Milvus 与Amazon FSx ONTAP for NetApp ONTAP - 文件和对象二元性
本节讨论使用Amazon FSx ONTAP为NetApp提供矢量数据库解决方案的 milvus 集群设置。
Milvus 与Amazon FSx ONTAP for NetApp ONTAP – 文件和对象二元性
在本节中,我们将介绍为什么需要在云中部署矢量数据库,以及在 Docker 容器中的Amazon FSx ONTAP for NetApp ONTAP中部署矢量数据库(milvus 独立版)的步骤。
在云中部署矢量数据库有几个显著的好处,特别是对于需要处理高维数据和执行相似性搜索的应用程序。首先,基于云的部署提供了可扩展性,允许轻松调整资源以适应不断增长的数据量和查询负载。这确保数据库能够有效地处理增加的需求,同时保持高性能。其次,云部署提供了高可用性和灾难恢复,因为数据可以在不同的地理位置复制,最大限度地降低数据丢失的风险,并确保即使在意外事件期间也能持续提供服务。第三,它具有成本效益,因为您只需为您使用的资源付费,并且可以根据需求扩大或缩小规模,从而无需在硬件上进行大量的前期投资。最后,在云中部署矢量数据库可以增强协作,因为可以从任何地方访问和共享数据,从而促进基于团队的工作和数据驱动的决策。请使用Amazon FSx ONTAP for NetApp ONTAP检查此验证中使用的 milvus 独立架构。
-
为NetApp ONTAP实例创建Amazon FSx ONTAP ,并记下 VPC、VPC 安全组和子网的详细信息。创建 EC2 实例时需要此信息。您可以在此处找到更多详细信息 - https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create
-
创建一个 EC2 实例,确保 VPC、安全组和子网与Amazon FSx ONTAP for NetApp ONTAP实例的 VPC、安全组和子网匹配。
-
使用命令“apt-get install nfs-common”安装 nfs-common,并使用“sudo apt-get update”更新包信息。
-
创建一个挂载文件夹并在其上挂载适用于NetApp ONTAP 的Amazon FSx ONTAP 。
ubuntu@ip-172-31-29-98:~$ mkdir /home/ubuntu/milvusvectordb ubuntu@ip-172-31-29-98:~$ sudo mount 172.31.255.228:/vol1 /home/ubuntu/milvusvectordb ubuntu@ip-172-31-29-98:~$ df -h /home/ubuntu/milvusvectordb Filesystem Size Used Avail Use% Mounted on 172.31.255.228:/vol1 973G 126G 848G 13% /home/ubuntu/milvusvectordb ubuntu@ip-172-31-29-98:~$
-
使用“apt-get install”安装 Docker 和 Docker Compose。
-
根据 docker-compose.yaml 文件搭建 Milvus 集群,该文件可以从 Milvus 网站下载。
root@ip-172-31-22-245:~# wget https://github.com/milvus-io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml -O docker-compose.yml --2024-04-01 14:52:23-- https://github.com/milvus-io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml <removed some output to save page space>
-
在 docker-compose.yml 文件的“volumes”部分中,将NetApp NFS 挂载点映射到相应的 Milvus 容器路径,具体在 etcd、minio 和 standalone 中。检查"附录 D:docker-compose.yml"有关 yml 更改的详细信息
-
验证已安装的文件夹和文件。
ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh /home/ubuntu/milvusvectordb total 8.0K -rw-r--r-- 1 root root 1.8K Apr 2 16:35 s3_access.py drwxrwxrwx 2 root root 4.0K Apr 4 20:19 volumes ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh /home/ubuntu/milvusvectordb/volumes/ total 0 ubuntu@ip-172-31-29-98:~/milvusvectordb$ cd ubuntu@ip-172-31-29-98:~$ ls docker-compose.yml docker-compose.yml~ milvus.yaml milvusvectordb vectordbvol1 ubuntu@ip-172-31-29-98:~$
-
从包含 docker-compose.yml 文件的目录运行“docker-compose up -d”。
-
检查 Milvus 容器的状态。
ubuntu@ip-172-31-29-98:~$ sudo docker-compose ps Name Command State Ports ---------------------------------------------------------------------------------------------------------------------------------------------------------- milvus-etcd etcd -advertise-client-url ... Up (healthy) 2379/tcp, 2380/tcp milvus-minio /usr/bin/docker-entrypoint ... Up (healthy) 0.0.0.0:9000->9000/tcp,:::9000->9000/tcp, 0.0.0.0:9001->9001/tcp,:::9001->9001/tcp milvus-standalone /tini -- milvus run standalone Up (healthy) 0.0.0.0:19530->19530/tcp,:::19530->19530/tcp, 0.0.0.0:9091->9091/tcp,:::9091->9091/tcp ubuntu@ip-172-31-29-98:~$ ubuntu@ip-172-31-29-98:~$ ls -ltrh /home/ubuntu/milvusvectordb/volumes/ total 12K drwxr-xr-x 3 root root 4.0K Apr 4 20:21 etcd drwxr-xr-x 4 root root 4.0K Apr 4 20:21 minio drwxr-xr-x 5 root root 4.0K Apr 4 20:21 milvus ubuntu@ip-172-31-29-98:~$
-
为了验证Amazon FSx ONTAP for NetApp ONTAP中矢量数据库及其数据的读写功能,我们使用了 Python Milvus SDK 和来自 PyMilvus 的示例程序。使用“apt-get install python3-numpy python3-pip”安装必要的软件包,并使用“pip3 install pymilvus”安装 PyMilvus。
-
