NVMe-oF host configuration for SUSE Linux Enterprise Server 15 SP6 with ONTAP
NVMe over Fabrics (NVMe-oF), including NVMe over Fibre Channel (NVMe/FC) and other transports, is supported for SUSE Linux Enterprise Server 15 SP6 with Asymmetric Namespace Access (ANA). In NVMe-oF environments, ANA is the equivalent of ALUA multipathing in iSCSI and FCP environments and is implemented with in-kernel NVMe multipath.
The following support is available for the NVMe-oF host configuration for SUSE Linux Enterprise Server 15 SP6 with ONTAP:
-
Running NVMe and SCSI traffic on the same co-existent host. For example, you can configure dm-multipath for SCSI
mpath
devices for SCSI LUNs and use NVMe multipath to configure NVMe-oF namespace devices on the host. -
Support for NVMe over TCP (NVMe/TCP) and NVMe/FC. This gives the NetApp plug-in in the native
nvme-cli
package the capability to display the ONTAP details for both NVMe/FC and NVMe/TCP namespaces.
For additional details on supported configurations, see the NetApp Interoperability Matrix Tool.
Features
-
Support for NVMe secure, in-band authentication
-
Support for persistent discovery controllers (PDCs) using a unique discovery NQN
-
TLS 1.3 encryption support for NVMe/TCP
Known limitations
-
SAN booting using the NVMe-oF protocol is currently not supported.
-
NetApp
sanlun
host utility support isn't available for NVMe-oF on a SUSE Linux Enterprise Server 15 SP6 host. Instead, you can rely on the NetApp plug-in included in the nativenvme-cli
package for all NVMe-oF transports.
Configure NVMe/FC
You can configure NVMe/FC with Broadcom/Emulex FC or Marvell/Qlogic FC adapters for a SUSE Linux Enterprise Server 15 SP6 with ONTAP configuration.
Configure NVMe/FC for a Broadcom/Emulex FC adapter.
-
Verify that you are using the recommended adapter model:
cat /sys/class/scsi_host/host*/modelname
Example outputLPe32002 M2 LPe32002-M2
-
Verify the adapter model description:
cat /sys/class/scsi_host/host*/modeldesc
Example outputEmulex LightPulse LPe32002-M2 2-Port 32Gb Fibre Channel Adapter Emulex LightPulse LPe32002-M2 2-Port 32Gb Fibre Channel Adapter
-
Verify that you are using the recommended Emulex host bus adapter (HBA) firmware versions:
cat /sys/class/scsi_host/host*/fwrev
Example output14.2.673.40, sli-4:2:c 14.2.673.40, sli-4:2:c
-
Verify that you are using the recommended LPFC driver version:
cat /sys/module/lpfc/version
Example output0:14.4.0.1
-
Verify that you can view your initiator ports:
cat /sys/class/fc_host/host*/port_name
Example output0x10000090fae0ec88 0x10000090fae0ec89
-
Verify that your initiator ports are online:
cat /sys/class/fc_host/host*/port_state
Example outputOnline Online
-
Verify that the NVMe/FC initiator ports are enabled and that the target ports are visible:
cat /sys/class/scsi_host/host*/nvme_info
In the following example, one initiator port is enabled and connected with two target LIFs.
Show example output
NVME Initiator Enabled XRI Dist lpfc0 Total 6144 IO 5894 ELS 250 NVME LPORT lpfc0 WWPN x10000090fae0ec88 WWNN x20000090fae0ec88 DID x0a1300 ONLINE NVME RPORT WWPN x2070d039ea359e4a WWNN x206bd039ea359e4a DID x0a0a05 TARGET DISCSRVC ONLINE NVME Statistics LS: Xmt 00000003ba Cmpl 00000003ba Abort 00000000 LS XMIT: Err 00000000 CMPL: xb 00000000 Err 00000000 Total FCP Cmpl 0000000014e3dfb8 Issue 0000000014e308db OutIO ffffffffffff2923 abort 00000845 noxri 00000000 nondlp 00000063 qdepth 00000000 wqerr 00000003 err 00000000 FCP CMPL: xb 00000847 Err 00027f33 NVME Initiator Enabled XRI Dist lpfc1 Total 6144 IO 5894 ELS 250 NVME LPORT lpfc1 WWPN x10000090fae0ec89 WWNN x20000090fae0ec89 DID x0a1200 ONLINE NVME RPORT WWPN x2071d039ea359e4a WWNN x206bd039ea359e4a DID x0a0305 TARGET DISCSRVC ONLINE NVME Statistics LS: Xmt 00000003ba Cmpl 00000003ba Abort 00000000 LS XMIT: Err 00000000 CMPL: xb 00000000 Err 00000000 Total FCP Cmpl 0000000014e39f78 Issue 0000000014e2b832 OutIO ffffffffffff18ba abort 0000082d noxri 00000000 nondlp 00000028 qdepth 00000000 wqerr 00000007 err 00000000 FCP CMPL: xb 0000082d Err 000283bb
The native inbox qla2xxx driver included in the SUSE Linux Enterprise Server 15 SP6 kernel has the latest fixes. These fixes are essential for ONTAP support.
