Skip to main content
ONTAP SAN Host Utilities

Configure SUSE Linux Enterprise Server 16 for NVMe-oF with ONTAP storage

Contributors netapp-pcarriga

The SUSE Linux Enterprise Server 16 host supports the NVMe over Fibre Channel (NVMe/FC) and NVMe over TCP (NVMe/TCP) protocols with Asymmetric Namespace Access (ANA). ANA provides multipathing functionality equivalent to asymmetric logical unit access (ALUA) in iSCSI and FCP environments.

Learn how to configure NVMe over Fabrics (NVMe-oF) hosts for SUSE Linux Enterprise Server 16. For more support and feature information, see ONTAP support and features.

NVMe-oF with SUSE Linux Enterprise Server 16 has the following known limitations:

  • The nvme disconnect-all command disconnects both root and data filesystems and might lead to system instability. Do not issue this on systems booting from SAN over NVMe-TCP or NVMe-FC namespaces.

  • NetApp sanlun host utility support isn't available for NVMe-oF. Instead, you can rely on the NetApp plug-in included in the native nvme-cli package for all NVMe-oF transports.

Step 1: Optionally, enable SAN booting

You can configure your host to use SAN booting to simplify deployment and improve scalability. Use the Interoperability Matrix Tool to verify that your Linux OS, host bus adapter (HBA), HBA firmware, HBA boot BIOS, and ONTAP version support SAN booting.

Steps
  1. Create a NVMe namespace and map it to the host.

  2. Enable SAN booting in the server BIOS for the ports to which the SAN boot namespace is mapped.

    For information on how to enable the HBA BIOS, see your vendor-specific documentation.

  3. Reboot the host and verify that the OS is up and running.

Step 2: Install SUSE Linux Enterprise Server and NVMe software and verify your configuration

To configure your host for NVMe-oF you need to install the host and NVMe software packages, enable multipathing, and verify your host NQN configuration.

Steps
  1. Install SUSE Linux Enterprise Server 16 on the server. After the installation is complete, verify that you are running the specified SUSE Linux Enterprise Server 16 kernel:

    uname -r

    Example SUSE Linux Enterprise Server kernel version:

    6.12.0-160000.6-default
  2. Install the nvme-cli package:

    rpm -qa|grep nvme-cli

    The following example shows an nvme-cli package version:

    nvme-cli-2.11+29.g35e62868-160000.1.1.x86_64
  3. Install the libnvme package:

    rpm -qa|grep libnvme

    The following example shows an libnvme package version:

    libnvme1-1.11+17.g6d55624d-160000.1.1.x86_64
  4. On the host, check the hostnqn string at /etc/nvme/hostnqn:

    cat /etc/nvme/hostnqn

    The following example shows a hostnqn version:

    nqn.2014-08.org.nvmexpress:uuid:d3b581b4-c975-11e6-8425-0894ef31a074
  5. On the ONTAP system, verify that the hostnqn string matches the hostnqn string for the corresponding subsystem on the ONTAP array:

    ::> vserver nvme subsystem host show -vserver vs_coexistence_emulex
    Show example
    Vserver Subsystem Priority  Host NQN
    ------- --------- --------  ------------------------------------------------
    vs_coexistence_emulex
            nvme1
                      regular   nqn.2014-08.org.nvmexpress:uuid:d3b581b4-c975-11e6-8425-0894ef31a074
            nvme10
                      regular   nqn.2014-08.org.nvmexpress:uuid:d3b581b4-c975-11e6-8425-0894ef31a074
            nvme11
                      regular   nqn.2014-08.org.nvmexpress:uuid:d3b581b4-c975-11e6-8425-0894ef31a074
            nvme12
                      regular   nqn.2014-08.org.nvmexpress:uuid:d3b581b4-c975-11e6-8425-0894ef31a074
    4 entries were displayed.
    Note If the hostnqn strings do not match, use the vserver modify command to update the hostnqn string on your corresponding ONTAP array subsystem to match the hostnqn string from /etc/nvme/hostnqn on the host.

Step 3: Configure NVMe/FC and NVMe/TCP

Configure NVMe/FC with Broadcom/Emulex or Marvell/QLogic adapters, or configure NVMe/TCP using manual discovery and connect operations.

NVMe/FC - Broadcom/Emulex

Configure NVMe/FC for a Broadcom/Emulex FC adapter.

Steps
  1. Verify that you are using the supported adapter model:

    1. Display the model names:

      cat /sys/class/scsi_host/host*/modelname

      You should see the following output:

      SN37A92079
      SN37A92079
    2. Display the model descriptions:

      cat /sys/class/scsi_host/host*/modeldesc

      You should see the following output:

      Emulex SN37A92079 32Gb 2-Port Fibre Channel Adapter
      Emulex SN37A92079 32Gb 2-Port Fibre Channel Adapter
  2. Verify that you are using the recommended Broadcom lpfc firmware and inbox driver:

    1. Display the firmware version:

      cat /sys/class/scsi_host/host*/fwrev

      The following example shows firmware versions:

      14.4.393.53, sli-4:6:d
      14.4.393.53, sli-4:6:d
    2. Display the inbox driver version:

      cat /sys/module/lpfc/version

      The following example shows a driver version:

      0:14.4.0.11

    For the current list of supported adapter driver and firmware versions, see the Interoperability Matrix Tool.

