
Astra Control Automation 22.04

documentation

Astra Automation 22.04
NetApp
February 12, 2024

This PDF was generated from https://docs.netapp.com/us-en/astra-automation-2204/index.html on
February 12, 2024. Always check docs.netapp.com for the latest.

Table of Contents

Astra Control Automation 22.04 documentation. 1

Release notes . 2

About this release . 2

What’s new with the Astra Control REST API . 2

Known issues . 4

Introduction to the Astra Control REST API . 6

Get started . 7

Before you begin . 7

Get an API token . 7

Hello world . 8

Prepare to use the workflows. 9

Basic Kubernetes concepts . 11

Core REST implementation . 12

REST web services . 12

Resources and collections . 13

HTTP details. 14

URL format . 17

Resources and endpoints. 18

Summary of Astra Control REST resources. 18

New endpoints with the current release . 20

Additional resources and endpoints . 21

Additional usage considerations. 22

RBAC security . 22

Work with collections . 22

Diagnostics and support. 23

Revoke an API token . 23

Infrastructure workflows . 25

Before you begin . 25

Identity and access . 25

Buckets. 26

Storage. 27

Clusters . 28

Management workflows . 30

Before you begin . 30

App control . 31

App protection . 39

Cloning and restoring an app . 46

Support. 51

Using Python . 54

NetApp Astra Control Python SDK. 54

Native Python. 55

API reference . 62

Additional resources. 63

Astra . 63

NetApp cloud resources. 63

REST and cloud concepts . 63

Earlier versions of Astra Control Automation documentation . 65

Legal notices . 66

Copyright . 66

Trademarks . 66

Patents . 66

Privacy policy . 66

Astra Control API license . 66

Astra Control Automation 22.04 documentation

1

Release notes

About this release

The documentation at this site describes the Astra Control REST API and related

automation technologies available with the April 2022 (22.04) release of Astra Control. In

particular, this release of the REST API is included with the corresponding 22.04 releases

of Astra Control Center and Astra Control Service.

See the following pages and sites for more information about this release as well as previous releases:

• What’s new with the Astra Control REST API

• REST resources and endpoints

• Astra Control Center 22.04 documentation

• Astra Control Service documentation

• Earlier versions of Astra Automation documentation

What’s new with the Astra Control REST API

NetApp periodically updates the Astra Control REST API to bring you new features,

enhancements, and bug fixes.

26 April 2022 (22.04)

This release includes an expansion and update of the REST API as well as enhanced security and

administrative features.

New and enhanced Astra resources

Two new resources types have been added: Package and Upgrade. In addition, the versions of several

existing resources have been upgraded.

Enhanced RBAC with namespace granularity

When binding a role to an associated user, you can limit the namespaces the user has access to. See the Role

Binding API reference and RBAC security for more information.

Bucket removal

You can remove a bucket when it is no longer needed or is not functioning properly.

Support for Cloud Volumes ONTAP

Cloud Volumes ONTAP is now supported as a storage backend.

Additional product enhancements

There are several additional enhancements to the two Astra Control product implementations, including:

2

https://docs.netapp.com/us-en/astra-control-center-2204/
https://docs.netapp.com/us-en/astra-control-service/

• Generic ingress for Astra Control Center

• Private cluster in AKS

• Support for Kubernetes 1.22

• Support for VMware Tanzu portfolio

See the What’s new page at the Astra Control Center and Astra Control Service documentation sites.

Related information

• Astra Control Center: What’s new

• Astra Control Service: What’s new

14 December 2021 (21.12)

This release includes an expansion of the REST API along with a change to the documentation structure to

better support the evolution of Astra Control through the future release updates.

Separate Astra Automation documentation for each release of Astra Control

Every release of Astra Control includes a distinct REST API that has been enhanced and tailored to the

features of the specific release. The documentation for each release of the Astra Control REST API is now

available at its own dedicated web site along with the associated GitHub content repository. The main doc site

Astra Control Automation always contains the documentation for the most current release. See Earlier versions

of Astra Control Automation documentation for information about prior releases.

Expansion of the REST resource types

The number of REST resource types has continued to expand with an emphasis on execution hooks and

storage backends. The new resources include: account, execution hook, hook source, execution hook

override, cluster node, managed storage backend, namespace, storage device, and storage node. See

Resources for more information.

NetApp Astra Control Python SDK

NetApp Astra Control Python SDK is an open source package that makes it easier to develop automation code

for your Astra Control environment. At the core is the Astra SDK which includes a set of classes to abstract the

complexity of the REST API calls. There is also a toolkit script to execute specific administrative tasks by

wrapping and abstracting the Python classes. See NetApp Astra Control Python SDK for more information.

5 August 2021 (21.08)

This release includes the introduction of a new Astra deployment model and a major expansion of the REST

API.

Astra Control Center deployment model

In addition to the existing Astra Control Service offering provided as a public cloud service, this release also

includes the Astra Control Center on-premises deployment model. You can install Astra Control Center at your

site to manage your local Kubernetes environment. The two Astra Control deployment models share the same

REST API, with minor differences noted as needed in the documentation.

3

https://docs.netapp.com/us-en/astra-control-center/release-notes/whats-new.html
https://docs.netapp.com/us-en/astra-control-service/release-notes/whats-new.html
https://docs.netapp.com/us-en/astra-automation/

Expansion of the REST resource types

The number of resources accessible through the Astra Control REST API has greatly expanded, with many of

the new resources providing a foundation for the on-premises Astra Control Center offering. The new

resources include: ASUP, entitlement, feature, license, setting, subscription, bucket, cloud, cluster, managed

cluster, storage backend, and storage class. See Resources for more information.

Additional endpoints supporting an Astra deployment

In addition to the expanded REST resources, there are several other new API endpoints available to support

an Astra Control deployment.

OpenAPI support

The OpenAPI endpoints provide access to the current OpenAPI JSON document and other related

resources.

OpenMetrics support

The OpenMetrics endpoints provide access to account metrics through the OpenMetrics resource.

15 April 2021 (21.04)

This release includes the following new features and enhancements.

Introduction of the REST API

The Astra Control REST API is available for use with the Astra Control Service offering. It has been created

based on REST technologies and current best practices. The API provides a foundation for the automation of

your Astra deployments and includes the following features and benefits.

Resources

There are fourteen REST resource types available.

API token access

Access to the REST API is provided through an API access token which you can generate at the Astra web

user interface. The API token provides secure access to the API.

Support for collections

There is a rich set of query parameters which can be used to access the resources collections. Some of the

supported operations include filtering, sorting, and pagination.

Known issues

You should review all the known issues for the current release related to the Astra Control

REST API. The known issues identify problems that might prevent you from using the

product successfully.

There are no new known issues with the 22.04 release of the Astra Control REST API. The

issues described below were discovered in previous releases and are still applicable with the

current release.

4

Not all storage devices in a backend storage node are discovered

When issuing a REST API call to retrieve the storage devices defined in a storage node, not all the devices are

returned.

5

Introduction to the Astra Control REST API

Astra Control Center and Astra Control Service provide a common REST API that you

can access directly through a programming language or utility such as Curl. The major

highlights and benefits of the API are presented below.

To access the REST API, you need to first sign in to the Astra web user interface and generate

an API token. You must include the token with each API request.

Built on REST technology

The Astra Control API has been created using REST technology and current best practices. The core

technology includes HTTP, JSON, and RBAC.

Support for the two Astra Control deployment models

Astra Control Service is used within the public cloud environment while Astra Control Center is for your on-

premises deployments. There is one REST API supporting both of these deployment models.

Clear mapping between REST endpoint resources and object model

The external REST endpoints used to access the resources map to a consistent object model maintained

internally by the Astra service. The object model is designed using entity-relationship (ER) modeling which

helps to clearly define the API actions and responses.

Rich set of query parameters

The REST API provides a rich set of query parameters that you can use to access the resources collections.

Some of the supported operations include filtering, sorting, and pagination.

Alignment with the Astra Control web UI

The design of the Astra web user interface is aligned with the REST API and so there is consistency between

the two access paths and user experience.

Robust debugging and problem determination data

The Astra Control REST API provides a robust debugging and problem determination capability, including

system events and user notifications.

Workflow processes

A set of workflows is provided to assist with the development of your automation code. The workflows are

organized in two major categories: infrastructure and management.

Foundation for advanced automation technologies

In addition to accessing the REST API directly, you can use other automation technologies which are based on

the REST API.

Part of the Astra family documentation

The Astra Control Automation documentation is part of the larger Astra family documentation. See Astra

documentation for more information.

6

https://docs.netapp.com/us-en/astra-family/
https://docs.netapp.com/us-en/astra-family/

Get started

Before you begin

You can quickly prepare to get started with the Astra Control REST API by reviewing the

steps below.

Have Astra account credentials

You’ll need Astra credentials to sign in to the Astra web user interface and generate an API token. With Astra

Control Center, you manage these credentials locally. With Astra Control Service the account credentials are

accessed through the Auth0 service.

Become familiar with basic Kubernetes concepts

You should be familiar with several basic Kubernetes concepts. See Basic Kubernetes concepts for more

information.

Review REST concepts and implementation

Make sure to review Core REST implementation for information about REST concepts and the details

regarding how the Astra Control REST API is designed.

Get more information

You should be aware of the additional information resources as suggested in Additional resources.

Get an API token

You need to obtain an Astra API token to use the Astra Control REST API.

Introduction

An API token identifies the caller to Astra and must be included with every REST API call.

• You can generate an API token using the Astra web user interface.

• The user identity carried with the token is determined by the user creating the token.

• The token must be included in the Authorization HTTP request header.

• A token never expires after it is created.

• You can revoke a token at the Astra web user interface.

Related information

• Revoke an API token

Create an Astra API token

The following steps describe how to create an Astra API token.