Configure NVMe/FC for a Marvell/QLogic adapter.
-
Verify that you are running the supported adapter driver and firmware versions:
cat /sys/class/fc_host/host*/symbolic_name
Example outputQLE2742 FW:v9.14.01 DVR: v10.02.09.200-k QLE2742 FW:v9.14.01 DVR: v10.02.09.200-k
-
Verify that the
ql2xnvmeenable
parameter is set to 1:cat /sys/module/qla2xxx/parameters/ql2xnvmeenable
The expected value is 1.
Enable 1MB I/O size (Optional)
ONTAP reports an MDTS (Max Data Transfer Size) of 8 in the Identify Controller data. This means the maximum I/O request size can be up to 1MB. To issue I/O requests of size 1 MB for a Broadcom NVMe/FC host, you must increase the lpfc
value of the lpfc_sg_seg_cnt
parameter to 256 from the default value of 64.
The following steps don't apply to Qlogic NVMe/FC hosts. |
-
Set the
lpfc_sg_seg_cnt
parameter to 256:cat /etc/modprobe.d/lpfc.conf
Example outputoptions lpfc lpfc_sg_seg_cnt=256
-
Run the
dracut -f
command, and reboot the host: -
Verify that
lpfc_sg_seg_cnt
is 256:cat /sys/module/lpfc/parameters/lpfc_sg_seg_cnt
The expected value is 256.
Verify NVMe services
Beginning with SUSE Linux Enterprise Server 15 SP6, the nvmefc-boot-connections.service
and nvmf-autoconnect.service
boot services included in the NVMe/FC nvme-cli
package are automatically enabled to start during the system boot. After the system boot completes, you should verify that the boot services have been enabled.
-
Verify that
nvmf-autoconnect.service
is enabled:# systemctl status nvmf-autoconnect.service
Show example output
nvmf-autoconnect.service - Connect NVMe-oF subsystems automatically during boot Loaded: loaded (/usr/lib/systemd/system/nvmf-autoconnect.service; enabled; vendor preset: disabled) Active: inactive (dead) since Thu 2024-05-25 14:55:00 IST; 11min ago Process: 2108 ExecStartPre=/sbin/modprobe nvme-fabrics (code=exited, status=0/SUCCESS) Process: 2114 ExecStart=/usr/sbin/nvme connect-all (code=exited, status=0/SUCCESS) Main PID: 2114 (code=exited, status=0/SUCCESS) systemd[1]: Starting Connect NVMe-oF subsystems automatically during boot... nvme[2114]: traddr=nn-0x201700a098fd4ca6:pn-0x201800a098fd4ca6 is already connected systemd[1]: nvmf-autoconnect.service: Deactivated successfully. systemd[1]: Finished Connect NVMe-oF subsystems automatically during boot.
-
Verify that
nvmefc-boot-connections.service
is enabled:# systemctl status nvmefc-boot-connections.service
Show example output
nvmefc-boot-connections.service - Auto-connect to subsystems on FC-NVME devices found during boot Loaded: loaded (/usr/lib/systemd/system/nvmefc-boot-connections.service; enabled; vendor preset: enabled) Active: inactive (dead) since Thu 2024-05-25 14:55:00 IST; 11min ago Main PID: 1647 (code=exited, status=0/SUCCESS) systemd[1]: Starting Auto-connect to subsystems on FC-NVME devices found during boot... systemd[1]: nvmefc-boot-connections.service: Succeeded. systemd[1]: Finished Auto-connect to subsystems on FC-NVME devices found during boot.
Configure NVMe/TCP
NVMe/TCP doesn't have an auto-connect functionality. Instead, you can discover the NVMe/TCP subsystems and namespaces by performing the NVMe/TCP connect
or connect-all
operations manually.