验证向量数据库中Amazon FSx ONTAP for NetApp ONTAP的数据写入和读取操作。
root@ip-172-31-29-98:~/pymilvus/examples# python3 prepare_data_netapp_new.py === start connecting to Milvus === === Milvus host: localhost === Does collection hello_milvus_ntapnew_sc exist in Milvus: True === Drop collection - hello_milvus_ntapnew_sc === === Drop collection - hello_milvus_ntapnew_sc2 === === Create collection `hello_milvus_ntapnew_sc` === === Start inserting entities === Number of entities in hello_milvus_ntapnew_sc: 9000 root@ip-172-31-29-98:~/pymilvus/examples# find /home/ubuntu/milvusvectordb/ … <removed content to save page space > … /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-c117-4fba-8256-96cb7557cd6c /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-c117-4fba-8256-96cb7557cd6c/part.1 /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/xl.meta /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/0 /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/0/448789845791411924 /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/0/448789845791411924/xl.meta /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/1 /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/1/448789845791411925 /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/1/448789845791411925/xl.meta /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/100 /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/100/448789845791411920 /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/100/448789845791411920/xl.meta
-
使用verify_data_netapp.py脚本检查读取操作。
root@ip-172-31-29-98:~/pymilvus/examples# python3 verify_data_netapp.py === start connecting to Milvus === === Milvus host: localhost === Does collection hello_milvus_ntapnew_sc exist in Milvus: True {'auto_id': False, 'description': 'hello_milvus_ntapnew_sc', 'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>, 'is_primary': True, 'auto_id': False}, {'name': 'random', 'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '', 'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False} Number of entities in Milvus: hello_milvus_ntapnew_sc : 9000 === Start Creating index IVF_FLAT === === Start loading === === Start searching based on vector similarity === hit: id: 2248, distance: 0.0, entity: {'random': 0.2777646777746381}, random field: 0.2777646777746381 hit: id: 4837, distance: 0.07805602252483368, entity: {'random': 0.6451650959930306}, random field: 0.6451650959930306 hit: id: 7172, distance: 0.07954417169094086, entity: {'random': 0.6141351712303128}, random field: 0.6141351712303128 hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817}, random field: 0.7434908973629817 hit: id: 830, distance: 0.05628090724349022, entity: {'random': 0.8544487225667627}, random field: 0.8544487225667627 hit: id: 8562, distance: 0.07971227169036865, entity: {'random': 0.4464554280115878}, random field: 0.4464554280115878 search latency = 0.1266s === Start querying with `random > 0.5` === query result: -{'random': 0.6378742006852851, 'embeddings': [0.3017092, 0.74452263, 0.8009826, 0.4927033, 0.12762444, 0.29869467, 0.52859956, 0.23734547], 'pk': 0} search latency = 0.3294s === Start hybrid searching with `random > 0.5` === hit: id: 4837, distance: 0.07805602252483368, entity: {'random': 0.6451650959930306}, random field: 0.6451650959930306 hit: id: 7172, distance: 0.07954417169094086, entity: {'random': 0.6141351712303128}, random field: 0.6141351712303128 hit: id: 515, distance: 0.09590047597885132, entity: {'random': 0.8013175797590888}, random field: 