  3. Verify that the expected output of lpfc_enable_fc4_type is set to 3:

    cat /sys/module/lpfc/parameters/lpfc_enable_fc4_type
  4. Verify that you can view your initiator ports:

    cat /sys/class/fc_host/host*/port_name

    You should see an output similar to:

    0x100000109bdacc75
    0x100000109bdacc76
  5. Verify that your initiator ports are online:

    cat /sys/class/fc_host/host*/port_state

    You should see the following output:

    Online
    Online
  6. Verify that the NVMe/FC initiator ports are enabled and that the target ports are visible:

    cat /sys/class/scsi_host/host*/nvme_info
    Show example output
    NVME Initiator Enabled
    XRI Dist lpfc0 Total 6144 IO 5894 ELS 250
    NVME LPORT lpfc0 WWPN x100000109bdacc75 WWNN x200000109bdacc75 DID x060100 ONLINE
    NVME RPORT       WWPN x2001d039ea951c45 WWNN x2000d039ea951c45 DID x080801 TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2003d039ea951c45 WWNN x2000d039ea951c45 DID x080d01 TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2024d039eab31e9c WWNN x2023d039eab31e9c DID x020a09 TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2026d039eab31e9c WWNN x2023d039eab31e9c DID x020a08 TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2003d039ea5cfc90 WWNN x2002d039ea5cfc90 DID x061b01 TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2012d039ea5cfc90 WWNN x2011d039ea5cfc90 DID x061b05 TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2005d039ea5cfc90 WWNN x2002d039ea5cfc90 DID x061201 TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2014d039ea5cfc90 WWNN x2011d039ea5cfc90 DID x061205 TARGET DISCSRVC ONLINE
    
    NVME Statistics
    LS: Xmt 0000017242 Cmpl 0000017242 Abort 00000000
    LS XMIT: Err 00000000  CMPL: xb 00000000 Err 00000000
    Total FCP Cmpl 0000000000378362 Issue 00000000003783c7 OutIO 0000000000000065
            abort 00000409 noxri 00000000 nondlp 0000003a qdepth 00000000 wqerr 00000000 err 00000000
    FCP CMPL: xb 00000409 Err 0000040a
    
    NVME Initiator Enabled
    XRI Dist lpfc1 Total 6144 IO 5894 ELS 250
    NVME LPORT lpfc1 WWPN x100000109bdacc76 WWNN x200000109bdacc76 DID x062800 ONLINE
    NVME RPORT       WWPN x2002d039ea951c45 WWNN x2000d039ea951c45 DID x080701 TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2004d039ea951c45 WWNN x2000d039ea951c45 DID x081501 TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2025d039eab31e9c WWNN x2023d039eab31e9c DID x020913 TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2027d039eab31e9c WWNN x2023d039eab31e9c DID x020912 TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2006d039ea5cfc90 WWNN x2002d039ea5cfc90 DID x061401 TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2015d039ea5cfc90 WWNN x2011d039ea5cfc90 DID x061405 TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2004d039ea5cfc90 WWNN x2002d039ea5cfc90 DID x061301 TARGET DISCSRVC ONLINE
    NVME RPORT       WWPN x2013d039ea5cfc90 WWNN x2011d039ea5cfc90 DID x061305 TARGET DISCSRVC ONLINE
    
    NVME Statistics
    LS: Xmt 0000017428 Cmpl 0000017428 Abort 00000000
    LS XMIT: Err 00000000  CMPL: xb 00000000 Err 00000000
    Total FCP Cmpl 00000000003443be Issue 000000000034442a OutIO 000000000000006c
            abort 00000491 noxri 00000000 nondlp 00000086 qdepth 00000000 wqerr 00000000 err 00000000
    FCP CMPL: xb 00000491 Err 00000494
NVMe/FC - Marvell/QLogic

Configure NVMe/FC for a Marvell/QLogic adapter.

Steps
  1. Verify that you are running the supported adapter driver and firmware versions:

    cat /sys/class/fc_host/host*/symbolic_name

    The follow example shows driver and firmware versions:

    QLE2772 FW:v9.15.06 DVR:v10.02.09.400-k-debug
    QLE2772 FW:v9.15.06 DVR:v10.02.09.400-k-debug
  2. Verify that ql2xnvmeenable is set. This enables the Marvell adapter to function as an NVMe/FC initiator:

    cat /sys/module/qla2xxx/parameters/ql2xnvmeenable

    The expected output is 1.

NVMe/TCP

The NVMe/TCP protocol doesn't support the auto-connect operation. Instead, you can discover the NVMe/TCP subsystems and namespaces by performing the NVMe/TCP connect or connect-all operations manually.

Steps
  1. Verify that the initiator port can fetch the discovery log page data across the supported NVMe/TCP LIFs:

    nvme discover -t tcp -w <host-traddr> -a <traddr>
    Show example output
    nvme discover -t tcp -w 192.168.38.20 -a 192.168.38.10
    Discovery Log Number of Records 8, Generation counter 42
    =====Discovery Log Entry 0======
    trtype:  tcp
    adrfam:  ipv4
    subtype: current discovery subsystem
    treq:    not specified
    portid:  4
    trsvcid: 8009
    subnqn:  nqn.1992-08.com.netapp:sn.f8e2af201b7211f0ac2bd039eab67a95:discovery
    traddr:  192.168.211.71
    eflags:  explicit discovery connections, duplicate discovery information
    sectype: none
    =====Discovery Log Entry 1======
    trtype:  tcp
    adrfam:  ipv4
    subtype: current discovery subsystem
    treq:    not specified
    portid:  3
    trsvcid: 8009
    subnqn:  nqn.1992-08.com.netapp:sn.f8e2af201b7211f0ac2bd039eab67a95:discovery
    traddr:  192.168.111.71
    eflags:  explicit discovery connections, duplicate discovery information
    sectype: none
    =====Discovery Log Entry 2======
    trtype:  tcp
    adrfam:  ipv4
    subtype: current discovery subsystem
    treq:    not specified
    portid:  2
    trsvcid: 8009
    subnqn:  nqn.1992-08.com.netapp:sn.f8e2af201b7211f0ac2bd039eab67a95:discovery
    traddr:  192.168.211.70
    eflags:  explicit discovery connections, duplicate discovery information
    sectype: none
    =====Discovery Log Entry 3======
    trtype:  tcp
    adrfam:  ipv4
    subtype: current discovery subsystem
    treq:    not specified
    portid:  1
    trsvcid: 8009
    subnqn:  nqn.1992-08.com.netapp:sn.f8e2af201b7211f0ac2bd039eab67a95:discovery
    traddr:  192.168.111.70
    eflags:  explicit discovery connections, duplicate discovery information
    sectype: none
    =====Discovery Log Entry 4======
    trtype:  tcp
    adrfam:  ipv4
    subtype: nvme subsystem
    treq:    not specified
    portid:  4
    trsvcid: 4420
    subnqn:  nqn.1992-08.com.netapp:sn.f8e2af201b7211f0ac2bd039eab67a95:subsystem.sample_tcp_sub
    traddr:  192.168.211.71
    eflags:  none
    sectype: none
    =====Discovery Log Entry 5======
    trtype:  tcp
    adrfam:  ipv4
    subtype: nvme subsystem
    treq:    not specified
    portid:  3
    trsvcid: 4420
    subnqn:  nqn.1992-08.com.netapp:sn.f8e2af201b7211f0ac2bd039eab67a95:subsystem.sample_tcp_sub
    traddr:  192.168.111.71
    eflags:  none
    sectype: none
    =====Discovery Log Entry 6======
    trtype:  tcp
    adrfam:  ipv4
    subtype: nvme subsystem
    treq:    not specified
    portid:  2
    trsvcid: 4420
    subnqn:  nqn.1992-08.com.netapp:sn.f8e2af201b7211f0ac2bd039eab67a95:subsystem.sample_tcp_sub
    traddr:  192.168.211.70
    eflags:  none
    sectype: none
    =====Discovery Log Entry 7======
    trtype:  tcp
    adrfam:  ipv4
    subtype: nvme subsystem
    treq:    not specified
    portid:  1
    trsvcid: 4420
    subnqn:  nqn.1992-08.com.netapp:sn.f8e2af201b7211f0ac2bd039eab67a95:subsystem.sample_tcp_sub
    traddr:  192.168.111.70
    eflags:  none
    sectype: none
    localhost:~ #
  2. Verify that all other NVMe/TCP initiator-target LIF combinations can successfully fetch discovery log page data:

    nvme discover -t tcp -w <host-traddr> -a <traddr>
    Show example
    nvme discover -t tcp -w 192.168.38.20 -a 192.168.38.10
    nvme discover -t tcp -w 192.168.38.20 -a 192.168.38.11
    nvme discover -t tcp -w 192.168.39.20 -a 192.168.39.10
    nvme discover -t tcp -w 192.168.39.20 -a 192.168.39.11
  3. Run the nvme connect-all command across all the supported NVMe/TCP initiator-target LIFs across the nodes:

    nvme connect-all -t tcp -w <host-traddr> -a <traddr>
    Show example
    nvme	connect-all	-t	tcp	-w	192.168.38.20	-a	192.168.38.10
    nvme	connect-all	-t	tcp	-w	192.168.38.20	-a	192.168.38.11
    nvme	connect-all	-t	tcp	-w	192.168.39.20	-a	192.168.39.10
    nvme	connect-all	-t	tcp	-w	192.168.39.20	-a	192.168.39.11
Note

The setting for the NVMe/TCP ctrl_loss_tmo timeout is automatically set to "off". As a result:

  • There are no limits on the number of retries (indefinite retry).

  • You don't need to manually configure a specific ctrl_loss_tmo timeout duration when using the nvme connect or nvme connect-all commands (option -l ).

  • The NVMe/TCP controllers don't experience timeouts in the event of a path failure and remain connected indefinitely.

Step 4: Optionally, modify the iopolicy in the udev rules

Beginning with SUSE Linux Enterprise Server 16, the default iopolicy for NVMe-oF is set to queue-depth. If you want to change the iopolicy to round-robin, modify the udev rules file as follows:

Steps
  1. Open the udev rules file in a text editor with root privileges:

    /usr/lib/udev/rules.d/71-nvmf-netapp.rules

    You should see the following output:

    vi /usr/lib/udev/rules.d/71-nvmf-netapp.rules
  2. Find the line that sets iopolicy for the NetApp ONTAP Controller, as shown in the following example rule:

    ACTION=="add", SUBSYSTEM=="nvme-subsystem", ATTR{subsystype}=="nvm", ATTR{model}=="NetApp ONTAP Controller", ATTR{iopolicy}="queue-depth"
  3. Modify the rule so that queue-depth becomes round-robin:

    ACTION=="add", SUBSYSTEM=="nvme-subsystem", ATTR{subsystype}=="nvm", ATTR{model}=="NetApp ONTAP Controller", ATTR{iopolicy}="round-robin"
  4. Reload the udev rules and apply the changes:

    udevadm control --reload
    udevadm trigger --subsystem-match=nvme-subsystem
  5. Verify the current iopolicy for your subsystem. Replace <subsystem>, for example, nvme-subsys0.

    cat /sys/class/nvme-subsystem/<subsystem>/iopolicy

    You should see the following output:

    round-robin
Note The new iopolicy applies automatically to matching NetApp ONTAP Controller devices. You don't need to reboot.

Step 5: Optionally, enable 1MB I/O for NVMe/FC

ONTAP reports a Max Data Transfer Size (MDTS) of 8 in the Identify Controller data. This means the maximum I/O request size can be up to 1MB. To issue I/O requests of size 1MB for a Broadcom NVMe/FC host, you should increase the lpfc value of the lpfc_sg_seg_cnt parameter to 256 from the default value of 64.

Note These steps don't apply to Qlogic NVMe/FC hosts.
Steps
  1. Set the lpfc_sg_seg_cnt parameter to 256:

    cat /etc/modprobe.d/lpfc.conf

    You should see an output similar to the following example:

    options lpfc lpfc_sg_seg_cnt=256
  2. Run the dracut -f command, and reboot the host.

  3. Verify that the value for lpfc_sg_seg_cnt is 256:

    cat /sys/module/lpfc/parameters/lpfc_sg_seg_cnt

Step 6: Verify NVMe boot services

The nvmefc-boot-connections.service and nvmf-autoconnect.service boot services included in the NVMe/FC nvme-cli package are automatically enabled when the system boots.

After booting completes, verify that the nvmefc-boot-connections.service and nvmf-autoconnect.service boot services are enabled.

