident com o `--use-ipv6` sinalizador. Deve-se ter cuidado para definir `managementLIF` o endereço IPv6 entre parênteses retos.

Ao usar endereços IPv6, certifique-se de managementLIF que e dataLIF (se incluídos na definição do backend) estejam definidos entre colchetes, como [28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555]. Se dataLIF não for fornecido, o Astra Trident irá buscar os LIFs de dados do IPv6 do SVM.

Para habilitar os drivers ONTAP-san para usar o CHAP, defina o useCHAP parâmetro como true em sua definição de back-end. Em seguida, o Astra Trident configurará e usará CHAP bidirecional como a autenticação padrão para a SVM fornecida no back-end. "aqui"Consulte para saber como funciona.

Para ontap-san-economy o driver, a limitVolumeSize opção também restringirá o tamanho máximo dos volumes que gerencia para qtrees e LUNs.

O Astra Trident define rótulos de provisionamento no campo "Comentários" de todos os volumes criados usando ontap-san o driver. Para cada volume criado, o campo "Comentários" no FlexVol será preenchido com todas as etiquetas presentes no pool de armazenamento em que ele é colocado. Os administradores de armazenamento podem definir rótulos por pool de armazenamento e agrupar todos os volumes criados em um pool de armazenamento. Isso fornece uma maneira conveniente de diferenciar volumes com base em um conjunto de rótulos personalizáveis que são fornecidos na configuração de back-end.

Opções de configuração de back-end para volumes de provisionamento

Você pode controlar como cada volume é provisionado por padrão usando essas opções em uma seção especial da configuração. Para obter um exemplo, consulte os exemplos de configuração abaixo.

Parâmetro	Descrição	Padrão
spaceAllocation	Alocação de espaço para LUNs	"verdadeiro"
spaceReserve	Modo de reserva de espaço; "nenhum" (fino) ou "volume" (grosso)	"nenhum"
snapshotPolicy	Política de instantâneos a utilizar	"nenhum"
qosPolicy	Grupo de políticas de QoS a atribuir aos volumes criados. Escolha uma das qosPolicy ou adaptiveQosPolicy por pool de armazenamento/backend	1111
adaptiveQosPolicy	Grupo de políticas de QoS adaptável a atribuir para volumes criados. Escolha uma das qosPolicy ou adaptiveQosPolicy por pool de armazenamento/backend	***************************************
snapshotReserve	Porcentagem de volume reservado para snapshots "0"	Se snapshotPolicy é "nenhum", então ""
splitOnClone	Divida um clone de seu pai na criação	"falso"
splitOnClone	Divida um clone de seu pai na criação	"falso"

Parâmetro	Descrição	Padrão
encryption	Ative a criptografia de volume do NetApp (NVE) no novo volume; o padrão é false. O NVE deve ser licenciado e habilitado no cluster para usar essa opção. Se o NAE estiver ativado no back-end, qualquer volume provisionado no Astra Trident será o NAE ativado. Para obter mais informações, consulte: "Como o Astra Trident funciona com NVE e NAE".	"falso"
luksEncryption	Ativar encriptação LUKS. "Usar a configuração de chave unificada do Linux (LUKS)"Consulte a .	ш
securityStyle	Estilo de segurança para novos volumes	"unix"
tieringPolicy	Política de disposição em camadas para usar "nenhuma"	"Somente snapshot" para configuração pré-ONTAP 9.5 SVM- DR

O uso de grupos de política de QoS com o Astra Trident requer o ONTAP 9.8 ou posterior. Recomenda-se usar um grupo de políticas QoS não compartilhado e garantir que o grupo de políticas seja aplicado individualmente a cada componente. Um grupo de política de QoS compartilhado aplicará o limite máximo da taxa de transferência total de todos os workloads.

Aqui está um exemplo com padrões definidos:

```
{
 "version": 1,
 "storageDriverName": "ontap-san",
"managementLIF": "10.0.0.1",
 "dataLIF": "10.0.0.2",
 "svm": "trident svm",
"username": "admin",
 "password": "password",
"labels": {"k8scluster": "dev2", "backend": "dev2-sanbackend"},
"storagePrefix": "alternate-trident",
 "igroupName": "custom",
 "debugTraceFlags": {"api":false, "method":true},
 "defaults": {
     "spaceReserve": "volume",
     "qosPolicy": "standard",
     "spaceAllocation": "false",
     "snapshotPolicy": "default",
     "snapshotReserve": "10"
}
}
```


Para todos os volumes criados com ontap-san o driver, o Astra Trident adiciona uma capacidade extra de 10% ao FlexVol para acomodar os metadados do LUN. O LUN será provisionado com o tamanho exato que o usuário solicita no PVC. O Astra Trident adiciona 10% ao FlexVol (mostra como tamanho disponível no ONTAP). Os usuários agora terão a capacidade utilizável que solicitaram. Essa alteração também impede que LUNs fiquem somente leitura, a menos que o espaço disponível seja totalmente utilizado. Isto não se aplica à ONTAP-san-economia.

Para backends que definem `snapshotReserve`o , o Astra Trident calcula o tamanho dos volumes da seguinte forma:

```
Total volume size = [(PVC requested size) / (1 - (snapshotReserve percentage) / 100)] * 1.1
```

O 1,1 é o 10% adicional que o Astra Trident adiciona ao FlexVol para acomodar os metadados do LUN. Para snapshotReserve 5%, e o pedido de PVC é de 5GiB, o tamanho total do volume é de 5,79GiB e o tamanho disponível é de 5,5GiB. O volume show comando deve mostrar resultados semelhantes a este exemplo:

Vserver	Volume	Aggregate	State	Туре	Size	Available	Used%
	pvc	_89f1c156_380	1_4de4_9f9d	_034d54	c395f4		
		TO SECURE	online	RW	10GB	5.00GB	0%
	pvc	e42ec6fe_3ba	a_4af6_996d	134adb	bb8e6d		
			online	RW	5.79GB	5.50GB	0%
	pvc	e8372153_9ad	9_474a_951a	_08ae15	e1c0ba		
			online	RW	1GB	511.8MB	0%
3 entries	were displaye	ed.					

Atualmente, o redimensionamento é a única maneira de usar o novo cálculo para um volume existente.

Exemplos mínimos de configuração

Os exemplos a seguir mostram configurações básicas que deixam a maioria dos parâmetros padrão. Esta é a maneira mais fácil de definir um backend.

Se você estiver usando o Amazon FSX no NetApp ONTAP com Astra Trident, a recomendação é especificar nomes DNS para LIFs em vez de endereços IP.

ontap-san driver com autenticação baseada em certificado

Este é um exemplo de configuração de back-end mínimo. clientCertificate, clientPrivateKey E trustedCACertificate (opcional, se estiver usando CA confiável) são preenchidos backend.json e recebem os valores codificados em base64 do certificado do cliente, da chave privada e do certificado de CA confiável, respetivamente.

```
{
    "version": 1,
    "storageDriverName": "ontap-san",
    "backendName": "DefaultSANBackend",
    "managementLIF": "10.0.0.1",
    "dataLIF": "10.0.0.3",
    "svm": "svm iscsi",
    "useCHAP": true,
    "chapInitiatorSecret": "cl9qxIm36DKyawxy",
    "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",
    "chapTargetUsername": "iJF4heBRT0TCwxyz",
    "chapUsername": "uh2aNCLSd6cNwxyz",
    "igroupName": "trident",
    "clientCertificate": "ZXROZXJwYXB...ICMgJ3BhcGVyc2",
    "clientPrivateKey": "vciwKIyAgZG...OcnksIGRlc2NyaX",
    "trustedCACertificate": "zcyBbaG...b3Igb3duIGNsYXNz"
}
```

ontap-san Driver com CHAP bidirecional

Este é um exemplo de configuração de back-end mínimo. Essa configuração básica cria um ontap-san back-end com useCHAP definido como true.

```
{
    "version": 1,
    "storageDriverName": "ontap-san",
    "managementLIF": "10.0.0.1",
    "dataLIF": "10.0.0.3",
    "svm": "svm iscsi",
    "labels": {"k8scluster": "test-cluster-1", "backend": "testcluster1-
sanbackend"},
    "useCHAP": true,
    "chapInitiatorSecret": "cl9qxIm36DKyawxy",
    "chapTargetInitiatorSecret": "rqxiqXqkesIpwxyz",
    "chapTargetUsername": "iJF4heBRT0TCwxyz",
    "chapUsername": "uh2aNCLSd6cNwxyz",
    "igroupName": "trident",
    "username": "vsadmin",
    "password": "secret"
}
```

ontap-san-economy condutor

```
"version": 1,
    "storageDriverName": "ontap-san-economy",
    "managementLIF": "10.0.0.1",
    "svm": "svm_iscsi_eco",
    "useCHAP": true,
    "chapInitiatorSecret": "cl9qxIm36DKyawxy",
    "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",
    "chapTargetUsername": "iJF4heBRT0TCwxyz",
    "chapUsername": "uh2aNCLSd6cNwxyz",
    "igroupName": "trident",
    "username": "vsadmin",
    "password": "secret"
}
```

Exemplos de backends com pools de armazenamento virtual

No arquivo de definição de back-end de exemplo mostrado abaixo, padrões específicos são definidos para todos os pools de armazenamento, como spaceReserve em nenhum, spaceAllocation em falso e encryption em falso. Os pools de armazenamento virtual são definidos na seção armazenamento.

Neste exemplo, alguns dos conjuntos de armazenamento definem os seus próprios spaceReserve spaceAllocation valores, e encryption, e alguns conjuntos substituem os valores predefinidos acima.

```
"version": 1,
    "storageDriverName": "ontap-san",
    "managementLIF": "10.0.0.1",
    "dataLIF": "10.0.0.3",
    "svm": "svm iscsi",
    "useCHAP": true,
    "chapInitiatorSecret": "cl9qxIm36DKyawxy",
    "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",
    "chapTargetUsername": "iJF4heBRT0TCwxyz",
    "chapUsername": "uh2aNCLSd6cNwxyz",
    "igroupName": "trident",
    "username": "vsadmin",
    "password": "secret",
    "defaults": {
          "spaceAllocation": "false",
          "encryption": "false",
          "qosPolicy": "standard"
    "labels":{"store": "san_store", "kubernetes-cluster": "prod-cluster-
1"},
    "region": "us east 1",
    "storage": [
            "labels":{"protection":"gold", "creditpoints":"40000"},
            "zone": "us east 1a",
            "defaults": {
                "spaceAllocation": "true",
                "encryption": "true",
                "adaptiveQosPolicy": "adaptive-extreme"
        },
            "labels":{"protection":"silver", "creditpoints":"20000"},
            "zone": "us east 1b",
            "defaults": {
                "spaceAllocation": "false",
                "encryption": "true",
                "qosPolicy": "premium"
            }
        },
            "labels":{"protection":"bronze", "creditpoints":"5000"},
            "zone": "us east 1c",
            "defaults": {
```

Aqui está um exemplo iSCSI para ontap-san-economy o driver:

```
{
    "version": 1,
    "storageDriverName": "ontap-san-economy",
    "managementLIF": "10.0.0.1",
    "svm": "svm iscsi eco",
    "useCHAP": true,
    "chapInitiatorSecret": "cl9qxIm36DKyawxy",
    "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",
    "chapTargetUsername": "iJF4heBRT0TCwxyz",
    "chapUsername": "uh2aNCLSd6cNwxyz",
    "igroupName": "trident",
    "username": "vsadmin",
    "password": "secret",
    "defaults": {
          "spaceAllocation": "false",
          "encryption": "false"
    },
    "labels":{"store":"san economy store"},
    "region": "us east 1",
    "storage": [
        {
            "labels":{"app":"oracledb", "cost":"30"},
            "zone":"us east 1a",
            "defaults": {
                "spaceAllocation": "true",
                "encryption": "true"
            }
        },
        {
            "labels": { "app": "postgresdb", "cost": "20"},
            "zone":"us east 1b",
            "defaults": {
                "spaceAllocation": "false",
                "encryption": "true"
            }
```

Mapeie os backends para StorageClasses

As seguintes definições do StorageClass referem-se aos pools de armazenamento virtual acima. Usando o parameters.selector campo, cada StorageClass chama qual(s) pool(s) virtual(s) pode(m) ser(ão) usado(s) para hospedar um volume. O volume terá os aspetos definidos no pool virtual escolhido.

- O primeiro StorageClass) (protection-gold`será mapeado para o primeiro e segundo pool de armazenamento virtual `ontap-nas-flexgroup no back-end e o primeiro pool de armazenamento virtual ontap-san no back-end. Estas são as únicas piscinas que oferecem proteção de nível de ouro.
- O segundo StorageClass) (protection-not-gold`será mapeado para o terceiro, quarto pool de armazenamento virtual no `ontap-nas-flexgroup back-end e o segundo, terceiro pool de armazenamento virtual ontap-san no back-end. Estas são as únicas piscinas que oferecem um nível de proteção diferente do ouro.
- O terceiro StorageClass) (app-mysqldb`será mapeado para o quarto pool de armazenamento virtual no `ontap-nas back-end e o terceiro pool de armazenamento virtual ontap-san-economy no back-end. Estes são os únicos pools que oferecem configuração de pool de armazenamento para o aplicativo do tipo mysqldb.
- O quarto StorageClass) (protection-silver-creditpoints-20k`será mapeado para o terceiro pool de armazenamento virtual no `ontap-nas-flexgroup back-end e o segundo pool de armazenamento virtual ontap-san no back-end. Estas são as únicas piscinas que oferecem proteção de nível dourado em 20000 pontos de crédito.
- O quinto StorageClass) (creditpoints-5k`será mapeado para o segundo pool de armazenamento virtual `ontap-nas-economy no back-end e o terceiro pool de armazenamento virtual ontap-san no back-end. Estas são as únicas ofertas de pool em 5000 pontos de crédito.

O Astra Trident decidirá qual pool de storage virtual está selecionado e garantirá que o requisito de storage seja atendido.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: protection-gold
provisioner: netapp.io/trident
parameters:
  selector: "protection=gold"
  fsType: "ext4"
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: protection-not-gold
provisioner: netapp.io/trident
parameters:
  selector: "protection!=gold"
  fsType: "ext4"
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: app-mysqldb
provisioner: netapp.io/trident
parameters:
  selector: "app=mysqldb"
  fsType: "ext4"
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: protection-silver-creditpoints-20k
provisioner: netapp.io/trident
parameters:
  selector: "protection=silver; creditpoints=20000"
  fsType: "ext4"
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: creditpoints-5k
provisioner: netapp.io/trident
parameters:
  selector: "creditpoints=5000"
  fsType: "ext4"
```

Configurar um back-end do ONTAP nas

Saiba mais sobre como configurar um back-end ONTAP com drivers nas ONTAP e Cloud Volumes ONTAP.

- "Preparação"
- "Configuração e exemplos"

Os clientes precisam usar ontap-nas o driver para workloads de produção que exigem proteção de dados, recuperação de desastres e mobilidade. O Astra Control oferece proteção aprimorada, recuperação de desastres e mobilidade para volumes criados com o ontap-nas motorista. `ontap-nas-economy`O driver deve ser usado apenas em casos de uso limitados em que o uso antecipado de volume seja muito maior do que o compatível com o ONTAP, sem requisitos antecipados de proteção de dados, recuperação de desastres ou mobilidade (movimentação de volumes entre clusters do Kubernetes).

Permissões do usuário

O Astra Trident espera ser executado como administrador da ONTAP ou SVM, normalmente usando o admin usuário do cluster ou um vsadmin usuário SVM, ou um usuário com um nome diferente que tenha a mesma função. Para implantações do Amazon FSX for NetApp ONTAP, o Astra Trident espera ser executado como administrador do ONTAP ou SVM, usando o usuário do cluster fsxadmin ou um vsadmin usuário SVM, ou um usuário com um nome diferente que tenha a mesma função. O fsxadmin usuário é um substituto limitado para o usuário administrador do cluster.

Se você usar o limitAggregateUsage parâmetro, as permissões de administrador do cluster serão necessárias. Ao usar o Amazon FSX for NetApp ONTAP com Astra Trident, o limitAggregateUsage parâmetro não funcionará com as vsadmin contas de usuário e fsxadmin. A operação de configuração falhará se você especificar este parâmetro.

Embora seja possível criar uma função mais restritiva no ONTAP que um driver Trident pode usar, não recomendamos. A maioria das novas versões do Trident chamarão APIs adicionais que teriam que ser contabilizadas, tornando as atualizações difíceis e suscetíveis a erros.

Prepare-se para configurar um back-end com drivers nas ONTAP

Saiba mais sobre como se preparar para configurar um back-end ONTAP com drivers NAS ONTAP. Para todos os back-ends ONTAP, o Astra Trident requer pelo menos um agregado atribuído ao SVM.

Para todos os back-ends ONTAP, o Astra Trident requer pelo menos um agregado atribuído ao SVM.

Lembre-se de que você também pode executar mais de um driver e criar classes de armazenamento que apontam para um ou outro. Por exemplo, você pode configurar uma classe Gold que usa o ontap-nas driver e uma classe Bronze que usa o ontap-nas-economy um.

Todos os seus nós de trabalho do Kubernetes precisam ter as ferramentas NFS apropriadas instaladas. "aqui"Consulte para obter mais detalhes.

Autenticação

O Astra Trident oferece dois modos de autenticação no back-end do ONTAP.

 Baseado em credenciais: O nome de usuário e senha para um usuário do ONTAP com as permissões necessárias. Recomenda-se a utilização de uma função de início de sessão de segurança predefinida, como admin ou vsadmin para garantir a máxima compatibilidade com as versões do ONTAP.

 Baseado em certificado: O Astra Trident também pode se comunicar com um cluster ONTAP usando um certificado instalado no back-end. Aqui, a definição de back-end deve conter valores codificados em Base64 do certificado de cliente, chave e certificado de CA confiável, se usado (recomendado).

Você pode atualizar os backends existentes para mover entre métodos baseados em credenciais e baseados em certificado. No entanto, apenas um método de autenticação é suportado por vez. Para alternar para um método de autenticação diferente, você deve remover o método existente da configuração de back-end.

Se você tentar fornecer **credenciais e certificados**, a criação de back-end falhará com um erro que mais de um método de autenticação foi fornecido no arquivo de configuração.

Ative a autenticação baseada em credenciais

O Astra Trident requer as credenciais para um administrador com escopo SVM/cluster para se comunicar com o back-end do ONTAP. Recomenda-se a utilização de funções padrão predefinidas, como admin ou vsadmin. Isso garante compatibilidade direta com futuras versões do ONTAP que podem expor APIs de recursos a serem usadas por futuras versões do Astra Trident. Uma função de login de segurança personalizada pode ser criada e usada com o Astra Trident, mas não é recomendada.

Uma definição de backend de exemplo será assim:

```
"version": 1,
"backendName": "ExampleBackend",
"storageDriverName": "ontap-nas",
"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.2",
"svm": "svm_nfs",
"username": "vsadmin",
"password": "secret"
}
```

Tenha em mente que a definição de back-end é o único lugar onde as credenciais são armazenadas em texto simples. Depois que o back-end é criado, os nomes de usuário/senhas são codificados com Base64 e armazenados como segredos do Kubernetes. A criação/updation de um backend é a única etapa que requer conhecimento das credenciais. Como tal, é uma operação somente de administrador, a ser realizada pelo administrador do Kubernetes/storage.

Ativar autenticação baseada em certificado

Backends novos e existentes podem usar um certificado e se comunicar com o back-end do ONTAP. Três parâmetros são necessários na definição de backend.

- ClientCertificate: Valor codificado base64 do certificado do cliente.
- ClientPrivateKey: Valor codificado em base64 da chave privada associada.
- TrustedCACertificate: Valor codificado base64 do certificado CA confiável. Se estiver usando uma CA confiável, esse parâmetro deve ser fornecido. Isso pode ser ignorado se nenhuma CA confiável for usada.

Um fluxo de trabalho típico envolve as etapas a seguir.

Passos

1. Gerar um certificado e chave de cliente. Ao gerar, defina Nome Comum (CN) para o usuário ONTAP para autenticar como.