-
Verify that the initiator port can fetch the discovery log page data across the supported NVMe/TCP LIFs:
nvme discover -t tcp -w <host-traddr> -a <traddr>
Show example output
Discovery Log Number of Records 8, Generation counter 18 =====Discovery Log Entry 0====== trtype: tcp adrfam: ipv4 subtype: current discovery subsystem treq: not specified portid: 4 trsvcid: 8009 subnqn: nqn.1992-08.com.netapp:sn.8b5ee9199ff411eea468d039ea36a106:discovery traddr: 192.168.211.67 eflags: explicit discovery connections, duplicate discovery information sectype: none =====Discovery Log Entry 1====== trtype: tcp adrfam: ipv4 subtype: current discovery subsystem treq: not specified portid: 2 trsvcid: 8009 subnqn: nqn.1992-08.com.netapp:sn.8b5ee9199ff411eea468d039ea36a106:discovery traddr: 192.168.111.67 eflags: explicit discovery connections, duplicate discovery information sectype: none =====Discovery Log Entry 2====== trtype: tcp adrfam: ipv4 subtype: current discovery subsystem treq: not specified portid: 3 trsvcid: 8009 subnqn: nqn.1992-08.com.netapp:sn.8b5ee9199ff411eea468d039ea36a106:discovery traddr: 192.168.211.66 eflags: explicit discovery connections, duplicate discovery information sectype: none =====Discovery Log Entry 3====== trtype: tcp adrfam: ipv4 subtype: current discovery subsystem treq: not specified portid: 1 trsvcid: 8009 subnqn: nqn.1992-08.com.netapp:sn.8b5ee9199ff411eea468d039ea36a106:discovery traddr: 192.168.111.66 eflags: explicit discovery connections, duplicate discovery information sectype: none =====Discovery Log Entry 4====== trtype: tcp adrfam: ipv4 subtype: nvme subsystem treq: not specified portid: 4 trsvcid: 4420 subnqn: nqn.1992-08.com.netapp:sn.8b5ee9199ff411eea468d039ea36a106:subsystem.nvme_tcp_1 traddr: 192.168.211.67 eflags: none sectype: none =====Discovery Log Entry 5====== trtype: tcp adrfam: ipv4 subtype: nvme subsystem treq: not specified portid: 2 trsvcid: 4420 subnqn: nqn.1992-08.com.netapp:sn.8b5ee9199ff411eea468d039ea36a106:subsystem.nvme_tcp_1 traddr: 192.168.111.67 eflags: none sectype: none =====Discovery Log Entry 6====== trtype: tcp adrfam: ipv4 subtype: nvme subsystem treq: not specified portid: 3 trsvcid: 4420 subnqn: nqn.1992-08.com.netapp:sn.8b5ee9199ff411eea468d039ea36a106:subsystem.nvme_tcp_1 traddr: 192.168.211.66 eflags: none sectype: none =====Discovery Log Entry 7====== trtype: tcp adrfam: ipv4 subtype: nvme subsystem treq: not specified portid: 1 trsvcid: 4420 subnqn: nqn.1992-08.com.netapp:sn.8b5ee9199ff411eea468d039ea36a106:subsystem.nvme_tcp_1 traddr: 192.168.111.66 eflags: none sectype: none
-
Verify that all other NVMe/TCP initiator-target LIF combinations can successfully fetch discovery log page data:
nvme discover -t tcp -w <host-traddr> -a <traddr>
Example output#nvme discover -t tcp -w 192.168.111.79 -a 192.168.111.66 #nvme discover -t tcp -w 192.168.111.79 -a 192.168.111.67 #nvme discover -t tcp -w 192.168.211.79 -a 192.168.211.66 #nvme discover -t tcp -w 192.168.211.79 -a 192.168.211.67
-
Run the
nvme connect-all
command across all the supported NVMe/TCP initiator-target LIFs across the nodes:nvme connect-all -t tcp -w <host-traddr> -a <traddr>
Example output# nvme connect-all -t tcp -w 192.168.111.79 -a 192.168.111.66 # nvme connect-all -t tcp -w 192.168.111.79 -a 192.168.111.67 # nvme connect-all -t tcp -w 192.168.211.79 -a 192.168.211.66 # nvme connect-all -t tcp -w 192.168.211.79 -a 192.168.211.67
Beginning with SUSE Linux Enterprise Server 15 SP6, the default setting for the NVMe/TCP ctrl-loss-tmo
timeout is turned off. This means there is no limit on the number of retries (indefinite retry), and you don't need to manually configure a specificctrl-loss-tmo
timeout duration when using thenvme connect
ornvme connect-all
commands (option-l
). Additonally, the NVMe/TCP controllers don't experience timeouts in the event of a path failure and remain connected indefinitely.
Validate NVMe-oF
Use the following procedure to validate NVMe-oF for a SUSE Linux Enterprise Server 15 SP6 with ONTAP configuration.
-
Verify that in-kernel NVMe multipath is enabled:
cat /sys/module/nvme_core/parameters/multipath
The expected value is "Y".
