Skip to main content
NetApp Solutions
La versione in lingua italiana fornita proviene da una traduzione automatica. Per eventuali incoerenze, fare riferimento alla versione in lingua inglese.

Dualità dei dati per data scientist e altre applicazioni

Collaboratori

I dati sono disponibili in NFS e accessibili da S3 da AWS SageMaker.

Requisiti tecnologici

I notebook NetApp BlueXP, NetApp Cloud Volumes ONTAP e AWS SageMaker sono necessari per il caso di utilizzo della doppia funzionalità dei dati.

Requisiti software

La seguente tabella elenca i componenti software necessari per implementare il caso d'utilizzo.

Software Quantità

BlueXP

1

NetApp Cloud Volumes ONTAP

1

Notebook AWS SageMaker

1

Procedure di implementazione

L'implementazione della soluzione per la dualità dei dati comporta le seguenti attività:

  • Connettore BlueXP

  • NetApp Cloud Volumes ONTAP

  • Dati per l'apprendimento automatico

  • AWS SageMaker

  • Apprendimento automatico validato dai notebook Jupyter

Connettore BlueXP

In questa convalida, abbiamo utilizzato AWS. È applicabile anche a Azure e Google Cloud. Per creare un connettore BlueXP in AWS, attenersi alla seguente procedura:

  1. Abbiamo utilizzato le credenziali basate sull'abbonamento mcarl-marketplace in BlueXP.

  2. Scegli la regione adatta al tuo ambiente (ad esempio, US-East-1 [N. Virginia]), quindi selezionare il metodo di autenticazione (ad esempio, assumere le chiavi role o AWS). In questa convalida, utilizziamo le chiavi AWS.

  3. Fornire il nome del connettore e creare un ruolo.

  4. Fornire i dettagli di rete, ad esempio VPC, subnet o coppia di chiavi, a seconda che sia necessario un IP pubblico o meno.

  5. Fornire i dettagli per il gruppo di protezione, ad esempio l'accesso HTTP, HTTPS o SSH dal tipo di origine, ad esempio le informazioni su Anywhere e sull'intervallo IP.

  6. Esaminare e creare BlueXP Connector.

  7. Verificare che lo stato dell'istanza di BlueXP EC2 sia in esecuzione nella console AWS e controllare l'indirizzo IP dalla scheda Networking.

  8. Accedere all'interfaccia utente del connettore dal portale BlueXP oppure utilizzare l'indirizzo IP per l'accesso dal browser.

NetApp Cloud Volumes ONTAP

Per creare un'istanza di Cloud Volumes ONTAP in BlueXP, attenersi alla seguente procedura:

  1. Crea un nuovo ambiente di lavoro, seleziona il cloud provider e seleziona il tipo di istanza di Cloud Volumes ONTAP (ad esempio single-CVO, ha o Amazon FSX ONTAP per ONTAP).

  2. Fornire dettagli come il nome e le credenziali del cluster Cloud Volumes ONTAP. In questa convalida, abbiamo creato un'istanza di Cloud Volumes ONTAP chiamata svm_sagemaker_cvo_sn1.

  3. Selezionare i servizi necessari per Cloud Volumes ONTAP. In questa convalida, abbiamo scelto di eseguire solo il monitoraggio, quindi abbiamo disattivato Data Sense & Compliance e Backup to Cloud Services.

  4. Nella sezione Location & Connectivity, selezionare la regione AWS, VPC, subnet, gruppo di sicurezza, metodo di autenticazione SSH, e una password o una coppia di chiavi.

  5. Scegliere il metodo di ricarica. Per questa convalida abbiamo utilizzato Professional.

  6. È possibile scegliere un pacchetto preconfigurato, ad esempio POC e piccoli carichi di lavoro, carichi di lavoro di produzione di dati applicativi e database, DR conveniente o carichi di lavoro di produzione dalle performance più elevate. In questa convalida, scegliamo POC e workload di piccole dimensioni.

  7. Creare un volume con una dimensione specifica, protocolli consentiti e opzioni di esportazione. In questa convalida, abbiamo creato un volume chiamato vol1.

  8. Scegliere un tipo di disco del profilo e una policy di tiering. In questa convalida, abbiamo disattivato efficienza dello storage e SSD General- purpose – Dynamic Performance.

  9. Infine, esaminare e creare l'istanza di Cloud Volumes ONTAP. Quindi attendere 15-20 minuti affinché BlueXP crei l'ambiente di lavoro Cloud Volumes ONTAP.

  10. Configurare i seguenti parametri per attivare il protocollo di dualità. Il protocollo di dualità (NFS/S3) è supportato da ONTAP 9. 12.1 e versioni successive.

    1. In questa convalida, abbiamo creato una SVM chiamata svm_sagemaker_cvo_sn1 e volume vol1.

    2. Verificare che SVM disponga del supporto del protocollo per NFS e S3. In caso contrario, modificare la SVM per supportarla.