```
openssl req -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key -out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=vsadmin"
```

2. Adicionar certificado de CA confiável ao cluster do ONTAP. Isso pode já ser Tratado pelo administrador do armazenamento. Ignore se nenhuma CA confiável for usada.

```
security certificate install -type server -cert-name <trusted-ca-cert-
name> -vserver <vserver-name>
ssl modify -vserver <vserver-name> -server-enabled true -client-enabled
true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca
<cert-authority>
```

3. Instale o certificado e a chave do cliente (a partir do passo 1) no cluster do ONTAP.

```
security certificate install -type client-ca -cert-name <certificate-
name> -vserver <vserver-name>
security ssl modify -vserver <vserver-name> -client-enabled true
```

Confirme se a função de login de segurança do ONTAP suporta cert o método de autenticação.

```
security login create -user-or-group-name vsadmin -application ontapi -authentication-method cert -vserver <vserver-name> security login create -user-or-group-name vsadmin -application http -authentication-method cert -vserver <vserver-name>
```

5. Teste a autenticação usando certificado gerado. Substitua o ONTAP Management LIF> e o <vserver name> por IP de LIF de gerenciamento e nome da SVM. Você deve garantir que o LIF tenha sua política de serviço definida como default-data-management.

```
curl -X POST -Lk https://<ONTAP-Management-
LIF>/servlets/netapp.servlets.admin.XMLrequest_filer --key k8senv.key
--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp
xmlns="http://www.netapp.com/filer/admin" version="1.21"
vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>'
```

6. Codificar certificado, chave e certificado CA confiável com Base64.

```
base64 -w 0 k8senv.pem >> cert_base64
base64 -w 0 k8senv.key >> key_base64
base64 -w 0 trustedca.pem >> trustedca_base64
```

7. Crie backend usando os valores obtidos na etapa anterior.

```
cat cert-backend-updated.json
"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "NasBackend",
"managementLIF": "1.2.3.4",
"dataLIF": "1.2.3.8",
"svm": "vserver test",
"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",
"clientPrivateKey": "LSOtFaKE...OVaLuESOtLSOK",
"storagePrefix": "myPrefix "
#Update backend with tridentctl
tridentctl update backend NasBackend -f cert-backend-updated.json -n
trident
+-----
+----+
  NAME | STORAGE DRIVER |
                              UUID
STATE | VOLUMES |
+----
+----+
online | 9 |
+----
```

Atualizar métodos de autenticação ou girar credenciais

Você pode atualizar um back-end existente para usar um método de autenticação diferente ou para girar suas credenciais. Isso funciona de ambas as maneiras: Backends que fazem uso de nome de usuário / senha podem ser atualizados para usar certificados; backends que utilizam certificados podem ser atualizados para nome de usuário / senha com base. Para fazer isso, você deve remover o método de autenticação existente e adicionar o novo método de autenticação. Em seguida, use o arquivo backend.json atualizado contendo os parâmetros necessários para executar tridentctl backend update.

```
cat cert-backend-updated.json
{
"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "NasBackend",
"managementLIF": "1.2.3.4",
"dataLIF": "1.2.3.8",
"svm": "vserver test",
"username": "vsadmin",
"password": "secret",
"storagePrefix": "myPrefix "
#Update backend with tridentctl
tridentctl update backend NasBackend -f cert-backend-updated.json -n
trident
+-----
+----+
| NAME | STORAGE DRIVER |
                                 UUID
STATE | VOLUMES |
+----
+----+
| NasBackend | ontap-nas | 98e19b74-aec7-4a3d-8dcf-128e5033b214 |
+----
+----+
```


Ao girar senhas, o administrador de armazenamento deve primeiro atualizar a senha do usuário no ONTAP. Isso é seguido por uma atualização de back-end. Ao girar certificados, vários certificados podem ser adicionados ao usuário. O back-end é então atualizado para usar o novo certificado, seguindo o qual o certificado antigo pode ser excluído do cluster do ONTAP.

A atualização de um back-end não interrompe o acesso a volumes que já foram criados, nem afeta as conexões de volume feitas depois. Uma atualização de back-end bem-sucedida indica que o Astra Trident pode se comunicar com o back-end do ONTAP e lidar com operações de volume futuras.

Gerenciar políticas de exportação de NFS

O Astra Trident usa políticas de exportação de NFS para controlar o acesso aos volumes provisionados.

O Astra Trident oferece duas opções ao trabalhar com políticas de exportação:

 O Astra Trident pode gerenciar dinamicamente a própria política de exportação; nesse modo de operação, o administrador de armazenamento especifica uma lista de blocos CIDR que representam endereços IP admissíveis. O Astra Trident adiciona IPs de nós que se enquadram nesses intervalos à política de exportação automaticamente. Como alternativa, quando nenhum CIDR é especificado, qualquer IP unicast de escopo global encontrado nos nós será adicionado à política de exportação. Os administradores de storage podem criar uma política de exportação e adicionar regras manualmente.
 O Astra Trident usa a política de exportação padrão, a menos que um nome de política de exportação diferente seja especificado na configuração.

Gerencie dinamicamente políticas de exportação

A versão 20,04 do CSI Trident oferece a capacidade de gerenciar dinamicamente políticas de exportação para backends ONTAP. Isso fornece ao administrador de armazenamento a capacidade de especificar um espaço de endereço permitido para IPs de nó de trabalho, em vez de definir regras explícitas manualmente. Ele simplifica muito o gerenciamento de políticas de exportação. As modificações na política de exportação não exigem mais intervenção manual no cluster de storage. Além disso, isso ajuda a restringir o acesso ao cluster de armazenamento somente aos nós de trabalho que têm IPs no intervalo especificado, suportando um gerenciamento automatizado e refinado.

O gerenciamento dinâmico das políticas de exportação está disponível apenas para o CSI Trident. É importante garantir que os nós de trabalho não estejam sendo repartidos.

Exemplo

Há duas opções de configuração que devem ser usadas. Aqui está um exemplo de definição de back-end:

```
"version": 1,
    "storageDriverName": "ontap-nas",
    "backendName": "ontap_nas_auto_export,
    "managementLIF": "192.168.0.135",
    "svm": "svm1",
    "username": "vsadmin",
    "password": "FaKePaSsWoRd",
    "autoExportCIDRs": ["192.168.0.0/24"],
    "autoExportPolicy": true
}
```


Ao usar esse recurso, você deve garantir que a junção raiz do SVM tenha uma política de exportação pré-ajustada com uma regra de exportação que permita o bloco CIDR do nó (como a política de exportação padrão). Siga sempre as práticas recomendadas pela NetApp para dedicar um SVM ao Astra Trident.

Aqui está uma explicação de como esse recurso funciona usando o exemplo acima:

- autoExportPolicy está definido como true. Isso indica que o Astra Trident criará uma política de exportação para svm1 o SVM e tratará da adição e exclusão de regras usando autoExportCIDRs blocos de endereço. Por exemplo, um back-end com UUID 403b5326-8482-40dB-96d0-d83fb3f4daec e autoExportPolicy definido como true cria uma política de exportação nomeada trident-403b5326-8482-40db-96d0-d83fb3f4daec no SVM.
- autoExportCIDRs contém uma lista de blocos de endereços. Este campo é opcional e o padrão é ["0,0.0,0/0", "::/0"]. Se não estiver definido, o Astra Trident adiciona todos os endereços unicast de escopo global encontrados nos nós de trabalho.

Neste exemplo, o 192.168.0.0/24 espaço de endereço é fornecido. Isso indica que os IPs de nós do Kubernetes que se enquadram nesse intervalo de endereços serão adicionados à política de exportação criada pelo Astra Trident. Quando o Astra Trident Registra um nó em que ele é executado, ele recupera os endereços IP do nó e os verifica em relação aos blocos de endereço fornecidos no autoExportCIDRs. depois de filtrar os IPs, o Astra Trident cria regras de política de exportação para os IPs de cliente que ele descobre, com uma regra para cada nó que identifica.

Você pode atualizar autoExportPolicy e autoExportCIDRs para backends depois de criá-los. Você pode anexar novos CIDR para um back-end que é gerenciado automaticamente ou excluir CIDR existentes. Tenha cuidado ao excluir CIDR para garantir que as conexões existentes não sejam descartadas. Você também pode optar por desativar autoExportPolicy um back-end e retornar a uma política de exportação criada manualmente. Isso exigirá a configuração do exportPolicy parâmetro em sua configuração de backend.

Depois que o Astra Trident criar ou atualizar um back-end, você pode verificar o back-end usando tridentctl ou o CRD correspondente tridentbackend:

```
./tridentctl get backends ontap nas auto export -n trident -o yaml
items:
- backendUUID: 403b5326-8482-40db-96d0-d83fb3f4daec
 config:
   aggregate: ""
   autoExportCIDRs:
   - 192.168.0.0/24
   autoExportPolicy: true
   backendName: ontap nas auto export
    chapInitiatorSecret: ""
    chapTargetInitiatorSecret: ""
    chapTargetUsername: ""
    chapUsername: ""
    dataLIF: 192.168.0.135
    debug: false
    debugTraceFlags: null
    defaults:
     encryption: "false"
      exportPolicy: <automatic>
      fileSystemType: ext4
```

Conforme os nós são adicionados a um cluster do Kubernetes e registrados na controladora Astra Trident, as políticas de exportação dos back-ends existentes são atualizadas (desde que elas estejam no intervalo de endereços especificado autoExportCIDRs no back-end).

Quando um nó é removido, o Astra Trident verifica todos os back-ends on-line para remover a regra de acesso do nó. Ao remover esse IP de nó das políticas de exportação de backends gerenciados, o Astra Trident impede montagens fraudulentas, a menos que esse IP seja reutilizado por um novo nó no cluster.

Para backends existentes anteriormente, a atualização do back-end com tridentctl update backend garantirá que o Astra Trident gerencie as políticas de exportação automaticamente. Isso criará uma nova política de exportação nomeada após o UUID do back-end e os volumes presentes no back-end usarão a política de exportação recém-criada quando forem montados novamente.

A exclusão de um back-end com políticas de exportação gerenciadas automaticamente excluirá a política de exportação criada dinamicamente. Se o backend for recriado, ele será Tratado como um novo backend e resultará na criação de uma nova política de exportação.

Se o endereço IP de um nó ativo for atualizado, será necessário reiniciar o pod Astra Trident no nó. Em seguida, o Astra Trident atualizará a política de exportação para backends que ele conseguir refletir essa alteração de IP.

Exemplos e opções de configuração do ONTAP nas

Saiba mais sobre como criar e usar drivers NAS ONTAP com sua instalação do Astra Trident. Esta seção fornece exemplos de configuração de back-end e detalhes sobre como mapear backends para StorageClasses.

Opções de configuração de back-end

Consulte a tabela a seguir para obter as opções de configuração de back-end:

Parâmetro	Descrição	Padrão
version		Sempre 1
storageDriverName	Nome do controlador de armazenamento	"ONTAP-nas", "ONTAP-nas- economy", "ONTAP-nas- FlexGroup", "ONTAP-san", "ONTAP-san-economy"
backendName	Nome personalizado ou back-end de storage	Nome do driver
managementLIF	Endereço IP de um cluster ou LIF de gerenciamento de SVM para switchover MetroCluster otimizado, você precisa especificar um LIF de gerenciamento de SVM.	"10,0.0,1", "[2001:1234:abcd::fefe]"
dataLIF	Endereço IP do protocolo LIF. Use suportes quadrados para IPv6. Não pode ser atualizado depois de configurá-lo	Derivado do SVM, a menos que especificado
autoExportPolicy	Ativar criação e atualização automática de políticas de exportação [Boolean]	falso
autoExportCIDRs	Lista de CIDR para filtrar IPs de nós do Kubernetes em relação ao autoExportPolicy quando o está ativado	["0,0.0,0/0", "::/0"]»
labels	Conjunto de rótulos arbitrários formatados em JSON para aplicar em volumes	""

Parâmetro	Descrição	Padrão	
clientCertificate	Valor codificado em base64 do certificado do cliente. Usado para autenticação baseada em certificado	****	
clientPrivateKey	Valor codificado em base64 da chave privada do cliente. Usado para autenticação baseada em certificado	1111	
trustedCACertificate	Valor codificado em base64 do certificado CA confiável. Opcional. Usado para autenticação baseada em certificado	1111	
username	Nome de usuário para se conetar ao cluster/SVM. Usado para autenticação baseada em credenciais		
password	Senha para se conectar ao cluster/SVM. Usado para autenticação baseada em credenciais		
svm	Máquina virtual de armazenamento para usar	Derivado se uma SVM managementLIF for especificada	
igroupName	Nome do grupo para volumes SAN a serem usados	"Trident- <backend-uuid>"</backend-uuid>	
storagePrefix	Prefixo usado ao provisionar novos volumes na SVM. Não pode ser atualizado depois de configurá-lo	"Trident"	
limitAggregateUsage	Falha no provisionamento se o uso estiver acima dessa porcentagem. Não se aplica ao Amazon FSX for ONTAP	"" (não aplicado por padrão)	
limitVolumeSize	Falha no provisionamento se o tamanho do volume solicitado estiver acima desse valor.	"" (não aplicado por padrão)	
lunsPerFlexvol	Máximo de LUNs por FlexVol, tem de estar no intervalo [50, 200]	"100"	
debugTraceFlags	Debug flags para usar ao solucionar problemas. Por exemplo, "api":false, "método":true"	nulo	
nfsMountOptions	Lista separada por vírgulas de opções de montagem NFS	""	
qtreesPerFlexvol	Qtrees máximos por FlexVol, têm de estar no intervalo [50, 300]	"200"	

Parâmetro	Descrição	Padrão
useREST	Parâmetro booleano para usar APIs REST do ONTAP. Pré- visualização técnica não suportada com o MetroCluster.	falso

Considerações sobre o <code>useREST</code>

- useREST é fornecido como uma **prévia técnica** recomendada para ambientes de teste e não para cargas de trabalho de produção. Quando definido como true, o Astra Trident usará as APIS REST do ONTAP para se comunicar com o back-end. Esse recurso requer o ONTAP 9.10 e posterior. Além disso, a função de login do ONTAP usada deve ter acesso ao ontap aplicativo. Isso é satisfeito com as funções e cluster-admin predefinidas vsadmin.
- userest Não é suportado com MetroCluster.

Para se comunicar com o cluster ONTAP, você deve fornecer os parâmetros de autenticação. Esse pode ser o nome de usuário/senha para um login de segurança ou um certificado instalado.

Se você estiver usando um back-end do Amazon FSX for NetApp ONTAP, não especifique o limitAggregateUsage parâmetro. fsxadmin`As funções e `vsadmin fornecidas pelo Amazon FSX para NetApp ONTAP não contêm as permissões de acesso necessárias para recuperar o uso agregado e limitá-lo por meio do Astra Trident.

Não use debugTraceFlags a menos que você esteja solucionando problemas e exija um despejo de log detalhado.

Ao criar um backend, lembre-se de que o dataLIF e storagePrefix não pode ser modificado após a criação. Para atualizar esses parâmetros, você precisará criar um novo backend.

Um nome de domínio totalmente qualificado (FQDN) pode ser especificado para a managementLIF opção. Um FQDN também pode ser especificado para a dataLIF opção, caso em que o FQDN será usado para as operações de montagem NFS. Dessa forma, você pode criar um DNS de round-robin para balanceamento de carga em vários LIFs de dados.

`managementLIF` Para todos os drivers ONTAP também pode ser definido como endereços IPv6. Certifique-se de instalar o Astra Trident com o `--use-ipv6` sinalizador. Deve-se ter cuidado para definir o `managementLIF` endereço IPv6 entre parênteses retos.

Ao usar endereços IPv6, certifique-se de managementLIF que e dataLIF (se incluídos na definição do backend) estejam definidos entre colchetes, como [28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555]. Se dataLIF não for fornecido, o Astra Trident irá buscar os LIFs de dados do IPv6 do SVM.

Usando as autoExportPolicy opções e autoExportCIDRs, o CSI Trident pode gerenciar políticas de exportação automaticamente. Isso é compatível com todos os drivers ONTAP-nas-*.

Para o ontap-nas-economy driver, a limitVolumeSize opção também restringirá o tamanho máximo dos volumes que gerencia para qtrees e LUNs, e a qtreesPerFlexvol opção permite personalizar o número máximo de qtrees por FlexVol.

O nfsMountOptions parâmetro pode ser usado para especificar opções de montagem. As opções de montagem para volumes persistentes do Kubernetes normalmente são especificadas em classes de storage, mas se nenhuma opção de montagem for especificada em uma classe de storage, o Astra Trident voltará a usar as opções de montagem especificadas no arquivo de configuração do back-end de storage. Se nenhuma opção de montagem for especificada na classe de storage ou no arquivo de configuração, o Astra Trident não definirá nenhuma opção de montagem em um volume persistente associado.

O Astra Trident define rótulos de provisionamento no campo "Comentários" de todos os volumes criados usando(ontap-nas e(ontap-nas-flexgroup. Com base no driver usado, os comentários são definidos no FlexVol (ontap-nas) ou no FlexGroup (ontap-nas-flexgroup). O Astra Trident copiará todas as etiquetas presentes em um pool de storage para o volume de storage no momento em que ele for provisionado. Os administradores de storage podem definir rótulos por pool de storage e agrupar todos os volumes criados em um pool de storage. Isso fornece uma maneira conveniente de diferenciar volumes com base em um conjunto de rótulos personalizáveis que são fornecidos na configuração de back-end.

Opções de configuração de back-end para volumes de provisionamento

Você pode controlar como cada volume é provisionado por padrão usando essas opções em uma seção especial da configuração. Para obter um exemplo, consulte os exemplos de configuração abaixo.

Parâmetro	Descrição	Padrão
spaceAllocation	Alocação de espaço para LUNs	"verdadeiro"
spaceReserve	Modo de reserva de espaço; "nenhum" (fino) ou "volume" (grosso)	"nenhum"
snapshotPolicy	Política de instantâneos a utilizar	"nenhum"
qosPolicy	Grupo de políticas de QoS a atribuir aos volumes criados. Escolha uma das qosPolicy ou adaptiveQosPolicy por pool de armazenamento/backend	""
adaptiveQosPolicy	Grupo de políticas de QoS adaptável a atribuir para volumes criados. Escolha uma das qosPolicy ou adaptiveQosPolicy por pool de armazenamento/backend. Não suportado pela ONTAP-nas- Economy.	
snapshotReserve	Porcentagem de volume reservado para snapshots "0"	Se snapshotPolicy é "nenhum", então ""
splitOnClone	Divida um clone de seu pai na criação	"falso"

Parâmetro	Descrição	Padrão
encryption	Ative a criptografia de volume do NetApp (NVE) no novo volume; o padrão é false. O NVE deve ser licenciado e habilitado no cluster para usar essa opção. Se o NAE estiver ativado no back-end, qualquer volume provisionado no Astra Trident será o NAE ativado. Para obter mais informações, consulte: "Como o Astra Trident funciona com NVE e NAE".	"falso"
securityStyle	Estilo de segurança para novos volumes	"unix"
tieringPolicy	Política de disposição em camadas para usar "nenhuma"	"Somente snapshot" para configuração pré-ONTAP 9.5 SVM- DR
UnixPermissions	Modo para novos volumes	"777"
Snapshotdir	Controla a visibilidade . snapshot do diretório	"falso"
Política de exportação	Política de exportação a utilizar	"padrão"
Estilo de segurança	Estilo de segurança para novos volumes	"unix"

O uso de grupos de política de QoS com o Astra Trident requer o ONTAP 9.8 ou posterior. Recomenda-se usar um grupo de políticas QoS não compartilhado e garantir que o grupo de políticas seja aplicado individualmente a cada componente. Um grupo de política de QoS compartilhado aplicará o limite máximo da taxa de transferência total de todos os workloads.

Aqui está um exemplo com padrões definidos:

```
{
  "version": 1,
  "storageDriverName": "ontap-nas",
  "backendName": "customBackendName",
  "managementLIF": "10.0.0.1",
  "dataLIF": "10.0.0.2",
  "labels": {"k8scluster": "dev1", "backend": "dev1-nasbackend"},
  "svm": "trident svm",
  "username": "cluster-admin",
  "password": "password",
  "limitAggregateUsage": "80%",
  "limitVolumeSize": "50Gi",
  "nfsMountOptions": "nfsvers=4",
  "debugTraceFlags": {"api":false, "method":true},
  "defaults": {
    "spaceReserve": "volume",
    "gosPolicy": "premium",
    "exportPolicy": "myk8scluster",
    "snapshotPolicy": "default",
    "snapshotReserve": "10"
  }
}
```

Para ontap-nas e ontap-nas-flexgroups, o Astra Trident agora usa um novo cálculo para garantir que o FlexVol seja dimensionado corretamente com a porcentagem de snapshotServe e PVC. Quando o usuário solicita um PVC, o Astra Trident cria o FlexVol original com mais espaço usando o novo cálculo. Esse cálculo garante que o usuário receba o espaço gravável que solicitou no PVC, e não menor espaço do que o que solicitou. Antes de v21,07, quando o usuário solicita um PVC (por exemplo, 5GiB), com o snapshotServe a 50 por cento, eles recebem apenas 2,5GiBMB de espaço gravável. Isso ocorre porque o que o usuário solicitou é todo o volume e snapshotReserve é uma porcentagem disso. Com o Trident 21,07, o que o usuário solicita é o espaço gravável e o Astra Trident define o snapshotReserve número como a porcentagem de todo o volume. Isto não se aplica ontap-nas-economy ao . Veja o exemplo a seguir para ver como isso funciona:

O cálculo é o seguinte:

```
Total volume size = (PVC requested size) / (1 - (snapshotReserve percentage) / 100)
```

Para snapshotServe de 50%, e a solicitação de PVC de 5GiB, o volume total é de 2/.5 10GiB e o tamanho disponível é de 5GiB, o que o usuário solicitou na solicitação de PVC. O volume show comando deve mostrar resultados semelhantes a este exemplo:

```
server
          Volume
                        Aggregate
                                                  Type
                                                                    Available Used%
                   _pvc_89f1c156_3801_4de4_9f9d_034d54c395f4
                                      online
                                                  RW
                                                                       5.00GB
                                                                                  0%
                   _pvc_e8372153_9ad9_474a_951a_08ae15e1c0ba
                                                                      511.8MB
                                      online
                                                  RW
                                                               1GB
2 entries were displayed.
```

Os back-ends existentes de instalações anteriores provisionarão volumes conforme explicado acima ao atualizar o Astra Trident. Para volumes que você criou antes da atualização, você deve redimensionar seus volumes para que a alteração seja observada. Por exemplo, um PVC de 2GiB mm com snapshotReserve=50 anterior resultou em um volume que fornece 1GiB GB de espaço gravável. Redimensionar o volume para 3GiB, por exemplo, fornece ao aplicativo 3GiBMB de espaço gravável em um volume de 6 GiB.

Exemplos mínimos de configuração

Os exemplos a seguir mostram configurações básicas que deixam a maioria dos parâmetros padrão. Esta é a maneira mais fácil de definir um backend.

Se você estiver usando o Amazon FSX no NetApp ONTAP com Trident, a recomendação é especificar nomes DNS para LIFs em vez de endereços IP.

ontap-nas driver com autenticação baseada em certificado

Este é um exemplo de configuração de back-end mínimo. clientCertificate, clientPrivateKey E trustedCACertificate (opcional, se estiver usando CA confiável) são preenchidos backend.json e recebem os valores codificados em base64 do certificado do cliente, da chave privada e do certificado de CA confiável, respetivamente.

```
"version": 1,
"backendName": "DefaultNASBackend",
"storageDriverName": "ontap-nas",
"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.15",
"svm": "nfs_svm",
"clientCertificate": "ZXR0ZXJwYXB...ICMgJ3BhcGVyc2",
"clientPrivateKey": "vciwKIyAgZG...0cnksIGRlc2NyaX",
"trustedCACertificate": "zcyBbaG...b3Igb3duIGNsYXNz",
"storagePrefix": "myPrefix_"
}
```

ontap-nas driver com política de exportação automática

Este exemplo mostra como você pode instruir o Astra Trident a usar políticas de exportação dinâmicas para criar e gerenciar a política de exportação automaticamente. Isso funciona da mesma forma para os ontapnas-economy drivers e ontapnas-flexgroup.

```
"version": 1,
    "storageDriverName": "ontap-nas",
    "managementLIF": "10.0.0.1",
    "dataLIF": "10.0.0.2",
    "svm": "svm_nfs",
    "labels": {"k8scluster": "test-cluster-east-la", "backend": "test-nasbackend"},
    "autoExportPolicy": true,
    "autoExportCIDRs": ["10.0.0.0/24"],
    "username": "admin",
    "password": "secret",
    "nfsMountOptions": "nfsvers=4",
}
```

ontap-nas-flexgroup condutor

```
"version": 1,
    "storageDriverName": "ontap-nas-flexgroup",
    "managementLIF": "10.0.0.1",
    "dataLIF": "10.0.0.2",
    "labels": {"k8scluster": "test-cluster-east-1b", "backend": "test-ontap-cluster"},
    "svm": "svm_nfs",
    "username": "vsadmin",
    "password": "secret",
}
```

ontap-nas Motorista com IPv6

```
"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "nas_ipv6_backend",
"managementLIF": "[5c5d:5edf:8f:7657:bef8:109b:1b41:d491]",
"labels": {"k8scluster": "test-cluster-east-la", "backend": "testl-ontap-ipv6"},
"svm": "nas_ipv6_svm",
"username": "vsadmin",
"password": "netapp123"
}
```

```
"version": 1,
   "storageDriverName": "ontap-nas-economy",
   "managementLIF": "10.0.0.1",
   "dataLIF": "10.0.0.2",
   "svm": "svm_nfs",
   "username": "vsadmin",
   "password": "secret"
}
```

Exemplos de backends com pools de armazenamento virtual

No arquivo de definição de back-end de exemplo mostrado abaixo, padrões específicos são definidos para todos os pools de armazenamento, como spaceReserve em nenhum, spaceAllocation em falso e encryption em falso. Os pools de armazenamento virtual são definidos na seção armazenamento.

Neste exemplo, alguns dos conjuntos de armazenamento definem os seus próprios spaceReserve spaceAllocation valores, e encryption, e alguns conjuntos substituem os valores predefinidos acima.

ontap-nas condutor

```
{
    "version": 1,
    "storageDriverName": "ontap-nas",
    "managementLIF": "10.0.0.1",
    "dataLIF": "10.0.0.2",
    "svm": "svm nfs",
    "username": "admin",
    "password": "secret",
    "nfsMountOptions": "nfsvers=4",
    "defaults": {
          "spaceReserve": "none",
          "encryption": "false",
          "qosPolicy": "standard"
    "labels":{"store":"nas store", "k8scluster": "prod-cluster-1"},
    "region": "us east 1",
    "storage": [
            "labels":{"app":"msoffice", "cost":"100"},
            "zone": "us east 1a",
            "defaults": {
```

```
"spaceReserve": "volume",
                "encryption": "true",
                "unixPermissions": "0755",
                "adaptiveQosPolicy": "adaptive-premium"
            }
        },
        {
            "labels":{"app":"slack", "cost":"75"},
            "zone":"us east 1b",
            "defaults": {
                "spaceReserve": "none",
                "encryption": "true",
                "unixPermissions": "0755"
        },
            "labels":{"app":"wordpress", "cost":"50"},
            "zone":"us east 1c",
            "defaults": {
                "spaceReserve": "none",
                "encryption": "true",
                "unixPermissions": "0775"
            }
        },
            "labels":{"app":"mysqldb", "cost":"25"},
            "zone": "us east 1d",
            "defaults": {
                "spaceReserve": "volume",
                "encryption": "false",
                "unixPermissions": "0775"
            }
       }
   ]
}
```

ontap-nas-flexgroup condutor

```
"version": 1,
"storageDriverName": "ontap-nas-flexgroup",
"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.2",
"svm": "svm_nfs",
"username": "vsadmin",
```

```
"password": "secret",
"defaults": {
      "spaceReserve": "none",
      "encryption": "false"
},
"labels":{"store":"flexgroup store", "k8scluster": "prod-cluster-1"},
"region": "us east 1",
"storage": [
        "labels":{"protection":"gold", "creditpoints":"50000"},
        "zone": "us east 1a",
        "defaults": {
            "spaceReserve": "volume",
            "encryption": "true",
            "unixPermissions": "0755"
    },
        "labels":{"protection":"gold", "creditpoints":"30000"},
        "zone":"us east 1b",
        "defaults": {
            "spaceReserve": "none",
            "encryption": "true",
            "unixPermissions": "0755"
        }
    },
        "labels":{"protection":"silver", "creditpoints":"20000"},
        "zone": "us east 1c",
        "defaults": {
            "spaceReserve": "none",
            "encryption": "true",
            "unixPermissions": "0775"
    },
        "labels":{"protection":"bronze", "creditpoints":"10000"},
        "zone": "us east 1d",
        "defaults": {
            "spaceReserve": "volume",
            "encryption": "false",
            "unixPermissions": "0775"
        }
   }
]
```

}

ontap-nas-economy condutor

```
"version": 1,
"storageDriverName": "ontap-nas-economy",
"managementLIF": "10.0.0.1",
"dataLIF": "10.0.0.2",
"svm": "svm nfs",
"username": "vsadmin",
"password": "secret",
"defaults": {
      "spaceReserve": "none",
      "encryption": "false"
},
"labels":{"store":"nas economy store"},
"region": "us east 1",
"storage": [
    {
        "labels":{"department":"finance", "creditpoints":"6000"},
        "zone": "us east 1a",
        "defaults": {
            "spaceReserve": "volume",
            "encryption": "true",
            "unixPermissions": "0755"
    },
        "labels":{"department":"legal", "creditpoints":"5000"},
        "zone": "us east 1b",
        "defaults": {
            "spaceReserve": "none",
            "encryption": "true",
            "unixPermissions": "0755"
    },
        "labels": { "department": "engineering", "creditpoints": "3000" },
        "zone": "us east 1c",
        "defaults": {
            "spaceReserve": "none",
            "encryption": "true",
            "unixPermissions": "0775"
```

```
}
},
{
    "labels":{"department":"humanresource",

"creditpoints":"2000"},
    "zone":"us_east_ld",
    "defaults": {
        "spaceReserve": "volume",
        "encryption": "false",
        "unixPermissions": "0775"
     }
}
```

Mapeie os backends para StorageClasses

As seguintes definições do StorageClass referem-se aos pools de armazenamento virtual acima. Usando o parameters.selector campo, cada StorageClass chama qual(s) pool(s) virtual(s) pode(m) ser(ão) usado(s) para hospedar um volume. O volume terá os aspetos definidos no pool virtual escolhido.

- O primeiro StorageClass) (protection-gold`será mapeado para o primeiro e segundo pool de armazenamento virtual `ontap-nas-flexgroup no back-end e o primeiro pool de armazenamento virtual ontap-san no back-end. Estas são as únicas piscinas que oferecem proteção de nível de ouro.
- O segundo StorageClass) (protection-not-gold`será mapeado para o terceiro, quarto pool de armazenamento virtual no `ontap-nas-flexgroup back-end e o segundo, terceiro pool de armazenamento virtual ontap-san no back-end. Estas são as únicas piscinas que oferecem um nível de proteção diferente do ouro.
- O terceiro StorageClass) (app-mysqldb`será mapeado para o quarto pool de armazenamento virtual no `ontap-nas back-end e o terceiro pool de armazenamento virtual ontap-san-economy no back-end. Estes são os únicos pools que oferecem configuração de pool de armazenamento para o aplicativo do tipo mysqldb.
- O quarto StorageClass) (protection-silver-creditpoints-20k`será mapeado para o terceiro pool de armazenamento virtual no `ontap-nas-flexgroup back-end e o segundo pool de armazenamento virtual ontap-san no back-end. Estas são as únicas piscinas que oferecem proteção de nível dourado em 20000 pontos de crédito.
- O quinto StorageClass) (creditpoints-5k`será mapeado para o segundo pool de armazenamento virtual `ontap-nas-economy no back-end e o terceiro pool de armazenamento virtual ontap-san no back-end. Estas são as únicas ofertas de pool em 5000 pontos de crédito.

O Astra Trident decidirá qual pool de storage virtual está selecionado e garantirá que o requisito de storage seja atendido.

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: protection-gold
provisioner: netapp.io/trident
parameters:
  selector: "protection=gold"
  fsType: "ext4"
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: protection-not-gold
provisioner: netapp.io/trident
parameters:
  selector: "protection!=gold"
  fsType: "ext4"
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: app-mysqldb
provisioner: netapp.io/trident
parameters:
  selector: "app=mysqldb"
  fsType: "ext4"
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: protection-silver-creditpoints-20k
provisioner: netapp.io/trident
parameters:
  selector: "protection=silver; creditpoints=20000"
  fsType: "ext4"
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: creditpoints-5k
provisioner: netapp.io/trident
parameters:
  selector: "creditpoints=5000"
  fsType: "ext4"
```

Use o Astra Trident com o Amazon FSX para NetApp ONTAP

"Amazon FSX para NetApp ONTAP"O, é um serviço AWS totalmente gerenciado que permite que os clientes iniciem e executem sistemas de arquivos equipados com o sistema operacional de storage ONTAP da NetApp. O Amazon FSX for NetApp ONTAP permite que você aproveite os recursos, o desempenho e os recursos administrativos do NetApp com os quais você já conhece, ao mesmo tempo em que aproveita a simplicidade, a agilidade, a segurança e a escalabilidade do armazenamento de dados na AWS. O FSX suporta muitos dos recursos do sistema de arquivos e APIs de administração do ONTAP.