-
Verify that the host has the correct controller model for the ONTAP NVMe namespaces:
cat /sys/class/nvme-subsystem/nvme-subsys*/model
Example outputNetApp ONTAP Controller NetApp ONTAP Controller
-
Verify the NVMe I/O policy for the respective ONTAP NVMe I/O controller:
cat /sys/class/nvme-subsystem/nvme-subsys*/iopolicy
Example outputround-robin round-robin
-
Verify that the ONTAP namespaces are visible to the host:
nvme list -v
Show example output
Subsystem Subsystem-NQN Controllers ---------------- ------------------------------------------------------------------------------------- --------------------- nvme-subsys0 nqn.1992- 08.com.netapp:sn.0501daf15dda11eeab68d039eaa7a232:subsystem.unidir_dhcha p nvme0, nvme1, nvme2, nvme3 Device SN MN FR TxPort Asdress Subsystem Namespaces -------- -------------------- ---------------------------------------- -------- --------------------------------------------- nvme0 81LGgBUqsI3EAAAAAAAE NetApp ONTAP Controller FFFFFFFF tcp traddr=192.168.111.66,trsvcid=4420,host_traddr=192.168.111.79 nvme-subsys0 nvme0n1 nvme1 81LGgBUqsI3EAAAAAAAE NetApp ONTAP Controller FFFFFFFF tcp traddr=192.168.111.67,trsvcid=4420,host_traddr=192.168.111.79 nvme-subsys0 nvme0n1 nvme2 81LGgBUqsI3EAAAAAAAE NetApp ONTAP Controller FFFFFFFF tcp traddr=192.168.211.66,trsvcid=4420,host_traddr=192.168.211.79 nvme-subsys0 nvme0n1 nvme3 81LGgBUqsI3EAAAAAAAE NetApp ONTAP Controller FFFFFFFF tcp traddr=192.168.211.67,trsvcid=4420,host_traddr=192.168.211.79 nvme-subsys0 nvme0n1 Device Generic NSID Usage Format Controllers ------------ ------------ ---------- ------------------------------------------------------------- /dev/nvme0n1 /dev/ng0n1 0x1 1.07 GB / 1.07 GB 4 KiB + 0 B nvme0, nvme1, nvme2, nvme3
-
Verify that the controller state of each path is live and has the correct ANA status:
nvme list-subsys /dev/<subsystem_name>
NVMe/FCnvme list-subsys /dev/nvme2n1
Show example output
nvme-subsys2 - NQN=nqn.1992- 08.com.netapp:sn.06303c519d8411eea468d039ea36a106:subs ystem.nvme hostnqn=nqn.2014-08.org.nvmexpress:uuid:4c4c4544- 0056-5410-8048-c6c04f425633 iopolicy=round-robin \ +- nvme4 fc traddr=nn-0x208fd039ea359e4a:pn-0x210dd039ea359e4a,host_traddr=nn-0x2000f4c7aa0cd7ab:pn-0x2100f4c7aa0cd7ab live optimized +- nvme6 fc traddr=nn-0x208fd039ea359e4a:pn-0x210ad039ea359e4a,host_traddr=nn-0x2000f4c7aa0cd7aa:pn-0x2100f4c7aa0cd7aa live optimized
NVMe/TCPnvme list-subsys
Show example output
nvme-subsys1 - NQN=nqn.1992-08.com.netapp:sn.8b5ee9199ff411eea468d039ea36a106:subsystem.nvme_tcp_1 hostnqn=nqn.2014-08.org.nvmexpress:uuid:4c4c4544-0035-5910-804b-b2c04f444d33 iopolicy=round-robin \ +- nvme4 tcp traddr=192.168.111.66,trsvcid=4420,host_traddr=192.168.111.79,src_addr=192.168.111.79 live +- nvme3 tcp traddr=192.168.211.66,trsvcid=4420,host_traddr=192.168.211.79,src_addr=192.168.111.79 live +- nvme2 tcp traddr=192.168.111.67,trsvcid=4420,host_traddr=192.168.111.79,src_addr=192.168.111.79 live +- nvme1 tcp traddr=192.168.211.67,trsvcid=4420,host_traddr=192.168.211.79,src_addr=192.168.111.79 live
-
Verify that the NetApp plug-in displays the correct values for each ONTAP namespace device:
Columnnvme netapp ontapdevices -o column
Example outputDevice Vserver Namespace Path NSID UUID Size ---------------- ---------- ------------------------------------ ------------------------------------------- -------- /dev/nvme0n1 vs_192 /vol/fcnvme_vol_1_1_0/fcnvme_ns 1 c6586535-da8a-40fa-8c20-759ea0d69d33 20GB
JSONnvme netapp ontapdevices -o json
Show example output
{ "ONTAPdevices":[ { "Device":"/dev/nvme0n1", "Vserver":"vs_192", "Namespace_Path":"/vol/fcnvme_vol_1_1_0/fcnvme_ns", "NSID":1, "UUID":"c6586535-da8a-40fa-8c20-759ea0d69d33", "Size":"20GB", "LBA_Data_Size":4096, "Namespace_Size":262144 } ] }
Create a persistent discovery controller
Beginning with ONTAP 9.11.1, you can create a persistent discovery controller (PDC) for a SUSE Linux Enterprise Server 15 SP6 host. A PDC is required to automatically detect an NVMe subsystem add or remove operation and changes to the discovery log page data.