      sagemaker_cvo_sn1::> vserver show -vserver svm_sagemaker_cvo_sn1
                                          Vserver: svm_sagemaker_cvo_sn1
                                     Vserver Type: data
                                  Vserver Subtype: default
                                     Vserver UUID: 911065dd-a8bc-11ed-bc24-e1c0f00ad86b
                                      Root Volume: svm_sagemaker_cvo_sn1_root
                                        Aggregate: aggr1
                                       NIS Domain: -
                       Root Volume Security Style: unix
                                      LDAP Client: -
                     Default Volume Language Code: C.UTF-8
                                  Snapshot Policy: default
                                    Data Services: data-cifs, data-flexcache,
                                                   data-iscsi, data-nfs,
                                                   data-nvme-tcp
                                          Comment:
                                     Quota Policy: default
                      List of Aggregates Assigned: aggr1
       Limit on Maximum Number of Volumes allowed: unlimited
                              Vserver Admin State: running
                        Vserver Operational State: running
         Vserver Operational State Stopped Reason: -
                                Allowed Protocols: nfs, cifs, fcp, iscsi, ndmp, s3
                             Disallowed Protocols: nvme
                  Is Vserver with Infinite Volume: false
                                 QoS Policy Group: -
                              Caching Policy Name: -
                                      Config Lock: false
                                     IPspace Name: Default
                               Foreground Process: -
                          Logical Space Reporting: true
                        Logical Space Enforcement: false
      Default Anti_ransomware State of the Vserver's Volumes: disabled
                  Enable Analytics on New Volumes: false
          Enable Activity Tracking on New Volumes: false
      
      sagemaker_cvo_sn1::>
  11. Creare e installare un certificato CA, se necessario.

  12. Creare una policy sui dati del servizio.

    sagemaker_cvo_sn1::*> network interface service-policy create -vserver svm_sagemaker_cvo_sn1 -policy sagemaker_s3_nfs_policy -services data-core,data-s3-server,data-nfs,data-flexcache
    sagemaker_cvo_sn1::*> network interface create -vserver svm_sagemaker_cvo_sn1 -lif svm_sagemaker_cvo_sn1_s3_lif -service-policy sagemaker_s3_nfs_policy -home-node sagemaker_cvo_sn1-01 -address 172.30.10.41 -netmask 255.255.255.192
    
    Warning: The configured failover-group has no valid failover targets for the LIF's failover-policy. To view the failover targets for a LIF, use
             the "network interface show -failover" command.
    
    sagemaker_cvo_sn1::*>
    sagemaker_cvo_sn1::*> network interface show
    Logical    Status     Network            Current       Current Is
    Vserver     Interface  Admin/Oper Address/Mask       Node          Port    Home
    ----------- ---------- ---------- ------------------ ------------- ------- ----
    sagemaker_cvo_sn1
                cluster-mgmt up/up    172.30.10.40/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
                intercluster up/up    172.30.10.48/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
                sagemaker_cvo_sn1-01_mgmt1
                             up/up    172.30.10.58/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
    svm_sagemaker_cvo_sn1
                svm_sagemaker_cvo_sn1_data_lif
                             up/up    172.30.10.23/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
                svm_sagemaker_cvo_sn1_mgmt_lif
                             up/up    172.30.10.32/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
                svm_sagemaker_cvo_sn1_s3_lif
                             up/up    172.30.10.41/26    sagemaker_cvo_sn1-01
                                                                       e0a     true
    6 entries were displayed.
    
    sagemaker_cvo_sn1::*>
    sagemaker_cvo_sn1::*> vserver object-store-server create -vserver svm_sagemaker_cvo_sn1  -is-http-enabled true -object-store-server svm_sagemaker_cvo_s3_sn1 -is-https-enabled false
    sagemaker_cvo_sn1::*> vserver object-store-server show
    
    Vserver: svm_sagemaker_cvo_sn1
    
               Object Store Server Name: svm_sagemaker_cvo_s3_sn1
                   Administrative State: up
                           HTTP Enabled: true
                 Listener Port For HTTP: 80
                          HTTPS Enabled: false
         Secure Listener Port For HTTPS: 443
      Certificate for HTTPS Connections: -
                      Default UNIX User: pcuser
                   Default Windows User: -
                                Comment:
    
    sagemaker_cvo_sn1::*>
  13. Controllare i dettagli dell'aggregato.

    sagemaker_cvo_sn1::*> aggr show
    
    
    Aggregate     Size Available Used% State   #Vols  Nodes            RAID Status
    --------- -------- --------- ----- ------- ------ ---------------- ------------
    aggr0_sagemaker_cvo_sn1_01
               124.0GB   50.88GB   59% online       1 sagemaker_cvo_   raid0,
                                                      sn1-01           normal
    aggr1      907.1GB   904.9GB    0% online       2 sagemaker_cvo_   raid0,
                                                      sn1-01           normal
    2 entries were displayed.
    
    sagemaker_cvo_sn1::*>
  14. Creare un utente e un gruppo.

    sagemaker_cvo_sn1::*> vserver object-store-server user create -vserver svm_sagemaker_cvo_sn1 -user s3user
    
    sagemaker_cvo_sn1::*> vserver object-store-server user show
    Vserver     User            ID        Access Key          Secret Key
    ----------- --------------- --------- ------------------- -------------------
    svm_sagemaker_cvo_sn1
                root            0         -                   -
       Comment: Root User
    svm_sagemaker_cvo_sn1
                s3user          1         0ZNAX21JW5Q8AP80CQ2E
                                                              PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr
    2 entries were displayed.
    
    sagemaker_cvo_sn1::*>
    
    
    sagemaker_cvo_sn1::*> vserver object-store-server group create -name s3group -users s3user -comment ""
    
    sagemaker_cvo_sn1::*>
    sagemaker_cvo_sn1::*> vserver object-store-server group delete -gid 1 -vserver svm_sagemaker_cvo_sn1
    
    sagemaker_cvo_sn1::*> vserver object-store-server group create -name s3group -users s3user -comment "" -policies FullAccess
    
    sagemaker_cvo_sn1::*>
  15. Creare un bucket sul volume NFS.