Before you begin

You need credentials for an Astra account.

About this task

7

This task generates an API token at the Astra web interface. You should also retrieve the account ID which is

also needed when making an API calls.

Steps

1. Sign in to Astra using your account credentials.

Access the following site for Astra Control Service: https://astra.netapp.io

2. Click the figure icon at the top right of the page and select API access.

3. Click Generate API token on the page and in the popup window click Generate API token.

4. Click the icon to copy the token string to the clipboard and save it in your editor.

5. Copy and save the account id which is available on the same page.

After you finish

When you access the Astra Control REST API through Curl or a programming language, you must include the

API bearer token in the HTTP Authorization request header.

Hello world

You can issue a simple Curl command at your workstation’s CLI to get started using the

Astra Control REST API and confirm its availability.

Before you begin

The Curl utility must be available on your local workstation. You must also have an API token and the

associated account identifier. See Get an API token for more information.

Curl example

The following Curl command retrieves a list of Astra users. Provide the appropriate <ACCOUNT_ID> and

<API_TOKEN> as indicated.

curl --location --request GET

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/core/v1/users' --header

'Content-Type: application/json' --header 'Authorization: Bearer

<API_TOKEN>'

8

https://astra.netapp.io/

JSON output example

{

 "items": [

 [

 "David",

 "Peterson",

 "844ec6234-11e0-49ea-8434-a992a6270ec1"

],

 [

 "Scott",

 "Morris",

 "2a3e227c-fda7-4145-a86c-ed9aa0183a6c"

]

],

 "metadata": {}

}

Prepare to use the workflows

You should be familiar with the organization and format of the Astra workflows before

using them with a live deployment.

Introduction

A workflow is a sequence of one or more steps needed to accomplish a specific administrative task or goal.

Each step in an Astra Control workflow is one of the following:

• REST API call (with details such as curl and JSON examples)

• Invocation of another Astra workflow

• Miscellaneous related task (such as making a required design decision)

The workflows include the core steps and parameters needed to accomplish each task. They provide a starting

point for customizing your automation environment.

Common input parameters

The input parameters described below are common to all the curl samples used to illustrate a REST API call.

Because these input parameters are universally required, they are not described further in the

individual workflows. If additional input parameters are used for a specific curl example, they are

described in the section Additional input parameters.

Path parameters

The endpoint path used with every REST API call includes the following parameters. Also see URL format for

more information.

9

Account ID

This is the UUIDv4 value identifying the Astra account where the API operation runs. See Get an API token

for more information about locating your account ID.

Request headers

There are several request headers that you may need to include depending on the REST API call.

Authorization

All the API calls in the workflows need an API token to identify the user. You must include the token in the

Authorization request header. See Get an API token for more information about generating an API

token.

Content type

With the HTTP POST and PUT requests where JSON is included in the request body, you should declare

the media type based on the Astra resource. For example, you can include the header Content-Type:

application/astra-appSnap+json when creating a snapshot for a managed application.

Accept

You can declare the specific media type of the content you expect in the response based on the Astra

resource. For example, you can include the header Accept: application/astra-appBackup+json

when listing the backups for a managed application. However, for simplicity the curl samples in the

workflows accept all media types.

Presentation of tokens and identifiers

The API token and other ID values used with the curl examples are opaque with no discernible meaning. And

so to improve the readability of the samples, the actual token and ID values are not used. Rather, smaller

reserved keywords are used which has several benefits:

• The curl and JSON samples are clearer and easier to understand.

• Because all the keywords use the same format with brackets and capital letters, you can quickly identify

the location and content to insert or extract.

• No value is lost because the original parameters cannot be copied and used with an actual deployment.

Here are some of the common reserved keywords used in the curl examples. This list is not exhaustive and

additional keywords are used as needed. Their meaning should be obvious based on the context.

Keyword Type Description

<ACCOUNT_ID> Path The UUIDv4 value identifying the account where the API

operation runs.

<API_TOKEN> Header The bearer token identifying and authorizing the caller.

<MANAGED_APP_ID> Path The UUIDv4 value identifying the managed application for the

API call.

Workflow categories

There are two broad categories of Astra workflows available based on your deployment model. If you are using

Astra Control Center, you should start with the infrastructure workflows and then proceed to the management

workflows. When using Astra Control Service, you can typically go directly to the management workflows.

10

The curl samples in the workflows use the URL for the Astra Control Service. You need to

change the URL when using the on-premises Astra Control Center as appropriate for your

environment.

Infrastructure workflows

These workflows deal with the Astra infrastructure, including credentials, buckets, and storage backends. They

are needed with Astra Control Center but in most cases can also be used with Astra Control Service. The

workflows focus on the tasks required to establish and maintain an Astra managed cluster.

Management workflows

You can use these workflows after you have a managed cluster. The workflows focus on application protection

and support operations such as backing up, restoring, and cloning a managed app.

Basic Kubernetes concepts

There are several Kubernetes concepts that are relevant when using the Astra REST

API.

Objects

The objects maintained within a Kubernetes environment are persistent entities representing the configuration

of the cluster. These objects collectively describe the state of the system including the cluster workload.

Namespaces

Namespaces provide a technique for isolating resources within a single cluster. This organizational structure is

useful when dividing the types of work, users, and resources. Objects with a namespace scope need to be

unique within the namespace, while those with a cluster scope must be unique across the entire cluster.

Labels

Labels can be associated with the Kubernetes objects. They describe attributes using key-value pairs and can

enforce an arbitrary organization on the cluster which can be useful to an organization but are outside the core

Kubernetes operation.

11

Core REST implementation

REST web services

Representational State Transfer (REST) is a style for creating distributed web

applications. When applied to the design of a web services API, it establishes a set of

mainstream technologies and best practices for exposing server-based resources and

managing their states. While REST provides a consistent foundation for application

development, the details of each API can vary based on the specific design choices. You

should be aware of the characteristics of the Astra Control REST API before using it with

a live deployment.

Resources and state representation

Resources are the basic components of a web-based system. When creating a REST web services

application, early design tasks include:

• Identification of system or server-based resources

Every system uses and maintains resources. A resource can be a file, business transaction, process, or

administrative entity. One of the first tasks in designing an application based on REST web services is to

identify the resources.

• Definition of resource states and associated state operations

Resources are always in one of a finite number of states. The states, as well as the associated operations

used to affect the state changes, must be clearly defined.

URI endpoints

Every REST resource must be defined and made available using a well-defined addressing scheme. The

endpoints where the resources are located and identified use a Uniform Resource Identifier (URI). The URI

provides a general framework for creating a unique name for each resource in the network. The Uniform

Resource Locator (URL) is a type of URI used with web services to identify and access resources. Resources

are typically exposed in a hierarchical structure similar to a file directory.

HTTP messages

Hypertext Transfer Protocol (HTTP) is the protocol used by the web services client and server to exchange

request and response messages about the resources. As part of designing a web services application, HTTP

methods are mapped to the resources and corresponding state management actions. HTTP is stateless.

Therefore, to associate a set of related requests and responses as part of one transaction, additional

information must be included in the HTTP headers carried with the request and response data flows.

JSON formatting

While information can be structured and transferred between a web services client and server in several ways,

the most popular option is JavaScript Object Notation (JSON). JSON is an industry standard for representing

simple data structures in plain text and is used to transfer state information describing the resources. The Astra

Control REST API uses JSON to format the data carried in the body of each HTTP request and response.

12

Resources and collections

The Astra Control REST API provides access to resource instances and collections of

resource instances.

Conceptually a REST resource is similar to an object as defined with the object-oriented

programming (OOP) languages and systems. Sometimes these terms are used interchangeably.

But in general, "resource" is preferred when used in the context of the external REST API while

"object" is used for the corresponding stateful instance data stored at the server.

Attributes of the Astra resources

The Astra Control REST API conforms to RESTful design principles. Each Astra resource instance is created

based on a well-defined resource type. A set of resource instances of the same type is referred to as a

collection. The API calls act on individual resources or collections of resources.

Resource types

The resource types included with the Astra Control REST API have the following characteristics:

• Every resource type is defined using a schema (typically in JSON)

• Every resource schema includes the resource type and version

• Resource types are globally unique

Resource instances

Resource instances available through the Astra Control REST API have the following characteristics:

• Resource instances are created based on a single resource type

• The resource type is indicated using the Media Type value

• Instances are composed of stateful data which is maintained by the Astra service

• Each instance is accessible through a unique and long-lived URL

• In cases where a resource instance can have more than one representation, different media types can be

used to request the desired representation

Resource collections

Resource collections available through the Astra Control REST API have the following characteristics:

• The set of resource instances of a single resource type is known as a collection

• Collections of resources have a unique and long-lived URL

Instance identifiers

Every resource instance is assigned an identifier when it is created. This identifier is a 128-bit UUIDv4 value.

The assigned UUIDv4 values are globally unique and immutable. After issuing an API call that creates a new

instance, a URL with the associated id is returned to the caller in a Location header of the HTTP response.

You can extract the identifier and use it on subsequent calls when referring to the resource instance.

The resource identifier is the primary key used for collections.

13

Common structure for Astra resources

Every Astra Control resource is defined using a common structure.

Common data

Every Astra resource contains the key-values shown in the following table.

Key Description

type A globally unique resource type which is known as the resource type.

version A version identifier which is known as the resource version.

id A globally unique identifier which is known as the resource identifier.

metadata A JSON object containing various information, including user and system labels.

Metadata object

The metadata JSON object included with each Astra resource contains the key-values shown in the following

table.

