Milvus 搭配 Amazon FSX ONTAP for NetApp ONTAP - 檔案與物件雙重性
本節討論適用於 NetApp 的向量資料庫解決方案、搭配 Amazon FSX ONTAP 的 milvus 叢集設定。
Milvus 搭配 Amazon FSX ONTAP for NetApp ONTAP –檔案和物件雙重性
在本節中、為什麼我們需要在雲端中部署向量資料庫、以及在 Docker 容器內的 Amazon FSX ONTAP for NetApp ONTAP 中部署向量資料庫( milvus 獨立式)的步驟。
在雲端中部署向量資料庫可提供多項重要效益、特別是對於需要處理高維度資料和執行相似度搜尋的應用程式。首先、雲端型部署提供擴充性、可輕鬆調整資源、以配合不斷成長的資料量和查詢負載。如此可確保資料庫能夠有效處理增加的需求、同時維持高效能。其次、雲端部署可提供高可用度和災難恢復、因為資料可在不同的地理位置上複寫、將資料遺失的風險降至最低、並確保即使發生非預期的事件、仍能持續提供服務。第三、它能提供成本效益、因為您只需支付所使用的資源、並可根據需求進行上下擴充、避免需要大量的硬體前期投資。最後、在雲端部署向量資料庫可加強協同作業、因為資料可以從任何地方存取和共享、有助於團隊工作和資料導向的決策。請查看在此驗證中使用的適用於 NetApp ONTAP 的 Amazon FSX ONTAP 的 Milvus 獨立式架構。
-
建立 Amazon FSX ONTAP for NetApp ONTAP 執行個體、並記下 VPC 、 VPC 安全群組和子網路的詳細資料。建立 EC2 執行個體時、必須提供這項資訊。您可以在這裡找到更多詳細資料 - https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create
-
建立 EC2 執行個體、確保 VPC 、安全性群組和子網路與 Amazon FSX ONTAP for NetApp ONTAP 執行個體的相符。
-
使用命令 'apt-Get install NFS-common' 安裝 NFS-common' 、並使用 'Udo apt-Get update" 更新套件資訊。
-
建立裝載資料夾、並在其中掛載 Amazon FSX ONTAP for NetApp ONTAP 。
ubuntu@ip-172-31-29-98:~$ mkdir /home/ubuntu/milvusvectordb ubuntu@ip-172-31-29-98:~$ sudo mount 172.31.255.228:/vol1 /home/ubuntu/milvusvectordb ubuntu@ip-172-31-29-98:~$ df -h /home/ubuntu/milvusvectordb Filesystem Size Used Avail Use% Mounted on 172.31.255.228:/vol1 973G 126G 848G 13% /home/ubuntu/milvusvectordb ubuntu@ip-172-31-29-98:~$
-
使用「 apt-Get 安裝」安裝 Docker 和 Docker Compose 。
-
根據泊塢視窗 -compare.yaml 檔案設定 Milvus 叢集、可從 Milvus 網站下載。
root@ip-172-31-22-245:~# wget https://github.com/milvus-io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml -O docker-compose.yml --2024-04-01 14:52:23-- https://github.com/milvus-io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml <removed some output to save page space>
-
在泊塢視窗 -compile.yml 檔案的「 Volumes 」(磁碟區)區段中、將 NetApp NFS 掛載點對應至對應的 Milvus 容器路徑、特別是 etcd 、 minio 和 standbedy.Check "附錄 D :泊塢視窗 - 組合 .yml" 以取得有關 Yml 變更的詳細資訊
-
驗證掛載的資料夾和檔案。
ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh /home/ubuntu/milvusvectordb total 8.0K -rw-r--r-- 1 root root 1.8K Apr 2 16:35 s3_access.py drwxrwxrwx 2 root root 4.0K Apr 4 20:19 volumes ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh /home/ubuntu/milvusvectordb/volumes/ total 0 ubuntu@ip-172-31-29-98:~/milvusvectordb$ cd ubuntu@ip-172-31-29-98:~$ ls docker-compose.yml docker-compose.yml~ milvus.yaml milvusvectordb vectordbvol1 ubuntu@ip-172-31-29-98:~$
-
從包含泊塢視窗 -compile.yml 檔案的目錄執行「 ocker-competup -d 」。
-
檢查 Milvus 容器的狀態。
ubuntu@ip-172-31-29-98:~$ sudo docker-compose ps Name Command State Ports ---------------------------------------------------------------------------------------------------------------------------------------------------------- milvus-etcd etcd -advertise-client-url ... Up (healthy) 2379/tcp, 2380/tcp milvus-minio /usr/bin/docker-entrypoint ... Up (healthy) 0.0.0.0:9000->9000/tcp,:::9000->9000/tcp, 0.0.0.0:9001->9001/tcp,:::9001->9001/tcp milvus-standalone /tini -- milvus run standalone Up (healthy) 0.0.0.0:19530->19530/tcp,:::19530->19530/tcp, 0.0.0.0:9091->9091/tcp,:::9091->9091/tcp ubuntu@ip-172-31-29-98:~$ ubuntu@ip-172-31-29-98:~$ ls -ltrh /home/ubuntu/milvusvectordb/volumes/ total 12K drwxr-xr-x 3 root root 4.0K Apr 4 20:21 etcd drwxr-xr-x 4 root root 4.0K Apr 4 20:21 minio drwxr-xr-x 5 root root 4.0K Apr 4 20:21 milvus ubuntu@ip-172-31-29-98:~$
-
為了驗證向量資料庫的讀寫功能、以及它在 Amazon FSX ONTAP for NetApp ONTAP 中的資料、我們使用 Python Milvus SDK 和 PyMilvus 的範例程式。使用 'apt-Get install python3-numpy python3-pip' 安裝必要的套件、並使用 'pip3 install pymilvus' 安裝 PyMilvus 。
-
驗證向量資料庫中 Amazon FSX ONTAP for NetApp ONTAP 的資料寫入和讀取作業。