-
Verify that the discovery log page data is available and can be retrieved through the initiator port and target LIF combination:
nvme discover -t <trtype> -w <host-traddr> -a <traddr>
Show example output
Discovery Log Number of Records 8, Generation counter 18 =====Discovery Log Entry 0====== trtype: tcp adrfam: ipv4 subtype: current discovery subsystem treq: not specified portid: 4 trsvcid: 8009 subnqn: nqn.1992-08.com.netapp:sn.8b5ee9199ff411eea468d039ea36a106:discovery traddr: 192.168.211.67 eflags: explicit discovery connections, duplicate discovery information sectype: none =====Discovery Log Entry 1====== trtype: tcp adrfam: ipv4 subtype: current discovery subsystem treq: not specified portid: 2 trsvcid: 8009 subnqn: nqn.1992-08.com.netapp:sn.8b5ee9199ff411eea468d039ea36a106:discovery traddr: 192.168.111.67 eflags: explicit discovery connections, duplicate discovery information sectype: none =====Discovery Log Entry 2====== trtype: tcp adrfam: ipv4 subtype: current discovery subsystem treq: not specified portid: 3 trsvcid: 8009 subnqn: nqn.1992-08.com.netapp:sn.8b5ee9199ff411eea468d039ea36a106:discovery traddr: 192.168.211.66 eflags: explicit discovery connections, duplicate discovery information sectype: none =====Discovery Log Entry 3====== trtype: tcp adrfam: ipv4 subtype: current discovery subsystem treq: not specified portid: 1 trsvcid: 8009 subnqn: nqn.1992-08.com.netapp:sn.8b5ee9199ff411eea468d039ea36a106:discovery traddr: 192.168.111.66 eflags: explicit discovery connections, duplicate discovery information sectype: none =====Discovery Log Entry 4====== trtype: tcp adrfam: ipv4 subtype: nvme subsystem treq: not specified portid: 4 trsvcid: 4420 subnqn: nqn.1992-08.com.netapp:sn.8b5ee9199ff411eea468d039ea36a106:subsystem.nvme_tcp_1 traddr: 192.168.211.67 eflags: none sectype: none =====Discovery Log Entry 5====== trtype: tcp adrfam: ipv4 subtype: nvme subsystem treq: not specified portid: 2 trsvcid: 4420 subnqn: nqn.1992-08.com.netapp:sn.8b5ee9199ff411eea468d039ea36a106:subsystem.nvme_tcp_1 traddr: 192.168.111.67 eflags: none sectype: none =====Discovery Log Entry 6====== trtype: tcp adrfam: ipv4 subtype: nvme subsystem treq: not specified portid: 3 trsvcid: 4420 subnqn: nqn.1992-08.com.netapp:sn.8b5ee9199ff411eea468d039ea36a106:subsystem.nvme_tcp_1 traddr: 192.168.211.66 eflags: none sectype: none =====Discovery Log Entry 7====== trtype: tcp adrfam: ipv4 subtype: nvme subsystem treq: not specified portid: 1 trsvcid: 4420 subnqn: nqn.1992-08.com.netapp:sn.8b5ee9199ff411eea468d039ea36a106:subsystem.nvme_tcp_1 traddr: 192.168.111.66 eflags: none sectype: none
-
Create a PDC for the discovery subsystem:
nvme discover -t <trtype> -w <host-traddr> -a <traddr> -p
Example outputnvme discover -t tcp -w 192.168.111.79 -a 192.168.111.666 -p
-
From the ONTAP controller, verify that the PDC has been created:
vserver nvme show-discovery-controller -instance -vserver <vserver_name>
Show example output
vserver nvme show-discovery-controller -instance -vserver vs_nvme79 Vserver Name: vs_CLIENT116 Controller ID: 00C0h Discovery Subsystem NQN: nqn.1992- 08.com.netapp:sn.48391d66c0a611ecaaa5d039ea165514:discovery Logical Interface UUID: d23cbb0a-c0a6-11ec-9731-d039ea165abc Logical Interface: CLIENT116_lif_4a_1 Node: A400-14-124 Host NQN: nqn.2014-08.org.nvmexpress:uuid:12372496-59c4-4d1b-be09-74362c0c1afc Transport Protocol: nvme-tcp Initiator Transport Address: 192.168.1.16 Host Identifier: 59de25be738348f08a79df4bce9573f3 Admin Queue Depth: 32 Header Digest Enabled: false Data Digest Enabled: false Vserver UUID: 48391d66-c0a6-11ec-aaa5-d039ea165514
Set up secure in-band authentication
Beginning with ONTAP 9.12.1, secure in-band authentication is supported over NVMe/TCP and NVMe/FC between a SUSE Linux Enterprise Server 15 SP6 host and an ONTAP controller.
To set up secure authentication, each host or controller must be associated with a DH-HMAC-CHAP
key, which is a combination of the NQN of the NVMe host or controller and an authentication secret configured by the administrator. To authenticate its peer, an NVMe host or controller must recognize the key associated with the peer.
You can set up secure in-band authentication using the CLI or a config JSON file. If you need to specify different dhchap keys for different subsystems, you must use a config JSON file.
Set up secure in-band authentication using the CLI.
-
Obtain the host NQN:
cat /etc/nvme/hostnqn
-
Generate the dhchap key for the SUSE Linux Enterprise Server 15 SP6 host.
The following output describes the
gen-dhchap-key
command paramters:nvme gen-dhchap-key -s optional_secret -l key_length {32|48|64} -m HMAC_function {0|1|2|3} -n host_nqn • -s secret key in hexadecimal characters to be used to initialize the host key • -l length of the resulting key in bytes • -m HMAC function to use for key transformation 0 = none, 1- SHA-256, 2 = SHA-384, 3=SHA-512 • -n host NQN to use for key transformation
In the following example, a random dhchap key with HMAC set to 3 (SHA-512) is generated.