Key Description

labels JSON array of client-specified labels associated with the resource.

creationTimest

amp

JSON string containing a timestamp indicating when the resource was created.

modificationTi

mestamp

JSON string containing an ISO-8601 formatted timestamp indicating when the resource was

last altered.

createdBy JSON string containing the UUIDv4 identifier of the user id that created the resource. If the

resource was created by an internal system component and there is no UUID associated with

the creating entity, the null UUID is used.

Resource state

Selected resources a state value which is used to orchestrate lifecycle transitions and control access.

HTTP details

The Astra Control REST API uses HTTP and related parameters to act on the resources

and collections. Details of the HTTP implementation are presented below.

API transactions and the CRUD model

The Astra Control REST API implements a transactional model with well-defined operations and state

transitions.

Request and response API transaction

Every REST API call is performed as an HTTP request to the Astra service. Each request generates an

associated response back to the client. This request-response pair can be considered an API transaction.

Support for CRUD operational model

Each of the resource instances and collections available through the Astra Control REST API is accessed

14

based on the CRUD model. There are four operations, each of which maps to a single HTTP method. The

operations include:

• Create

• Read

• Update

• Delete

For some of the Astra resources, only a subset of these operations is supported. You should review the API

reference for more information about a specific API call.

HTTP methods

The HTTP methods or verbs supported by the API are presented in the table below.

Method CRUD Description

GET Read Retrieves object properties for a resource instance or collection. This is

considered a list operation when used with a collection.

POST Create Creates a new resource instance based on the input parameters. The long-

term URL is returned in a Location response header.

PUT Update Updates an entire resource instance with the supplied JSON request body.

Key values that are not user modifiable are preserved.

DELETE Delete Deletes an existing resource instance.

Request and response headers

The following table summaries the HTTP headers used with the Astra Control REST API.

See RFC 7232 and RFC 7233 for more information.

Header Type Usage notes

Accept Request If the value is "/" or is not provided, application/json is

returned in Content-Type response header. If the value is

set to the Astra resource Media Type, the same Media Type

is returned in the Content-Type header.

Authorization Request Bearer token with the API key for the user.

Content-Type Response Returned based on the Accept request header.

Etag Response Included with a successful as defined with RFC 7232. The

value is a hexadecimal representation of the MD5 value for

the entire JSON resource.

If-Match Request A precondition request header implemented as described in

section 3.1 RFC 7232 and support for PUT requests.

If-Modified-Since Request A precondition request header implemented as described in

section 3.4 RFC 7232 and support for PUT requests.

15

https://www.rfc-editor.org/rfc/rfc7232.txt
https://www.rfc-editor.org/rfc/rfc7233.txt

Header Type Usage notes

If-Unmodified-Since Request A precondition request header implemented as described in

section 3.4 RFC 7232 and support for PUT requests.

Location Response Contains the full URL of the newly created resource.

Query parameters

The following query parameters are available for use with resource collections. See Working with collections

for more information.

Query parameter Description

include Contains the fields that should be returned when reading a collection.

filter Indicates the fields that must match for a resource to be returned when reading a

collection.

orderBy Determines the sort order of resources returned when reading a collection.

limit Limits the maximum number of resources returned when reading a collection.

skip Sets the number of resources to pass over and skip when reading a collection.

count Indicates if the total number of resources should be returned in the metadata object.

HTTP status codes

The HTTP status codes used by the Astra Control REST API are described below.

The Astra Control REST API also uses the Problem Details for HTTP APIs standard. See

Diagnostics and support for more information.

Code Meaning Description

200 OK Indicates success for calls that do not create a new resource instance.

201 Created An object is successfully created and the location response header

includes the unique identifier for the object.

204 No content The request was successful although no content was returned.

400 Bad request The request input is not recognized or is inappropriate.

401 Unauthorized The user is not authorized and must authentiate.

403 Forbidden Access is denied due to an authorization error.

404 Not found The resource referred to in the request does not exist.

409 Conflict An attempt to create an object failed because the object already exists.

500 Internal error A general internal error occurred at the server.

503 Service unavailable The service is not ready to handle the request for some reason.

16

URL format

The general structure of the URL used to access a resource instance or collection

through the REST API is composed of several values. This structure reflects the

underlying object model and system design.

Account as the root

The root of the resource path to every REST endpoint is the Astra account. And so all paths in the URL begin

with /account/{account_id} where account_id is the unique UUIDv4 value for the account. Internally

structure this reflects a design where all resource access is based on a specific account.

Endpoint resource category

The Astra resource endpoints fall into three different categories:

• Core (/core)

• Managed application (/k8s)

• Topology (/topology)

See Resources for more information.

Category version

Each of the three resource categories has a global version that controls the version of the resources accessed.

By convention and definition, moving to a new major version of a resource category (such as, from /v1 to /v2)

will introduce breaking changes in the API.

Resource instance or collection

A combination of resource types and identifiers can be used in the path, based on whether a resource instance

or collection is accessed.

Example

• Resource path

Based on the structure presented above, a typical path to an endpoint is:

/accounts/{account_id}/core/v1/users.

• Complete URL

The full URL for the corresponding endpoint is: https://astra.netapp.io/accounts/

{account_id}/core/v1/users.

17

https://astra.netapp.io/accounts/{account_id}/core/v1/users
https://astra.netapp.io/accounts/{account_id}/core/v1/users
https://astra.netapp.io/accounts/{account_id}/core/v1/users
https://astra.netapp.io/accounts/{account_id}/core/v1/users
https://astra.netapp.io/accounts/{account_id}/core/v1/users
https://astra.netapp.io/accounts/{account_id}/core/v1/users
https://astra.netapp.io/accounts/{account_id}/core/v1/users
https://astra.netapp.io/accounts/{account_id}/core/v1/users
https://astra.netapp.io/accounts/{account_id}/core/v1/users
https://astra.netapp.io/accounts/{account_id}/core/v1/users
https://astra.netapp.io/accounts/{account_id}/core/v1/users

Resources and endpoints

You can use the resources provided through the Astra Control REST API to automate an

Astra deployment. Each resource is access through one or more endpoints. The

information presented below provides an introduction to the REST resources you can use

as part of an automation deployment.

The format of the path and full URL used to access the Astra Control resources is based on

several values. See URL format for more information. Also see API reference for more details

about using the Astra resources and endpoints.

Summary of Astra Control REST resources

The primary resource endpoints provided in the Astra Control REST API are organized in three categories.

Each resource can be accessed with the full set of CRUD operations (create, read, update, delete) except

where noted.

The Release column indicates the Astra release when the resource was first introduced. This field is bolded for

resources newly added with the current release.

Core resources

The core resource endpoints provide the foundational services needed to establish and maintain the Astra

runtime environment.

Resource Release Description

Account 21.12 The account resources allow you to manage the isolated tenants within the

multitenant Astra Control deployment environment.

ASUP 21.08 The ASUP resources represent the AutoSupport bundles forwarded to

NetApp support.

Credential 21.04 The credential resources contain security related information which can be

used with Astra users, clusters, buckets, and storage backends.

Entitlement 21.08 The entitlement resources represent the features and capacities available

for an account based on the active licenses and subscriptions.

Event 21.04 The event resources represent all the events occurring in the system,

including the subset classified as notifications.

Execution hook 21.12 The execution hook resources represent custom scripts that you can run

either before or after a snapshot of a managed app is performed.

Feature 21.08 The feature resources represent selected Astra features that you can query

to determine if they are enabled or disabled in the system. Access is limited

to read-only.

Hook source 21.12 The hook source resources represent the actual source code used with an

execution hook. Separating the source code from the execution control has

several benefits such as allowing the scripts to be shared.

License 21.08 The license resources represent the licenses available for an Astra account.

18

Resource Release Description

Notification 21.04 The notification resources represent Astra events that have a notification

destination. Access is provided on a per-user basis.

Package 22.04 The package resources provide registration of and access to package

definitions. Software packages consist of various components including files,

images, and other artifacts.

Role binding 21.04 The role binding resources represent the relationships between specific

pairs of users and accounts. In addition to the linkage between the two, a set

of permissions is specified for each through a specific role.

Setting 21.08 The setting resources represent a collection of key-value pairs which

describe a feature for a specific Astra account.

Subscription 21.08 The subscription resources represent the active subscriptions for an Astra

account.

Token 21.04 The token resources represent the tokens available to programmatically

access the Astra Control REST API.

Unread notification 21.04 The unread notification resources represent notifications assigned to a

specific user but not yet read.

Upgrade 22.04 The upgrade resources provide access to software components and the

ability to initiate upgrades.

User 21.04 The user resources represent Astra users able to access the system based

on their defined role.

Managed application resources

The managed application resource endpoints provide access to the managed Kubernetes applications.

Resource Release Description

Application asset 21.04 The application asset resources represent internal collections of state

information needed to manage the Astra applications.

Application backup 21.04 The application backup resources represent backups of the managed

applications.

Application snapshot 21.04 The application snapshot resources represent snapshots of the managed

applications.

Execution hook

override

21.12 The execution hook override resources allow you to disable the preloaded

NetApp default execution hooks for specific applications as needed.

Managed application 21.04 The managed app resources represent Kubernetes applications that are

managed by Astra.

Schedule 21.04 The schedule resources represent data protection operations that are

scheduled for the managed applications as part of a data protection policy.

Topology resources

The topology resource endpoints provide access to the unmanaged applications and storage resources.

19

Resource Release Description

App 21.04 The app resources represent all of the Kubernetes applications, including

those unmanaged by Astra.

Bucket 21.08 The bucket resources represent the S3 cloud buckets used to store backups

of the applications managed by Astra.

Cloud 21.08 The cloud resources represent clouds that Astra clients can connect to in

order to manage clusters and applications.

Cluster 21.08 The cluster resources represent the Kubernetes clusters not managed by

Kubernetes.

Cluster node 21.12 The cluster node resources provide additional resolution by allowing you to

access the individual nodes within a Kubernetes cluster.