    sagemaker_cvo_sn1::*> vserver object-store-server bucket create -bucket ontapbucket1 -type nas -comment "" -vserver svm_sagemaker_cvo_sn1 -nas-path /vol1
    sagemaker_cvo_sn1::*> vserver object-store-server bucket show
    Vserver     Bucket          Type     Volume            Size       Encryption Role       NAS Path
    ----------- --------------- -------- ----------------- ---------- ---------- ---------- ----------
    svm_sagemaker_cvo_sn1
                ontapbucket1    nas      vol1              -          false      -          /vol1
    sagemaker_cvo_sn1::*>

AWS SageMaker

Per creare un notebook AWS da AWS SageMaker, attenersi alla seguente procedura:

  1. Assicurarsi che l'utente che sta creando un'istanza di notebook disponga di un criterio IAM AmazonSageMakerFullAccess o faccia parte di un gruppo esistente che dispone dei diritti AmazonSageMakerFullAccess. In questa convalida, l'utente fa parte di un gruppo esistente.

  2. Fornire le seguenti informazioni:

    • Nome dell'istanza del notebook.

    • Tipo di istanza.

    • Identificatore della piattaforma.

    • Selezionare il ruolo IAM che dispone dei diritti AmazonSageMakerFullAccess.

    • Root access (accesso root): Abilitare.

    • Encryption key (chiave di crittografia) - selezionare NO customed Encryption (

    • Mantenere le restanti opzioni predefinite.

  3. In questa convalida, i dettagli dell'istanza di SageMaker sono i seguenti:

    Schermata che illustra il passaggio.

    Schermata che illustra il passaggio.

  4. Avviare il notebook AWS.

    Schermata che illustra il passaggio.

  5. Aprire il laboratorio Jupyter.

    Schermata che illustra il passaggio.

  6. Accedere al terminale e montare il volume Cloud Volumes ONTAP.

    sh-4.2$ sudo mkdir /vol1; sudo mount -t nfs 172.30.10.41:/vol1 /vol1
    sh-4.2$ df -h
    Filesystem          Size  Used Avail Use% Mounted on
    devtmpfs            2.0G     0  2.0G   0% /dev
    tmpfs               2.0G     0  2.0G   0% /dev/shm
    tmpfs               2.0G  624K  2.0G   1% /run
    tmpfs               2.0G     0  2.0G   0% /sys/fs/cgroup
    /dev/xvda1          140G  114G   27G  82% /
    /dev/xvdf           4.8G   72K  4.6G   1% /home/ec2-user/SageMaker
    tmpfs               393M     0  393M   0% /run/user/1001
    tmpfs               393M     0  393M   0% /run/user/1002
    tmpfs               393M     0  393M   0% /run/user/1000
    172.30.10.41:/vol1  973M  189M  785M  20% /vol1
    sh-4.2$
  7. Controllare il bucket creato sul volume Cloud Volumes ONTAP utilizzando i comandi CLI AWS.

    sh-4.2$ aws configure --profile netapp
    AWS Access Key ID [None]: 0ZNAX21JW5Q8AP80CQ2E
    AWS Secret Access Key [None]: PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr
    Default region name [None]: us-east-1
    Default output format [None]:
    sh-4.2$
    
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url
    2023-02-10 17:59:48 ontapbucket1
    
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/
    
    
    2023-02-10 18:46:44       4747 1
    2023-02-10 18:48:32         96 setup.cfg
    
    sh-4.2$

Dati per l'apprendimento automatico

In questa convalida, abbiamo utilizzato un set di dati di dbpedia, un'iniziativa della community basata su crowd, per estrarre contenuti strutturati dalle informazioni create in vari progetti Wikimedia.

  1. Scaricare i dati dalla posizione di dbpedia GitHub ed estrarli. Utilizzare lo stesso terminale utilizzato nella sezione precedente.

    sh-4.2$ wget
    --2023-02-14 23:12:11--
    Resolving github.com (github.com)... 140.82.113.3
    Connecting to github.com (github.com)|140.82.113.3|:443... connected.
    HTTP request sent, awaiting response... 302 Found
    Location:  [following]
    --2023-02-14 23:12:11--
    Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.110.133, 185.199.111.133, ...
    Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.
    HTTP request sent, awaiting response... 200 OK
    Length: 68431223 (65M) [application/octet-stream]
    Saving to: ‘dbpedia_csv.tar.gz’
    
    100%[==============================================================================================================================================================>] 68,431,223  56.2MB/s   in 1.2s
    
    2023-02-14 23:12:13 (56.2 MB/s) - ‘dbpedia_csv.tar.gz’ saved [68431223/68431223]
    
    sh-4.2$ tar -zxvf dbpedia_csv.tar.gz
    dbpedia_csv/
    dbpedia_csv/test.csv
    dbpedia_csv/classes.txt
    dbpedia_csv/train.csv
    dbpedia_csv/readme.txt
    sh-4.2$
  2. Copiare i dati nella posizione Cloud Volumes ONTAP e controllarli dal bucket S3 utilizzando l'interfaccia CLI AWS.