root@ip-172-31-29-98:~/pymilvus/examples# python3 prepare_data_netapp_new.py === start connecting to Milvus === === Milvus host: localhost === Does collection hello_milvus_ntapnew_sc exist in Milvus: True === Drop collection - hello_milvus_ntapnew_sc === === Drop collection - hello_milvus_ntapnew_sc2 === === Create collection `hello_milvus_ntapnew_sc` === === Start inserting entities === Number of entities in hello_milvus_ntapnew_sc: 9000 root@ip-172-31-29-98:~/pymilvus/examples# find /home/ubuntu/milvusvectordb/ … <removed content to save page space > … /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-c117-4fba-8256-96cb7557cd6c /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-c117-4fba-8256-96cb7557cd6c/part.1 /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/xl.meta /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/0 /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/0/448789845791411924 /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/0/448789845791411924/xl.meta /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/1 /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/1/448789845791411925 /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/1/448789845791411925/xl.meta /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/100 /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/100/448789845791411920 /home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/100/448789845791411920/xl.meta
-
使用 verify_data_netapp.py 指令碼檢查讀取作業。
root@ip-172-31-29-98:~/pymilvus/examples# python3 verify_data_netapp.py === start connecting to Milvus === === Milvus host: localhost === Does collection hello_milvus_ntapnew_sc exist in Milvus: True {'auto_id': False, 'description': 'hello_milvus_ntapnew_sc', 'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>, 'is_primary': True, 'auto_id': False}, {'name': 'random', 'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '', 'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False} Number of entities in Milvus: hello_milvus_ntapnew_sc : 9000 === Start Creating index IVF_FLAT === === Start loading === === Start searching based on vector similarity === hit: id: 2248, distance: 0.0, entity: {'random': 0.2777646777746381}, random field: 0.2777646777746381 hit: id: 4837, distance: 0.07805602252483368, entity: {'random': 0.6451650959930306}, random field: 0.6451650959930306 hit: id: 7172, distance: 0.07954417169094086, entity: {'random': 0.6141351712303128}, random field: 0.6141351712303128 hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817}, random field: 0.7434908973629817 hit: id: 830, distance: 0.05628090724349022, entity: {'random': 0.8544487225667627}, random field: 0.8544487225667627 hit: id: 8562, distance: 0.07971227169036865, entity: {'random': 0.4464554280115878}, random field: 0.4464554280115878 search latency = 0.1266s === Start querying with `random > 0.5` === query result: -{'random': 0.6378742006852851, 'embeddings': [0.3017092, 0.74452263, 0.8009826, 0.4927033, 0.12762444, 0.29869467, 0.52859956, 0.23734547], 'pk': 0} search latency = 0.3294s === Start hybrid searching with `random > 0.5` === hit: id: 4837, distance: 0.07805602252483368, entity: {'random': 0.6451650959930306}, random field: 0.6451650959930306 hit: id: 7172, distance: 0.07954417169094086, entity: {'random': 0.6141351712303128}, random field: 0.6141351712303128 hit: id: 515, distance: 0.09590047597885132, entity: {'random': 0.8013175797590888}, random field: 0.8013175797590888 hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817}, random field: 0.7434908973629817 hit: id: 