Managed cluster 21.08 The managed cluster resources represent the Kubernetes clusters currently

managed by Kubernetes.

Managed storage

backend

21.12 The managed storage backend resources allow you to access abstracted

representations of the backend storage providers. These storage backends

can be used by the managed clusters and applications.

Namespace 21.12 The namespace resources provide access to the namespaces used within a

Kubernetes cluster.

Storage backend 21.08 The storage backend resources represent providers of storage services that

can be used by the Astra managed clusters and applications.

Storage class 21.08 The storage class resources represent different classes or types of storage

discovered and available to a specific managed cluster.

Volume 21.04 The volume resources represent the Kubernetes storage volumes

associated with the managed applications.

New endpoints with the current release

The following REST endpoints have been added with the current 22.04 Astra Control release. In addition, the

versions of several existing resources have been upgraded.

• /accounts/{account_id}/core/v1/packages

• /accounts/{account_id}/core/v1/packages/{package_id}

• /accounts/{account_id}/core/v1/upgrades

• /accounts/{account_id}/core/v1/upgrades//{upgrade_id}

• /accounts/{account_id}/topology/v1/appBackups

• /accounts/{account_id}/topology/v1/appBackups/{appBackup_id}

• /accounts/{account_id}/topology/v1/clouds/{cloud_id}/clusters/{cluster_id}/clusterNodes

• /accounts/{account_id}/topology/v1/clouds/{cloud_id}/clusters/{cluster_id}/clusterNodes/{clusterNode_id}

• /accounts/{account_id}/topology/v1/managedClusters/{managedCluster_id}/apps/{app_id}/appAssets

•

/accounts/{account_id}/topology/v1/managedClusters/{managedCluster_id}/apps/{app_id}/appAssets/{app

Asset_id}

20

• /accounts/{account_id}/topology/v1/managedClusters/{managedCluster_id}/clusterNodes

• /accounts/{account_id}/topology/v1/managedClusters/{managedCluster_id}/clusterNodes/{clusterNode_id}

Additional resources and endpoints

There are several additional resources and endpoints that you can use to support an Astra deployment.

These resources and endpoints are not currently included with the Astra Control REST API

reference documentation.

OpenAPI

The OpenAPI endpoints provide access to the current OpenAPI JSON document and other related

resources.

OpenMetrics

The OpenMetrics endpoints provide access to the account metrics through the OpenMetrics resource.

Support is available with the Astra Control Center deployment model.

21

Additional usage considerations

RBAC security

The Astra REST API supports role-based access control (RBAC) to restrict access to the

system functions.

Astra roles

Every Astra user is assigned to a single role which determines the actions that can be performed. The roles

are arranged in a hierarchy as described in the table below.

Role Description

Owner Has all the permissions of the Admin role and can also delete Astra accounts.

Admin Has all the permissions of the Member role and can also invite users to join an account.

Member Can fully manage the Astra application and compute resources.

Viewer Restricted to only viewing resources.

Enhanced RBAC with namespace granularity

This feature was introduced with the 22.04 release of the Astra REST API.

When a role binding is established for a specific user, a constraint can be applied to limit the namespaces the

user has access to. There are several ways this constraint can be defined as described in the table below. See

the parameter roleContraints in the Role Binding API for more information.

Namespaces Description

All The user can access all the namespaces through the wildcard parameter "*"". This is

the default value to maintain backwards compatibility.

None The constraint list is specified although it is empty. This indicates the user cannot

access any namespace.

Namespace list The UUID of a namespace is included which restricts the user to the single namespace.

A comma separated list can also be used to allow access to multiple namespaces.

Label A label is specified and access is allowed to all the matching namespaces.

Work with collections

The Astra Control REST API provides several different ways to access resource

collections through the defined query parameters.

Selecting values

You can specify which key-value pairs should be returned for each resource instance using the include

parameter. All of the instances are returned in the response body.

22

Filtering

Collection resource filtering allows an API user to specify conditions which determine if a resource is returned

in the response body. The filter parameter is used to indicate the filtering condition.

Sorting

Collection resource sorting allows an API user to specify the order in which resources are returned in the

response body. The orderBy parameter is used to indicate the filtering condition.

Pagination

You can enforce pagination by restricting the number of resource instances returned on a request using the

limit parameter.

Count

If you include the Boolean parameter count set to true, the number of resources in the returned array for a

given response is provided in the metadata section.

Diagnostics and support

There are several support features available with the Astra Control REST API that can be

used for diagnostics and debugging.

API resources

There are several Astra features exposed through API resources that provide diagnostic information and

support.

Type Description

Event System activities that are recorded as part of Astra processing.

Notification A subset of the Events that are considered important enough to be presented to the

user.

Unread notification The notifications that have yet to be read or retrieved by the user.

Revoke an API token

You can revoke an API token at the Astra web interface when it is no longer needed.

Before you begin

You need an Astra account. You should also identify the tokens you want to revoke.

About this task

After a token is revoked, it is immediately and permanently unusable.

Steps

1. Sign in to Astra using your account credentials.

Access the following site for Astra Control Service: https://astra.netapp.io

2. Click the figure icon at the top right of the page and select API access.

23

https://astra.netapp.io/

3. Select the token or tokens you want to revoke.

4. Under the Actions drop-down box, click Revoke tokens.

24

Infrastructure workflows

Before you begin

You can use these workflows to create and maintain the infrastructure used with the Astra

Control Center deployment model. In most case, the workflows can also be used with

Astra Control Service.

These workflows can be expanded and enhanced by NetApp at any time and so you should

review them periodically.

General preparation

Before using any of the Astra workflows, make sure to review Prepare to use the workflows.

Workflow categories

The infrastructure workflows are organized in different categories to make it easier to locate the one you want.

Category Description

Identity and access These workflows allow you to manage identity and how Astra is accessed. The

resources include users, credentials, and tokens.

Buckets You can use these workflows to create and manage the S3 buckets used to store

backups.

Storage These workflows allow you to add and maintain storage backends and volumes.

Clusters You can add managed Kubernetes clusters which allows you to protect and

support the applications they contain.

Identity and access

List users

You can list the users that are defined for a specific Astra account.

1. List the users

Perform the following REST API call.

HTTP method Path

GET /account/{accountID}/core/v1/users

Additional input parameters

In addition to the parameters common with all REST API calls, the following parameters are also used in the

curl examples for this step.

25

Parameter Type Required Description

include Query No Optionally select the values you want returned in the

response.

Curl example: Return all data for all users

curl --location -i --request GET

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/core/v1/users' --header

'Accept: */*' --header 'Authorization: Bearer <API_TOKEN>'

Curl example: Return the first name, last name, and id for all users

curl --location -i --request GET

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/core/v1/users?include=first

Name,lastName,id' --header 'Accept: */*' --header 'Authorization: Bearer

<API_TOKEN>'

JSON output example

{

 "items": [

 [

 "David",

 "Peterson",

 "844ec6234-11e0-49ea-8434-a992a6270ec1"

],

 [

 "Scott",

 "Morris",

 "2a3e227c-fda7-4145-a86c-ed9aa0183a6c"

]

],

 "metadata": {}

}

Buckets

List buckets

You can list the S3 buckets defined for a specific Astra account.

26

1. List the buckets

Perform the following REST API call.

HTTP method Path

GET /account/{accountID}/topology/v1/buckets

Curl example: Return all data for all buckets

curl --location -i --request GET

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/topology/v1/buckets'

--header 'Accept: */*' --header 'Authorization: Bearer <API_TOKEN>'

Storage

List storage backends

You can list the available storage backends.

1. List the buckets

Perform the following REST API call.

HTTP method Path

GET /account/{accountID}/topology/v1/storageBackends

Curl example: Return all data for all storage backends

curl --location -i --request GET

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/topology/v1/storageBackends

' --header 'Accept: */*' --header 'Authorization: Bearer <API_TOKEN>'

JSON output example

27

{

 "items": [

 {

 "backendCredentialsName": "10.191.77.177",

 "backendName": "myinchunhcluster-1",

 "backendType": "ONTAP",

 "backendVersion": "9.8.0",

 "configVersion": "Not applicable",

 "health": "Not applicable",

 "id": "46467c16-1585-4b71-8e7f-f0bc5ff9da15",

 "location": "nalab2",

 "metadata": {

 "createdBy": "4c483a7e-207b-4f9a-87b7-799a4629d7c8",

 "creationTimestamp": "2021-07-30T14:26:19Z",

 "modificationTimestamp": "2021-07-30T14:26:19Z"

 },

 "ontap": {

 "backendManagementIP": "10.191.77.177",

 "managementIPs": [

 "10.191.77.177",

 "10.191.77.179"

]

 },

 "protectionPolicy": "Not applicable",

 "region": "Not applicable",

 "state": "Running",

 "stateUnready": [],

 "type": "application/astra-storageBackend",

 "version": "1.0",

 "zone": "Not applicable"

 }

]

}

Clusters

List managed clusters

You can list the Kubernetes clusters currently managed by Astra.

1. List the clusters

Perform the following REST API call.

28

HTTP method Path

GET /account/{accountID}/topology/v1/managedClusters

Curl example: Return all data for all clusters

curl --location -i --request GET

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/topology/v1/managedClusters

' --header 'Accept: */*' --header 'Authorization: Bearer <API_TOKEN>'

29

Management workflows

Before you begin

You can use these workflows as part of administering the applications within an Astra

managed cluster.

These workflows can be expanded and enhanced by NetApp at any time and so you should

review them periodically.

General preparation

Before using any of the Astra workflows, make sure to review Prepare to use the workflows.

Workflow categories

The management workflows are organized in different categories to make it easier to locate the one you want.