    sh-4.2$ df -h
    Filesystem          Size  Used Avail Use% Mounted on
    devtmpfs            2.0G     0  2.0G   0% /dev
    tmpfs               2.0G     0  2.0G   0% /dev/shm
    tmpfs               2.0G  628K  2.0G   1% /run
    tmpfs               2.0G     0  2.0G   0% /sys/fs/cgroup
    /dev/xvda1          140G  114G   27G  82% /
    /dev/xvdf           4.8G   52K  4.6G   1% /home/ec2-user/SageMaker
    tmpfs               393M     0  393M   0% /run/user/1002
    tmpfs               393M     0  393M   0% /run/user/1001
    tmpfs               393M     0  393M   0% /run/user/1000
    172.30.10.41:/vol1  973M  384K  973M   1% /vol1
    sh-4.2$ pwd
    /home/ec2-user
    sh-4.2$ cp -ra dbpedia_csv /vol1
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/
                               PRE dbpedia_csv/
    2023-02-10 18:46:44       4747 1
    2023-02-10 18:48:32         96 setup.cfg
    sh-4.2$
  3. Eseguire la convalida di base per assicurarsi che la funzionalità di lettura/scrittura funzioni sul bucket S3.

    sh-4.2$ aws s3 cp  --profile netapp --endpoint-url  /usr/share/doc/util-linux-2.30.2 s3://ontapbucket1/ --recursive
    upload: ../../../usr/share/doc/util-linux-2.30.2/deprecated.txt to s3://ontapbucket1/deprecated.txt
    upload: ../../../usr/share/doc/util-linux-2.30.2/getopt-parse.bash to s3://ontapbucket1/getopt-parse.bash
    upload: ../../../usr/share/doc/util-linux-2.30.2/README to s3://ontapbucket1/README
    upload: ../../../usr/share/doc/util-linux-2.30.2/getopt-parse.tcsh to s3://ontapbucket1/getopt-parse.tcsh
    upload: ../../../usr/share/doc/util-linux-2.30.2/AUTHORS to s3://ontapbucket1/AUTHORS
    upload: ../../../usr/share/doc/util-linux-2.30.2/NEWS to s3://ontapbucket1/NEWS
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/s3://ontapbucket1/
    
    An error occurred (InternalError) when calling the ListObjectsV2 operation: We encountered an internal error. Please try again.
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/
                               PRE dbpedia_csv/
    2023-02-16 19:19:27      26774 AUTHORS
    2023-02-16 19:19:27      72727 NEWS
    2023-02-16 19:19:27       4493 README
    2023-02-16 19:19:27       2825 deprecated.txt
    2023-02-16 19:19:27       1590 getopt-parse.bash
    2023-02-16 19:19:27       2245 getopt-parse.tcsh
    sh-4.2$ ls -ltr /vol1
    total 132
    drwxrwxr-x 2 ec2-user ec2-user  4096 Mar 29  2015 dbpedia_csv
    -rw-r--r-- 1 nobody   nobody    2245 Apr 10 17:37 getopt-parse.tcsh
    -rw-r--r-- 1 nobody   nobody    2825 Apr 10 17:37 deprecated.txt
    -rw-r--r-- 1 nobody   nobody    4493 Apr 10 17:37 README
    -rw-r--r-- 1 nobody   nobody    1590 Apr 10 17:37 getopt-parse.bash
    -rw-r--r-- 1 nobody   nobody   26774 Apr 10 17:37 AUTHORS
    -rw-r--r-- 1 nobody   nobody   72727 Apr 10 17:37 NEWS
    sh-4.2$ ls -ltr /vol1/dbpedia_csv/
    total 192104
    -rw------- 1 ec2-user ec2-user 174148970 Mar 28  2015 train.csv
    -rw------- 1 ec2-user ec2-user  21775285 Mar 28  2015 test.csv
    -rw------- 1 ec2-user ec2-user       146 Mar 28  2015 classes.txt
    -rw-rw-r-- 1 ec2-user ec2-user      1758 Mar 29  2015 readme.txt
    sh-4.2$ chmod -R 777 /vol1/dbpedia_csv
    sh-4.2$ ls -ltr /vol1/dbpedia_csv/
    total 192104
    -rwxrwxrwx 1 ec2-user ec2-user 174148970 Mar 28  2015 train.csv
    -rwxrwxrwx 1 ec2-user ec2-user  21775285 Mar 28  2015 test.csv
    -rwxrwxrwx 1 ec2-user ec2-user       146 Mar 28  2015 classes.txt
    -rwxrwxrwx 1 ec2-user ec2-user      1758 Mar 29  2015 readme.txt
    sh-4.2$ aws s3 cp --profile netapp --endpoint-url http://172.30.2.248/ s3://ontapbucket1/ /tmp --recursive
    download: s3://ontapbucket1/AUTHORS to ../../tmp/AUTHORS
    download: s3://ontapbucket1/README to ../../tmp/README
    download: s3://ontapbucket1/NEWS to ../../tmp/NEWS
    download: s3://ontapbucket1/dbpedia_csv/classes.txt to ../../tmp/dbpedia_csv/classes.txt
    download: s3://ontapbucket1/dbpedia_csv/readme.txt to ../../tmp/dbpedia_csv/readme.txt
    download: s3://ontapbucket1/deprecated.txt to ../../tmp/deprecated.txt
    download: s3://ontapbucket1/getopt-parse.bash to ../../tmp/getopt-parse.bash
    download: s3://ontapbucket1/getopt-parse.tcsh to ../../tmp/getopt-parse.tcsh
    download: s3://ontapbucket1/dbpedia_csv/test.csv to ../../tmp/dbpedia_csv/test.csv
    download: s3://ontapbucket1/dbpedia_csv/train.csv to ../../tmp/dbpedia_csv/train.csv
    sh-4.2$
    sh-4.2$ aws s3 ls --profile netapp --endpoint-url  s3://ontapbucket1/
                               PRE dbpedia_csv/
    2023-02-16 19:19:27      26774 AUTHORS
    2023-02-16 19:19:27      72727 NEWS
    2023-02-16 19:19:27       4493 README
    2023-02-16 19:19:27       2825 deprecated.txt
    2023-02-16 19:19:27       1590 getopt-parse.bash
    2023-02-16 19:19:27       2245 getopt-parse.tcsh
    sh-4.2$