830, distance: 0.05628090724349022, entity: {'random': 0.8544487225667627}, random field: 0.8544487225667627 hit: id: 1627, distance: 0.08096684515476227, entity: {'random': 0.9302397069516164}, random field: 0.9302397069516164 search latency = 0.2674s Does collection hello_milvus_ntapnew_sc2 exist in Milvus: True {'auto_id': True, 'description': 'hello_milvus_ntapnew_sc2', 'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>, 'is_primary': True, 'auto_id': True}, {'name': 'random', 'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '', 'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}}, {'name': 'embeddings', 'description': '', 'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 8}}], 'enable_dynamic_field': False}
-
如果客戶想要存取(讀取)透過 S3 傳輸協定在向量資料庫中測試的 AI 工作負載 NFS 資料、則可以使用簡單易懂的 Python 程式來驗證。例如、如本節開頭的圖片所述、從其他應用程式搜尋影像的相似性。
root@ip-172-31-29-98:~/pymilvus/examples# sudo python3 /home/ubuntu/milvusvectordb/s3_access.py -i 172.31.255.228 --bucket milvusnasvol --access-key PY6UF318996I86NBYNDD --secret-key hoPctr9aD88c1j0SkIYZ2uPa03vlbqKA0c5feK6F OBJECTS in the bucket milvusnasvol are : *************************************** … <output content removed to save page space> … bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/0/448789845791411917/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/1/448789845791411918/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/100/448789845791411913/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/101/448789845791411914/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/102/448789845791411915/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/103/448789845791411916/1c48ab6e-1546-4503-9084-28c629216c33/part.1 volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611920/103/448789845791411916/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/0/448789845791411924/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/1/448789845791411925/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/100/448789845791411920/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/101/448789845791411921/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/102/448789845791411922/xl.meta volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-c117-4fba-8256-96cb7557cd6c/part.1 volumes/minio/a-bucket/files/insert_log/448789845791611912/448789845791611913/448789845791611939/103/448789845791411923/xl.meta volumes/minio/a-bucket/files/stats_log/448789845791211880/448789845791211881/448789845791411889/100/1/xl.meta volumes/minio/a-bucket/files/stats_log/448789845791211880/448789845791211881/448789845791411889/100/448789845791411912/xl.meta volumes/minio/a-bucket/files/stats_log/448789845791611912/448789845791611913/448789845791611920/100/1/xl.meta volumes/minio/a-bucket/files/stats_log/448789845791611912/448789845791611913/448789845791611920/100/448789845791411919/xl.meta volumes/minio/a-bucket/files/stats_log/448789845791611912/448789845791611913/448789845791611939/100/1/xl.meta volumes/minio/a-bucket/files/stats_log/448789845791611912/448789845791611913/448789845791611939/100/448789845791411926/xl.meta *************************************** root@ip-172-31-29-98:~/pymilvus/examples#
本節有效說明客戶如何在 Docker 容器中部署及操作獨立的 Milvus 設定、並運用 Amazon 的 NetApp FSX ONTAP 來儲存 NetApp ONTAP 資料。這項設定可讓客戶運用向量資料庫的強大功能、在 Docker 容器的可擴充且有效率的環境中、處理高維度資料並執行複雜的查詢。透過建立 Amazon FSX ONTAP for NetApp ONTAP 執行個體並配對 EC2 執行個體、客戶可以確保最佳的資源使用率和資料管理。成功驗證向量資料庫中的 FSX ONTAP 資料寫入與讀取作業、讓客戶能夠確保可靠且一致的資料作業。此外、透過 S3 傳輸協定列出(讀取) AI 工作負載資料的能力、可增強資料存取能力。因此、這項全方位流程為客戶提供強大且有效率的解決方案、讓客戶能夠運用 Amazon 的 FSX ONTAP for NetApp ONTAP 的功能來管理大規模資料作業。