Um sistema de arquivos é o principal recurso do Amazon FSX, análogo a um cluster do ONTAP no local. Em cada SVM, você pode criar um ou vários volumes, que são contentores de dados que armazenam os arquivos e pastas em seu sistema de arquivos. Com o Amazon FSX for NetApp ONTAP, o Data ONTAP será fornecido como um sistema de arquivos gerenciado na nuvem. O novo tipo de sistema de arquivos é chamado de **NetApp ONTAP**.

Usando o Astra Trident com o Amazon FSX for NetApp ONTAP, você pode garantir que os clusters do Kubernetes executados no Amazon Elastic Kubernetes Service (EKS) provisionem volumes persistentes de bloco e arquivo com o respaldo do do ONTAP.

Criando seu sistema de arquivos do Amazon FSX for ONTAP

Os volumes criados nos sistemas de arquivos do Amazon FSX que têm backups automáticos ativados não podem ser excluídos pelo Trident. Para excluir PVCs, você precisa excluir manualmente o PV e o volume FSX for ONTAP.

Para evitar este problema:

- Não use Quick Create para criar o sistema de arquivos FSX for ONTAP. O fluxo de trabalho de criação rápida permite backups automáticos e não fornece uma opção de exclusão.
- Ao usar Standard Create, desative o backup automático. A desativação de backups automáticos permite que o Trident exclua com êxito um volume sem intervenção manual adicional.

■ Backup and maintenance - optional Daily automatic backup Info Amazon FSx can protect your data through daily backups Enabled Disabled

Saiba mais sobre o Astra Trident

Se você é novo no Astra Trident, familiarize-se usando os links fornecidos abaixo:

- "FAQs"
- "Requisitos para uso do Astra Trident"
- "Implante o Astra Trident"

- "Práticas recomendadas para configurar o ONTAP, o Cloud Volumes ONTAP e o Amazon FSX for NetApp ONTAP"
- "Integre o Astra Trident"
- "Configuração de back-end SAN ONTAP"
- "Configuração de back-end do ONTAP nas"

Saiba mais sobre os recursos do "aqui"driver .

O Amazon FSX para NetApp ONTAP usa "FabricPool" para gerenciar camadas de armazenamento. Ele permite armazenar dados em um nível, com base no acesso frequente aos dados.

O Astra Trident espera ser executado como um vsadmin usuário SVM ou como um usuário com um nome diferente que tenha a mesma função. O Amazon FSX for NetApp ONTAP tem um fsxadmin usuário que é uma substituição limitada do usuário do cluster do ONTAP admin. Não é recomendável usar o fsxadmin usuário, com o Trident, pois vsadmin o usuário do SVM tem acesso a mais funcionalidades do Astra Trident.

Drivers

Você pode integrar o Astra Trident ao Amazon FSX for NetApp ONTAP usando os seguintes drivers:

- ontap-san: Cada PV provisionado é um LUN dentro de seu próprio volume do Amazon FSX for NetApp ONTAP.
- ontap-san-economy: Cada PV provisionado é um LUN com um número configurável de LUNs por volume do Amazon FSX for NetApp ONTAP.
- ontap-nas: Cada PV provisionado é um volume completo do Amazon FSX for NetApp ONTAP.
- ontap-nas-economy: Cada PV provisionado é uma qtree, com um número configurável de qtrees por volume do Amazon FSX for NetApp ONTAP.
- ontap-nas-flexgroup: Cada PV provisionado é um volume completo do Amazon FSX for NetApp ONTAP FlexGroup.

Autenticação

O Astra Trident oferece dois modos de autenticação:

- Baseado em certificado: O Astra Trident se comunicará com o SVM em seu sistema de arquivos FSX usando um certificado instalado no seu SVM.
- Baseado em credenciais: Você pode usar o fsxadmin usuário para o sistema de arquivos ou o vsadmin usuário configurado para o SVM.

Recomendamos vivamente a utilização do vsadmin utilizador em vez do fsxadmin para configurar o back-end. O Astra Trident se comunicará com o sistema de arquivos FSX usando esse nome de usuário e senha.

Você pode atualizar os backends existentes para mover entre métodos baseados em credenciais e baseados em certificado. No entanto, apenas um método de autenticação é suportado por vez. Para alternar para um método de autenticação diferente, você deve remover o método existente da configuração de back-end.

Se você tentar fornecer **credenciais e certificados**, a criação de back-end falhará com um erro que mais de um método de autenticação foi fornecido no arquivo de configuração.

Para saber mais sobre autenticação, consulte estes links:

- "ONTAP nas"
- "San ONTAP"

Implante e configure o Astra Trident no EKS com o Amazon FSX for NetApp ONTAP

O que você vai precisar

- Um cluster do Amazon EKS existente ou um cluster do Kubernetes autogerenciado com kubectl o instalado.
- Um sistema de arquivos e uma máquina virtual de armazenamento (SVM) do Amazon FSX for NetApp ONTAP que pode ser acessado a partir dos nós de trabalho do seu cluster.
- Nós de trabalho preparados para "NFS e/ou iSCSI".

Certifique-se de seguir as etapas de preparação de nós necessárias para o Amazon Linux e "Imagens de máquinas da Amazon" Ubuntu (AMIS), dependendo do seu tipo de AMI EKS.

Para outros requisitos do Astra Trident, "aqui"consulte.

Passos

- 1. Implante o Astra Trident com um dos "métodos de implantação".
- 2. Configure o Astra Trident da seguinte forma:
 - a. Colete o nome DNS de LIF de gerenciamento do SVM. Por exemplo, usando a AWS CLI, localize a DNSName entrada em Endpoints → Management depois de executar o seguinte comando:

```
aws fsx describe-storage-virtual-machines --region < file system region>
```

3. Criar e instalar certificados para autenticação. Se você estiver usando um ontap-san backend, "aqui"consulte. Se você estiver usando um ontap-nas backend, "aqui"consulte.

Você pode fazer login no seu sistema de arquivos (por exemplo, para instalar certificados) usando SSH de qualquer lugar que possa chegar ao seu sistema de arquivos. Utilize o fsxadmin utilizador, a palavra-passe configurada quando criou o sistema de ficheiros e o nome DNS de gestão a partir `aws fsx describe-file-systems`do.

4. Crie um arquivo de back-end usando seus certificados e o nome DNS do seu LIF de gerenciamento, como mostrado na amostra abaixo:

Para obter informações sobre como criar backends, consulte estes links:

- "Configurar um back-end com drivers nas ONTAP"
- "Configure um back-end com drivers SAN ONTAP"

Não especifique dataLIF para os ontap-san drivers e ontap-san-economy para permitir que o Astra Trident use multipath.

O limitAggregateUsage parâmetro não funcionará com as vsadmin contas de utilizador e fsxadmin. A operação de configuração falhará se você especificar este parâmetro.

Após a implantação, execute as etapas para criar um "classe de storage, provisione um volume e monte o volume em um pod".

Encontre mais informações

- "Documentação do Amazon FSX para NetApp ONTAP"
- "Blog post no Amazon FSX for NetApp ONTAP"

Crie backends com kubectl

Um back-end define a relação entre o Astra Trident e um sistema de storage. Ele diz ao Astra Trident como se comunicar com esse sistema de storage e como o Astra Trident deve provisionar volumes a partir dele. Após a instalação do Astra Trident, a próxima etapa é criar um back-end. A TridentBackendConfig Definição de recursos personalizada (CRD) permite criar e gerenciar backends Trident diretamente por meio da interface do Kubernetes. Para fazer isso, use kubectl ou a ferramenta CLI equivalente para sua distribuição do Kubernetes.

TridentBackendConfig

TridentBackendConfig(tbc tbconfig,,tbackendconfig) É um CRD com namespaces e frontend que permite gerenciar backends Astra Trident usando kubectl`o. Agora, os administradores de storage e Kubernetes podem criar e gerenciar back-ends diretamente pela CLI do Kubernetes sem exigir um utilitário de linha de comando dedicado (`tridentctl).

Após a criação de TridentBackendConfig um objeto, acontece o seguinte:

- Um back-end é criado automaticamente pelo Astra Trident com base na configuração que você fornece. Isto é representado internamente como um TridentBackend (tbe, tridentbackend) CR.
- O TridentBackendConfig é exclusivamente vinculado a um TridentBackend que foi criado pelo Astra Trident.

Cada TridentBackendConfig um mantém um mapeamento um-para-um com um TridentBackend. o primeiro é a interface fornecida ao usuário para projetar e configurar backends; o último é como o Trident representa o objeto backend real.

TridentBackend Os CRS são criados automaticamente pelo Astra Trident. Você **não deve** modificá-los. Se você quiser fazer atualizações para backends, faça isso modificando o TridentBackendConfig objeto.

Veja o exemplo a seguir para o formato do TridentBackendConfig CR:

```
apiVersion: trident.netapp.io/v1
kind: TridentBackendConfig
metadata:
   name: backend-tbc-ontap-san
spec:
   version: 1
   backendName: ontap-san-backend
   storageDriverName: ontap-san
   managementLIF: 10.0.0.1
   dataLIF: 10.0.0.2
   svm: trident_svm
   credentials:
    name: backend-tbc-ontap-san-secret
```

Você também pode dar uma olhada nos exemplos "instalador do Trident" no diretório para configurações de exemplo para a plataforma/serviço de armazenamento desejado.

O spec utiliza parâmetros de configuração específicos do back-end. Neste exemplo, o backend usa o ontapsan driver de armazenamento e usa os parâmetros de configuração que são tabulados aqui. Para obter a lista de opções de configuração do driver de armazenamento desejado, consulte "informações de configuração de back-end para seu driver de armazenamento".

A spec seção também inclui credentials campos e deletionPolicy, que são recentemente introduzidos no TridentBackendConfig CR:

- credentials: Este parâmetro é um campo obrigatório e contém as credenciais usadas para autenticar com o sistema/serviço de armazenamento. Isso é definido como um segredo do Kubernetes criado pelo usuário. As credenciais não podem ser passadas em texto simples e resultarão em um erro.
- deletionPolicy: Este campo define o que deve acontecer quando o TridentBackendConfig é excluído. Pode tomar um dos dois valores possíveis:
 - ° delete: Isso resulta na exclusão do TridentBackendConfig CR e do back-end associado. Este é

o valor padrão.

º retain: Quando um TridentBackendConfig CR é excluído, a definição de back-end ainda estará presente e poderá ser gerenciada com tridentctl'o . Definir a política de exclusão para `retain permitir que os usuários façam o downgrade para uma versão anterior (anterior a 21,04) e mantenham os backends criados. O valor para este campo pode ser atualizado após a criação de um TridentBackendConfig.

O nome de um back-end é definido usando spec.backendName. Se não for especificado, o nome do backend é definido como o nome do TridentBackendConfig objeto (metadata.name). Recomenda-se definir explicitamente nomes de back-end usando 'spec.backendName'o.

Backends que foram criados com tridentctl não têm um objeto associado TridentBackendConfig. Você pode optar por gerenciar esses backends kubectl criando um TridentBackendConfig CR. Deve-se ter cuidado para especificar parâmetros de configuração idênticos (como spec.backendName,, spec.storagePrefix, spec.storageDriverName e assim por diante). O Astra Trident vinculará automaticamente o recém-criado TridentBackendConfig ao back-end pré-existente.

Visão geral dos passos

Para criar um novo back-end usando `kubectl`o , você deve fazer o seguinte:

- 1. Criar um "Segredo do Kubernetes". o segredo contém as credenciais que o Astra Trident precisa para se comunicar com o cluster/serviço de storage.
- 2. Crie TridentBackendConfig um objeto. Isso contém detalhes sobre o cluster/serviço de armazenamento e faz referência ao segredo criado na etapa anterior.

Depois de criar um backend, você pode observar seu status usando kubectl get tbc <tbc-name> -n <trident-namespace> e coletar detalhes adicionais.

Etapa 1: Crie um segredo do Kubernetes

Crie um segredo que contenha as credenciais de acesso para o back-end. Isso é exclusivo para cada serviço/plataforma de storage. Aqui está um exemplo:

```
kubectl -n trident create -f backend-tbc-ontap-san-secret.yaml
apiVersion: v1
kind: Secret
metadata:
   name: backend-tbc-ontap-san-secret
type: Opaque
stringData:
   username: cluster-admin
   password: t@Ax@7q(>
```

Esta tabela resume os campos que devem ser incluídos no segredo para cada plataforma de armazenamento:

Descrição dos campos secretos da plataforma de armazenamento	Segredo	Descrição dos campos	
Azure NetApp Files	ID do cliente	A ID do cliente a partir de um registo de aplicação	
Cloud Volumes Service para GCP	private_key_id	ID da chave privada. Parte da chave da API para a conta de serviço do GCP com a função de administrador do CVS	
Cloud Volumes Service para GCP	chave_privada	Chave privada. Parte da chave da API para a conta de serviço do GCP com a função de administrador do CVS	
Elemento (NetApp HCI/SolidFire)	Endpoint	MVIP para o cluster SolidFire com credenciais de locatário	
ONTAP	nome de utilizador	Nome de usuário para se conetar ao cluster/SVM. Usado para autenticação baseada em credenciais	
ONTAP	palavra-passe	Senha para se conectar ao cluster/SVM. Usado para autenticação baseada em credenciais	
ONTAP	ClientPrivateKey	Valor codificado em base64 da chave privada do cliente. Usado para autenticação baseada em certificado	
ONTAP	ChapUsername	Nome de utilizador de entrada. Necessário se useCHAP-true. Para ontap-san e. ontap-san- economy	
ONTAP	IniciadorSecreto	Segredo do iniciador CHAP. Necessário se useCHAP-true. Para ontap-san e. ontap-san- economy	
ONTAP	ChapTargetUsername	Nome de utilizador alvo. Necessário se useCHAP-true. Para ontap-san e. ontap-san- economy	

Descrição dos campos secretos da plataforma de armazenamento	Segredo	Descrição dos campos
ONTAP	ChapTargetInitiatorSecret	Segredo do iniciador de destino CHAP. Necessário se useCHAP- true. Para ontap-san e. ontap- san-economy

O segredo criado nesta etapa será referenciado spec.credentials no campo do TridentBackendConfig objeto que é criado na próxima etapa.

Passo 2: Crie o TridentBackendConfig CR

Agora você está pronto para criar seu TridentBackendConfig CR. Neste exemplo, um back-end que usa ontap-san o driver é criado usando o TridentBackendConfig objeto mostrado abaixo:

```
kubectl -n trident create -f backend-tbc-ontap-san.yaml
```

```
apiVersion: trident.netapp.io/v1
kind: TridentBackendConfig
metadata:
   name: backend-tbc-ontap-san
spec:
   version: 1
   backendName: ontap-san-backend
   storageDriverName: ontap-san
   managementLIF: 10.0.0.1
   dataLIF: 10.0.0.2
   svm: trident_svm
   credentials:
    name: backend-tbc-ontap-san-secret
```

Etapa 3: Verifique o status do TridentBackendConfig CR

Agora que criou o TridentBackendConfig CR, pode verificar o estado. Veja o exemplo a seguir:

```
kubectl -n trident get tbc backend-tbc-ontap-san
NAME BACKEND NAME BACKEND UUID
PHASE STATUS
backend-tbc-ontap-san ontap-san-backend 8d24fce7-6f60-4d4a-8ef6-
bab2699e6ab8 Bound Success
```

Um backend foi criado com sucesso e vinculado ao TridentBackendConfig CR.

A fase pode ter um dos seguintes valores:

- Bound: O TridentBackendConfig CR está associado a um back-end, e esse backend contém configRef definido como TridentBackendConfig UID do CR.
- Unbound: Representado "" usando. O TridentBackendConfig objeto não está vinculado a um backend. Todos os CRS recém-criados TridentBackendConfig estão nesta fase por padrão. Após as alterações de fase, ela não pode voltar a Unbound.
- Deleting: Os TridentBackendConfig CR deletionPolicy foram definidos para eliminar. Quando o TridentBackendConfig CR é excluído, ele passa para o estado de exclusão.
 - Se não houver declarações de volume persistentes (PVCs) no back-end, a exclusão do resultará na exclusão do TridentBackendConfig Astra Trident do back-end e do TridentBackendConfig CR.
 - Se um ou mais PVCs estiverem presentes no back-end, ele vai para um estado de exclusão.
 Posteriormente, o TridentBackendConfig CR entra também na fase de eliminação. O back-end e TridentBackendConfig são excluídos somente depois que todos os PVCs são excluídos.
- Lost: O back-end associado ao TridentBackendConfig CR foi acidentalmente ou deliberadamente excluído e o TridentBackendConfig CR ainda tem uma referência ao back-end excluído. O TridentBackendConfig CR ainda pode ser eliminado independentemente do deletionPolicy valor.
- Unknown: O Astra Trident não consegue determinar o estado ou a existência do back-end associado ao TridentBackendConfig CR. Por exemplo, se o servidor de API não estiver respondendo ou se o tridentbackends.trident.netapp.io CRD estiver ausente. Isso pode exigir a intervenção do usuário.