Convalida l'apprendimento automatico dai notebook Jupyter

La seguente convalida fornisce i modelli di creazione, formazione e implementazione dell'apprendimento automatico attraverso la classificazione del testo utilizzando l'esempio di SageMaker BlazingText riportato di seguito:

  1. Installare i pacchetti boto3 e SageMaker.

    In [1]:  pip install --upgrade boto3 sagemaker

    Uscita:

    Looking in indexes: https://pypi.org/simple, https://pip.repos.neuron.amazo naws.com
    Requirement already satisfied: boto3 in /home/ec2-user/anaconda3/envs/pytho n3/lib/python3.10/site-packages (1.26.44)
    Collecting boto3
      Downloading boto3-1.26.72-py3-none-any.whl (132 kB)
         ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 132.7/132.7 kB 14.6 MB/s eta 0: 00:00
    Requirement already satisfied: sagemaker in /home/ec2-user/anaconda3/envs/p ython3/lib/python3.10/site-packages (2.127.0)
    Collecting sagemaker
      Downloading sagemaker-2.132.0.tar.gz (668 kB)
         ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 668.0/668.0 kB 12.3 MB/s eta 0:
    00:0000:01
      Preparing metadata (setup.py) ... done
    Collecting botocore<1.30.0,>=1.29.72
      Downloading botocore-1.29.72-py3-none-any.whl (10.4 MB)
         ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 10.4/10.4 MB 44.3 MB/s eta 0: 00:0000:010:01
    Requirement already satisfied: s3transfer<0.7.0,>=0.6.0 in /home/ec2-user/a naconda3/envs/python3/lib/python3.10/site-packages (from boto3) (0.6.0)
    Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /home/ec2-user/ana conda3/envs/python3/lib/python3.10/site-packages (from boto3) (0.10.0)
    Requirement already satisfied: attrs<23,>=20.3.0 in /home/ec2-user/anaconda
    3/envs/python3/lib/python3.10/site-packages (from sagemaker) (22.1.0)
    Requirement already satisfied: google-pasta in /home/ec2-user/anaconda3/env s/python3/lib/python3.10/site-packages (from sagemaker) (0.2.0)
    Requirement already satisfied: numpy<2.0,>=1.9.0 in /home/ec2-user/anaconda
    3/envs/python3/lib/python3.10/site-packages (from sagemaker) (1.22.4)
    Requirement already satisfied: protobuf<4.0,>=3.1 in /home/ec2-user/anacond a3/envs/python3/lib/python3.10/site-packages (from sagemaker) (3.20.3)
    Requirement already satisfied: protobuf3-to-dict<1.0,>=0.1.5 in /home/ec2-u ser/anaconda3/envs/python3/lib/python3.10/site-packages (from sagemaker)
    (0.1.5)
    Requirement already satisfied: smdebug_rulesconfig==1.0.1 in /home/ec2-use r/anaconda3/envs/python3/lib/python3.10/site-packages (from sagemaker) (1.
    0.1) Requirement already satisfied: importlib-metadata<5.0,>=1.4.0 in /home/ec2user/anaconda3/envs/python3/lib/python3.10/site-packages (from sagemaker)
    (4.13.0)
    Requirement already satisfied: packaging>=20.0 in /home/ec2-user/anaconda3/ envs/python3/lib/python3.10/site-packages (from sagemaker) (21.3)
    Requirement already satisfied: pandas in /home/ec2-user/anaconda3/envs/pyth on3/lib/python3.10/site-packages (from sagemaker) (1.5.1)
    Requirement already satisfied: pathos in /home/ec2-user/anaconda3/envs/pyth on3/lib/python3.10/site-packages (from sagemaker) (0.3.0)
    Requirement already satisfied: schema in /home/ec2-user/anaconda3/envs/pyth on3/lib/python3.10/site-packages (from sagemaker) (0.7.5) Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-use r/anaconda3/envs/python3/lib/python3.10/site-packages (from botocore<1.30.
    0,>=1.29.72->boto3) (2.8.2)
    Requirement already satisfied: urllib3<1.27,>=1.25.4 in /home/ec2-user/anac onda3/envs/python3/lib/python3.10/site-packages (from botocore<1.30.0,>=1.2
    9.72->boto3) (1.26.8) Requirement already satisfied: zipp>=0.5 in /home/ec2-user/anaconda3/envs/p ython3/lib/python3.10/site-packages (from importlib-metadata<5.0,>=1.4.0->s agemaker) (3.10.0)
    Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /home/ec2-user/a naconda3/envs/python3/lib/python3.10/site-packages (from packaging>=20.0->s agemaker) (3.0.9)
    Requirement already satisfied: six in /home/ec2-user/anaconda3/envs/python
    3/lib/python3.10/site-packages (from protobuf3-to-dict<1.0,>=0.1.5->sagemak er) (1.16.0)
    Requirement already satisfied: pytz>=2020.1 in /home/ec2-user/anaconda3/env s/python3/lib/python3.10/site-packages (from pandas->sagemaker) (2022.5)
    Requirement already satisfied: ppft>=1.7.6.6 in /home/ec2-user/anaconda3/en vs/python3/lib/python3.10/site-packages (from pathos->sagemaker) (1.7.6.6) Requirement already satisfied: multiprocess>=0.70.14 in /home/ec2-user/anac onda3/envs/python3/lib/python3.10/site-packages (from pathos->sagemaker)
    (0.70.14)
    Requirement already satisfied: dill>=0.3.6 in /home/ec2-user/anaconda3/env s/python3/lib/python3.10/site-packages (from pathos->sagemaker) (0.3.6)
    Requirement already satisfied: pox>=0.3.2 in /home/ec2-user/anaconda3/envs/ python3/lib/python3.10/site-packages (from pathos->sagemaker) (0.3.2) Requirement already satisfied: contextlib2>=0.5.5 in /home/ec2-user/anacond a3/envs/python3/lib/python3.10/site-packages (from schema->sagemaker) (21.
    6.0) Building wheels for collected packages: sagemaker
      Building wheel for sagemaker (setup.py) ... done
      Created wheel for sagemaker: filename=sagemaker-2.132.0-py2.py3-none-any. whl size=905449 sha256=f6100a5dc95627f2e2a49824e38f0481459a27805ee19b5a06ec
    83db0252fd41
      Stored in directory: /home/ec2-user/.cache/pip/wheels/60/41/b6/482e7ab096
    520df034fbf2dddd244a1d7ba0681b27ef45aa61
    Successfully built sagemaker
    Installing collected packages: botocore, boto3, sagemaker
      Attempting uninstall: botocore     Found existing installation: botocore 1.24.19
        Uninstalling botocore-1.24.19:       Successfully uninstalled botocore-1.24.19
      Attempting uninstall: boto3     Found existing installation: boto3 1.26.44
        Uninstalling boto3-1.26.44:
          Successfully uninstalled boto3-1.26.44
      Attempting uninstall: sagemaker     Found existing installation: sagemaker 2.127.0
        Uninstalling sagemaker-2.127.0:
          Successfully uninstalled sagemaker-2.127.0
    ERROR: pip's dependency resolver does not currently take into account all t he packages that are installed. This behaviour is the source of the followi ng dependency conflicts.
    awscli 1.27.44 requires botocore==1.29.44, but you have botocore 1.29.72 wh ich is incompatible.
    aiobotocore 2.0.1 requires botocore<1.22.9,>=1.22.8, but you have botocore 1.29.72 which is incompatible. Successfully installed boto3-1.26.72 botocore-1.29.72 sagemaker-2.132.0 Note: you may need to restart the kernel to use updated packages.
  2. Nella fase successiva, i dati (dbpedia_csv) viene scaricato dal bucket s3 ontapbucket1 A un'istanza Jupyter notebook utilizzata nell'apprendimento automatico.