# nvme gen-dhchap-key -m 3 -n nqn.2014-08.org.nvmexpress:uuid:d3ca725a- ac8d-4d88-b46a-174ac235139b DHHC-1:03:J2UJQfj9f0pLnpF/ASDJRTyILKJRr5CougGpGdQSysPrLu6RW1fGl5VSjbeDF1n1DEh3nVBe19nQ/LxreSBeH/bx/pU=:
-
On the ONTAP controller, add the host and specify both dhchap keys:
vserver nvme subsystem host add -vserver <svm_name> -subsystem <subsystem> -host-nqn <host_nqn> -dhchap-host-secret <authentication_host_secret> -dhchap-controller-secret <authentication_controller_secret> -dhchap-hash-function {sha-256|sha-512} -dhchap-group {none|2048-bit|3072-bit|4096-bit|6144-bit|8192-bit}
-
A host supports two types of authentication methods, unidirectional and bidirectional. On the host, connect to the ONTAP controller and specify dhchap keys based on the chosen authentication method:
nvme connect -t tcp -w <host-traddr> -a <tr-addr> -n <host_nqn> -S <authentication_host_secret> -C <authentication_controller_secret>
-
Validate the
nvme connect authentication
command by verifying the host and controller dhchap keys:-
Verify the host dhchap keys:
cat /sys/class/nvme-subsystem/<nvme-subsysX>/nvme*/dhchap_secret
Show example output for a unidirectional configuration
# cat /sys/class/nvme-subsystem/nvme-subsys1/nvme*/dhchap_secret DHHC-1:03:je1nQCmjJLUKD62mpYbzlpuw0OIws86NB96uNO/t3jbvhp7fjyR9bIRjOHg8wQtye1JCFSMkBQH3pTKGdYR1OV9gx00=: DHHC-1:03:je1nQCmjJLUKD62mpYbzlpuw0OIws86NB96uNO/t3jbvhp7fjyR9bIRjOHg8wQtye1JCFSMkBQH3pTKGdYR1OV9gx00=: DHHC-1:03:je1nQCmjJLUKD62mpYbzlpuw0OIws86NB96uNO/t3jbvhp7fjyR9bIRjOHg8wQtye1JCFSMkBQH3pTKGdYR1OV9gx00=: DHHC-1:03:je1nQCmjJLUKD62mpYbzlpuw0OIws86NB96uNO/t3jbvhp7fjyR9bIRjOHg8wQtye1JCFSMkBQH3pTKGdYR1OV9gx00=:
-
Verify the controller dhchap keys:
cat /sys/class/nvme-subsystem/<nvme-subsysX>/nvme*/dhchap_ctrl_secret
Show example output for a bidirectional configuration
# cat /sys/class/nvme-subsystem/nvme-subsys6/nvme*/dhchap_ctrl_secret DHHC-1:03:WorVEV83eYO53kV4Iel5OpphbX5LAphO3F8fgH3913tlrkSGDBJTt3crXeTUB8fCwGbPsEyz6CXxdQJi6kbn4IzmkFU=: DHHC-1:03:WorVEV83eYO53kV4Iel5OpphbX5LAphO3F8fgH3913tlrkSGDBJTt3crXeTUB8fCwGbPsEyz6CXxdQJi6kbn4IzmkFU=: DHHC-1:03:WorVEV83eYO53kV4Iel5OpphbX5LAphO3F8fgH3913tlrkSGDBJTt3crXeTUB8fCwGbPsEyz6CXxdQJi6kbn4IzmkFU=: DHHC-1:03:WorVEV83eYO53kV4Iel5OpphbX5LAphO3F8fgH3913tlrkSGDBJTt3crXeTUB8fCwGbPsEyz6CXxdQJi6kbn4IzmkFU=:
-
When multiple NVMe subsystems are available on the ONTAP controller configuration, you can use the /etc/nvme/config.json
file with the nvme connect-all
command.
To generate the JSON file, you can use the -o
option. See the NVMe connect-all manual pages for more syntax options.