0.8013175797590888 hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817}, random field: 0.7434908973629817 hit: id: 830, distance: 0.05628090724349022, entity: {'random': 0.8544487225667627}, random field: 0.8544487225667627 hit: id: 1627, distance: 0.08096684515476227, entity: {'random': 0.9302397069516164}, random field: 0.9302397069516164 search latency = 0.2674s Does collection hello_milvus_ntapnew_sc2 exist in Milvus: True {'auto_id': True, 'description': 'hello_milvus_ntapnew_sc2', 'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>, 'is_primary': True, 'auto_id': True}, {'name': 'random', 'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '', 'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False}
-
如果客户想要通过 S3 协议访问(读取)矢量数据库中测试的 NFS 数据以用于 AI 工作负载,则可以使用简单的 Python 程序进行验证。一个例子可以是来自另一个应用程序的图像的相似性搜索,如本节开头的图片中提到的那样。
root@ip-172-31-29-98:~/pymilvus/examples# sudo python3 /home/ubuntu/milvusvectordb/s3_access.py -i 172.31.255.228 --bucket milvusnasvol --access-key PY6UF318996I86NBYNDD --secret-key hoPctr9aD88c1j0SkIYZ2uPa03vlbqKA0c5feK6F OBJECTS in the bucket milvusnasvol are : *************************************** … <output content removed to save page space> … bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/0/448789845791411917/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/1/448789845791411918/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/100/448789845791411913/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/101/448789845791411914/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/102/448789845791411915/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/103/448789845791411916/1c48ab6e-1546-4503-9084-28c629216c33/part.1 volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/103/448789845791411916/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/0/448789845791411924/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/1/448789845791411925/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/100/448789845791411920/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/101/448789845791411921/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/102/448789845791411922/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-c117-4fba-8256-96cb7557cd6c/part.1 volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/xl.meta volumes/minio/a-bucket/files/stats_log/448789845791211880/448789845791211881/448789845791411889/100/1/xl.meta volumes/minio/a-bucket/files/stats_log/448789845791211880/448789845791211881/448789845791411889/100/448789845791411912/xl.meta volumes/minio/a-bucket/files/stats_log/448789845791611912/448789845791611913/448789845791611920/100/1/xl.meta volumes/minio/a-bucket/files/stats_log/448789845791611912/448789845791611913/448789845791611920/100/448789845791411919/xl.meta volumes/minio/a-bucket/files/stats_log/448789845791611912/448789845791611913/448789845791611939/100/1/xl.meta volumes/minio/a-bucket/files/stats_log/448789845791611912/448789845791611913/448789845791611939/100/448789845791411926/xl.meta *************************************** root@ip-172-31-29-98:~/pymilvus/examples#
本节有效地演示了客户如何在 Docker 容器中部署和操作独立的 Milvus 设置,并利用 Amazon 的NetApp FSx ONTAP进行NetApp ONTAP数据存储。此设置允许客户利用矢量数据库的强大功能来处理高维数据和执行复杂查询,所有这些都可以在可扩展且高效的 Docker 容器环境中完成。通过创建适用于NetApp ONTAP实例和匹配的 EC2 实例的Amazon FSx ONTAP ,客户可以确保最佳的资源利用率和数据管理。 FSx ONTAP在矢量数据库中数据写入和读取操作的成功验证为客户提供了可靠、一致的数据操作的保证。此外,通过 S3 协议列出(读取)来自 AI 工作负载的数据的能力增强了数据可访问性。因此,这一全面的流程为客户提供了一个强大而高效的解决方案,用于管理他们的大规模数据操作,并利用了 Amazon FSx ONTAP for NetApp ONTAP的功能。