    In [2]: import sagemaker
    In [3]: from sagemaker import get_execution_role
    In [4]:
    import json
    import boto3
    sess = sagemaker.Session()
    role = get_execution_role()
    print(role)
    bucket = "ontapbucket1"
    print(bucket)
    sess.s3_client = boto3.client('s3',region_name='',aws_access_key_id = '0ZNAX21JW5Q8AP80CQ2E',  aws_secret_access_key = 'PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr',
                                  use_ssl = False, endpoint_url = 'http://172.30.10.41',
                                  config=boto3.session.Config(signature_version='s3v4', s3={'addressing_style':'path'}) )
    sess.s3_resource = boto3.resource('s3',region_name='',aws_access_key_id = '0ZNAX21JW5Q8AP80CQ2E', aws_secret_access_key = 'PpLs4gA9K0_2gPhuykkp014gBjcC9Rbi3QDX_6rr',
                                  use_ssl = False, endpoint_url = 'http://172.30.10.41',
                                  config=boto3.session.Config(signature_version='s3v4', s3={'addressing_style':'path'}) )
    prefix = "blazingtext/supervised"
    import os
    my_bucket = sess.s3_resource.Bucket(bucket)
    my_bucket = sess.s3_resource.Bucket(bucket)
    #os.mkdir('dbpedia_csv')
    for s3_object in my_bucket.objects.all():
        filename = s3_object.key
    #    print(filename)
    #    print(s3_object.key)
        my_bucket.download_file(s3_object.key, filename)
  3. Il codice seguente crea il mapping tra gli indici interi e le etichette delle classi utilizzate per recuperare il nome effettivo della classe durante l'inferenza.

    index_to_label = {}
    with open("dbpedia_csv/classes.txt") as f:
        for i,label in enumerate(f.readlines()):
            index_to_label[str(i + 1)] = label.strip()

    L'output elenca i file e le cartelle in ontapbucket1 Bucket utilizzati come dati per la convalida dell'apprendimento automatico AWS SageMaker.

    arn:aws:iam::210811600188:role/SageMakerFullRole ontapbucket1
    AUTHORS
    AUTHORS
    NEWS
    NEWS
    README README
    dbpedia_csv/classes.txt dbpedia_csv/classes.txt dbpedia_csv/readme.txt dbpedia_csv/readme.txt dbpedia_csv/test.csv dbpedia_csv/test.csv dbpedia_csv/train.csv dbpedia_csv/train.csv deprecated.txt deprecated.txt getopt-parse.bash getopt-parse.bash getopt-parse.tcsh getopt-parse.tcsh
    In [5]: ls
    AUTHORS       deprecated.txt     getopt-parse.tcsh  NEWS    Untitled.ipynb dbpedia_csv/  getopt-parse.bash  lost+found/        README
    In [6]: ls -l dbpedia_csv
    total 191344
    -rw-rw-r-- 1 ec2-user ec2-user       146 Feb 16 19:43 classes.txt
    -rw-rw-r-- 1 ec2-user ec2-user      1758 Feb 16 19:43 readme.txt
    -rw-rw-r-- 1 ec2-user ec2-user  21775285 Feb 16 19:43 test.csv
    -rw-rw-r-- 1 ec2-user ec2-user 174148970 Feb 16 19:43 train.csv
  4. Avviare la fase di pre-elaborazione dei dati per pre-elaborare i dati di training in un formato di testo tobenizzato, separato dallo spazio, che può essere utilizzato dall'algoritmo BlazingText e dalla libreria nltk per mettere in token le frasi di input dal set di dati dbpedia. Scarica il token nltk e altre librerie. Il transform_instance Applicato a ogni istanza di dati in parallelo utilizza il modulo multiprocessing Python.