Nesta fase, um backend é criado com sucesso! Existem várias operações que podem ser tratadas adicionalmente, "atualizações de back-end e exclusões de back-end"como o .

(Opcional) passo 4: Obtenha mais detalhes

Você pode executar o seguinte comando para obter mais informações sobre seu back-end:

kubectl -n trident get tbc backend-tbc-ontap-san -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY

backend-tbc-ontap-san ontap-san-backend 8d24fce7-6f60-4d4a-8ef6-bab2699e6ab8 Bound Success ontap-san delete

Além disso, você também pode obter um despejo YAML/JSON do TridentBackendConfig.

kubectl -n trident get tbc backend-tbc-ontap-san -o yaml

```
apiVersion: trident.netapp.io/v1
kind: TridentBackendConfig
metadata:
  creationTimestamp: "2021-04-21T20:45:11Z"
 finalizers:
  - trident.netapp.io
 generation: 1
 name: backend-tbc-ontap-san
 namespace: trident
 resourceVersion: "947143"
 uid: 35b9d777-109f-43d5-8077-c74a4559d09c
spec:
 backendName: ontap-san-backend
 credentials:
    name: backend-tbc-ontap-san-secret
 managementLIF: 10.0.0.1
 dataLIF: 10.0.0.2
  storageDriverName: ontap-san
  svm: trident svm
 version: 1
status:
 backendInfo:
   backendName: ontap-san-backend
    backendUUID: 8d24fce7-6f60-4d4a-8ef6-bab2699e6ab8
 deletionPolicy: delete
  lastOperationStatus: Success
 message: Backend 'ontap-san-backend' created
  phase: Bound
```

backendInfo Contém o backendName e o backendUUID do back-end criado em resposta ao TridentBackendConfig CR. O lastOperationStatus campo representa o status da última operação TridentBackendConfig do CR, que pode ser acionada pelo usuário (por exemplo, o usuário mudou algo no spec) ou acionada pelo Astra Trident (por exemplo, durante reinicializações do Astra Trident). Pode ser sucesso ou falhou. phase Representa o status da relação entre o TridentBackendConfig CR e o backend. No exemplo acima, phase tem o valor vinculado, o que significa que o TridentBackendConfig CR está associado ao back-end.

Você pode executar o kubectl -n trident describe tbc <tbc-cr-name> comando para obter detalhes dos logs de eventos.

Não é possível atualizar ou excluir um back-end que contenha um objeto tridentctl associado TridentBackendConfig usando o . Compreender as etapas envolvidas na troca entre tridentctl e TridentBackendConfig, "veja aqui".

Execute o gerenciamento de back-end com o kubectl

Saiba mais sobre como executar operações de gerenciamento de back-end usando 'kubectl'o .

Excluir um back-end

Ao excluir um TridentBackendConfig, você instrui o Astra Trident a excluir/reter backends (com base deletionPolicy no). Para excluir um back-end, certifique-se de que deletionPolicy está definido para excluir. Para eliminar apenas o TridentBackendConfig, certifique-se de que deletionPolicy está definido como reter. Isso garantirá que o backend ainda esteja presente e possa ser gerenciado usando `tridentctl`o .

Execute o seguinte comando:

```
kubectl delete tbc <tbc-name> -n trident
```

O Astra Trident não exclui os segredos do Kubernetes que estavam em uso TridentBackendConfig pelo. O usuário do Kubernetes é responsável pela limpeza de segredos. Cuidado deve ser tomado ao excluir segredos. Você deve excluir segredos somente se eles não estiverem em uso pelos backends.

Veja os backends existentes

Execute o seguinte comando:

```
kubectl get tbc -n trident
```

Você também pode executar tridentctl get backend -n trident ou tridentctl get backend -o yaml -n trident obter uma lista de todos os backends que existem. Esta lista também incluirá backends que foram criados com tridentctl.

Atualize um back-end

Pode haver várias razões para atualizar um backend:

• As credenciais para o sistema de storage foram alteradas. Para atualizar as credenciais, o segredo do Kubernetes que é usado no TridentBackendConfig objeto deve ser atualizado. O Astra Trident atualizará automaticamente o back-end com as credenciais mais recentes fornecidas. Execute o seguinte comando para atualizar o segredo do Kubernetes:

```
kubectl apply -f <updated-secret-file.yaml> -n trident
```

• Os parâmetros (como o nome do SVM do ONTAP sendo usado) precisam ser atualizados. Nesse caso, TridentBackendConfig os objetos podem ser atualizados diretamente pelo Kubernetes.

```
kubectl apply -f <updated-backend-file.yaml>
```

Alternativamente, faça alterações no CR existente TridentBackendConfig executando o seguinte comando:

```
kubectl edit tbc <tbc-name> -n trident
```

Se uma atualização de back-end falhar, o back-end continuará em sua última configuração conhecida. Pode visualizar os registos para determinar a causa executando kubectl get tbc <tbc-name> -o yaml -n trident ou kubectl describe tbc <tbc-name> -n trident.

Depois de identificar e corrigir o problema com o arquivo de configuração, você pode executar novamente o comando update.

Execute o gerenciamento de back-end com o tridentctl

Saiba mais sobre como executar operações de gerenciamento de back-end usando `tridentctl`o .

Crie um backend

Depois de criar um "arquivo de configuração de back-end", execute o seguinte comando:

```
tridentctl create backend -f <backend-file> -n trident
```

Se a criação do backend falhar, algo estava errado com a configuração do backend. Você pode exibir os logs para determinar a causa executando o seguinte comando:

```
tridentctl logs -n trident
```

Depois de identificar e corrigir o problema com o arquivo de configuração, você pode simplesmente executar o create comando novamente.

Excluir um back-end

Para excluir um back-end do Astra Trident, faça o seguinte:

1. Recuperar o nome do backend:

```
tridentctl get backend -n trident
```

2. Excluir o backend:

```
tridentctl delete backend <backend-name> -n trident
```


Se o Astra Trident provisionou volumes e snapshots desse back-end que ainda existem, a exclusão do back-end impede que novos volumes sejam provisionados por ele. O back-end continuará a existir em um estado de exclusão e o Trident continuará a gerenciar esses volumes e snapshots até que sejam excluídos.

Veja os backends existentes

Para visualizar os backends que o Trident conhece, faça o seguinte:

· Para obter um resumo, execute o seguinte comando:

```
tridentctl get backend -n trident
```

• Para obter todos os detalhes, execute o seguinte comando:

```
tridentctl get backend -o json -n trident
```

Atualize um back-end

Depois de criar um novo arquivo de configuração de back-end, execute o seguinte comando:

```
tridentctl update backend <backend-name> -f <backend-file> -n trident
```

Se a atualização do backend falhar, algo estava errado com a configuração do backend ou você tentou uma atualização inválida. Você pode exibir os logs para determinar a causa executando o seguinte comando:

```
tridentctl logs -n trident
```

Depois de identificar e corrigir o problema com o arquivo de configuração, você pode simplesmente executar o update comando novamente.

Identificar as classes de armazenamento que usam um back-end

Este é um exemplo do tipo de perguntas que você pode responder com o JSON que tridentctl produz para objetos de back-end. Isso usa o jq utilitário, que você precisa instalar.

```
tridentctl get backend -o json | jq '[.items[] | {backend: .name,
storageClasses: [.storage[].storageClasses]|unique}]'
```

Isso também se aplica a backends que foram criados usando `TridentBackendConfig`o.

Alternar entre opções de gerenciamento de back-end

Saiba mais sobre as diferentes maneiras de gerenciar back-ends no Astra Trident. Com a introdução `TridentBackendConfig`do , os administradores agora têm duas maneiras exclusivas de gerenciar backends. Isso coloca as seguintes perguntas:

- Os backends podem ser criados usando tridentatl ser gerenciados com TridentBackendConfig?
- Os backends podem ser criados usando TridentBackendConfig ser gerenciados tridentctl usando?

Gerenciar tridentctl backends usando TridentBackendConfig

Esta seção aborda as etapas necessárias para gerenciar backends que foram criados usando tridentctl diretamente a interface do Kubernetes criando TridentBackendConfig objetos.

Isso se aplicará aos seguintes cenários:

- Backends pré-existentes, que não têm um TridentBackendConfig porque foram criados com tridentctl.
- Novos backends que foram criados com tridentctl, enquanto outros TridentBackendConfig objetos existem.

Em ambos os cenários, os back-ends continuarão presentes, com o Astra Trident agendando volumes e operando neles. Os administradores têm uma das duas opções aqui:

- Continue tridentctl usando para gerenciar backends que foram criados usando-o.
- Vincular backends criados usando tridentctl a um novo TridentBackendConfig objeto. Fazer isso significaria que os backends serão gerenciados usando kubectl e não tridentctl.

Para gerenciar um back-end pré-existente usando kubectl`o , você precisará criar um `TridentBackendConfig que se vincule ao back-end existente. Aqui está uma visão geral de como isso funciona:

- 1. Crie um segredo do Kubernetes. O segredo contém as credenciais que o Astra Trident precisa para se comunicar com o cluster/serviço de storage.
- 2. Crie TridentBackendConfig um objeto. Isso contém detalhes sobre o cluster/serviço de armazenamento e faz referência ao segredo criado na etapa anterior. Deve-se ter cuidado para especificar parâmetros de configuração idênticos (como spec.backendName, , spec.storagePrefix, spec.storageDriverName e assim por diante). spec.backendName deve ser definido como o nome do backend existente.

Passo 0: Identifique o backend

Para criar um TridentBackendConfig que se vincula a um backend existente, você precisará obter a configuração do backend. Neste exemplo, vamos supor que um backend foi criado usando a seguinte definição JSON:

	_	backend	ontap-nas-backend -n trident
T			

```
+----+
        NAME | STORAGE DRIVER |
                                             UUID
| STATE | VOLUMES |
+----
+----+
| ontap-nas-backend | ontap-nas | 52f2eb10-e4c6-4160-99fc-
96b3be5ab5d7 | online | 25 |
+-----
+----+
cat ontap-nas-backend.json
{
   "version": 1,
   "storageDriverName": "ontap-nas",
   "managementLIF": "10.10.10.1",
   "dataLIF": "10.10.10.2",
   "backendName": "ontap-nas-backend",
   "svm": "trident svm",
   "username": "cluster-admin",
   "password": "admin-password",
   "defaults": {
      "spaceReserve": "none",
      "encryption": "false"
   "labels":{"store":"nas store"},
   "region": "us east 1",
   "storage": [
         "labels": { "app": "msoffice", "cost": "100" },
         "zone": "us east 1a",
         "defaults": {
             "spaceReserve": "volume",
             "encryption": "true",
            "unixPermissions": "0755"
      },
         "labels":{"app":"mysqldb", "cost":"25"},
         "zone":"us east 1d",
         "defaults": {
             "spaceReserve": "volume",
             "encryption": "false",
             "unixPermissions": "0775"
         }
```

```
]
}
```

Etapa 1: Crie um segredo do Kubernetes

Crie um segredo que contenha as credenciais para o back-end, como mostrado neste exemplo:

```
cat tbc-ontap-nas-backend-secret.yaml

apiVersion: v1
kind: Secret
metadata:
   name: ontap-nas-backend-secret
type: Opaque
stringData:
   username: cluster-admin
   passWord: admin-password

kubectl create -f tbc-ontap-nas-backend-secret.yaml -n trident
secret/backend-tbc-ontap-san-secret created
```

Passo 2: Crie um TridentBackendConfig CR

O próximo passo é criar um TridentBackendConfig CR que se vinculará automaticamente ao préexistente ontap-nas-backend (como neste exemplo). Certifique-se de que os seguintes requisitos são cumpridos:

- O mesmo nome de back-end é definido no spec.backendName.
- Os parâmetros de configuração são idênticos ao back-end original.
- Os pools de armazenamento virtual (se presentes) devem manter a mesma ordem que no back-end original.
- · As credenciais são fornecidas por meio de um segredo do Kubernetes e não em texto simples.

Neste caso, o TridentBackendConfig será parecido com este:

```
cat backend-tbc-ontap-nas.yaml
apiVersion: trident.netapp.io/v1
kind: TridentBackendConfig
metadata:
 name: tbc-ontap-nas-backend
spec:
 version: 1
 storageDriverName: ontap-nas
 managementLIF: 10.10.10.1
 dataLIF: 10.10.10.2
 backendName: ontap-nas-backend
 svm: trident svm
 credentials:
   name: mysecret
 defaults:
   spaceReserve: none
    encryption: 'false'
 labels:
   store: nas store
 region: us east 1
 storage:
  - labels:
     app: msoffice
     cost: '100'
    zone: us east 1a
    defaults:
      spaceReserve: volume
      encryption: 'true'
      unixPermissions: '0755'
  - labels:
      app: mysqldb
      cost: '25'
    zone: us east 1d
    defaults:
      spaceReserve: volume
      encryption: 'false'
      unixPermissions: '0775'
kubectl create -f backend-tbc-ontap-nas.yaml -n trident
tridentbackendconfig.trident.netapp.io/tbc-ontap-nas-backend created
```

Etapa 3: Verifique o status do TridentBackendConfig CR

Após a criação do TridentBackendConfig, sua fase deve ser Bound. Ele também deve refletir o mesmo nome de back-end e UUID que o do back-end existente.

```
kubectl -n trident get tbc tbc-ontap-nas-backend -n trident
                        BACKEND UUID
NAME
             BACKEND NAME
PHASE STATUS
tbc-ontap-nas-backend ontap-nas-backend 52f2eb10-e4c6-4160-99fc-
96b3be5ab5d7 Bound Success
#confirm that no new backends were created (i.e., TridentBackendConfig did
not end up creating a new backend)
tridentctl get backend -n trident
+----
+----+
     NAME | STORAGE DRIVER |
| STATE | VOLUMES |
+----
+----+
96b3be5ab5d7 | online |
               25 I
+----+
+----+
```

O backend agora será completamente gerenciado usando o tbc-ontap-nas-backend TridentBackendConfig objeto.

Gerenciar TridentBackendConfig backends usando tridentctl

`tridentctl` pode ser usado para listar backends que foram criados usando `TridentBackendConfig`. Além disso, os administradores também podem optar por gerenciar completamente esses backends `tridentctl` excluindo `TridentBackendConfig` e certificando-se de `spec.deletionPolicy` que está definido como `retain`.

Passo 0: Identifique o backend

Por exemplo, vamos supor que o seguinte backend foi criado usando TridentBackendConfig:

```
kubectl get tbc backend-tbc-ontap-san -n trident -o wide
NAME
               BACKEND NAME
                           BACKEND UUID
PHASE
     STATUS
           STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 81abcb27-ea63-49bb-b606-
0a5315ac5f82 Bound Success ontap-san
                               delete
tridentctl get backend ontap-san-backend -n trident
+----
+----+
     NAME
            | STORAGE DRIVER |
                                  UIUTD
| STATE | VOLUMES |
+----
+----+
ontap-san-backend | ontap-san | 81abcb27-ea63-49bb-b606-
Oa5315ac5f82 | online | 33 |
+----
+----+
```

A partir da saída, vê-se que TridentBackendConfig foi criado com sucesso e está vinculado a um backend [observe o UUID do backend].

Passo 1: Confirmar deletionPolicy está definido como retain

Vamos dar uma olhada no valor deletionPolicy de . Isso precisa ser definido como retain. Isso garantirá que, quando um TridentBackendConfig CR for excluído, a definição de back-end ainda estará presente e poderá ser gerenciada com `tridentctl`o .

```
kubectl get tbc backend-tbc-ontap-san -n trident -o wide
                       BACKEND NAME
NAME
                                          BACKEND UUID
PHASE
       STATUS
                 STORAGE DRIVER DELETION POLICY
backend-tbc-ontap-san ontap-san-backend 81abcb27-ea63-49bb-b606-
0a5315ac5f82 Bound Success ontap-san
                                                delete
# Patch value of deletionPolicy to retain
kubectl patch tbc backend-tbc-ontap-san --type=merge -p
'{"spec":{"deletionPolicy":"retain"}}' -n trident
tridentbackendconfig.trident.netapp.io/backend-tbc-ontap-san patched
#Confirm the value of deletionPolicy
kubectl get tbc backend-tbc-ontap-san -n trident -o wide
NAME
                       BACKEND NAME
                                         BACKEND UUID
PHASE
                 STORAGE DRIVER DELETION POLICY
       STATUS
backend-tbc-ontap-san ontap-san-backend 81abcb27-ea63-49bb-b606-
0a5315ac5f82 Bound Success ontap-san
                                               retain
```


Não avance para o passo seguinte, a menos deletionPolicy que esteja definido para retain.

Etapa 2: Exclua o TridentBackendConfig CR

O passo final é eliminar o TridentBackendConfig CR. Depois de confirmar que o deletionPolicy está definido como retain, pode avançar com a eliminação:

```
kubectl delete tbc backend-tbc-ontap-san -n trident
tridentbackendconfig.trident.netapp.io "backend-tbc-ontap-san" deleted
tridentctl get backend ontap-san-backend -n trident
+----
+----+
          | STORAGE DRIVER |
   NAME
                               UIUITD
| STATE | VOLUMES |
+----
+----+
ontap-san-backend | ontap-san | 81abcb27-ea63-49bb-b606-
0a5315ac5f82 | online |
                33 I
+----
+----+
```

Após a exclusão TridentBackendConfig do objeto, o Astra Trident simplesmente o remove sem realmente excluir o próprio back-end.