Steps
  1. Verify that nvmf-autoconnect.service is enabled:

    systemctl status nvmf-autoconnect.service
    Show example output
    nvmf-autoconnect.service - Connect NVMe-oF subsystems automatically during boot
      Loaded: loaded (/usr/lib/systemd/system/nvmf-autoconnect.service; enabled; vendor preset: disabled)
      Active: inactive (dead) since Thu 2024-05-25 14:55:00 IST; 11min ago
    Process: 2108 ExecStartPre=/sbin/modprobe nvme-fabrics (code=exited, status=0/SUCCESS)
    Process: 2114 ExecStart=/usr/sbin/nvme connect-all (code=exited, status=0/SUCCESS)
    Main PID: 2114 (code=exited, status=0/SUCCESS)
    
    systemd[1]: Starting Connect NVMe-oF subsystems automatically during boot...
    nvme[2114]: traddr=nn-0x201700a098fd4ca6:pn-0x201800a098fd4ca6 is already connected
    systemd[1]: nvmf-autoconnect.service: Deactivated successfully.
    systemd[1]: Finished Connect NVMe-oF subsystems automatically during boot.
  2. Verify that nvmefc-boot-connections.service is enabled:

    systemctl status nvmefc-boot-connections.service
    Show example output
    nvmefc-boot-connections.service - Auto-connect to subsystems on FC-NVME devices found during boot
       Loaded: loaded (/usr/lib/systemd/system/nvmefc-boot-connections.service; enabled; vendor preset: enabled)
       Active: inactive (dead) since Thu 2024-05-25 14:55:00 IST; 11min ago
     Main PID: 1647 (code=exited, status=0/SUCCESS)
    
    systemd[1]: Starting Auto-connect to subsystems on FC-NVME devices found during boot...
    systemd[1]: nvmefc-boot-connections.service: Succeeded.
    systemd[1]: Finished Auto-connect to subsystems on FC-NVME devices found during boot.

Step 7: Verify the multipathing configuration

Verify that the in-kernel NVMe multipath status, ANA status, and ONTAP namespaces are correct for the NVMe-oF configuration.

Steps
  1. Verify that the in-kernel NVMe multipath is enabled:

    cat /sys/module/nvme_core/parameters/multipath

    You should see the following output:

    Y
  2. Verify that the appropriate NVMe-oF settings (such as, model set to NetApp ONTAP Controller and load balancing iopolicy set to queue-depth) for the respective ONTAP namespaces correctly reflect on the host:

    1. Display the subsystems:

      cat /sys/class/nvme-subsystem/nvme-subsys*/model

      You should see the following output:

      NetApp ONTAP Controller
      NetApp ONTAP Controller
    2. Display the policy:

      cat /sys/class/nvme-subsystem/nvme-subsys*/iopolicy

      You should see the following output:

      queue-depth
      queue-depth
  3. Verify that the namespaces are created and correctly discovered on the host:

    nvme list
    Show example
    Node         SN                   Model
    ---------------------------------------------------------
    /dev/nvme7n1 81Ix2BVuekWcAAAAAAAB	NetApp ONTAP Controller
    
    Namespace Usage    Format             FW             Rev
    -----            21.47 GB / 21.47 GB	4 KiB + 0 B   FFFFFFFF
  4. Verify that the controller state of each path is live and has the correct ANA status:

    nvme list-subsys /dev/<controller_ID>
    Note Beginning with ONTAP 9.16.1, NVMe/FC and NVMe/TCP report all optimized paths on ASA r2 systems.
    NVMe/FC

    This following example outputs show a namespace hosted on a two-node ONTAP controller for AFF, FAS, and ASA systems and ASA r2 system with NVMe/FC.

    Show AFF, FAS, and ASA example output
     nvme-subsys114 - NQN=nqn.1992-08.com.netapp:sn.9e30b9760a4911f08c87d039eab67a95:subsystem.sles_161_27
                     hostnqn=nqn.2014-08.org.nvmexpress:uuid:f6517cae-3133-11e8-bbff-7ed30aef123f iopolicy=round-robin\
    +- nvme114 fc traddr=nn-0x234ed039ea359e4a:pn-0x2360d039ea359e4a,host_traddr=nn-0x20000090fae0ec88:pn-0x10000090fae0ec88 live optimized
    +- nvme115 fc traddr=nn-0x234ed039ea359e4a:pn-0x2362d039ea359e4a,host_traddr=nn-0x20000090fae0ec88:pn-0x10000090fae0ec88 live non-optimized
    +- nvme116 fc traddr=nn-0x234ed039ea359e4a:pn-0x2361d039ea359e4a,host_traddr=nn-0x20000090fae0ec89:pn-0x10000090fae0ec89 live optimized
    +- nvme117 fc traddr=nn-0x234ed039ea359e4a:pn-0x2363d039ea359e4a,host_traddr=nn-0x20000090fae0ec89:pn-0x10000090fae0ec89 live non-optimized
    Show ASA r2 example output
    nvme-subsys96 - NQN=nqn.1992-08.om.netapp:sn.b351b2b6777b11f0b3c2d039ea5cfc91:subsystem.nvme24
                    hostnqn=nqn.2014-08.org.nvmexpress:uuid:d3b581b4-c975-11e6-8425-0894ef31a074
    \
     +- nvme203 fc traddr=nn-0x2011d039ea5cfc90:pn-0x2015d039ea5cfc90,host_traddr=nn-0x200000109bdacc76:pn-0x100000109bdacc76 live optimized
     +- nvme25 fc traddr=nn-0x2011d039ea5cfc90:pn-0x2014d039ea5cfc90,host_traddr=nn-0x200000109bdacc75:pn-0x100000109bdacc75 live optimized
     +- nvme30 fc traddr=nn-0x2011d039ea5cfc90:pn-0x2012d039ea5cfc90,host_traddr=nn-0x200000109bdacc75:pn-0x100000109bdacc75 live optimized
     +- nvme32 fc traddr=nn-0x2011d039ea5cfc90:pn-0x2013d039ea5cfc90,host_traddr=nn-0x200000109bdacc76:pn-0x100000109bdacc76 live optimized
    NVMe/TCP

    This following example outputs show a namespace hosted on a two-node ONTAP controller for AFF, FAS, and ASA systems and ASA r2 systems with NVMe/TCP.