    ln [7]: from random import shuffle
    import multiprocessing
    from multiprocessing import Pool
    import csv
    import nltk
    nltk.download("punkt")
    def transform_instance(row):
        cur_row = []
        label ="__label__" + index_to_label [row[0]] # Prefix the index-ed label with __label__
        cur_row.append (label)
        cur_row.extend(nltk.word_tokenize(row[1].lower ()))
        cur_row.extend(nltk.word_tokenize(row[2].lower ()))
        return cur_row
    def preprocess(input_file, output_file, keep=1):
        all_rows = []
        with open(input_file,"r") as csvinfile:
            csv_reader = csv.reader(csvinfile, delimiter=",")
            for row in csv_reader:
                all_rows.append(row)
        shuffle(all_rows)
        all_rows = all_rows[: int(keep * len(all_rows))]
        pool = Pool(processes=multiprocessing.cpu_count())
        transformed_rows = pool.map(transform_instance, all_rows)
        pool.close()
        pool. join()
        with open(output_file, "w") as csvoutfile:
            csv_writer = csv.writer (csvoutfile, delimiter=" ", lineterminator="\n")
            csv_writer.writerows (transformed_rows)
    
    # Preparing the training dataset
    # since preprocessing the whole dataset might take a couple of minutes,
    # we keep 20% of the training dataset for this demo.
    # Set keep to 1 if you want to use the complete dataset
    preprocess("dbpedia_csv/train.csv","dbpedia.train", keep=0.2)
    # Preparing the validation dataset
    preprocess("dbpedia_csv/test.csv","dbpedia.validation")
    sess = sagemaker.Session()
    role = get_execution_role()
    print (role) # This is the role that sageMaker would use to leverage Aws resources (S3,  Cloudwatch) on your behalf
    bucket = sess.default_bucket() # Replace with your own bucket name if needed
    print("default Bucket::: ")
    print(bucket)

    Uscita:

    [nltk_data] Downloading package punkt to /home/ec2-user/nltk_data...
    [nltk_data]   Package punkt is already up-to-date!
    arn:aws:iam::210811600188:role/SageMakerFullRole default Bucket::: sagemaker-us-east-1-210811600188
  5. Caricare il set di dati formattato e formativo in S3 in modo che possa essere utilizzato da SageMaker per eseguire i lavori di training. Quindi caricare due file nel bucket e nella posizione del prefisso utilizzando l'SDK Python.

    ln [8]: %%time
    train_channel = prefix + "/train"
    validation_channel = prefix + "/validation"
    sess.upload_data(path="dbpedia.train", bucket=bucket, key_prefix=train_channel)
    sess.upload_data(path="dbpedia.validation", bucket=bucket, key_prefix=validation_channel)
    s3_train_data = "s3://{}/{}".format(bucket, train_channel)
    s3_validation_data = "s3://{}/{}".format(bucket, validation_channel)

    Uscita:

    CPU times: user 546 ms, sys: 163 ms, total: 709 ms
    Wall time: 1.32 s
  6. Impostare una posizione di output su S3 in cui viene caricato l'artefatto del modello in modo che gli artefatti possano essere l'output del lavoro di training dell'algoritmo. Creare un sageMaker.estimator.Estimator oggetto per avviare il lavoro di training.

    In [9]: s3_output_location = "s3://{}/{}/output".format(bucket, prefix)
    In [10]: region_name = boto3.Session().region_name
    In [11]: container = sagemaker.amazon.amazon_estimator.get_image_uri(region_name, "blazingtext","latest")
    print("Using SageMaker BlazingText container: {} ({})".format(container, region_name))

    Uscita:

    The method get_image_uri has been renamed in sagemaker>=2.
    See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
    Defaulting to the only supported framework/algorithm version: 1. Ignoring f ramework/algorithm version: latest.
    Using SageMaker BlazingText container: 811284229777.dkr.ecr.us-east-1.amazo naws.com/blazingtext:1 (us-east-1)
  7. Definire il SageMaker Estrimator Con configurazioni delle risorse e hyperparameters per formare la classificazione del testo nel dataset dbpedia utilizzando la modalità supervisionata su un'istanza c4.4xlarge.