Gerenciar classes de armazenamento

Encontre informações sobre como criar uma classe de armazenamento, excluir uma classe de armazenamento e exibir classes de armazenamento existentes.

Crie uma classe de armazenamento

Consulte "aqui" para obter mais informações sobre quais são as classes de armazenamento e como as configura.

Crie uma classe de armazenamento

Depois de ter um arquivo de classe de armazenamento, execute o seguinte comando:

```
kubectl create -f <storage-class-file>
```

<storage-class-file> deve ser substituído pelo nome do arquivo da classe de armazenamento.

Excluir uma classe de armazenamento

Para excluir uma classe de armazenamento do Kubernetes, execute o seguinte comando:

```
kubectl delete storageclass <storage-class>
```

<storage-class> deve ser substituído pela sua classe de armazenamento.

Todos os volumes persistentes criados com essa classe de storage permanecerão intocados, e o Astra Trident continuará gerenciá-los.

O Astra Trident impõe um espaço em branco fsType para os volumes que cria. Para backends iSCSI, recomenda-se aplicar parameters.fsType no StorageClass. Você deve excluir o esixting StorageClasses e recriá-los com parameters.fsType o especificado.

Exibir as classes de armazenamento existentes

• Para visualizar as classes de armazenamento do Kubernetes existentes, execute o seguinte comando:

```
kubectl get storageclass
```

• Para ver os detalhes da classe de storage do Kubernetes, execute o seguinte comando:

```
kubectl get storageclass <storage-class> -o json
```

• Para exibir as classes de storage sincronizadas do Astra Trident, execute o seguinte comando:

```
tridentctl get storageclass
```

 Para visualizar os detalhes da classe de storage sincronizado do Astra Trident, execute o seguinte comando:

```
tridentctl get storageclass <storage-class> -o json
```

Defina uma classe de armazenamento padrão

O Kubernetes 1,6 adicionou a capacidade de definir uma classe de storage padrão. Esta é a classe de armazenamento que será usada para provisionar um volume persistente se um usuário não especificar um em uma reivindicação de volume persistente (PVC).

• Defina uma classe de armazenamento padrão definindo a anotação storageclass.kubernetes.io/is-default-class como verdadeira na definição da classe de armazenamento. De acordo com a especificação, qualquer outro valor ou ausência da anotação é interpretado como falso.

 Você pode configurar uma classe de armazenamento existente para ser a classe de armazenamento padrão usando o seguinte comando:

```
kubectl patch storageclass <storage-class-name> -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'
```

 Da mesma forma, você pode remover a anotação de classe de armazenamento padrão usando o seguinte comando:

```
kubectl patch storageclass <storage-class-name> -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}}'
```

Há também exemplos no pacote de instalação do Trident que incluem esta anotação.

Você deve ter apenas uma classe de armazenamento padrão em seu cluster a qualquer momento. O Kubernetes não impede tecnicamente que você tenha mais de um, mas se comportará como se não houvesse nenhuma classe de storage padrão.

Identificar o back-end de uma classe de storage

Este é um exemplo do tipo de perguntas que você pode responder com o JSON que tridentctl produz para objetos backend Astra Trident. Isso usa o jq utilitário, que você pode precisar instalar primeiro.

```
tridentctl get storageclass -o json | jq '[.items[] | {storageClass:
   .Config.name, backends: [.storage]|unique}]'
```

Executar operações de volume

Saiba mais sobre os recursos fornecidos pelo Astra Trident para gerenciar seus volumes.

- "Use a topologia CSI"
- "Trabalhar com instantâneos"
- "Expanda volumes"
- "Importar volumes"

Use a topologia CSI

O Astra Trident pode criar e anexar volumes de forma seletiva a nós presentes em um cluster Kubernetes usando o "Recurso de topologia CSI". Usando o recurso de topologia de CSI, o acesso a volumes pode ser limitado a um subconjunto de nós, com base em regiões e zonas de disponibilidade. Hoje em dia, os provedores de nuvem permitem que os administradores do Kubernetes gerem nós baseados em zonas. Os nós podem ser localizados em diferentes zonas de disponibilidade dentro de uma região ou em várias regiões. Para facilitar o provisionamento de volumes para workloads em uma arquitetura de várias zonas, o Astra Trident usa topologia de CSI.

Saiba mais sobre o recurso de topologia de CSI "aqui".

O Kubernetes oferece dois modos exclusivos de vinculação de volume:

- VolumeBindingMode`Com o definido como `Immediate, o Astra Trident cria o volume sem qualquer reconhecimento de topologia. A vinculação de volume e o provisionamento dinâmico são tratados quando o PVC é criado. Esse é o padrão VolumeBindingMode e é adequado para clusters que não impõem restrições de topologia. Os volumes persistentes são criados sem depender dos requisitos de agendamento do pod solicitante.
- Com VolumeBindingMode definido como WaitForFirstConsumer, a criação e a vinculação de um volume persistente para um PVC é adiada até que um pod que usa o PVC seja programado e criado. Dessa forma, os volumes são criados para atender às restrições de agendamento impostas pelos requisitos de topologia.

O WaitForFirstConsumer modo de encadernação não requer rótulos de topologia. Isso pode ser usado independentemente do recurso de topologia de CSI.

O que você vai precisar

Para fazer uso da topologia de CSI, você precisa do seguinte:

• Um cluster de Kubernetes executando um "Versão do Kubernetes compatível"

```
kubectl version
Client Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"le11e4a2108024935ecfcb2912226cedeafd99df",
GitTreeState:"clean", BuildDate:"2020-10-14T12:50:19Z",
GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}
Server Version: version.Info{Major:"1", Minor:"19",
GitVersion:"v1.19.3",
GitCommit:"le11e4a2108024935ecfcb2912226cedeafd99df",
GitTreeState:"clean", BuildDate:"2020-10-14T12:41:49Z",
GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}
```

• Os nós no cluster devem ter rótulos que introduzam reconhecimento da topologia (topology.kubernetes.io/region`e `topology.kubernetes.io/zone). Esses rótulos devem estar presentes nos nós no cluster antes que o Astra Trident seja instalado para que o Astra Trident esteja ciente da topologia.

```
kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},
{.metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"
[node1,
{"beta.kubernetes.io/arch": "amd64", "beta.kubernetes.io/os": "linux", "kube
rnetes.io/arch":"amd64","kubernetes.io/hostname":"node1","kubernetes.io/
os":"linux", "node-
role.kubernetes.io/master":"","topology.kubernetes.io/region":"us-
east1","topology.kubernetes.io/zone":"us-east1-a"}]
[node2,
{"beta.kubernetes.io/arch": "amd64", "beta.kubernetes.io/os": "linux", "kube
rnetes.io/arch": "amd64", "kubernetes.io/hostname": "node2", "kubernetes.io/
os":"linux", "node-
role.kubernetes.io/worker":"", "topology.kubernetes.io/region":"us-
east1","topology.kubernetes.io/zone":"us-east1-b"}]
[node3,
{"beta.kubernetes.io/arch": "amd64", "beta.kubernetes.io/os": "linux", "kube
rnetes.io/arch": "amd64", "kubernetes.io/hostname": "node3", "kubernetes.io/
os":"linux", "node-
role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-
east1","topology.kubernetes.io/zone":"us-east1-c"}]
```

Etapa 1: Crie um back-end com reconhecimento de topologia

Os back-ends de storage do Astra Trident podem ser desenvolvidos para provisionar volumes de forma seletiva, com base nas zonas de disponibilidade. Cada back-end pode transportar um bloco opcional supportedTopologies que representa uma lista de zonas e regiões que devem ser suportadas. Para o StorageClasses que fazem uso de tal back-end, um volume só seria criado se solicitado por um aplicativo agendado em uma região/zona suportada.

Veja como é um exemplo de definição de backend:

```
"version": 1,
"storageDriverName": "ontap-san",
"backendName": "san-backend-us-east1",
"managementLIF": "192.168.27.5",
"svm": "iscsi_svm",
"username": "admin",
"password": "xxxxxxxxxxxxx,
"supportedTopologies": [
{"topology.kubernetes.io/region": "us-east1",
"topology.kubernetes.io/zone": "us-east1-a"},
{"topology.kubernetes.io/region": "us-east1-b"}]
}
```


supportedTopologies é usado para fornecer uma lista de regiões e zonas por backend. Essas regiões e zonas representam a lista de valores permitidos que podem ser fornecidos em um StorageClass. Para os StorageClasses que contêm um subconjunto das regiões e zonas fornecidas em um back-end, o Astra Trident criará um volume no back-end.

Você também pode definir supportedTopologies por pool de armazenamento. Veja o exemplo a seguir:

```
{"version": 1,
"storageDriverName": "ontap-nas",
"backendName": "nas-backend-us-central1",
"managementLIF": "172.16.238.5",
"svm": "nfs svm",
"username": "admin",
"password": "Netapp123",
"supportedTopologies": [
      {"topology.kubernetes.io/region": "us-central1",
"topology.kubernetes.io/zone": "us-central1-a"},
      {"topology.kubernetes.io/region": "us-central1",
"topology.kubernetes.io/zone": "us-central1-b"}
"storage": [
       "labels": {"workload":"production"},
        "region": "Iowa-DC",
        "zone": "Iowa-DC-A",
        "supportedTopologies": [
            {"topology.kubernetes.io/region": "us-central1",
"topology.kubernetes.io/zone": "us-central1-a"}
    },
        "labels": {"workload":"dev"},
         "region": "Iowa-DC",
         "zone": "Iowa-DC-B",
         "supportedTopologies": [
             {"topology.kubernetes.io/region": "us-central1",
"topology.kubernetes.io/zone": "us-central1-b"}
     }
]
}
```

Neste exemplo, as region etiquetas e zone representam a localização do conjunto de armazenamento. topology.kubernetes.io/region topology.kubernetes.io/zone e dite de onde os pools de storage podem ser consumidos.

Etapa 2: Defina StorageClasses que estejam cientes da topologia

Com base nas etiquetas de topologia fornecidas aos nós no cluster, o StorageClasses pode ser definido para conter informações de topologia. Isso determinará os pools de storage que atuam como candidatos a solicitações de PVC feitas e o subconjunto de nós que podem fazer uso dos volumes provisionados pelo Trident.

Veja o exemplo a seguir:

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: netapp-san-us-east1
provisioner: csi.trident.netapp.io
volumeBindingMode: WaitForFirstConsumer
allowedTopologies:
- matchLabelExpressions:
- key: topology.kubernetes.io/zone
 values:
  - us-east1-a
  - us-east1-b
- key: topology.kubernetes.io/region
 values:
  - us-east1
parameters:
  fsType: "ext4"
```

Na definição StorageClass fornecida acima, volumeBindingMode está definida como WaitForFirstConsumer. Os PVCs solicitados com este StorageClass não serão utilizados até que sejam referenciados em um pod. E, allowedTopologies fornece as zonas e a região a serem usadas. O netapp-san-us-east1 StorageClass criará PVCs no san-backend-us-east1 back-end definido acima.

Passo 3: Criar e usar um PVC

Com o StorageClass criado e mapeado para um back-end, agora você pode criar PVCs.

Veja o exemplo spec abaixo:

```
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: pvc-san
spec:
accessModes:
   - ReadWriteOnce
resources:
   requests:
   storage: 300Mi
storageClassName: netapp-san-us-east1
```

Criar um PVC usando este manifesto resultaria no seguinte:

kubectl create -f pvc.yaml persistentvolumeclaim/pvc-san created kubectl get pvc STATUS VOLUME CAPACITY ACCESS MODES NAME STORAGECLASS AGE pvc-san Pending netapp-san-us-east1 2s kubectl describe pvc Name: pvc-san Namespace: default StorageClass: netapp-san-us-east1 Status: Pending Volume: <none> Labels: Annotations: <none> Finalizers: [kubernetes.io/pvc-protection] Capacity: Access Modes: VolumeMode: Filesystem Mounted By: <none> Events: Type Reason Age From Message ____ _____ _____ Normal WaitForFirstConsumer 6s persistentvolume-controller waiting for first consumer to be created before binding

Para o Trident criar um volume e vinculá-lo ao PVC, use o PVC em um pod. Veja o exemplo a seguir:

```
apiVersion: v1
kind: Pod
metadata:
  name: app-pod-1
spec:
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
          - key: topology.kubernetes.io/region
            operator: In
            values:
            - us-east1
      preferredDuringSchedulingIgnoredDuringExecution:
      - weight: 1
        preference:
          matchExpressions:
          - key: topology.kubernetes.io/zone
            operator: In
            values:
            - us-east1-a
            - us-east1-b
  securityContext:
    runAsUser: 1000
    runAsGroup: 3000
    fsGroup: 2000
  volumes:
  - name: vol1
    persistentVolumeClaim:
      claimName: pvc-san
  containers:
  - name: sec-ctx-demo
    image: busybox
    command: [ "sh", "-c", "sleep 1h" ]
    volumeMounts:
    - name: vol1
      mountPath: /data/demo
    securityContext:
      allowPrivilegeEscalation: false
```

Este podSpec instrui o Kubernetes a agendar o pod em nós presentes na us-east1 região e escolher entre qualquer nó presente nas us-east1-a zonas ou us-east1-b.

Veja a seguinte saída:

kubectl get pods -o wide STATUS NAME READY RESTARTS AGE ΙP NODE READINESS GATES NOMINATED NODE 192.168.25.131 app-pod-1 1/1 Running 0 19s node2 <none> <none> kubectl get pvc -o wide NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE VOLUMEMODE pvc-ecb1e1a0-840c-463b-8b65-b3d033e2e62b 300Mi pvc-san Bound RWO netapp-san-us-east1 48s Filesystem

Atualize os backends para incluir supportedTopologies

Os backends pré-existentes podem ser atualizados para incluir uma lista supportedTopologies de uso `tridentctl backend update`do . Isso não afetará os volumes que já foram provisionados e só será usado para PVCs subsequentes.

Encontre mais informações

- "Gerenciar recursos para contêineres"
- "NodeSeletor"
- "Afinidade e anti-afinidade"
- "Taints e Tolerations"

Trabalhar com instantâneos

Você pode criar snapshots de volume do Kubernetes (snapshot de volume) de volumes persistentes (PVS) para manter cópias pontuais de volumes Astra Trident. Além disso, você pode criar um novo volume, também conhecido como *clone*, a partir de um instantâneo de volume existente. O instantâneo de volume é suportado por ontap-nas drivers, ontap-san, ontap-san-economy, solidfire-san, gcp-cvs e . azure-netapp-files

Antes de começar

Você deve ter um controlador de snapshot externo e definições personalizadas de recursos (CRDs). Essa é a responsabilidade do orquestrador do Kubernetes (por exemplo: Kubeadm, GKE, OpenShift).

Se a distribuição do Kubernetes não incluir a controladora de snapshot e CRDs, Implantando um controlador de snapshot de volumeconsulte .

Não crie um controlador de snapshot se estiver criando snapshots de volume sob demanda em um ambiente GKE. O GKE usa um controlador instantâneo oculto integrado.

Passo 1: Crie a. VolumeSnapshotClass

Este exemplo cria uma classe de instantâneo de volume.

```
cat snap-sc.yaml
apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshotClass
metadata:
   name: csi-snapclass
driver: csi.trident.netapp.io
deletionPolicy: Delete
```

```
`driver`O ponto é o condutor CSI do Astra Trident. `deletionPolicy` pode ser `Delete` ou `Retain`. Quando definido como `Retain`, o instantâneo físico subjacente no cluster de armazenamento é retido mesmo quando o `VolumeSnapshot` objeto é excluído.
```

Para obter mais informações, consulte xref:./trident-use/../Trident-reference/objects.html[VolumeSnapshotClass.

Passo 2: Crie um instantâneo de um PVC existente

Este exemplo cria um instantâneo de um PVC existente.

```
cat snap.yaml
apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshot
metadata:
   name: pvc1-snap
spec:
   volumeSnapshotClassName: csi-snapclass
   source:
    persistentVolumeClaimName: pvc1
```

Neste exemplo, o instantâneo é criado para um PVC chamado pvc1 e o nome do instantâneo é definido como pvc1-snap.

Isso criou um VolumeSnapshot objeto. Um VolumeSnapshot é análogo a um PVC e está associado a um VolumeSnapshotContent objeto que representa o snapshot real.

 $\'{E} \ poss\'ivel \ identificar \ o \ \verb|VolumeSnapshotContent| objeto \ para \ o \ \verb|pvc1-snap| VolumeSnapshot \ descrevendo-o.$

```
kubectl describe volumesnapshots pvc1-snap
Name:
            pvc1-snap
Namespace: default
Spec:
  Snapshot Class Name: pvc1-snap
  Snapshot Content Name: snapcontent-e8d8a0ca-9826-11e9-9807-525400f3f660
 Source:
   API Group:
   Kind: PersistentVolumeClaim
   Name:
              pvc1
Status:
 Creation Time: 2019-06-26T15:27:29Z
 Ready To Use: true
 Restore Size: 3Gi
```

O Snapshot Content Name identifica o objeto VolumeSnapshotContent que serve este instantâneo. O Ready To Use parâmetro indica que o instantâneo pode ser usado para criar um novo PVC.

Etapa 3: Criar PVCs a partir do VolumeSnapshots

Este exemplo cria um PVC usando um instantâneo:

```
cat pvc-from-snap.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: pvc-from-snap
spec:
  accessModes:
    - ReadWriteOnce
  storageClassName: golden
  resources:
    requests:
      storage: 3Gi
  dataSource:
    name: pvc1-snap
    kind: VolumeSnapshot
    apiGroup: snapshot.storage.k8s.io
```

dataSource Mostra que o PVC deve ser criado usando um VolumeSnapshot nomeado pvc1-snap como a fonte dos dados. Isso instrui o Astra Trident a criar um PVC a partir do snapshot. Depois que o PVC é criado, ele pode ser anexado a um pod e usado como qualquer outro PVC.

Ao excluir um volume persistente com snapshots associados, o volume Trident correspondente é atualizado para um "estado de exclusão". Para que o volume do Astra Trident seja excluído, os snapshots do volume devem ser removidos.

Implantando um controlador de snapshot de volume

Se a sua distribuição do Kubernetes não incluir a controladora de snapshot e CRDs, você poderá implantá-los da seguinte forma.

Passos

1. Criar CRDs de instantâneos de volume.