Category Description

Application control These workflows allow you to control the managed and unmanaged applications.

You can list the apps as well as create and remove a managed app.

Application protection You can use these workflows to protect your managed applications through

snapshots and backups.

Cloning and restoring

apps

These workflow describe how to clone and restore your managed applications.

Support There are several workflows available to debug and support your applications as

well as the general Kubernetes environment.

Additional considerations

There are a several additional considerations when using the management workflows.

Cloning an app

There are a few things to consider when cloning an application. The parameters described below are part of

the JSON input.

Source cluster identifier

The value of sourceClusterID always identifies the cluster where the original app is installed.

Cluster identifier

The value of clusterID identifies the cluster where the new app will be installed.

• When cloning within the same cluster, clusterID and sourceClusterID have the same value.

• When cloning across clusters, the two values are different and clusterID should be the ID of the

target cluster.

30

Namespaces

The namespace value must be different than the original source app. Further, the namespace for the clone

cannot exist and Astra will create it.

Backups and snapshots

You can optionally clone an application from an existing backup or snapshot using the backupID or

snapshotID parameters. If you don’t provide a backup or snapshot, Astra will create a backup of the

application first and then clone from the backup.

Restoring an app

Here are a few things to consider when restoring an application.

• Restoring an application is very similar to the clone operation.

• When restoring an app, you must provide either a backup or snapshot.

App control

List the unmanaged apps

You can list the applications that are currently not managed by Astra. You might do this as

part of selecting an app to be managed.

The REST endpoint used in these workflows returns all the Astra applications by default. You

can use the filter query parameter on the API call to request only the unmanaged apps be

returned. As an alternative, you can omit the filter parameter to return all the apps and then

examine the managedState field in the output to determine which apps are in the unmanaged

state.

List only the apps with managedState equal to unmanaged

This workflow uses the filter query parameter to return only the unmanaged apps.

1. List the unmanaged applications

Perform the following REST API call.

HTTP method Path

GET /account/{accountID}/topology/v1/apps

Additional input parameters

In addition to the parameters common with all REST API calls, the following parameters are also used in the

curl examples for this step.

Parameter Type Required Description

filter Query No Use a filter to specify which apps should be returned.

31

Parameter Type Required Description

include Query No Optionally select the values you want returned in the

response.

Curl example: Return the name, id, and managedState for the unmanaged apps

curl --location -i --request GET

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/topology/v1/apps?filter=man

agedState%20eq%20'unmanaged'&include=name,id,managedState' --header

'Accept: */*' --header 'Authorization: Bearer <API_TOKEN>'

JSON output example

32

{

 "items": [

 [

 "maria",

 "eed19f78-0884-4792-bb7a-313258c6b0b1",

 "unmanaged"

],

 [

 "test-postgres-app",

 "1ee6235b-cda1-45cb-8d4c-630bdb8b41a5",

 "unmanaged"

],

 [

 "postgres1-postgresql",

 "e591ee59-ea90-4a9f-8e6c-d2b6e8647096",

 "unmanaged"

],

 [

 "kube-system",

 "077a2f73-4b51-4d04-8c6c-f63b3b069755",

 "unmanaged"

],

 [

 "trident",

 "5b6fc28f-e308-4653-b9d2-6d66a764d2e1",

 "unmanaged"

],

 [

 "postgres1-postgresql-clone",

 "06be05c5-763e-4d73-bd06-1f27f5f2e130",

 "unmanaged"

]

],

 "metadata": {}

}

List all the apps and select the unmanaged apps

This workflow returns all the apps. You must examine the output to determine which are unmanaged.

1. List all the applications

Perform the following REST API call.

33

HTTP method Path

GET /account/{accountID}/topology/v1/apps

Additional input parameters

In addition to the parameters common with all REST API calls, the following parameters are also used in the

curl examples for this step.

Parameter Type Required Description

include Query No Optionally select the values you want returned in the

response.

Curl example: Return all data for all apps

curl --location -i --request GET

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/topology/v1/apps' --header

'Accept: */*' --header 'Authorization: Bearer <API_TOKEN>'

Curl example: Return the name, id, and managedState for all apps

curl --location -i --request GET

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/topology/v1/apps?include=na

me,id,managedState' --header 'Accept: */*' --header 'Authorization: Bearer

<API_TOKEN>'

JSON output example

34

{

 "items": [

 [

 "maria",

 "eed19f78-0884-4792-bb7a-313258c6b0b1",

 "unmanaged"

],

 [

 "mariadb-mariadb",

 "8da20fff-c69c-4170-bb0d-e4f91c5a1333",

 "managed"

],

 [

 "test-postgres-app",

 "1ee6235b-cda1-45cb-8d4c-630bdb8b41a5",

 "unmanaged"

],

 [

 "postgres1-postgresql",

 "e591ee59-ea90-4a9f-8e6c-d2b6e8647096",

 "unmanaged"

],

 [

 "kube-system",

 "077a2f73-4b51-4d04-8c6c-f63b3b069755",

 "unmanaged"

],

 [

 "trident",

 "5b6fc28f-e308-4653-b9d2-6d66a764d2e1",

 "unmanaged"

],

 [

 "postgres1-postgresql-clone",

 "06be05c5-763e-4d73-bd06-1f27f5f2e130",

 "unmanaged"

],

 [

 "davidns-postgres-app",

 "11e046b7-ec64-4184-85b3-debcc3b1da4d",

 "managed"

]

],

 "metadata": {}

}

35

2. Select the unmanaged applications

Review the output of the API call and manually select the apps with managedState equal to unmanaged.

List the managed apps

You can list the applications that are currently managed by Astra. You might do this as

part of finding the snapshots or backups for a specific app.

1. List the applications

Perform the following REST API call.

HTTP method Path

GET /account/{accountID}/k8s/v1/managedApps

Additional input parameters

In addition to the parameters common with all REST API calls, the following parameters are also used in the

curl examples for this step.

Parameter Type Required Description

include Query No Optionally select the values you want returned in the

response.

Curl example: Return all data for all apps

curl --location -i --request GET

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/k8s/v1/managedApps'

--header 'Accept: */*' --header 'Authorization: Bearer <API_TOKEN>'

Curl example: Return the name, id, and state for all apps

curl --location -i --request GET

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/k8s/v1/managedApps?include=

name,id,state' --header 'Accept: */*' --header 'Authorization: Bearer

<API_TOKEN>'

JSON output example

36

{

 "items": [

 [

 "test-postgres-app",

 "1ee6235b-cda1-45cb-8d4c-630bdb8b41a5",

 "running"

]

],

 "metadata": {}

}

Get a managed app

You can retrieve all the resource variables describing a single managed application.

Before you begin

You must have the ID of the managed app you want to retrieve. If needed you can use the workflow List the

managed apps to locate the application.

1. Get the application

Perform the following REST API call.

HTTP method Path

GET /accounts/{account_id}/k8s/v1/managedApps/{managedApp_id}

Additional input parameters

In addition to the parameters common with all REST API calls, the following parameters are also used in the

curl examples for this step.

Parameter Type Required Description

managed app id Path Yes ID value of the managed application to retrieve.

Curl example: Return all data for the application

curl --location -i --request GET

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/k8s/v1/managedApps/<MANAGED

_APP_ID>' --header 'Accept: */*' --header 'Authorization: Bearer

<API_TOKEN>'

Manage an app

You can create a managed application based on an application already known to Astra.

37

When an application is managed, you can protect it by taking regular backups and

snapshots.

Before you begin

You must have the ID of the discovered app you want to manage. If needed you can use the workflow List the

unmanaged apps to locate the application.

1. Manage the application

Perform the following REST API call.

HTTP method Path

POST /account/{accountID}/k8s/v1/managedApps

Additional input parameters

In addition to the parameters common with all REST API calls, the following parameters are also used in the

curl examples for this step.

Parameter Type Required Description

JSON Body Yes Provides the parameters needed to identify the application

to be managed. See the example below.

JSON input example

{

 "type": "application/astra-managedApp",

 "version": "1.1",

 "id": "7da20fff-c69d-4270-bb0d-a4f91c5a1333"

}

Curl example: Manage an app

curl --location -i --request POST

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/k8s/v1/managedApps'

--header 'Content-Type: application/astra-managedApp+json' --header

'Accept: */*' --header 'Authorization: Bearer <API_TOKEN>' --d @JSONinput

Unmanage an app

You can remove a managed app when it’s no longer needed. Removing a managed

application also deletes the associated schedules.

38

Before you begin

You must have the ID of the managed app you want to unmanage. If needed you can use the workflow List the

managed apps to locate the application.

The application’s backups and snapshots are not automatically removed when it is deleted. If you no longer

need the backups and snapshots, you should delete them before removing the application.

1. Unmanaged the app

Perform the following REST API call.

HTTP method Path

DELETE /accounts/{account_id}/k8s/v1/managedApps/{managedApp_id}

Additional input parameters

In addition to the parameters common with all REST API calls, the following parameters are also used in the

curl examples for this step.

Parameter Type Required Description

managed app id Path Yes Identifies the managed application to remove.

Curl example: Remove a managed app

curl --location -i --request DELETE

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/k8s/v1/managedApps/<MANAGED

_APP_ID>' --header 'Accept: */*' --header 'Authorization: Bearer

<API_TOKEN>'

App protection

List the snapshots

You can list the snapshots that have been taken for a specific managed application.

Before you begin

You must have the ID of the managed app you want to list the snapshots for. If needed you can use the

workflow List the managed apps to locate the application.

1. List the snapshots

Perform the following REST API call.

HTTP method Path

GET /accounts/{account_id}/k8s/v1/managedApps/{managedApp_id}/appSnaps

39

Additional input parameters

In addition to the parameters common with all REST API calls, the following parameters are also used in the

curl examples for this step.