    In [12]: bt_model = sagemaker.estimator.Estimator(
    container,
    role,
    instance_count=1,
    instance_type="ml.c4.4xlarge",
    volume_size=30,
    max_run=360000,
    input_mode="File",
    output_path=s3_output_location,
    hyperparameters={
            "mode": "supervised",
            "epochs": 1,
            "min_count": 2,
            "learning_rate": 0.05,
            "vector_dim": 10,
            "early_stopping": True,
            "patience": 4,
            "min_epochs": 5,
            "word_ngrams": 2,
     },
         )
  8. Preparare un handshake tra i canali dati e l'algoritmo. A tale scopo, creare sagemaker.session.s3_input oggetti dei canali dati e conservarli in un dizionario che l'algoritmo deve utilizzare.

    ln [13]: train_data = sagemaker.inputs.TrainingInput(
        s3_train_data,
        distribution="FullyReplicated",
        content_type="text/plain",
        s3_data_type="S3Prefix",
    )
    validation_data = sagemaker.inputs.TrainingInput(
        s3_validation_data,
        distribution="FullyReplicated",
        content_type="text/plain",
        s3_data_type="S3Prefix",
    )
    data_channels = {"train": train_data, "validation": validation_data}
  9. Al termine del lavoro, viene visualizzato il messaggio lavoro completato. Il modello addestrato si trova nel bucket S3 configurato come output_path nello stimatore.

    ln [14]: bt_model.fit(inputs=data_channels, logs=True)

    Uscita:

    INFO:sagemaker:Creating training-job with name: blazingtext-2023-02-16-20-3
    7-30-748
    2023-02-16 20:37:30 Starting - Starting the training job......
    2023-02-16 20:38:09 Starting - Preparing the instances for training......
    2023-02-16 20:39:24 Downloading - Downloading input data
    2023-02-16 20:39:24 Training - Training image download completed. Training in progress... Arguments: train
    [02/16/2023 20:39:41 WARNING 140279908747072] Loggers have already been set up. [02/16/2023 20:39:41 WARNING 140279908747072] Loggers have already been set up.
    [02/16/2023 20:39:41 INFO 140279908747072] nvidia-smi took: 0.0251793861389
    16016 secs to identify 0 gpus
    [02/16/2023 20:39:41 INFO 140279908747072] Running single machine CPU Blazi ngText training using supervised mode.
    Number of CPU sockets found in instance is  1
    [02/16/2023 20:39:41 INFO 140279908747072] Processing /opt/ml/input/data/tr ain/dbpedia.train . File size: 35.0693244934082 MB
    [02/16/2023 20:39:41 INFO 140279908747072] Processing /opt/ml/input/data/va lidation/dbpedia.validation . File size: 21.887572288513184 MB
    Read 6M words
    Number of words:  149301
    Loading validation data from /opt/ml/input/data/validation/dbpedia.validati on
    Loaded validation data.
    -------------- End of epoch: 1 ##### Alpha: 0.0000  Progress: 100.00%  Million Words/sec: 10.39 ##### Training finished.
    Average throughput in Million words/sec: 10.39
    Total training time in seconds: 0.60
    #train_accuracy: 0.7223
    Number of train examples: 112000
    #validation_accuracy: 0.7205
    Number of validation examples: 70000
    2023-02-16 20:39:55 Uploading - Uploading generated training model
    2023-02-16 20:40:11 Completed - Training job completed
    Training seconds: 68
    Billable seconds: 68
  10. Una volta completato il training, implementa il modello addestrato come endpoint in hosting in tempo reale Amazon SageMaker per fare previsioni.

    In [15]: from sagemaker.serializers import JSONSerializer
     text_classifier = bt_model.deploy(
         initial_instance_count=1, instance_type="ml.m4.xlarge", serializer=JSONS
    )

    Uscita:

    INFO:sagemaker:Creating model with name: blazingtext-2023-02-16-20-41-33-10
    0
    INFO:sagemaker:Creating endpoint-config with name blazingtext-2023-02-16-20
    -41-33-100
    INFO:sagemaker:Creating endpoint with name blazingtext-2023-02-16-20-41-33-
    100
    -------!
    In [16]: sentences = [
        "Convair was an american aircraft manufacturing company which later expanded into rockets and spacecraft.",
           "Berwick secondary college is situated in the outer melbourne metropolitan suburb of berwick .",
    ]
    # using the same nltk tokenizer that we used during data preparation for training
    tokenized_sentences = [" ".join(nltk.word_tokenize(sent)) for sent in sentences]
    payload = {"instances": tokenized_sentences} response = text_classifier.predict(payload)
    predictions = json.loads(response)
    print(json.dumps(predictions, indent=2))
    [
      {
        "label": [
          "__label__Artist"
        ],
        "prob": [
          0.4090951681137085
        ]
      },
      {
        "label": [
          "__label__EducationalInstitution"
        ],
        "prob": [
          0.49466073513031006
        ]
      }
    ]
  11. Per impostazione predefinita, il modello restituisce una previsione con la maggiore probabilità. Per recuperare la parte superiore k previsioni, set k nel file di configurazione.

    In [17]: payload = {"instances": tokenized_sentences, "configuration": {"k": 2}}
     response = text_classifier.predict(payload)
    
     predictions = json.loads(response)
     print(json.dumps(predictions, indent=2))
    [
      {
        "label": [
          "__label__Artist",
          "__label__MeanOfTransportation"
        ],
        "prob": [
          0.4090951681137085,
          0.26930734515190125
        ]
      },
      {
        "label": [
          "__label__EducationalInstitution",
          "__label__Building"
        ],
        "prob": [
          0.49466073513031006,
          0.15817692875862122
        ]
      }
    ]
  12. Eliminare l'endpoint prima di chiudere il notebook.

    In [18]: sess.delete_endpoint(text_classifier.endpoint)
    WARNING:sagemaker.deprecations:The endpoint attribute has been renamed in s agemaker>=2.
    See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.
    INFO:sagemaker:Deleting endpoint with name: blazingtext-2023-02-16-20-41-33
    -100