```
cat snapshot-setup.sh
#!/bin/bash
# Create volume snapshot CRDs
kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.yaml
kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents.yam
l
kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
6.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml
```

2. Crie o controlador de snapshot no namespace desejado. Edite os manifestos YAML abaixo para modificar o namespace.

```
kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-
controller/rbac-snapshot-controller.yaml
kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-6.1/deploy/kubernetes/snapshot-
controller/setup-snapshot-controller.yaml
```

Links relacionados

- "Instantâneos de volume"
- "VolumeSnapshotClass"

Expanda volumes

O Astra Trident oferece aos usuários do Kubernetes a capacidade de expandir seus volumes depois que eles são criados. Encontre informações sobre as configurações necessárias para expandir volumes iSCSI e NFS.

Expanda um volume iSCSI

É possível expandir um iSCSI Persistent volume (PV) usando o provisionador de CSI.

A expansão de volume iSCSI é suportada pelos ontap-san ontap-san-economy drivers, , solidfire-san e requer o Kubernetes 1,16 e posterior.

Visão geral

A expansão de um iSCSI PV inclui os seguintes passos:

• Editando a definição StorageClass para definir o allowVolumeExpansion campo como true.

- Editar a definição de PVC e atualizar o spec.resources.requests.storage para refletir o tamanho recém-desejado, que deve ser maior que o tamanho original.
- A fixação do PV deve ser fixada a um pod para que ele seja redimensionado. Existem dois cenários ao redimensionar um iSCSI PV:
 - Se o PV estiver conetado a um pod, o Astra Trident expande o volume no back-end de armazenamento, refaz o dispositivo e redimensiona o sistema de arquivos.
 - Ao tentar redimensionar um PV não anexado, o Astra Trident expande o volume no back-end de armazenamento. Depois que o PVC é ligado a um pod, o Trident refaz o dispositivo e redimensiona o sistema de arquivos. Em seguida, o Kubernetes atualiza o tamanho do PVC após a operação de expansão ter sido concluída com sucesso.

O exemplo abaixo mostra como funcionam os PVS iSCSI em expansão.

Etapa 1: Configure o StorageClass para dar suporte à expansão de volume

```
cat storageclass-ontapsan.yaml
---
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: ontap-san
provisioner: csi.trident.netapp.io
parameters:
   backendType: "ontap-san"
allowVolumeExpansion: True
```

Para um StorageClass já existente, edite-o para incluir o allowVolumeExpansion parâmetro.

Etapa 2: Crie um PVC com o StorageClass que você criou

```
cat pvc-ontapsan.yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: san-pvc
spec:
  accessModes:
  - ReadWriteOnce
  resources:
    requests:
    storage: 1Gi
  storageClassName: ontap-san
```

O Astra Trident cria um volume persistente (PV) e o associa a essa reivindicação de volume persistente (PVC).

kubectl get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi

RWO ontap-san 8s

kubectl get pv

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi RWO

Delete Bound default/san-pvc ontap-san 10s

Passo 3: Defina um pod que prende o PVC

Neste exemplo, é criado um pod que usa o san-pvc.

kubectl get pod

NAME READY STATUS RESTARTS AGE centos-pod 1/1 Running 0 65s

kubectl describe pvc san-pvc

Name: san-pvc
Namespace: default
StorageClass: ontap-san
Status: Bound

Volume: pvc-8a814d62-bd58-4253-b0d1-82f2885db671

Labels: <none>

Annotations: pv.kubernetes.io/bind-completed: yes

pv.kubernetes.io/bound-by-controller: yes

volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers: [kubernetes.io/pvc-protection]

Capacity: 1Gi Access Modes: RWO

VolumeMode: Filesystem Mounted By: centos-pod

Passo 4: Expanda o PV

Para redimensionar o PV que foi criado de 1Gi a 2Gi, edite a definição de PVC e atualize o spec.resources.requests.storage para 2Gi.

```
kubectl edit pvc san-pvc
# Please edit the object below. Lines beginning with a '#' will be
ignored,
# and an empty file will abort the edit. If an error occurs while saving
this file will be
# reopened with the relevant failures.
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  annotations:
    pv.kubernetes.io/bind-completed: "yes"
   pv.kubernetes.io/bound-by-controller: "yes"
   volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
  creationTimestamp: "2019-10-10T17:32:29Z"
  finalizers:
  - kubernetes.io/pvc-protection
 name: san-pvc
 namespace: default
  resourceVersion: "16609"
  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/san-pvc
  uid: 8a814d62-bd58-4253-b0d1-82f2885db671
spec:
 accessModes:
 - ReadWriteOnce
 resources:
   requests:
      storage: 2Gi
```

Etapa 5: Validar a expansão

É possível validar a expansão trabalhada corretamente verificando o tamanho do PVC, PV e volume Astra Trident:

```
kubectl get pvc san-pvc
NAME
      STATUS VOLUME
                                     CAPACITY
ACCESS MODES
         STORAGECLASS
                 AGE
           pvc-8a814d62-bd58-4253-b0d1-82f2885db671
san-pvc Bound
                                     2Gi
RWO
         ontap-san
                  11m
kubectl get pv
NAME
                          CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM
                          STORAGECLASS REASON
                                         AGE
pvc-8a814d62-bd58-4253-b0d1-82f2885db671 2Gi
                                RWO
Delete
         Bound
              default/san-pvc ontap-san
                                         12m
tridentctl get volumes -n trident
+----
+----+
            NAME
                          | SIZE | STORAGE CLASS |
             BACKEND UUID
PROTOCOL |
                             | STATE | MANAGED |
+-----
+----+
| pvc-8a814d62-bd58-4253-b0d1-82f2885db671 | 2.0 GiB | ontap-san
block | a9b7bfff-0505-4e31-b6c5-59f492e02d33 | online | true
+----
+----+
```

Expandir um volume NFS

O Astra Trident dá suporte à expansão de volume para PVS NFS provisionados em ontap-nas-economy,,, ontap-nas-flexgroup gcp-cvs e azure-netapp-files backends.

Etapa 1: Configure o StorageClass para dar suporte à expansão de volume

Para redimensionar um PV NFS, o administrador primeiro precisa configurar a classe de armazenamento para permitir a expansão de volume definindo o allowVolumeExpansion campo para true:

```
cat storageclass-ontapnas.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
   name: ontapnas
provisioner: csi.trident.netapp.io
parameters:
   backendType: ontap-nas
allowVolumeExpansion: true
```

Se você já criou uma classe de armazenamento sem essa opção, você pode simplesmente editar a classe de armazenamento existente usando kubectl edit storageclass para permitir a expansão de volume.

Etapa 2: Crie um PVC com o StorageClass que você criou

cat pvc-ontapnas.yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: ontapnas20mb
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 20Mi
storageClassName: ontapnas

O Astra Trident deve criar um PV NFS de 20MiB para este PVC:

kubectl get pvc VOLUME NAME STATUS CAPACITY ACCESS MODES STORAGECLASS AGE ontapnas20mb pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi Bound RWO ontapnas 9s kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi RWO Delete Bound default/ontapnas20mb ontapnas 2m42s

Passo 3: Expanda o PV

Para redimensionar o 20MiB PV recém-criado para 1GiB, edite o PVC e defina spec.resources.requests.storage como 1GB:

```
kubectl edit pvc ontapnas20mb
# Please edit the object below. Lines beginning with a '#' will be
ignored,
# and an empty file will abort the edit. If an error occurs while saving
this file will be
# reopened with the relevant failures.
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  annotations:
    pv.kubernetes.io/bind-completed: "yes"
   pv.kubernetes.io/bound-by-controller: "yes"
   volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io
  creationTimestamp: 2018-08-21T18:26:44Z
  finalizers:
  - kubernetes.io/pvc-protection
 name: ontapnas20mb
 namespace: default
  resourceVersion: "1958015"
  selfLink: /api/v1/namespaces/default/persistentvolumeclaims/ontapnas20mb
  uid: c1bd7fa5-a56f-11e8-b8d7-fa163e59eaab
spec:
 accessModes:
 - ReadWriteOnce
 resources:
   requests:
      storage: 1Gi
```

Etapa 4: Validar a expansão

Você pode validar o redimensionamento trabalhado corretamente verificando o tamanho do PVC, PV e o volume Astra Trident:

```
kubectl get pvc ontapnas20mb
NAME
         STATUS VOLUME
CAPACITY
      ACCESS MODES
                STORAGECLASS
                          AGE
              pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7
ontapnas20mb
         Bound
                                           1Gi
RWO
         ontapnas
                   4m44s
kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7
                           CAPACITY ACCESS MODES
RECLAIM POLICY
          STATUS
                CLAIM
                               STORAGECLASS
                                         REASON
AGE
pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7
                           1Gi
                                  RWO
Delete
          Bound default/ontapnas20mb
                               ontapnas
5m35s
tridentctl get volume pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 -n trident
+----
+----+
            NAME
                           | SIZE | STORAGE CLASS |
PROTOCOL |
              BACKEND UUID
                              | STATE | MANAGED |
+----+
+----+
| pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 | 1.0 GiB | ontapnas
file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true
+----+
```

Importar volumes

Você pode importar volumes de armazenamento existentes como um PV do Kubernetes usando `tridentctl import`o .

Drivers que suportam importação de volume

Esta tabela mostra os drivers que suportam a importação de volumes e a versão em que foram introduzidos.

Condutor	Solte
ontap-nas	19,04
ontap-nas-flexgroup	19,04
solidfire-san	19,04
azure-netapp-files	19,04

Condutor	Solte
gcp-cvs	19,04
ontap-san	19,04

Por que devo importar volumes?

Existem vários casos de uso para importar um volume para o Trident:

- · Conteinerizar um aplicativo e reutilizar seu conjunto de dados existente
- Usando um clone de um conjunto de dados para uma aplicação efêmera
- · Reconstruindo um cluster do Kubernetes com falha
- Migração de dados de aplicativos durante a recuperação de desastres

Como funciona a importação?

O arquivo PVC (Persistent volume Claim) é usado pelo processo de importação de volume para criar o PVC. No mínimo, o arquivo PVC deve incluir os campos nome, namespace, accessModes e storageClassName como mostrado no exemplo a seguir.

```
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: my_claim
  namespace: my_namespace
spec:
  accessModes:
   - ReadWriteOnce
  storageClassName: my_storage_class
```

O tridentctl cliente é usado para importar um volume de armazenamento existente. O Trident importa o volume persistindo metadados de volume e criando o PVC e o PV.

```
tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-file>
```

Para importar um volume de storage, especifique o nome do back-end do Astra Trident que contém o volume, bem como o nome que identifica exclusivamente o volume no storage (por exemplo: ONTAP FlexVol, Element volume, caminho de volume CVS). O volume de storage deve permitir acesso de leitura/gravação e ser acessível pelo back-end especificado do Astra Trident. O -f argumento string é necessário e especifica o caminho para o arquivo PVC YAML ou JSON.

Quando o Astra Trident recebe a solicitação de volume de importação, o tamanho do volume existente é determinado e definido no PVC. Depois que o volume é importado pelo driver de armazenamento, o PV é criado com uma ClaimRef para o PVC. A política de recuperação é inicialmente definida como retain no PV. Depois que o Kubernetes vincula com êxito o PVC e o PV, a política de recuperação é atualizada para corresponder à política de recuperação da Classe de armazenamento. Se a política de recuperação da Classe

de armazenamento for delete, o volume de armazenamento será excluído quando o PV for excluído.

Quando um volume é importado com o --no-manage argumento, o Trident não executa nenhuma operação adicional no PVC ou PV para o ciclo de vida dos objetos. Como o Trident ignora eventos PV e PVC para --no-manage objetos, o volume de armazenamento não é excluído quando o PV é excluído. Outras operações, como clone de volume e redimensionamento de volume, também são ignoradas. Essa opção é útil se você quiser usar o Kubernetes para workloads em contêineres, mas de outra forma quiser gerenciar o ciclo de vida do volume de storage fora do Kubernetes.

Uma anotação é adicionada ao PVC e ao PV que serve para um duplo propósito de indicar que o volume foi importado e se o PVC e o PV são gerenciados. Esta anotação não deve ser modificada ou removida.

O Trident 19,07 e posterior lidam com a fixação de PVS e monta o volume como parte da importação. Para importações usando versões anteriores do Astra Trident, não haverá nenhuma operação no caminho de dados e a importação de volume não verificará se o volume pode ser montado. Se um erro for cometido com a importação de volume (por exemplo, o StorageClass está incorreto), você poderá recuperar alterando a política de recuperação no PV para retain, excluindo o PVC e o PV e tentando novamente o comando de importação de volume.

ontap-nas e ontap-nas-flexgroup importações

Cada volume criado com o ontap-nas driver é um FlexVol no cluster do ONTAP. A importação do FlexVols com o ontap-nas driver funciona da mesma forma. Um FlexVol que já existe em um cluster ONTAP pode ser importado como ontap-nas PVC. Da mesma forma, os vols FlexGroup podem ser importados como ontap-nas-flexgroup PVCs.

Um volume ONTAP deve ser do tipo rw a ser importado pelo Trident. Se um volume for do tipo dp, é um volume de destino SnapMirror; você deve quebrar a relação de espelhamento antes de importar o volume para o Trident.

O ontap-nas driver não pode importar e gerenciar qtrees. Os ontap-nas drivers e ontap-nas-flexgroup não permitem nomes de volume duplicados.

Por exemplo, para importar um volume nomeado $managed_volume$ em um backend $ontap_nas$ chamado, use o seguinte comando:

Para importar um volume chamado unmanaged_volume (no ontap_nas backend), que o Trident não gerenciará, use o seguinte comando:

Ao usar o --no-manage argumento, o Trident não renomeará o volume nem validará se o volume foi montado. A operação de importação de volume falha se o volume não tiver sido montado manualmente.

Um bug existente anteriormente com a importação de volumes com UnixPermissions personalizados foi corrigido. Você pode especificar unixPermissions em sua definição de PVC ou configuração de back-end e instruir o Astra Trident a importar o volume de acordo.

ontap-san importar

O Astra Trident também pode importar ONTAP SAN FlexVols que contenham um único LUN. Isso é consistente com o ontap-san driver, que cria um FlexVol para cada PVC e um LUN dentro do FlexVol. Você pode usar o tridentctl import comando da mesma forma que em outros casos:

- Inclua o nome ontap-san do backend.
- Forneça o nome do FlexVol que precisa ser importado. Lembre-se, este FlexVol contém apenas um LUN que deve ser importado.
- Fornecer o caminho da definição de PVC que deve ser usado com a -f bandeira.
- Escolha entre ter o PVC gerenciado ou não gerenciado. Por padrão, o Trident gerenciará o PVC e renomeará o FlexVol e o LUN no back-end. Para importar como um volume não gerenciado, passe o --no -manage sinalizador.

Ao importar um volume não gerenciado ontap-san, você deve certificar-se de que o LUN no FlexVol é nomeado lun0 e é mapeado para um grupo com os iniciadores desejados. O Astra Trident trata isso automaticamente para uma importação gerenciada.

O Astra Trident irá então importar o FlexVol e associá-lo à definição de PVC. O Astra Trident também renomeia o FlexVol para pvc-<uuid> o formato e o LUN dentro do FlexVol para lun0.

Recomenda-se importar volumes que não tenham conexões ativas existentes. Se você deseja importar um volume usado ativamente, clonar primeiro o volume e, em seguida, fazer a importação.

Exemplo

Para importar o ontap-san-managed FlexVol que está presente no ontap_san_default back-end, execute o tridentctl import comando como:

Um volume ONTAP deve ser do tipo rw para ser importado pelo Astra Trident. Se um volume for do tipo dp, é um volume de destino do SnapMirror; você deve quebrar a relação de espelhamento antes de importar o volume para o Astra Trident.

element importar

É possível importar o software NetApp Element/NetApp HCI volumes para o cluster do Kubernetes com o Trident. Você precisa do nome do seu back-end Astra Trident e do nome exclusivo do volume e do arquivo PVC como argumentos para o tridentctl import comando.

tridentctl imporimport.yaml -n t	_	t element-managed -f pvc-basic-
·		+
I	NAME	SIZE STORAGE CLASS
PROTOCOL	BACKEND UUID	STATE MANAGED
·		+
· •		Bfe 10 GiB basic-element 58301c49 online true
		+

O driver Element suporta nomes de volume duplicados. Se houver nomes de volume duplicados, o processo de importação de volume do Trident retornará um erro. Como solução alternativa, clone o volume e forneça um nome de volume exclusivo. Em seguida, importe o volume clonado.

gcp-cvs importar

Para importar um volume com o suporte do NetApp Cloud Volumes Service no GCP, identifique o volume pelo caminho do volume em vez do nome.

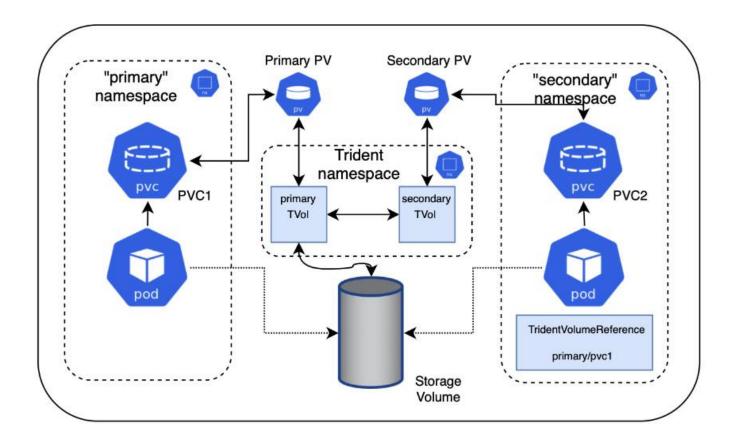
Para importar um gcp-cvs volume no back-end chamado gcpcvs_YEppr com o caminho de volume adroit-jolly-swift do, use o seguinte comando:

O caminho do volume é a parte do caminho de exportação do volume após :/. Por exemplo, se o caminho de exportação for 10.0.0.1:/adroit-jolly-swift, o caminho do volume será adroit-jolly-swift.

Para importar um azure-netapp-files volume no back-end chamado azurenetappfiles_40517 com o caminho do volume importvol1, execute o seguinte comando:

O caminho de volume para o volume do ANF está presente no caminho de montagem após :/. Por exemplo, se o caminho de montagem for 10.0.0.2:/importvol1, o caminho do volume será importvol1.

Compartilhar um volume NFS entre namespaces


Com o Astra Trident, você pode criar um volume em um namespace principal e compartilhá-lo em um ou mais namespaces secundários.

Caraterísticas

O Astra TrigentVolumeReference CR permite que você compartilhe com segurança volumes NFS ReadWriteMany (RWX) em um ou mais namespaces do Kubernetes. Essa solução nativa do Kubernetes tem os seguintes benefícios:

- · Vários níveis de controle de acesso para garantir a segurança
- Funciona com todos os drivers de volume Trident NFS
- Não há dependência do tridentctl ou de qualquer outro recurso do Kubernetes não nativo

Este diagrama ilustra o compartilhamento de volumes NFS em dois namespaces do Kubernetes.

Início rápido

Você pode configurar o compartilhamento de volume NFS em apenas algumas etapas.

Configure o PVC de origem para compartilhar o volume

O proprietário do namespace de origem concede permissão para acessar os dados no PVC de origem.

Conceda permissão para criar um CR no namespace de destino

O administrador do cluster concede permissão ao proprietário do namespace de destino para criar o CredentVolumeReference CR.

Crie TridentVolumeReference no namespace de destino

O proprietário do namespace de destino cria o TrigentVolumeReference CR para se referir ao PVC de origem.

Crie o PVC subordinado no namespace de destino

O proprietário do namespace de destino cria o PVC subordinado para usar a fonte de dados do PVC de origem.

Configure os namespaces de origem e destino

Para garantir a segurança, o compartilhamento entre namespace requer colaboração e ação do proprietário do namespace de origem, do administrador do cluster e do proprietário do namespace de destino. A função de usuário é designada em cada etapa.

Passos

 Proprietário do namespace de origem: Crie o PVC (pvc1) no namespace de origem que concede permissão para compartilhar com o namespace de destino (namespace2) usando a shareToNamespace anotação.