Parameter Type Required Description

managed app

id

Path Yes Identifies the managed application owning the listed snapshots.

count Query No If count=true the number of snapshots is included in the metadata

section of the response.

Curl example: Return all snapshots for the app

curl --location -i --request GET

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/k8s/v1/managedApps/<MANAGED

_APP_ID>/appSnaps' --header 'Accept: */*' --header 'Authorization: Bearer

<API_TOKEN>'

Curl example: Return all snapshots for the app and the count

curl --location -i --request GET

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/k8s/v1/managedApps/<MANAGED

_APP_ID>/appSnaps?count=true' --header 'Accept: */*' --header

'Authorization: Bearer <API_TOKEN>'

JSON output example

40

{

 "items": [

 {

 "id": "dc2974ae-f71d-4c81-91b5-f96cf72dc3ba",

 "metadata": {

 "createdBy": "fb093413-b6fc-4a64-a48a-afc32ada8537",

 "creationTimestamp": "2021-06-04T21:23:14Z",

 "modificationTimestamp": "2021-06-04T21:23:14Z",

 "labels": []

 },

 "snapshotAppAsset": "4547658d-cc06-4c1d-ad8a-4a05274d0db0",

 "snapshotCreationTimestamp": "2021-06-04T21:23:47Z",

 "name": "test-postgres-app-snapshot-20210604212213",

 "state": "completed",

 "stateUnready": [],

 "type": "application/astra-appSnap",

 "version": "1.0"

 }

],

 "metadata": {

 "count": 1

 }

}

List the backups

You can list the backups that have been created for a specific managed application.

Before you begin

You must have the ID of the managed app you want to list the backups for. If needed you can use the workflow

List the managed apps to locate the application.

1. List the backups

Perform the following REST API call.

HTTP method Path

GET /accounts/{account_id}/k8s/v1/managedApps/{managedApp_id}/appBackups

Additional input parameters

In addition to the parameters common with all REST API calls, the following parameters are also used in the

curl examples for this step.

41

Parameter Type Required Description

managed app id Path Yes Identifies the managed application owning the listed

backups.

Curl example: Return all backups for the app

curl --location -i --request GET

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/k8s/v1/managedApps/<MANAGED

_APP_ID>/appBackups' --header 'Accept: */*' --header 'Authorization:

Bearer <API_TOKEN>'

JSON output example

{

 "items": [

 {

 "type": "application/astra-appBackup",

 "version": "1.0",

 "id": "ed39fdb0-12db-497b-9e46-20036c1fb0d2",

 "name": "mariadb-mariadb-backup-20210617175900",

 "state": "completed",

 "stateUnready": [],

 "bytesDone": 0,

 "percentDone": 100,

 "metadata": {

 "labels": [],

 "creationTimestamp": "2021-06-17T17:59:09Z",

 "modificationTimestamp": "2021-06-17T17:59:09Z",

 "createdBy": "fb093413-b6fc-4a64-a48a-afc32ada8537"

 }

 }

],

 "metadata": {}

}

Create a snapshot for a managed app

You can create a snapshot for a specific managed application.

Before you begin

You must have the ID of the managed app you want to create a snapshot for. If needed you can use the

workflow List the managed apps to locate the application.

42

1. Create a snapshot

Perform the following REST API call.

HTTP method Path

POST /accounts/{account_id}/k8s/v1/managedApps/{managedApp_id}/appSnaps

Additional input parameters

In addition to the parameters common with all REST API calls, the following parameters are also used in the

curl examples for this step.

Parameter Type Required Description

managed app id Path Yes Identifies the managed application where the snapshot will

be created.

JSON Body Yes Provides the parameters for the snapshot. See the example

below.

JSON input example

{

 "type": "application/astra-appSnap",

 "version": "1.0",

 "name": "snapshot-david-1"

}

Curl example: Create a snapshot for the app

curl --location -i --request POST

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/k8s/v1/managedApps/<MANAGED

_APP_ID>/appSnaps' --header 'Content-Type: application/astra-appSnap+json'

--header 'Accept: */*' --header 'Authorization: Bearer <API_TOKEN>' --d

@JSONinput

Create a backup for a managed app

You can create a backup for a specific managed application. You can use the backup to

restore or clone the app.

Before you begin

You must have the ID of the managed app you want to create a backup for. If needed you can use the workflow

List the managed apps to locate the application.

43

1. Create a backup

Perform the following REST API call.

HTTP method Path

POST /accounts/{account_id}/k8s/v1/managedApps/{managedApp_id}/appBackups

Additional input parameters

In addition to the parameters common with all REST API calls, the following parameters are also used in the

curl examples for this step.

Parameter Type Required Description

managed app id Path Yes Identifies the managed application where the backup will be

created.

JSON Body Yes Provides the parameters for the backup. See the example

below.

JSON input example

{

 "type": "application/astra-appBackup",

 "version": "1.0",

 "name": "backup-david-1"

}

Curl example: Create a backup for the app

curl --location -i --request POST

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/k8s/v1/managedApps/<MANAGED

_APP_ID>/appBackups' --header 'Content-Type: application/astra-

appBackup+json' --header 'Accept: */*' --header 'Authorization: Bearer

<API_TOKEN>' --d @JSONinput

Delete a snapshot

You can delete a snapshot associated with a managed application.

Before you begin

You must have the following:

• ID of the managed app that owns the snapshot. If needed you can use the workflow List the managed apps

to locate the application.

• ID of the snapshot you want to delete. If needed you can use the workflow List the snapshots to locate the

snapshot.

44

1. Delete the snapshot

Perform the following REST API call.

HTTP method Path

DELETE /accounts/{account_id}/k8s/v1/managedApps/{managedApp_id}/appSnaps/{appS

nap_id}

Additional input parameters

In addition to the parameters common with all REST API calls, the following parameters are also used in the

curl examples for this step.

Parameter Type Required Description

managed app id Path Yes Identifies the managed application owning the snapshot.

snapshot id Path Yes Identifies the snapshot to be deleted.

Curl example: Delete a single snapshot for the app

curl --location -i --request DELETE

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/k8s/v1/managedApps/<MANAGED

_APP_ID>/appSnaps/<SNAPSHOT_ID>' --header 'Accept: */*' --header

'Authorization: Bearer <API_TOKEN>'

Delete a backup

You can delete a backup associated with a managed application.

Before you begin

You must have the following:

• ID of the managed app that owns the backup. If needed you can use the workflow List the managed apps

to locate the application.

• ID of the backup you want to delete. If needed you can use the workflow List the backups to locate the

snapshot.

1. Delete the backup

Perform the following REST API call.

You can force the deletion of a failed backup using the optional request header as described

below.

HTTP method Path

DELETE /accounts/{account_id}/k8s/v1/managedApps/{managedApp_id}/appBackups/{app

Backup_id}

45

Additional input parameters

In addition to the parameters common with all REST API calls, the following parameters are also used in the

curl examples for this step.

Parameter Type Required Description

managed app id Path Yes Identifies the managed application owning the backup.

backup id Path Yes Identifies the backup to be deleted.

force delete Header No Used to force the deletion of a failed backup.

Curl example: Delete a single backup for the app

curl --location -i --request DELETE

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/k8s/v1/managedApps/<MANAGED

_APP_ID>/appBackups/<BACKUP_ID>' --header 'Accept: */*' --header

'Authorization: Bearer <API_TOKEN>'

Curl example: Delete a single backup for the app with the force option

curl --location -i --request DELETE

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/k8s/v1/managedApps/<MANAGED

_APP_ID>/appBackups/<BACKUP_ID>' --header 'Accept: */*' --header

'Authorization: Bearer <API_TOKEN>' --header 'Force-Delete: true'

Cloning and restoring an app

Clone a managed app

You can create a new application by cloning an existing managed app.

Before you begin

Note the following about this workflow:

• An app backup or snapshot is not used

• The clone operation is performed within the same cluster

To clone an app to a different cluster, you need to update the clusterId parameter in the

JSON input as appropriate for your environment.

1. Select the managed app to clone

Perform the workflow List the managed apps and select application you want to clone. Several of the resource

values are needed for the REST call used to clone the app.

46

2. Clone the app

Perform the following REST API call.

HTTP method Path

POST /account/{accountID}/k8s/v1/managedApps

Additional input parameters

In addition to the parameters common with all REST API calls, the following parameters are also used in the

curl examples for this step.

Parameter Type Required Description

JSON Body Yes Provides the parameters for the cloned app. See the

example below.

JSON input example

{

 "type": "application/astra-managedApp",

 "version": "1.0",

 "name": "postgres1-postgresql-clone",

 "clusterID": "30880586-d579-4d27-930f-a9633e59173b",

 "sourceClusterID": "30880586-d579-4d27-930f-a9633e59173b",

 "namespace": "davidns-postgres-app",

 "sourceAppID": "e591ee59-ea90-4a9f-8e6c-d2b6e8647096"

}

Curl example: Clone an app

curl --location -i --request POST

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/k8s/v1/managedApps'

--header 'Content-Type: application/astra-managedApp+json' --header '*/*'

--header 'Authorization: Bearer <API_TOKEN>' --d @JSONinput

Clone a managed app from a snapshot

You can create a new application by cloning it from an app snapshot.

Before you begin

Note the following about this workflow:

• An app snapshot is used

• The clone operation is performed within the same cluster

47

To clone an app to a different cluster, you need to update the clusterId parameter in the

JSON input as appropriate for your environment.

1. Select the managed app to clone

Perform the workflow List the managed apps and select application you want to clone. Several of the resource

values are needed for the REST call used to clone the app.

2. Select the snapshot to use

Perform the workflow List the snapshots and select snapshot you want to use.

3. Clone the app

Perform the following REST API call.