    Show AFF, FAS, and ASA example output
    nvme-subsys9 - NQN=nqn.1992-08.com.netapp:sn.9927e165694211f0b4f4d039eab31e9d:subsystem.nvme10
                   hostnqn=nqn.2014-08.org.nvmexpress:uuid:4c4c4544-0035-5910-804b-b7c04f444d33
    \
     +- nvme105 tcp traddr=192.168.39.10,trsvcid=4420,host_traddr=192.168.39.20,src_addr=192.168.39.20 live optimized
     +- nvme153 tcp traddr=192.168.39.11,trsvcid=4420,host_traddr=192.168.39.20,src_addr=192.168.39.20 live non-optimized
     +- nvme57 tcp traddr=192.168.38.11,trsvcid=4420,host_traddr=192.168.38.20,src_addr=192.168.38.20 live non-optimized
     +- nvme9 tcp traddr=192.168.38.10,trsvcid=4420,host_traddr=192.168.38.20,src_addr=192.168.38.20 live optimized
    Show ASA r2 example output
    nvme-subsys4 - NQN=nqn.1992-08.com.netapp:sn.17e32b6e8c7f11f09545d039eac03c33:subsystem.Bidirectional_DHCP_1_0
                   hostnqn=nqn.2014-08.org.nvmexpress:uuid:4c4c4544-0054-5110-8039-c3c04f523034
    \                                                                                                                                                                               +- nvme4 tcp traddr=192.168.20.28,trsvcid=4420,host_traddr=192.168.20.21,src_addr=192.168.20.21 live optimized
    +- nvme5 tcp traddr=192.168.20.29,trsvcid=4420,host_traddr=192.168.20.21,src_addr=192.168.20.21 live optimized
    +- nvme6 tcp traddr=192.168.21.28,trsvcid=4420,host_traddr=192.168.21.21,src_addr=192.168.21.21 live optimized
    +- nvme7 tcp traddr=192.168.21.29,trsvcid=4420,host_traddr=192.168.21.21,src_addr=192.168.21.21 live optimized
  5. Verify that the NetApp plug-in displays the correct values for each ONTAP namespace device:

    Column
    nvme netapp ontapdevices -o column
    Show example
    Device           Vserver                   Namespace Path    NSID UUID                                   Size
    ---------------- ------------------------- ----------------- ---- -------------------------------------- ---------
    /dev/nvme0n1     vs_coexistence_emulex     ns1               1    79510f05-7784-11f0-b3c2-d039ea5cfc91   21.47GB
    JSON
    nvme netapp ontapdevices -o json
    Show example
    {
    "ONTAPdevices":[{
          "Device":"/dev/nvme0n1",
          "Vserver":"vs_coexistence_emulex",
          "Namespace_Path":"ns1",
          "NSID":1,
          "UUID":"79510f05-7784-11f0-b3c2-d039ea5cfc91",
          "Size":"21.47GB",
          "LBA_Data_Size":4096,
          "Namespace_Size":5242880
        }  ]
    }

Step 8: Create a persistent discovery controller

You can create a persistent discovery controller (PDC) for a SUSE Linux Enterprise Server 16 host. A PDC is required to automatically detect an NVMe subsystem add or remove operation and changes to the discovery log page data.

Steps
  1. Verify that the discovery log page data is available and can be retrieved through the initiator port and target LIF combination:

    nvme discover -t <trtype> -w <host-traddr> -a <traddr>
    Show example output
    Discovery Log Number of Records 8, Generation counter 10
    =====Discovery Log Entry 0======
    trtype:  tcp
    adrfam:  ipv4
    subtype: current discovery subsystem
    treq:    not specified
    portid:  3
    trsvcid: 8009
    subnqn:  nqn.1992-08.com.netapp:sn.9927e165694211f0b4f4d039eab31e9d:discovery
    traddr:  192.168.39.10
    eflags:  explicit discovery connections, duplicate discovery information
    sectype: none
    =====Discovery Log Entry 1======
    trtype:  tcp
    adrfam:  ipv4
    subtype: current discovery subsystem
    treq:    not specified
    portid:  1
    trsvcid: 8009
    subnqn:  nqn.1992-08.com.netapp:sn.9927e165694211f0b4f4d039eab31e9d:discovery
    traddr:  192.168.38.10
    eflags:  explicit discovery connections, duplicate discovery information
    sectype: none
    =====Discovery Log Entry 2======
    trtype:  tcp
    adrfam:  ipv4
    subtype: current discovery subsystem
    treq:    not specified
    portid:  4
    trsvcid: 8009
    subnqn:  nqn.1992-08.com.netapp:sn.9927e165694211f0b4f4d039eab31e9d:discovery
    traddr:  192.168.39.11
    eflags:  explicit discovery connections, duplicate discovery information
    sectype: none
    =====Discovery Log Entry 3======
    trtype:  tcp
    adrfam:  ipv4
    subtype: current discovery subsystem
    treq:    not specified
    portid:  2
    trsvcid: 8009
    subnqn:  nqn.1992-08.com.netapp:sn.9927e165694211f0b4f4d039eab31e9d:discovery
    traddr:  192.168.38.11
    eflags:  explicit discovery connections, duplicate discovery information
    sectype: none
    =====Discovery Log Entry 4======
    trtype:  tcp
    adrfam:  ipv4
    subtype: nvme subsystem
    treq:    not specified
    portid:  3
    trsvcid: 4420
    subnqn:  nqn.1992-08.com.netapp:sn.9927e165694211f0b4f4d039eab31e9d:subsystem.nvme1
    traddr:  192.168.39.10
    eflags:  none
    sectype: none
    =====Discovery Log Entry 5======
    trtype:  tcp
    adrfam:  ipv4
    subtype: nvme subsystem
    treq:    not specified
    portid:  1
    trsvcid: 4420
    subnqn:  nqn.1992-08.com.netapp:sn.9927e165694211f0b4f4d039eab31e9d:subsystem.nvme1
    traddr:  192.168.38.10
    eflags:  none
    sectype: none
    =====Discovery Log Entry 6======
    trtype:  tcp
    adrfam:  ipv4
    subtype: nvme subsystem
    treq:    not specified
    portid:  4
    trsvcid: 4420
    subnqn:  nqn.1992-08.com.netapp:sn.9927e165694211f0b4f4d039eab31e9d:subsystem.nvme1
    traddr:  192.168.39.11
    eflags:  none
    sectype: none
    =====Discovery Log Entry 7======
    trtype:  tcp
    adrfam:  ipv4
    subtype: nvme subsystem
    treq:    not specified
    portid:  2
    trsvcid: 4420
    subnqn:  nqn.1992-08.com.netapp:sn.9927e165694211f0b4f4d039eab31e9d:subsystem.nvme1
    traddr:  192.168.38.11
    eflags:  none
    sectype: none
  2. Create a PDC for the discovery subsystem:

    nvme discover -t <trtype> -w <host-traddr> -a <traddr> -p

    You should see the following output:

    nvme discover -t tcp -w 192.168.39.20 -a 192.168.39.11 -p
  3. From the ONTAP controller, verify that the PDC has been created:

    vserver nvme show-discovery-controller -instance -vserver <vserver_name>
    Show example output
    vserver nvme show-discovery-controller -instance -vserver vs_tcp_sles16
    Vserver Name: vs_tcp_sles16
                   Controller ID: 0180h
         Discovery Subsystem NQN: nqn.1992-08.com.netapp:sn.9927e165694211f0b4f4d039eab31e9d:discovery
               Logical Interface: lif3
                            Node: A400-12-171
                        Host NQN: nqn.2014-08.org.nvmexpress:uuid:4c4c4544-0035-5910-804b-b7c04f444d33
              Transport Protocol: nvme-tcp
     Initiator Transport Address: 192.168.39.20
    Transport Service Identifier: 8009
                 Host Identifier: 4c4c454400355910804bb7c04f444d33
               Admin Queue Depth: 32
           Header Digest Enabled: false
             Data Digest Enabled: false
       Keep-Alive Timeout (msec): 30000

Step 9: Set up secure in-band authentication

Secure in-band authentication is supported over NVMe/TCP between a SUSE Linux Enterprise Server 16 host and an ONTAP controller.

Each host or controller must be associated with a DH-HMAC-CHAP key to set up secure authentication. A DH-HMAC-CHAP key is a combination of the NQN of the NVMe host or controller and an authentication secret configured by the administrator. To authenticate its peer, an NVMe host or controller must recognize the key associated with the peer.

Steps

Set up secure in-band authentication using the CLI or a config JSON file. If you need to specify different dhchap keys for different subsystems, you must use a config JSON file.

CLI

Set up secure in-band authentication using the CLI.

  1. Obtain the host NQN:

    cat /etc/nvme/hostnqn
  2. Generate the dhchap key for the host.

    The following output describes the gen-dhchap-key command paramters:

    nvme gen-dhchap-key -s optional_secret -l key_length {32|48|64} -m HMAC_function {0|1|2|3} -n host_nqn
    •	-s secret key in hexadecimal characters to be used to initialize the host key
    •	-l length of the resulting key in bytes
    •	-m HMAC function to use for key transformation
    0 = none, 1- SHA-256, 2 = SHA-384, 3=SHA-512
    •	-n host NQN to use for key transformation

    In the following example, a random dhchap key with HMAC set to 3 (SHA-512) is generated.

    nvme gen-dhchap-key -m 3 -n nqn.2014-08.org.nvmexpress:uuid:4c4c4544-0035-5910-804b-b7c04f444d33
    DHHC-1:03:ohdxI1yIS8gBLwIOubcwl57rXcozYuRgBsoWaBvxEvpDlQHn/7dQ4JjFGwmhgwdJWmVoripbWbMJy5eMAbCahN4hhYU=:
  3. On the ONTAP controller, add the host and specify both dhchap keys:

    vserver nvme subsystem host add -vserver <svm_name> -subsystem <subsystem> -host-nqn <host_nqn> -dhchap-host-secret <authentication_host_secret> -dhchap-controller-secret <authentication_controller_secret> -dhchap-hash-function {sha-256|sha-512} -dhchap-group {none|2048-bit|3072-bit|4096-bit|6144-bit|8192-bit}
  4. A host supports two types of authentication methods, unidirectional and bidirectional. On the host, connect to the ONTAP controller and specify dhchap keys based on the chosen authentication method:

    nvme connect -t tcp -w <host-traddr> -a <tr-addr> -n <host_nqn> -S <authentication_host_secret> -C <authentication_controller_secret>
  5. Validate the nvme connect authentication command by verifying the host and controller dhchap keys:

    1. Verify the host dhchap keys:

      cat /sys/class/nvme-subsystem/<nvme-subsysX>/nvme*/dhchap_secret
      Show example output for a unidirectional configuration
      # cat /sys/class/nvme-subsystem/nvme-subsys1/nvme*/dhchap_secret
      DHHC-1:01:wkwAKk8r9Ip7qECKt7V5aIo/7Y1CH7DWkUfLfMxmseg39DFb:
      DHHC-1:01:wkwAKk8r9Ip7qECKt7V5aIo/7Y1CH7DWkUfLfMxmseg39DFb:
      DHHC-1:01:wkwAKk8r9Ip7qECKt7V5aIo/7Y1CH7DWkUfLfMxmseg39DFb:
      DHHC-1:01:wkwAKk8r9Ip7qECKt7V5aIo/7Y1CH7DWkUfLfMxmseg39DFb:
    2. Verify the controller dhchap keys:

      cat /sys/class/nvme-subsystem/<nvme-subsysX>/nvme*/dhchap_ctrl_secret
      Show example output for a bidirectional configuration
      # cat /sys/class/nvme-subsystem/nvme-subsys6/nvme*/dhchap_ctrl_secret
      DHHC-1:03:ohdxI1yIS8gBLwIOubcwl57rXcozYuRgBsoWaBvxEvpDlQHn/7dQ4JjFGwmhgwdJWmVoripbWbMJy5eMAbCahN4hhYU=:
      DHHC-1:03:ohdxI1yIS8gBLwIOubcwl57rXcozYuRgBsoWaBvxEvpDlQHn/7dQ4JjFGwmhgwdJWmVoripbWbMJy5eMAbCahN4hhYU=:
      DHHC-1:03:ohdxI1yIS8gBLwIOubcwl57rXcozYuRgBsoWaBvxEvpDlQHn/7dQ4JjFGwmhgwdJWmVoripbWbMJy5eMAbCahN4hhYU=:
      DHHC-1:03:ohdxI1yIS8gBLwIOubcwl57rXcozYuRgBsoWaBvxEvpDlQHn/7dQ4JjFGwmhgwdJWmVoripbWbMJy5eMAbCahN4hhYU=:
JSON

When multiple NVMe subsystems are available on the ONTAP controller configuration, you can use the /etc/nvme/config.json file with the nvme connect-all command.