-
Configure the JSON file:
Show example output
# cat /etc/nvme/config.json [ { "hostnqn":"nqn.2014-08.org.nvmexpress:uuid:12372496-59c4-4d1b-be09-74362c0c1afc", "hostid":"3ae10b42-21af-48ce-a40b-cfb5bad81839", "dhchap_key":"DHHC-1:03:Cu3ZZfIz1WMlqZFnCMqpAgn/T6EVOcIFHez215U+Pow8jTgBF2UbNk3DK4wfk2EptWpna1rpwG5CndpOgxpRxh9m41w=:" }, { "hostnqn":"nqn.2014-08.org.nvmexpress:uuid:12372496-59c4-4d1b-be09-74362c0c1afc", "subsystems":[ { "nqn":"nqn.1992-08.com.netapp:sn.48391d66c0a611ecaaa5d039ea165514:subsystem.subsys_CLIENT116", "ports":[ { "transport":"tcp", "traddr":" 192.168.111.66 ", "host_traddr":" 192.168.111.79", "trsvcid":"4420", "dhchap_ctrl_key":"DHHC- 1:01:0h58bcT/uu0rCpGsDYU6ZHZvRuVqsYKuBRS0Nu0VPx5HEwaZ:" }, { "transport":"tcp", "traddr":" 192.168.111.66 ", "host_traddr":" 192.168.111.79", "trsvcid":"4420", "dhchap_ctrl_key":"DHHC- 1:01:0h58bcT/uu0rCpGsDYU6ZHZvRuVqsYKuBRS0Nu0VPx5HEwaZ:" }, { "transport":"tcp", "traddr":" 192.168.111.66 ", "host_traddr":" 192.168.111.79", "trsvcid":"4420", "dhchap_ctrl_key":"DHHC- 1:01:0h58bcT/uu0rCpGsDYU6ZHZvRuVqsYKuBRS0Nu0VPx5HEwaZ:" }, { "transport":"tcp", "traddr":" 192.168.111.66 ", "host_traddr":" 192.168.111.79", "trsvcid":"4420", "dhchap_ctrl_key":"DHHC- 1:01:0h58bcT/uu0rCpGsDYU6ZHZvRuVqsYKuBRS0Nu0VPx5HEwaZ:" } ] } ] } ]
+
In the preceding example, dhchap_key
corresponds todhchap_secret
anddhchap_ctrl_key
corresponds todhchap_ctrl_secret
. -
Connect to the ONTAP controller using the config JSON file:
# nvme connect-all -J /etc/nvme/config.json
Show example output
traddr=192.168.111.66 is already connected traddr=192.168.211.66 is already connected traddr=192.168.111.66 is already connected traddr=192.168.211.66 is already connected traddr=192.168.111.66 is already connected traddr=192.168.211.66 is already connected traddr=192.168.111.67 is already connected traddr=192.168.211.67 is already connected traddr=192.168.111.67 is already connected traddr=192.168.211.67 is already connected traddr=192.168.111.67 is already connected traddr=192.168.111.67 is already connected
-
Verify that the dhchap secrets have been enabled for the respective controllers for each subsystem:
-
Verify the host dhchap keys:
# cat /sys/class/nvme-subsystem/nvme-subsys0/nvme0/dhchap_secret
Example outputDHHC-1:01:NunEWY7AZlXqxITGheByarwZdQvU4ebZg9HOjIr6nOHEkxJg:
-
Verify the controller dhchap keys:
# cat /sys/class/nvme-subsystem/nvme-subsys0/nvme0/dhchap_ctrl_secret
Example outputDHHC- 1:03:2YJinsxa2v3+m8qqCiTnmgBZoH6mIT6G/6f0aGO8viVZB4VLNLH4z8CvK7pVYxN6S5fOAtaU3DNi12rieRMfdbg3704=:
-
Configure Transport Layer Security
Transport Layer Security (TLS) provides secure end-to-end encryption for NVMe connections between NVMe-oF hosts and an ONTAP array. Beginning with ONTAP 9.16.1, you can configure TLS 1.3 using the CLI and a configured pre-shared key (PSK).
You perform the steps in this procedure on the SUSE Linux Enterprise Server 15 SP6 host, except where it specifies that you perform a step on the ONTAP controller.
-
Check that you have the following ktls-utils, openssl, and libopenssl packages installed on the host:
-
rpm -qa | grep ktls
Example outputktls-utils-0.10+12.gc3923f7-150600.1.2.x86_64
-
rpm -qa | grep ssl
Example outputopenssl-3-3.1.4-150600.5.7.1.x86_64 libopenssl1_1-1.1.1w-150600.5.3.1.x86_64 libopenssl3-3.1.4-150600.5.7.1.x86_64
-
-
Verify that you have the correct setup for
/etc/tlshd.conf
:# cat /etc/tlshd.conf
Show example output
[debug] loglevel=0 tls=0 nl=0 [authenticate] keyrings=.nvme [authenticate.client] #x509.truststore= <pathname> #x509.certificate= <pathname> #x509.private_key= <pathname> [authenticate.server] #x509.truststore= <pathname> #x509.certificate= <pathname> #x509.private_key= <pathname>
-
Enable
tlshd
to start at system boot:# systemctl enable tlshd
-
Verify that the
tlshd
daemon is running:# systemctl status tlshd
Show example output