HTTP method Path

POST /account/{accountID}/k8s/v1/managedApps

Additional input parameters

In addition to the parameters common with all REST API calls, the following parameters are also used in the

curl examples for this step.

Parameter Type Required Description

JSON Body Yes Provides the parameters for the cloned app. See the

example below.

JSON input example

{

 "type": "application/astra-managedApp",

 "version": "1.0",

 "name": "postgres1-postgresql-clone",

 "clusterID": "30880586-d579-4d27-930f-a9633e59173b",

 "sourceClusterID": "30880586-d579-4d27-930f-a9633e59173b",

 "namespace": "davidns-postgres-app",

 "snapshotID": "e24515bd-a28e-4b28-b832-f3c74dbf32fb",

 "sourceAppID": "e591ee59-ea90-4a9f-8e6c-d2b6e8647096"

}

Curl example: Clone an app from a snapshot

48

curl --location -i --request POST

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/k8s/v1/managedApps'

--header 'Content-Type: application/astra-managedApp+json' --header '*/*'

--header 'Authorization: Bearer <API_TOKEN>' --d @JSONinput

Clone a managed app from a backup

You can create a new managed application by cloning it from an app backup.

Before you begin

Note the following about this workflow:

• An app backup is used

• The clone operation is performed within the same cluster

To clone an app to a different cluster, you need to update the clusterId parameter in the

JSON input as appropriate for your environment.

1. Select the managed app to clone

Perform the workflow List the managed apps and select application you want to clone. Several of the resource

values are needed for the REST call used to clone the app.

2. Select the backup to use

Perform the workflow List the backups and select backup you want to use.

3. Clone the app

Perform the following REST API call.

HTTP method Path

POST /account/{accountID}/k8s/v1/managedApps

Additional input parameters

In addition to the parameters common with all REST API calls, the following parameters are also used in the

curl examples for this step.

Parameter Type Required Description

JSON Body Yes Provides the parameters for the cloned app. See the

example below.

JSON input example

49

{

 "type": "application/astra-managedApp",

 "version": "1.0",

 "name": "postgres1-postgresql-clone",

 "clusterID": "30880586-d579-4d27-930f-a9633e59173b",

 "sourceClusterID": "30880586-d579-4d27-930f-a9633e59173b",

 "namespace": "davidns-postgres-app",

 "backupID": "e24515bd-a28e-4b28-b832-f3c74dbf32fb",

 "sourceAppID": "e591ee59-ea90-4a9f-8e6c-d2b6e8647096"

}

Curl example: Clone an app from a backup

curl --location -i --request POST

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/k8s/v1/managedApps'

--header 'Content-Type: application/astra-managedApp+json' --header '*/*'

--header 'Authorization: Bearer <API_TOKEN>' --d @JSONinput

Restore a managed app from a backup

You can restore a managed application by creating a new app from a backup.

1. Select the managed app to restore

Perform the workflow List the managed apps and select application you want to clone. Several of the resource

values are needed for the REST call used to clone the app.

2. Select the backup to use

Perform the workflow List the backups and select backup you want to use.

3. Restore the app

Perform the following REST API call. You must provide the ID for either a backup (as shown below) or

snapshot.

HTTP method Path

PUT /account/{accountID}/k8s/v1/managedApps/{appID}

Additional input parameters

In addition to the parameters common with all REST API calls, the following parameters are also used in the

curl examples for this step.

50

Parameter Type Required Description

JSON Body Yes Provides the parameters for the cloned app. See the

example below.

JSON input example

{

 "type": "application/astra-managedApp",

 "version": "1.2",

 "backupID": "e24515bd-a28e-4b28-b832-f3c74dbf32fb"

}

Curl example: Restore an app in place from a backup

curl --location -i --request PUT

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/k8s/v1/managedApps/<APP_ID>

' --header 'Content-Type: application/astra-managedApp+json' --header

'*/*' --header 'ForceUpdate: true' --header 'Authorization: Bearer

<API_TOKEN>' --d @JSONinput

Support

List the notifications

You can list the notifications for a specific Astra account. You might do this as part of

monitoring the system activity or debugging an issue.

1. List the notifications

Perform the following REST API call.

HTTP method Path

GET /account/{accountID}/core/v1/notifications

Additional input parameters

In addition to the parameters common with all REST API calls, the following parameters are also used in the

curl examples for this step.

Parameter Type Required Description

filter Query No Optionally filter the notifications you want returned in the

response.

include Query No Optionally select the values you want returned in the

response.

51

Curl example: Return all notifications

curl --location -i --request GET

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/core/v1/notifications'

--header 'Accept: */*' --header 'Authorization: Bearer <API_TOKEN>'

Curl example: Return the description for notifications with severity of warning

curl --location -i --request GET

'https://astra.netapp.io/accounts/<ACCOUNT_ID>/core/v1/notifications?filte

r=severity%20eq%20'warning'&include=description' --header 'Accept: */*'

--header 'Authorization: Bearer <API_TOKEN>'

JSON output example

{

 "items": [

 [

 "Trident on cluster david-ie-00 has failed or timed out;

installation of the Trident operator failed or is not yet complete;

operator failed to reach an installed state within 300.00 seconds;

container trident-operator not found in operator deployment"

],

 [

 "Trident on cluster david-ie-00 has failed or timed out;

installation of the Trident operator failed or is not yet complete;

operator failed to reach an installed state within 300.00 seconds;

container trident-operator not found in operator deployment"

]

],

 "metadata": {}

}

Delete a failed app

You might be unable to remove a managed app if it has a backup or snapshot in a failed

state. In this case you can manually remove the app using the workflow described below.

1. Select the managed app to delete

Perform the workflow List the managed apps and select application you want to remove.

52

2. List the existing backups for the app

Perform the workflow List the backups.

3. Delete all the backups

Delete all the app backups by performing the workflow Delete a backup for each backup in the list.

4. List the existing snapshots for the app

Perform the workflow List the snapshots.

5. Delete all the snapshots

Perform the workflow Delete a snapshot from each snapshot in the list.

6. Remove the application

Perform the workflow Unmanage an app to remove the application.

53

Using Python

NetApp Astra Control Python SDK

NetApp Astra Control Python SDK is an open source package you can use to automate

an Astra Control deployment. The package is also a valuable resource for learning about

the Astra Control REST API, perhaps as part of creating your own automation platform.

For simplicity, the NetApp Astra Control Python SDK will be referred to as the SDK throughout

the remainder this page.

Two related software tools

The SDK includes two different though related tools which operate at different levels of abstraction when

accessing the Astra Control REST API.

Astra SDK

The Astra SDK provides the core platform functionality. It includes a set of Python classes which abstract the

underlying REST API calls. The classes support administrative actions on various Astra Control resources,

including apps, backups, snapshots, and clusters.

The Astra SDK is one part of the package and is provided in the single astraSDK.py file. You can import this

file into your environment and use the classes directly.

The NetApp Astra Control Python SDK (or just SDK) is the name of the entire package. The

Astra SDK refers to the core Python classes in the single file astraSDK.py.

Toolkit script

In addition to the Astra SDK file, the toolkit.py script is also available. This script operates at a higher level

of abstraction by providing access to discrete administrative actions defined internally as Python functions. The

script imports the Astra SDK and makes calls to the classes as needed.

How to access

You can access the SDK in the following ways.

Python package

The SDK is available at Python Package Index under the name netapp-astra-toolkits. The package is

assigned a version number and will continue to be updated as needed. You must use the PiP package

management utility to install the package into your environment.

See PyPI: NetApp Astra Control Python SDK for more information.

GitHub source code

The SDK source code is also available at GitHub. The repository includes the following:

• astraSDK.py (Astra SDK with Python classes)

• toolkit.py (higher level function-based script)

54

https://pypi.org/
https://pypi.org/project/netapp-astra-toolkits/

• Detailed installation requirements and instructions

• Installation scripts

• Additional documentation

You can clone the GitHub: Netapp/netapp-astra-toolkits repository to your local environment.

Installation and basic requirements

There are several options and requirements to consider as part of installing the package and preparing to use

it.

Summary of the installation options

You can install the SDK in one of the following ways:

• Use Pip to install the package from PyPI into your Python environment

• Clone the Git Hub repository and either:

◦ Deploy the package as a Docker container (which includes everything you need)

◦ Copy the two core Python files so they are accessible to your Python client code

Refer to the PyPI and GitHub pages for more information.

Requirements for the Astra Control environment

Whether directly using the Python classes in the Astra SDK or the functions in the toolkit.py script,

ultimately you’ll be accessing the REST API at an Astra Control deployment. Because of this you’ll need an

Astra account along with an API token. See Before you begin and the other pages in the Get started section of

this documentation for more information.

Requirements for the NetApp Astra Control Python SDK

The SDK has several prerequisites related to the local Python environment. For example, you must use Python

3.5 or later. In addition, there are several Python packages that are required. See the GitHub repository page

or PyPI package page for more information.

Summary of helpful resources

Here are some the resources you’ll need to get started.

• PyPI: NetApp Astra Control Python SDK

• GitHub: Netapp/netapp-astra-toolkits

Native Python

Before you begin

Python is a popular development language especially for datacenter automation. Before

using the native features of Python together with several common packages, you need to

prepare the environment and the required input files.

55

https://github.com/NetApp/netapp-astra-toolkits
https://pypi.org/project/netapp-astra-toolkits/
https://github.com/NetApp/netapp-astra-toolkits

In addition to accessing the Astra Control REST API directly using Python, NetApp also provides

a toolkit package which abstracts the API and removes some of the complexities. See NetApp

Astra Control Python SDK for more information.

Prepare the environment

The basic configuration requirements to run the Python scripts are described below.

Python 3

You need to have the latest version of Python 3 installed.