Use the -o option to generate the JSON file. Refer to the NVMe connect-all man pages for more syntax options.

  1. Configure the JSON file:

    Show example output
    # cat /etc/nvme/config.json
    [
      {
        "hostnqn":"nqn.2014-08.org.nvmexpress:uuid:4c4c4544-0035-5910-804b-b7c04f444d33",
        "hostid":"4c4c4544-0035-5910-804b-b7c04f444d33",
        "dhchap_key":"DHHC-1:01:wkwAKk8r9Ip7qECKt7V5aIo/7Y1CH7DWkUfLfMxmseg39DFb:",
        "subsystems":[
          {
            "nqn":"nqn.1992-08.com.netapp:sn.9927e165694211f0b4f4d039eab31e9d:subsystem.inband_bidirectional",
            "ports":[
              {
                "transport":"tcp",
                "traddr":"192.168.38.10",
                "host_traddr":"192.168.38.20",
                "trsvcid":"4420",
                "dhchap_ctrl_key":"DHHC-1:03:ohdxI1yIS8gBLwIOubcwl57rXcozYuRgBsoWaBvxEvpDlQHn/7dQ4JjFGwmhgwdJWmVoripbWbMJy5eMAbCahN4hhYU=:"
              },
              {
                "transport":"tcp",
                "traddr":"192.168.38.11",
                "host_traddr":"192.168.38.20",
                "trsvcid":"4420",
                "dhchap_ctrl_key":"DHHC-1:03:ohdxI1yIS8gBLwIOubcwl57rXcozYuRgBsoWaBvxEvpDlQHn/7dQ4JjFGwmhgwdJWmVoripbWbMJy5eMAbCahN4hhYU=:"
              },
              {
                "transport":"tcp",
                "traddr":"192.168.39.11",
                "host_traddr":"192.168.39.20",
                "trsvcid":"4420",
                "dhchap_ctrl_key":"DHHC-1:03:ohdxI1yIS8gBLwIOubcwl57rXcozYuRgBsoWaBvxEvpDlQHn/7dQ4JjFGwmhgwdJWmVoripbWbMJy5eMAbCahN4hhYU=:"
              },
              {
                "transport":"tcp",
                "traddr":"192.168.39.10",
                "host_traddr":"192.168.39.20",
                "trsvcid":"4420",
                "dhchap_ctrl_key":"DHHC-1:03:ohdxI1yIS8gBLwIOubcwl57rXcozYuRgBsoWaBvxEvpDlQHn/7dQ4JjFGwmhgwdJWmVoripbWbMJy5eMAbCahN4hhYU=:"
              }
            ]
          }
        ]
      }
    ]
    Note In the following example, dhchap_key corresponds to dhchap_secret and dhchap_ctrl_key corresponds to dhchap_ctrl_secret.
  2. Connect to the ONTAP controller using the config JSON file:

    nvme connect-all -J /etc/nvme/config.json
    Show example output
    traddr=192.168.38.10is already connected
    traddr=192.168.39.10 is already connected
    traddr=192.168.38.11 is already connected
    traddr=192.168.39.11 is already connected
    traddr=192.168.38.10is already connected
    traddr=192.168.39.10 is already connected
    traddr=192.168.38.11 is already connected
    traddr=192.168.39.11 is already connected
    traddr=192.168.38.10is already connected
    traddr=192.168.39.10 is already connected
    traddr=192.168.38.11 is already connected
    traddr=192.168.39.11 is already connected
  3. Verify that the dhchap secrets have been enabled for the respective controllers for each subsystem:

    1. Verify the host dhchap keys:

      cat /sys/class/nvme-subsystem/nvme-subsys0/nvme0/dhchap_secret

      The following example shows a dhchap key:

      DHHC-1:01:wkwAKk8r9Ip7qECKt7V5aIo/7Y1CH7DWkUfLfMxmseg39DFb:
    2. Verify the controller dhchap keys:

      cat /sys/class/nvme-subsystem/nvme-subsys0/nvme0/dhchap_ctrl_secret

      You should see an output similar to the following example:

      DHHC-1:03:ohdxI1yIS8gBLwIOubcwl57rXcozYuRgBsoWaBvxEvpDlQHn/7dQ4JjFGwmhgwdJWmVoripbWbMJy5eMAbCahN4hhYU=:

Step 10: Configure Transport Layer Security

Transport Layer Security (TLS) provides secure end-to-end encryption for NVMe connections between NVMe-oF hosts and an ONTAP array. You can configure TLS 1.3 using the CLI and a configured pre-shared key (PSK).

Note Perform the following steps on the SUSE Linux Enterprise Server host, except where it specifies that you perform a step on the ONTAP controller.
Steps
  1. Check that you have the following ktls-utils, openssl, and libopenssl packages installed on the host:

    1. Verify the ktls-utils:

      rpm -qa | grep ktls

      You should see the following output displayed:

      ktls-utils-0.10+33.g311d943-160000.2.2.x86_64
    2. Verify the SSL packages:

      rpm -qa | grep ssl
      Show example output
      libopenssl3-3.5.0-160000.3.2.x86_64
      openssl-3.5.0-160000.2.2.noarch
      openssl-3-3.5.0-160000.3.2.x86_64
      libopenssl3-x86-64-v3-3.5.0-160000.3.2.x86_64
  2. Verify that you have the correct setup for /etc/tlshd.conf:

    cat /etc/tlshd.conf
    Show example output
    [debug]
    loglevel=0
    tls=0
    nl=0
    
    [authenticate]
    #keyrings= <keyring>;<keyring>;<keyring>
    
    [authenticate.client]
    #x509.truststore= <pathname>
    #x509.certificate= <pathname>
    #x509.private_key= <pathname>
    