tlshd.service - Handshake service for kernel TLS consumers Loaded: loaded (/usr/lib/systemd/system/tlshd.service; enabled; preset: disabled) Active: active (running) since Wed 2024-08-21 15:46:53 IST; 4h 57min ago Docs: man:tlshd(8) Main PID: 961 (tlshd) Tasks: 1 CPU: 46ms CGroup: /system.slice/tlshd.service └─961 /usr/sbin/tlshd Aug 21 15:46:54 RX2530-M4-17-153 tlshd[961]: Built from ktls-utils 0.11-dev on Mar 21 2024 12:00:00
-
Generate the TLS PSK by using the
nvme gen-tls-key
:-
# cat /etc/nvme/hostnqn
Example outputnqn.2014-08.org.nvmexpress:uuid:e58eca24-faff-11ea-8fee-3a68dd3b5c5f
-
# nvme gen-tls-key --hmac=1 --identity=1 --subsysnqn=nqn.1992-08.com.netapp:sn.1d59a6b2416b11ef9ed5d039ea50acb3:subsystem.sles15
Example outputNVMeTLSkey-1:01:dNcby017axByCko8GivzOO9zGlgHDXJCN6KLzvYoA+NpT1uD:
-
-
On the ONTAP controller, add the TLS PSK to the ONTAP subsystem:
# nvme subsystem host add -vserver sles15_tls -subsystem sles15 -host-nqn nqn.2014-08.org.nvmexpress:uuid:ffa0c815-e28b-4bb1-8d4c-7c6d5e610bfc -tls-configured-psk NVMeTLSkey-1:01:dNcby017axByCko8GivzOO9zGlgHDXJCN6KLzvYoA+NpT1uD:
-
Insert the TLS PSK into the host kernel keyring:
# nvme check-tls-key --identity=1 --subsysnqn=nqn.2014-08.org.nvmexpress:uuid:ffa0c815-e28b-4bb1-8d4c-7c6d5e610bf --keydata=NVMeTLSkey-1:01:dNcby017axByCko8GivzOO9zGlgHDXJCN6KLzvYoA+NpT1uD: --insert
Example outputInserted TLS key 22152a7e
The PSK shows as "NVMe1R01" because it uses "identity v1" from the TLS handshake algorithm. Identity v1 is the only version that ONTAP supports. -
Verify that the TLS PSK is inserted correctly:
# cat /proc/keys | grep NVMe
Example output22152a7e I--Q--- 1 perm 3b010000 0 0 psk NVMe1R01 nqn.2014-08.org.nvmexpress:uuid:ffa0c815-e28b-4bb1-8d4c-7c6d5e610bfc nqn.1992-08.com.netapp:sn.1d59a6b2416b11ef9ed5d039ea50acb3:subsystem.sles15 UoP9dEfvuCUzzpS0DYxnshKDapZYmvA0/RJJ8JAqmAo=: 32
-
Connect to the ONTAP subsystem using the inserted TLS PSK:
-
# nvme connect -t tcp -w 20.20.10.80 -a 20.20.10.14 -n nqn.1992-08.com.netapp:sn.1d59a6b2416b11ef9ed5d039ea50acb3:subsystem.sles15 --tls_key=0x22152a7e --tls
Example outputconnecting to device: nvme0
-
# nvme list-subsys
Example outputnvme-subsys0 - NQN=nqn.1992-08.com.netapp:sn.1d59a6b2416b11ef9ed5d039ea50acb3:subsystem.sles15 hostnqn=nqn.2014-08.org.nvmexpress:uuid:ffa0c815-e28b-4bb1-8d4c-7c6d5e610bfc iopolicy=round-robin \ +- nvme0 tcp traddr=20.20.10.14,trsvcid=4420,host_traddr=20.20.10.80,src_addr=20.20.10.80 live
-
-
Add the target, and verify the TLS connection to the specified ONTAP subsystem:
# nvme subsystem controller show -vserver sles15_tls -subsystem sles15 -instance
Show example output
(vserver nvme subsystem controller show) Vserver Name: sles15_tls Subsystem: sles15 Controller ID: 0040h Logical Interface: sles15t_e1a_1 Node: A900-17-174 Host NQN: nqn.2014-08.org.nvmexpress:uuid:ffa0c815-e28b-4bb1-8d4c-7c6d5e610bfc Transport Protocol: nvme-tcp Initiator Transport Address: 20.20.10.80 Host Identifier: ffa0c815e28b4bb18d4c7c6d5e610bfc Number of I/O Queues: 4 I/O Queue Depths: 128, 128, 128, 128 Admin Queue Depth: 32 Max I/O Size in Bytes: 1048576 Keep-Alive Timeout (msec): 5000 Vserver UUID: 1d59a6b2-416b-11ef-9ed5-d039ea50acb3 Subsystem UUID: 9b81e3c5-5037-11ef-8a90-d039ea50ac83 Logical Interface UUID: 8185dcac-5035-11ef-8abb-d039ea50acb3 Header Digest Enabled: false Data Digest Enabled: false Authentication Hash Function: - Authentication Diffie-Hellman Group: - Authentication Mode: none Transport Service Identifier: 4420 TLS Key Type: configured TLS PSK Identity: NVMe1R01 nqn.2014-08.org.nvmexpress:uuid:ffa0c815-e28b-4bb1-8d4c-7c6d5e610bfc nqn.1992-08.com.netapp:sn.1d59a6b2416b11ef9ed5d039ea50acb3:subsystem.sles15 UoP9dEfvuCUzzpS0DYxnshKDapZYmvA0/RJJ8JAqmAo= TLS Cipher: TLS-AES-128-GCM-SHA256
Known issues
There are no known issues for the SUSE Linux Enterprise Server 15 SP6 with ONTAP release.