Additional libraries

The Requests and urllib3 libraries must be installed. You can use pip or another Python management tool as

appropriate for your environment.

Network access

The workstation where the scripts run must have network access and be able to reach Astra Control. When

using Astra Control Service, you must be connected to the internet and be able to connect to the service at

https://astra.netapp.io.

Identity information

You need a valid Astra account with the account identifier and API token. See Get an API token for more

information.

Create the JSON input files

The Python scripts rely on configuration information contained in JSON input files. Sample files are provided

below.

You need to update the samples as appropriate for your environment.

Identity information

The following file contains the API token and Astra account. You need to pass this file to Python scripts using

the -i (or --identity) CLI parameter.

{

 "api_token": "kH4CA_uVIa8q9UuPzhJaAHaGlaR7-no901DkkrVjIXk=",

 "account_id": "5131dfdf-03a4-5218-ad4b-fe84442b9786"

}

List the managed apps

You can use the following script to list the managed applications for your Astra account.

See Before you begin for an example of the required JSON input file.

 1 #!/usr/bin/env python3

56

https://astra.netapp.io

 2

57

##--

 3 #

 4 # Usage: python3 list_man_apps.py -i identity_file.json

 5 #

 6 # (C) Copyright 2021 NetApp, Inc.

 7 #

 8 # This sample code is provided AS IS, with no support or warranties of

 9 # any kind, including but not limited for warranties of

merchantability

 10 # or fitness of any kind, expressed or implied. Permission to use,

 11 # reproduce, modify and create derivatives of the sample code is

granted

 12 # solely for the purpose of researching, designing, developing and

 13 # testing a software application product for use with NetApp products,

 14 # provided that the above copyright notice appears in all copies and

 15 # that the software application product is distributed pursuant to

terms

 16 # no less restrictive than those set forth herein.

 17 #

 18

##--

 19

 20 import argparse

 21 import json

 22 import requests

 23 import urllib3

 24 import sys

 25

 26 # Global variables

 27 api_token = ""

 28 account_id = ""

 29

 30 def get_managed_apps():

 31 ''' Get and print the list of managed apps '''

 32

 33 # Global variables

 34 global api_token

 35 global account_id

 36

 37 # Create an HTTP session

 38 sess1 = requests.Session()

 39

 40 # Suppress SSL unsigned certificate warning

58

 41 urllib3.disable_warnings(urllib3.exceptions.

 InsecureRequestWarning)

 42

 43 # Create URL

 44 url1 = "https://astra.netapp.io/accounts/" + account_id +

 "/k8s/v1/managedApps"

 45

 46 # Headers and response output

 47 req_headers = {}

 48 resp_headers = {}

 49 resp_data = {}

 50

 51 # Prepare the request headers

 52 req_headers.clear

 53 req_headers['Authorization'] = "Bearer " + api_token

 54 req_headers['Content-Type'] = "application/astra-managedApp+json"

 55 req_headers['Accept'] = "application/astra-managedApp+json"

 56

 57 # Make the REST call

 58 try:

 59 resp1 = sess1.request('get', url1, headers=req_headers,

 allow_redirects=True, verify=False)

 60

 61 except requests.exceptions.ConnectionError:

 62 print("Connection failed")

 63 sys.exit(1)

 64

 65 # Retrieve the output

 66 http_code = resp1.status_code

 67 resp_headers = resp1.headers

 68

 69 # Print the list of managed apps

 70 if resp1.ok:

 71 resp_data = json.loads(resp1.text)

 72 items = resp_data['items']

 73 for i in items:

 74 print(" ")

 75 print("Name: " + i['name'])

 76 print("ID: " + i['id'])

 77 print("State: " + i['state'])

 78 else:

 79 print("Failed with HTTP status code: " + str(http_code))

 80

 81 print(" ")

 82

 83 # Close the session

59

 84 sess1.close()

 85

 86 return

 87

 88 def read_id_file(idf):

 89 ''' Read the identity file and save values '''

 90

 91 # Global variables

 92 global api_token

 93 global account_id

 94

 95 with open(idf) as f:

 96 data = json.load(f)

 97

 98 api_token = data['api_token']

 99 account_id = data['account_id']

100

101 return

102

103 def main(args):

104 ''' Main top level function '''

105

106 # Global variables

107 global api_token

108 global account_id

109

110 # Retrieve name of JSON input file

111 identity_file = args.id_file

112

113 # Get token and account

114 read_id_file(identity_file)

115

116 # Issue REST call

117 get_managed_apps()

118

119 return

120

121 def parseArgs():

122 ''' Parse the CLI input parameters '''

123

124 parser = argparse.ArgumentParser(description='Astra REST API -

 List the managed apps',

125 add_help = True)

126 parser.add_argument("-i", "--identity", action="store", dest

 ="id_file", default=None,

127 help='(Req) Name of the identity input

60

 file', required=True)

128

129 return parser.parse_args()

130

131 if __name__ == '__main__':

132 ''' Begin here '''

133

134 # Parse input parameters

135 args = parseArgs()

136

137 # Call main function

138 main(args)

61

API reference

You can access the details of all the Astra Control REST API calls, including the HTTP

methods, input parameters, and responses. This complete reference is helpful when

developing automation applications using the REST API.

The REST API reference documentation is currently provided with Astra Control and is available

online.

Before you begin

You need an account for Astra Control Center or Astra Control Service.

Steps

1. Sign in to Astra using your account credentials.

Access the following site for Astra Control Service: https://astra.netapp.io

2. Click the figure icon at the top right of the page and select API access.

3. At the top of the page click the URL displayed under API Documentation.

4. Provide your account credentials again if prompted.

62

https://astra.netapp.io

Additional resources

There are additional resources you can access to get help and find more information

about NetApp cloud services and support as well as general REST and cloud concepts.

Astra

• Astra Control Center 22.04 documentation

Documentation for the current release of the Astra Control Center software deployed on the customer

premises.

• Astra Control Service documentation

Documentation for the current release of the Astra Control Service software available in the public cloud.

• Astra Trident documentation

Documentation for the current release of the Astra Trident software, an open source storage orchestrator

maintained by NetApp.

• Astra family documentation

Central location for accessing all the Astra documentation for both on-premises and public cloud

deployments.

NetApp cloud resources

• NetApp Cloud Solutions

Central site for the NetApp cloud solutions.

• NetApp Cloud Central console

NetApp Cloud Central service console with sign in.

• NetApp Support

Access troubleshooting tools, documentation, and technical support assistance.

REST and cloud concepts

• PhD dissertation by Roy Fielding

This publication introduced and established the REST application development model.

• Auth0

This is the authentication and authorization platform service used by the Astra service for web access.

• RFC editor

63

https://docs.netapp.com/us-en/astra-control-center-2204/
https://docs.netapp.com/us-en/astra-control-service/
https://docs.netapp.com/us-en/trident/
https://docs.netapp.com/us-en/astra-family/
https://cloud.netapp.com/
https://services.cloud.netapp.com/redirect-to-login?startOnSignup=false
https://mysupport.netapp.com/
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://auth0.com/
https://www.rfc-editor.org/

Authoritative source for web and Internet standards maintained as a collection of uniquely numbered RFC

documents.

64

Earlier versions of Astra Control Automation
documentation

You can access the automation documentation for previous Astra Control releases at the

links below.

• Astra Control Automation 21.12 documentation

• Astra Control Automation 21.08 documentation

65

https://docs.netapp.com/us-en/astra-automation-2112/
https://docs.netapp.com/us-en/astra-automation-2108/

Legal notices

Legal notices provide access to copyright statements, trademarks, patents, and more.

Copyright

https://www.netapp.com/company/legal/copyright/

Trademarks

NETAPP, the NETAPP logo, and the marks listed on the NetApp Trademarks page are trademarks of NetApp,

Inc. Other company and product names may be trademarks of their respective owners.

https://www.netapp.com/company/legal/trademarks/

Patents

A current list of NetApp owned patents can be found at:

https://www.netapp.com/pdf.html?item=/media/11887-patentspage.pdf

Privacy policy

https://www.netapp.com/company/legal/privacy-policy/

Astra Control API license

https://docs.netapp.com/us-en/astra-automation/media/astra-api-license.pdf

66

https://www.netapp.com/company/legal/copyright/
https://www.netapp.com/company/legal/trademarks/
https://www.netapp.com/pdf.html?item=/media/11887-patentspage.pdf
https://www.netapp.com/company/legal/privacy-policy/
https://docs.netapp.com/us-en/astra-automation/media/astra-api-license.pdf

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

67

http://www.netapp.com/TM

	Astra Control Automation 22.04 documentation : Astra Automation 22.04
	Table of Contents
	Astra Control Automation 22.04 documentation
	Release notes
	About this release
	What’s new with the Astra Control REST API
	Known issues

	Introduction to the Astra Control REST API
	Get started
	Before you begin
	Get an API token
	Hello world
	Prepare to use the workflows
	Basic Kubernetes concepts

	Core REST implementation
	REST web services
	Resources and collections
	HTTP details
	URL format

	Resources and endpoints
	Summary of Astra Control REST resources
	New endpoints with the current release
	Additional resources and endpoints

	Additional usage considerations
	RBAC security
	Work with collections
	Diagnostics and support
	Revoke an API token

	Infrastructure workflows
	Before you begin
	Identity and access
	Buckets
	Storage
	Clusters

	Management workflows
	Before you begin
	App control
	App protection
	Cloning and restoring an app
	Support

	Using Python
	NetApp Astra Control Python SDK
	Native Python

	API reference
	Additional resources
	Astra
	NetApp cloud resources
	REST and cloud concepts

	Earlier versions of Astra Control Automation documentation
	Legal notices
	Copyright
	Trademarks
	Patents
	Privacy policy
	Astra Control API license