    [authenticate.server]
    #x509.truststore= <pathname>
    #x509.certificate= <pathname>
    #x509.private_key= <pathname>
  3. Enable tlshd to start at system boot:

    systemctl enable tlshd
  4. Verify that the tlshd daemon is running:

    systemctl status tlshd
    Show example output
    tlshd.service - Handshake service for kernel TLS consumers
       Loaded: loaded (/usr/lib/systemd/system/tlshd.service; enabled; preset: disabled)
       Active: active (running) since Wed 2024-08-21 15:46:53 IST; 4h 57min ago
         Docs: man:tlshd(8)
    Main PID: 961 (tlshd)
       Tasks: 1
         CPU: 46ms
       CGroup: /system.slice/tlshd.service
           └─961 /usr/sbin/tlshd
    Aug 21 15:46:54 RX2530-M4-17-153 tlshd[961]: Built from ktls-utils 0.11-dev on Mar 21 2024 12:00:00
  5. Generate the TLS PSK by using the nvme gen-tls-key:

    1. Verify the host:

      cat /etc/nvme/hostnqn

      You should see the following output:

      nqn.2014-08.org.nvmexpress:uuid:4c4c4544-0035-5910-804b-b7c04f444d33
    2. Verify the key:

      nvme gen-tls-key --hmac=1 --identity=1 --subsysnqn= nqn.1992-08.com.netapp:sn.9927e165694211f0b4f4d039eab31e9d:subsystem.nvme1

      You should see the following output:

      NVMeTLSkey-1:01:C50EsaGtuOp8n5fGE9EuWjbBCtshmfoHx4XTqTJUmydf0gIj:
  6. On the ONTAP controller, add the TLS PSK to the ONTAP subsystem:

    Show example output
    nvme subsystem host add -vserver vs_iscsi_tcp -subsystem nvme1 -host-nqn nqn.2014-08.org.nvmexpress:uuid:4c4c4544-0035-5910-804b-b2c04f444d33 -tls-configured-psk NVMeTLSkey-1:01:C50EsaGtuOp8n5fGE9EuWjbBCtshmfoHx4XTqTJUmydf0gIj:
  7. Insert the TLS PSK into the host kernel keyring:

    nvme check-tls-key --identity=1 --subsysnqn=nqn.1992-08.com.netapp:sn.9927e165694211f0b4f4d039eab31e9d:subsystem.nvme1 --keydata=NVMeTLSkey-1:01:C50EsaGtuOp8n5fGE9EuWjbBCtshmfoHx4XTqTJUmydf0gIj: --insert

    You should see the following TLS key:

    Inserted TLS key 069f56bb
    Note The PSK shows as NVMe1R01 because it uses identity v1 from the TLS handshake algorithm. Identity v1 is the only version that ONTAP supports.
  8. Verify that the TLS PSK is inserted correctly:

    cat /proc/keys | grep NVMe
    Show example output
    069f56bb I-Q-- 5 perm 3b010000 0 0 psk NVMe1R01 nqn.2014-08.org.nvmexpress:uuid:4c4c4544-0035-5910-804b-b2c04f444d33 nqn.1992-08.com.netapp:sn.9927e165694211f0b4f4d039eab31e9d:subsystem.nvme1 oYVLelmiOwnvDjXKBmrnIgGVpFIBDJtc4hmQXE/36Sw=: 32
  9. Connect to the ONTAP subsystem using the inserted TLS PSK:

    1. Verify the TLS PSK:

      nvme connect -t tcp -w 192.168.38.20 -a 192.168.38.10  -n nqn.1992-08.com.netapp:sn.9927e165694211f0b4f4d039eab31e9d:subsystem.nvme1 --tls_key=0x069f56bb –tls

      You should see the following output:

      connecting to device: nvme0
    2. Verify the list-subsys:

      nvme list-subsys
      Show example output
      nvme-subsys0 - NQN=nqn.1992-08.com.netapp:sn.9927e165694211f0b4f4d039eab31e9d:subsystem.nvme1
                     hostnqn=nqn.2014-08.org.nvmexpress:uuid:4c4c4544-0035-5910-804b-b2c04f444d33
      **
       +- nvme0 tcp traddr=192.168.38.10,trsvcid=4420,host_traddr=192.168.38.20,src_addr=192.168.38.20 live
  10. Add the target, and verify the TLS connection to the specified ONTAP subsystem:

    nvme subsystem controller show -vserver vs_tcp_sles16 -subsystem nvme1 -instance
    Show example output
    (vserver nvme subsystem controller show)
                           Vserver Name: vs_tcp_sles16
                              Subsystem: nvme1
                          Controller ID: 0040h
                      Logical Interface: lif1
                                   Node: A400-12-171
                               Host NQN: nqn.2014-08.org.nvmexpress:uuid:4c4c4544-0035-5910-804b-b2c04f444d33
                     Transport Protocol: nvme-tcp
            Initiator Transport Address: 192.168.38.20
                        Host Identifier: 4c4c454400355910804bb2c04f444d33
                   Number of I/O Queues: 2
                       I/O Queue Depths: 128, 128
                      Admin Queue Depth: 32
                  Max I/O Size in Bytes: 1048576
              Keep-Alive Timeout (msec): 5000
                         Subsystem UUID: 62203cfd-826a-11f0-966e-d039eab31e9d
                  Header Digest Enabled: false
                    Data Digest Enabled: false
           Authentication Hash Function: sha-256
    Authentication Diffie-Hellman Group: 3072-bit
                    Authentication Mode: unidirectional
           Transport Service Identifier: 4420
                           TLS Key Type: configured
                       TLS PSK Identity: NVMe1R01 nqn.2014-08.org.nvmexpress:uuid:4c4c4544-0035-5910-804b-b2c04f444d33 nqn.1992-08.com.netapp:sn.9927e165694211f0b4f4d039eab31e9d:subsystem.nvme1 oYVLelmiOwnvDjXKBmrnIgGVpFIBDJtc4hmQXE/36Sw=
                             TLS Cipher: TLS-AES-128-GCM-SHA256

Step 11: Review the known issues

There are no known issues.