```
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: pvc1
  namespace: namespace1
  annotations:
    trident.netapp.io/shareToNamespace: namespace2
spec:
  accessModes:
    - ReadWriteMany
  storageClassName: trident-csi
  resources:
    requests:
    storage: 100Gi
```

O Astra Trident cria o PV e o volume de storage NFS no back-end.

 Você pode compartilhar o PVC para vários namespaces usando uma lista delimitada por vírgulas. Por exemplo, trident.netapp.io/shareToNamespace: namespace2, namespace3, namespace4.

- Você pode compartilhar com todos os namespaces usando *. Por exemplo, trident.netapp.io/shareToNamespace: *
- Você pode atualizar o PVC para incluir a shareToNamespace anotação a qualquer momento.
- 2. **Cluster admin:** Crie a função personalizada e kubeconfig para conceder permissão ao proprietário do namespace de destino para criar o TridentVolumeReference CR no namespace de destino.
- 3. **Proprietário do namespace de destino:** Crie um CredentVolumeReference CR no namespace de destino que se refere ao namespace de origem pvc1.

```
apiVersion: trident.netapp.io/v1
kind: TridentVolumeReference
metadata:
   name: my-first-tvr
   namespace: namespace2
spec:
   pvcName: pvc1
   pvcNamespace: namespace1
```

4. **Proprietário do namespace de destino:** Crie um PVC (pvc2) no namespace de destino (namespace2) usando a shareFromPVC anotação para designar o PVC de origem.

```
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
   annotations:
     trident.netapp.io/shareFromPVC: namespace1/pvc1
   name: pvc2
   namespace: namespace2
spec:
   accessModes:
     - ReadWriteMany
   storageClassName: trident-csi
   resources:
     requests:
     storage: 100Gi
```


O tamanho do PVC de destino deve ser inferior ou igual ao PVC de origem.

Resultados

O Astra Trident lê a shareFromPVC anotação no PVC de destino e cria o PV de destino como um volume subordinado sem recurso de armazenamento próprio que aponta para o PV de origem e compartilha o recurso de armazenamento PV de origem. O PVC e o PV de destino aparecem encadernados normalmente.

Eliminar um volume partilhado

Você pode excluir um volume compartilhado entre vários namespaces. O Astra Trident removerá o acesso ao volume no namespace de origem e manterá acesso para outros namespaces que compartilham o volume. Quando todos os namespaces que fazem referência ao volume são removidos, o Astra Trident exclui o volume.

`tridentctl get`Use para consultar volumes subordinados

Usando o[tridentctl utilitário, você pode executar o get comando para obter volumes subordinados. Para obter mais informações, consulte o tridentctl comandos e opções.

Usage:

tridentctl get [option]

Bandeiras -

- `-h, --help: Ajuda para volumes.
- --parentOfSubordinate string: Limitar consulta ao volume de origem subordinado.
- --subordinateOf string: Limitar consulta a subordinados de volume.

Limitações

- O Astra Trident não pode impedir que namespaces de destino gravem no volume compartilhado. Você deve usar o bloqueio de arquivos ou outros processos para evitar a substituição de dados de volume compartilhado.
- Não é possível revogar o acesso ao PVC de origem removendo as shareToNamespace anotações ou ou shareFromNamepace excluindo o TridentVolumeReference CR. Para revogar o acesso, você deve excluir o PVC subordinado.
- Snapshots, clones e espelhamento não são possíveis em volumes subordinados.

Para mais informações

Para saber mais sobre o acesso ao volume entre namespace:

- "Compartilhamento de volumes entre namespaces: Diga olá ao acesso ao volume entre namespace"Visite
- Assista à demonstração no "NetAppTV".

Monitore o Astra Trident

O Astra Trident fornece um conjunto de pontos de extremidade de métricas Prometheus que você pode usar para monitorar a performance do Astra Trident.

As métricas fornecidas pelo Astra Trident permitem que você faça o seguinte:

- Acompanhe a integridade e a configuração do Astra Trident. Você pode examinar como as operações são bem-sucedidas e se elas podem se comunicar com os backends como esperado.
- Examine as informações de uso do back-end e entenda quantos volumes são provisionados em um backend e a quantidade de espaço consumido, etc.
- Mantenha um mapeamento da quantidade de volumes provisionados em backends disponíveis.
- Acompanhe o desempenho. Você pode ver quanto tempo leva para que o Astra Trident se comunique com back-ends e realize operações.

Por padrão, as métricas do Trident são expostas na porta de destino 8001 no /metrics endpoint. Essas métricas são **ativadas por padrão** guando o Trident está instalado.

O que você vai precisar

- Um cluster Kubernetes com Astra Trident instalado.
- Uma instância Prometheus. Isso pode ser um "Implantação do Prometheus em contêiner" ou você pode optar por executar Prometheus como um "aplicação nativa".

Passo 1: Defina um alvo Prometheus

Você deve definir um alvo Prometheus para reunir as métricas e obter informações sobre os back-ends que o Astra Trident gerencia, os volumes que ele cria e assim por diante. "blog"Isso explica como você pode usar Prometheus e Grafana com o Astra Trident para recuperar métricas. O blog explica como você pode executar o Prometheus como um operador no cluster Kubernetes e a criação de um ServiceMonitor para obter as métricas do Astra Trident.

Passo 2: Crie um Prometheus ServiceMonitor

Para consumir as métricas do Trident, você deve criar um Prometheus ServiceMonitor que vigia trident-csi o serviço e escuta na metrics porta. Um exemplo de ServiceMonitor se parece com isso:

```
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: trident-sm
  namespace: monitoring
  labels:
      release: prom-operator
  spec:
    jobLabel: trident
    selector:
      matchLabels:
        app: controller.csi.trident.netapp.io
    namespaceSelector:
      matchNames:
      - trident
    endpoints:
    - port: metrics
      interval: 15s
```

Essa definição do ServiceMonitor recupera as métricas retornadas pelo trident-csi serviço e procura especificamente o metrics ponto final do serviço. Como resultado, prometeu agora está configurado para entender as métricas do Astra Trident.

Além das métricas disponíveis diretamente do Astra Trident, o kubelet expõe muitas kubelet_volume_* métricas por meio do seu próprio ponto de extremidade de métricas. O Kubelet pode fornecer informações sobre os volumes anexados e pods e outras operações internas que ele manipula. "aqui"Consulte.

Passo 3: Consultar métricas do Trident com PromQL

PromQL é bom para criar expressões que retornam dados de séries temporais ou tabulares.

Aqui estão algumas consultas PromQL que você pode usar:

Obtenha informações de saúde do Trident

Porcentagem de respostas HTTP 2XX do Astra Trident

```
(sum (trident_rest_ops_seconds_total_count{status_code=~"2.."} OR on()
vector(0)) / sum (trident_rest_ops_seconds_total_count)) * 100
```

· Porcentagem de RESPOSTAS REST do Astra Trident via código de status

```
(sum (trident_rest_ops_seconds_total_count) by (status_code) / scalar
(sum (trident_rest_ops_seconds_total_count))) * 100
```

• Duração média em ms das operações realizadas pelo Astra Trident

```
sum by (operation)
(trident_operation_duration_milliseconds_sum{success="true"}) / sum by
(operation)
(trident_operation_duration_milliseconds_count{success="true"})
```

Obtenha informações de uso do Astra Trident

· Tamanho médio do volume

```
trident_volume_allocated_bytes/trident_volume_count
```

· Espaço total de volume provisionado por cada back-end

```
sum (trident_volume_allocated_bytes) by (backend_uuid)
```

Obtenha uso de volume individual

Isso é ativado somente se as métricas do kubelet também forem coletadas.

· Porcentagem de espaço usado para cada volume

```
kubelet_volume_stats_used_bytes / kubelet_volume_stats_capacity_bytes *
100
```

Saiba mais sobre a telemetria do Astra Trident AutoSupport

Por padrão, o Astra Trident envia métricas de Prometheus e informações básicas de back-end para o NetApp em uma cadência diária

- Para impedir que o Astra Trident envie métricas e informações básicas de back-end para o NetApp, passe a --silence-autosupport bandeira durante a instalação do Astra Trident.
- O Astra Trident também pode enviar logs de contêiner para o suporte do NetApp sob demanda por meio `tridentctl send autosupport`do . Você precisará acionar o Astra Trident para fazer o upload dos seus logs. Antes de enviar logs, você deve aceitar o NetApp'"política de privacidade"s .
- A menos que especificado, o Astra Trident obtém os logs das últimas 24 horas.
- Você pode especificar o período de retenção do log com o --since sinalizador. Por exemplo tridentctl send autosupport --since=1h:. Essas informações são coletadas e enviadas por meio trident-autosupport de um contêiner que é instalado ao lado do Astra Trident. Pode obter a imagem do contentor em "Trident AutoSupport".
- A Trident AutoSupport não coleta nem transmite informações de identificação pessoal (PII) ou informações pessoais. Ele vem com um "EULA" que não é aplicável à própria imagem de contentor Trident. Você pode saber mais sobre o compromisso da NetApp com a segurança e a confiança dos dados "aqui".

Um exemplo de payload enviado pelo Astra Trident é parecido com este:

```
{
  "items": [
      "backendUUID": "ff3852e1-18a5-4df4-b2d3-f59f829627ed",
      "protocol": "file",
      "config": {
        "version": 1,
        "storageDriverName": "ontap-nas",
        "debug": false,
        "debugTraceFlags": null,
        "disableDelete": false,
        "serialNumbers": [
          "nwkvzfanek SN"
        ],
        "limitVolumeSize": ""
      },
      "state": "online",
      "online": true
    }
  ]
}
```

 As mensagens do AutoSupport são enviadas para o ponto de extremidade do AutoSupport do NetApp. Se você estiver usando um Registro privado para armazenar imagens de contentor, você pode usar o --image-registry sinalizador. • Você também pode configurar URLs de proxy gerando os arquivos YAML de instalação. Isso pode ser feito usando tridentctl install --generate-custom-yaml para criar os arquivos YAML e adicionar o --proxy-url argumento para o trident-autosupport contentor no trident-deployment.yaml.

Desativar métricas do Astra Trident

Para desabilitar métricas de serem reportadas, você deve gerar YAMLs personalizados (usando o --generate-custom-yaml sinalizador) e editá-los para remover o --metrics sinalizador de ser invocado para o trident-main contentor.

Informações sobre direitos autorais

Copyright © 2024 NetApp, Inc. Todos os direitos reservados. Impresso nos EUA. Nenhuma parte deste documento protegida por direitos autorais pode ser reproduzida de qualquer forma ou por qualquer meio — gráfico, eletrônico ou mecânico, incluindo fotocópia, gravação, gravação em fita ou storage em um sistema de recuperação eletrônica — sem permissão prévia, por escrito, do proprietário dos direitos autorais.

O software derivado do material da NetApp protegido por direitos autorais está sujeito à seguinte licença e isenção de responsabilidade:

ESTE SOFTWARE É FORNECIDO PELA NETAPP "NO PRESENTE ESTADO" E SEM QUAISQUER GARANTIAS EXPRESSAS OU IMPLÍCITAS, INCLUINDO, SEM LIMITAÇÕES, GARANTIAS IMPLÍCITAS DE COMERCIALIZAÇÃO E ADEQUAÇÃO A UM DETERMINADO PROPÓSITO, CONFORME A ISENÇÃO DE RESPONSABILIDADE DESTE DOCUMENTO. EM HIPÓTESE ALGUMA A NETAPP SERÁ RESPONSÁVEL POR QUALQUER DANO DIRETO, INDIRETO, INCIDENTAL, ESPECIAL, EXEMPLAR OU CONSEQUENCIAL (INCLUINDO, SEM LIMITAÇÕES, AQUISIÇÃO DE PRODUTOS OU SERVIÇOS SOBRESSALENTES; PERDA DE USO, DADOS OU LUCROS; OU INTERRUPÇÃO DOS NEGÓCIOS), INDEPENDENTEMENTE DA CAUSA E DO PRINCÍPIO DE RESPONSABILIDADE, SEJA EM CONTRATO, POR RESPONSABILIDADE OBJETIVA OU PREJUÍZO (INCLUINDO NEGLIGÊNCIA OU DE OUTRO MODO), RESULTANTE DO USO DESTE SOFTWARE, MESMO SE ADVERTIDA DA RESPONSABILIDADE DE TAL DANO.

A NetApp reserva-se o direito de alterar quaisquer produtos descritos neste documento, a qualquer momento e sem aviso. A NetApp não assume nenhuma responsabilidade nem obrigação decorrentes do uso dos produtos descritos neste documento, exceto conforme expressamente acordado por escrito pela NetApp. O uso ou a compra deste produto não representam uma licença sob quaisquer direitos de patente, direitos de marca comercial ou quaisquer outros direitos de propriedade intelectual da NetApp.

O produto descrito neste manual pode estar protegido por uma ou mais patentes dos EUA, patentes estrangeiras ou pedidos pendentes.

LEGENDA DE DIREITOS LIMITADOS: o uso, a duplicação ou a divulgação pelo governo estão sujeitos a restrições conforme estabelecido no subparágrafo (b)(3) dos Direitos em Dados Técnicos - Itens Não Comerciais no DFARS 252.227-7013 (fevereiro de 2014) e no FAR 52.227- 19 (dezembro de 2007).

Os dados aqui contidos pertencem a um produto comercial e/ou serviço comercial (conforme definido no FAR 2.101) e são de propriedade da NetApp, Inc. Todos os dados técnicos e software de computador da NetApp fornecidos sob este Contrato são de natureza comercial e desenvolvidos exclusivamente com despesas privadas. O Governo dos EUA tem uma licença mundial limitada, irrevogável, não exclusiva, intransferível e não sublicenciável para usar os Dados que estão relacionados apenas com o suporte e para cumprir os contratos governamentais desse país que determinam o fornecimento de tais Dados. Salvo disposição em contrário no presente documento, não é permitido usar, divulgar, reproduzir, modificar, executar ou exibir os dados sem a aprovação prévia por escrito da NetApp, Inc. Os direitos de licença pertencentes ao governo dos Estados Unidos para o Departamento de Defesa estão limitados aos direitos identificados na cláusula 252.227-7015(b) (fevereiro de 2014) do DFARS.

Informações sobre marcas comerciais

NETAPP, o logotipo NETAPP e as marcas listadas em http://www.netapp.com/TM são marcas comerciais da NetApp, Inc. Outros nomes de produtos e empresas podem ser marcas comerciais de seus respectivos proprietários.